
Neon NTT: Faster Dilithium, Kyber, and Saber
on Cortex-A72 and Apple M1

Hanno Becker1, Vincent Hwang2,3, Matthias J. Kannwischer3, Bo-Yin Yang3

and Shang-Yi Yang4

1 Arm Research, Cambridge, UK
hanno.becker@arm.com

2 National Taiwan University, Taipei, Taiwan
vincentvbh7@gmail.com

3 Academia Sinica, Taipei, Taiwan
matthias@kannwischer.eu, by@crypto.tw

4 Chelpis Co. Ltd., Taipei, Taiwan
nick.yang@chelpis.com

Abstract. We present new speed records on the Armv8-A architecture for the lattice-
based schemes Dilithium, Kyber, and Saber. The core novelty in this paper is
the combination of Montgomery multiplication and Barrett reduction resulting in
“Barrett multiplication” which allows particularly efficient modular one-known-factor
multiplication using the Armv8-A Neon vector instructions. These novel techniques
combined with fast two-unknown-factor Montgomery multiplication, Barrett reduction
sequences, and interleaved multi-stage butterflies result in significantly faster code.
We also introduce “asymmetric multiplication” which is an improved technique for
caching the results of the incomplete NTT, used e.g. for matrix-to-vector polynomial
multiplication. Our implementations target the Arm Cortex-A72 CPU, on which our
speed is 1.7× that of the state-of-the-art matrix-to-vector polynomial multiplication
in kyber768 [Nguyen–Gaj 2021]. For Saber, NTTs are far superior to Toom–Cook
multiplication on the Armv8-A architecture, outrunning the matrix-to-vector polyno-
mial multiplication by 2.0×. On the Apple M1, our matrix-vector products run 2.1×
and 1.9× faster for Kyber and Saber respectively.
Keywords: NIST PQC · Armv8-A · Neon · Dilithium · Kyber · Saber

1 Introduction
When large quantum computers arrive, Shor’s algorithm [Sho97] will break almost all
currently deployed public-key cryptography by solving the integer factorization and the
discrete logarithms problems. Preparing for this, the U.S. National Institute of Standards
and Technology (NIST) has initiated a process to select new cryptosystems that withstand
the increased capabilities of quantum computers – an area known as Post-Quantum
Cryptography (PQC). This process naturally divides into categories of digital signatures
and key encapsulation mechanisms (KEMs) [NIS] and is currently in the third round,
where 7 finalists and 8 alternate candidates still compete [AASA+20].

Undoubtedly, the scheme(s) selected at the end of the NIST PQC competition will
become prominent computational workloads of the future. It is therefore important to
understand their performance and resource characteristics on the hugely diverse spectrum
of today’s and upcoming computing platforms, ranging from low-power IoT devices over
desktops to high-end data center cores, to name some. Representative of the former, the
focus of performance analysis of PQC on embedded devices has so far been the Arm®
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Cortex®-M4 CPU. Representative of the latter, the focus of performance analysis on
high-end cores has so far been the AVX2-capable Intel® CPUs Haswell and Skylake.

In this article, we contribute to the performance analysis of prominent PQC candidates
on CPUs implementing the application profile / A-profile of the Arm architecture1 – an
area which, despite its importance, has been comparatively little studied so far. CPUs
implementing the A-profile are ubiquitous, and form a wide spectrum in themselves: It
contains power-efficient CPUs like the Cortex-A7 processor for Linux-capable embedded
IoT devices, cores for the mobile and desktop market like the Cortex-A78 processor, as
well as the Arm® Neoverse™ IP for infrastructure applications, for example, the Arm
Neoverse-based AWS Graviton processors. The Fugaku supercomputer ranked as the
fastest supercomputer in the world in 2020 and 2021 [TOP20, TOP21], is also based on
a core implementing the A-profile. Considering the breadth of use and availability of
A-profile cores in the computing ecosystem, it is therefore important to include them in
the performance evaluation for PQC.

Another axis of distinction within the A-profile is the specific version of the architecture,
such as Armv7-A, Armv8-A, and, as of late, Armv9-A, and their respective sets of extensions.
In this article, we focus on implementations of PQC on CPUs based on the 64-bit Armv8-A
architecture, leveraging the availability of the Armv8-A version of the Arm® Neon™ Single
Instruction Multiple Data (SIMD) instruction set. We do not study implementations based
on the Neon instruction set for Armv7-A or implementations based on the Scalable Vector
Instructions SVE and SVE2 here – this is left for future work.

Returning to the nature of the PQC workloads themselves: Many of the remaining
NISTPQC candidate schemes are based on so-called structured lattices, for which the central
arithmetic operation is modular polynomial multiplication. A central implementation
technique for such polynomial multiplication is the Number-Theoretic Transform (NTT),
an integer-analog of the Fast Fourier Transform.

In this work, we explore the use of NTTs in implementing the NISTPQC structured
lattice finalist candidates. It has always been a point of interest to determine the realms
of applicability for various advanced multiplication techniques, and in addition to finding
out how well NTTs do, we also compare them to other approaches towards polynomial
multiplication, in particular Toom-Cook/Karatsuba.

Contributions. We exhibit NTT-based implementations of NISTPQC cyclotomic-ring
lattice candidates for CPUs implementing the A-profile of the Arm architecture, leveraging
the Neon vector extension. We optimized mainly for the common Cortex-A72 CPU (used
e.g. in the Raspberry Pi 4), and somewhat for the Apple M1, a high-end desktop core.

We improve on old and discover new implementation techniques, including a Barrett-
reduction based one-known-factor multiplication, which we show to be roughly equivalent
to the Montgomery multiplication technique of [Sei18], but particularly suitable for Neon.

We also introduce the trick of “asymmetric base multiplication” which is applicable
whenever we are caching incomplete NTT results (i.e., Kyber/Saber). Furthermore, we
improve on the best-known two-unknown-factors multiplications and Barrett reduction
sequences in the literature.

Code. Our code is available at https://github.com/neon-ntt/neon-ntt.

Related Work. The most recent work on lattice-based cryptography on the Armv8-A
architecture using the Neon vector extension is by Nguyen and Gaj [NG21] and Sanal
et al. [SKS+21]. NTT is frequently used in the context of polynomial multiplications

1The Arm architecture has three profiles – application (A), real-time (R) and embedded (M) – and
each Arm-based CPU implements a version of one of those profiles. The well-studied Cortex-M4 processor,
for example, belongs to the M-profile.

https://github.com/neon-ntt/neon-ntt
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Table 1: Kyber and Saber Parameter Sets
name l (d1, d2) η(s|s′) η(e|e′|e”)

Kyber512 2 (10, 4) 6 4
Kyber768 3 (10, 4) 4 4
Kyber1024 4 (11, 5) 4 4

name l T = 2εT η
LightSaber 2 23 10

Saber 3 24 8
FireSaber 4 26 6

which form the basis of almost all lattice-based PQC. Recently, NISTPQC third-round
candidates have been implemented for the Arm Cortex-M3 and Cortex-M4 using NTTs.
The most relevant works are Botros et al. [BKS19] and Alkim et al. [ABCG20] on Kyber,
Greconici et al. [GKS21] on Dilithium, Chung et al. [CHK+21] on Saber and NTRU, and
Alkim et al. [ACC+21] on NTRU Prime.

Addendum: Related work. One of our contributions, the “Barrett multiplication” al-
gorithm, is very close to Shoup’s modular multiplication algorithm [Har14, Algorithm
3], a fact which we got aware of only after finalizing the camera-ready version of this
paper. Like Barrett multiplication, Shoup’s multiplication computes a one-known-factor
modular multiplication with essentially three integer multiplications, at the expense of a
precomputation on the known factor. Our work furthers the understanding and concrete
implementation of this efficient technique by (a) applying it in the signed context, (b)
establishing a relation with Montgomery multiplication which we believe has not been noted
before, and (c) by allowing an arbitrary integer approximation which is essential in making
the algorithm amenable for implementation through common fixed-point instructions. We
appreciate any clarification about other prior art that we might have missed.

Structure of the paper. This paper is structured as follows: Section 2 introduces the
schemes we implement, the Armv8-A microarchitecture, and the mathematical background
on NTTs. In Section 3, we present more mathematics in the form of reductions for the
implementations used in this paper. In Section 4, we go through the implementation
details of the different schemes. In Section 5, we show performance numbers and conclude.

2 Preliminaries
2.1 Kyber
Kyber [ABD+20b] is a NISTPQC finalist candidate lattice-based key encapsulation mech-
anism based on the Module Learning With Errors (M-LWE) problem. The module is of
dimension `× ` over the ring Rq = Fq[x]/〈xn + 1〉, with q = 3329 and n = 256. The Kyber
KEM is derived a la [HHK17] from a CPA-secure Public-Key Encryption (PKE) .

Please refer to algorithmic descriptions of the PKE in in Appendix A. In the CPA-secure
key generation and encryption the rate-determining operations are (`× `)× (`× 1) matrix-
to-vector polynomial multiplications AT · s and As′ (MatrixVectorMul). In decryption, it
is the `×1 inner product of polynomials b′T ·s (InnerProd). Note that [ABD+20b] specifies
that we do all multiplications via incomplete NTT, and NTT results are in bit-reversed
order. The public matrix A is sampled in (incomplete) NTT domain by expanding a
seed using the extendable-output function (XOF) SHAKE128. There is 1 matrix-to-vector
polynomial multiplication and 0, 1, and 2 inner products of polynomials in each of key
generation, encapsulation, and decapsulation respectively.

Parameters. The module dimension `, the rounding parameters (d1, d2), and the width
of the centered binomial distribution η vary according to the parameter sets Kyber-512,
-768, and -1024 (targeting the NIST security levels 1, 3, and 5 respectively, cf. Table 1).
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2.2 Saber
Saber [DKRV20] is a NISTPQC finalist candidate lattice-based key encapsulation mecha-
nism based on the Module Learning With Rounding (M-LWR) problem. The module is of
dimension `× ` over the ring Rq = Zq[x]/〈xn + 1〉, with q = 213 and n = 256. Similar to
Kyber, the Saber KEM is built on top of a CPA-secure PKE via the CCA-transform a
la [HHK17]. For algorithmic descriptions of the Saber PKE see Appendix B.

In CPA-secure key generation and encryption, the rate-determining operations are (`×
`)× (`×1) matrix-to-vector polynomial multiplications AT ·s and As′ (MatrixVectorMul).
In decryption, it is the `× 1 inner product of polynomials b′T · s (InnerProd). There is 1
MatrixVectorMul in key generation; 1 MatrixVectorMul + 1 InnerProd in encapsulation;
and 1 MatrixVectorMul + 2 InnerProd in decapsulation, as decapsulation needs a full
re-encryption.

Note that Saber’s base ring Z213 is not a field and thus not directly amenable for
application of the NTT. Accordingly, the specification samples the public matrix A in
polynomial domain.

Parameters. The module dimension l, the rounding parameter T , and the secret distribu-
tion parameter η vary according to the parameter sets Lightsaber, Saber, and Firesaber
(respectively targeting the NIST security levels 1, 3, and 5, cf. Table 1).

2.3 Dilithium
Dilithium [ABD+20a] is a NISTPQC [NIS] finalist digital signature scheme based on
the M-SIS (Module Small Integer Solutions) and M-LWE problems. The module is of
dimension k × ` over the ring Rq = Fq[x]/〈x256 + 1〉 with q = 223 − 213 + 1 = 8380417.

For algorithmic descriptions see Appendix C. The core operation of key generation,
signature generation, and signature verification is the (k × `)× (`× 1) matrix-to-vector
polynomial multiplications As1, Ay, and Az (resp.) (MatrixVectorMul). In signature
generation, this operation is particularly time-consuming since it is executed in a loop.
Similar to Kyber, Dilithium builds a (complete) NTT into the specification, i.e., A is
sampled in NTT domain using the XOF SHAKE256.

Table 2: Dilithium parameter sets
Name NIST level (k, `) η β ω |pk| |sig| exp. iterations

Dilithium2 2 (4, 4) 2 78 80 1312 2420 4.25
Dilithium3 3 (6, 5) 4 196 55 1952 3293 5.1
Dilithium4 5 (8, 7) 2 120 75 2592 4595 3.85

Parameters. Dilithium has parameter sets Dilithium2, Dilithium3, and Dilithium5
targeting the corresponding NIST security levels. For all parameter sets γ1 = (q− 1)/16 =
523776 and γ2 = γ1/2 = 261888. For each parameter set, the remaining parameters are
given in Table 2. The parameters consist of the matrix dimension (k, `), the sampling
bounds of the secret η, and the rejection thresholds β and ω.

2.4 Modular arithmetic
In this section, we establish some basic facts and notation about modular arithmetic which
we will use throughout the paper.
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Notation. We will denote J K any “integer approximation”, by which we mean J K : Q→ Z
with |z − JzK| ≤ 1 for all z ∈ Z. Examples include the rounding functions b c, d e, b e, but
also e.g. the 2Z-valued bze2 := 2

⌊
z
2
⌉
, which will be of special interest later. Note that we

do not require JzK = z for all z ∈ Z, and it does in fact not hold for b e2.
Let N ∈ N, henceforth called the modulus; in our application we will have either

N = 2k or N = q an odd prime. We denote ZN := Z/NZ (or Fq if N = q is a prime) the
quotient ring of Z by the equivalence relation x ≡N y, identifying two integers which leave
the same residue after division by N . For z ∈ Z, we denote z ∈ ZN its residue class; in the
case of a 2-power N , we use the notation z instead.

Both the signed interval SN :=
{
−
⌊
N
2
⌋
,−
⌊
N
2
⌋

+ 1, . . . ,
⌊
N−1

2
⌋
− 1,

⌊
N−1

2
⌋}

and the
unsigned interval UN := {0, 1, . . . , N − 1} are fundamental domains for ≡N ; for z ∈ Z, we
denote z mod± N ∈ SN and z mod+ N ∈ UN the unique representatives of z in SN and
UN and call them canonical signed representative and canonical unsigned representative,
respectively. For example, −15 mod± 13 = −2 and −15 mod+ 13 = 11.

The canonical signed and unsigned representatives are related to the integer approx-
imations b e and d e via z mod± N = z − N

⌊
z
N

⌉
and z mod+ N = z − N

⌊
z
N

⌋
. More

generally, we can define z modJ K N := z −N
q
z
N

y
for any integer approximation J K.

Example 1. We consider z modbe2 N associated with bze2 = 2
⌊
z
2
⌉
. In this case,

z modbe2 N is a representative of z modulo N within {−N, . . . , N} of the same par-
ity as z. For example, if z is even, we have z modbe2 N = z mod± N if z mod± N is even,
and z modbe2 N = z mod± N − sign(z mod± N)N otherwise.

If J K satisfies Jz + 1K = JzK + 1, then z modJ K N descends to a function ZN → Z; this
is the case for b c and b e, and we will also use z mod± N and z mod+ N for z ∈ ZN .

We will need the following fact:

Fact 1. Let R = 2n and x ∈ ZR. Then the following holds:

1. If x 6= 2n−1 ∈ ZR, then (−x) mod± R = −(x mod± R).

2. If x = 2n−1 ∈ ZR, then (−x) mod± R = −(x mod± R)−R .

Beyond those canonical representatives, we will also be interested in non-unique
representatives from intervals {−N ′,−N ′+1, . . . , N ′−1, N ′}, where N ′ is suitably bounded
with respect to N . By “algorithms for arithmetic modulo N” we mean algorithms which
compute addition and multiplication in ZN in terms of “small” representatives within
those sets. The primary objective in designing such algorithms is the avoidance of generic
integer division; a secondary goal is to avoid unnecessary reductions. Our main techniques
are Montgomery and Barrett reduction, which we recall briefly now.

2.4.1 Barrett reduction

We have z mod± N = z − N ·
⌊
z
N

⌉
. The idea behind Barrett reduction [Bar86] is to

approximate z
N = z RN /R ≈ z

q
R
N

y
/R, so z mod± N ≈ z−N ·

⌊
z

q
R
N

y
/R
⌉
, where J−K is a

choice of integer approximation and R = 2n > N is fixed. Since
q
R
N

y
can be precomputed,

this provides an approximation to z mod± N relying solely on division by R = 2n, which
common hardware can realize as a bitshift. We denote the resulting approximation to
z mod± N by barJ K

N (z), or bar±N (z) if J K = b e. See Algorithm 1.
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Algorithm 1 Barrett reduction
Require: N modulus, R = 2n > N
Require:

q
R
N

y
∈ Z approx. of R

N .
Require: z ∈ Z, |z| ≤ R, to be reduced
Ensure: z′ ≡ z (mod N), |z′| < 3

2N .
1: t←

⌊
z

q
R
N

y
/R
⌉

2: c← Nt
3: barJ K

N (z) := z′ ← z − c

Algorithm 2 Montgomery reduction
Require: N odd, R = 2n > N
Require: T ∈ Z, T ≡ ±N−1 (mod R)
Require: z ∈ Z, to be reduced
Ensure: z′ ≡ zR−1 (mod N), |z′| ≤ |z|2n + N

2 .
1: k ← zT mod± R
2: c← kN
3: mont±N (z) := z′ ← z∓c

R

Fact 2. For any choice of integer approximation J K, we have

|z mod± N − barJ K
N (z)| ≤ N

⌈
|z|
R

⌉
.

In particular, if |z| ≤ R, we have |barJ K
N (z)| < 3

2N .

Proof. The left hand side is equal to N
∣∣⌊ z
N

⌉
−
⌊
z

q
R
N

y
/R
⌉∣∣ = N

∣∣⌊z RN /R⌉− ⌊z q
R
N

y
/R
⌉∣∣.

Now, apply | bae − bbe | ≤ da− be and the defining property |RN −
q
R
N

y
| ≤ 1.

Implementation considerations. In the context of Algorithm 1, the result has absolute
value |c− t| < 3

2N . If N < R
3 , c− t is a signed canonical representative modulo R = 2n,

and thus uniquely determined by its residue modulo 2n. This observation allows us to
perform steps 2 and 3 in Algorithm 1 in single-width arithmetic, leading to the presentation
of Barrett reduction in terms of single-width operations alone (Algorithm 3).

Algorithm 3 Barrett reduction, implementation-view
Require: N modulus, R = 2n s.t. N < R

3 .
Require:

q
R
N

y
∈ Z precomputed integer approximation of R

N .
Require: z ∈ Z representative mod N with |z| ≤ R, to be reduced
Ensure: barJ K

N (z) representative of z with |barJ K
N (z)| < 3

2N < R
2 .

1: t←
⌊
z

q
R
N

y
/R
⌉

. Signed multiply-high with rounding
2: c← N · t . Unsigned single-width multiply
3: z ← z − c . Unsigned single-width subtract
4: barJ K

N (z)← z mod± R . Canonical signed representative

2.4.2 Montgomery reduction

Like Barrett reduction, Montgomery reduction [Mon85] provides a way to trade expensive
division by N for cheap division by a power of two.

The idea is simple: Assume we would like to reduce z ∈ Z with respect to the odd
modulus N , and that z happens to be a multiple of R = 2n ∈ Z. Then the (cheaply
computed) integer division z

R is a representative of z · R−1 ∈ ZN which is shorter than
z by n bits. In other words, if we accept “twisting” our target residue z by some factor
R−1 ∈ ZN , we can shorten its representative.2

If the given representative z ∈ Z is not evenly divisible by R, we can turn it into one
through the following correction step: We need to find some k such that z−kN is divisible

2Note that ZN is unordered. We only talk about smallness of representatives of elements of ZN , not
the elements of ZN themselves. In particular, one should not consider the multiplication by R−1 as some
form of scaling, but instead as an abstract permutation of ZN .
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Algorithm 4 Montgomery reduction, implementation-view

Require: N odd modulus, R = 2n > N , T ∈ Z representative of N−1 ∈ ZR
Require: z ∈ Z representative mod N , to be reduced
Ensure: mont+

N (z) representative of zR−1 ∈ ZN satisfying |mont+
N (z)| ≤ |z|2n + N

2 .
1: k ← zT . Unsigned single-width multiply
2: k ← k mod± R . Canonical signed representative
3: c←

⌊
kN
R

⌋
. Signed multiply-high with truncation

4: zhigh =
⌊
z
R

⌋
. High part extraction

5: mont+
N (z)← zhigh − c . Signed subtraction/addition

by R, that is, z = kN in ZR. Since N and R are coprime, this is achieved by taking k to
be a small representative of z ·N−1 in ZR; we will always choose zN−1 mod± R.

The so obtained “Montgomery reduction” is summarized in Algorithm 2 and denoted
mont+

N (z) – with R always being implicit. Algorithm 2 also shows a close variant mont−N (z)
which implements the correction step through an addition z + kN instead of a subtraction:
In this case, we want k to be a small representative of −z · N−1 in ZR, for which we
choose −zN−1 mod± R. We will call this variant “negative” Montgomery reduction. Their
relation is as follows:

Fact 3. Assume the context of Algorithm 2. If z 6= 2n−1 ∈ ZR, then mont+
N (z) =

mont−N (z). Otherwise, mont−N (z) = mont+
N (z)−N .

Proof. This follows from Fact 1 and the fact that 2n−1 · x = 2n−1 for odd x.

Remark 1. The exceptional case z = 2n−1 can be made explicit: mont±N (z) = z±2n−1N
2n .

Implementation considerations. We briefly summarize known implementation aspects of
Montgomery reduction.

Firstly, in the context of Algorithm 2 for mont+
N (z), z − c is divisible by R, and hence

z−c
R =

⌊
z
R

⌋
−
⌊
c
R

⌋
. This allows to rewrite the algorithm in terms of single-width operations,

as detailed in Algorithm 4. This description does not apply to mont−N (z): This is because
z+c
R will usually introduce a carry-in from low-half to high-half as part of z + c, and this

carry is lost in
⌊
z
R

⌋
+
⌊
c
R

⌋
. We will revisit this later.

Secondly, consider the use of Montgomery reduction for modular multiplication by
constants: If z = ab for single-width values a, b ∈ Z, and b is known in advance, then
b ·N−1 ∈ ZR can be precomputed and leads to Algorithm 5, the Montgomery reduction
for products (a.k.a., “Montgomery Multiplication”) with one known factor.

Finally, for microarchitectures with length-doubling (“long”) and non-doubling products,
the optimal implementation varies depending on what instructions are available. For the
Neon instruction set, please refer to Section 3.2.5 and Algorithm 14.

2.5 Fixed point arithmetic
Let n ∈ {16, 32}. The fixed-point interpretation of a single-width signed integer a ∈
{−2n−1,−2n−1 + 1, . . . , 2n−1 − 1} is the single-precision fractional value a

2n−1 ∈ [−1,+1).
Likewise, the fixed-point interpretation of a double-width signed integer a is the double-
precision fractional value a

22n−1 .
In this interpretation, the double-precision product of two single-precision fractional

values corresponds to a doubling long multiplication on the corresponding signed integers:
a

2n−1 · b
2n−1 = ab

22n−2 = 2ab
22n−1 . For this reason, doubling long multiplications are found in



8 Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1

Algorithm 5 Montgomery multiplication, implementation-view
Require: N odd modulus, R = 2n > N
Require: a, b ∈ Z representative mod N with |a|, |b| < R.
Require: Precomputed btw = b ·N−1 ∈ ZR.
Ensure: mont+

N (a, b) representative of abR−1 ∈ ZN satisfying |mont+
N (a, b)| ≤ |a||b|2n + N

2 .
1: k ← a · btw . Unsigned single-width multiply
2: k ← k mod± R . Canonical signed representative
3: c←

⌊
kN
R

⌋
. Signed multiply-high with truncation

4: zhigh =
⌊
ab
R

⌋
. Multiply-high

5: mont+
N (a, b)← zhigh − c . Signed subtraction

some ISAs supporting fixed point arithmetic: Neon offers SQDMULL, Helium offers VQDMULL,
and SVE 2 offers QDMULL.

Similarly, single-precision approximations to the product of two single-precision frac-
tional values correspond to a doubling long multiplication returning high half a

2n−1 · b
2n−1 =

2ab
22n−1 ≈

J 2ab
2n K

2n−1 , with flexibility in terms of the choice of approximation J−K; common choices
are truncation via b−c and rounding to the nearest integer b−e. For this reason, ISAs
supporting fixed point arithmetic offer instructions for doubling long multiplication return-
ing high halves, often with separate variants for truncation and rounding: For example,
Neon offers SQDMULH (truncating) and SQRDMULH (rounding), Helium offers VQ[R]DMULH,
and SVE2 offers Q[R]DMULH. We note that Intel’s AVX2 includes VPMULHRSW but not a
non-rounding variant.

Finally, ISAs supporting fixed-point arithmetic often offer multiply-accumulate-add
or even multiply-accumulate-subtract variants for their single-precision fixed-point multi-
plications: Neon from Armv8.1-A onwards offers VQRDMLAH and VQRDMLSH, Helium offers
VQ[R]DMLAH, and SVE2 offers QRDMLAH and QRDMLSH. Interpreted as integer operations,
those correspond to doubling long multiplications returning (rounded/truncated) high half
with accumulate add/subtract.

2.6 Number Theoretic Transform

In Kyber, Saber, and Dilithium, we need arithmetic in Rq = Zq[x]/〈x256 +1〉, a polynomial
ring. Here q = 3329 = 13·28+1 for Kyber, q = 213 for Saber, and q = 223−213+1 = 8380417
for Dilithium. More specifically, we need to perform a matrix-to-vector multiplication and
inner products. All three will be developed in parallel after we switch to a modulus q′ for
Saber [CHK+21] so that the results are the same as for a computation over Z[x]/〈x256 + 1〉.

Let F = Fq for Dilithium and Kyber and F = Fq′ for Saber. From the CRT (Chinese
Remainder Theorem) we have the ring isomorphism (Figure 1):

F[x]/〈x2n − c2〉 ∼= F[x]/〈xn − c〉 × F[x]/〈xn + c〉;
2n−1∑
i=0

fix
i ↔

(
n−1∑
i=0

(fi + cfn+i)xi,
n−1∑
i=0

(fi − cfn+i)xi
)
.

To split a 2n-long polynomial, we perform CT butterflies between n pairs of coefficients,
each from one half of the polynomial. Everything can be done in-place, and the CT
butterfly has an obvious inverse — the GS butterfly, except for a factor of 2. For even
n and ±c with square roots in F we can recurse this process, each stage comprising the
same number of butterflies. Let ζ be a principal root of order 2k, so that ζ2k−1 = −1. An
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fi //

((

+ // fi + cfn+i

fn+i // ×c

??

// − // fi − cfn+i

(a) Cooley–Tukey (CT) Butterfly

gi //

��

+ // fi = gi + hi

hi //

??

− // × 1
c

// fn+i = 1
c (gi − hi)

(b) Gentleman–Sande (GS) Butterfly

Figure 1: The “Butterflies” of Fast Fourier Transforms

(incomplete) NTT is defined as the series of ring isomorphisms computed as follows:

F[x]
〈xd·2k − c2k〉

∼=
F[x]

〈xd·2k−1 − c2k−1〉
× F[x]
〈xd·2k−1 − ζ2k−1c2k−1〉

∼=
F[x]

〈xd·2k−2 − c2k−2〉
× F[x]
〈xd·2k−2 − ζ2k−1c2k−2〉

×

F[x]
〈xd·2k−2 − ζ2k−2c2k−2〉

× F[x]
〈xd·2k−2 − ζ3·2k−2c2k−2〉

∼= · · · ∼=
2k−1∏
i=0

F[x]〈
xd − c · ζbrk(i)

〉 ,
where brk ((bk−1 · · · b1b0)2) := (b0b1 · · · bk−1)2 (“k-bit reversal”).

Here k = 7, d = 2, c128 = −1 for Kyber, k = 8, d = 1, c256 = −1 for Dilithium, and
ζ = c2 for both, as the NTT is specified. Saber is flexible and only requires d · 2k = 256
and c2k−1 = −1. The image under the ring isomorphism of a polynomial f is called “the
NTT” of f and denoted NTT (f). A polynomial product fg in the ring is computed as
fg = NTT−1(NTT (f) ◦ NTT (g)), where ◦ is the base_mul giving products in each of

F[x]
〈xd−c·ζbrk(i)〉 .

3 Modular Multiplication
In this section, we present improvements to Barrett reduction and Montgomery multipli-
cation from a theoretical and implementation perspective: In Section 3.1, we present a
relation between Barrett reduction and Montgomery reduction and expand it to a relation
between Montgomery multiplication and a new variant of modular multiplication via
Barrett reduction which we call “Barrett multiplication”3. We also introduce two new vari-
ants of Montgomery multiplication using fixed-point arithmetic. In Section 3.2, we study
implementations on SIMD extensions, focusing on the Neon instruction set. Concretely,
we find a 3-instruction sequence for SIMD modular multiplication by known constants,
improving on the 4-instruction sequence introduced by [Sei18, LS19], and a 5-instruction
sequence for modular multiplication with unknown inputs on the Neon instruction set,
improving the sequence used in [NG21]. We also describe a 4-instruction sequence for two
unknown inputs; it does impose a parity constraint on the input, however, which may or
may not be satisfiable depending on the application context.

3.1 Theory
3.1.1 Barrett reduction vs. Montgomery reduction

In this section, we compare Barrett and Montgomery reduction for single-width values.
3See Addendum: Related work for a post-publication correction with respect to prior art.
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Proposition 1. Let N be odd, R = 2n > N and z ∈ Z. Then Barrett reduction and
negative Montgomery reduction satisfy the following relation:

bar±N (z) = mont−N (z(R mod± N)). (1)

More generally, for an arbitrary approximation J K, we have

barJ K
N (z) = mont−N (z(R modJ K N))

Remark 2. Since mont−N (x) computes a representative of x · R−1 in ZN , the factor
R mod± N in (1) does not come as a surprise. It also explains why bar±N (z) and
mont−N (zR mod± N) can only differ by a multiple of N . The value in Proposition 1
is in working with explicit representatives.

Remark 3. It follows from Fact 3 that Proposition 1 also holds for mont+
N (z) except for

the case z ·R mod± N = 2n−1, in which case bar±N (z) = mont+
N (z(R mod± N))−N .

Lemma 1. In the context of Proposition 1,
q
R
N

y
= −R modJ K N ·N−1 in ZR, hence

q
R
N

y
mod± R =

(
−(R modJ K N) · (N−1 mod± R)

)
mod± R. (2)

Lemma 1. We have N
q
R
N

y
= R − R modJ K N in Z. Passing to ZR and multiplying by

N
−1 proves the claim. Equation 2 follows by applying _ mod± R : ZR → Z.

Proposition 1. The proof is mostly careful unraveling of definitions.

barJ K
N (z) def= z −N ·

⌊
z

q
R
N

y

R

⌉
def= z −N

z
q
R
N

y
− (z

q
R
N

y
) mod± R

R

Lemma 1= z −
zN

q
R
N

y
−N

[(
−z(R modJ K N)(N−1 mod± R)

)
mod± R

]
R

Note that the right hand side of this expression already matches the correction term
occurring in mont−R(z(R modJ K N)). Next, we replace

q
R
N

y
= R−(R modJ K N)

N and obtain

... = z −
zN R−(R modJ K N)

N −N
[(
−z(R modJ K N)(N−1 mod± R)

)
mod± R

]
R

=
z(R modJ K N) +N

[
−z(R modJ K N)(N−1 mod± R) mod± R

]
R

= mont−N (z(R modJ K N)).

Corollary 1. In the context of Proposition 1,

|barJ K
N (z)| ≤ |z| · |R modJ K N |

R
+ N

2

In particular, if |z| < N , and N < R
2 , then |barJ K

N (z)| < N .

Proof. The first part follows from Proposition 1 and the bound for Montgomery reduction.
For the second, recall |_ modJ K N | ≤ N .
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3.1.2 Barrett multiplication

The relation between Barrett reduction and Montgomery reduction exhibited in the
previous section raises the question of whether there is a natural extension to Montgomery
multiplication, and what the analog on the Barrett side is. The answer turns out to be a
variant of Barrett reduction for multiplication with known constants, which we describe in
this section. While very natural in retrospect, the definitions and results are novel to the
best of our knowledge.4

Recall (Section 2.4.1) the idea of Barrett reduction: To reduce z ∈ Z, we approximate

z mod± N = z −N ·
⌊ z
N

⌉
= z −N ·

⌊
z RN
R

⌉
≈ z −N ·

⌊
z

q
R
N

y

R

⌉
,

replacing z RN by the precomputed z
q
R
N

y
. If z = ab for a, b ∈ Z and b a known constant,

we can improve the quality of the approximation by pulling b into the approximation,
approximating abRN ≈ a

q
bR
N

y
, where

q
bR
N

y
can be precomputed. We call this the “Barrett

multiplication” of a, b and denote it barJ K
N (a, b), or bar±N (a, b) if J K = b e. As before, the

choice of R is implicit in the notation and to be understood from the context. We describe
Barrett multiplication in Algorithm 6.

Algorithm 6 Barrett multiplication, abstract view
Require: N modulus, R = 2n > N
Require: b ∈ Z,

q
bR
N

y
∈ Z precomputed integer approximation of bRN .

Require: a ∈ Z representative mod N with |a| < R, to be reduced
Ensure: barJ K

N (a, b) representative of ab with |barJ K
N (a, b)| < N .

1: z ← ab

2: t←
⌊
aJ bR

N K
R

⌉
3: c← Nt
4: barJ K

N (a, b)← z − c

We now obtain the desired analog of Proposition 1 for Barrett multiplication:

Proposition 2. Let N be odd, R = 2n > N and a, b ∈ Z. Then Barrett multiplication
and negative Montgomery multiplication satisfy the following relation:

bar±N (a, b) = mont−N (a, bR mod± N).

More generally, for an arbitrary approximation J K, we have

barJ K
N (a, b) = mont−N (a, bR modJ K N).

Proof. Replace R modJ K N by bR modJ K N in the proof of Proposition 1.

Corollary 2. In the context of Proposition 2,

|barJ K
N (a, b)| ≤ a(bR modJ K N)

R
+ N

2

In particular, for |a| < N and N < R
2 we have |barJ K

N (a, b)| < N .
4See Addendum: Related work for a post-publication correction with respect to prior art.
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Algorithm 7 Montgomery multiplication via doubling, abstract view
Require: N odd modulus, R = 2n > N
Require: a, b ∈ Z representative mod N with |a|, |b| < R.
Require: Precomputed T = N

−1 ∈ ZR.
Ensure: mont+

N (a, b) representative of abR−1 ∈ ZN satisfying |mont+
N (a, b)| ≤ |a||b|2n + N

2 .
1: z ←

⌊ 2ab
R

⌋
2: k ← abT mod± R
3: c←

⌊ 2kN
R

⌋
4: mont±N (z)← z−c

2

Algorithm 8 Montgomery multiplication via rounding, abstract view
Require: N odd modulus, R = 2n > N
Require: a, b ∈ Z representative mod N with |a|, |b| < R

2 , s.t. a or b is odd.
Require: Precomputed T = −N−1 ∈ ZR.
Ensure: mont+

N (a, b) representative of abR−1 ∈ ZN satisfying |mont+
N (a, b)| ≤ |a||b|2n + N

2 .
1: z ←

⌊ 2ab
R

⌉
2: k ← abT mod± R
3: c←

⌊ 2kN
R

⌉
4: mont±N (z)← z+c

2

3.1.3 Montgomery multiplication via doubling

Because of the doubling inherent in many fixed point instructions, the variant of Mont-
gomery multiplication described in Algorithm 7 will be useful.

Proposition 3. Algorithm 7 is correct.

Proof. By construction, ab − kN is divisible by R. Hence, so is 2ab − 2kN , and we get⌊ 2ab
R

⌋
−
⌊ 2kN

R

⌋
= 2(ab−kN)

R = 2
(⌊
ab
R

⌋
−
⌊
kN
R

⌋)
. Algorithm 7 thus yields the same result as

Montgomery multiplication.

3.1.4 Montgomery multiplication via rounding

As first pointed out by Seiler in [Sei18] and mentioned in Section 2.4.2, single-width
Montgomery multiplication Algorithm 5 breaks when trying to use addition instead of
subtraction in the final step, because of a carry-in from low half to high half. Algorithm 8
presents a remedy using rounding. Note the assumption that one of the inputs is odd.

Proposition 4. Algorithm 8 is correct.

Proof. Since we use −N−1 ∈ ZR instead of N−1 ∈ ZR, we have ab = −kN in ZR.
Assuming ab 6= 2n−1, Fact 1 therefore implies ab mod± R = −(kN mod± R), and hence⌊

2ab
R

⌉
+
⌊

2kN
R

⌉
= 2ab− (ab mod± R) + 2kN − (kN mod± R)

R
= 2(ab− kN)

R
.

The result of Algorithm 8 therefore equals that of ordinary Montgomery multiplication.
It remains to be justified why ab 6= 2n−1, which involves the assumption that either a

or b are odd: If, say, b is odd, then ab = 2n−1 implies a = 2n−1, hence |a| ≤ 2n−1 = R
2 ,

contradicting the assumption that |a|, |b| < R
2 .



Becker, Hwang, Kannwischer, Yang, Yang 13

3.2 Implementation

In this section, we look at Barrett and Montgomery multiplication from an implementation
perspective, focusing on the Armv8-A version of the Neon SIMD instructions.

3.2.1 Barrett multiplication in 3-instructions

Analogously to Algorithm 3, Barrett multiplication can be described in terms of single-width
operations. The details are spelled out in Algorithm 9. We see that Barrett multiplication
can be expressed in terms of 3 single-width operations: 1× unsigned multiply-low, 1×
unsigned multiply-low-accumulate, 1× multiply-high-with-rounding.

Algorithm 9 Barrett multiplication
Require: N odd, R = 2n s.t. N < R

3 .
Require: b ∈ Z,

q
bR
N

y
∈ Z approx. bR

N .
Require: a ∈ Z, |a| ≤ R, to be multiplied
Ensure: z ≡ ab (mod N), |z| < 3

2N < R
2 .

1: z ← a · b
2: t←

⌊
a

q
bR
N

y
/R
⌉

3: z ← z +−N · t
4: barJ K

N (a, b) = z ← z mod± R

Algorithm 10 Barrett multiplication in Neon
Require: N odd, R = 2n s.t. N < R

3 .

Require: b ∈ Z, b
bR
N e2
2 precomputed

Require: a ∈ Z, |a| ≤ R, to be multiplied
Ensure: z ≡ ab (mod N), |z| < 3

2N < R
2 .

1: mul z, a, b

2: sqrdmulh t, a,
b bR

N e2
2

3: mls z, t, N

In Neon, unsigned multiply-low and multiply-low-accumulate are implemented via MUL
and MLA, respectively. The multiply-high-with-rounding operations (a, b) 7→

⌊
ab
2n

⌉
does

not have an exact match in Neon, but as explained in Section 2.5, there is SQRDMULH
which computes (a, b) 7→

⌊ 2ab
2n

⌉
instead. We work around this difference by choosing the

even integer approximation b e2 as the basis for Barrett multiplication: In this case, we
have

⌊
abbR/Ne2

R

⌉
=
⌊

2a(bbR/Ne2/2)
R

⌉
, which can be implemented through SQRDMULH since⌊

bR
N

⌉
2 /2 can be computed upfront. We show the resulting Neon sequence in Algorithm 10.

Note, however, that Barrett multiplication requires one factor to be known upfront. It
does not apply for “point multiplication” of two unknown values.

Remark 4. This strategy works for 16- and 32-bit moduli, and any SIMD ISA which offers
a double-multiply-high-with-rounding instruction. This includes the M-Profile Vector
Extension (MVE), the Scalable Vector Extension 2 (SVE2) and, (16-bit lanes only), AVX2.

3.2.2 Barrett reduction

We comment on the implementation of Barrett reduction (Algorithm 3) in the Neon
instruction set. For Barrett reduction of a single-width value, we choose R as large as
possible in Algorithm 3 so that

⌊
R
N

⌉
is still a single-width signed value, increasing precision

of the approximation. To compute
⌊
zb R

N e
R

⌉
, however, we can no longer use SQRDMULH as in

Algorithm 10 but have to split it into SQDMULH and a rounding right shift SRSHR. We show
our implementation of Barrett reduction in the Neon instruction set in Algorithm 11.
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Algorithm 12 Montgomery multiplication with doubling.
Require: N odd modulus, R = 2n > N
Require: a, b ∈ Z representative mod N with |a|, |b| < R.
Require: Precomputed T = N

−1 ∈ ZR.
Ensure: mont+

N (a, b) representative of abR−1 ∈ ZN satisfying |mont+
N (a, b)| ≤ |a||b|2n + N

2 .
1: sqdmulh z, a, b
2: mul k, a, bT mod± R
3: sqdmulh c, k, N
4: shsub z, z, c

Old Algorithm 11 Barrett Reduction
(Vectorized) [NG21, Algorithm 13]
Require: Odd modulus N, i bits long.
Require: Radix R = 216 or 232

Require: Rounding constant r = 2i−3.
Require: Multiplier V = d2i−2R/Nc
Ensure: z ≡ B (mod N), −N2 ≤ z <

N
2

1: smull T0, B, V
2: smull2 T1, B, V
3: uzp2 T0, T0, T1
4: add T1, r, T0
5: sshr T1, T1, #(i− 2)
6: mls z, T1, N

Algorithm 11 Barrett Reduction for Neon
Require: Odd modulus N, i bits long.
Require: Radix R = 216 or 232

Require: Multiplier V = d2i−2R/Nc
Ensure: z ≡ B (mod N), −N2 ≤ z <

N
2

1: sqdmulh T0, B, V
2: srshr T1, T1, #(i− 1)
3: mls z, T1, N

sqdmulh = doubling multiplication, high half
sshr = signed shift right
srshr = signed shift right with rounding
Note: N,V can be one lane of a Neon register

3.2.3 Montgomery multiplication via doubling

Ordinary Montgomery multiplication does not lend itself to a straightforward implementa-
tion in Neon because Neon does not offer a multiply-high instruction. This is the reason
why e.g. [NG21] use the long multiply UMULL to implement Montgomery multiplication.

We propose to use the doubling multiply-high instruction QDMULH instead to implement
Algorithm 7. Moreover, the final step mont±N (z) ← z−c

2 can be implemented via the
halving subtract instruction SHSUB.

The resulting Neon sequence is shown in Algorithm 12. It provides a 5-instruction
sequence for Montgomery multiplication of two unknown values, and a 4-instruction
sequence if one factor is a constant.

3.2.4 Montgomery multiplication via rounding

It is natural to try to merge the multiply-high and subtract step in Montgomery multipli-
cation to shorten the modular multiplication sequence further. However, there is no plain
multiply-high-accumulate instruction. Instead, MVE, SVE2 and the Armv8.1-A extension
to Neon provide a multiply-high-accumulate-with-rounding instruction, which lends itself
to an implementation of Algorithm 8 as shown in Algorithm 13. Like Barrett multiplication,
this provides a 3-instruction sequence for modular multiplication with a known constant;
unlike Barrett multiplication, however, it also applies to two unknown factors, provided
one of them is known to be odd. While this is a strong condition, one has some leverage to
reason about parity since the result of Algorithm 13 is always even. Note also that since
sqrdmlah does not perform halving, Algorithm 13 computes a representative of 2abR−1

instead of abR−1.
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Algorithm 13 Montgomery multiplication with rounding.
1: sqrdmulh z, a, b
2: mul k, a, −bN−1 mod± R
3: sqrdmlah z, k, N

3.2.5 Montgomery multiplication in long arithmetic

Old Algorithm 14 Neon Montgomery
multiplication [NG21, Alg. 12][SKS+21].
Inputs: (a, b) = (a, b)
Outputs: c ≡ abR−1 (mod N), |c| < N

1: smull l, a, b
2: smull2 h, a, b
3: uzp1 t0, l, h
4: uzp2 t1, l, h
5: mul c, t0, N

−1
mod± R

6: smull l, c, N
7: smull2 h, c, N
8: uzp2 t0, l, h
9: sub c, t1, t0

Algorithm 14 Our Neon Montgomery
Inputs: (a, b) = (a, b)
Outputs: c = abR−1 (mod N), |c| < N

1: smull l, a, b
2: smull2 h, a, b
3: uzp1 t, l, h
4: mul t, t, −N−1

mod± R
5: smlal l, t, N
6: smlal2 h, t, N
7: uzp2 c, l, h

Steps 3–7 do a better l,h→cMontgomery
reduction than [NG21, Alg. 12, Steps 3–9].

We have so far focused on single-width implementations of Montgomery and Barrett
multiplication. Those implementations, however, do not lend themselves well to applications
which need to compute sums of modular multiplications: In this case, it is natural to reduce
only once after the accumulation, rather than once after every product. Single-width
modular multiplication cannot achieve this because it misses the carry-in between low and
high parts. Instead, we need Montgomery multiplication using long products. We show an
implementation of Montgomery multiplication in long arithmetic in Algorithm 14.
After long pairwise products via smull, smull2 from two vectors, we perform a Mont-
gomery reduction by taking the lower halves (conveniently, with uzp1). This we multiply
by the inverse of the modulus with mul. We multiply the modulus to the result and accu-
mulate the long products with smlal, smlal2. Now we collate the Montgomery results in
the top half happily with uzp2. The result is exactly right as in Algorithm 14. As desired,
we can accumulate several products before the Montgomery reduction (cf. Section 4.2).

4 Implementation
In this section, we fix F = Fq for Dilithium and Kyber, and F = Fq′ for Saber. Section 4
is organized as follows: In Section 4.1, we describe our choices of butterflies for NTTs.
Section 4.2 introduces the asymmetric multiplication applicable to the MatrixVectorMul
in Kyber and Saber. Section 4.3 decribes our findings on how interleaving can be applied
for radix-2 NTTs on Cortex-A72.

4.1 Butterflies
In this section, we adopt a more architectural viewpoint of radix-2 NTTs.

The need for permutations in the NTTs. For vectorized implementations, an important
consideration is the overhead of permuting data within vector registers. This is required
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when the distance between the inputs of a butterfly is less than the size of a SIMD register.
First, we notice that since each SIMD register in Neon is holding 16 bytes, any butterfly
taking inputs at distance larger than 16 bytes doesn’t require any permutation. Now we
carefully look at the NTTs at each layer and number the layers from 0. After each layer,
the distance for the butterfly inputs is halved. For Dilithium and Saber, we compute 32-bit
NTTs for degree-255 polynomials. At the kth layer, we are computing butterflies with
inputs distancing by 4 · 27−k = 512

2k bytes. Therefore, after the 5th layer, any follow-up
NTTs require permutations. As for Kyber with 16-bit NTTs for degree-255 polynomials, it
is after the 4th layer that one needs permutations for the follow-up NTTs.

{ld, st}{1, 2, 3, 4} and trn{1, 2}. ld{2, 3, 4} are loading with the indicated
degree of interleaving. An array of structures with 2 (3, 4) elements are loaded to 2 (3, 4)
SIMD registers where the first lane of each register is holding the first structure and so on.
On the other hand, ld1 is simply loading consecutively to 1 to 4 SIMD registers. st{1,
2, 3, 4} are their counterparts for storing structures. Besides shuffling with memory
operations, we have trn{1, 2} for permuting the elements of SIMD registers. trn1 (trn2)
moves the even (odd) indices of the first source to the even indices of the destination and
the even (odd) indices of the second source to the odd indices of the destination.

Saber. First of all, since Armv8-A provides instructions for both 16-bit and 32-bit
arithmetic, we find no reasons to employ 16-bit NTTs as in [NG21]. We decide to im-
plement 32-bit NTT as implemented for Cortex-M4 in [CHK+21]. For NTT, we compute
for F[x]/

〈
x256 + 1

〉
with 6 layers of CT butterflies. On the other hand, we compute

NTT−1 for F[x]/
〈
x256 − 1

〉
with 6 layers of CT butterflies and then map F[x]/

〈
x256 − 1

〉
to F[x]/

〈
x256 + 1

〉
. Recall that at the end of NTT−1, we have to multiply each coeffi-

cient with 2−k, so we can multiply each chunk of 4 coefficients with the precomputed
(2−k, 2−kζ−1, 2−k, . . . , 2−kζ−63).

Dilithium. We implement NTT with CT butterflies and NTT−1 with GS butterflies. For
NTT, after 4 radix-2 splits, the distance of the butterfly inputs for the next layer is 32 bytes.
For the next 4 layers of NTTs, we first load with ld1 and apply two layers of radix-2 splits
on four SIMD registers as usual. Next, we transpose the four registers with Algorithm 29.
At the end of butterflies, we can store with st4 to cancel out the transpose. For the NTT−1,
we invert the entire process: for the initial 4 layers of NTT−1, we load with ld4, compute
two layers with GS, invert Algorithm 29, compute two layers with GS, and store with st1.
For the last 4 layers, we invert CT butterflies with GS butterflies and merge half of the
multiplications by 2−8 with ζ−128.

Kyber. We also implement NTT with CT butterflies and NTT−1 with GS butterflies for
Kyber. For the NTT, after 4 radix-2 splits, the distance of the butterfly inputs for the next
layer is 16 bytes. Now we proceed for the bottom 3 layers with a different permutation.
First, we ld4 each 4-byte to 8 SIMD registers. Next, we use trn1 and trn2 to separate
the upper 4-bytes from the lower 4-bytes for butterflies as shown in Algorithm 30. In this
way, we can then apply 3 layers of butterflies without intermediate permutations, which
prohibits an aggressive interleaving of instructions. We will discuss the interleaving in
Section 4.3. For NTT−1, we invert the entire NTT and also merge half of the multiplications
by 2−7 with ζ−64.

Table 3 is the summary of butterflies for NTT and NTT−1.
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Table 3: Summary of butterflies for NTTs and NTT−1s.
NTT NTT−1

kyber 4-layer-CT + 3-layer-CT 3-layer-GS + 4-layer-GS
saber 2× 3-layer-CT 2× 3-layer-CT
dilithium 2× 4-layer-CT 2× 4-layer-GS

4.2 Asymmetric Multiplication

We introduce an idea that we call asymmetric multiplication for improving the efficiency
of matrix-to-vector polynomial multiplication based on incomplete NTTs, and in general
whenever incomplete NTTs are cached. It is thus applicable to Kyber and Saber, but not
to Dilithium.

Recall that for Kyber and Saber, we can compute As′ as NTT−1(NTT(A)◦NTT(s′)), where
k = 2 and 4 for Kyber and Saber, respectively. As with any matrix-to-vector product, every
entry of NTT(s′) will be multiplied with ` entries from NTT(A). It is therefore beneficial
to cache NTT(s′), which is indeed a known and common optimization technique for NTT-
based multiplication. Asymmetric multiplication extends this observation by caching more
computations on the multiplicands of one side.

Specifically, note that when computing the product of a =
∑
i aix

i and s =
∑
i six

i in
F[x]/

〈
xk − ω

〉
, we need to compute and sum aisj for i + j < k and ωaisj = ai(ωsj) for

i + j ≥ k. It is therefore beneficial to precompute and cache the scaled ωs along with
s. After the precomputation, the arithmetic cost for products in F[x]/〈xk − ω〉 is then
effectively reduced to that of products in F[x]/〈xk− 1〉. Note that this is different from the
isomorphism F[x]/〈xk − ω〉 ∼= F[y]/〈yk − 1〉, which doesn’t work for Kyber as there is no
k-th roots for ω. We call the multiplication strategy “asymmetric” because it requires the
s-input in expanded form (s, ωs), while the a-input in the usual form. Algorithm 16 is an
illustration. Note again the arithmetical similarity between Algorithm 15 and Algorithm 16.

We denote NTT_heavy the composition of the incomplete NTT with the computation
s 7→ (s, ωs), and asymmetric_mul implementing asymmetric_mul (NTT(a), NTT_heavy(s)) =
NTT(a) ◦ NTT(s) in the asymmetric fashion. Then As′ can be computed as

As′ = NTT−1 (asymmetric_mul(NTT(A), NTT_heavy(s′))) .

Lastly, we extend the idea of better accumulation for schoolbook multiplication in [CHK+21]
to better accumulation for asymmetric multiplication, giving the 64-bit results and reducing
them to 32-bit after computing all the corresponding asymmetric multiplications. See
Algorithm 33.
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Algorithm 15 4× 4 convolution.
Inputs:
c, l, h, a0, . . . , a3, T0, . . . , T3
Output:
c0 + c1x+ c2x

2 + c3x
3 =

(a ∗ b) R−1 mod (x4 − 1)
1: Name c = c0,

(a0, . . . , a3) = (a0, a1, a2, a3),
(T0, . . . , T3) = (b0, b1, b2, b3)

2: smull l, a0, T0
3: smull2 h, a0, T0
4: smlal l, a1, T3
5: smlal2 h, a1, T3
6: smlal l, a2, T2
7: smlal2 h, a2, T2
8: smlal l, a3, T1
9: smlal2 h, a3, T1
10: q_montgomery c, l, h
11: Rename (T0–3) = (b1, b2, b3, b0),

c = c1 and repeat lines 4–10
12: Rename (T0–3) = (b2, b3, b0, b1),

c = c2 and repeat lines 4–10
13: Rename (T0–3) = (b3, b0, b1, b2),

c = c3 and repeat lines 4–10

Algorithm 16 4 × 4 asymmetric multiplication.
Inputs:
c, l, h, a0, . . . , a3, T0, . . . , T3
Output:
c0+c1x+c2x

2+c3x
3 = (a ∗ b) R−1 mod (x4−ω)

1: Name c = c0,
(a0, . . . , a3) = (a0, a1, a2, a3),
(T0, . . . , T3) = (b0, ωb1, ωb2, ωb3)

2: smull l, a0, T0
3: smull2 h, a0, T0
4: smlal l, a1, T3
5: smlal2 h, a1, T3
6: smlal l, a2, T2
7: smlal2 h, a2, T2
8: smlal l, a3, T1
9: smlal2 h, a3, T1
10: q_montgomery c, l, h
11: Rename (T0–3) = (b1, ωb2, ωb3, b0), c = c1

and repeat lines 4–10
12: Rename (T0–3) = (b2, ωb3, b0, b1), c = c2

and repeat lines 4–10
13: Rename (T0–3) = (b3, b0, b1, b2), c = c3

and repeat lines 4–10

q_montgomery is Step 3–7 in Algorithm 14.

4.3 Interleaving for Multi-Layer Butterflies on Cortex-A72

This section describes our findings on how to implement radix-2 NTTs for the CPU
Cortex-A72. We follow the software optimization guide of Cortex-A72 [ARM].

In-order frontend and out-of-order backend. In the in-order frontend of the pipeline,
instructions are fetched and decoded into internal micro-operations (µops). After renaming
the registers, µops are dispatched to the out-of-order backend. In the backend, there is
one branch pipeline B, two integer pipelines I0 and I1, one integer multi-cycle pipeline M,
two FP/ASIMD pipelines F0 and F1, one load pipeline L, and one store pipeline S. While
up to three µops can be dispatched per cycle, there are limitations on the number of each
type of µops that can be dispatched simultaneously. The following are the numbers for
each type in a single cycle: one µop using B, up to two µops using I0/I1, up to two µops
using M, one µop using F0, one µop using F1, and up to two µops using L/S. Furthermore,
µops are dispatched in the oldest-to-youngest age order.

F0 and F1 for butterflies. We focus on the pipelines F0 and F1 for our vectorized imple-
mentation. The basic building blocks for butterflies are Algorithm 17 and Algorithm 18.
Instructions mul, mls, sqrdmulh can only go to F0, while sub and add go to F0 or F1. We
interleave the instructions so sub and add have a better chance to be dispatched to F1.
We believe F0 is the bottleneck of NTTs, and hence, reducing the loading of F0 speeds up
the computation.



Becker, Hwang, Kannwischer, Yang, Yang 19

Algorithm 17 CT butterflies.
Inputs:
a, b, t, (z[l], z[h]) = (ω̄, b

ωR
N e2
2 )

Outputs:
(a, b) = (a + ωb, a− ωb)
1: mul t, b, z[h]
2: sqrdmulh b, b, z[l]
3: mls t, b, N
4: sub b, a, t
5: add a, a, t

Algorithm 18 GS butterflies.
Inputs:
a, b, t, (z[l], z[h]) = (ω̄, b

ωR
N e2
2 )

Outputs:
(a, b) = (a + b, (a− b)ω)
1: sub t, a, b
2: add a, a, b
3: mul b, t, z[h]
4: sqrdmulh t, t, z[l]
5: mls b, t, N

qq_butterfly_{top, bot} and qq_butterfly_mixed{, _rev}. To facilitate the devel-
opment of assembly implementation of radix-2 NTTs with interleaving, we split the
computation of each layer into two qq_butterfly_top and two qq_butterfly_bot.
qq_butterfly_top computes 4 Montgomery multiplications and qq_butterfly_bot com-
putes 4 sub-add pairsas shown in Algorithm 34 and Algorithm 35. They are designed in
the way that if we pass the same arguments to them, calling qq_butterfly_top followed
by qq_butterfly_bot implements CT butterflies and reversing the order implements GS
butterflies. Algorithm 38 is a straightforward implementation of a 4-layer-CT-butterfly. If
there are no dependencies, we can interleave qq_butterfly_bot with qq_butterfly_top
giving qq_butterfly_mixed for CT butterflies and qq_butterfly_mixed_rev for GS
butterflies as shown in Algorithm 36 and Algorithm 37.

Multi-layer butterflies. A common approach for reducing the number of memory op-
erations is to compute several layers of NTTs at a time with multi-layer butterflies. To
avoid the dependencies when interleaving instructions, we find that for radix-2 NTTs,
computing coefficients distributed over 16 SIMD registers is the most beneficial approach.
This suggests that 4 layers at a time are possible since 24 = 16.

Interleaving for multi-layer butterflies. At first glance, it seems natural to compute the
butterflies in the order (v0, v8), . . . , (v6, v14), (v1, v9), . . . , (v7, v15) for the 0th layer,
(v0, v4), (v2, v6), (v8, v12), (v10, v14), (v1, v5), (v3, v7), (v9, v13), (v11, v15) for the 1st
layer, and so on. Since the independencies of the first three layers are exploited, the
computation can be interleaved as follows: interleave the first half of sub-add pairs of layer
0 with the second half of multiplications of layer 0, the second half of sub-add pairs of layer
0 with the first half of multiplications of layer 1, and so on. However, we cannot interleave
layers 2 with 3 at all. To overcome this, we compute the butterflies in the following
order: (v1, v9), . . . , (v7, v15), (v0, v8), . . . , (v6, v14) for the 0th layer, (v1, v5), (v3, v7),
(v9, v13), (v11, v15), (v0, v4), (v2, v6), (v8, v12), (v10, v14) for the 1st layer, (v1, v3),
(v5, v7), (v9, v11), (v13, v15), (v0, v2), (v4, v6), (v8, v10), (v12, v14) for the 2nd layer,
and finally (v0, v1), (v2, v3), (v4, v5), (v6, v7), (v8, v9), (v10, v11), (v12, v13), (v14, v15)
for the 3rd layer. In this order, we are exploiting the independencies among the entire
4-layer computation as shown in Algorithm 19.
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Algorithm 19 4 layers of interleaved 32-bit CT butterflies over 32 SIMD registers.
Inputs: (v0, . . . , v15) = (a0, . . . , a15)
Outputs: (v0, . . . , v15) = NTT(a0, . . . , a15)
Auxiliary registers: v16, . . . , v19, v28, . . . , v31
Twiddle factors:

v20 = h0 || l0 || 0 || Q, v21 = h2 || l2 || h1 || l1
v22 = h4 || l4 || h3 || l3, v23 = h6 || l6 || h5 || l5
v24 = h8 || l8 || h7 || l7, v25 = h10 || l10 || h9 || l9
v26 = h12 || l12 || h11 || l11, v27 = h14 || l14 || h13 || l13

Symbols:
L0_0 = v0, v2, v4, v6, v8, v10, v12, v14
L0_1 = v1, v3, v5, v7, v9, v11, v13, v15
L1_0 = v0, v2, v8, v10, v4, v6, v12, v14
L1_1 = v1, v3, v9, v11, v5, v7, v13, v15
L2_0 = v0, v4, v8, v12, v2, v6, v10, v14
L2_1 = v1, v5, v9, v13, v3, v7, v11, v15
L3_0 = v0, v2, v4, v6, v1, v3, v5, v7
L3_1 = v8, v10, v12, v14, v9, v11, v13, v15
T0 = v16, v17, v18, v19
T1 = v28, v29, v30, v31
mod = v20
W0 = v20, 2, 3, v20, 2, 3, v20, 2, 3, v20, 2, 3
W1 = v21, 0, 1, v21, 0, 1, v21, 2, 3, v21, 2, 3
W2 = v22, 0, 1, v22, 2, 3, v23, 0, 1, v23, 2, 3
W3_0 = v24, 0, 1, v24, 2, 3, v25, 0, 1, v25, 2, 3
W3_1 = v26, 0, 1, v26, 2, 3, v27, 0, 1, v27, 2, 3
1: qq_butterfly_top L0_1, T0, mod, W0
2: qq_butterfly_mixed L0_1, T0, L0_0, T1, mod, W0, W0
3: qq_butterfly_mixed L0_0, T1, L1_1, T0, mod, W0, W1
4: qq_butterfly_mixed L1_1, T0, L1_0, T1, mod, W1, W1
5: qq_butterfly_mixed L1_0, T1, L2_1, T0, mod, W1, W2
6: qq_butterfly_mixed L2_1, T0, L2_0, T1, mod, W2, W2
7: qq_butterfly_mixed L2_0, T1, L3_0, T0, mod, W2, W3_0
8: qq_butterfly_mixed L3_0, T0, L3_1, T1, mod, W3_0, W3_1
9: qq_butterfly_bot L3_1, T1, mod, W3_1

5 Result
We provide benchmarking results on the Arm Cortex-A72 processor and the Apple M1.

Arm Cortex-A72. The Arm Cortex-A72 CPU implements the Armv8-A architecture and
has a triple-issue out-of-order pipeline. Specifically, we use the Raspberry Pi 4 Model B
featuring the quad-core Broadcom BCM2711 chipset. It comes with a 32 kB L1 data cache,
a 48 kB L1 instruction cache, and a 1 MB L2 cache and runs at 1.5 GHz. For hashing, we
use the SHA-3/SHAKE Neon implementation by Nguyen et al. [NG21]. For benchmarking
individual functions we make use of the cycle counter of the PMU. For benchmarking the
full cryptographic schemes, we use SUPERCOP.5 We use gcc version 10.3.0 with -O3.

5https://bench.cr.yp.to/supercop.html, Version 20210604

https://bench.cr.yp.to/supercop.html
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Table 4: Performance results for NTT, NTT_heavy, base_mul, and NTT−1 for kyber768,
saber, and dilithium3 on Cortex-A72 and Apple M1. dim refers to the module dimension.
Some implementations implement the base_mul for each polynomial separately, while
we implement it for an entire vector such that we can better optimize the accumulation.
On Cortex-A72, we report the median cycle count of 10 000 executions. On Apple M1,
we report the average cycle count of 10 000 executions. We also list related work on
Cortex-A72, Cortex-A75, and Apple M1 for comparison.

Arm Cortex-A72 (Arm Cortex-A75 for [SKS+21])
NTT NTT_heavy dim × base_mul NTT−1 CRT

kyber768 (Ours) A72 1 200 1 434 952 1 338 –
kyber768 [NG21] A72 1 473a – 3 040d 1 661 –
kyber768 [SKS+21] A75 2 332 – 3× 1 313 3 209 –
saber 32-bit (Ours) A72 1 529 2 031 2 689 1 896 –
saber 16-bit [NG21] A72 1 991b – 1 500d 1 893 813d

dilithium3 (Ours) A72 2 241 – 1 378 2 821 –
dilithium3 (ref) A72 9 302 – 5× 2 325 11 633 –

Apple M1
NTT NTT_heavy dim × base_mul NTT−1 CRT

kyber768 (Ours) M1 263 309 198 262 –
kyber768 [NG21] M1 413a – 753d 428 –
saber (Ours) M1 301 411 790 389 –
saber 16-bit [NG21] M1 539c – 380d 531 206d

dilithium3 (Ours) M1 479 – 258 582 –
dilithium3 (ref) M1 2 865 – 5× 794 3 749 –

a [NG21] reports cycles without a final reduction, while our implementation includes a reduction.
b A fair comparison to our 32-bit NTT is 2× 16-bit NTT + CRT = 4795
c A fair comparison to our 32-bit NTT is 2× 16-bit NTT + CRT = 1284
d Our own benchmarks; not reported in [NG21].

Apple M1. The Apple M1 system-on-chip is contained in Apple’s 2020 MacBooks. It
has four high-performance Firestorm cores, and four energy-efficient Icestorm cores. The
Apple M1 has special instructions for Keccak. We use the Keccak implementation by
Westerbaan [Wes] which makes use of these instructions. For obtaining cycle counts we
make use of m1cycles.c6 from [NG21]. Due to the large and varying overhead of obtaining
cycles, we cannot reasonably benchmark a single execution of a small function. Instead, we
benchmark many iterations and report the average. We use clang version 12.0.5 with -O3.

Results for NTT and NTT−1. Table 4 summarizes our results for the NTT for the level
three parameter sets. On the Cortex-A72, we outperform the kyber768 NTT and NTT−1

by Nguyen et al. [NG21] by 19% each, even though we include Barrett reduction which
is not reported by Nguyen et al. [NG21]. Compared to the implementation by Sanal
et al. [SKS+21], the speed-up is even more pronounced at 1.9× for the NTT and 2.4×
for NTT−1. For saber, our 32-bit NTT is 23% faster than the 16-bit NTT by Nguyen et
al. [NG21]. However, the 16-bit NTT approach requires two NTTs followed by CRT and,
consequently, our real speed-up is 3.1×. On the Apple M1, our speed-up compared to the
kyber768 NTT and NTT−1 by Nguyen et al. [NG21] is 1.6× each. The 16-bit saber NTTs
are outperformed by our 32-bit NTTs by 44% and 27% on the M1. The actual speed-up
when comparing the 32-bit NTT to two 16-bit NTTs followed by CRT is 4.3×. For Dilithium,
we obtain a vast speed-up over the reference implementation.

6https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c

https://github.com/GMUCERG/PQC_NEON/blob/main/neon/kyber/m1cycles.c
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Table 5: Cycle counts for MatrixVectorMul (MV), and InnerProd (IP) for kyber768,
saber, and dilithium3 on Cortex-A72 and Apple M1. For kyber768 and saber the
InnerProd in encapsulation (E) can re-use intermediate results from the MatrixVectorMul;
in decapsulation (D) a full InnerProd is needed. dilithium3 does not use an InnerProd.
On Cortex-A72, we report median cycle count of 10 000 executions. On Apple M1, we
report the average cycle count of 10 000 executions.

Arm Cortex-A72 Apple M1
MV IP(E) IP (D) MV IP (E) IP (D)

kyber512 (Ours) 6 849 2 000 4 844 1 431 412 926
kyber512 [NG21] 10 700 – 7 100 2 809 – 1 858
kyber768 (Ours) 11 077 2 242 6 518 2 291 461 1 232
kyber768 [NG21] 19 300 – 9 900 4 910 – 2 545
kyber1024 (Ours) 16 338 2 758 8 487 3 247 509 1 536
kyber1024 [NG21] – – – 7 651 – 3 271
lightsaber 32-bit NTT (Ours) 18 149 7 038 11 113 3 933 1 556 2 376
lightsaber 16-bit NTT [NG21] 37 000 – 22 500 10 077 – 6 117
lightsaber Toom–Cook [NG21] 40 200 – 18 100 6 640 – 3 184
saber 32-bit NTT (Ours) 35 730 9 284 15 452 7 480 2 082 3 313
saber 16-bit NTT [NG21] 71 300 – 31 500 18 931 – 8 470
saber Toom–Cook [NG21] 81 000 – 25 000 14 029 – 4 345
firesaber 32-bit NTT (Ours) 56 109 11 783 20 112 12 074 2 608 4 248
firesaber 16-bit NTT [NG21] – – – 30 393 – 10,839
firesaber Toom–Cook [NG21] – – – 21 591 – 5 318
dilithium2 (Ours) 26 268 – – 5 316 – –
dilithium2 (ref) 135 182 – – 45 742 – –
dilithium3 (Ours) 38 107 – – 7 938 – –
dilithium3 (ref) 215 503 – – 72 516 – –
dilithium5 (Ours) 54 759 – – 11 353 – –
dilithium5 (ref) 334 865 – – 118 211 – –

Results for MatrixVectorMul and InnerProd. Table 5 presents the results for the
core arithmetic operations MatrixVectorMul and InnerProd for all parameter sets. For
kyber768, our MatrixVectorMul is 1.7× faster on Cortex-A72 and 2.1× faster on Apple
M1 than previous implementations [NG21]. For InnerProd, our code is 1.5× faster on
Cortex-A72 and 2.1× faster on Apple M1. For saber, we speed up MatrixVectorMul
by 2.0× on Cortex-A72 and 1.9× on Apple M1. The speed-up for InnerProd is 1.6× on
Cortex-A72 and 1.3× on Apple M1. Also note that for the InnerProd in encapsulation of
Kyber and Saber, one can re-use NTT_heavy(s′) to obtain a much faster InnerProd.

Results for full schemes. Table 6 shows our results for the full cryptographic schemes.
Kyber runs 9 – 14% faster on Cortex-A72 and 26% – 41% faster on Apple M1 than
previous work [NG21]. For Saber, the speed-ups are even more significant with 24 – 35%
fewer cycles on Cortex-A72 and 19 – 36 % fewer cycles on Apple M1. Unsurprisingly, our
Dilithium implementation performs much better than the reference implementation.

On Saber’s SHA-3 performance. As we make use of a vectorized SHA-3 implementation
computing two Keccak permutations at once, optimal performance can only be achieved if
SHA-3/SHAKE calls can be parallelized. Unfortunately, the Saber specification mandates
sampling vectors and matrices as a single call to SHAKE and can, thus, not benefit from
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Table 6: Performance results for the full schemes kyber768, saber, and dilithium3 on
Cortex-A72 and Apple M1. On Cortex-A72, we report the median cycle count of 10 000
executions for Kyber and Saber, and 100 000 executions for Dilithium. On Apple M1, we
report the average cycle count of 10 000 executions for Kyber and Saber, and 1 000 000
executions for Dilithium. For Dilithium, we sign 59-byte messages.

Cortex-A72 Apple M1
K E D K E D

kyber512 (Ours) 62 459 80 710 76 443 14 939 24 834 20 893
kyber512 [NG21] 67 903a 88 906a 87 563a 23 000 32 500 29 400
kyber512 [SKS+21]b 84 728 109 668 108 646 – – –
kyber768 (Ours) 99 201 127 453 120 665 23 756 36 284 31 047
kyber768 [NG21] 110 784a 141 312a 138 984a 36 300 49 200 45 700
kyber768 [SKS+21]b 143 791 180 687 179 085 – – –
kyber1024 (Ours) 156 694 192 280 184 161 33 024 48 925 44 000
kyber1024 [NG21] 176 809a 215 665a 214 076a 55 900 71 600 67 100
kyber1024 [SKS+21]b 228 082 272 418 270 668 – – –
lightsaber (Ours) 64 181 87 272 92 813 20 137 29 731 28 551
lightsaber [NG21]c 83 960a 118 583a 136 203a 31 200 37 200 35 300
saber (Ours) 109 192 140 103 147 925 32 865 44 917 44 074
saber [NG21]c 158 757a 206 337a 226 304a 51 300 59 900 58 000
firesaber (Ours) 175 104 211 382 222 317 50 345 65 402 64 593
firesaber [NG21]c 245 249a 304 128a 330 750a 77 000 87 900 86 700

K S V K S V
dilithium2 (Ours) 269 724 649 230 272 824 71 061 224 125 69 792
dilithium2 (ref) 410 312 1 353 753 449 633 187 842 741 140 199 615
dilithium3 (Ours) 515 776 1 089 387 447 460 152 435 365 248 104 821
dilithium3 (ref) 743 166 2 308 598 728 866 358 848 1 218 027 329 187
dilithium5 (Ours) 782 752 1 436 988 764 886 178 137 426 635 167 489
dilithium5 (ref) 1 151 504 2 903 604 1 198 723 544 833 1 531 067 557 696

a We re-benchmark the code from [NG21] in SUPERCOP.
b [SKS+21] targets the Arm Cortex-A75.
c Fastest implementation in [NG21] (Toom–Cook).

Keccak parallelization. We believe that the Saber specification should be changed. Saber’s
performance on Cortex-A72 and Apple M1 will then be much closer to Kyber.
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A Kyber CPA PKE
Algorithms 20–22 ([ABD+20b]), are the CPA-secure key generation, encryption, and
decryption for the Kyber PKE.

Here the module is of dimension ` over the ring Rq = Zq[x]/〈xn + 1〉, with q = 3329
and n = 256; SampleU samples from the uniform distribution; SampleB samples from
a centered binomial (η fair coins); and Expand samples a seed into a uniform matrix of
polynomials. Notice that A is sampled in (incomplete) NTT domain directly.

Algorithm 20 Kyber Key Generation
Output: pk = (seedA,ntt(b)), sk = (ntt(s))
1: seedA ← SampleU ()
2: ntt(A) ∈ R`×`q ← Expand(seedA)
3: s, e ∈ R`q ← SampleB()
4: b← AT · s+ e

Algorithm 22 Kyber CPA Decryption
Input: ct = (c′, b′′), sk = (ntt(s))
Output: m
1: c← Decompress(c′, d1)
2: b′ ← Decompress(b′′, d2).
3: m← b′′ − cT s

Algorithm 21 Kyber CPA Encryption
Input: m, r, pk = (seedA,ntt(b))
Output: ct = (c′, b′′)
1: ntt(A) ∈ R`×`q ← Expand(seedA)
2: s′, e′ ∈ R`q, e′′ ∈ Rq ← SampleB(r)
3: c← As′ + e′

4: b′ ← bT s′ + e′′ +m
5: ct← Compress(c, d1), Compress(b′, d2))

Compress(x, d) = d(2d/q)xc mod 2d

Decompress(x, d) = d(q/2d)xc

B Saber CPA PKE
Algorithms 23–25 ([DKRV20]), are CPA-secure key generation, encryption, and decryption
for the Saber PKE. Here, the module is of dimension ` over the Rq = Zq[x]/〈xn + 1〉, with
q = 213 and n = 256; SampleU samples from the uniform distribution; SampleB samples
from a centered binomial (η fair coins); and Expand samples a seed into a uniform matrix
of polynomials.

Algorithm 23 Saber Key Generation
Output: pk = (seedA, b), sk = (s)
1: seedA ← SampleU ()
2: A ∈ R`×`q ← Expand(seedA)
3: s ∈ R`q ← SampleB()
4: b← Round(AT · s)

Algorithm 25 Saber CPA Decryption
Input: ct = (c, b′), sk = (s)
Output: m
1: v ← b′

T (s mod p)
2: m← Round(v − 2εp−εT c mod p)

Algorithm 24 Saber CPA Encryption
Input: m, r, pk = (seedA, b)
Output: ct = (c, b′)
1: A ∈ R`×`q ← Expand(seedA)
2: s′ ∈ R`q ← SampleB(r)
3: b′ ← Round(As′)
4: v′ ← bT (s′ mod p)
5: c← Round(v′ − 2ε−1m)

Round is to nearest multiple of T .

C Dilithium
Algorithm 26, Algorithm 27, and Algorithm 28 show the Dilithium key generation, signature
generation, and verification (resp.). Sη is the uniform distribution {−η,−η+ 1, . . . , +η}; ‖
denotes concatenation; and ‖·‖∞ the sup-norm. For seed expansion functions ExpandA and
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ExpandMask are used; for details about the rounding functions Power2Round, HighBits,
and Decompose and the hint functions MakeHint and UseHint please see [ABD+20a].

Algorithm 26 Dilithium key generation
Output: sk = (r,K, tr, s1, s2, t0)
Output: pk = (r, t1)

1: r ← {0, 1}256

2: K ← {0, 1}256

3: (s1, s2)← S`η × Skη
4: ntt(A) ∈ Rk×`q ← ExpandA(r)
5: t← As1 + s2
6: (t1, t0)← Power2Round(t)
7: tr ∈ {0, 1}256 ← H(r||t1)

Algorithm 27 Dilithium signature generation
Input: sk = (r,K, tr, s1, s2, t0)
Input: Message M ∈ {0, 1}∗
Output: Signature σ = (z, h, c̃)

1: ntt(A) ∈ Rk×`q := ExpandA(r)
2: µ ∈ {0, 1}512 ← H(tr||M)
3: κ← 0; (z, h)← ⊥
4: r′ ∈ {0, 1}512 ← H(K||µ)
5: while (z, h) = ⊥ do
6: y ∈ S`γ1−1 ← ExpandMask(r′, κ)
7: w ← Ay; w1 ← HighBits(w)
8: c̃ ∈ {0, 1}256 ← H(µ||w1)
9: ntt(c)← ntt (HB(c̃))
10: z ← y + cs1
11: r0 ← LowBits(w − cs2)
12: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then
13: (z, h) = ⊥
14: else
15: h← MakeHint (−ct0, w − cs2 + ct0))
16: if ‖ct0‖∞ ≥ γ2 or # 1’s in h > ω then
17: (z, h) = ⊥
18: end if
19: end if
20: κ← κ+ 1
21: end while



28 Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1

Algorithm 28 Dilithium verification
Input: pk = (r, t1)
Input: Message M ∈ {0, 1}∗
Input: Signature σ = (z,h, c̃)
Output: Valid or Invalid

1: ntt(A) ∈ Rk×`q ← ExpandA(r)
2: µ ∈ {0, 1}384 ← H(H(r||t1)||M)
3: c← HB(c̃)
4: w′1 ← UseHint(h,Az − 2dct1)
5: if c̃ = H(µ||w′1) and ‖z‖∞ < γ1 − β and # 1’s in h ≤ ω then
6: return Valid
7: else
8: return Invalid
9: end if
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D Permutation in Dilithium and Kyber

Algorithm 29 Permutation of bottom 4 layers in Dilithium NTT.
Inputs:

a0 = a3||a2||a1||a0

a1 = a7||a6||a5||a4

a2 = a11||a10||a9||a8

a3 = a15||a14||a13||a12

Outputs:

a0 = a12||a8||a4||a0

a1 = a13||a9||a5||a1

a2 = a14||a10||a6||a2

a3 = a15||a11||a7||a3

1: trn1 t0.4S, a0.4S, a1.4S
2: trn2 t1.4S, a0.4S, a1.4S
3: trn1 t2.4S, a2.4S, a3.4S
4: trn2 t3.4S, a2.4S, a3.4S
5: trn1 a0.2D, t0.2D, t2.2D
6: trn2 a2.2D, t0.2D, t2.2D
7: trn1 a1.2D, t1.2D, t3.2D
8: trn2 a3.2D, t1.2D, t3.2D
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Algorithm 30 Permutation of bottom 3 layers of Kyber NTT.
Inputs:

∗src0 = (a0a1, a2a3, . . . , a30a31)
∗src1 = (a64a65, a66a67, . . . , a94a95)

Outputs:

v24 = (a0a1, a64a65, a16a17, a80a81)
v25 = (a2a3, a66a67, a18a19, a82a83)
v26 = (a4a5, a68a69, a20a21, a84a85)
v27 = (a6a7, a70a71, a22a23, a86a87)
v28 = (a8a9, a72a73, a24a25, a88a89)
v29 = (a10a11, a74a75, a26a27, a90a91)
v30 = (a12a13, a76a77, a28a29, a92a93)
v31 = (a14a15, a78a79, a30a31, a94a95)

1: ld4 {v16.4S, v17.4S, v18.4S, v19.4S}, [src0]
2: ld4 {v20.4S, v21.4S, v22.4S, v23.4S}, [src1]
3: trn1 v24.4S, v16.4S, v20.4S
4: trn2 v28.4S, v16.4S, v20.4S
5: trn1 v25.4S, v17.4S, v21.4S
6: trn2 v29.4S, v17.4S, v21.4S
7: trn1 v26.4S, v18.4S, v22.4S
8: trn2 v30.4S, v18.4S, v22.4S
9: trn1 v27.4S, v19.4S, v23.4S
10: trn2 v31.4S, v19.4S, v23.4S
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E Assembly for Asymmetric Multiplication

Algorithm 31 _4x4_asymmetric as a building block for 32-bit 4× 4 asymmetric multi-
plication in saber.
Inputs:
mulacc, mulacc2, a0, b0, . . . , b3, l0, h0, . . . , l3, h3, dS, qS, dD
Roles of the symbols:
Long multiplication with optional accumulations: mulacc, mulacc2
Coefficient of the NTT of matrix: a0
Coefficients of the NTT_heavy of vector: b0, . . . , b3
Accumulators for double-size results: l0, h0, . . . , l3, h3
Specifiers: dS, qS, dD = (.2S, .4S, .2D)
Outputs:
Case (mulacc, mulacc2) = (smull, smull2):
l0 + h0 « 32 = a0 ∗ b0, . . . , l3 + h3 « 32 = a0 ∗ b3
Case (mulacc, mulacc2) = (smlal, smlal2):
l0 + h0 « 32+= a0 ∗ b0, . . . , l3 + h3 « 32+= a0 ∗ b3
1: mulacc l0dD, a0dS, b0dS
2: mulacc2 h0dD, a0qS, b0qS
3: mulacc l1dD, a0dS, b1dS
4: mulacc2 h1dD, a0qS, b1qS
5: mulacc l2dD, a0dS, b2dS
6: mulacc2 h2dD, a0qS, b2qS
7: mulacc l3dD, a0dS, b3dS
8: mulacc2 h3dD, a0qS, b3qS



32 Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72 and Apple M1

Algorithm 32 qq_montgomery for 16 parallel 32-bit Montgomery reductions.
Inputs:
c0, . . . , c3, l0, . . . , l3, h0, . . . , h3, t0, . . . , t3, Qprime, Q, dS, qS, dD
Roles of the symbols:
Output registers: c0, . . . , c3
64-bit value to be reduced: l0 + h0 « 32, . . . , l3 + h3 « 32
Auxiliary registers: t0, . . . , t3
Specifiers: (dS, qS, dD) = (.2S, .4S, .2D)
Outputs:
c0 = (l0 + h0 « 32)32−1 mod Q, . . . , c3 = (l3 + h3 « 32)32−1 mod Q
1: uzp1 t0qS, l0qS, h0qS
2: uzp1 t1qS, l1qS, h1qS
3: uzp1 t2qS, l2qS, h2qS
4: uzp1 t3qS, l3qS, h3qS
5: mul t0qS, t0qS, QprimeqS
6: mul t1qS, t1qS, QprimeqS
7: mul t2qS, t2qS, QprimeqS
8: mul t3qS, t3qS, QprimeqS
9: smlal l0dD, t0dS, QdS
10: smlal2 h0dD, t0qS, QqS
11: smlal l1dD, t1dS, QdS
12: smlal2 h1dD, t1qS, QqS
13: smlal l2dD, t2dS, QdS
14: smlal2 h2dD, t2qS, QqS
15: smlal l3dD, t3dS, QdS
16: smlal2 h3dD, t3qS, QqS
17: uzp2 c0qS, l0qS, h0qS
18: uzp2 c1qS, l1qS, h1qS
19: uzp2 c2qS, l2qS, h2qS
20: uzp2 c3qS, l3qS, h3qS
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Algorithm 33 4 parallel 32-bit better accumulations for asymmetric multiplications (for
saber).
Inputs:
Source registers: x0 for a0, x1 for b0, x2 for b′0 = ωb0, x4 for a1, x5 for b1, x6 for b′1 = ωb1,
x8 for a2, x9 for b2, x10 for b′2 = ωb2
Accumulators: v16, v20, v17, v21, v18, v22, v19, v23
Output registers: v24, v25, v26, v27
Symbols:
mul_long = smull, smull2
mla_long = smlal, smlal2
acc_long = v16, v20, v17, v21, v18, v22, v19, v23
acc_long_T = v16, v17, v18, v19, v20, v21, v22, v23
T0 = v0, v1, v2, v3
T1 = v4, v5, v6, v7
T2 = v8, v9, v10, v11
T3 = v12, v13, v14, v15
C = v24, v25, v26, v27
Outputs:
v24 + v25x+ v26x2 + v27x3 = (a0 ∗ b0 + a1 ∗ b1 + a2 ∗ b2)32−1 mod (x4 − ω)
1: ld4 { T0}, [ x0]
2: ld4 { T1}, [ x1]
3: ld4 { T2}, [ x2]
4: _4x4_asymmetric mul_long, v3, v9, v10, v11, v4, acc_long
5: _4x4_asymmetric mla_long, v2, v10, v11, v4, v5, acc_long
6: _4x4_asymmetric mla_long, v1, v11, v4, v5, v6, acc_long
7: _4x4_asymmetric mla_long, v0, v4, v5, v6, v7, acc_long
8: ld4 { T3}, [ x4]
9: ld4 { C}, [ x5]
10: ld4 { T2}, [ x6]
11: _4x4_asymmetric mla_long, v15, v9, v10, v11, v24, acc_long
12: _4x4_asymmetric mla_long, v14, v10, v11, v24, v25, acc_long
13: _4x4_asymmetric mla_long, v13, v11, v24, v25, v26, acc_long
14: _4x4_asymmetric mla_long, v12, v24, v25, v26, v27, acc_long
15: ld4 { T0}, [ x8]
16: ld4 { T1}, [ x9]
17: ld4 { T2}, [x10]
18: _4x4_asymmetric mla_long, v3, v9, v10, v11, v4, acc_long
19: _4x4_asymmetric mla_long, v2, v10, v11, v4, v5, acc_long
20: _4x4_asymmetric mla_long, v1, v11, v4, v5, v6, acc_long
21: _4x4_asymmetric mla_long, v0, v4, v5, v6, v7, acc_long
22: qq_montgomery C, acc_long_T, v0, v1, v2, v3, Qprime, Q
23: st4 { C}, [x11]
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F Assembly for Interleaved Multi-Layer Butterflies

Algorithm 34 qq_butterfly_top for 16 parallel 32-bit Montgomery multiplications.
Inputs:
a0, . . . , a3, b0, . . . , b3, t0, . . . , t3, mod, z0, l0, h0, . . . , z3, l3, h3, qS, sS
Roles of the symbols:
Operating registers: a0, . . . , a3, b0, . . . , b3, t0, . . . , t3
Registers with twiddle factors: z0, . . . , z3
Indices for twiddle factors: l0, . . . , l3, h0, . . . , h3
Modulus: mod
Specifiers: (qS, sS) = (.4S, .S)
Outputs:
t0 = b0ω0 mod± q, . . . , t3 = b3ω3 mod± q
1: mul t0qS, b0qS, z0sS[h0]
2: mul t1qS, b1qS, z1sS[h1]
3: mul t2qS, b2qS, z2sS[h2]
4: mul t3qS, b3qS, z3sS[h3]
5: sqrdmulh b0qS, b0qS, z0sS[l0]
6: sqrdmulh b1qS, b1qS, z1sS[l1]
7: sqrdmulh b2qS, b2qS, z2sS[l2]
8: sqrdmulh b3qS, b3qS, z3sS[l3]
9: mls t0qS, b0qS, modsS[0]
10: mls t1qS, b1qS, modsS[0]
11: mls t2qS, b2qS, modsS[0]
12: mls t3qS, b3qS, modsS[0]
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Algorithm 35 qq_butterfly_bot for 16 parallel 32-bit sub-add pairs.
Inputs:
a0, . . . , a3, b0, . . . , b3, t0, . . . , t3, mod, z0, l0, h0, . . . , z3, l3, h3, qS, sS
Roles of the symbols:
Operating registers: a0, . . . , a3, b0, . . . , b3, t0, . . . , t3
Registers with twiddle factors: z0, . . . , z3
Indices for twiddle factors: l0, . . . , l3, h0, . . . , h3
Modulus: mod
Specifiers: (qS, sS) = (.4S, .S)
Outputs:
(a0, b0) = (a0 + t0, a0− t0), . . . , (a3, b3) = (a3 + t3, a3− t3)
1: sub b0qS, a0qS, t0qS
2: sub b1qS, a1qS, t1qS
3: sub b2qS, a2qS, t2qS
4: sub b3qS, a3qS, t3qS
5: add a0qS, a0qS, t0qS
6: add a1qS, a1qS, t1qS
7: add a2qS, a2qS, t2qS
8: add a3qS, a3qS, t3qS
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Algorithm 36 qq_butterfly_mixed for interleaving 16 parallel 32-bit CT butterflies.
Inputs:
a0, . . . , a3, b0, . . . , b3, t0, . . . , t3, a4, . . . , a7, b4, . . . , b7, t4, . . . , t7, mod,
z0, l0, h0, . . . , z7, l7, h7, qS, sS
Roles of the symbols:
Operating registers set 1: a0, . . . , a3, b0, . . . , b3, t0, . . . , t3
Operating registers set 2: a4, . . . , a7, b4, . . . , b7, t4, . . . , t7
Registers with twiddle factors set 1: z0, . . . , z3
Registers with twiddle factors set 2: z4, . . . , z7
Indices for twiddle factors set 1: l0, . . . , l3, h0, . . . , h3
Indices for twiddle factors set 2: l4, . . . , l7, h4, . . . , h7
Modulus: mod
Specifiers: (qS, sS) = (.4S, .S)
Outputs:
(a0, b0) = (a0 + t0, a0− t0), . . . , (a3, b3) = (a3 + t3, a3− t3),
t4 = b4ω4 mod± q, . . . , t7 = b7ω7 mod± q
1: sub b0qS, a0qS, t0qS
2: mul t4qS, b4qS, z4sS[h4]
3: sub b1qS, a1qS, t1qS
4: mul t5qS, b5qS, z5sS[h5]
5: sub b2qS, a2qS, t2qS
6: mul t6qS, b6qS, z6sS[h6]
7: sub b3qS, a3qS, t3qS
8: mul t7qS, b7qS, z7sS[h7]
9: add a0qS, a0qS, t0qS
10: sqrdmulh b4qS, b4qS, z4sS[l4]
11: add a1qS, a1qS, t1qS
12: sqrdmulh b5qS, b5qS, z5sS[l5]
13: add a2qS, a2qS, t2qS
14: sqrdmulh b6qS, b6qS, z6sS[l6]
15: add a3qS, a3qS, t3qS
16: sqrdmulh b7qS, b7qS, z7sS[l7]
17: mls t4qS, b4qS, modsS[0]
18: mls t5qS, b5qS, modsS[0]
19: mls t6qS, b6qS, modsS[0]
20: mls t7qS, b7qS, modsS[0]
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Algorithm 37 qq_butterfly_mixed_rev for interleaving 16 parallel 32-bit GS butterflies.
Inputs:
a0, . . . , a3, b0, . . . , b3, t0, . . . , t3, a4, . . . , a7, b4, . . . , b7, t4, . . . , t7, mod,
z0, l0, h0, . . . , z7, l7, h7, qS, sS
Roles of the symbols:
Operating registers set 1: a0, . . . , a3, b0, . . . , b3, t0, . . . , t3
Operating registers set 2: a4, . . . , a7, b4, . . . , b7, t4, . . . , t7
Registers with twiddle factors set 1: z0, . . . , z3
Registers with twiddle factors set 2: z4, . . . , z7
Indices for twiddle factors set 1: l0, . . . , l3, h0, . . . , h3
Indices for twiddle factors set 2: l4, . . . , l7, h4, . . . , h7
Modulus: mod
Specifiers: (qS, sS) = (.4S, .S)
Outputs:
(a4, b4) = (a4 + t4, a4− t4), . . . , (a7, b7) = (a7 + t7, a7− t7),
t0 = b0ω0 mod± q, . . . , t3 = b3ω3 mod± q
1: mul t0qS, b0qS, z0sS[h0]
2: sub b4qS, a4qS, t4qS
3: mul t1qS, b1qS, z1sS[h1]
4: sub b5qS, a5qS, t5qS
5: mul t2qS, b2qS, z2sS[h2]
6: sub b6qS, a6qS, t6qS
7: mul t3qS, b3qS, z3sS[h3]
8: sub b7qS, a7qS, t7qS
9: sqrdmulh b0qS, b0qS, z0sS[l0]
10: add a4qS, a4qS, t4qS
11: sqrdmulh b1qS, b1qS, z1sS[l1]
12: add a5qS, a5qS, t5qS
13: sqrdmulh b2qS, b2qS, z2sS[l2]
14: add a6qS, a6qS, t6qS
15: sqrdmulh b3qS, b3qS, z3sS[l3]
16: add a7qS, a7qS, t7qS
17: mls t0qS, b0qS, modsS[0]
18: mls t1qS, b1qS, modsS[0]
19: mls t2qS, b2qS, modsS[0]
20: mls t3qS, b3qS, modsS[0]
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Algorithm 38 4 layers of 32-bit CT butterflies over 32 SIMD registers.
Inputs:
Coefficients: (v0, . . . , v15) = (a0, . . . , a15)
Auxiliary registers: v16, . . . , v19, v28, . . . , v31
Twiddle factors:

v20 = h0||l0||0||Q
v21 = h2||l2||h1||l1
v22 = h4||l4||h3||l3
v23 = h6||l6||h5||l5
v24 = h8||l8||h7||l7
v25 = h10||l10||h9||l9
v26 = h12||l12||h11||l11
v27 = h14||l14||h13||l13

Symbols:
L0_0 = v0, v2, v4, v6, v8, v10, v12, v14
L0_1 = v1, v3, v5, v7, v9, v11, v13, v15
L1_0 = v0, v2, v8, v10, v4, v6, v12, v14
L1_1 = v1, v3, v9, v11, v5, v7, v13, v15
L2_0 = v0, v4, v8, v12, v2, v6, v10, v14
L2_1 = v1, v5, v9, v13, v3, v7, v11, v15
L3_0 = v0, v2, v4, v6, v1, v3, v5, v7
L3_1 = v8, v10, v12, v14, v9, v11, v13, v15
T0 = v16, v17, v18, v19
T1 = v28, v29, v30, v31
mod = v20
W0 = v20, 2, 3, v20, 2, 3, v20, 2, 3, v20, 2, 3
W1 = v21, 0, 1, v21, 0, 1, v21, 2, 3, v21, 2, 3
W2 = v22, 0, 1, v22, 2, 3, v23, 0, 1, v23, 2, 3
W3_0 = v24, 0, 1, v24, 2, 3, v25, 0, 1, v25, 2, 3
W3_1 = v26, 0, 1, v26, 2, 3, v27, 0, 1, v27, 2, 3
Outputs: (v0, . . . , v15) = NTT(a0, . . . , a15)
1: qq_butterfly_top L0_1, T0, mod, W0
2: qq_butterfly_bot L0_1, T0, mod, W0
3: qq_butterfly_top L0_0, T1, mod, W0
4: qq_butterfly_bot L0_0, T1, mod, W0
5: qq_butterfly_top L1_1, T0, mod, W1
6: qq_butterfly_bot L1_1, T0, mod, W1
7: qq_butterfly_top L1_0, T1, mod, W1
8: qq_butterfly_bot L1_0, T1, mod, W1
9: qq_butterfly_top L2_1, T0, mod, W2

10: qq_butterfly_bot L2_1, T0, mod, W2
11: qq_butterfly_top L2_0, T1, mod, W2
12: qq_butterfly_bot L2_0, T1, mod, W2
13: qq_butterfly_top L3_0, T0, mod, W3_0
14: qq_butterfly_bot L3_0, T0, mod, W3_0
15: qq_butterfly_top L3_1, T1, mod, W3_1
16: qq_butterfly_bot L3_1, T1, mod, W3_1
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