
On the Use of the Legendre Symbol in
Symmetric Cipher Design

Alan Szepieniec
alan@nervos.org

Nervos Foundation

Abstract. This paper proposes the use of Legendre symbols as com-
ponent gates in the design of ciphers tailored for use in cryptographic
proof systems. Legendre symbols correspond to high-degree maps, but
can be evaluated much faster. As a result, a cipher that uses Legendre
symbols can offer the same security as one that uses high-degree maps
but without incurring the penalty of a comparatively slow evaluation
time.
After discussing the design considerations induced by the use of Legendre
symbol gates, we present a concrete design that follows this strategy,
along with an elaborate security analysis thereof. This cipher is called
Grendel.

1 Introduction

Arithmetization-oriented ciphers are symmetric primitives designed to have a
concise description in terms native finite field operations. The need for such ci-
phers comes from advanced cryptographic protocols such as succinctly-verifiable
and zero-knowledge proof systems, multi-party computation, fully homomor-
phic encryption, functional encryption, etc., all of which use arithmetization to
translate a natural computation into a sequence of finite field operations. The
bit fiddling techniques that make traditional ciphers fast and compact in terms
of software and hardware, are expensive to simulate in arithmetically.

Despite the limited expressivity of field operations, the steady development
of recent years has led to several distinct strategies for minimizing the number
of expensive multiplications. Each one of these strategies comes with unique
advantages and disadvantages. For the present exposition we focus on ciphers
defined over a prime field with p elements, as this corresponds to the most
pertinent use cases particularly in relation to zero-knowledge proofs.

– Non-Determinism. The Marvellous hash function Rescue-Prime [31] uses a
SHARK-like [27] substitution-permutation network. The S-boxes alternate
between low-degree power maps x 7→ xα and their inverses x 7→ x1/α; be-
tween every layer of S-boxes there is an affine layer involving an MDS matrix.
One advantage is a strong case for security relying on the wide trail strategy.
Another advantage comes from the inverse map x 7→ x1/α, which has a high
degree. A polynomial that describes output elements in terms of inputs, or

vice versa, has degree on the order of p even when reducing the number of
rounds to 1. The evaluation of this high degree of this map can be proven
efficiently using nondeterminism – informally, the prover goes backwards in
time and proves only relations involving low degree maps. The disadvantage
of this strategy is its slow evaluation on CPUs — evaluating x 7→ x1/α

takes time O((log p)3). This comparatively slow performance leads projects
like Iden3 [34], FileCoin [33], and Dusk [32] to opt for Poseidon instead.

– Partial Rounds. The Hades strategy and its representative Poseidon [17] use
only low-degree power maps, x 7→ x3 and moreover introduce a distinction
between full and partial rounds. In every full round, the S-box is applied
to each element of the state. In every partial round, the S-box is applied
to only one element of the state. All S-boxes can be evaluated in time on
the order of O((log p)2) and as a result the CPU evaluation is noticeably
faster than Rescue-Prime. This performance improvement comes with two
disadvantages. First, in order to guarantee that the polynomial descriptions
of the output elements in terms of the input elements (or vice versa) are of
sufficiently high degree, the cipher needs a large number of rounds —
about log3 p rounds, which is significantly more than Rescue-Prime and par-
ticularly expensive for STARK-like proof systems where the number of cycles
is an important performance metric. Second, the wide trail argument does
not cover partial rounds, leading to an ad hoc security argument. Moreover,
there are attacks that exploit the partial rounds strategy for MDS matrices
of low multiplicative order [5]; it remains to be seen whether these attacks
extend to the concrete MDS matrices proposed by the designers.

While not a strategy for the design of ciphers per se, it is worth reporting on a
third paradigm:

– Legendre Symbols. First proposed by Damg̊ard [12] and recently re-proposed
by Grassi et al. [19] for use in MPC, the Legendre PRF has the following def-
inition. Let (ap) denote the Legendre symbol of a modulo p, which takes the

values from {0, 1,−1} depending on whether a is zero, a nonzero quadratic
residue, or neither. Then the Legendre PRF is the parameterized function

FK(x) =
(
x+K
p

)
. The Legendre symbol corresponds to a high-degree power

map, i.e.,
(
a
p

)
= a

p−1
2 mod p, and while there is an efficient algorithm for

computing it, it needs to be executed λ times for λ-bit outputs. In terms of
performance, this task is on par with evaluating a cubing-only cipher such as
Poseidon, and faster than evaluating a cipher with high-degree power maps
such as Rescue-Prime. The advantage of the Legendre PRF over both alter-
natives is its extremely concise description in terms of finite field operations.
Its disadvantage is that it is a number-theoretical object rather than a ci-
pher. The Legendre PRF has no supporting security argument drawing
on hard won experience from decades of symmetric cryptanalysis. Indeed,
the literature provides several attacks exploiting algebraic properties that
ciphers should not have [29,22,4,21,25].

2

In light of this short survey, a natural question presents itself: Is it possible to
design an arithmetization-oriented cipher that: a) has a small number of rounds;
b) can be evaluated quickly on CPUs; and c) has a strong supporting security
argument? We answer this question positively.

Contributions.

– We propose the use of Legendre symbols as a primitive gate in the con-
struction of symmetric ciphers. We discuss the challenges that arise when
employing this strategy.

– We propose a new S-box for arithmetization-oriented ciphers, which uses the
Legendre symbol as an integral component. We discuss the differential and
algebraic properties of this map.

– We propose a new arithmetization-oriented cipher, Grendel, which uses this
Legendre symbol enhanced S-box in combination with the SHARK strategy.
We analyze the security of this cipher against various attacks. Knowledge of
these attacks leads to a selection of parameters that renders them appropri-
ately infeasible.

Applications. The cipher Grendel is designed for use in zero-knowledge
and efficiently-verifiable proof systems. We limit our discussion to this context.

2 The Legendre Symbol in Cipher Construction

Let p be a prime number. The Legendre symbol of a prime field element a ∈ Fp
is defined as (

a

p

)
=


−1⇔ a 6∈ QRp

0 ⇔ a ≡ 0 mod p
1 ⇔ a ∈ QRp

, (1)

where QRp = {b2 | b ∈ F∗p} is the set of nonzero quadratic residues modulo
p. A generalization to composite moduli that reuses the notation is known
as the Jacobi symbol. The law of quadratic reciprocity states that (pq)(qp) =

(−1)(p−1)/2+(q−1)/2 and gives rise to an algorithm to compute Jacobi symbols
in O((log p)2) time [11, Alg. 1.4.11].

Throughout this paper, we use n ∈ Fp\QRp to denote a canonical quadratic
non-residue. When p ≡ 3 mod 4, setting n = −1 makes the most sense. How-
ever, the proof system may need F∗p to have a large subgroup of order 2k, which
implies p ≡ 1 mod 4 and this, in turn, implies that −1 is a quadratic residue.
In this case, we set n to the smallest (interpreted as integers) element of Fp that
is not a quadratic residue.

To prove that the Legendre symbol of a ∈ Fp is ` ∈ {−1, 0, 1}, one reduces
the statement to one about quadratic residuosity:

∃b ∈ Fp .
{
b2 ≡ a mod p⇐ ` ∈ {0, 1}
b2 ≡ na mod p⇐ ` = −1

. (2)

3

After lifting the Legendre symbol to the finite field, we have ˆ̀ ∈ Fp and the
claim about quadratic residuosity reduces to two equations.

ˆ̀(ˆ̀− 1)(ˆ̀+ 1) = 0 (3)

ˆ̀(ˆ̀− 1)(b2 − na) + (ˆ̀+ 1)(b2 − a) = 0 (4)

Equation 3 guarantees that ˆ̀ really corresponds to a Legendre symbol and does
not take any values from outside of {p−1, 0, 1}. The left term of Eqn. 4 guarantees
` = −1⇒ b2 ≡ na mod p, whereas the right term guarantees that ` ∈ {0, 1} ⇒
b2 ≡ a mod p.

The witness to this quadratic residuosity relation is the root b. While there is
an efficient algorithm for computing Legendre symbols, computing square roots
is more involved. When p ≡ 1 mod 4, then the square roots of a ∈ Fp correspond

to ±a
p+1
4 . When p ≡ 5 mod 8, then the square roots correspond to ±a

p+3
8 . In

the last case, when p ≡ 1 mod 8, square roots can be found for instance with
Peralta’s randomized root-finding algorithm [26]. In all cases, the complexity
of finding square roots is O((log q)3). As a result, using Legendre symbols in
ciphers instead of slow high power maps makes evaluation faster but does not
necessarily make proving faster.

In circuit diagrams, we will use the following symbol to represent the Legen-
dre gate. Concretely, this gate computes the Legendre symbol of the input.

(
·
p

)
Fig. 1: Legendre symbol gate

In order to design ciphers that make use of Legendre gates, it is important
to understand their effect on the feasibility of various attacks. To this end, we
discuss several attack strategies from a high level perspective.

2.1 Security Properties of the Legendre Symbol Gate

Statistical attacks. Statistical attacks study the different-from-random prop-
agation of patterns in the values of wires as they propagate through the cipher.
This pattern may be a linear relation between the wires entering and exiting
from a circuit component, giving rise to linear cryptanalysis. Or it may be an
equation of differences of wire values resulting from the cipher’s invocation on
a pair of inputs that are a known difference apart; this pattern gives rise to
differential cryptanalysis.

For linear and differential cryptanalysis, it is worth deriving the probabilities
with which linear or differential relations are satisfied. When a key K is involved,
we take the expected value for random keys. Furthermore, when arguing about a

4

cipher’s security it makes sense to take into account the particular pattern that
maximizes this expected probability, leading to a maximum expected linear or
differential probability (MELP/MEDP).

MELP(·
p) = max

a,b,c
E
K

[
Pr
x

[
a · x+ b ·

(
x

p

)
= c

]]
(5)

MEDP(·
p) = max

∆x,∆y
E
K

[
Pr
x

[(
x+∆x

p

)
−
(
x

p

)
= ∆y

]]
(6)

When restricting to coefficients that are not all zero, the MELP is equal to
1
2 −

1
2p . To see this, observe that there are p−1

2 values of x such that
(
x
p

)
= −1

and as many where it is 1. The maximum is reached for relations satisfying a = 0
and b = ±c.

The MEDP is more involved. Clearly ∆y ∈ {−2,−1, 0, 1, 2} or the differential
relation cannot be satisfied at all. Moreover, it is satisfied with ∆y = −1 only if
x+∆x = 0, and analogously, with∆y = 1 only if x = 0. These samples make up 1

p
fraction of the sample space each. Conjecturally, subject to x 6= 0 6= x+∆x 6= x,

the variables
(
x
p

)
and

(
x+∆x
p

)
are independently uniformly distributed across

{−1, 1}. If this conjecture is true, the MEDP is 1
2 −

1
2p . Note that if the MEDP

is different from this value, there is an immediate differential attack against the
Legendre PRF.

In summary, as a map from Fp → Fp, the Legendre gate is far from random.
However, when compared against maps that send F∗ → {−1, 1}, the Legendre
symbol gate is difficult to distinguish from random by conjecture — this is
precisely the conjecture that underlies the security of the Legendre PRF.

The constraint on the range that is necessary when comparing the Legendre
symbol gate to a random function presents a challenge for the cipher designer.
The magnitude of this range does not grow when a Legendre symbol is added to
another wire. Moreover, it increases slowly when the value is multiplied by a small
constant, and for some values even when it is raised to a small power. Therefore,
(#1) Legendre symbol gates should be used in conjunction with multiplications
by large constants.

Algebraic attacks. Algebraic attacks exploit the algebraic rewriting rules and
identities that come with a description of the attacked cipher in terms of polyno-
mials. Examples that belong to this class are GCD attacks, interpolation attacks,
root finding attacks, and Gröbner basis attacks.

The first three work well when the degree of the polynomials that describe the
cipher’s outputs in terms of the inputs (or vice versa) is low. For ciphers involving
Legendre symbol gates, this degree is on the order of p. When deployed in the
context of proof systems, this degree is typically large enough to make these
classes of attacks infeasible, particularly if the polynomials are dense. To make

5

the polynomials dense, (#2) Legendre symbol gates should be used in conjunction
with addition gates.

Gröbner basis attacks reduce the degree of the polynomials by introducing
new variables to represent intermediate states. The resulting system of mul-
tivariate polynomial equations can be solved with a Gröbner basis algorithm,
possibly in conjunction with a term order change algorithm. Unfortunately, the
same polynomial equations (3 and 4) that make a Legendre symbol provable
can be used in a Gröbner basis attack. This is a feature of any arithmetization.
Therefore, (#3) just using Legendre symbol gates does not guarantee a cipher’s
security against Gröbner basis attacks.

Guess. Ignoring the edge case 0, the output of a Legendre symbol gate can
take only two values, 1 or -1. An attacker who guesses the outputs of all or
some Legendre symbol gates can switch to attacking a version of the cipher
that replaces them with constant gates. Against this simplified version, another
attack may become feasible, but only if the guesses were correct. Therefore, (#4)
the probability of guessing Legendre symbols correctly should be used to discount
the complexity of the improved attack that said guess admits.

2.2 SHARK Construction

We observe that the design principles underlying the SHARK cipher are natu-
rally compatible with the use of Legendre symbol gates. Recall that the SHARK
cipher [27] operates on a register of m state elements for N rounds. Every round
of the cipher consists of three steps:

– A nonlinear layer, wherein every element of the state passes through an in-
vertible, highly non-linear permutation called the S-box. As the only nonlin-
ear component, the S-box is what defends against algebraic attacks, including
(assuming N is large enough) Gröbner basis attacks (#3).

– A diffusion layer, wherein the vector of state elements is multiplied by an
MDS matrix. An appropriately chosen MDS matrix guarantees plenty of
multiplications by large coefficients (#1).

– Injection of round keys derived from the master key through a key schedule.
Since we are working over finite fields, field addition is the natural candidate
to realize this injection (#2).

The remaining design principle (#4) that the SHARK construction does
not already happen to address, states that there should be enough Legendre
symbol gates to make guessing their outputs and launching an improved attack
infeasible. If Legendre symbols are used in the description of a round, then this
principle can be satisfied simply by setting the number of rounds N appropriately
as a consequence of having more Legendre symbols to guess.

The natural compatibility between the SHARK construction and the use
of Legendre symbol gates motivates the adding Legendre symbol gates into an
otherwise SHARK-like cipher. However, a näıve implementation of this design

6

strategy presents difficulties. The Legendre map is not a permutation and so it
cannot be used as an S-box. But neither is it linear, so it cannot be used as part
of a linear diffusion layer. When attempting to construct a nonlinear diffusion
layer with Legendre symbols, the question is how to guarantee that this layer is
invertible. The same question arises when using Legendre symbols in combina-
tion with the key injection step; without invertibility, one risks losing information
from the state or from the round keys. Lastly, when Legendre symbols are used
as a separate step, they undermine the wide trail argument for arguing security
against linear and differential cryptanalysis — this argument was the original
motivation for the SHARK cipher in the first place!

There may be other ways to circumvent or address the difficulties outlined
above. Nevertheless, we choose to focus on the first point: just because a Legendre
symbol cannot be used as an S-box, does not mean it cannot be used as part of
an S-box. Rephrased as a question: is it possible to use Legendre symbol gates to
build a highly non-linear permutation on a single field element? The next section
answers this question positively.

3 Low-Degree Power Map with Possible Sign Flip

In prime fields where p ≡ 3 mod 4, squaring is complementary to taking the
Legendre symbol in the following sense. Let x ∈ F∗p be a nonzero field element.
Then x 7→ x2 projects x onto the subgroup of quadratic residues QR∗p = {a2 | a ∈
F∗p} with multiplication. The complementary map x 7→

(
x
p

)
sends x to the coset

of QR∗p whose representatives are 1 if x ∈ QR∗p and to −1 if x 6∈ QR∗p. In other
words, the Legendre symbol records precisely the information that is lost by

squaring. Phrased differently, the map x 7→ x2 ×
(
x
p

)
is invertible. To see this,

observe that x2×
(
x
p

)
= x2+

p−1
2 = x

p+3
2 and gcd

(
p+3
2 , p− 1

)
= gcd(2k+3, 4k+

2) = 1.
The situation changes when p ≡ 1 mod 4 because then −1 ∈ QRp and the

roots of any element are either both quadratic residues or both not quadratic
residues. The Legendre symbol does not record the information that was lost
by squaring. However, the spirit of the above power map is recycled in x 7→
xα ×

(
x
p

)
, where α is the smallest exponent whose power map is invertible. To

see that this map is invertible, observe that xα×
(
x
p

)
= xα+

p−1
2 and composition

with x 7→ x
p−1
2 +α−1

gives the identity.
The S-box function can be defined in a manner that makes abstraction of

the congruence class of p modulo 4. Specifically, this map is

f : F→ F, x 7→ xα ×
(
x

p

)
, (7)

where α is the smallest integer greater than 1 such that this map is invertible.
For any odd prime field Fp, α < p.

7

One of the benefits of this abstract definition is a uniform treatment of the
differential and linear probabilities. Let’s start with the former.

MEDPf = max
∆x,∆y

E
K

[
Pr
x

[f(x+∆x)− f(x) = ∆y]
]

(8)

The equation inside the inner brackets implies, after some squarings and
rearrangements:

(x+∆)α+
p−1
2 − xα+

p−1
2 = ∆y (9)

⇔ (x+∆x)α+
p−1
2 = ∆y + xα+

p−1
2 (10)

⇒ (x+∆x)2α+p−1 = (∆y)2 + 2(∆y)xα+
p−1
2 + x2α+p−1 (11)

⇔ (x+∆x)2α = (∆y)2 + 2(∆y)xα+
p−1
2 + x2α (12)

⇔ (x+∆x)2α − (∆y)2 − x2α = 2(∆y)xα+
p−1
2 (13)

⇒
(
(x+∆x)2α − (∆y)2 − x2α

)2
= 4(∆y)2x2α+p−1 (14)

⇔
(
(x+∆x)2α − (∆y)2 − x2α

)2 − 4(∆y)2x2α = 0 . (15)

The left hand side of the last equation is a polynomial in x. The terms in x4α

cancel, and the next greatest term is
(
2α(∆x)x2α−1

)2
= 4α2(∆x)2x4α−2. This

term cannot be canceled when α > 1. This polynomial therefore has at most
4α− 2 roots. By the Schwarz-Zippel lemma, MEDPf ≤ 4α−2

p .
The linear probability follows.

MELPf = max
a,b,c

E
K

[
Pr
x

[a · x+ b · f(x) = c]
]

(16)

The equation inside the inner brackets implies, after one squaring and one
rearrangement:

a · x+ b · xα+
p−1
2 = c (17)

⇔ b · xα+
p−1
2 = c− a · x (18)

⇒ b2x2α+p−1 = c2 − 2acx+ a2x2 (19)

⇔ b2x2α − c2 − a2x2 + 2acx = 0 . (20)

For any a, b, c, the left hand side of the last equation is a polynomial of degree
2α in x. It has at most 2α roots. By the Schwarz-Zippel lemma, MELPf ≤ 2α

p .

4 Grendel

Grendel is a new cipher that uses the low-degree power map with possible sign
flip as an S-box in a SHARK-like construction. The motivation for this design
has already been made and the novel concepts already introduced. What follows
in this section is a self-contained specification of the cipher.

8

4.1 Parameters

Grendel defines a family of permutations parameterized by the following vari-
ables. The tuple (p,m, r, λ) constitutes an irredundant parameter set, whereas
the auxiliary parameters (α, c,N,M, {Ci}mNi=0) can be deterministically com-
puted from them.

– p — a prime number defining the field over which the cipher’s operations
are defined.

– m — the state size, in number of field elements. Following standard design
principles [2, §4.1], we require m ≥ 2.

– r — the sponge rate, in number of field elements.
– λ — the target security level.
– α — the exponent of the power map part of the S-box. This value is set to 2

when p ≡ 3 mod p or otherwise to the smallest integer greater than 2 such
that gcd(α, p− 1) = 1.

– c — the sponge capacity, in number of field elements. The state size, rate,
and capacity satisfy m = c+ r.

– N — the number of rounds.
– M — an m×m MDS matrix.
– {Ci}mNi=0 — the round constants.

4.2 Permutation

The Grendel permutation P : Fmp → Fmp consists ofN applications of the Grendel
round functionR : Fmp → Fmp to a register ofm field elements, but with a different
slice of round constants in each round. Every round consists of three steps.

– Substitution. The S-box is applied to every state element. The S-box is
defined as

f : Fp → Fp, x 7→ xα ×
(
x

p

)
. (21)

– Permutation. The vector of state elements is multiplied by the MDS matrix
M , through matrix-times-column-vector multiplication.

– Injection of round constants. Round constant im+j is added to state element
j ∈ {0, . . . ,m− 1}, where i ∈ {0, . . . , N − 1} is the round number.

The pseudocode of Algorithm 1 describes this operation formally as it mutates
a register x in-place. Figure 2 shows a diagram of a single round for the specific
case where m = 3.

4.3 Sponge Function

Together with the rate r and the capacity c, the Grendel permutation defines a
sponge function [3]. Mathematically, this map sends an arbitrary-length sequence
of field elements to an infinite-length sequence of field elements:

S : F∗p → F? (22)

9

algorithm Grendel-Permutation(x):
begin

for i from 0 to N − 1 do
// substitution
for j from 0 to m− 1 do

xj ← xαj ×
(
xj
p

)
// permutation
x←Mx
// round constants
for j from 0 to m− 1 do

xj ← xj + Cim+j

return x

Algorithm 1: Grendel permutation applied to x ∈ Fmp

(·)α

(
·
p

) × +

(·)α

(
·
p

) × +

(·)α

(
·
p

) × +

Cim

Cim+1

Cim+2

M
D

S

Fig. 2: one round of Grendel with m = 3

10

In practice, the output is always truncated some number output length of field
elements, and in an implementation output length is provided as an argument
to the function. A computer evaluation of the sponge function consists of two
phases.

– Absorbing. A chunk of r elements from the input are added into the top r
state elements before the permutation is applied to the entire state.

– Squeezing. The top r elements of the state are concatenated to the output
before the permutation is applied to the entire state. Once the output buffer
has accumulated output length elements, it is returned and the algorithm
terminates.

Before the first step of the absorbing phase takes place, the state is initialized
to the all-zero vector. The pseudocode of Algorithm 2 presents this operation
formally.

algorithm Grendel-Sponge(input, output length):
begin

state ← 0 ∈ Fm
// absorbing phase

for i from 0 to d length(input)
r

e do
// add in chunks of r elements
for j from 0 to min(r, length(input)− ir) do

state [j] ← state [j] + input [ir+j]

// apply permutation
state ← Grendel-Permutation(state)

// squeezing phase
output ← ε // empty string
for i from 0 to d output length

r
e do

// read out chunks of r elements
for j from 0 to min(r, output length − ir) do

output ← output ‖ state [j]

// apply permutation
state ← Grendel-Permutation(state)

return output

Algorithm 2: Grendel sponge function

4.4 Hash Function

The Grendel hash function uses the Grendel sponge internally. The output length
is fixed. In addition to that, a padding rule may be applied to the input. Specif-
ically, if the input length is fixed by the context, no padding rule is necessary.
If the input length is variable, then the input is padded as follows. First append
a single 1, and then pad with zeros until the input length is a multiple of r.
Algorithm 3 presents this operation formally.

11

algorithm Grendel-Hash(input):
begin

// apply padding rule (if necessary)
if padding then

input ← input‖1
while length(input) 6≡ 0 mod r do

input ← input‖0

// compute sponge function
output ← Grendel-Sponge(input, output length)
return output

Algorithm 3: Grendel hash function with output length output length

4.5 MDS Matrix

The MDS matrix is determined as follows. Let g ∈ Fp be the smallest (interpreted
as an integer) primitive element. Then the m×2m matrix whose (i, j)th element
is gij , is generator matrix for a Reed-Solomon code, which is MDS. Applying
row echelon reduction to this matrix brings it into systematic form (I |MT). The
rightmost m×m submatrix of this systematic form is the transpose of the MDS
matrix. The procedure is given formally in Algorithm 4.

algorithm Get-MDS-Matrix():
begin

g ← 2 ∈ Fp
while multiplicative order(g) 6= p− 1 do

g ← g + 1

G← Fm×2m matrix such that G[i,j] = gij

S ← reduced echelon form(G)

return
(
S[:,m:]

)T
Algorithm 4: procedure to sample MDS matrix

4.6 Round Constants

The round constants are derived deterministically by expanding a short seed
phrase using SHAKE256. This deterministic derivation satisfies two criteria.

– It guarantees that the round constants were generated with nothing-up-my-
sleeve. Using this method to generate round constants that look random but
secretly hide weaknesses is infeasible if SHAKE256 is secure.

– It supports the security model in which the permutation is treated as a
concrete member chosen at random from a family of permutations.

12

Specifically, the round constants are sampled in the following way. Start with
the phrase “grendel-%i-%i-%i”, where the wildcards are the decimal values
of p,m, λ, respectively. Use SHAKE256 to expand this phrase to an array of
mN × (1 + d log2 p

8 e) bytes. Every chunk of w = (1 + d log2 p
8 e) encodes an integer

by parsing it in most-significant-byte-first order. Reduction modulo p maps this
integer to its corresponding round constant. Algorithm 5 captures this derivation
formally.

algorithm Get-Round-Constants():
begin

w ← 1 + d log2 p
8
e

seed string ← “grendel-%i-%i-%i” % (p,m, λ)
buffer ← Shake256(seed string, output length=Nmw)
for i from 0 to mN do

acc ← 0
for j from 0 to w do

acc ← 256× acc + buffer [iw+j]

Ci ← acc mod p

return {Ci}nMi=0

Algorithm 5: procedure to sample round constants

5 Security Analysis

In traditional cryptanalysis, the effectiveness of an attack is characterized by
the number of cipher invocations it requires. However, algebraic attacks can
often get away with a very small number of cipher invocations, sometimes as
little as one. Since algebraic attacks are of particular importance in the present
context we count the number of field operations needed to make them work. For
an apples-to-apples comparison we count time steps abstractly, thus implicitly
equating one field operation to one cipher invocation.

5.1 Linear and Differential Cryptanalysis

To determine the probability of observing the distinct-from-random propagation
of linear or differential patterns, one needs to analyze the non-linear elements.
The wide trail argument makes this exercise easy for SHARK-like ciphers like
Grendel.

Specifically, the MDS matrix defines a code of minimum distance m + 1.
The dual code has the same minimum distance. Therefore, in any linear trail or
differential characteristic spanning two rounds, there will be at least m+1 active
S-boxes that propagate these patterns probabilistically. Under the assumption

13

that the S-boxes act independently, the product of their MELPs/MEDPs bounds
from above the probability of observing any given trail or characteristic.

For any linear trail, there are at least
⌊
N
2

⌋
× (m + 1) active S-boxes. The

probability of observing any given linear trail across one S-box is at most 2α
p .

Across N rounds, this number falls to
(

2α
p

)N
2

. In other words, only after making(
2α
p

)−N
2

invocations of the cipher can the attacker expect to observe a given

linear trail.
A similar argument applies to differential cryptanalysis. For any differential

characteristic spanning at least two rounds, there are at least m + 1 active
S-boxes. For any characteristic spanning the entire cipher, there are at least⌊
N
2

⌋
× (m+ 1) active S-boxes, each one of which observes a given characteristic

with probability at most 4α−2
p . Under the same independence assumption, this

probability drops to
(

4α−2
p

)N
2

for any differential characteristic spanning the

entire cipher. Only after making
(

4α−2
p

)−N
2

invocations of the primitive can the

attacker expect to observe a given differential characteristic.

5.2 Integral Attacks

Integral attacks [23] exploit the predictable propagation of sums of sets that span
an entire substructure. Traditionally, an integral pattern represents the sum of
a well-defined set of elements under some map. This sum is typically taken over
an entire subspace of Fn2 , in which case the sum tends to vanish. Specifically, for
any such subspace V ⊂ Fn2 and any function F : Fn2 → Fn2 whose total degree in
every coordinate is smaller than the dimension of V ,∑

v∈V
F (v) = 0 . (23)

Out of Oddity [5] generalizes this principle to odd-characteristic fields in two
ways. We restate the relevant propositions below, and proceed to investigate the
distinct-from-random propagation of subspaces and subgroups, as well as their
distinct-from-random sum.

Proposition 1 (integral patterns for odd-characteristic subspaces). Let
Fp be a finite field, let V ⊂ Ftp be an affine subspace of dimension k, and let
F : Ftp → Fp of total degree at most k(p− 1). Then∑

v∈V
F (v) = 0 . (24)

Proposition 2 (integral patterns for subgroups). Let Fp be a finite field
and G ⊂ Fp\{0} a subgroup with multiplication, and let F : Fp → Fp with
deg(F) < |G|. Then ∑

g∈G
F (g) = F (0) · |G| . (25)

14

Consider the propagation of a subspace V ⊂ Fmp whose sum equals zero.
The subspaces V with this description that propagate across the S-box layer are
equal to an m-fold Cartesian product of {0} or Fp, or a translation thereof by
a nonzero vector x ∈ Fmp . Like the S-box layer, the injection of round constants
merely changes the offset vector x. Suppose the MDS sends the subspace V
to a subspace W . Then dim(V) + dim(W) ≥ m + 1 because it is MDS, and
dim(V) = dim(W) because it is a permutation. So any subspace with sum zero
that has any hope of propagating needs to have dimension dm+1

2 e. Moreover, an
attacker wishing to saturate this subspace in order to test its sum against zero

must make at least pd
m+1

2 e queries to the primitive.

The permutation defines m multivariate maps Fm → F whose total degrees
are m(p−1). In order to observe a zero sum across the entire permutation, the at-
tacker must therefore saturate all of Fmp . This saturation requires pm invocations
of the primitive.

Consider the propagation of a subgroup G of F∗p and its sum. If G does not
contain quadratic non-residues, the the effect of the S-box is equivalent to that of
the power map x 7→ xα. Since gcd(α, p−1) = 1, we also have gcd(α, |G|) = 1 and
so G propagates across the S-box without change. The propagation terminates
at the affine map because addition breaks the group structure. It is possible
that the nonzero round constant is canceled against the additions induced by
the MDS matrix. However, in this case a subgroup G in coordinate i diffuses to
all coordinates with a constant multiplicative and constant additive offset. Even
if the constant additive offset is zero, there will be non-trivial additions in the
second round as a result of the affine map. We conclude that subgroups do not
propagate across more than two rounds.

As for applying Prop. 2 to the entire permutation, the coordinate functions
are of maximal degree. If the Legendre symbols are known, then the coordinate
functions are equivalent to polynomials of degree αN in every variable. However,
when the attacker saturates the subgroup by making at least αN queries to the
primitive, the Legendre symbols will be different for every query. As a result,
the attacker wishing to reduce the cipher to equivalent maps of low degree, can
only target distinct functions for each query. We conclude that the cipher does
not exhibit subgroups with distinctive sums.

5.3 Algebraic Attacks

An interpolation attack [20,24,28] represents the attacked primitive as a univari-
ate polynomial of low degree d � p − 1. With only d input-output pairs, the
Lagrange interpolant can be evaluated in a new point. This new evaluation is
used to test whether the primitive is random or not. The interpolation attack
extends to multi-variate multi-coordinate maps Fmp → Fmp by isolating one co-
ordinate and by fixing all but one variables. This family of attacks does not
apply to Grendel because the degree is p− 1 in every variable and in every co-
ordinate. Even if p is small enough to make the Lagrange interpolation feasible,
the resulting interpolant will not be distinguishable from a random polynomial

15

because every polynomial, including one that is randomly selected, is equivalent
to a polynomial of degree at most p− 1.

In the context of block ciphers, GCD attack [1, §4.2] is a key-recovery attack
on a cipher whose bi-variate polynomial description F (X,K) has low degree
d � p − 1 in the key-variable K. By querying two plaintext-ciphertext pairs,
the attacker obtains two distinct polynomials, F (x0,K)− y0 and F (x1,K)− y1,
whose common root is the key k. The complexity of finding the GCD of two
polynomials of degree d is O(d(log d)2). The GCD attack does not apply to
Grendel because it is not a block cipher with an unknown key; instead it is a
permutation with no secrets.

Specific to the case where a hash function outputs a single field element is the
root finding attack [28,18]. The one coordinate of the output is described in terms
of a univariate polynomial f(x) of the input. Then for a known output y, the
attack involves factoring the polynomial f(x)− y to find a root. In fact, prior to
factorization it pays to take the greatest common divisor with the field equation
xp−x, in which case computing gcd((xp mod (f(x)−y))−x, f(x)−y) becomes
the performance bottleneck. The degree of both operands is on the order of p if
the Legendre symbols are treated symbolically, or at most αN if the Legendre
symbols are guessed and then modeled as constants. The resulting complexity
O(αN · N2) should be discounted by the probability of guessing all Legendre
symbols correctly, making for a total complexity of approximately

2Nm−c × αN ·N2 . (26)

5.4 Gröbner Basis Attacks

A Gröbner basis attack [30] represents the cipher as a system of multivariate
quadratic polynomials, possibly introducing intermediate variables to lower their
degrees. The resulting system is then plugged into a Gröbner basis based solver
such as MutantXL [10] or F4/F5 [16,13] with FGLM [14,15].

A single round of the Grendel permutation relates the state variables xmi,
. . . , xmi+m−1 to the state variables xm(i+1), . . . , xm(i+1)+m−1 via the following
polynomials.{∑m−1

j=0 M[k,j] ·
(
L
n−1 · x

α−1
mi+j

)
+ Cmi+k − xm(i+1)+k

where L = (xmi+j − y2mi+j)− (nxmi+j − y2mi+j)

∣∣∣∣∣0 ≤ k < m
0 ≤ i < N

}
(27)

∪
{

(xmi+k − y2mi+k) · (nxmi+k − y2mi+k)

∣∣∣∣0 ≤ k < m
0 ≤ i < N

}
(28)

The helper variable yi represents the inverse of a square root of n× xi, and as a
result, L

n−1 represents xmi+j multiplied by its Legendre symbol. The polynomials
of expression 27 require that ymi+k is a square root of either xmi+k or n×xmi+k,
depending on whether it is a quadratic residue. The polynomials of expression 26
guarantee the correct evolution of the state of the permutation across N rounds.
The variables x0, . . . , xm−1 represent the input of the permutation, and the vari-
ables xNm, . . . , xNm+m represent the outputs of the permutation. These output

16

variables do not have matching helper variables. There are thus 2Nm+m vari-
ables and 2Nm equations. Half the equation have degree α + 1 and half have
degree 4.

To make the attack more concrete one has to specialize the system of poly-
nomials in accordance with an attack model on the Grendel hash function. We
select a preimage attack for a single absorption and single squeeze hash function.
Other attack models generate larger polynomial systems, whose Gröbner bases
are harder to compute.

In the one-absorption, one-squeeze preimage attack, there are r variables in
the input; the remaining c variables are set to zero and their helper variables
are eliminated. All m equations for the state at the input side retain their total
degree, which is α+1. However, there are only r equations square root equations
at the input side. At the output side there are only r equations for the state. The
c output variables associated with the capacity part, along with the equations in
which they appear, are dropped. The remaining r output variables are exactly
the known hash digest and are thus known constants and not at all variables.
The resulting system has 2Nm+m−2c−m variables and 2Nm−c−c equations,
half of which are of degree α+ 1 and half of which are of degree 4. This leads to
a straightforward Macaulay bound on the degree of regularity:

dreg ≤ dMac = 1 +
∑
pi

(deg(pi)− 1) (29)

= 1 + (Nm− c)× (α+ 3) . (30)

We ran experiments to calculate the degree of regularity experimentally for
parameters small enough so that this computation would be feasible. Specifically,
these parameters were r = c = 1 and p = 65519 and p = 65393. The number
of rounds N was increased until the machine ran out of memory. The observed
degree of regularity is lower than the Macaulay bound, indicating that the system
of polynomial equations is not regular. Based on these data points, we conjecture
that the actual degree of regularity is bounded from below by

dreg ≥
dMac

8
. (31)

The experimental are shown in Figures 3a and 3b, along with the Macaulay
bound and the conjectural lower bound.

Using the conjectural lower bound as an estimate for the degree of regularity
translates to an estimate for the complexity of computing the Gröbner basis,
derived from the complexity of sparse linear system solving in the Macaulay
matrix of degree dreg :

CGB ≈
(

2Nm− 2c+ dreg
dreg

)2

. (32)

Gröbner Basis Attack with Known Legendre Symbols When the attacker
knows the Legendre symbols, having obtained them for instance from a lucky

17

2 2.5 3 3.5 4 4.5 5

0

10

20

30

40

number of rounds

Macaulay bound

observed dreg
conjectural lower bound

(a) p = 65519

2 2.5 3 3.5 4

10

20

30

40

number of rounds

Macaulay bound

observed dreg
conjectural lower bound

(b) p = 65393

Fig. 3: evolution of the degree of regularity

guess, the system of polynomials can be simplified greatly. With this additional
information the cipher can be described by the polynomials

m−1∑
j=0

M[k,j]x
α
mi+jSmi+j + Cmi+k − xm(i+1)+k

∣∣∣∣∣∣0 ≤ k < m
0 ≤ i < N

 , (33)

where Smi+j denotes the known Legendre symbol of the unknown variable xmi+j .
Once again we focus on a one-absorb one-squeeze preimage attack. In this

case c variables on the input side disappear because the capacity part of the
state is initially zero. Likewise, r variables on the output side are fixed because
they are the known hash digest. The remaining c variables on the output side
disappear because the equations in which they appear can safely be dropped. So
in total there are Nm − c variables and as many equations of degree α. These
numbers give rise to the Macaulay bound

dreg ≤ dMac = 1 +
∑
pi

deg(pi)− 1 (34)

= 1 + (Nm− c)× (α− 1) . (35)

Our experiments with length(input) = output length = 1 indicate that
this system is not regular either. We conjecture that the degree of regularity is
bounded from below by

dreg ≥
dMac

9
. (36)

The experimental results, along with the Macaulay bound and conjectural lower
bound, are shown in Figures 4a and 4b.

While the complexity of the Gröbner basis calculation is significantly less,
the attacker has to factor in the probability of making the correct guess for all

18

2 4 6 8 10

0

5

10

15

20

number of rounds

Macaulay bound

observed dreg
conjectural lower bound

(a) p = 65519

2 4 6 8

0

10

20

30

number of rounds

Macaulay bound

observed dreg
conjectural lower bound

(b) p = 65393

Fig. 4: evolution of the degree of regularity when the Legendre symbols are known

the Legendre symbols. Approximating the Legendre symbols as uniform random
variables across {−1, 1}, the attacker has to guess O(2Nm−c) times before his
guess is correct. So the total work factor of this attack strategy becomes

2Nm−c ×
(
Nm− c+ dreg

dreg

)2

. (37)

5.5 Structural Attacks

A slide attack [6] exploits the self-similarity of a block cipher. Let P : Fn2 →
Fn2 be a permutation consisting of N identical rounds, i.e., P = R(N). Then
after querying the primitive 2n/2 times, one would expect to find a slid pair,
(x0, y0), (x1, y1) such that y0 = P (x0), y1 = P (x1) and x1 = R(x0). With such a
pair, attacking N rounds of the block cipher is as easy as attacking one round.
The methodology also applies to weakly self-similar ciphers, such as those with
repetitive key schedules [7].

Slide attacks generally attack weak key schedules. A generalization of quan-
tum slide attacks presented in [9] gave rise to a practical classical cryptanalysis
of the block cipher variants of Feistel-MiMC and GMiMC [8]. The property ex-
ploited in this attack is an invariant property induced by the weak key schedule,
namely R((X ⊕K)‖(Y ⊕K), 0) = R(X‖Y,K).

In principle, slide attacks extend to permutations, where the attacker’s ob-
jective is not to discover the secret key but to distinguish the primitive from a
random permutation in a meaningful way. A random permutation is, with high
probability, unequal to the N -fold composition of a simple round. Therefore, an
attacker who manages to compute a slid pair has obtained a meaningful indica-
tion that his primitive is not random. It is unclear whether this weakness extends
to a practical attack on the resulting hash function, but it certainly undermines
the premise of the various sponge security proofs.

19

Nevertheless, slide attacks and attacks exploiting a weak key schedule do not
apply to Grendel. As a first approximation, the round constants are uniformly
random and thus comparable to the injection of keys from a strong key schedule.
More precisely, the round constants are selected pseudorandomly, by expanding
a seed string using SHAKE256. Therefore, finding parameter sets that generate
repetitive or otherwise weak round constants amounts to a preimage attack on
SHAKE256.

5.6 Attack Summary

Table 1 summarizes the various attacks’ asymptotic complexity if they apply to
Grendel. To enable simple uniform comparison, this table treats one invocation
of the cipher as equally expensive as one finite field operation.

Table 1: summary of attack complexity
attack complexity

Linear cryptanalysis
(

2α
p

)−N/2
Differential cryptanalysis

(
4α−2
p

)−N/2
Subspace propagation pd

m+1
2
e

Subspace sum pm

Subgroup propagation −
Subgroup sum −
Interpolation attack −
GCD attack −
Root finding attack p

... known Legendre symbols 2Nm−c × αN ·N2

Gröbner basis attack
(
2Nm−2c+dreg

dreg

)2
where dreg = 1+(Nm−c)·(α+3)

8

... known Legendre symbols 2Nm−c ×
(
Nm−c+dreg

dreg

)2
where dreg = 1+(Nm−c)·(α−1)

9

Slide attack −
Weak key schedule −

5.7 Setting Parameters

Knowledge of the attacks’ complexities enables a determination of the appropri-
ate number of rounds. Specifically, N is set to the smallest integer such that the
work factors of all attacks, with and without guessing the Legendre symbols, are
at least 21.25·λ, where λ is the security parameter. The factor 1.25 is a safety
margin included to account for future attacks.

In addition to the previous there are constraints that apply to any sponge
construction or sponge-based hash function. First, both the rate and the capac-
ity part of the sponge should be capable of containing λ bits of information:

20

min(r, c) · log2 p ≥ λ. Second, the output length should be at least λ/ log2 p for
one-wayness and second preimage resistance; and at least 2λ/ log2 p for collision-
resistance.

Acknowledgments. The author is supported by Nervos Foundation.

References

1. Albrecht, M.R., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: Mimc: Effi-
cient encryption and cryptographic hashing with minimal multiplicative complex-
ity. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 10031, pp. 191–219
(2016). https://doi.org/10.1007/978-3-662-53887-6 7, https://doi.org/10.1007/
978-3-662-53887-6_7

2. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of
symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Sym-
metric Cryptol. 2020(3), 1–45 (2020). https://doi.org/10.13154/tosc.v2020.i3.1-
45, https://doi.org/10.13154/tosc.v2020.i3.1-45

3. Bertomi, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic Sponge Func-
tions (2011), https://keccak.team/files/CSF-0.1.pdf

4. Beullens, W., Beyne, T., Udovenko, A., Vitto, G.: Cryptanalysis of the legen-
dre PRF and generalizations. IACR Trans. Symmetric Cryptol. 2020(1), 313–
330 (2020). https://doi.org/10.13154/tosc.v2020.i1.313-330, https://doi.org/

10.13154/tosc.v2020.i1.313-330

5. Beyne, T., Canteaut, A., Dinur, I., Eichlseder, M., Leander, G., Leurent, G.,
Naya-Plasencia, M., Perrin, L., Sasaki, Y., Todo, Y., Wiemer, F.: Out of odd-
ity - new cryptanalytic techniques against symmetric primitives optimized for
integrity proof systems. In: Micciancio, D., Ristenpart, T. (eds.) Advances in
Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Confer-
ence, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Pro-
ceedings, Part III. Lecture Notes in Computer Science, vol. 12172, pp. 299–
328. Springer (2020). https://doi.org/10.1007/978-3-030-56877-1 11, https://

doi.org/10.1007/978-3-030-56877-1_11

6. Biryukov, A., Wagner, D.A.: Slide attacks. In: Knudsen, L.R. (ed.) Fast Soft-
ware Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March 24-26,
1999, Proceedings. Lecture Notes in Computer Science, vol. 1636, pp. 245–259.
Springer (1999). https://doi.org/10.1007/3-540-48519-8 18, https://doi.org/10.
1007/3-540-48519-8_18

7. Biryukov, A., Wagner, D.A.: Advanced slide attacks. In: Preneel, B. (ed.) Ad-
vances in Cryptology - EUROCRYPT 2000, International Conference on the The-
ory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18,
2000, Proceeding. Lecture Notes in Computer Science, vol. 1807, pp. 589–606.
Springer (2000). https://doi.org/10.1007/3-540-45539-6 41, https://doi.org/10.
1007/3-540-45539-6_41

8. Bonnetain, X.: Collisions on feistel-mimc and univariate gmimc. IACR Cryptol.
ePrint Arch. 2019, 951 (2019), https://eprint.iacr.org/2019/951

21

https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.1007/978-3-662-53887-6_7
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.13154/tosc.v2020.i3.1-45
https://keccak.team/files/CSF-0.1.pdf
https://doi.org/10.13154/tosc.v2020.i1.313-330
https://doi.org/10.13154/tosc.v2020.i1.313-330
https://doi.org/10.13154/tosc.v2020.i1.313-330
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/978-3-030-56877-1_11
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://eprint.iacr.org/2019/951

9. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide at-
tacks. In: Paterson, K.G., Stebila, D. (eds.) Selected Areas in Cryptography -
SAC 2019 - 26th International Conference, Waterloo, ON, Canada, August 12-16,
2019, Revised Selected Papers. Lecture Notes in Computer Science, vol. 11959, pp.
492–519. Springer (2019). https://doi.org/10.1007/978-3-030-38471-5 20, https:

//doi.org/10.1007/978-3-030-38471-5_20

10. Buchmann, J., Ding, J., Mohamed, M.S.E., Mohamed, W.S.A.E.: Mutantxl: Solv-
ing multivariate polynomial equations for cryptanalysis. In: Handschuh, H., Lucks,
S., Preneel, B., Rogaway, P. (eds.) Symmetric Cryptography, 11.01. - 16.01.2009.
Dagstuhl Seminar Proceedings, vol. 09031. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Germany (2009), http://drops.dagstuhl.de/opus/volltexte/2009/
1945/

11. Cohen, H.: A course in computational algebraic number theory, Graduate texts
in mathematics, vol. 138. Springer (1993), https://www.worldcat.org/oclc/

27810276

12. Damg̊ard, I.: On the randomness of legendre and jacobi sequences. In: Gold-
wasser, S. (ed.) Advances in Cryptology - CRYPTO ’88, 8th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 21-25,
1988, Proceedings. Lecture Notes in Computer Science, vol. 403, pp. 163–172.
Springer (1988). https://doi.org/10.1007/0-387-34799-2 13, https://doi.org/10.
1007/0-387-34799-2_13

13. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). Association for Computing Machinery, New York, NY,
USA (2002). https://doi.org/10.1145/780506.780516, https://doi.org/10.1145/
780506.780516

14. Faugère, J.C., Gianni, P.M., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993). https://doi.org/10.1006/jsco.1993.1051, https://doi.org/10.1006/

jsco.1993.1051

15. Faugère, J.C., Mou, C.: Sparse FGLM algorithms. J. Symb. Comput. 80, 538–
569 (2017). https://doi.org/10.1016/j.jsc.2016.07.025, https://doi.org/10.1016/
j.jsc.2016.07.025

16. Faugére, J.C.: A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra 139(1), 61–88 (1999).
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5, https:

//www.sciencedirect.com/science/article/pii/S0022404999000055

17. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon:
A new hash function for zero-knowledge proof systems. In: USENIX Security 2021,
Proceedings (2021), https://eprint.iacr.org/2019/458

18. Grassi, L., Khovratovich, D., Rønjom, S., Schofnegger, M.: The legendre symbol
and the modulo-2 operator in symmetric schemes over (fp)n. Cryptology ePrint
Archive, Report 2021/1533 (2021), https://ia.cr/2021/1533

19. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: Mpc-friendly
symmetric key primitives. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., My-
ers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vienna, Austria, October 24-
28, 2016. pp. 430–443. ACM (2016). https://doi.org/10.1145/2976749.2978332,
https://doi.org/10.1145/2976749.2978332

20. Jakobsen, T., Knudsen, L.R.: The interpolation attack on block ciphers. In: Bi-
ham, E. (ed.) Fast Software Encryption, 4th International Workshop, FSE ’97,

22

https://doi.org/10.1007/978-3-030-38471-5_20
https://doi.org/10.1007/978-3-030-38471-5_20
https://doi.org/10.1007/978-3-030-38471-5_20
http://drops.dagstuhl.de/opus/volltexte/2009/1945/
http://drops.dagstuhl.de/opus/volltexte/2009/1945/
https://www.worldcat.org/oclc/27810276
https://www.worldcat.org/oclc/27810276
https://doi.org/10.1007/0-387-34799-2_13
https://doi.org/10.1007/0-387-34799-2_13
https://doi.org/10.1007/0-387-34799-2_13
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1016/j.jsc.2016.07.025
https://doi.org/10.1016/j.jsc.2016.07.025
https://doi.org/10.1016/j.jsc.2016.07.025
https://doi.org/https://doi.org/10.1016/S0022-4049(99)00005-5
https://www.sciencedirect.com/science/article/pii/S0022404999000055
https://www.sciencedirect.com/science/article/pii/S0022404999000055
https://eprint.iacr.org/2019/458
https://ia.cr/2021/1533
https://doi.org/10.1145/2976749.2978332
https://doi.org/10.1145/2976749.2978332

Haifa, Israel, January 20-22, 1997, Proceedings. Lecture Notes in Computer Sci-
ence, vol. 1267, pp. 28–40. Springer (1997). https://doi.org/10.1007/BFb0052332,
https://doi.org/10.1007/BFb0052332

21. Kaluderović, N., Kleinjung, T., Kostić, D.: Cryptanalysis of the gen-
eralised legendre pseudorandom function. Proceedings of the Four-
teenth Algorithmic Number Theory Symposium 2020(1), 267–282 (2020).
https://doi.org/10.2140/obs.2020.4.267, https://doi.org/10.2140/obs.2020.4.

267

22. Khovratovich, D.: Key recovery attacks on the legendre prfs within the birthday
bound. IACR Cryptol. ePrint Arch. 2019, 862 (2019), https://eprint.iacr.

org/2019/862

23. Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) Fast Software Encryption, 9th International Workshop, FSE 2002, Leuven,
Belgium, February 4-6, 2002, Revised Papers. Lecture Notes in Computer Science,
vol. 2365, pp. 112–127. Springer (2002). https://doi.org/10.1007/3-540-45661-9 9,
https://doi.org/10.1007/3-540-45661-9_9

24. Li, C., Preneel, B.: Improved interpolation attacks on cryptographic primitives
of low algebraic degree. In: Paterson, K.G., Stebila, D. (eds.) Selected Areas in
Cryptography - SAC 2019 - 26th International Conference, Waterloo, ON, Canada,
August 12-16, 2019, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 11959, pp. 171–193. Springer (2019). https://doi.org/10.1007/978-3-030-38471-
5 8, https://doi.org/10.1007/978-3-030-38471-5_8

25. May, A., Zweydinger, F.: Legendre PRF (multiple) key attacks and the power of
preprocessing. IACR Cryptol. ePrint Arch. 2021, 645 (2021), https://eprint.
iacr.org/2021/645

26. Peralta, R.C.: A simple and fast probabilistic algorithm for computing square
roots modulo a prime number. IEEE Trans. Inf. Theory 32(6), 846–847
(1986). https://doi.org/10.1109/TIT.1986.1057236, https://doi.org/10.1109/

TIT.1986.1057236

27. Rijmen, V., Daemen, J., Preneel, B., Bosselaers, A., Win, E.D.: The ci-
pher SHARK. In: Gollmann, D. (ed.) Fast Software Encryption, Third
International Workshop, Cambridge, UK, February 21-23, 1996, Proceed-
ings. Lecture Notes in Computer Science, vol. 1039, pp. 99–111. Springer
(1996). https://doi.org/10.1007/3-540-60865-6 47, https://doi.org/10.1007/

3-540-60865-6_47

28. Roy, A., Andreeva, E., Sauer, J.F.: Interpolation cryptanalysis of unbalanced feistel
networks with low degree round functions. In: Dunkelman, O., Michael J. Jacob-
sen, J., O’Flynn, C. (eds.) Selected Areas in Cryptography - SAC 2020 - 27th
International Conference, Online, 2020, Revised Selected Papers. Springer (2020),
https://eprint.iacr.org/2021/367

29. Russell, A., Shparlinski, I.: Classical and quantum polynomial reconstruction
via legendre symbol evaluation (01 2002), https://core.ac.uk/download/pdf/

25363865.pdf

30. Sauer, J.F., Szepieniec, A.: Sok: Gröbner basis algorithms for arithmetization
oriented ciphers. Cryptology ePrint Archive, Report 2021/870 (2021), https:

//eprint.iacr.org/2021/870

31. Szepieniec, A., Ashur, T., Dhooghe, S.: Rescue-Prime: a standard specification
(SoK). IACR Cryptol. ePrint Arch. 2020, 1143 (2020), https://eprint.iacr.
org/2020/1143

32. Team, D.N.: Disk network, https://dusk.network/

23

https://doi.org/10.1007/BFb0052332
https://doi.org/10.1007/BFb0052332
https://doi.org/10.2140/obs.2020.4.267
https://doi.org/10.2140/obs.2020.4.267
https://doi.org/10.2140/obs.2020.4.267
https://eprint.iacr.org/2019/862
https://eprint.iacr.org/2019/862
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/3-540-45661-9_9
https://doi.org/10.1007/978-3-030-38471-5_8
https://doi.org/10.1007/978-3-030-38471-5_8
https://doi.org/10.1007/978-3-030-38471-5_8
https://eprint.iacr.org/2021/645
https://eprint.iacr.org/2021/645
https://doi.org/10.1109/TIT.1986.1057236
https://doi.org/10.1109/TIT.1986.1057236
https://doi.org/10.1109/TIT.1986.1057236
https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/3-540-60865-6_47
https://doi.org/10.1007/3-540-60865-6_47
https://eprint.iacr.org/2021/367
https://core.ac.uk/download/pdf/25363865.pdf
https://core.ac.uk/download/pdf/25363865.pdf
https://eprint.iacr.org/2021/870
https://eprint.iacr.org/2021/870
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2020/1143
https://dusk.network/

33. Team, F.: Filecoin, https://filecoin.io/
34. Team, I.: Iden3, https://www.iden3.io/

24

https://filecoin.io/
https://www.iden3.io/

	On the Use of the Legendre Symbol in Symmetric Cipher Design

