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Abstract. Side-channel attacks (SCA) focus on vulnerabilities caused
by insecure implementations and exploit them to deduce useful informa-
tion about the data being processed or the data itself through leakages
obtained from the device. There have been many studies exploiting these
side-channel leakages, and most of the state-of-the-art attacks have been
shown to work on systems implementing AES. The methodology is usu-
ally based on exploiting leakages for the outer rounds, i.e., the first and
the last round. In some cases, due to partial countermeasures or the
nature of the device itself, it might not be possible to attack the outer
round leakages. In this case, the attacker has to resort to attacking the
inner rounds.
This work provides a generalization for inner round side-channel attacks
on AES and experimentally validates it with non-profiled and profiled
attacks. This work formulates the computation of the hypothesis values of
any byte in the intermediate rounds. The more inner the AES round is,
the higher is the attack complexity in terms of the number of bits to be
guessed for the hypothesis. We discuss the main limitations for obtaining
predictions in inner rounds and, in particular, we compare the perfor-
mance of Correlation Power Analysis (CPA) against deep learning-based
profiled side-channel attacks (DL-SCA). We demonstrate that because
trained deep learning models require fewer traces in the attack phase,
they also have fewer complexity limitations to attack inner AES rounds
than non-profiled attacks such as CPA. This paper is the first to pro-
pose deep learning-based profiled attacks on inner rounds of AES under
several time and memory constraints to the best of our knowledge.

1 Introduction

In the past twenty years, a large number of academic and industrial research pro-
vided methods to attack and protect the Advanced Encryption Standard (AES)
implementations. Among these attacks, side-channel analysis (SCA) targets un-
intentional leakages from software and hardware implementations. The aim can
be twofold: from the designer’s perspective (the defensive side), a side-channel
analysis indicates a potential source of leakages in the implemented algorithm.
Additionally, the analysis provides important directions to design countermea-
sures to mitigate such attacks. On the other hand, an evaluator (offensive side)
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is interested in verifying the worst-case security to advise the manufacturer or
certify the implementation against specific types of SCAs and applications. Be-
sides different perspectives, one must consider different types of side-channel
attacks. One common division is into non-profiled attacks and profiled attacks.
New forms of non-profiled and profiled SCA encounter in AES a suitable target
to validate proposed methods. In this sense, most works concentrate their effort
in attacking the first and last AES (encryption or decryption) rounds, leaving
the attacks on inner rounds out of scope.

The reason stems from the attack complexities and assumptions: attacking
the outer rounds requires a minimal effort in terms of key guessing and the num-
ber of measurements. On the other hand, several design reasons could limit a
side-channel attack application on the outer (i.e., first and last) rounds. Coun-
termeasures (as they add costs overheads to the design) could be applied only
to these outer rounds, leaving inner rounds unprotected. In this case, the only
side-channel attack mitigations are the inherent sources of noise and misalign-
ments. Additionally, for faster encryption or decryption processes, it is common
to implement several AES rounds within a single clock cycle, which is a highly
adopted mechanism for hardware-based implementations. This limits the side-
channel leakages of the AES intermediate bytes that do not coincide with the
clock cycles edges.

The past (and not very recent) literature already proposed various differential
power analysis (DPA) attacks to inner AES rounds. In [11], the authors described
a DPA attack on round 2, requiring the same attack complexity (8 bits) as
attacking round 1 and with an overhead in the required number of measurements
due to the chosen-input nature of the attack. Lu et al. investigated how many
rounds of an AES implementation should be protected to be secure against
power analysis attacks [13]. They provided two main conclusions: attack the
inner rounds of AES is possible at the cost of increasing the data complexity
and that any attack requiring a DPA on more than 32 bits is considered infeasible
and is therefore not explored.

In this work, we extend the formulation of [13] and provide a theoretical
generalization of such an attack on all the inner rounds of AES-128. This gen-
eralization would give the designers a comprehensive understanding of the com-
plexity of the attack at each round and the threat profile that the attacker needs
to have to make a successful attack. This work assumes that inner rounds are
not protected by specific countermeasures (e.g., first-order masking or multiple
rounds within a single clock cycle) but only by inherent noise and misalignment.
Afterward, we run both non-profiled attacks (CPA) and profiled attacks (deep
learning-based SCA) and show that deep learning-based SCA reaches signifi-
cantly better attack performance and succeeds in scenarios where CPA does not
indicate a successful key recovery.

Our Contributions.

1. We first generalize the computation of hypothesis for any byte in the inter-
mediate rounds for AES-128 in the encryption mode with some predefined
conditions in mind and use the same to determine the relative difficulty of
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such attacks. Due to the non-linear substitutions in each AES round, target-
ing any intermediate byte after n S-boxes requires an attack complexity of
8× n bits. The attack complexity in terms of the number of bits represents
the bit-length of guessed hypothesis. This introduces significant time and
memory overheads to mount such a high complexity attack.

2. To make our analysis more realistic, we introduce potential countermeasures
(such as Gaussian noise and misalignment) to power traces collected from
an unprotected AES.

3. The training phase of a deep learning-based profiled attack on inner rounds is
not affected by the increased attack complexity. Consequently, we show that
the attack phase from the deep learning-based approach is a considerable
improvement over limitations faced by non-profiled CPA due to the added
countermeasures, especially when the attack complexity is higher than 16
bits. In this case, the attacker faces strong time and memory limitations in
terms of processed attack traces.

4. In scenarios when CPA cannot succeed due to implicit countermeasures
(which is a practical case shown in this paper on encryption round 3), a
convolutional neural network-based profiled attack can easily recover the
key even with a very limited number of attack traces.

5. As we specify in this paper, the variability in target intermediate values of
profiling traces is only limited by the number of possible plaintexts and key
combinations. However, repeating some plaintext-key combinations does not
negatively impact the profiling phase.

2 Preliminaries

2.1 Correlation Power Analysis (CPA)

CPA is a statistical method used to correlate the side-channel traces with the
observed leakage [3]. There, an attacker has to perform numerous encryption-
s/decryptions and collect the traces. A hypothesis for each key guess can then
be obtained by using a leakage model. CPA uses Pearson Correlation for differ-
entiating between the modeled and the actual power traces.

Pearson Correlation increases towards +1 in case observations are directly
correlated, and towards −1 in case they are inversely correlated. In the case that
they are independent of each other, the value is closer to 0. Adopting a divide
and conquer approach, we take one key byte and its corresponding hypothesis at
a time. So considering n traces, T data points where t corresponds to one data
point in time, pi,t would be the measurement or the data point at the ith trace
and t time. We use the leakage model to derive a hypothesis power consumption,
hi,k denoting the hypothesis for ith trace and for key guess k. The correlation
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between the hypothesis and the measured traces is then computed as:

rk,t =

n∑
i=1

[(hi,k − h̄k)(pi,t − p̄t)]√
n∑
i=1

(hi,k − h̄k)2
n∑
i=1

(pi,t − p̄t)2
. (1)

Here, rk,t gives the correlation value for one key guess and for one data point
in time. The same is done for all the selected data points (the number of which
would depend on the captured leakage and the attack point) for each key guess.
The maximum absolute value of these correlations computed for all data points
is then used as the actual correlation value for that key guess. The key guess
having the highest absolute correlation value is most probable to be the actual
key byte.

2.2 Deep Learning Methodologies

Deep learning-based SCA (DL-SCA) provides an improvement over other pro-
filed attacks such as template attacks [5] in terms of efforts during pre-processing
of traces and effectiveness of the attack. Deep learning methodologies take the
traces along with their labels in the profiling phase across the selected data
points in time, run them through the defined model, and determine the weights
according to the defined criteria such as high accuracy and minimal loss. The
labels here depend on the leakage function and the key hypotheses. The input
layer of the DL model contains the measurements of the traces across the data
points in time, and the output layer contains output nodes for each of the classes
defined by the leakage model. These trained weights are then used in the attack
phase to determine the probabilities of each of the classes given by the interme-
diate value corresponding to each key guess. The key guess having the highest
probability values would indicate the most likely secret key.

In this work, we use convolutional neural networks (CNNs) to conduct the
deep learning-based SCA. We employ CNN with VGG-like architecture as it is
a prominent model used for SCA, see, e.g., [1,10]. The original model was devel-
oped for the purpose of image classification, where the input signal has multiple
input dimensions starting from 2. As SCA has only one spatial dimension con-
sidering its data points in time, the main difference that VGG-like architectures
introduce is how it handles 1-dimension input signal on each of its convolution
and pooling operations.

A CNN is a model which is a combination of convolutional layers, pooling
layers, and fully-connected layers. The convolutional operation involves a filter
bank applied on the input signal across time t (time steps in the case of SCA
owing to the 1-dimensional property of the side-channel traces):

(φ ∗ x)(t) =

∞∑
a=−∞

x(t)φ(t− a), (2)
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where φ ∈ Ri×o×s is a filter with i input channels, o output channels, and s filter
length. A pooling layer is a non-linear layer that applies down-sampling over the
given input on a particular axis using techniques such as average or maximum of
multiple values. This is done to reduce the spatial size of the channels, thereby
limiting the number of neurons. Fully-connected layers are layers where every
input signal can be mapped to an output signal of that layer, i.e., every neuron
is connected with all the neurons in the neighborhood layer. This is usually done
by taking a dot product between the weight matrix and the input vector. Then,
this VGG-like CNN cnn, is represented as follows [10]:

cnn = fcθ,softmax ◦
P∏
p=1

fcθP ,ReLU ◦
Q∏
q=1

(pool ◦
Rq∏
r=1

convφr,ReLU), (3)

where P,Q represents number of fully-connected layers, fc, and convolutional
layer blocks respectively. The latter themselves are a combination of pooling lay-
ers and individual convolutional layers conv, wherein Rq represents the number
of convolutional layers conv in the qth convolutional block. convφ,σ and fcθ,σ
are convolutional and fully-connected layers respectively and are defined as:

convφ,σ(X) = σ(φ ∗X),

fcθ,σ(x) = σ(θTx).
(4)

Here, X ∈ Ri×d is the input with i channels and d length and x ∈ Rf is
the input vector for the fully-connected layers with f dimensions. θ ∈ Rf×h is a
projection matrix that applies the weight matrix transforming the f dimensional
input to h dimensional output (the bias term has been omitted for simplicity).
Finally, σ is an activation function, where ReLU is usually used for hidden layers
and softmax is used for the final output layer, representing the probabilities of
each of the defined classes.

2.3 Attack Evaluation Methodology

The most commonly used metric for evaluating the performance of a side-channel
attack is key rank. We use the same for evaluating the performance of the at-
tacks carried out in this work. An average key rank (denoted guessing entropy)
represents the average number of keys the attacker needs to go through during
the attack to reveal the actual key successfully [21]. As seen in the above sec-
tions, we obtain a posterior distribution of probabilities for each of our defined
classes as the output of the attacks. The key guess contributing the most to the
highest probable predicted class across the attack traces is predicted to be the
key byte being used. Consequently, the output vector that is obtained during
the attack is of the form k = [k0, k1, k2, ..., k|K|−1], where |K| is the size of the
keyspace. These key guesses contained in the vector k are then ordered in the
decreasing order of probability, that is, k0 is the most probable key guess, also
known as the best guess, and k|K|−1 is the least probable key guess. We then
check the position at which the actual key byte resides in this ordered list, and
this position of the actual key byte is termed as the key rank.
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3 Related Work

3.1 On Attacking the AES Inner Rounds

The first and the last rounds, being dependent on a relatively small fraction of
the key, are more vulnerable and are therefore primary targets of side-channel
attacks. As we go into the inner rounds, every intermediate byte would depend
on an increasing number of key bytes due to the diffusion properties of AES,
thereby increasing the data complexity of the attack. The trade-off, therefore,
focuses on protecting the first and the last rounds and leaving other intermediate
rounds unprotected or with very simple countermeasures [22,7]. In some cases of
hardware implementation, it is also possible that multiple rounds are executed
within one clock cycle. This would result in the inner rounds being exposed, i.e.,
it would then be possible to capture traces corresponding to the inner rounds.
In such cases, the hypothesis built for the first round would not correlate to
the captured traces, and the attack would not work. Such cases, along with
the hindrance caused by the partial countermeasures, raise the need to look into
attacks on unprotected or even partially protected inner rounds and understand
the resources that the attacker would need to launch such attacks.

While Jaffe et al. already described a DPA attack after the SubBytes of
round 2 [11], Lu et al. answered an important question about how many rounds
of an AES implementation should be protected for it to be secure against power
analysis attacks [13]. To this end, they show that it is possible to attack the inner
rounds of AES at the cost of increasing the data complexity of the attack. They
define the feasibility of an attack by the number of bits required to launch the
DPA/CPA and set this threshold at 32 bits. Consequently, any attack requiring a
DPA on more than 32 bits is considered infeasible and, as such, not investigated
by them.

We extend on the same and formulate a generalization of such an attack on
the inner rounds.

3.2 On Machine Learning-based SCA

Many approaches have been developed in SCA, from statistical methods such as
CPA/DPA to template attacks and machine learning-based approaches. While
the former ones have been studied extensively, attacks based on profiling in-
volving machine learning and deep learning are still developing. Already stud-
ies appearing one decade ago showed that machine learning could be used to
mount successful side-channel attacks that are also more effective than template
attacks [8,9]. Machine learning methods such as SVM have also been used to
defeat masked implementations, as shown by Lerman et al. [12]. Extending on
the same, Gilmore et al. showed that neural networks could also be used to
tackle the masking countermeasure and are more effective than the other ma-
chine learning-based approaches [6]. However, these implementations depend on
a crucial assumption that the random masks are available to the attacker dur-
ing the profiling phase, which as mentioned by [6] is an impractical assumption.
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As discussed before, most of the practical and efficient countermeasure imple-
mentations involve only the outer rounds [22,7]. Therefore, we can bypass these
countermeasures if we attack the inner rounds directly, which would also not
necessitate having the random masks used by the target implementation.

Deep learning (more precisely, convolutional neural networks and multilayer
perceptrons) has been successfully used to attack AES implementations as first
shown by Maghrebi et al. [15]. Next, Cagli et al. showed that convolutional
neural networks could break implementations protected with the jitter coun-
termeasure, especially if the attack is augmented with synthetic data obtained
from data augmentation techniques [4]. Kim et al. discussed the VGG-like archi-
tecture that showed good attack performance for several datasets, where some
were using masking or hiding countermeasures [10]. Benadjila et al. introduced
the ASCAD dataset, which is a dataset used in most of the SCA studies today,
and also investigated the hyperparameter tuning to find architectures leading
to successful attacks [1]. Picek et al. showed that metrics commonly indicating
the performance of machine learning algorithms are not appropriate to assess
the SCA performance [17]. Zaid et al. proposed a methodology to design con-
volutional neural network architectures that have a small number of trainable
parameters and that result in efficient attacks [25]. Wouters et al. further dis-
cussed the methodology perspective, providing even smaller neural network ar-
chitectures that perform well [24]. Perin et al. explored how deep learning-based
SCA generalizes to previously unseen examples and showed that ensembles of
random neural networks could outperform even state-of-the-art neural network
architectures [16]. Rijsdijk et al. introduced the reinforcement learning approach
for designing neural networks that perform well and are as small as possible [18].

These studies represent only a fraction of works exploring machine learning-
based side-channel attacks, but to the best of our knowledge, none of those works
consider attacking inner rounds of AES.

4 First-Order Non-Profiled Attacks on AES Inner
Rounds

Lu et al. [13] give five general principles for attacking bytes in the inner rounds
of AES using first and second-order DPA. These principles consider the attack to
be feasible as long as the attack is on less than 32 bits. However, since our aim is
to generalize the attack on any intermediate byte and observe the complexity of
such an attack, the feasibility of the attack itself is not a factor that we consider
here. We focus on the following two principles listed by [13] that are based on
the first-order DPA:
1. Attacking from input: any intermediate byte before the MixColumns opera-

tion of round 3 can be exploited by conducting a first-order DPA attack and
will depend on the part of the plaintext bytes being fixed.

2. Attacking from the output: any intermediate byte resulting from the Ad-
dRoundKey operation of round 7 can be exploited to conduct a first-order
DPA attack and will depend on some of the ciphertext bytes being fixed.
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Note: Although Lu et al. [13] consider any byte after the AddRoundKey
operation of round 7, we noticed that it was also possible to attack from
output before the AddRoundKey of round 7 while considering single bit
DPA attacks.
We now extend over the principle above and start by first attacking in the

encryption mode from input at rounds 2, 3, and 4. Next, we attack a byte from
the output at round 7. We base these attacks on chosen-plaintext and adaptive
chosen-ciphertext attacks and adopt the computation of a byte at rounds 2 and
3 from the work of Lu et al. [13]. Observing the attack on rounds 2 and 3 and
then consequently analyzing the same for round 4 helped us to figure out a pat-
tern for generalizing the attack in any intermediate round during encryption.
We, therefore, calculate the required number of fixed plaintext bytes and con-
sequently the attack complexity in terms of the number of bits to be guessed
while attacking from both input and output for AES encryption mode. Details
on how to generalize the attack on any intermediate byte in the inner rounds are
provided in Section 4.6. We also observed that while attacks on rounds 2 and 3
were practically feasible using a chosen-plaintexts approach, it was not possible
to attack rounds beyond round 4 using this same principle successfully.

4.1 Notations

Before moving onto attacking the inner round bytes, we present the notations
used in the following sections.
– Plaintext bytes are denoted by pi, where i is the index of the byte. Similarly,

ciphertext bytes are denoted by ci.
– The output bytes of an S-box in any round is denoted by vni , where i is the

index of the byte and n indicates the round. For example, v10 is the first byte
obtained after the S-box in round 1. Similarly, bytes after the MixColumns
operation are denoted using uni , while the output bytes of a round, i.e., bytes
after the AddRoundKey are denoted by wni .

– The key bytes are denoted by kni and the round key they belong to is denoted
by Kn. The initial key would then be {k00, k01, ..., k015} ∈ K0, while the last
round key would be {k100 , k101 , ..., k1015} ∈ K10

– S-box in round n is denoted as Sn and we denote its application on an input
byte u as Sn(u). The inverse of the S-box is denoted as S−1n .

– Terms such as γ, δ, θ are used to denote 8-bit constants.

4.2 Attacking a Byte After the S-box at Round 2

In this attack, the goal is to recover K0, i.e., the first round key in the AES
encryption process. To simplify the attack understanding, we start by predicting
the first byte immediately after the S-box in round 2. Let this byte be v20 , i.e., the
first byte in the AES state after S2. Let the input to S2 be w1

0, a resultant byte
from the AddRoundKey operation from round 1. This AddRoundKey operation
involves XORing a key byte from K1 (round key from round i = 1), say k10, with
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the first byte u10 obtained after MixColumns of round 1. This can be written as:

v20 = S2(w1
0),

w1
0 = u10 ⊕ k10.

(5)

The process is illustrated in Figure 1. As mentioned above, u10 is the first byte
after the MixColumns operation is applied on 4 bytes of round 1, specifically after
ShiftRows. Let the bytes after S1 be represented as v1i , i ∈ {0, .., 15}, in which
case the value of u10 can then be written as:

u10 = 02 ∗ v10 ⊕ 03 ∗ v15 ⊕ 01 ∗ v110 ⊕ 01 ∗ v115, (6)

where ∗ represents the field multiplication operation in GF (28). Here, we can
see that the bytes (v15 , v

1
10, v

1
15) have been used as a consequence of the shuffling

caused by ShiftRows. Substituting the value of u10 (and subsequently w1
0) in

Eq. (5) from Eq. (6), we have:

v20 = S2(02 ∗ v10 ⊕ 03 ∗ v15 ⊕ 01 ∗ v110 ⊕ 01 ∗ v115 ⊕ k10). (7)

Let us denote γ = 03 ∗ v15 ⊕ 01 ∗ v110 ⊕ 01 ∗ v115 ⊕ k10 be a 8-bit constant byte.
This constant results from fixing 3 plaintext bytes (p5, p10, and p15, as shown
in Figure 1) across all side-channel measurements. By inserting γ in Eq. (7) we
obtain:

v20 = S2(02 ∗ v10 ⊕ γ). (8)

The byte v10 can be written as the result of S1: v10 = S1(p0⊕k00). Then Eq. (8)
can be rewritten as:

v20 = S2(02 ∗ S1(p0 ⊕ k00)⊕ γ). (9)

Having γ as constant, we then need to guess only 16 bits of data, which is
(k00, γ) in order to find the key byte k00. This attack on v20 has been diagram-
matically represented in Figure 1. Similarly, we can target k4 by having p9, p14,
and p3 as constant bytes, and so on. We also note here that if we approach this
attack without using chosen plaintexts, we would have to attack/brute force 4
bytes of the key directly instead due to the effect of MixColumns.

4.3 Attacking a Byte After the S-box at Round 3

A similar approach to the one seen for round 2 can be applied for attacking a
byte after S-box in round 3 (S3) as well. Here too, let us take the first byte after
S3 as an example and let this byte be v30 . Then the first byte of the input to S3

is w2
0, and u20 is the first byte obtained after the MixColumns of round 2. Then

we have:

v30 = S3(w2
0) = S3(u20 ⊕ k20). (10)
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Fig. 1: Attacking k00 by targeting first byte (v20) after S2.

We follow the approach from Section 4.2, u20 depends on 4 bytes which are
input to the MixColumns operation at round 2. So if v2i , i ∈ {0, .., 15} repre-
sent the bytes after S2, we can write the MixColumns operation following the
ShiftRows, resulting in u20 as:

u20 = 02 ∗ v20 ⊕ 03 ∗ v25 ⊕ 01 ∗ v210 ⊕ 01 ∗ v215. (11)

Substituting the value of u20 in Eq. (10) from Eq. (11), we obtain:

v30 = S3(02 ∗ v20 ⊕ 03 ∗ v25 ⊕ 01 ∗ v210 ⊕ 01 ∗ v215 ⊕ k20). (12)

Let us consider γ = 03 ∗ v25 ⊕ 01 ∗ v210 ⊕ 01 ∗ v215 ⊕ k20 and substitute this in
Eq. (12):

v30 = S3(02 ∗ v20 ⊕ γ). (13)

The bytes u1i , i ∈ {0, .., 15} are the bytes obtained after the MixColumns
operation of round 1, then we have:

v20 = S2(u10 ⊕ k11), v25 = S2(u15 ⊕ k15),

v210 = S2(u110 ⊕ k110), v215 = S2(u115 ⊕ k115).
(14)

Expanding on u10, we observe an equation similar to Eq. (11), where it de-
pends on 4 bytes (v10 , v

1
5 , v

1
10, v

1
15) obtained from the output of S1:

u10 = 02 ∗ v10 ⊕ 03 ∗ v15 ⊕ 01 ∗ v110 ⊕ 01 ∗ v115. (15)
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Expanding on this further, each of v1i can be written as a result of S-box
on plaintext bytes XORed with the round key bytes of round 0, which can be
written as:

v10 = S1(p0 ⊕ k00), v15 = S1(p5 ⊕ k05),

v110 = S1(p10 ⊕ k010), v115 = S1(p15 ⊕ k015).
(16)

From the above, we can conclude that u10 depends on 4 plaintext bytes,
meaning that each of (v20 , v

2
5 , v

2
10, v

2
15) also depend on 4 plaintext bytes. Similar

conclusions can be made for (u15, u
1
10, u

1
15) as well. Considering 03∗v15⊕01∗v110⊕

01 ∗ v115 ⊕ k10 = δ and reformulating Eq. (13), we obtain:

v30 = S3(02 ∗ S2(u0 ⊕ k10)⊕ γ) =⇒ v = S3(02 ∗ S2(02 ∗ v10 ⊕ δ)⊕ γ), (17)

which can then be rewritten as:

v30 = S3(02 ∗ S2(02 ∗ S1(p0 ⊕ k00)⊕ δ)⊕ γ). (18)

Here, γ depends on 12 plaintext bytes, and δ depends on three plaintext bytes.
In order to keep the values of γ and δ constant, we need to keep 15 plaintext
bytes constant. We then have to guess the entire set (k00, δ, γ) in order to find
the key byte k00, giving us a data complexity of 24 bits for attacking one key byte.
This attack has been diagrammatically represented in Figure 2. Keeping only a
single byte variable gives us 256 plaintexts. Since in practice, a first-order DPA
can break an AES S-box implementation with 30 to 100 traces [13], this attack
is consequently a feasible venture that can be undertaken in some scenarios.

4.4 On the Attack Feasibility After the S-box at Round 4

Here, we consider attacking a byte immediately after the S-box in round 4 (S4).
Let this be the first byte v40 . Similar to Eq. (10), w3

0 is a byte obtained after
round 3 and u30 is a byte after the MixColumns of round 3. Then with k30 ∈ K3,
we have:

v40 = S4(w3
0),

w3
0 = u30 ⊕ k30.

(19)

The byte u30 results from MixColumns in round 3 and can be written as:

u30 = 02 ∗ v30 ⊕ 03 ∗ v35 ⊕ 01 ∗ v310 ⊕ 01 ∗ v315, (20)

where (v30 , v
3
5 , v

3
10, v

3
15) are bytes resulting from the S-box operation of this same

round 3. Consider θ = 03 ∗ v35 ⊕ 01 ∗ v310⊕ 01 ∗ v315⊕ k30. Now, using Eq. (20) and
deriving the value of v30 from Eq. (18), the byte v40 can then be written as:

v40 = S4(02 ∗ S3(02 ∗ S2(02 ∗ S1(p0 ⊕ k00)⊕ δ)⊕ γ)⊕ θ), (21)

Here, θ depends on (v35 , v
3
10, v

3
15). From Eq. (18), it can be observed that each

of these bytes depend on the set (δ, γ, pi), where pi is some plaintext byte not
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Fig. 2: Attacking k00 by targeting first byte (v30) after S3.

included in either δ or γ. Combining the plaintext bytes that this set depends
on, it can be concluded that (v35 , v

3
10, v

3
15) depend on 16 bytes of plaintext each.

Thus, θ effectively depends on all 16 plaintext bytes. This way, implementing an
attack to recover k00 by predicting v40 requires fixing the 16 plaintexts for each
side-channel measurement. Also, we would have to guess the variables of the set
(k00, δ, γ, θ) in this case, that is, the attack would have to guess 32 bits in order
to find one key byte. Therefore, this turns this statistical DPA attack infeasible
in practice. On the other hand, a profiled attack can still vary k00 (and keeping
all remaining key bytes from K0 fixed), which allows collecting profiling traces
with at most 256 different intermediate values for v40 . Although the profiling
phase allows larger variability, the attack phase is still restricted to a single
plaintext-key combination.
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4.5 Attacking a Byte Before AddRoundKey at Round 7

In this case, we formulate an attack on round 7 from the output in encryption
mode, which would require an adaptive chosen-ciphertext attack. The process is
similar to that noticed in the case of encryption. Attacking the byte u70 we have:

u70 = k70 ⊕ S−18 (v80), (22)

where v80 is a byte from after S8 and k70 ∈ K7. The byte v80 affects 4 bytes of the
resultant state after the MixColumns of round 8.

The value v80 can be expressed as follows:

v80 = 0e ∗ u80 ⊕ 0b ∗ u81 ⊕ 0d ∗ u82 ⊕ 09 ∗ u83, (23)

where (u80, u
8
1, u

8
2, u

8
3) are bytes from the state after the MixColumns operation

of round 8. These 4 bytes can then be written in terms of another 4 bytes from
after S9. That is, for (v90 , v

9
1 , v

9
2 , v

9
3) being bytes after S9 and k80, k

8
1, k

8
2, k

8
3 being

bytes of K8, we have:

u80 = S−19 (v90)⊕ k80,
u81 = S−19 (v91)⊕ k81,
u82 = S−19 (v92)⊕ k82,
u83 = S−19 (v93)⊕ k83.

(24)

Consider 0b ∗ u81 ⊕ 0d ∗ u82 ⊕ 09 ∗ u83 ⊕ k80 = γ. Plugging the value of u80 into
Eq. (23), and subsequently, the value of v80 into Eq. (22), we obtain:

u70 = k70 ⊕ S−18 (0e ∗ S−19 (v90)⊕ γ). (25)

Expanding v90 , which affects 4 bytes after MixColumns of round 9, we get:

v90 = 0e ∗ u90 ⊕ 0b ∗ u91 ⊕ 0d ∗ u92 ⊕ 09 ∗ u93, (26)

where u90, u
9
1, u

9
2, u

9
3 are the first 4 bytes from after the MixColumns operation

of round 9. Each of these bytes go through the S-box and ShiftRows of round
10 and the last AddRoundKey before giving out ciphertext bytes. Therefore, u9i
can be represented as:

u90 = S−110 (c0 ⊕ k100 )⊕ k90, u91 = S−110 (c13 ⊕ k1013)⊕ k91,
u92 = S−110 (c10 ⊕ k1010)⊕ k92, u93 = S−110 (c7 ⊕ k107 )⊕ k93,

(27)

where (c0, c7, c10, c13) are ciphertext bytes. Considering 0b ∗ u91 ⊕ 0d ∗ u92 ⊕ 09 ∗
u93 ⊕ k90 = δ, we can rewrite Eq. (25) as:

u70 = k70 ⊕ S−18 (0e ∗ S−19 (0e ∗ S−110 (c0 ⊕ k100 )⊕ δ)⊕ γ). (28)

The term δ depends on the bytes u91, u
9
2, u

9
3, which in turn depend on one cipher-

text byte each, as seen above. γ depends on (u81, u
8
2, u

8
3) which in turn depend on
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(v91 , v
9
2 , v

9
3) that are similar to v90 . We can observe from Eq. (26) that v90 would be

affected by four ciphertext bytes, which would actually be the case with v91 , v
9
2 ,

and v93 as well. We can thus conclude that γ would depend on 12 ciphertext
bytes.

A statistical attack on the S-box in this case, such as DPA, would therefore
include an attack on 32 bits of the set (k70, k

10
0 , δ, γ) and requiring 15 ciphertext

bytes to be constant. An improvement can be achieved here by performing a
bitwise attack such as a single-bit DPA as indicated in [13]. Here, k70, being
XORed, would not affect the magnitude of the difference but would only affect
the sign. Performing a single-bit DPA attack and taking the absolute of the
difference would therefore cancel out the influence of k70. A similar observation
can be made for CPA attacks as well. This would bring the attack complexity
down to 24 bits as then we would have to attack only (k100 , δ, γ).

4.6 Generalization of the Attack on the Inner Rounds

We can use the individual attacks on the inner rounds in the previous section
to derive a generalized view of the attack complexity and requirements while
attacking any intermediate byte.

Generalizing for Attacks from Input in the Encryption Mode Taking into consid-
eration Eq. (18) and Eq. (21), we can generalize any byte i after S-box in round
j, vji into the form:

vji = Sj(m1 ∗Sj−1(m2 ∗ ... ∗S2(mj−1 ∗S1(pn⊕ k0n)⊕ θ1)⊕ θ2)...⊕ θj−1), (29)

where pn is a plaintext byte that directly affects vji and k0n ∈ K0 is the initial
key byte that is XORed with it. Every θj requires 3 × 4j−1 bytes of plaintext
to be constant. We then have to attack the set (k0i , θ1, ..., θi−1), which results
in attacking or guessing 8i bits in order to obtain 1 key byte, k0i . Table 1 gives
the number of constant plaintext bytes required for the largest θ in an equation,
which is θj−1 for round j and the number of bits to attack for finding 1 byte of
the key. This table also provide the maximum amount of plaintext-key options
for the attack on round i. Note that when attacking, e.g., round 4 and 5, an
attacker would have to target a single plaintext-key combination, transforming
the attack process into a simple power analysis (SPA).

Generalizing for Attacks from Output in the Encryption Mode Similar to the
attack from input, we can generalize the attack from output from the one given
in Eq. (28). Attacking a byte before the AddRoundKey of (10 − j)th round,
v10−ji , we have:

v
(10−j)
i = k(10−j)m ⊕ S−1(10−j)+1(m′1 ∗ S−1(10−j)+2(m′2 ∗ ...

∗ S−19 (m′j−1 ∗ S−110 (cn ⊕ k10n )⊕ θ1)⊕ θ2)...⊕ θj−1),

(30)
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Round i

No. of fixed plaintext
bytes (effectively) to

attack k0
0 and

to predict Si(w
i−1
0 )

No. of bits to be
guessed in order
to attack k0

0 and
to predict Si(w

i−1
0 )

Plaintext × Key options
to attack k0

0 and
to predict Si(w

i−1
0 )

(p=Profile, a=Attack)

1 0 8 p=2128 × 28, a=2128 × 1

2 3 16 p=2104 × 28, a=2104 × 1

3 15 24 p=28 × 28, a=28 × 1

4 48 (16) 32 p=1 × 28, a=1 × 1

5 192 (16) 40 p=1 × 28, a=1 × 1

Table 1: Number of constant plaintext bytes required and number of bits to
attack for 1 key byte for first 5 rounds of AES-128. This table also shows the
maximum amount of different combinations of plaintext and key for profile and
attack phases in each target round.

where k
(10−j)
m ∈ K(10−j). cn is a ciphertext byte and k10n ∈ K10. Every θj requires

3× 4j−1 constant ciphertext bytes. As mentioned in Section 4.5, if we carry out
the attack in a bitwise manner, the attack set would consist of (k0, θ1, θ2, ..., θj−1)
giving us 8i bits to attack in order to obtain the key byte k0. Key generation
being invertible, we can work our way upwards to obtain the original key bytes
K0 from K10.

5 Experimental Results

Next, we discuss our experimental results where we provide results for attacks
from input only. We plan to address attacks from the output in encryption mode
in future works. Section 5.1 describes the setup we use to acquire the power
traces, while Section 5.2 gives an insight into the deep learning architecture that
we use to perform the attacks. Sections 5.3 and 5.4 exhibit the attacks where we
compare the performance of deep learning against CPA on the acquired traces,
both before and after introducing countermeasures such as (Gaussian) noise and
misalignment. More specifically, we observe the effect of Gaussian noise for the
attack on round 2 while using both misalignment and Gaussian noise for round
3 traces.

5.1 Setup

We use a general setup for capturing the power traces for all of our experiments.
The traces contain power measurements collected from a Pinata development
board 3 based on a 32-bit STM32F4 microcontroller with an ARM-based archi-
tecture, running at the clock frequency of 168 MHz. We acquired power traces
from a standard unprotected AES-128 look-up table implementation running on

3 Pinata Board: https://www.riscure.com/product/pinata-training-target/

https://www.riscure.com/product/pinata-training-target/


16 Swaminathan et al.

the target device. The setup consisted of a Riscure current probe4, a Lecroy Wa-
verunner 610Zi oscilloscope, and a computer to communicate with the equipment
and store the acquired traces. The power traces were measured at a sampling
frequency of 1GS/sec and consisted of 220 000 samples. We perform power ac-
quisitions specifically for rounds 2 and 3 and use the chosen plaintext strategy
for the attacks as was discussed in Section 4 and Table 1.

For round 2, we need four acquisitions to attack all the key bytes since it
is possible to attack 4 bytes at once. We collect 10 000 traces per acquisition,
with 20% of the traces having a fixed key which is also the target key. We use
Gaussian noise as a test against countermeasure while attacking both rounds 2
and 3. The mean and the standard deviation of the original traces dataset have
been used to generate the Gaussian noise that is added to each trace. That is,
the new traces with the noise were computed as follows,

X∗ = X +N (µx, σ
2
x), (31)

where N (µx, σ
2
x) is the Gaussian distribution formed using the mean µx and

the variance σ2
x of the original traces X itself. For round 3, we have to perform

16 acquisitions for attacking all key bytes since only one key byte can be at-
tacked at a time. We collect 3 000 traces per acquisition for round 3, with all the
traces having the fixed target key. The traces collected were misaligned during
the time of acquisition, and we use this misalignment for an additional coun-
termeasure test in this case. That is, we first align the traces and perform the
attacks, followed by attacking the original dataset to compare the results in the
presence of misalignment. We employ a standard pattern-based approach to do
the alignment.

5.2 The Deep Learning Model Architecture

CNN architectures analogous to VGG [20] have been shown to give good results
in the field of DL-SCA [1,10] and is, therefore, one of the widely adopted models.
We particularly use the benchmarked model architecture CNNbest, which has
been proven to outperform other models such as VGG-16 and MLPbest as shown
by Benadjila et al. [1].

The architecture CNNbest contains five convolutional blocks, to begin with,
where each block is made up of 1 convolutional layer and one average pool-
ing layer. Each convolutional layer has filters for each block as (64, 128, 256,
512, 512), the kernel size as 11 (effectively indicating same padding), and uses
ReLU as the activation function. The convolutional blocks are followed by two
fully connected layers, each containing 4 096 units. Finally, the output layer uses
Softmax and gives the probabilities for all the classes, which in our case would
be the probabilities for each of the 9 Hamming Weight classes. The model uses
categorical cross-entropy as the loss function, which is the most prominent of the
loss function used in such case scenarios as has been mentioned in Section 2.2.

4 Current probe: https://www.riscure.com/product/current-probe

https://www.riscure.com/product/current-probe
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For hyperparameter tuning, CNNbest works with the RMSprop backpropa-
gation optimizer, a learning rate of 10−5, and trains for 75 or 100 epochs for
a batch size of 200. While we do not change the optimizer and the learning
rate, Benadjila et al. [1] also showed CNNbest has an equally good performance
with 50 epochs as well. We observed that while 50 epochs give better results for
round 3, 100 epochs worked better while attacking a byte at round 2. Further, we
also noticed better performance in the attack phase (w.r.t. the number of traces
taken to guess the correct key byte) when using a smaller batch size, which is
then fixed to be 64 in our experiments. Accordingly, the input layer then has the
shape of (2 960 × 64) where 2 960 is the number of PoIs (or features) selected.
Table 2 shows the benchmarked values used for CNNbest and the values that we
consider for this work.

We also test randomized CNN architectures with up to 4 convolutional layers
each having the kernel size ranging from 10 to 20 and a stride of either 5 or 10,
followed by 3 dense layers each having up to 1 000 neurons and a layer weight ini-
tializer randomly picked from (random uniform, glorot uniform, he uniform).
The activation function for all layers was randomly selected from (relu, selu,
elu, and tanh). We observed that most of these random architectures also
showed good results in breaking the inner rounds.

Hyperparameters Benchmarked Choice Our Setup

Training Hyperparameters

Epochs up to 100 50 (R3)/100(R2)

Batch size 200 64

Architecture Hyperparameters

Blocks 5 5

CONV layers 1 1

Filters 64 64

Kernel size 11 11

FC layers 2 2

ACT function ReLU ReLU

Pooling layer Average Average

Padding With zeros With zeros

Table 2: Summary of the benchmarked values of the hyperparameters and the
values used in our work.

5.3 Attacking a Byte After Round 2 S-box

To attack a byte after the S-box of round 2, each target byte needs three plaintext
bytes to be fixed in the target dataset, thereby allowing us to target four key
bytes with each acquisition of power traces. For example, in order to target key
bytes (0, 4, 8, 12), we need to have the other 12 plaintext bytes fixed. Therefore,
trace set acquisition is made accordingly, where these 4 bytes of the plaintext
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are randomly defined, and the others remain fixed. An attack to find all the 16
key bytes would therefore require four such acquisitions in total.

We chose to attack the 0th key byte for showcasing our results. Using Eq. (29),
we compute the hypothesis for attacking key byte 0 as follows,

hyp = HW [S(02 ∗ S(p0 ⊕ k0)⊕ δ)], (32)

where δ = 03 ∗ S(p5 ⊕ k5) ⊕ 01 ∗ S(p10 ⊕ k10) ⊕ 01 ∗ S(p15 ⊕ k15). As can be
seen here, we need to keep the plaintext bytes (5, 10, 15) fixed in order to make
the attack possible, and the hypothesis hyp itself depends on only p0 and k0
of the input trace. For DL-SCA, we label the traces during the profiling phase
using the hypothesis and then guess the bytes (k0, δ) during the attack phase.
We set the hyperparameters as discussed in Section 5.2. Training and validation
are done for 7 500 and 500 traces, respectively, and on variable keys that do
not consist of the target key bytes while having the constant plaintext bytes as
0x00 for simplicity. The attack is performed on a set of 2 000 traces with a fixed
key. In the case of DL-SCA, we observe that the attack yields the key after 238
traces, as shown in Figure 3 when the rank becomes 0. We generalize the term to
rank here since we are guessing another byte apart from the key byte itself, and
therefore, it is of the order 104 denoting roughly the 65 536 possibilities while
guessing 16 bits (216 possibilities). We can then deduce that the attack takes
238 traces to start recognizing the correct trend from profiling, thereby leading
to correct guesses thereafter, which we can see from the drop of the rank to 0.

We then launch CPA on a set of 2 000 traces with a fixed key derived from
the same dataset used above. We first compute the hypothesis for all the 216

guesses and as given in Eq. (32). The correlation is then computed for all the
guesses per trace, and the guess with the highest value is chosen to be the most
likely guess as in any CPA attack. This experiment is then repeated 100 times for
each batch of shuffled traces, and the highest correlation value is then averaged
out, resulting in an average rank for each batch. The results of this attack are
shown in Figure 3. The average rank achieved by CPA is six after 2 000 traces.
As we notice a decreasing trend in the average ranks, we believe that CPA would
eventually find the key if given more traces during the attack.

We now add noise to the power traces as described in Section 5.1 and observe
the performance of both scenarios again. With added Gaussian noise, DL-SCA
still finds the key after 139 traces as seen in Figure 4, while CPA does not find the
key even after 2 000 traces despite the downward trend that we see in Figure 4.
The average rank given by CPA, in this case, is 352 after 2 000 traces while it
attempts to guess 16 bits of information.

5.4 Attacking a Byte After Round 3 S-box

Round 3 requires the attacker to get a separate trace set acquisition process per
target key byte. In this work, we specifically target the first key byte k0. We
then compute the hypothesis as follows,

hyp = HW [S(02 ∗ S(02 ∗ S(p0 ⊕ k0)⊕ δ)⊕ γ)], (33)
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Fig. 3: DL-SCA and CPA for key byte 0 after S-box on encryption round 2.

Fig. 4: DL-SCA and CPA after adding Gaussian Noise for key byte 0 after S-box
on encryption round 2.

where hyp is the 8-bit hypothesis computed for one input trace while p0 and k0
are the first bytes of plaintext and key for that input trace, respectively. Since
this depends on p0, we gather the acquisition set with the first byte as variable
and the rest of the bytes as constant, which we set as 0x00 for simplicity. As
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discussed in Section 5.1, we first perform the attacks on aligned traces followed
by attacks on the misaligned ones. For DL-SCA on the aligned set of traces, since
we have only 3 000 traces collected per acquisition in our dataset, we use the first
2 000 traces for the profiling phase, the following 500 for validation and attack
the next 500 traces. The model used is as described in Section 5.2. As done for
round 2, the label for each trace is computed using Eq. (33) for profiling, where
(δ, γ) can be set to any constant including 0x00. During the attack we attempt
to guess 3 bytes (k0, δ, γ). On performing the attack in this case, we successfully
attain the key byte k0 along with the correct values of δ and γ after 11 traces.
The result is shown in Figure 5 (here too, we generalize the term to rank since
we are guessing 3 bytes in total). Similar to the result seen for round 2, the rank
is of the order 106, indicating the 224 possible guesses (16 million possibilities)
for 24 bits of data. The attack takes just 11 traces to start recognizing the trend
and guessing the correct key.

For CPA, we compute the hypothesis and subsequently the correlation for all
the 224 guesses, similar to what was done for round 2. The result of this attack is
then shown in Figure 5. The correct key converges towards the highest correlation
value as expected from a successful CPA attack, and the correct key is obtained
after 50 traces and again at 110 traces. Here, we restrict the computation of
key ranks to only 1 experiment instead of 100 as done in the case of round 2.
Therefore, the results for CPA on round 3 are given as a proof-of-concept for the
attack. This is because of the CPU-intensive operations done while brute-forcing
24 bits on a standard personal computer. The experiments were done using Intel
Core i9 8-core processor and 16GB RAM. Computation of hypothesis for 500
traces takes approximately 27 minutes, followed by an average of 9 minutes for
computing the key rank for each batch of traces. With an increment of 10 traces
per batch, completing 1 experiment for all the batches ranging from 10 to 500
traces (50 batches) takes approximately 7.35 hours. Multi-processing can be used
to speed the experiments, but storing of 224 possibilities for each trace is memory
intensive, thereby making the use of multiple processes more expensive (in terms
of speed-memory trade-off) for a standard personal computer.

We now use the misaligned traces to compare the performance of DL-SCA
and CPA in the presence of such an (implicit) countermeasure. We use the same
DL model along with the hyperparameters and the samples of the traces to
perform DL-SCA on the misaligned traces. The attack reveals the key after ten
traces. We realize intuitively that a CPA attack will be difficult to perform on
misaligned traces. This is indeed proven by the results as well, which can be seen
from its erratic nature. The results for DL-SCA and CPA on misaligned traces
are shown in Figure 6.

We further compare the performance of DL-SCA with CPA by adding Gaus-
sian noise to the misaligned traces. The results can be seen in Figure 7. While
DL-SCA finds the key after 34 traces, CPA is unable to do so even after going
through our entire attack set of 500 traces.

While DL-SCA successfully finds the key in all the above cases, CPA is
successful only in the case when the traces are aligned. The effectiveness of
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Fig. 5: DL-SCA and CPA on aligned traces for key byte 0 after S-box on encryp-
tion round 3.

Fig. 6: DL-SCA and CPA on misaligned traces for key byte 0 after S-box on
encryption round 3.
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Fig. 7: DL-SCA and CPA on misaligned traces after adding Gaussian noise for
key byte 0 after S-box on encryption round 3.

DL-SCA is further proven when attacking misaligned traces where it succeeds
with as few as ten traces, a case where CPA was unsuccessful. We can therefore
conclude that DL-SCA certainly outperforms CPA by a tremendous margin when
attacking the inner rounds.

5.5 Attacking a Byte After Round 4 S-box

To attack the byte after the round 4 S-box, we need to guess 32 bits comprising
the set of (k0, δ, γ, θ), as can also be seen from Eq. (21) and Table 1. Although
attacking 32 bits is still feasible, the usage of the aforementioned three constants
implies that all the 16 bytes of plaintext and the key need to be fixed for this
particular attack to work. However, profiling using the same plaintexts and the
same key would result in the same labels and consequently would result in the
overfitting of the model.

Another case scenario would involve profiling using different plaintext but a
constant key. This would mean calculating the exact values of δ, γ, and θ, which
in turn leads to a properly trained model. However, the assumption in the attack
phase while computing the four target bytes is that these 4 bytes are constant
during the profiling as well and, by extension, should ideally have different Ham-
ming Weights as labels than what was computed. As an example, two plaintexts
having the same first byte should have the same label and, therefore, similar
traces. However, since we are using different plaintexts for each trace during
profiling, the training factor that the constants bring in is totally eliminated.
This effectively means that the training phase and the attacking phase are car-
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Fig. 8: DL-SCA on round 4 S-box with different plaintexts being used while
training and constant plaintext used for attack. A fixed key was used both for
profiling and for attack.

ried out on data that are completely different from each other, thereby rendering
the attack unsuccessful. The results for the same are shown in Figure 8, and it
can be observed that the rank never converges to a correct guess and does not
show a decreasing trend either. A similar result was also seen while using the
same plaintext but different keys. This is because the values of δ, γ, and θ not
only depend on the plaintext but also on the keys and the subsequent round
keys. As of now, we conclude that an attack on any byte after the round 4 S-box
is infeasible within the boundaries considered by our work.

6 Conclusions and Future Work

Profiled and non-profiled side-channel attacks on inner AES rounds face sev-
eral limitations. In this work, we proposed general formulations to attack any
intermediate byte in AES encryption mode. Results indicated that attacks on
rounds 2 and 3 are practical besides the increased complexity in the hypoth-
esis guessing (16 and 24 bits, respectively). We demonstrated in practice that
because profiled attacks are less restricted from fixed plaintext limitations in
the profiling phase, DL-SCA can easily succeed in recovering the key in scenar-
ios without or with (noise and misalignment) countermeasures. On the other
hand, non-profiled attacks, such as CPA, becomes highly constrained by time
and memory limitations as a consequence of increased complexity to guess inter-
mediates from inner rounds. As mentioned by several related works, for several
targets, DL-SCA shows easier key recovery in comparison to non-profiled attacks
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if the profiling phase is done appropriately. Therefore, as shown in this paper,
DL-SCA becomes a strong candidate to attack (not properly protected) inner
rounds from AES.

Besides that, we also observed that results presented in Section 5 have certain
limitations. Most notably, the presented approach fails at attacking further than
round 3. Therefore, the most interesting open question is whether it is possible
to attack rounds between 4 and 6. We believe that this goal should be achievable
using deep learning. The first, more straightforward approach would be to attack
both S-box input and output using multi-label deep learning [14]. We envision
that in this approach, attacking the Hamming Weight of both intermediates
would be the most efficient. By targeting these two intermediate states at once,
the attack would be able to recover the key in a similar way to [23,2,19]. Note
that this method can be applied without requiring access to input and output
for AES 5.

The second approach would be to attack a combination of S-box input and
output. For example, we believe that it might be sufficient to use an XOR of
S-box input and output as a label. The traces might not be directly leaking that
XOR value, but we envision that the neural network should be able to combine
S-box input and output leakages and classify the XORed value correctly, in a
similar way to which neural networks were shown to combine leakages in masked
AES traces [12]. We leave further investigating of the aforementioned ideas, as
well as practical experiments for attacks in decryption mode, as future works.
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