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Abstract

We show a constant-overhead interactive zero-knowledge (ZK) proof system for RAM pro-
grams, that is, a ZK proof in which the communication complexity as well as the running times
of the prover and verifier scale linearly in the size of the memory N and the running time T
of the underlying RAM program. Besides yielding an asymptotic improvement of prior work,
our implementation gives concrete performance improvements for RAM-based ZK proofs. In
particular, our implementation supports ZK proofs of private read/write accesses to 64 MB
of memory (224 32-bit words) using only 34 bytes of communication per access, a more than
80× improvement compared to the recent BubbleRAM protocol. We also design a lightweight
RISC CPU that can efficiently emulate the MIPS-I instruction set, and for which our ZK proof
communicates only ≈ 320 bytes per cycle, more than 10× less than the BubbleRAM CPU. In
a 100 Mbps network, we can perform zero-knowledge executions of our CPU (with 64 MB of
main memory and 4 MB of program memory) at a clock rate of 6.6 KHz.

1 Introduction

Zero-knowledge (ZK) proofs enable a prover P to convince a verifier V that the prover knows a
witness w on which a particular program P evaluates to 1 without revealing anything additional
about w. A series of works over the past several years (e.g., [GGPR13, JKO13, BCC+16, Gro16,
AHIV17, KKW18, BBB+18, XZZ+19, TS20, WYKW21]) has shown several highly efficient ZK
protocols, however for the most part these improved protocols have focused on the case where
the program P is represented as a boolean or arithmetic circuit. This makes such proof systems
somewhat difficult to apply to the arguably more natural setting where P is a program intended to
be run on a general-purpose CPU, that is, when P is represented as a program in the random-access
machine (RAM) model of computation. Although any such program can be converted to a circuit,
doing so can be challenging and time consuming; more importantly, it can lead to sub-optimal
performance as a general RAM program running in time T and using memory of size N requires a
circuit of size Θ(TN) to verify its execution.

Some prior work has shown ZK proofs in the RAM model of computation. Hu, Mohassel,
and Rosulek [HMR15], and subsequently Mohassel, Rosulek and Scafuro [MRS17], proposed an
approach in which the addresses of memory accesses are revealed to the verifier; to account for
that, they use oblivious RAM to make the original RAM program oblivious. Their focus was
on asymptotic performance, and to the best of our knowledge their protocols have never been
implemented. The TinyRAM framework [BCG+13, BCTV14, WSR+15] avoids the use of oblivious
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RAM by using a routing network to ensure consistency of memory accesses. Recent work by
Block et al. [BHR+20, BHR+21] reduces the memory overhead of the TinyRAM protocol but
does not report concrete computational efficiency. Heath and Kolesnikov adapted the routing-
network approach and integrated it with garbled-circuit ZK protocols [JKO13, FNO15, HK20b] to
develop BubbleRAM [HK20a] and BubbleCache [HYD+21], which allow for ZK proofs about the
execution of a lightweight, general-purpose CPU. All these approaches introduce overhead of at
least Ω(logN) per memory access performed by the underlying RAM program, either due to the
use of oblivious RAM or due to the cost of the routing network. Moreover, the concrete efficiency
of the state-of-the-art leaves room for improvement; for example, when memory is of size N = 224

with a 32-bit word size, BubbleRAM requires over 2900 bytes of communication per memory access,
and BubbleCache (which introduces a noticeable, data-dependent probability of failure) requires
240 bytes of communication. Bootle et al. [BCG+18] can achieve better than logN overhead, but
their approach is not concretely more efficient than the schemes discussed above and does not
achieve constant overhead.

1.1 Contributions

In this work, we propose a different approach to RAM-based zero knowledge that offers both
asymptotic and concrete efficiency improvements relative to prior work. Specifically, we avoid
the logN overhead per memory access present in all prior work, and achieve constant-overhead
(interactive) ZK proofs, i.e., ZK proofs in which the communication complexity, as well as the
running times of the prover and verifier, are O(N+T ). Our approach yields not only an asymptotic
improvement on prior work but, as we will discuss, concrete efficiency improvements as well.

The key novelty of our approach is that it ensures consistency of memory accesses using a polyno-
mial equality check rather than a sorting network, while still avoiding the need for oblivious RAM.
We illustrate the idea by focusing on ZK proofs for the simplified functionality of read-only array
access. This functionality allows the prover to commit to the elements of an array M and then
read those elements and prove statements about their values.1 As a simple example, consider the
case where the prover wants to prove in zero knowledge to the verifier that there exists an index i
for which Mi = t (where t is a public value). The protocol in this case roughly proceeds as follows:

1. The prover commits to the list of values L =
(
(0,M0), (1,M1), . . . , (N − 1,MN−1)

)
. (This can

be done once-and-for-all, and before t is known.)

2. The prover commits to (i, t), where t is known to the verifier but i is not, and appends (i, t)
to L.

3. The prover then sorts the tuples in L by their first entry, giving an updated list L′, and commits
to the tuples in that list.

4. The prover then proves two things: (1) that L′ is consistent, namely, that if two tuples in L′
agree in their first entry, then they also agree in their second entry, and (2) that L′ is a permuted
version of L. The first step can be done in the natural way by comparing all adjacent entries
in L′, and we omit the details here. The second step relies on the polynomial equality check
mentioned earlier. Specifically, let L =

(
x0, . . .

)
denote the tuples in L (where now we represent

each tuple as a single field element), and let L′ =
(
x′0, . . .

)
denote the tuples in L′. If we define

the polynomials L(R) =
∏
i(xi − R) and L′(R) =

∏
i(x
′
i − R), then note that L and L′ are

1While our primary motivation for realizing the read/write version of this functionality is ZK proofs of arbitrary
RAM programs, the functionality is also interesting in its own right [DES16]. We provide further discussion below.
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permutations of each other iff L(R) = L′(R). The verifier can efficiently test equality of these
polynomials by choosing a uniform field element r and verifying that L(r) = L(r′).

We show how to extend the above ideas to additionally handle write access to the array. We
also show how to efficiently instantiate the above using recent VOLE-based ZK protocols for
boolean/arithmetic circuits [WYKW21, DIO21, BMRS21, YSWW21] as a building block. In doing
so we crucially rely on the fact that these VOLE-based ZK protocols support conversions between
authenticated Boolean values and authenticated values in an extension field (i.e., F2κ) “for free.”
Using polynomials to encode sets and checking polynomial equality in zero knowledge are both
ideas that have been explored, in other contexts, in prior work. To the best of our knowledge, we
are the first to apply them to RAM-based ZK, as well as to explore the efficiency advantages of
implementing them using VOLE-based ZK protocols.

Our implementation enables proofs of private read/write access to an array of 224 32-bit elements
(i.e., 64 MB of memory in total) using only 34 bytes of communication per access. This is more
than an 80× improvement in communication compared to the previous state-of-the-art [HK20a].
When running over a medium-bandwidth network, where communication is the bottleneck, this
reduction in communication translates into a roughly 60× improvement in overall running time.

Our ZK protocol for private read/write array access is powerful enough for some applications
that do not require the full expressiveness of RAM model computation. For example, we show a
dedicated protocol for proving in zero knowledge that a committed string matches a public regular
expression; our protocol runs in time linear in the length of the committed string. As another
example, we show how to give a ZK proof of knowledge of a preimage of the scrypt hash function, a
memory-hard hash function designed specifically so that its computation requires extensive random
accesses to memory.

An efficient zero-knowledge processor. We use the above protocol to build a ZK proof of
generic RAM computation. As already noted, this is interesting theoretically as the first constant-
overhead ZK protocol in this setting. From a practical point of view, however, it is often more useful
to consider the specific RAM program corresponding to a CPU that can then execute arbitrary
RAM programs. With this in mind, we design a lightweight CPU with a simple (13-instruction)
architecture that is nevertheless expressive enough to emulate most instructions in the MIPS-I
instruction set within a few cycles. We can give zero-knowledge proofs about the execution of
our CPU (with 64 MB of main memory and 4 MB of program memory) using about 320 bytes of
communication per cycle. When run in a 100 Mbps network, our zero-knowledge CPU executes at
a clock rate of 6.6 KHz, more than an order of magnitude faster than the BubbleCache CPU that
executes (for the same memory sizes) at a rate of 0.23 KHz in a 1 Gbps network.

2 Preliminaries

We let κ be the security parameter. For a positive integer k, let [k] = {0, . . . , k−1}. As convenient,
we may express the entries of a length-N array M as M0, . . . ,MN−1 or M [0], . . . ,M [N − 1].

2.1 Information-Theoretic MACs

The ZK protocols we use in this paper are built on top of an information-theoretic MAC (IT-MAC)
used by the verifier V to authenticate values known to the prover P. The verifier V has a global
authentication key ∆ ∈ F2κ . A bit x known to P is authenticated by having P obtain a uniform
Mx ∈ F2κ and having V obtain Kx ∈ F2κ such that

Kx = Mx ⊕ x∆.
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Functionality FZK

Inputs: On receiving (Input, x) from the prover, store x and send [x] to each party.

Constants: On receiving (Const, x) from both parties, store x and send [x] to each party. (If
the inputs sent by the two parties do not match, both parties receive cheating.)

Boolean circuit satisfiability: On receiving (Boolean, C, [x0], . . . , [xn−1]) from both parties,
where xi ∈ F2 and C is a Boolean circuit, compute b := C(x0, . . . , xn−1) and send b to V.

Arithmetic circuit satisfiability: On receiving (Arithmetic, C, [[x0]], . . . , [[xn−1]]) from both
parties, where xi ∈ F2κ and C is an arithmetic circuit over F2κ , compute y := C(x0, . . . , xn−1).
If y = 1 send 1 to V; else send 0 to V.

Figure 1: Ideal functionality for stateful circuit-based zero-knowledge proofs.

We view this as providing a “handle” for the underlying value, and let [x] mean that P holds
(x,Mx) and V holds Kx. We stress, however, that two different handles for the same value are
generated independently; thus, in particular, it is not possible for V to tell whether two handles
are for the same value or not. These IT-MACs are XOR-homomorphic in that parties holding [x]
and [y] can locally compute [x⊕ y] by XORing values they already hold.

For x = x1 · · ·xn ∈ {0, 1}n, we overload the above notation by letting [x] = [x1], . . . , [xn]. For
the special case of x ∈ {0, 1}κ, we can alternatively view x as an element in the extension field F2κ .
In this case we extend the above IT-MAC in the natural way, i.e., by choosing uniform Mx ∈ F2κ

and setting Kx = Mx ⊕ x ·∆, where multiplication is in F2κ . To distinguish this case, we write [[x]]
when x ∈ F2κ . These IT-MACs are similarly homomorphic with respect to addition in F2κ , as
well as addition/multiplication by a public constant. Importantly, parties holding authenticated
bits [x0], . . . , [xκ−1] can locally convert these to the authenticated value [[x]]. Specifically, if we
fix a degree-κ irreducible polynomial f(X) and identify F2κ with F2[X]/(f(X)), then we have
x =

∑
i∈[κ] xi · X

i, where X ∈ F2κ denotes the element corresponding to X ∈ F2[X]/(f(X)). The

parties can compute [[x]] by having the prover compute Mx =
∑

i∈[κ]Mxi · Xi and the verifier

compute Kx =
∑

i∈[κ]Kxi · Xi; we then have

Mx =
∑
i∈[κ]

Mxi · Xi

=
∑
i∈[κ]

(Kxi ⊕ xi∆) · Xi

=
∑
i∈[κ]

Kxi · Xi ⊕
(∑
i∈[κ]

xi · Xi
)
·∆

= Kx ⊕ x ·∆.

In short, the IT-MACs are also “homomorphic” with respect to bit packing. We write [[x]] :=
Pack([x0], . . . , [xκ−1]) to represent this procedure.

2.2 (Stateful) Circuit-Based Zero-Knowledge Proofs

We rely on stateful zero-knowledge proofs for Boolean and arithmetic circuits. By “stateful” we
mean that the prover can commit to values and then repeatedly use those values for different zero-
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knowledge proofs. We provide the relevant functionality in Figure 1. The functionality can be
instantiated using several existing protocols, but in our implementation we use the recent VOLE-
based ZK protocols [WYKW21, DIO21, BMRS21, YSWW21] that have good concrete efficiency
and that enable Boolean/arithmetic conversion (i.e., bit packing) for free. The most-recent such
protocols [BMRS21, YSWW21] have very low communication: for a Boolean (resp., arithmetic)
circuit C with |C| AND gates (resp., multiplication gates), the communication complexity is only
|C| bits (resp., field elements). An important optimization introduced by QuickSilver [YSWW21]
applies when C can be expressed as a polynomial of low (total) degree. In this case, the communi-
cation complexity depends on the degree of the polynomial but not the number of multiplications.

2.3 RAM-Based Computation

Our model for RAM-based computation is based on the one of Gordon et al. [GKK+12]. A RAM
program is defined by a “next-instruction circuit” Π that, given its current state and a value d,
outputs the next instruction to execute along with updated state. Thus, an execution of RAM
program Π when the memory M is initialized to M0, . . . ,MN−1 ∈ {0, 1}W (we assume for simplicity
that W and N are hard-coded in Π) proceeds by setting st := start and d := 0W and then until
termination doing:

• Compute (op, `, d′, st′) := Π(st, d), and set st := st′. Then:

– If op = Stop, terminate with output d′.

– If op = Read, set d := M`.

– If op = Write, set M` := d′ and d := d′.

We refer to each iteration of the above loop as a cycle, and express the entire computation above
as Π(M0, . . . ,MN−1).

Π may represent a specific algorithm (e.g., binary search) executing in the RAM model. Alter-
nately, it can be a general-purpose CPU that has the ability to execute arbitrary assembly code
loaded into a portion of memory. In that case it is convenient to have the state st of Π consist of
a program counter pc as well as an array of registers R. It is also useful to segment the memory
into a program memory Mp holding the program (i.e., assembly code) to be executed, and a main
memory Md for storing data; for efficiency, one may treat Mp as being read-only (though this is
not essential). More generally, it may be advantageous to adapt the above model in other ways
(e.g., both reading from program memory and accessing main memory once per cycle), as well as
to represent Π in other models of computation (e.g., using boolean circuits for some instructions
and arithmetic circuits for others); we refer to Section 4 for further discussion in the context of a
lightweight RISC CPU we design.

3 Zero-Knowledge Proofs in the RAM Model

In this section, we present zero-knowledge proofs in the RAM model. We begin by focusing on
protocols for private array access. Roughly, these protocols allow a prover to commit to an array of
values, and then (in the read-only case) read values from the array referenced by address handles,
or (in the general case) read/write values from/to the array as dictated by an operation handle
[op] and an address handle [`]. In the read-only case, V does not learn the address being read; in
the read/write case, V also does not learn the operation being performed or (in case of a write)
the value being written. At the end of this section, we show how these protocols can be used to
support ZK proofs of general RAM computation.
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Functionality FRO-ZKarray

(In addition to the following, the functionality also supports all instructions in FZK.)

Initialization: On receiving (Init,W,N, [M0], . . . , [MN−1]) from P and V, where Mi ∈ {0, 1}W ,
store the {Mi} and set f := honest.

Read: On receiving (Read, [`], d) from P, and (Read, [`]) from V, send [d] to each party. If
d 6= M` or ` ≥ N then set f := cheating.

Check: Upon receiving (check) from V do: If P sends (cheat) then send cheating to V. If P
sends (continue) then send f to V.

Figure 2: Ideal functionality for private read-only array access.

3.1 Read-Only Array Access

We begin by describing the case of read-only array access. A formal description of the relevant
functionality in this case is given in Figure 2. Our protocol realizing this functionality in the
FZK-hybrid model proceeds in three phases:

1. Initialization. In this step, the prover initializes memory with contents M0, . . . ,MN−1 by
generating the list of handles L = (([0], [M0]), . . . , ([N − 1], [MN−1])).

2. Read. A read operation at the address represented by the handle [`] is carried out by simply
having the prover generate a handle for M`. (The prover knows all the values, so it can easily
do this.) Both parties append the result (along with [`]) to L. At this point, nothing prevents
a cheating prover from using an inconsistent value d 6= M`; any such cheating, however, will be
caught in the check phase.

3. Check. To check correctness of a sequence L of size k consisting of the initial memory contents
and the results of a sequence of read accesses, the parties proceed as follows. P sorts the tuples
in L by their addresses, from least to greatest, and uses FZK to generate handles for a second
sorted list L′. Correctness of L can now be checked by verifying two things: (1) the tuples in L′
are consistent in the sense that if ([`], [d]), ([`], [d′]) are two tuples in L′ with the same address `,
then d = d′, and (2) L′ is a permuted version of L. Now:

(a) The first requirement can be verified using a sequence of k − 1 verifications performed on
adjacent tuples in L′. Namely, for adjacent tuples ([`′i], [d

′
i]) and ([`′i+1], [d

′
i+1]) the verifier

checks that either `′i < `′i+1 (i.e., the tuples are sorted correctly) or else `′i = `′i+1 and
d′i = d′i+1 (i.e., the tuples are consistent). Note that each of these checks can be performed
by a circuit whose size is independent of k.

(b) The second requirement is verified as follows: first, we use bit-packing to map each tuple
in L and L′ to an element of F2κ . We thus obtain two lists L = ([[x0]], . . . , [[xk−1]]) and
L′ =

(
[[x′0]], . . . , [[x

′
k−1]]

)
. Consider the formal polynomials L(R) =

∏
i(xi −R) and L′(R) =∏

i(x
′
i − R); these polynomials are equal iff L and L′ are permuted versions of each other.

The verifier checks equality of L(R) and L′(R) by choosing a uniform value r ∈ F2κ and
then checking that L(r) = L′(r).

The protocol is described formally in Figure 3.
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Protocol ΠRO-ZKarray

Parameters: Let N be the size of the array and let W be the bit-length of array elements,
where W + dlogNe ≤ κ.

All instructions in FZK are handled in the natural way.

Initialization: P and V have a list of handles {[Mi]}i∈[N ]. Each party locally initializes L as
an empty list. Then for i ∈ [N ], the parties do

1. P and V send (Const, i) to FZK, which returns [i] to each party. (If either party receives
cheating, they abort.)

2. Each party locally appends ([i], [Mi]) to L.

Read: The parties hold [`]. P sets d := M` and sends (input, d) to FZK, which returns [d] to
each party. Then the two parties locally append ([`], [d]) to L.

Check: Let T be the number of reads performed. Each party holds a list L =
(
([`0], [M0]), . . .

)
containing k = N + T tuples.

1. P sorts the tuples in L by their first entry, from least to greatest, giving a new list(
(`′0,M

′
0), . . .

)
. For i ∈ [k], P sends (input, `′i) and (input,M ′i) to FZK, which returns [`′i]

and [M ′i ] to each party. Each party forms the list L′ =
(
([`′0], [M

′
0]), . . .

)
.

2. For each i ∈ [k − 1], P and V send (Boolean, C, [`′i], [`
′
i+1], [M

′
i ], [M

′
i+1]) to FZK,

where C(`′i, `
′
i+1,M

′
i ,M

′
i+1) is a Boolean circuit that outputs 1 if and only if(

(`′i = `′i+1) ∧ (M ′i = M ′i+1)
)
∨
(
`′i < `′i+1

)
. Similarly, P proves that [`′k−1] < N . If FZK

ever returns 0, then V outputs cheating and aborts.

3. For i ∈ [k], the parties locally compute [[xi]] := Pack([`i], [Mi]) and [[x′i]] := Pack([`′i], [M
′
i ]).

4. V samples a uniform r ∈ F2k and sends it to P.

5. Let C ′ be an arithmetic circuit for which C ′(a0, . . . , ak−1, b0, . . . , bk−1) = 1 iff
∏
i∈[k] ai =∏

i∈[k] bi. P and V send (Arithmetic, C ′, [[x0 − r]], . . . , [[xk−1 − r]], [[x′0 − r]], . . . , [[x′k−1 − r]]) to
FZK. If FZK returns 0, then V outputs cheating. Otherwise, V outputs honest.

Figure 3: ZK proof for private read-only array access in the FZK-hybrid model.

Theorem 1. For T read accesses, the protocol in Figure 3 securely realizes the private read-only
array access functionality (cf. Figure 2) in the FZK-hybrid model with statistical error (N + T )/2κ.

Proof. The verifier does not have any input and only receives messages from the FZK functionality.
It is therefore straightforward to prove security for a corrupted verifier, and so we focus on the case
of a corrupted prover P∗. We define a simulator Sim interacting with the FRO-ZKarray functionality.
The simulator runs P∗ as a subroutine and emulates FZK for P∗. It proceeds as follows:

• Initialization: Assuming P∗ does not cheat in this step by sending an incorrect index, Sim sets
L =

(
([`0], [M0]), . . . , ([`N−1], [MN−1])

)
, where [M0], . . . , [Mn−1] are handles defined by previous

interactions of P∗ with FZK.. The simulator sends (Init,W,N, [M0], . . . , [MN−1]) to FRO-ZKarray.
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• Read: On input [`], let d be the value that P∗ sends to FZK. The simulator then sends
(Read, [`], d) to FRO-ZKarray, and appends ([`], [d]) to L.

• Check: Let T be the number of reads performed, and let k = N + T . Then:

1. The simulator obtains the sequence of values {`′i}i∈[k] and {M ′i}i∈[k] that P∗ sends to FZK.
Let L′ =

(
([`′0], [M

′
0]), . . . , ([`′k−1], [M

′
k−1])

)
.

2. For i ∈ [k−1], the simulator obtains the message (Boolean, C, [`′i], [`
′
i+1], [M

′
i ], [M

′
i+1]) that P∗

sends to FZK. If C is not the correct circuit or C(`′i, `
′
i+1,M

′
i ,M

′
i+1) = 0, then the simulator

sends (cheat) to FRO-ZKarray, outputs whatever P∗ outputs, and aborts.

3. Let [[xi]] := Pack([`i], [Mi]) and [[x′i]] := Pack([`′i], [M
′
i ]).

4. The simulator chooses a uniform value r ∈ F2k and sends it to P∗.
5. Sim obtains the message (Arithmetic, C ′, [[x0−r]], . . . , [[xk−1−r]], [[x′0−r]], . . . , [[x′k−1−r]]) that P∗

sends to FZK. If C ′ is not the correct circuit or C ′(x0−r, . . . , xk−1−r, x′0−r, . . . , x′k−1−r) 6= 1,
the simulator sends (cheat) to FRO-ZKarray. Otherwise, it sends (continue) to FRO-ZKarray. It
outputs whatever P∗ outputs and aborts.

We claim that the execution of the simulator in the ideal world is statistically indistinguishable
from the execution of the protocol with P∗ in the FZK-hybrid world. To see this, note first that the
view of P∗ is perfectly simulated, and thus we need only consider the output of the honest V. If
P∗ behaves honestly in every read operation (namely, if for input [`] it always holds that d = M`),
then the output of V is the same in both the ideal world and the hybrid world. If there is at least
one read operation in which P∗ behaves dishonestly, then in the ideal-world execution V always
outputs cheating and we need to argue that in the hybrid-world execution V would output cheating
except with probability at most (N + T )/2κ. There are two possibilities to consider:

• If L′ is a permutation of L, then there is some i ∈ [k − 1] for which C(`′i, `
′
i+1,M

′
i ,M

′
i+1) = 0.

Hence in the hybrid-world execution V would also output cheating.

• If L′ is not a permutation of L′, then the polynomials L(R) =
∏
i(xi−R) and L(R′) =

∏
i(x
′
i−R)

are distinct degree-(N + T ) polynomials, and hence when r is uniform we have L(r) 6= L′(r)
except with probability at most (N + T )/2κ. Thus, in the hybrid-world execution V would
output cheating except with probability at most (N + T )/2κ.

This completes the proof.

Concrete efficiency and practical considerations. The asymptotic running time of our proto-
col is O(N+T ). Concretely, the cost of the protocol is dominated by (1) authentication of W+κ bits
per read access (W bits for the initial read—assuming the address is already authenticated—and at
most κ bits for the corresponding entry in L′), (2) O(N + T ) zero-knowledge proofs for a Boolean
circuit with W + 2 logN AND gates, and (3) a zero-knowledge proof for an arithmetic circuit with
2 · (T + N − 1) multiplication gates over F2κ . Using optimizations from the QuickSilver proto-
col [YSWW21] to instantiate FZK, the third part can be done using roughly 2(N + T )κ/h+O(hκ)
bits of communication, where h is a parameter that can be adjusted to reduce communication at
the cost of increased computation. (We set h = 4 in our implementation.) See Section 5 for an
analysis of the concrete performance of the protocol.

Support for larger data elements. The above protocol assumes logN +W ≤ 128, as we pack
the index and payload as an element in F2κ and use κ = 128 in our implementation. To handle
larger W , we could instead pack to an extension field F2k′ with logN + W ≤ k′. However, the
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Functionality FZKarray

(In addition to the following, the functionality also supports all instructions in FZK.)

Initialize memory: On receiving (Init,W,N, T ) from both parties, initialize M0, . . . ,MN−1
to ⊥, and set f := honest.

Read/write access: At most T such accesses are supported. On receiving (Access, [op], [`], [d])
from P and V, if ` < N then:

• If op = Read, send [M`] to each party. If M` =⊥ then set f := cheating.

• If op = Write, set M` := d and send (a fresh handle) [d] to each party.

If ` ≥ N then set f := cheating and send [d] to each party.

Check: Upon receiving (check) from V do: If P sends (cheat) then send cheating to V. If P
sends (continue) then send f to V.

Figure 4: Ideal functionality for private read/write array access.

practical efficiency of doing so would be poor since hardware acceleration is only available for F2128 .
To efficiently support larger W , we can instead use a universal hash function mapping to F2128

whose key is chosen by the verifier after step 1 of the checking protocol. The probability that
there exist two unequal elements in lists L and L′ that hash to the same value is at most k2/2128.
We efficiently implement this idea as follows. Say logN + W ≤ 128c for some c. We use a hash
function HA : Fc2128 → F2128 , where HA(X1, . . . , Xc) =

⊕
Ai · Xi for A = (A1, . . . , Ac) ∈ Fc2128 .

Since evaluating this function only requires multiplication by public constants, it is essentially free
in communication and cheap in computation.

3.2 Read/Write Array Access

We adapt the protocol from the previous section to also handle write access to the array. The
relevant functionality is in Figure 4. To enforce memory consistency we now need to ensure that
each value read at a particular memory address corresponds to the last value written to that address.
(We require that a write is performed to an address before any read to that address.) We do this
by including a timestamp along with every memory access that is appended to the list L. After
sorting L to give a sorted list L′ as before, the parties verify for each pair of consecutive tuples
(cf. Equation (1)) that (1) they are sorted correctly; (2) either the addresses in the two tuples are
not equal, the value stored there is unchanged, or the second tuple in the pair corresponds to a
Write operation; and, (3) the first memory access to an address is a Write operation. The protocol
is formally described in Figure 5. The running time of the protocol is O(T ) rather than O(N + T )
as in the previous section, but this is because we assume the memory is empty at initialization.

Theorem 2. Protocol ZKarray (Figure 5) securely realizes the private read/write array access func-
tionality (cf. Figure 4) in the FZK-hybrid model with statistical error T/2κ.

Proof. The proof is substantially the same as that of Theorem 1, and so we focus on the checks
implemented in step 2. Assuming L′ is a permuted version of L (which is enforced by step 5 as in the
proof of Theorem 1), we show that if the checks in step 2 all succeed then all the memory accesses
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Protocol ZKarray

Parameters: Let N be the size of the array, let W be the bit-length of array elements, and
let T be an upper bound on the number of memory accesses, where W + dlogNe+ dlog T e ≤ κ.

Initialize memory: Each party initializes L as an empty list, and initializes a counter t := 0
represented using dlog T e bits.

Read/write access: The parties begin holding [op], [`], and [d]. P and V send (Const, t) to
FZK to obtain [t], and increment t. (If either party receives cheating from FZK, they abort.)
The two parties locally append ([`], [t], [op], [d]) to L.

Check: Let k be the number of accesses performed, i.e., L contains k tuples.

1. P sorts the tuples in L by their first entry, and secondarily by their second entry, from least
to greatest, giving a new list

(
(`′0, t

′
0, op

′
0, d
′
0), . . .

)
. For i ∈ [k], P sends (input, `′i), (input, t′i),

(input, op′i), and (input, d′i) to FZK, which returns [`′i], [t′i], [op′i], and [d′i] to each party. Each
party forms the list L′ =

(
([`′0], [t

′
0], [op

′
0], [d

′
0]), . . .

)
.

2. P and V send (Boolean, Cinitial, [op
′
0]) to FZK, where Cinitial(op

′
0) = 1 iff op′0 = Write. For

i ∈ [k − 1], P and V send (Boolean, C, [`′i], [t
′
i], [op

′
i], [d

′
i], [`

′
i+1], [t

′
i+1], [op

′
i+1], [d

′
i+1]) to FZK,

where C(`′i, t
′
i, op

′
i, d
′
i, `
′
i+1, t

′
i+1, op

′
i+1, d

′
i+1) outputs 1 iff(

(`′i < `′i+1) ∨
(
(`′i = `′i+1) ∧ (t′i < t′i+1)

))∧(
(`′i 6= `′i+1) ∨ (d′i = d′i+1) ∨ (op′i+1 = Write)

)∧
(1)(

(`′i = `′i+1) ∨ (op′i+1 = Write)
)

Finally, P and V send (Boolean, Cfinal, [`
′
k−1]) to FZK, where Cfinal(`

′
k−1) = 1 iff `′k−1 < N . If

FZK ever returns 0, then V outputs cheating and aborts.

3. For i ∈ [k], the parties each locally compute [[xi]] := Pack([`i], [ti], [opi], [di]) and [[x′i]] :=
Pack([`′i], [t

′
i], [op

′
i], [d

′
i]).

4. V samples a uniform r ∈ F2k and sends it to P.

5. Let C ′ be an arithmetic circuit for which C ′(a0, . . . , ak−1, b0, . . . , bk−1) = 1 iff
∏
i∈[k] ai =∏

i∈[k] bi. P and V send (Arithmetic, C ′, [[x0 − r]], . . . , [[xk−1 − r]], [[x′0 − r]], . . . , [[x′k−1 − r]]) to
FZK. If FZK returns 0, then V outputs cheating. Otherwise, V outputs honest.

Figure 5: ZK proof for private read/write array access in the FZK-hybrid model.

in L are consistent, namely: (1) each memory address is written before it is read and (2) each read
of a memory address returns the last value written there. To see this, first observe that the checks
in step 2 imply that L′ is correctly sorted, since for every pair of adjacent tuples ([`′i], [t

′
i], ?, ?)

and ([`′i+1], [t
′
i+1], ?, ?) in L′ it holds that (`′i < `′i+1) ∨

(
(`′i = `′i+1) ∧ (t′i < t′i+1)

)
. Moreover, every

memory access is in bounds; this is because the parties check that the address of the final tuple in L′
is less than N . Assume toward a contradiction that the consistency requirements are violated. Let
([`′i], [t

′
i], [Read], [d′i]) ∈ L′ be the tuple with the smallest value of the timestamp t violating one of

the consistency requirements. (Note that each tuple in L—and hence L′—has a unique timestamp,
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so this tuple is uniquely defined.) There are two possibilities:

• If `′i−1 6= `′i or i = 0, then the checks would fail since they enforce that the operation for any such
tuple is a Write. (If i = 0 this is checked explicitly; for i > 0 this is because Equation (1) checks
that if `′i−1 6= `′i then the operation is a Write.)

• Otherwise, `′i−1 = `′i. Then the checks would also fail since in this case they enforce that d′i−1 = d′i
but d′i−1 is equal to the previous value written to address `′i (by our assumption on minimality
of t′i and the fact that L′ is sorted).

This completes the proof.

Concrete efficiency. The optimizations discussed for the read-only setting all apply here. Con-
cretely, the protocol involves: (1) authentication of 1+logN+W +κ bits per access (1+logN+W
bits for the inputs of private array access—note that the counter t is known to both parties—and
at most κ bits when committing to the corresponding entry in L′), (2) O(T ) zero-knowledge proofs
for a Boolean circuit with 5 + 2 logN +W + log T AND gates, and (3) a zero-knowledge proof for
an arithmetic circuit with 2 · (T − 1) multiplication gates over F2κ . As in the previous section, we
use the technique from QuickSilver [YSWW21] to reduce the cost of the third step to roughly κ/2
bits of communication per access.

Application to key-value storage. It is worth remarking that ZKarray does not require that
the size of the memory be equal to the number of values stored in memory. In particular, rather
than viewing the memory M as an array of N values M0, . . . ,MN−1, we can instead view it as
implementing a key-value store ((key0, val0), . . .) where the keys are (logN)-bit integers. We discuss
this further in Section 5.1.

3.3 ZK Proofs of RAM Programs

One immediate application of ZKarray is for ZK proofs of RAM-based computation. We present
an appropriate ideal functionality FZK-RAM in Figure 6. Our ideal functionality is very flexible in
terms of how the memory for the RAM program is initialized: some of the values stored in memory
may be known only to the prover, while others may be public values (aka constants) known to
both the prover and the verifier. As is typical in the setting of RAM-based computation, we leak
the running time of Π(M0, . . . ,MN−1) to the verifier; if such leakage is not acceptable, then the
running time of Π can always be padded to an upper bound on its value.

Figure 7 gives a protocol realizing FZK-RAM in the FZKarray-hybrid model. The protocol is the
natural one: the parties rely on FZK-RAM for all memory accesses, and thus the only additional step
is for P to convince the verifier at every step that it is executing the next-instruction function Π
correctly (cf. Section 2.3). Importantly, our protocol makes only O(N + T ) calls to FZKarray.

Theorem 3. The protocol in Figure 7 perfectly realizes FZK-RAM in the FZKarray-hybrid model.

4 A RISC CPU Supporting Efficient ZK Proofs

Rather than design a dedicated RAM program Π for each specific problem one wants to solve,
it is more typical in practice to have a dedicated CPU (which is itself a RAM program) and to
then express the problems one wants to solve using assembly-language code to be executed by
that CPU. Although there exist other CPUs designed for ZK proofs, they are optimized for specific
ZK protocols and will not give optimal performance when using our protocol. (E.g., the TinyRAM
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Functionality FZK-RAM

Inputs: On receiving (Input, x) from the prover, store x and send [x] to each party.

Constants: On receiving (Const, x) from both parties, store x and send [x] to each party.

RAM program satisfiability: Upon receiving (Π,W,N, [M0], . . . , [MN−1]) from the parties,
where Mi ∈ {0, 1}W and Π is a RAM program, compute y := Π(M0, . . . ,MN−1) and send y
to V. If V is corrupted, also send to V the number of steps executed during the computation.

Figure 6: Ideal functionality for RAM-based ZK proofs.

Protocol ΠZK-RAM

Inputs and Constants are handled using FZKarray in the natural way.

RAM program satisfiability: P and V have Π, W , N , [M0], . . . , [MN−1], with Mi ∈ {0, 1}W .
Let T be the number of steps in the execution of Π(M0, . . . ,MN−1).

1. P and V send (Init,W,N, T ) to FZKarray. They also send (Const,Write), (Const, start), and
(Const, 0W ) to FZKarray, which returns [Write], [start], and [0W ] to each party.

2. For i ∈ [N ], P and V do: (1) send (Const, i) to FZKarray, which returns [i] to each party;
(2) send (Access, [Write], [i], [Mi]) to FZKarray, which returns [Mi] to each party.

3. P runs Π(M0, . . . ,MN−1). Specifically, it sets st := start and d := 0W , and then until
termination does:

• Compute (op, `, d′, st′) := Π(st, d). Also use FZKarray to generate [op], [`], [d′], and [st′],
and prove to V that Π(st, d) = (op, `, d′, st′). If FZKarray returns 0 then V outputs 0 and
aborts; otherwise, both parties set [st] := [st′]. Then:

– If op = Stop then P sends Stop to V and uses FZKarray to prove (op = Stop) ∧ (d′ = 1).
V outputs what it receives from FZKarray and halts.

– Otherwise (i.e., if op ∈ {Read,Write}), P and V send (Access, [op], [`], [d′]) to FZKarray,
which returns [M ] to each party. P and V set [d] := [M ] and continue.

Figure 7: RAM-based ZK proofs in the FZKarray-hybrid model.

CPU [BCG+13, BCTV14, WSR+15] is optimized for zk-SNARKs and is thus a poor match for ZK
proofs operating on RAM programs expressed as boolean circuits.) To achieve good performance,
we design our own CPU and associated instruction set architecture (ISA). We design the ISA to
be (1) expressive, so that it can run computations efficiently, yet (2) simple so that it can be
represented by a small boolean circuit. Our ISA contains only 13 instructions but can simulate
almost all MIPS-I instructions within 1–3 cycles. Below, we discuss the details of our ISA and its
semantics. In Section 4.2, we discuss how to optimize our ZK protocol for the CPU we designed.
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4.1 Overview of the CPU

Architecture overview. Our architecture follows the traditional MIPS design and contains a
program counter pc, a set of 32 registers R, main memory Md, and program memory Mp. We set
the word size to 32 bits, i.e., all entries in R,Md, and Mp are 32-bit values, and instructions are
all 32 bits long. The lengths of Md and Mp may vary, but we assume in our implementation that
they have length at most 232. The following steps are executed in each cycle:

1. The next instruction I is read from Mp at the location specified by pc (i.e., Mp[pc]).

2. The values of the register at certain locations (that depend on I) are read.

3. A computation (that depends on I) is done using the register values just read, and the values
of other registers as well as the pc may be updated.

4. If I is a memory instruction, then certain locations in memory (depending on I) are read/written.

Note that the above is a special case of the generic RAM execution described in Section 2.3.

Details of our instruction set. All instructions are 32 bits long. The first five bits contain the
opcode (specifying the instruction), and the next three sets of five bits specify operands, namely,
indices of the registers R that will be utilized to carry out the instruction. The rest of the bits in
each instruction are used in different ways. Pictorially:

opcode tar src0 src1 imm
5 bits 5 bits 5 bits 5 bits 12 bits

Our instruction set is presented in Table 1. Note that unless explicitly specified (i.e., for PC and
JMP), all instructions also increment the program counter by 1. Summarizing:

1. ADD, SUB, MUL, and XOR read input values from the two source registers (src0 and src1), perform
an arithmetic operation, and write the result to the target register (tar).

2. NLG is similar to the above, except that it also uses three bits in imm to allow for other operations.
For example, if imm[0 : 2] are all zero then it corresponds to bit-wise AND, while if imm[0 : 2] are
all one then it corresponds to bit-wise OR.

3. MSK generates a bit mask with a number of ones ranging from 1 to 32 (depending on the value of
a source register). For example, if the source register R[src1] is equal to 5, the result would be
00000000 00000000 00000000 00011111. All the bits can further be flipped based on the value
of imm[0]. Together with the next instruction, this enables many types of shift operations.

4. CSF represents the cyclic shift instruction. It performs a cyclic right shift on the value R[src0]
based on the value stored in R[src1]. For example, if

R[src0] = 00001111 00000111 00000011 00000001

and R[src1] = 8, then the result would be

00000001 00001111 00000111 00000011.

Note that a cyclic right shift automatically supports cyclic left shift (e.g., shifting right by 31
is the same as shifting left by 1). We can also use this to support a logical shift by performing
MSK followed by a bit-wise AND. See Appendix A for further discussion.
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opcode Semantics

Arithmetic

ADD R[tar]← R[src0] +R[src1]
SUB R[tar]← R[src0]−R[src1]
MUL R[tar]← R[src0] ·R[src1]
XOR R[tar]← R[src0]⊕R[src1]
NLG R[tar]← (R[src0]⊕ imm[0]) ∧ (R[src1]⊕ imm[1])⊕ imm[2]
MSK R[tar]← ((1� R[src1])− 1)⊕ imm[0]
CSF R[tar]← R[src0] ≫ R[src1]
PUT R[tar]← src0‖src1‖imm

CMV R[tar]←
{
R[src1] if (R[src0] 6= 0 ∨ imm[0]) ∧ imm[1],
R[tar] otherwise

Control

PC R[tar]← pc; pc← pc+ 1

JMP pc←
{
R[src1] if (R[src0] 6= 0⊕ imm[0]) ∨ imm[1],
pc+ 1 otherwise

Load/Store

LDW R[tar]←M [R[src0] + imm]
STW M [R[src0] + imm]← R[src1]

Table 1: Our CPU instruction set. imm is a 12-bit vector and imm[i] refers to the ith bit in imm.
We define the XOR of a vector v and a bit b to be the vector w = v ⊕ b|v|.

5. PUT loads an immediate value to the target register. To maximize the length of the value, we
treat src0‖src1‖imm as one long immediate value.

6. CMV is a conditional move instruction. If (imm[0], imm[1]) = ( , 0), it acts as a NO-OP; if
(imm[0], imm[1]) = (1, 1), it is an unconditional move; if (imm[0], imm[1]) = (0, 1), it is a con-
ditional move.

7. PC puts the value of the program counter in the target register and then increments the program
counter as usual.

8. JMP represents a conditional jump instruction. It also has multiple modes of execution: if
imm[1] = 1, then this is an unconditional jump; if imm[1] = 0, then this is a conditional jump and
the value of imm[0] decides if the condition is on equality or inequality. Note that the condition
here is the same as in CMV.

9. LDW and STW are memory-access instructions. LDW loads a word from memory to a register and
STW stores a word from a register to memory. The memory address to read or write is determined
by the sum of a source register and the immediate value. LDW and STW reference the same location
in memory. Thus, they can both be supported using only one memory access per CPU cycle.

In Appendix A, we show that our instruction set can emulate almost all MIPS-I instructions (with
the exception of, e.g., interrupt instructions), most using only 1–3 cycles.

ZK proof for our RISC CPU. The circuit corresponding to a cycle of our CPU accesses the
program memory once, the register array three times, and the main memory once; it then computes
all instructions in parallel and performs a multiplexer on the results. Below, we describe the details
of our ZK protocol (in the (FRO-ZKarray,FZKarray)-hybrid model) when applied to our CPU.
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• P locally simulates the computation to obtain the number of cycles T , and sends T to V.

• Both parties use FRO-ZKarray to initialize a read-only array containing the program, and use
FZKarray to initialize two read/write arrays for the main memory (namely FMEM

ZKarray) and for the

registers (namely FREGZKarray). Both parties set [pc] = 0.

• The parties execute the following T times.

1. Both parties use FRO-ZKarray to obtain [I] such that I = Mp[pc]. Both parties parse [I] as
([opcode], [tar], [src0], [src1], [imm]).

2. Both parties use FREGZKarray to read [R[src0]] and [R[src1]] from the register array.

3. P locally computes a bit op and an integer addr such that op = Write only if opcode = STW,
and addr = R[src0] + imm. The parties authenticate these values to get [op] and [addr], and
P proves that they were computed correctly.

4. P sends (Access, [op], [addr], [R[src1]]) to FMEM
ZKarray and V sends (Access, [op], [addr], [R[src1]])

to FMEM
ZKarray, which returns [p] to both parties. For LDW, p is the value M [addr] that would be

written to a register in the next step.

5. The parties, using outputs from previous steps, verify a circuit that computes all instructions
and then uses a multiplexer (based on [opcode]) to obtain the output. They then use FREGZKarray

to write this value to R[tar].

6. P updates the program counter (incrementing it unless opcode = JMP and the jump condition
holds, in which case pc is set equal to R[src0]), and proves that this was done correctly.

4.2 Further Optimizations

We optimized our instruction set and our ZK protocol to allow for several optimizations.

Implementing the MSK instruction. The one-hot encoding of a log n-bit (non-negative) integer
x is the n-bit vector V ∈ {0, 1}n that is zero everywhere except that V [x] = 1. Let OneHotn be
the function that maps x ∈ {0, 1}logn to its one-hot encoding. We give a recursive construction of
a boolean circuit for OneHotn that uses n− 1 AND gates. First, we have OneHot2(x) = x‖(x⊕ 1).
Furthermore,

OneHotn(x) = if (x[log n− 1]) then r‖0n/2 else 0n/2‖r,

where r = OneHotn/2(x[0 : log n− 2]). Given r, the above can be computed using n/2 AND gates,
implying that OneHotn can be computed using n-1 AND gates.

We can use this idea to implement the MSK instruction using n− 1 AND gates as follows:
(1) compute the one-hot encoding of the lowest 5 bits of R[src1] to obtain e ∈ {0, 1}32, then
(2) compute the mask r ∈ {0, 1}32 by setting r[31] = e[31] and for i < 31, r[i] = r[i+ 1]⊕ e[i].

Efficient ZK for CSF. We are not aware of a boolean circuit implementing an n-bit cyclic shift
using fewer than n log n AND gates. Here, we show an approach suitable for our ZK protocol that
does not directly use a boolean circuit. The key observation is that the cyclic shift operation can
be verified using n inner products; since inner products are degree-two polynomials, they can be
efficiently verified using QuickSilver [YSWW21].

Specifically, suppose the parties hold authenticated values [u], [v] where u ∈ {0, 1}n, v ∈ {0, 1}logn;
their goal is to compute [u≫ v] without allowing P to cheat. Our approach works as follows:

1. The parties compute [V ], where V ∈ {0, 1}n is the one-hot encoding of v; as discussed above,
this can be computed using n− 1 AND gates.
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2. P locally computes U := u≫ v, and generates [U ]. Then, P proves that 〈[u], [V ] ≪ i〉 = [U [i]]
for all i ∈ [0, n− 1].

In the context of our CPU, the one-hot encoding of v = R[src1] is anyway computed as part of
the MSK instruction, so the additional cost of supporting CSF is small.

Instruction multiplexing. After evaluating all the instructions, our CPU circuit runs an 11-way
multiplexer to determine the (possibly) updated value of R[tar]. (Only 11 of our instructions
modify R[tar].) We verify its evaluation as follows. Let s0, . . . , s10 ∈ {0, 1}32 be the results of the
11 relevant instructions, and let opcode denote the opcode of the actual instruction in this step (the
parties already hold authenticated values for all of them); our goal is to obtain an authenticated
sharing of sopcode. We first convert opcode into its one-hot encoding v. Letting S be the matrix
whose ith column is si, we then have S · v = sopcode. Verifying this matrix-vector multiplication
involves evaluating 32 inner products, and so can be done efficiently.

Delaying expensive instructions. Certain instructions in our instruction set (namely MUL, CSF,
LDW, and STW) incur a substantially higher computational cost than others. Inspired by [WGMK16],
we improve the performance of our CPU by implementing a simple scheme that reduces the overhead
of those expensive instructions . The basic idea is that expensive instructions are no longer carried
out in every CPU cycle of the CPU, but are instead only evaluated every nth cycle (where n is
a public parameter called the delay). If an expensive instruction is supposed to be executed “off
cycle,” its evaluation is delayed by up to n− 1 cycles.

5 Evaluation

We evaluate the performance of our protocols and compare them with relevant prior work. We
incorporated the ZK proof for polynomials [YSWW21] in both protocols, as discussed in Section 3.1
and 3.2. All our experiments were performed by running our protocols between two AWS EC2
m5.2xlarge machines. We conduct experiments on RO-ZKarray and ZKarray to demonstrate their
computational/communication efficiency. Then, we benchmark the performance of our CPU based
on RO-ZKarray and ZKarray. We report microbenchmarks of all protocols to show the performance
of the major components. We will make our code available at EMP-toolkit [WMK16].

5.1 Performance of RO-ZKarray and ZKarray

We first explore the performance of our protocols for private array access. Here, all performance
numbers are averaged over one million accesses and we fix W = 32.

Memory-access time. We measure the performance of our memory-access protocols as a function
of the memory size N in different network settings. As shown in Figure 8, for both RO-ZKarray and
ZKarray the average time per memory access grows very slowly with N . Even when the network is
throttled to 25 Mbps, the average access time of RO-ZKarray increases only slightly from roughly
14.4 to 20.4 microseconds as N increases from 25 to 220. Both RO-ZKarray and ZKarray are much
more efficient than a linear scan over the memory. A linear scan would need at least N ·W AND
gates; giving a ZK proof on the corresponding circuit would be slower than our protocol for all N
that we tested. For example, when N = 25,W = 32, applying the best circuit-based ZK protocol
to a linear scan would take 70–100 µs, which is more than 7× slower than our protocol.

As discussed in Section 3.2, ZKarray can also be used to implement a key-value store, where
keys take the place of addresses. The complexity of ZKarray depends mainly on N +T , the number
of items stored, while expanding the key size does not significantly affect the overall performance.
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(a) RO-ZKarray.
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(b) ZKarray.

Figure 8: Performance of our ZK protocols for private array access.
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Figure 9: Performance of ZKarray as a key-value store.

We also explore the performance in this case. In Figure 9, we show the performance when the key
size ranges from 21 bits to 30 bits while the number of items stored is fixed to one million.

Comparison to BubbleRAM and BubbleCache. In Figure 10, we compare the communication
complexity of ZKarray with that of BubbleRAM and BubbleCache [HK20a, HYD+21], which both
offer similar functionality. (Note, however, that BubbleCache allows for input-dependent cache
misses, and the reported performance of BubbleCache considers a cache miss rate as high as 10%.)
We also include the communication cost of linear scan as a baseline. ZKarray not only uses the least
communication of any of these protocols, but also scales best with increasing N . As N ranges from
220 to 230, the per-access communication of BubbleRam (resp., BubbleCache) goes from 2025 (resp.,
202) bytes to 4556 (resp., 303) bytes; for ZKarray, the communication goes from 33 to 35 bytes, an
improvement of 62–130× (resp., 6–8×).

Microbenchmarks. We benchmark the performance of the main components of our protocols for
a memory access in Table 2, for network bandwidths of 25, 50, and 100 Mbps. For RO-ZKarray,
we set N = 215. For ZKarray, we set N = 215, T = 225. “Access” refers to the step where P
authenticates values. “Check consistency” refers to the step where P verifies an adjacent tuple in
the list L′. “Check set equality” refers to verifying equality of L and L′, and is amortized over the
size of these lists.
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Figure 10: Communication overhead of RAM-based ZK protocols. Numbers for prior work
are taken from [HYD+21]. Note that the y axis is on a log scale.

RO-ZKarray ZKarray

Bandwidth (Mbps) 25 50 100 25 50 100

Access 2.1 1.4 1.2 2.2 1.6 1.6

Check consistency 9.5 6.6 5.8 12.8 9.2 8.6

Check set equality 5.5 3.7 3.0 5.1 3.4 2.8

Total 17.8 12.4 10.8 21.7 15.7 14.4

Table 2: Microbenchmarks for RO-ZKarray and ZKarray with varying bandwidth. Times
are in microseconds.

5.2 ZK Proofs for Our CPU

Here we benchmark the performance of our ZK protocol when applied to our CPU. Unless specified
otherwise, the network bandwidth is 100 Mbps.

CPU Performance. We implemented our CPU and evaluated it with varying configurations
of the program size and memory capacity. Results for per-cycle execution time are shown in
Figure 11. The execution time increases very slowly as the program size grows, and hardly increases
at all as a function of the memory capacity. As with execution time, communication per cycle
increases only slightly as the program size grows. With a main memory of size 224, each cycle
requires communication of roughly 320 bytes. This is more than a 12.5× improvement compared
to BubbleCache, which communicates about 4000 bytes even with a memory of size 217.

We also experimented with different settings for the CPU instruction delay n. Recall this
means we only execute certain expensive instructions every nth cycle (see Section 4.2). Results are
in Table 3. We see that increasing the delay substantially reduces the average per-cycle execution
time, though of course the overall impact of the delay will depend on the program being executed
and, in particular, how often that program relies on expensive instructions.
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Figure 11: ZK proofs for execution of our CPU. The numbers reported are the execution time
per CPU cycle, averaged over 220 cycles.

log(program size)
Delay

1 2 4 8

10 311 226 183 161

16 315 230 187 166

20 338 253 210 189

Table 3: Effect of delay on communication. Numbers reflect bytes of communication per CPU
cycle. All experiments used main memory of size 224.

Microbenchmarks. When executing our CPU, we use RO-ZKarray to access the program memory,
and use ZKarray to access the registers and the main memory. We report the various access times,
under network bandwidths ranging from 25 to 500 Mbps, in Table 4. We observe that computation
becomes the bottleneck once the bandwidth is 100 Mbps (since the performance does not improve
as the bandwidth increases further). In all cases we use a 32-bit word size. We use ZKarray with
T = 214 to emulate access to the registers. (This means that 214 accesses to the registers are
supported; once the upper bound is reached, we must refresh the structure). For the main memory,
we set N = 220 bits and T = 225.

Memory
Index Bandwidth

size (bits) 25 Mbps 50 Mbps 100 Mbps 500 Mbps

Program 15 16.52 11.83 10.05 10.04

Register 5 15.15 9.43 8.26 8.24

Main 20 21.61 14.88 13.38 13.36

Table 4: Memory-access time for different memory components. The numbers represent
the average access time, in microseconds.
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5.3 Customized RAM-based Protocols

While our CPU can be used for general-purpose RAM computation, in some cases better efficiency
is possible using a customized protocol. We explore two such examples here. All experiments
described in this section were run over a 100 Mbps network.

ZK proof of regular expression matching. In this application we assume the prover has
generated a commitment com to a string s ∈ Σn, and wants to prove to the verifier that s matches
a public regular expression R. That is, the prover wants to prove knowledge of s, decom such that

Open(com, s, decom) = 1 ∧ RegexMatch(s,R) = Accept.

To do this, we first convert the regular expression to a DFA with S states, and then represent the
transitions of the DFA using a matrix of size |Σ|×S, which we flatten to an array M . See Figure 12.

S0
S1 S2

end

b

a

a

b

b

b
a

a
S3

start

(a) DFA for the regular expression a(ab|bb)*a.

State a b

0 1 0

1 3 2

2 0 1

3 0 1

(b) Matrix corresponding to the DFA.

Figure 12: Representing a DFA as an array. In this example, the final array representing the
DFA is M = {1, 0, 3, 2, 0, 1, 0, 1}.

Taking Σ = {0, . . . , |Σ|} and assuming V knows n, our protocol then proceeds as follows:

1. The parties initialize FRO-ZKarray to contain M .

2. P generates {[si]}i∈[n] and [decom] and proves that Open(com, [s0], . . . , [sn−1], [decom]) = 1

3. The parties set cur := 0 and generate [cur]. Then for i ∈ [n] they do:

(a) Compute [`] := [cur] · |Σ|+ [si].

(b) Use FRO-ZKarray to read M` and set [cur] := [M`].

4. Prove that [cur] = |S| − 1.

The cost of the protocol is dominated by n read-only memory accesses. We implement this protocol
using SHA-256 for the commitment. With n = 128, |Σ| = 4, and S = 20, the total time to execute
the protocol was 2.7 ms, and increasing S to 2,000 only increased the running time to 3.1 ms. In
both cases, the time to verify the commitment was the same (1.6 ms), and only the time required
to run the DFA changed.
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Proving the preimage of a memory-hard hash function. In our second application, we
have P prove knowledge of a preimage of scrypt, a memory-hard hash function that was designed
specifically so that its evaluation requires many random accesses to memory. The core of scrypt
is ROMix, which involves O(N) evaluations of the 8-round Salsa20 hash function (where N is a
hardness parameter) and a set of read-only accesses on values that are computed using Salsa20.
Here we focus on the performance of computing ZK proofs for ROMix; see Table 5. We use the
default parameters (r = 8, p = 1) and let the hardness N (which equals the length of the memory
array) range from 4 to 10. ROMix uses a 1024-bit word size. Since our current implementation
only supports a maximum word size of 64 bits, we replace a single memory access using a 1024-bit
word size with 16 memory accesses using a 64-bit word size. By natively supporting a larger word
size it should be possible to further improve performance.

N 4 16 64 256 1024

Prove Salsa20 (s) 0.07 0.29 1.17 4.69 18.79
ZK array access (s) 0.01 0.036 0.14 0.57 2.34

Total (s) 0.08 0.326 1.31 5.26 21.13

Table 5: ZK proofs of scrypt.
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A Simulation of MIPS-I Instructions

Below we provide explanations of how the MIPS instructions listed in Table 6 can be simulated
using our CPU. (When simulation is straightforward we are brief, but for some of the more complex
cases we provide details of the simulation.)

• Arithmetic and logical Instructions: Most of these are trivially supported by our arithmetic and
logical operations. One notable exception is div. However, P can give a ZK proof that c = a/b
by proving that c · b = a using the MUL command. MIPS operations that act on immediate values
can be simulated by two of our instructions by first performing a PUT and then performing the
desired arithmetic or logical operation. Of note, the MIPS mult command fills two registers to
allow for the computation of 64-bit products. Our CPU does not support this operation directly,
though it can be simulated by breaking down the multiplicands and performing multiple MUL

operations. Logical shift operations are slightly more complex: first we use CSF to rotate the
bits of the register, followed by MSK and NLG to perform bitwise AND in order to zero out the
appropriate bits. Arithmetic shift operations add an additional layer of complexity, since we
must determine whether the original value is positive or negative in order to preserve the sign.
Suppose we are given registers $a and $n containing values a and n, where a is the value to be
shifted and n is the shift amount. Simulation of srav can then be performed as follows:

1. Use PUT to put the value 1 in a register;

2. Use PUT to put the value 0 in a register;

3. Use MSK to put the string 1||031 in register $x (using the register previously set to 1);

4. Use MSK to put the string 1n||032−n in register $y (using the given register containing n);

5. Use MSK to put the string 0n||132−n in register $p (using the given register containing n);

6. Use MSK to put the string 032 in register $z (using the register previously set to 0);

7. Use NLG to perform a bitwise AND on registers $a and $x, saving the result in register $w;

8. Use CMV to perform the operation $z ← $y if $w 6= 0, else do nothing;

9. Use CSF to rotate a by n bits, saving the result in register $r;

10. Use NLG to perform a bitwise AND on registers $r and $p, saving the result in register $r;

11. Use NLG to compute $z OR $r as the final result.

The first six steps initialize necessary registers. Step 7 checks whether a is negative, and step 8
conditionally moves the string 1n||032−n into a register if a is negative. Step 9 rotates a by the
appropriate number of bits, and step 10 zeros out the bits that were shifted in on the right.
Finally, step 11 fills the zeroed bits with 1s if a was negative, and leaves them as 0s otherwise.
The sra instruction can similarly be simulated using one additional PUT instruction.
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MIPS instruction Semantics CPU cycles to simulate

add $d, $s, $t $d = $s + $t 1

addi $t, $s, i $t = $s + i 2

and $d, $s, $t $d = $s & $t 1

andi $t, $s, i $t = $s & i 2

div $s, $t lo = $s / $t; hi = $s % $t 1

mult $s, $t hi:lo = $s * $t 1

nor $d, $s, $t $d = ∼($s | $t) 1

or $d, $s, $t $d = $s | $t 1

ori $t, $s, i $t = $s | i 2

sll $d, $t, a $d = $t � a (logical) 4

sllv $d, $t, $s $d = $t � $s (logical) 3

sra $d, $t, a $d = $t � a (arithmetic) 11

srav $d, $t, $s $d = $t � $s (arithmetic) 12

srl $d, $t, a $d = $t � a (logical) 4

srlv $d, $t, $s $d = $t � $s (logical) 3

sub $d, $s, $t $d = $s - $t 1

xor $d, $s, $t $d = $s ⊕ $t 1

xori $d, $s, i $d = $s ⊕ i 2

lhi $t, i HH($t) = i 7

llo $t, i LH($t) = i 7

slt $d, $s, $t $d = ($s < $t) 5

slti $t, $s, i $t = ($s < i) 6

beq $s, $t, label if ($s == $t) pc += i 4

bgtz $s, label if ($s > 0) pc += i 6

blez $s, label if ($s ≤ 0) pc += i 6

bne $s, $t, label if ($s == $t) pc += i 4

j label pc += i 2

jal label $31 = pc; pc += i 3

jalr $s $31 = pc; pc = $s 2

jr $s pc = $s 1

lw $t, i($s) $t = MEM [$s + i] 1

sw $t, i($s) MEM [$s + i] = $t 1

mfhi $d $d = hi 1

mflo $d $d = lo 1

mthi $s hi = $s 1

mtlo $s lo = $s 1

Table 6: Simulation of MIPS instructions by our CPU. Here we list supported MIPS oper-
ations and the number of cycles in which our CPU can simulate them. Unsigned MIPS operations
are omitted, since our CPU always uses signed operations. Since our CPU instruction set is
word-based, while MIPS is byte-based, some MIPS byte-manipulation instructions are omitted or
modified for clarity. We note that while our JMP instruction does not directly support labels, it
performs functionally equivalent behavior by jumping to the index of a particular instruction in the
program. Allowing for these omissions and modifications, our CPU is able to simulate the entire
MIPS instruction set other than Exception and Interrupt instructions. See text for details.
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• Constant-manipulating instructions: The MIPS lhi instruction loads an immediate value into
the upper half of a register. Given a register value a and an immediate value imm, lhi can be
simulated as follows:

1. Use PUT to load imm into a register;

2. Use PUT to load the value 16 into a register;

3. Use MSK to load the string 016||116 into a register (using the register previously set to 16);

4. Use NLG to compute the bitwise AND of the previous two values and load the first 16 bits of
imm into a register;

5. Use CSF to rotate those bits of imm by 16;

6. Use NLG to compute the bitwise AND of a and 016||116 and load the first 16 bits of a into a
register;

7. Use XOR to combine the bits of imm with the bits of a.

Simulating llo follows similarly.

• Comparison instructions: For two integers a, b, the prover can show that a ≤ b holds as follows:

1. Use SUB to compute b− a and store the result in register $x;

2. Use PUT to put the value 1 in a register;

3. Use MSK to get the string 1||031 and store it in register $y (using the register previously set
to 1);

4. Use NLG to take the bitwise AND of $x and $y.

If the resulting string is 032 then b − a ≥ 0, and thus a ≤ b. If it is instead 1||031, then a > b.
The CSF command can additionally be used to rotate the 31st bit to the 0th position, for a final
result of 1 if a > b and 0 otherwise.

• Branch instructions: The MIPS beq and bne instructions are straightforwardly simulated using a
PUT followed by JMP. The bgtz and blez instructions can be simulated by first using MSK and NLG

to isolate the most significant bit (as shown above in the simulation of comparison instructions)
and then using PUT followed by JMP.

• Jump instructions: The j instruction is also straightforwardly simulated using PUT and then JMP.
The jr instruction is exactly replicated by JMP with the correct parameters in imm. Further, jalr
is simulated by PC followed by JMP, and similarly jal is simulated by first performing a PUT and
then doing the same.

• Load and store instructions: These can be simulated straightforwardly with our LDW and STW

instructions.

• Data-movement instructions: These are straightforwardly simulated using CMV.

• Exception and interrupt instructions: We do not currently support these instructions, and we
envision that the prover would ensure that the executed code does not contain them.
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