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Abstract. Let (N, e) be an RSA public key, where N = pq is the prod-
uct of equal bitsize primes p, q. Let dp, dq be the corresponding secret
CRT-RSA exponents.

Using a Coppersmith-type attack, Takayasu, Lu and Peng (TLP) re-
cently showed that one obtains the factorization of N in polynomial time,
provided that dp, dq ≤ N0.122. Building on the TLP attack, we show the
first Partial Key Exposure attack on short secret exponent CRT-RSA.
Namely, let N0.122 ≤ dp, dq ≤ N0.5. Then we show that a constant
known fraction of the least significant bits (LSBs) of both dp, dq suffices
to factor N in polynomial time.

Naturally, the larger dp, dq, the more LSBs are required. E.g. if dp, dq are
of size N0.13, then we have to know roughly a 1

5
-fraction of their LSBs,

whereas for dp, dq of size N0.2 we require already knowledge of a 2
3
-LSB

fraction. Eventually, if dp, dq are of full size N0.5, we have to know all
of their bits. Notice that as a side-product of our result we obtain a
heuristic deterministic polynomial time factorization algorithm on input
(N, e, dp, dq).

Keywords: CRT-RSA, Coppersmith’s method, Partial Key Exposure

1 Introduction

The RSA cryptosystem has the remarkable property that it admits polynomial
time attacks for small secrets. Since Wiener’s attack [29] for secret exponents

d ≤ N
1
4 and Coppersmith’s seminal work [6] on factoring N = pq given half of

the bits of p, there has been a long line of research on RSA cryptanalysis.
Using Coppersmith’s method, Wiener’s bound has been improved by Boneh

and Durfee [5] to d ≤ N0.284, respectivelyN0.292, which despite some efforts [16,26]
remains the best known small secret RSA exponent bound. Coron and May [22,8]
proved that on input (N, e, d) the factorization of N can be found in polynomial
time.
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Fig. 1. Required fraction of LSBs for the best known Partial Key Exposure attacks on
RSA.

Afterwards, Ernst, Jochemsz, May, and de Weger [9] showed that both latter
results can be linked by a Partial Key Exposure attack. Namely in the range
N0.284 ≤ d ≤ N , there exists an RSA Partial Key Exposure attack on the most
significant bits (MSBs) of d. More precisely, for all d’s in this range there is a
constant fraction of MSBs whose knowledge allows to factor N in polynomial
time. As one would expect, if d is slightly larger than N0.284 then one needs only
a small MSB bit fraction, whereas for d tending to N (or more precisely φ(N))
one needs all of d’s bits.

Later this Partial Key Exposure attack was improved by Takayasu and Ku-
nihiro [24] to cover the range N0.292 ≤ d ≤ N of the superior Boneh-Durfee
bound. Notice that for Partial Key Exposure attacks a smaller range is indeed
an improvement. Whereas in the range d ∈ [N0.284, N0.292] the attack of [9] re-
quires some known bits, the attack of Takayasu and Kunihiro [24] succeeds in
this range without any bit-knowledge. The fact that the superior Boneh-Durfee
bound d ≤ N0.292 extrapolates smoothly to full size d ≤ N gives us some indi-
cation that [24] might be optimal.

Takayasu and Kunihiro [24] also presented an LSB attack, based on a result
by Aono [1], that works in the range N0.292 ≤ d ≤ N0.89, see Figure 1. Somewhat
surprisingly, it is open whether there exists an LSB-type Partial Key Exposure
attack up to full size d.

In practice, RSA Partial Key Exposure attacks led to a wide range of devas-
tating attacks [11,2,23] on real-world RSA implementations that leaked private
key bits.

CRT-RSA. As opposed to small secret d, the case of small CRT exponents
seems to be notoriously harder to analyze. The existence of such attacks was
initially raised as an open problem in Wiener [29]. The first result was achieved
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in [20] only for primes p, q of imbalanced bitsize, and later improved in [3].
The first bound for the standard RSA setting with balanced primes was given
by Jochemsz and May [15], who showed a Coppersmith-type polynomial time
attack for dp, dq ≤ N0.073. This was recently improved by Takayasu, Lu and
Peng [27] to N0.091 and shortly after [28] to a remarkably large bound N0.122.
We refer to the latter bound as the TLP attack.

However, several natural questions remain unanswered. First, the optimality
of the TLP attack is unclear, especially since TLP is a highly involved application
of Coppersmith’s method to a system of three polynomials. Second, it remained
open whether small CRT exponents admit Partial Key Exposure attacks at all.
Partial Key Exposure attacks on CRT exponents where so far only known for
the special setting of small public exponents e, see [4,18,25]. And third, even if
small CRT exponent Partial Key Exposure attacks exist, do they interpolate to
the natural bound dp, dq ≤ N0.5? For this bound, i.e. known CRT-exponents,
Maitra and Sarkar [19] showed a deterministic Coppersmith-type factorization
attack on input (N, e, dp, dq).

Our results. As our main result, we give the first Partial Key Exposure attack
on CRT exponents in the full range N0.122 ≤ dp, dq ≤ N0.5, see Figure 2 for an
illustration. Since we achieve a smooth interpolation from the TLP result N0.122

to the natural upper bound N0.5, this gives some indication of optimality. Our
upper bound provides a heuristic deterministic polynomial time factorization
algorithm on input (N, e, dp, dq), different from the one of Maitra and Sarkar [19].
For our results, we require the typical well-studied Coppersmith heuristic for
multivariate polynomials, as e.g. used in [1,3,4,5,9,12,15,16,19,28].

On the way to achieving our main result, we make some contributions that
might be of independent interest. First, we give a geometric interpretation of the
TLP attack in terms of Newton polytopes that helps to gain a deeper structural
insight. Second, we show a simplified LSB Partial Key Exposure attack in the
range N0.083 ≤ dp, dq ≤ N0.5, see Figure 2.

This attack admits an elegant formula as follows. Assume that dp, dq are of

size Nβ and write dp = d∗p2
k + d̃p, dq = d∗q2

k + d̃q for some k, known LSBs

d̃p, d̃q, and unknown MSBs d∗p, d
∗
q ≤ Nδ. Then we can find the factorization of N

in polynomial time under the usual Coppersmith-type heuristic, provided that
δ ≤ 1

10 − 1
5β.

Notice that our formula already has the desired end point dp, dq ≤ N
1
2 . For

any β ≤ 1
2 , i.e., for any dp, dq up to full size, we obtain a non-negative bound for

δ. For β = δ, in which case we do not know any LSBs, we achieve δ ≤ 1
12 ≈ 0.083.

Eventually, we optimize our attack such that it works in the range N0.122 ≤
dp, dq ≤ N1/2, i.e., building on top of the TLP bound. This improves on our
simplified Partial Key Exposure attack, since it requires no key-knowledge in
the range dp, dq ∈ [N0.083, N0.122]. Moreover, for any secret exponent size in
the range N0.083 ≤ dp, dq ≤ N1/2 it requires less key-knowledge of dp, dq, see
Figure 2 for a comparison of the required LSB fraction.
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Fig. 2. Comparison between our simplified attack and our main result.

We find it somewhat remarkable that our CRT-RSA LSB attack works for full
size dp, dq, whereas the best known RSA LSB Partial Key Exposure attack [24]
from Figure 1 does not reach full size d.

Since RSA Partial Key Exposure attacks already found many real-world ap-
plications [11,2,23], we hope that our CRT-RSA counterpart also stimulates
further research in this area. We believe that in practice bits of dp, dq might be
easier to get via side-channel attacks than bits of d, since almost all standard
RSA implementations for efficiency reasons actually use CRT exponents.

Our paper is structured as follows. In Section 2, we recall the basics of Cop-
persmith’s method. In Section 3, we revisit the TLP attack, and thoroughly
analyze TLP using our new geometric approach. This reformulation then in
turn allows us to easily prove our simplified small CRT exponent attack in Sec-
tion 4. To show our main result for the improved CRT attack in the range
N0.122 ≤ dp, dq ≤ N0.5 in Section 4.1, we again heavily reuse our results from
Section 3. We conclude by providing experimental evidence of our standard
Coppersmith-type heuristic in Section 5.

2 Coppersmith’s Method

Like in many other attacks on RSA, we base our attack on Coppersmith’s method
for finding small modular roots of multivariate polynomials [7]. For that, we
model the problem of factoring an RSA modulus as a problem of finding a small
root of multivariate polynomials modulo some large integer M . In particular, we
use the RSA key generation equations to derive n polynomials f1, . . . , fn in k
variables x1, . . . , xk, which share a small root r = (r1, . . . , rk) modulo M . Small
means here that we know for j = 1, . . . , k upper bounds Xj with |rj | ≤ Xj .
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Then, we choose an m ∈ N and define so-called shift polynomials

pi := f i11 · . . . · f inn · xj11 · . . . · xjkk ·Mm−(i1+...+in),

with appropriately chosen exponents. Notice that by construction the shift poly-
nomials have the root r modulo Mm.

Our goal is to compute integer linear combinations

hj(x1, . . . , xk) :=
∑
i

αj,ipi(x1, . . . , xk) (αj,i ∈ Z)

of the shift polynomials, to obtain k polynomials h1, . . . , hk, such that for every
j = 1, . . . , k the coefficient vector of hj(X1x1, . . . , Xkxk) has sufficiently small
Euclidean norm. A lemma by Howgrave-Graham (as stated below) then guaran-
tees us that h1, . . . , hk have the root r not just modulo Mm, but also over the
integers. If the variety of the ideal (h1, . . . , hk) is zero-dimensional, this allows
us to recover their root by using a Groebner basis – which in our case means
that we can efficiently factor the RSA modulus.

Lemma 1 (Howgrave-Graham, [14]). Let h(x1, . . . , xk) ∈ Z[x1, . . . , xk] be
a polynomial in at most ω monomials. Suppose that h(r1, . . . , rk) ≡ 0 mod Mm

for some positive integer m. Also let |ri| < Xi for 1 ≤ i ≤ k and

||h(x1X1, . . . , xkXk)|| < Mm

√
ω
.

Then h(r1, . . . , rk) = 0 holds over the integers.

To find suitable polynomials hj , we use lattice-based techniques.

Definition 1. Let {b1, . . . ,bω} ⊂ Zn be linearly independent row vectors. The
lattice L generated by these vectors is defined by

L =
{
z1b1 + . . .+ zωbω|zi ∈ Z,∀i ∈ {1, . . . , ω}

}
.

{b1, . . . ,bω} is called a basis of L. The parameter n is called the dimension of
L, ω is called the rank of L. If ω = n, then we call L a full-rank lattice.

We often associate a lattice with a basis matrix B. Two lattice bases generate the
same lattice if and only if their basis matrices B1 and B2 satisfy B1 = UB2 for
some unimodular matrix U. As unimodular square matrices have determinant
±1, one can define the determinant of a full-rank lattice L as

detL := |det B| .

Notice that the coefficient vectors of the polynomials hj(X1x1, . . . , Xkxk), as
defined above, are elements of a lattice LS , which is generated by the coefficient
vectors of the polynomials pi(X1x1, . . . , Xkxk). Hence, the problem of finding
polynomials hj with short norm boils down to finding short non-zero vectors in
LS . This can be achieved in polynomial time using the well-known LLL algorithm
[17].
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Lemma 2. Let L be an integer lattice of dimension ω. The LLL algorithm ap-
plied to L outputs a reduced basis {v1, . . . ,vω} of L with

||v1|| ≤ ||v2|| ≤ · · · ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , for i = 1, . . . , ω,

in time polynomial in the dimension ω and the bit size of the entries of L.

For a proof of Lemma 2, we refer to [21, Theorem 4].
As a consequence of Lemma 2, if the condition

2
ω(ω−1)

4(ω+1−`) det(Ls)
1

ω+1−` <
Mm

√
ω
,

holds for all ` ≤ k, we can obtain the required k polynomials hj , which satisfy
the condition of Lemma 1, by simply applying LLL to the lattice LS . Since in
our case the values of the determinant and of M grow significantly faster than
the other terms (as usual in these types of attacks), we can also use the simplified
enabling condition

detLS < (Mm)dimLS . (1)

To keep the calculation of the determinant simple, we require that the basis
matrix of LS is of a triangular shape. For that, we need to ensure that the shift
polynomial p1 has exactly one monomial and moreover that for every i > 1 the
set

{λ | λ is a monomial of pi but not of p1, . . . , pi−1}
contains exactly one element. Calculating the determinant then becomes partic-
ularly easy, as we simply have to keep track for every i, which monomial λi the
polynomial pi adds to the basis matrix’ diagonal. Denoting the coefficient of λi
by ci, the determinant then can be calculated as

detLS =
∏
i

|ci · λi(X1, . . . , Xk)| .

For constructing our basis matrix, we will often make use of a powerful tool,
the so called Newton polytope of a polynomial.

Definition 2. The Newton polytope of a k-variate polynomial p(x1, . . . , xk) is
defined as the convex hull of the set

N(p) :=
{

(i1, . . . , ik) ∈ Nk | xi11 · . . . · xikk is a monomial of p
}
.

Notice that for two polynomials p1, p2 the sets N(p1), N(p2) as defined above
have the useful property that N(p1p2) = N(p1) + N(p2), where + denotes the
Minkowski sum. Hence, the Newton polytope of some polynomial xai · p (where
a ∈ N) is obtained by moving the Newton polytope of p up a units on the axis
corresponding to xi. Similarly, the Newton polytope of pa is obtained by scaling
the Newton polytope of p by a factor of a. (See Figure 3 for examples.)

It is worth to note that we have no provable guarantee that the LLL gives us
polynomials, which generate an ideal with zero-dimensional variety. Thus, our
approach relies on the standard Coppersmith-type heuristic assumption.
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Fig. 3. The Newton polytopes of p(x1, x2) := x1x2 + x1 + 1 and related polynomials.

Assumption 1 In this work, the lattice based constructions yield polynomials,
that generate an ideal with zero-dimensional variety.

In Section 5 we verify Assumption 1 experimentally.

3 The TLP Attack Revisited

As our attack is strongly based on the Takayasu-Lu-Peng attack (TLP) [28] on
CRT-RSA, we describe it in this section in detail. We deviate from the original
algebraic TLP formulation, with the hope that our geometric view helps to gain
a deeper understanding. We first present a simplified construction and after that
optimize it to obtain TLP.

3.1 A Simplified Construction

Let us recall the CRT-RSA key generation equations

edp = k(p− 1) + 1, (2)

edq = `(q − 1) + 1, (3)

where N = pq is an RSA modulus, e is a public exponent, dp, dq are the cor-
responding CRT-exponents and k, ` ∈ N. Writing e = Nα and upper bounding
dp, dq ≤ Nδ for some α, δ ∈ R, the values of k and ` can be bounded as

k =
edp − 1

p− 1
<

edp
p− 1

= Θ

(
edp
N1/2

)
= Θ(Nα+δ−1/2),

` =
edq − 1

q − 1
<

edq
q − 1

= Θ

(
edq
N1/2

)
= Θ(Nα+δ−1/2),

since in the usual RSA setting we have p, q = Θ(N1/2). By that, we find an
X = Θ(Nα+δ−1/2), which is an upper bound for both k and `.

We use equation (2) to derive a polynomial

f(xp, yp) := xp(yp − 1) + 1 = xpyp − xp + 1,
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which has the root (k, p) modulo e. Similarly, we could also use equation (3) to
derive another polynomial, which in turn has the root (`, q) modulo e. Takayasu,
Lu and Peng, however, advise to first multiply equation (3) with p and rearrange
terms as suggested by Bleichenbacher and May [3]:

pedq = p`(q − 1) + p = N`− p`+ p = N(`− 1) +N − p(`− 1).

Then, the equation yields a polynomial

g(yp, zp) := ypzp −Nzp −N,

which has the root (p, `− 1) modulo e.
The multiplication with p has the advantage that we can get rid of the

unknown q and by that treat f and g as three-variate polynomials in the variables
xp, yp, zp, which have a common root (k, p, `− 1). Using `− 1 instead of `, gives
g a superior Newton polytope, since f and g then share a monomial (see Figure
4).

With f , we now have a polynomial, which relates the unknowns k and p,
while g relates ` and p. To obtain a third polynomial, that relates k and `,
one can use an idea by Galbraith, Heneghan and McKee [10]. First, we rewrite
equations (2) and (3) as

kp = k − 1 + edp,

`q = `− 1 + edq.

Then, multiplying kp with `q, we obtain

k`N = (k − 1)(`− 1) + (k − 1)edq + edp(`− 1) + e2dpdq

and equivalently

(N − 1)k(`− 1) +Nk + (`− 1) = e (dq(k − 1) + dp(`− 1) + edpdq) ,

from which we can derive a polynomial

h(xp, zp) := (N − 1)xpzp +Nxp + zp

with the root (k, `− 1) modulo e.
Now, we have the following system of polynomial equations

f(xp, yp, zp) = xpyp − xp + 1 = 0,

g(xp, yp, zp) = ypzp −Nzp −N = 0,

h(xp, yp, zp) = (N − 1)xpzp +Nxp + zp = 0,

with the solution (x0, y0, z0) = (k, p, `−1) modulo e, which can be upper bounded
as

x0, z0 ≤ X = Θ(Nα+δ−1/2),

y0 ≤ Y = Θ(N1/2).
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Fig. 4. The Newton polytopes of f , g and h.

If we can efficiently compute (x0, y0, z0), we factor the RSA modulus N .
We want to use Coppersmith’s method to compute (x0, y0, z0). For that, we

define shift polynomials, which have the root (x0, y0, z0) modulo e2m for some
m ∈ N. The polynomials will form a lattice with triangular lattice basis matrix
whose columns correspond to the elements of the set

M :=
{
xapy

b
pz
c
p | xapybpzcp is a monomial of fmgm

}
.

Notice that by Figure 4 we may equivalently define M as

M =
{
xapy

b
pz
c
p | 0 ≤ a ≤ m, 0 ≤ c ≤ m, 0 ≤ b ≤ a+ c

}
. (4)

We partition M into four subsets

M1 :=
{
xapy

b
pz
c
p ∈M | a ≤ c, b ≤ c− a

}
,

M2 :=
{
xapy

b
pz
c
p ∈M | a > c, b < a− c

}
,

M3 :=
{
xapy

b
pz
c
p ∈M | xapybpzcp /∈ (M1 ∪M2), a+ b+ c ≡ 0 mod 2

}
,

M4 :=
{
xapy

b
pz
c
p ∈M | xapybpzcp /∈ (M1 ∪M2 ∪M3)

}
.

These partitions are used to define a collection of functions, which we call the
exponent functions.

Ef (a, b, c) :=


0, xapy

b
pz
c
p ∈M1

b, xapy
b
pz
c
p ∈M2

(a+ b− c)/2, xapy
b
pz
c
p ∈M3

(a+ b− c+ 1)/2, xapy
b
pz
c
p ∈M4

,

Eg(a, b, c) :=


b, xapy

b
pz
c
p ∈M1

0, xapy
b
pz
c
p ∈M2

(−a+ b+ c)/2, xapy
b
pz
c
p ∈M3

(−a+ b+ c− 1)/2, xapy
b
pz
c
p ∈M4

,
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Eh(a, b, c) :=


a, xapy

b
pz
c
p ∈M1

c, xapy
b
pz
c
p ∈M2

(a− b+ c)/2, xapy
b
pz
c
p ∈M3

(a− b+ c− 1)/2, xapy
b
pz
c
p ∈M4

,

Ex(a, b, c) :=

{
a− b− c, xapybpzcp ∈M2

0, xapy
b
pz
c
p ∈M1 ∪M3 ∪M4

,

Ez(a, b, c) :=


−a− b+ c, xapy

b
pz
c
p ∈M1

0, xapy
b
pz
c
p ∈M2 ∪M3

1, xapy
b
pz
c
p ∈M4

.

One can easily verify that the exponent functions satisfy the following properties.

Lemma 3. Let xapy
b
pz
c
p ∈M. Then the following holds:

1. Ef (a, b, c), Eg(a, b, c), Eh(a, b, c), Ex(a, b, c), Ez(a, b, c) ∈ N.
2. Ef (a, b, c) + Eg(a, b, c) + Eh(a, b, c) ≤ 2m.
3. Ef (a, b, c) + Eh(a, b, c) + Ex(a, b, c) = a.
4. Ef (a, b, c) + Eg(a, b, c) = b.
5. Eg(a, b, c) + Eh(a, b, c) + Ez(a, b, c) = c.

Proof. Simply compare the definitions of M1,M2,M3,M4 with those of the
exponent functions. ut

For a given monomial xapy
b
pz
c
p ∈ M we use the exponent functions to define a

shift polynomial as follows:

p[a,b,c](xp, yp, zp) := fEf (a,b,c) · gEg(a,b,c) · hEh(a,b,c)·
xEx(a,b,c)
p · zEz(a,b,c)

p ·
e2m−(Ef (a,b,c)+Eg(a,b,c)+Eh(a,b,c)).

Notice that the first two statements in Lemma 3 ensure that every exponent in
p[a,b,c] has a non-negative value. Further notice that p[a,b,c] has the root (k, p, `−
1) modulo e2m.

We equip our shift polynomials with the lexicographic monomial order on
(zp, xp, yp), which in the following we simply call the (zp, xp, yp)–order.

Definition 3 ((zp, xp, yp)-order). The monomial order

xa1p y
b1
p z

c1
p < xa2p y

b2
p z

c2
p :⇐⇒

 c1 < c2
c1 = c2, a1 < a2
c1 = c2, a1 = a2, b1 < b2

is called the (zp, xp, yp)-order.

The shift polynomials have the following nice properties.
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Lemma 4. Let xapy
b
pz
c
p ∈M. Then the following holds:

1. The leading monomial of p[a,b,c] in the (zp, xp, yp)-order is xapy
b
pz
c
p.

2. The monomials of p[a,b,c] form a subset of M.

Proof. Every shift polynomial is of the form p[a,b,c] = f i1gi2hi3xj1p z
j2
p e

j3 , where
the exponents are defined by our exponent functions. From Figure 4, we conclude
that the leading monomials of f i1 , gi2 and hi3 are xi1p y

i1
p , yi2p z

i2
p and xi3p z

i3
p

respectively. Thus, p[a,b,c] has leading monomial

xi1+i3+j1p yi1+i2p zi2+i3+j2p .

Since from Lemma 3 it follows that the exponent functions are defined in such
a way that a = i1 + i3 + j1, b = i1 + i2 and c = i2 + i3 + j2 always holds, this
proves the first statement in the lemma.

To prove the second statement, we conclude from Figure 4 that the set of
the monomials p[a,b,c] is a subset of

M′ :=
{
xa
′

p y
b′

p z
c′

p | 0 ≤ a′ ≤ i1 + i3 + j1, 0 ≤ c′ ≤ i2 + i3 + j2, 0 ≤ b′ ≤ a′ + c′
}
.

Thus, it suffices to show that M′ ⊆M.
From the above, we conclude

xi1+i3+j1p yi1+i2p zi2+i3+j2p = xapy
b
pz
c
p ∈M.

Hence, from (4) it follows that i1 + i3 + j1 ≤ m and i2 + i3 + j2 ≤ m. Comparing
the definition of M′ with (4), the statement M′ ⊆M easily follows. ut

Using Lemma 4 we now prove the following important proposition.

Proposition 1. Order the monomials in M according to the (zp, xp, yp)-order.
Define a lattice basis matrix B, in which the i-th column corresponds to the i-th
smallest monomial xapy

b
pz
b
p ∈ M and the i-th row corresponds to the coefficient

vector of the polynomial p[a,b,c](Xxp, Y yp, Xzp). Then B is triangular.

Proof. If p[a,b,c] has a monomial xa
′

p y
b′

p z
c′

p 6= xapy
b
pz
c
p, then with Lemma 4 it

follows that xa
′

p y
b′

p z
c′

p < xapy
b
pz
c
p and furthermore xa

′

p y
b′

p z
c′

p ∈M. Therefore, when

adding p[a,b,c] to B, xa
′

p y
b′

p z
c′

p already is included, as it is the leading monomial
of some polynomial p[a′,b′,c′], which, by construction, is added before p[a,b,c] to
B. Conversely, no polynomial p[a′,b′,c′], which is added before p[a,b,c] to B, has

the monomial xapy
b
pz
c
p, since all its monomials are strictly smaller than xapy

b
pz
c
p.

Hence, p[a,b,c] has with xapy
b
pz
c
p exactly one monomial, which is not added priorly

to the basis. ut

In Figure 5 we give an example of the lattice construction as described in Propo-
sition 1 for the case m = 2. The table on the left shows the polynomials, that are
included in the lattice. The table on the right shows the corresponding leading

11
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xpzp xpypzp xpy
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pzp
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2
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2
py

2
pz

2
p x

2
py

3
pz

2
p x

2
py

4
pz

2
p

xpz
2
p xpypz

2
p xpy

2
pz

2
p xpy

3
pz

2
p

z2p ypz
2
p y2pz

2
p

M1

M2

M3

M4

Fig. 5. The lattice construction as described in Proposition 1 for m = 2.

monomials. The cell colours indicate, in which setMi the leading monomials lie.
For the sake of a simpler notation, we omit the powers of e that are multiplied
to the shift polynomials.

The entry in the a-th row of the b-th column in the c-th block corresponds to
the shift polynomial p[m−a,b,c]. (We chose to usem−a instead of a, as the shape of
the tables then matches the shape of the Newton polytope of fmgm.) Notice that
the monomials in M1 and M2 are added to the lattice by polynomials, which
contain only powers of g, h and zp or f , h and xp respectively. The monomials
in M3 and M4 are added by multiplying powers of f to the polynomials, that
lie on the right border of the lower triangles corresponding to M1.

Remark 1. We would like to explain the optimization process, that led us to the
definitions of the exponent functions. To keep the lattice’s determinant as small
as possible, the sum

Ef (a, b, c) + Eg(a, b, c) + Eh(a, b, c)

should be maximized for every shift polynomial p[a,b,c]. (The larger the sum,
the smaller the power of e in the shift polynomial and by that the value of the
determinant.) If one wants to use shift polynomials, which satisfy the useful
properties of Lemma 4, then with Figure 4 it is not hard to see that the optimal
values for the exponent functions are obtained by maximizing the sum under the
constraints

Ef (a, b, c) + Eh(a, b, c) ≤ a,
Ef (a, b, c) + Eg(a, b, c) ≤ b,
Eg(a, b, c) + Eh(a, b, c) ≤ c.

This suggests that the problem of selecting optimal exponent functions can be
modelled as an integer programming problem. We solved the integer program-
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ming problem for efficiently solvable instances of a, b and c, looked for patterns
in its solutions and then based the definitions of the exponent functions on those.

For all instances of a, b and c, that we checked, our definitions perfectly
match the optimal solution of the corresponding integer programming problem.
This gives some evidence for the optimality of our definitions.

Unfortunately, our lattice construction so far does not result in a successful
attack, as for any value of m it does not satisfy the enabling condition (1). In
fact, no shift polynomial in our lattice is helpful, since no polynomial adds a factor
smaller than e2m to the lattice’s determinant. However, as we will see below, by
only slightly enhancing the construction with some clever tricks as suggested by
Takayasu, Lu and Peng in [28], we immediately obtain their lattice, which then
yields the attack that works whenever δ < 0.122.

3.2 Improving the Construction via Unravelled Linearization

Instead of using three-variate shift polynomials in the variables xp, yp, zp, we now
want to use six-variate polynomials in the variables xp, xq, yp, yq, zp, zq, which
have the root r := (k, k− 1, p, q, `− 1, `) modulo e2m. With these new variables,
we can apply unravelled linearization as introduced by Hermann and May [12,13]
to our polynomials. That is, we can interchange terms in our polynomials as
shown below, while preserving their root r:

ypyq ←→ N,

xp − 1←→ xq,

xq + 1←→ xp,

zp + 1←→ zq,

zq − 1←→ zp.

With the above replacement rules, we linearize our polynomials as

f(xp, xq, yp, yq, zp, zq) := xpyp − xq,
g(xp, xq, yp, yq, zp, zq) := ypzp −Nzq,
h(xp, xq, yp, yq, zp, zq) := Nxpzq − xqzp.

By that, all three polynomials have the root r modulo e.
In the following we want to apply the replacement rules to our shift polyno-

mials by using an operator trans(·) as defined below.

Definition 4. Let F be a polynomial in the variables xp, xq, yp, yq, zp, zq. Then
trans(F ) denotes the polynomial, that is obtained by transforming the monomials
of F as follows:

1. In every monomial replace every ypyq by N .
2. In every monomial, that has no factor of yp, replace every xp by xq + 1 and

every zp by zq − 1.
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3. In every monomial, that has a factor of yp, replace every xq by xp − 1 and
every zq by zp + 1.

Notice that trans(F ) only has monomials of the form xapy
b
pz
c
p and xaqy

b
qz
c
q , i.e.,

variables with subscripts p and q never appear together in one monomial.
As the following lemma shows, polynomials of the form f i1yi2q have a rather

nice shape after application of trans(·).
Lemma 5. Let F := f i1yi2q with i1 > i2 ≥ 1 and let F ∗ := trans(F ). Then the
following holds:

1. The monomials of F ∗ are of the form xapy
b
p and xaqy

b
q.

2. The absolute value of the coefficient of xi1p y
i1−i2
p in F ∗ is N i2 .

3. The absolute value of the coefficient of xi2q y
i2
q in F ∗ is 1.

4. If xapy
b
p is a monomial of F ∗, then a ≥ b+ i2.

5. If xaqy
b
q is a monomial of F ∗, then a ≥ b+ i1 − i2.

xq

yq
0

i1

i1 − i2

i2

xp

yp
1 i1 − i2

i2 + 1

i1

Fig. 6. The Newton polytope of trans(f i1yi2q ).

Before we prove Lemma 5, let us give a geometrical interpretation. The Newton
polytope of F ∗ consists of two upper triangles, as shown in Figure 6. Hence, F ∗

may be written as

F ∗(xp, xq, zp, zq) = F ∗p (xp, yp) + F ∗q (xq, yq),

such that the monomials of F ∗p are the elements of the set{
xapy

b
p | b > 0, xapy

b
p is a monomial of f i1y−i2p

}
,

where f has the shape it had before linearization, and similarly the monomials
of F ∗q are the elements of the set{

xaqy
b
q | b ≥ 0, xapy

b
p is a monomial of f i1yi2−i1p

}
.
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Proof (Lemma 5). From the equation

f i1 = (xpyp − xq)i1 =

i1∑
j1=0

(
i1
j1

)
(xpyp)

i1−j1(−xq)j1 ,

we conclude that the monomials of F are of the form yi1−j1p yi2q x
i1−j1
p xj1q , where

0 ≤ j1 ≤ i1. By Definition 4, every monomial with i1 − j1 > i2 gets transformed
via trans as

yi1−j1p yi2q x
i1−j1
p xj1q

7→N i2yi1−j1−i2p xi1−j1p xj1q

7→N i2yi1−j1−i2p xi1−j1p (xp − 1)j1

=N i2yi1−j1−i2p xi1−j1p

j1∑
j2=0

(
j1
j2

)
(−1)j2xj1−j2p

=N i2yi1−j1−i2p

j1∑
j2=0

(
j1
j2

)
(−1)j2xi1−j2p .

Similarly, every monomial with i1 − j1 ≤ i2 gets transformed as

yi1−j1p yi2q x
i1−j1
p xj1q

7→N i1−j1yi2−(i1−j1)q xi1−j1p xj1q

7→N i1−j1yi2−(i1−j1)q (xq + 1)i1−j1xj1q

=N i1−j1yi2−(i1−j1)q xj1q

i1−j1∑
j3=0

(
i1 − j1
j3

)
xi1−j1−j3q

=N i1−j1yi2−(i1−j1)q

i1−j1∑
j3=0

(
i1 − j1
j3

)
xi1−j3q .

Notice that this already proves the first three statements.
Statements four and five now follow easily. For every monomial xapy

b
p we find

values j1 = 0, . . . , i1 and j2 = 0, . . . , j1, such that a = i1−j2 and b = i1−j1− i2.
As this yields the inequality

a = i1 − j2 ≥ i1 − j1 = b+ i2,

this proves the fourth statement. Similarly, for every every monomial xaqy
b
q we

find values j1 = 0, . . . , i1 and j3 = 0, . . . , i1 − j1, such that a = i1 − j3 and
b = i2 − (i1 − j1). This yields the inequality

a = i1 − j3 ≥ i1 − (i1 − j1) = b+ i1 − i2

and thus concludes the proof of the lemma. ut
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One can generalize Lemma 5 with a completely analogous proof to the statement
of Lemma 6.

Lemma 6. Let F := f i1gi2hi3xi4p z
i5
p y

i6
q with i1 + i2 > i6 ≥ 1 and let F ∗ :=

trans(F ). Then the following holds:

1. The monomials of F ∗ are of the form xapy
b
pz
c
p and xaqy

b
qz
c
q.

2. The absolute value of the coefficient of

xi1+i3+i4p yi1+i2−i6p zi2+i3+i5p

in F ∗ is N j1(N − 1)i3 for some j1 ∈ N.
3. The absolute value of the coefficient of

xi1+i3+i4q yi6q z
i2+i3+i5
q

in F ∗ is N j2(N − 1)i3 for some j2 ∈ N.
4. If xapy

b
pz
c
p is a monomial of F ∗, then a+ c ≥ b+ i3 + i4 + i5 + i6.

5. If xaqy
b
qz
c
q is a monomial of F ∗, then a+ c ≥ b+ i1 + i2 + i3 − i6.

Lemma 6 can be interpreted geometrically analogous to Lemma 5. That is, F ∗

may be written as

F ∗(xp, xq, yp, yq, zp, zq) = F ∗p (xp, yp, zp) + F ∗q (xq, yq, zq),

such that the monomials of F ∗p are the elements of the set{
xapy

b
pz
c
p | b > 0, xapy

b
pz
c
p is a monomial of f i1gi2hi3xi4p z

i5
p y
−i6
p

}
, (5)

where f , g and h have the shape they had before the linearization, and similarly
the monomials of F ∗q are the elements of the set{

xaqy
b
qz
c
q | b ≥ 0, xapy

b
pz
c
p is a monomial of

f i1gi2hi3(xp + 1)i4(zp − 1)i5yi6−i1−i2p

}
.

(6)

Thus, geometrically, the trans(·) operator creates two copies of the Newton poly-
tope of f i1gi2hi3xi4p z

i5
p , where one lies in the (xp, yp, zp)-plane and the other one

in the (xq, yq, zq)-plane. The larger the exponent of yq, the larger is the polytope
in the (xq, yq, zq)-plane and the smaller is the polytope in the (xp, yp, zp)-plane.
In particular, for i6 = i1 + i2 the Newton polytope of F ∗ lies completely in the
(xq, yq, zq)-plane, whereas for i6 = 0 it lies completely in the (xp, yp, zp)-plane
(except for some monomials xaqy

b
qz
c
q with b = 0). For i6 = (i1 + i2)/2, both

components become equally sized. (See also Figure 6.)
Based on this interpretation, we now enhance in the following Proposition 2

our lattice construction from Proposition 1, such that the Newton polytopes of
the shift polynomials are equally balanced in both the (xq, yq, zq)-plane and the
(xp, yp, zp)-plane.

16



Proposition 2. Order the monomials in M according to the (zp, xp, yp)-order.
Define a lattice basis matrix B, in which the i-th column corresponds to the
monomial

λ[a,b,c] :=

{
xaqy

b/2
q zcq , if b is even

xapy
db/2e
p zcp, if b is odd

and the i-th row corresponds to the coefficient vector of

p∗[a,b,c] := trans
(
p[a,b,c] · ybb/2cq

)
(Xxp, Xxq, Y yp, Y yq, Xzp, Xzq),

where xapy
b
pz
c
p is the i-th smallest element in M. Then B is triangular.

Proof. The proof is similar to that of Proposition 1. We need to show that
the i-th polynomial p∗[a,b,c] has with λ[a,b,c] exactly one monomial, which is not
included in B, before adding p∗[a,b,c] to B. We prove this by induction over i.

Let us first prove the statement for i = 1. The smallest element in M is the
monomial x0py

0
pz

0
p = 1. Hence, the first column corresponds to λ[0,0,0] = 1 and

the first row corresponds to

p∗[0,0,0] = e2m = e2m · λ[0,0,0].

As p∗[0,0,0] therefore has with λ[0,0,0] exactly one monomial, this proves the state-
ment for i = 1.

Now fix an arbitrary i < |M| and suppose that the statement is true for all
j ≤ i. We show that it then holds for i+1. With (5), (6) and Lemma 4 it follows
that the (i+ 1)-th polynomial p∗[a,b,c] may be written as

p∗[a,b,c](xp, xq, yp, yq, zp, zq) = p∗[a,b,c],p(xp, yp, zp) + p∗[a,b,c],q(xq, yq, zq),

such that:

1. The monomials of p∗[a,b,c],p form a subset of M.

2. The monomials of p∗[a,b,c],q form a subset of {xaqybqzcq | xapybpzcp ∈M}.
3. The leading monomial of p∗[a,b,c],p (according to the (xp, yp, zp)-order) is

xapy
b−bb/2c
p zcp = xapy

db/2e
p zcp.

4. The leading monomial of p∗[a,b,c],q (according to a similarly defined (xq, yq, zq)-

order) is

xaqy
b+bb/2c−Ef (a,b,c)−Eg(a,b,c)
q zcq = xaqy

bb/2c
q zcq .

Notice that the equality above follows from the fourth statement in Lemma 3.

Now arguing analogous to the proof of Proposition 1, Proposition 2 easily
follows by induction. ut
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When compared to Proposition 1, the advantage of the lattice construction in
Proposition 2 is that we can effectively halve the exponent of Y in the lattice’s
determinant and by that significantly reduce the determinant’s value. One can
show (see Remark 3) that the enabling condition (1) now becomes

δ <
5

56
≈ 0.089. (7)

Proposition 2 therefore yields an attack, that already outperforms the Jochemsz-
May attack [15].

x2py
0
q fxpy

0
q f2y1q f2y1qy

1
q f2y1qy
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xpy
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0
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1
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Fig. 7. The polynomials in the TLP lattice for m = 2 and τ = 1.

To further improve the bound on δ to 0.122, Takayasu, Lu and Peng use in
[28] basically the lattice construction from Proposition 2, but add extra shifts in
the variables yp and yq to the lattice, i.e., they include additional polynomials
of the form

p∗[a,b,c,i],q := trans
(
p[a,b,c] · ybb/2cq · yiq

)
(Xxp, Xxq, Y yp, Y yq, Xzp, Xzq),

p∗[a,b,c,i],p := trans
(
p[a,b,c] · ybb/2cq · yip

)
(Xxp, Xxq, Y yp, Y yq, Xzp, Xzq).

More precisely, whenever adding a polynomial p∗[a,b,c] with b = a+c, they include
additional rows corresponding to the polynomials

p∗[a,b,c,1],q, p
∗
[a,b,c,2],q, . . . , p

∗
[a,b,c,bτbc−bb/2c],q

p∗[a,b,c,1],p, p
∗
[a,b,c,2],p, . . . , p

∗
[a,b,c,bτbc−db/2e],p

(8)

as well as additional columns corresponding to the monomials

xaqy
bb/2c+1
q zcq , x

a
qy
bb/2c+2
q zcq , . . . , x

a
qy
bτbc
q zcq ,

xapy
db/2e+1
p zcp, x

a
py
db/2e+2
p zcp, . . . , x

a
py
bτbc
p zcp,

(9)
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for some parameter τ ≥ 1/2, which has to be optimized as a function of δ. Notice
that by (4) it follows that none of these monomials are already included in the
lattice basis from Proposition 2.

In Figure 7 we give an example of the polynomials in the TLP lattice. The
polynomials p∗[a,b,c] with b = a + c are coloured in a light gray tone. The addi-
tional polynomials p∗[a,b,c,i],q, p

∗
[a,b,c,i],p are coloured in a dark gray tone. As in

Figure 5, we omit the powers of e. We interpret the additional polynomial geo-
metrically as follows. We take in p∗[a,a+c,c] the polynomials with the outer most

Newton polytopes and push these further into the (xq, yq, zq)-plane, respectively
the (xp, yp, zp)-plane, by using p∗[a,a+c,c,i],q and p∗[a,a+c,c,i],p.

With this interpretation, it is not hard to see that the basis matrix still

remains triangular: The polynomial p∗[a,b,c,i],q adds the monomial xaqy
bb/2c+i
q zcq

to the lattice basis and p∗[a,b,c,i],p adds xapy
db/2e+i
p zp. Using this observation, we

finally prove the TLP attack.

Theorem 1 (Takayasu, Lu, Peng). Let N = pq be a sufficiently large RSA
modulus, where p and q have the same bit-size. Let e < φ(N) be a public exponent
with gcd(e,N − 1) = O(1). Suppose the corresponding CRT exponents dp, dq are
upper bounded by dp, dq ≤ Nδ, where

δ <
1

2
− 1√

7
≈ 0.122.

Given (N, e), we can factor N in polynomial time (under Assumption 1).

Proof. We build a lattice basis matrix B as in Proposition 2 and add the ad-
ditional polynomials (8) and monomials (9) as described above. The diagonal
elements of B are products of powers of e, X, Y and (due to statements two
and three in Lemma 6) N and (N − 1). To reduce the value of the determinant
of B, we remove the powers of N and (N − 1) as follows. Let

Bi,i = eE1,iXE2,iY E3,iNE4,i(N − 1)E5,i

denote the i-th diagonal element of B. We replace for every i the value of Bi,i

by
eE1,iXE2,iY E3,i gcd(N − 1, e)E5,i

and then multiply every other entry in the i-th row of B by(
NE4,i

(
N − 1

gcd(N − 1, e)

)E5,i
)−1

mod e2m.

By that, the i-th row still corresponds to a polynomial with the root r modulo
e2m.

Notice that we can assume without loss of generality that N is invertible
modulo e. If it was not, we could easily obtain a prime factor of N in gcd(e,N).
For (N − 1) on the other hand, we of course can not make this assumption and
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therefore have to use (N−1)/ gcd(N−1, e). Since we have gcd(N−1, e) = O(1),
we can asymptotically neglect the remaining powers of gcd(N − 1, e) on the
diagonal. This allows us to asymptotically calculate the determinant of B as
det B = eseXsxY sy , where

se =
∑

xa
py

b
pz

c
p∈M

E(a, b, c) +
∑

xa
py

b
pz

c
p∈M,

b=a+c

2 ·
τb−b/2∑
i=1

E(a, b, c) =
1 + 5τ

3
m4 + o(m4),

sX =
∑

xa
py

b
pz

c
p∈M

(a+ c) +
∑

xa
py

b
pz

c
p∈M,

b=a+c

2 ·
τb−b/2∑
i=1

(a+ c) =
7τ

3
m4 + o(m4),

sY =
∑

xa
py

b
pz

c
p∈M

b

2
+

∑
xa
py

b
pz

c
p∈M,

b=a+c

2 ·
τb−b/2∑
i=1

(
b

2
+ i

)
=

7τ2

6
m4 + o(m4)

and
E(a, b, c) := 2m− Ef (a, b, c)− Eg(a, b, c)− Eh(a, b, c).

Then, calculating the dimension n of the lattice as

n =
∑

xa
py

b
pz

c
p∈M

1 +
∑

xa
py

b
pz

c
p∈M,

b=a+c

2 ·
τb−b/2∑
i=1

1 = 2τm3 + o(m3),

and plugging in the values e = Nα, X = Θ(Nα+δ−1/2) and Y = Θ(N1/2), we
find that the enabling condition det B < e2mn becomes

α · 1 + 5τ

3
m4 +

(
α+ δ − 1

2

)
· 7τ

3
m4 +

1

2
· 7τ2

6
m4 < α · 4τm4 + o(m4). (10)

To maximize the bound on δ, we set τ := max{1− 2δ, 1/2}, which simplifies the
above to

δ <
1

2
−
√
α

7
+ o(1).

Notice, the smaller α, the better the bound on δ becomes. Since we have e <
φ(N) and consequently α < 1, we can therefore also use the simpler bound

δ <
1

2
− 1√

7
+ o(1).

Consequently, we find for every δ < 1/2 − 1/
√

7 an m, such that the enabling
condition becomes satisfied, which proves the theorem. ut

Remark 2. The condition gcd(N − 1, e) = O(1) does not appear in the original
formulation of the theorem in [28]. However, we do not see how to avoid this.
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If gcd(N − 1, e) becomes large, then we can no longer asymptotically ignore the
additional factors on the determinant, and by that obtain a worse bound in the
enabling condition. This would imply an inferior bound on δ.

Remark 3. The proof of Theorem 1 can be easily modified to prove the previously
mentioned bound (7) of δ < 5/56 for the construction from Proposition 2. If one
sets τ = 1/2 in the proof, then no additional polynomials p∗[a,b,c,i],q and p∗[a,b,c,i],p
are added to the lattice. Thus, the construction in that case is exactly the same
as in Proposition 2. The enabling condition (10) then simplifies to

δ <
3

8
− 2α

7
+ o(1),

which one can further simplify to

δ <
3

8
− 2

7
+ o(1) =

5

56
+ o(1)

by using α < 1 as before.

4 Our small CRT-exponent attacks

Our geometrical interpretation of the TLP attack from Section 3 now allows us
to easily explain our Partial Key Exposure attack.

As before, let N = pq be an RSA modulus, let e = Nα be a public exponent
and let dp, dq be the corresponding CRT exponents. We assume that both dp and
dq are upper bounded by dp, dq ≤ Nβ for some β ∈ R. Additionally, we assume

that we know integers d̃p, d̃q,M ≈ Nβ−δ (for some δ ≤ β), such that we can

write dp = d∗pM + d̃p, dq = d∗qM + d̃q for some unknown integers d∗p, d
∗
q ≤ Nδ. In

practice, M might, for instance, be a power of 2 and therefore d∗p, d
∗
q the MSBs

of dp and dq respectively and d̃p, d̃q the LSBs.
In the previous section, we used the equations

kp− (k − 1) = edp,

p(`− 1)−N` = −edqp,
k`N − (k − 1)(l − 1) = e2dpdq + e(dp(`− 1) + dq(k − 1))

to derive polynomials

f(xp, xq, yp, yq, zp, zq) = xpyp − xq,
g(xp, xq, yp, yq, zp, zq) = ypzp −Nzq,
h(xp, xq, yp, yq, zp, zq) = Nxpzq − xqzp,

which all have the root r = (k, k− 1, p, q, `− 1, `) modulo e. With the additional

information given by d̃p and d̃q, we can similarly define polynomials

f̃(xp, xq, yp, yq, zp, zq) := xpyp − xq − ed̃p,
g̃(xp, xq, yp, yq, zp, zq) := ypzp −Nzq + ed̃qyp,

h̃(xp, xq, yp, yq, zp, zq) := Nxpzq − xqzp − e2d̃pd̃q − ed̃pzp − ed̃qxq,
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which in turn have the root r modulo eM . Notice that for increasing M , the
polynomials f̃ , g̃ and h̃ are in terms of Coppersmith’s method superior to f ,
g and h, as they have the same small root r modulo a larger modulus. At the
same time they are, however, also inferior, since they have more monomials. As
we will see below, we therefore obtain our best results, when carefully balancing
the use of f̃ , g̃ and h̃ with that of f , g and h.

We now use f̃ , g̃ and h̃ to build a lattice basis matrix and then apply Cop-
persmith’s method to compute r. We closely follow the construction as described
in Proposition 2. However, some modifications are necessary. If we would sim-
ply build the lattice exactly as described in Proposition 2, but construct the
shift polynomials using f̃ , g̃ and h̃ instead of f , g and h, we would not obtain
a triangular matrix. For instance, the polynomial g̃ would add with yp a new
monomial, which does not appear in the lattice from Proposition 2. Overall, we
would obtain many additional monomials, as the trans(·) operator does not work

as good with f̃ , g̃ and h̃ as it does with f , g and h. Let us illustrate this with
an example.

When instantiating the lattice from Proposition 2 with m = 2, the shift poly-

nomial p∗[2,2,0] is obtained by multiplying p[2,2,0] = f2e2 by a factor of y
b2/2c
q = yq

and transforming it using trans(·) as shown below. (For better readability we omit
the factor e2.)

f2yq = (xpyp − xq)2yq
= x2py

2
pyq − 2xpxqypyq + x2qyq

7→ Nx2pyp − 2Nxpxq + x2qyq

7→ Nx2pyp − 2N(xq + 1)xq + x2qyq

= Nx2pyp − 2Nx2q − 2Nxq + x2qyq.

Applying the same transformations to f̃2, we obtain

f̃2yq = (xpyp − xq − ed̃p)2yq
= x2py

2
pyq − 2xpxqypyq − 2ed̃pxpypyq − x2qyq + 2ed̃pxqyq + e2d̃p

2
yq

7→ Nx2pyp − 2Nxpxq − 2Ned̃pxp − x2qyq + 2ed̃pxqyq + e2d̃p
2
yq

7→ Nx2pyp − 2N(xq + 1)xq − 2Ned̃p(xq + 1)− x2qyq + 2ed̃pxqyq + e2d̃p
2
yq

= Nx2pyp − 2Nx2q − 2N(1 + ed̃p)xq − 2Ned̃p − x2qyq + 2ed̃pxqyq + e2d̃p
2
yq.

Comparing the monomials in the variables xq and yq of both polynomials in
Figure 8, they form a small triangle for the former polynomial, whereas they
form a rather large rectangle for the latter.

One can show with a proof analogous to that of Lemma 5 that the shape
of the shift polynomials overall becomes more rectangular, when using f̃ , g̃, h̃,
instead of f , g and h. More precisely, one can easily show that

F ∗(xp, xq, yp, yq, zp, zq) := trans
(
f̃ i1 g̃i2 h̃i3xi4p z

i5
p y

i6
q

)
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yq
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1

2
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yq
0 1

1

2

Fig. 8. Parts of the Newton polytopes of f2yq and f̃2yq after applying trans(·).

can be written as

F ∗(xp, xq, yp, yq, zp, zq) = F ∗p (xp, yp, zp) + F ∗q (xq, yq, zq),

such that the monomials of F ∗p form a subset of{
xapy

b
pz
b
p | 0 ≤ a ≤ i1 + i3 + i4, 0 < b ≤ i1 + i2 − i6, 0 ≤ c ≤ i2 + i3 + i5

}
and the monomials of F ∗q form a subset of{

xaqy
b
qz
b
q | 0 ≤ a ≤ i1 + i3 + i4, 0 ≤ b ≤ i6, 0 ≤ c ≤ i2 + i3 + i5

}
.

See Figure 9 for an example.
Additionally, one can show that (as before) the coefficients of

xi1+i3+i4p yi1+i2−i6p zi2+i3+i5p

and
xi1+i3+i4q yi6q z

i2+i3+i5
q

are non-zero, or more precisely that they are products of powers of N and (N−1).
Notice that these monomials correspond to the outer most points in Figure 9,
i.e., the points with the largest ‖ · ‖1-norm.

yq

xq

zq
i6

i1 + i3 + i4

i2 + i3 + i5

yp

xp

zp

i1 + i2 − i6

i1 + i3 + i4

i2 + i3 + i5

Fig. 9. The effect of trans(·) on F ∗.
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As a consequence, we suggest instead of using the set M for selecting the
shift polynomials, to use a different set, which itself has a rectangular shape. For
that, we define

M̃ :=
{
xapy

b
pz
c
p | 0 ≤ a ≤ m, 0 ≤ c ≤ m, 0 ≤ b ≤ 2m

}
.

Notice that the set of tuples (a, b, c) with xapy
b
pz
c
p ∈ M̃ forms a rectangular cuboid

of size m× 2m×m in Z3. Also notice that M⊆ M̃.
We enhance our exponent functions, such that for monomials xapy

b
pz
c
p ∈ M̃ \

M they take the values

Ef (a, b, c) := a,

Eg(a, b, c) := c,

Eh(a, b, c) := Ex(a, b, c) := Ez(a, b, c) := 0.

Further, we redefine our shift polynomials as follows:

p̃[a,b,c](xp, xq, yp, yq, zp, zq) := f̃Ef (a,b,c) · g̃Eg(a,b,c) · h̃Eh(a,b,c)·
xEx(a,b,c)
p · zEz(a,b,c)

p ·
(eM)2m−(Ef (a,b,c)+Eg(a,b,c)+Eh(a,b,c)).

Now, to obtain a triangular matrix, our basic idea is to include sufficiently many
extra-shifts in yp and yq to the lattice, such that for every shift polynomial F ∗,
every monomial in the cuboids in Figure 9 is included in the basis. We make this
strategy more precise in Proposition 3.

Proposition 3. Order the monomials in M̃ according to the (zp, xp, yp)-order.
Define a lattice basis matrix B, in which the i-th column corresponds to the
monomial

λ[a,b,c] :=

{
xaqy

b/2
q zcq , if b is even

xapy
db/2e
p zcp, if b is odd.

where xapy
b
pz
c
p is the i-th smallest element in M̃. For xapy

b
pz
c
p ∈ M, the i-th row

of B corresponds to the coefficient vector of

trans
(
p̃[a,b,c] · ybb/2cq

)
(Xxp, Xxq, Y yp, Y yq, Xzp, Xzq).

For xapy
b
pz
c
p ∈ M̃\M with even b, the i-th row of B corresponds to the coefficient

vector of

trans
(
p̃[a,b,c] · yb(a+c)/2cq · yd(b−a−c)/2eq

)
(Xxp, Xxq, Y yp, Y yq, Xzp, Xzq).

For xapy
b
pz
c
p ∈ M̃\M with odd b, the i-th row of B corresponds to the coefficient

vector of

trans
(
p̃[a,b,c] · yb(a+c)/2cq · yd(b−a−c)/2ep

)
(Xxp, Xxq, Y yp, Y yq, Xzp, Xzq).

Then B is triangular.
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As the proof for Proposition 3 is completely analogous to that of Proposition 2,
we omit it here.

We are now ready to prove our main theorem.

Theorem 2. Let N = pq be a sufficiently large RSA modulus, where p and q
have the same bit-size. Let e < φ(N) be a public exponent. Suppose the cor-
responding CRT exponents dp, dq are upper bounded by dp, dq ≤ Nβ. Write

dp = d∗p2
k + d̃p, dq = d∗q2

k + d̃p, for some k ∈ N, MSBs d∗p, d
∗
q ≤ Nδ and

LSBs d̃p, d̃q. If we are given (N, e) and d̃p, d̃q, such that

δ <
1− 2β

10

and gcd(e · 2k, N − 1) = O(1), then we can factor N in polynomial time (under
Assumption 1).

Proof. The proof is very similar to that of Theorem 1. We build a lattice basis
matrix B as described in Proposition 3 with M = 2k. As before, we remove the
powers of N and N − 1 from the diagonal of B and multiply the other entries in
the matix appropriately with the inverses. Notice that as opposed to Theorem
1 here we need the slightly stronger assumption gcd(e · 2k, N − 1) = O(1), as we
now have to take inverses modulo eM .

We can asymptotically compute the determinant as det B = (eM)seMXsXY sY ,
where

seM =
∑

xa
py

b
pz

c
p∈M̃

(2m− Ef (a, b, c)− Eg(a, b, c)− Eh(a, b, c)) =
7

3
m4 + o(m4),

sX =
∑

xa
py

b
pz

c
p∈M̃

(a+ c) = 2m4 + o(m4),

sY =
∑

xa
py

b
pz

c
p∈M̃

b

2
= m4 + o(m4).

Then, calculating the lattice’s dimension as n = |M̃| = 2m3, our enabling con-
dition becomes

(α+ β − δ) · 7

3
m4 +

(
α+ β − 1

2

)
· 2m4 +

1

2
·m4 < (α+ β − δ) · 4m4 + o(m4).

By incorporating α < 1 as before, the above simplifies to

δ <
1− 2β

10
+ o(1),

which concludes the proof of the theorem. ut
In Figure 10 we show for a given value of β, how large of a fraction of key bits
is required for the attack to work. That, is on the vertical axis we plot the value
(β − δ)/β.
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Fig. 10. Required fraction of LSBs to make the attack from Theorem 2 work.

Notice that the graph in Figure 10 has with (1/2, 1) a very natural ending
point. The result strongly suggests that for a maximum level of security, full
size CRT-exponents must be used – as only then Partial Key Exposure attacks
can be prevented. Additionally, it shows that regardless of the key size, we can
always factor the modulus, once all key bits are exposed.

Unfortunately, the ending point (1/12,0) on the left side of the graph, how-
ever, clearly is non-optimal, as it tells us that for any β > 1/12 ≈ 0.083, at
least some key bits have to be exposed to yield the factorization of N . This is
contradictory to Theorem 1, by which for any β < 0.122 no additional key bits
are required to factor N .

Intuitively this might be explained with the fact that for δ → β (i.e., when
almost all key bits are unknown) the value eM tends to e. By that, the benefit
of using the larger modulus in the lattice construction shrinks more and more
as δ grows to β. At a certain point, the inferior shape of the polynomials then
outweighs said benefit and therefore gives us an inferior bound. To fill this gap,
we propose in the following an alternative lattice construction, inspired by ideas
of Aono [1].

4.1 Improved Attack by Linking our First Attack and TLP

The main idea behind the improved construction is to use our lattice from The-
orem 2 together with the TLP lattice. For that, we define a new set

M̃σ :=
{
xapy

b
pz
c
p | 0 ≤ a ≤ m, 0 ≤ c ≤ m, 0 ≤ b ≤ 2σm

}
⊆ M̃

for some parameter 0 ≤ σ ≤ 1, that allows us to interpolate between the TLP
lattice and the construction from Proposition 3 and Theorem 2.

When now constructing a lattice exactly as described in Proposition 3, but
using the set M̃σ instead of M̃, one obtains the same basis matrix Bσ, that one

26



would obtain, when removing all polynomials, which add monomials xapy
b
pz
c
p and

xaqy
b
qz
c
q with b > σm to the lattice from Proposition 3. Notice that from Figure 9

it follows that the remaining polynomials in Bσ do not have monomials xapy
b
pz
c
p

or xaqy
b
qz
c
q with b > σm. Hence, Bσ is still triangular.

Next, we build another lattice basis matrix BTLP exactly as described in the
TLP attack from Theorem 1, but apply two minor changes:

1. Instead of using the polynomials f , g and h for defining the shift polynomials,
we use

f∗ := Mf, g∗ := Mg, h∗ := Mh.

2. We multiply powers of eM to the shift polynomials, instead of powers of e.

Clearly, this does not weaken the TLP attack, as all additional powers of M
in the enabling condition cancel out. With these changes, the shift polynomials
now have the root r not only modulo e, but also modulo eM . This allows us to
combine Bσ and BTLP as follows.

We remove all polynomials from BTLP that add monomials xapy
b
pz
c
p and

xaqy
b
qz
c
q with b ≤ σm to the diagonal. After that, we add all polynomials from the

matrix Bσ to BTLP . Since in Bσ all monomials xapy
b
pz
c
p and xaqy

b
qz
c
q with a ≤ m,

c ≤ m and b ≤ σm appear, it follows that in particular all monomials that we
have just removed, reappear in our matrix. Hence, we can rearrange the rows of
the newly obtained matrix, such that it is again triangular.

With the above, we thus obtain a triangular lattice basis matrix which nicely
incorporates the advantages of the lattice construction from Theorems 1 and 2 at
the same time. Similar as in the proofs of both theorems, the enabling condition
for the construction becomes

eseMsMXsXY sY < (eM)2mn,

with analogously defined exponents se, sM , sX , sY and n. (Here we sum over
the monomials in Bσ as well as over those in BTLP , except for those that we
remove from BTLP .)

For σ ≤ τ , we have

n =
σ3 + 6 τ3

3 τ2
m3 + o(m3),

sX =
σ4 + 14 τ4

6 τ3
m4 + o(m4),

sY =
3σ4τ + 14 τ5

12 τ3
m4 + o(m4),

se = −σ
4 − 4σ3τ − 10 τ4 − 2 τ3

6 τ3
m4 + o(m4),

sM = −σ
4τ2 − 4σ3τ2 + 6σ2τ2 − 2σ3 + 2στ2 − 12 τ3

3 τ2
m4 + o(m4)
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β 0.122 0.123 0.124 0.125 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22
(β − δ)/β 0 0.053 0.084 0.110 0.205 0.332 0.423 0.492 0.549 0.595 0.635 0.0668 0.698 0.723
σ 0 0.328 0.392 0.434 0.548 0.655 0.716 0.757 0.787 0.811 0.830 0.846 0.859 0.869

β 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36
(β − δ)/β 0.746 0.767 0.786 0.803 0.819 0.833 0.847 0.859 0.871 0.882 0.892 0.902 0.911 0.919
σ 0.878 0.885 0.891 0.897 0.902 0.907 0.912 0.917 0.922 0.927 0.931 0.935 0.940 0.944

β 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50
(β − δ)/β 0.927 0.934 0.942 0.948 0.955 0.961 0.966 0.972 0.977 0.982 0.987 0.991 0.995 1
σ 0.948 0.952 0.956 0.960 0.964 0.968 0.972 0.976 0.980 0.984 0.988 0.992 0.996 1

Table 1. Values of β, (β − δ)/β and σ for our improved lattice construction.

and for τ ≤ σ ≤ 2τ

n = −σ
3 − 6σ2τ + 6στ2 − 8 τ3

3 τ2
m3 + o(m3),

sX = −σ
4 − 4σ3τ + 4στ3 − 16 τ4

6 τ3
m4 + o(m4),

sY = −3σ4τ − 16σ3τ2 + 12σ2τ3 − 16 τ5

12 τ3
m4 + o(m4),

se =
σ4 − 8σ3τ + 24σ2τ2 − 20στ3 + 16 τ4 + 2 τ3

6 τ3
m4 + o(m4),

sM = −σ
4τ2 − 4σ3τ2 + 6σ2τ2 + 2σ3 − 12σ2τ + 14στ2 − 16 τ3

3 τ2
m4 + o(m4).

Unfortunately, we can not give a closed formula on β and δ as in Theorem
2, because there seems to be no way for analytically maximizing σ. Therefore,
we can only present numerical results.

When setting τ := max{1/2, 1−2β} (as in the proof of Theorem 1) and then
numerically optimizing σ, we obtain the results shown in Table 1. These results
have been used to plot the graph in Figure 2.

Since we reach the lower bound of 0.122, we fully close the gap between
Theorems 1 and 2. Notice how the table shows that for β = 0.122 it is best
to use the TLP lattice (i.e., setting σ = 0) and for β = 0.5 to use the lattice
construction from Proposition 3 (i.e., setting σ = 1).

5 Experimental Results

The main purpose of our experiments is to verify the validity of Assumption 1.
Although our results theoretically hold in the range N0.122 ≤ dp, dq ≤ N0.5,

we cannot expect to provide experimental data for large dp, dq in practice. The
reason is that for small exponent CRT-RSA attacks like TLP and our Partial
Key Exposure attack the lattice dimension grows as a cubic function in m. Thus,
the convergence to the theoretical bounds is quite slow. E.g. for the TLP attack
with its theoretical bound dp, dq ≤ N0.122, the original authors provide in [28]
practical experiments only up to N0.062.
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Hence, in order to demonstrate that our attack naturally extends the TLP
attack to the Partial Key scenario, we provide some data points with β ≥ 0.062.

We implemented our experiments in SAGE 9.2 using Linux Ubuntu 18.04.4
on a laptop with Intel(R) Core(TM) i7-7920HQ CPU 3.67 GHz. The results are
given in Table 2.

Assumption 1 was valid in all experiments. In every run we were able to
recover the unknown secrets via Groebner basis computation.

β Bit-size of N Bit-size of dp, dq Unknown key-bits Dimension LLL Time (sec.)
0.040 1,000 40 2 x 15 53 4
0.040 5,000 200 2 x 80 53 196
0.040 10,000 400 2 x 175 53 1,179
0.065 1,000 65 2 x 20 132 1,242
0.065 5,000 325 2 x 100 132 9,505
0.070 1,000 70 2 x 30 263 51,181
0.100 1,000 100 2 x 30 434 786,423
0.110 1,000 110 2 x 30 434 841,310

Table 2. Experimental results of our Partial Key Exposure attack.
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