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Abstract. Anonymity networks, such as the Tor network, are highly
decentralized and make heavy use of ephemeral identities. Both of these
characteristics run in direct opposition to a traditional public key in-
frastructure, so entity authentication in an anonymity network can be
a challenge. One system that Tor relies on is key-blinded signatures,
which allow public keys to be transformed so that authentication is still
possible, but the identity public key is masked. This is used in Tor during
onion service descriptor lookup, in which a .onion address is resolved
to a rendezvous point through which a client and an onion service can
communicate. The mechanism currently used is based on elliptic curve
signatures, so a post-quantum replacement will be needed.
We consider four fully post-quantum key-blinding schemes, and prove the
unlinkability and unforgeability of all schemes in the random-oracle model.
We provide a generic framework for proving unlinkability of key-blinded
schemes by reducing to two properties, signing with oracle reprogramming
and independent blinding. Of the four schemes, two are based on Round
3 candidates in NIST’s post-quantum signature standardization process,
Dilithium and Picnic. The other two are based on much newer schemes,
CSI-FiSh and LegRoast, which have more favourable characteristics for
blinding. CSI-FiSh is based on isogenies and boasts a very small public key
plus signature sizes, and its group action structure allows for key-blinding
in a straightforward way. LegRoast uses the Picnic framework, but with
the Legendre symbol PRF as a symmetric primitive, the homomorphic
properties of which can be exploited to blind public keys in a novel
way. Our schemes require at most small changes to parameters, and
are generally almost as fast as their unblinded counterparts, except for
blinded Picnic, for which signing and verifying is roughly half as fast.

1 Introduction

Among the many difficulties in building a robust anonymity network, how entities
are authenticated can be a unique challenge that cannot be solved with direct
cryptographic techniques. Most networks will accomplish authenticity goals



through the use of a signature scheme, but in a network with anonymity goals,
the public keys used for signing can run contrary to those goals. One technique
to overcome this contradiction is used in the Tor network: key-blinding.

A signature scheme with key-blinding works similarly to a regular signature
scheme, but with the added property that given a public key pk and a nonce
τ , a new public key pkτ can be derived, which in turn can be used for signing
and verification. This is useful in contexts where two parties wish to exchange
signed material, but must do so in the presence of a potential eavesdropper who
may attempt to de-anonymize them. Tor describes such a scheme, and its use,
in version 3 of the rendezvous specification, describing how clients connect to
onion services in the network [35]. In subsection 2.1 we will describe precisely
how key-blinding is used in Tor, and the security it is meant to provide.

It is useful to describe the key-blinding scheme as it exists in Tor, to gain
some intuition for how such a scheme works and what security it provides.
Key-blinding in Tor today uses the Ed25519 signature scheme [8]. Keys in this
signature scheme are made with respect to a generator B of a cyclic group of size
` (written with additive notation). Secret keys are an integer a ∈ {1, . . . , `− 1}
and the corresponding public key is A = aB. We refer to [8] for a complete
description of the signing and verification processes, but for our description, it
suffices to know that any such (a,A) pair are a valid key pair for Ed25519.

To blind a public key with a nonce τ , one computes a value t ← H(τ ||A),
with t ∈ {1, . . . , `− 1}. Then the blinded public key is tA, with corresponding
secret key t · a (mod `). This forms a new key pair that is entirely compatible
with Ed25519, so that it can be used for signing and verification.

It is fairly easy to see why this scheme has the desired security properties.
Given two blinded keys and the associated nonces, there is no way to tell if they
come from the same identity public key or not. Without knowledge of the identity
public key, the distribution of the blinded public key is entirely uniform over
the public key space, so that these keys are entirely unlinkable to each other.
Furthermore, the keys retain their unforgeability, as the blinded secret key ta
requires both t and a to be known. Formal proofs of the security properties can
be found in a tech report posted to the Tor developer mailing list [24].

This system works quite well for Tor today, but with the development of
quantum computers, cryptography based on the discrete logarithm problem
will eventually be rendered insecure. To ensure the long-term security of Tor, a
replacement post-quantum signature scheme with key-blinding will be needed.

1.1 Our Contributions and Paper Structure

In our work we address the challenge of extending post-quantum signature schemes
to have a key-blinding functionality. We focus on three promising post-quantum
signature schemes. Dilithium is a lattice-based signature scheme that is currently
under consideration in NIST’s Post-Quantum Cryptography standardization
effort [19]. Instead of directly working with Dilithium, we will work with the
Dilithium-QROM variant [27]. Dilithium-QROM has simpler provable guarantees
by neatly fitting into the ‘Lossy ID scheme’ framework [1], so to ensure that our
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Scheme |pk| |σ| KeyGen Blind Sign Verify

Dilithium-QROM 7.7 kB 5.7 kB 3810 ms - 9360 ms 2890 ms
blDlithium-QROM 10 kB 5.7 kB 2180 ms 1650 ms 28300 ms 717 ms
Increase from blinding 1.3× 1× 0.6× - 3× 0.25×

LegRoast 0.50 kB 7.94 kB 0.9 ms - 12.4 ms 11.7 ms
blLegRoast 0.50 kB 11.22 kB 0.9 ms 0.9 ms 18.6 ms 17.8 ms
Increase from blinding 1.0× 1.4× 1.0× - 1.5× 1.5×

CSI-FiSh-Merkleized 32 B 1.8–2.1 kB 10900 ms - 559 ms 559 ms
CSI-FiSh-unMerkleized 16 kB 0.45 kB 10800 ms - 554 ms 553 ms
blCSI-FiSh 16 kB 0.45 kB 10600 ms 10600 ms 546 ms 540 ms
Increase from blinding 1.0× 1.0× 1.0× - 1.0× 1.0×

Fig. 1. Performance results from the implemented key-blinding schemes. Note that we
emphasize the increase over the raw numbers for the timing information. Implementa-
tions are not optimized and may not reflect how long a ‘proper’ implementation will
take. Nonetheless, the increase reflects how much additional work is required to use
the scheme for key-blinding. For all schemes, blinded public keys have the same size as
their unblinded version and so we do not distinguish between the two.

scheme has similar guarantees we work within the same framework. CSI-FiSh
is a relatively new post-quantum signature scheme based on the CSIDH group
action [14]. LegRoast is based on the Picnic framework, but replaces the more
traditional symmetric function used with the Legendre PRF, the homomorphic
properties of which allow for small signatures [12,17]. In the Appendix, we also
consider Picnic itself. Picnic is another submission to NIST’s efforts, which
constructs a signature scheme out of the ‘MPC-in-the-head’ paradigm [16,25]. We
show how all of these signature schemes can be extended to support key-blinding.
For CSI-FiSh, Dilithium, and LegRoast this process is done similarly to the
existing Ed25519 scheme, by homomorphically incorporating a blinding factor
into the public key. In all the schemes, blinding is generally around as efficient
as key generation, while signing is either as efficient, or at worst half as fast.
We provide a generic framework for proving the unlinkability property, showing
that it reduces to two easily proven properties. We prove all these schemes both
unlinkable and unforgeable in the random oracle model. Note that each of the
signature schemes we have discussed are built out of the Fiat-Shamir paradigm.
We discuss why this is the case, and what some of the challenges are for building
a key-blinded scheme out of a trapdoor signature scheme. Finally, we provide
prototype implementations out of the CSI-FiSh, LegRoast, and Dilithium-QROM
schemes and discuss aspects of their performance as it applies to Tor. Our results
from the three implemented schemes are shown in Figure 1.

Section 2 provides background information on Tor and definitions for key-
blinding, which is needed to follow discussion in the remainder of the paper.
We discuss the property of unlinkability, and how it can be achieved in all
of our schemes in Section 3. In Section 4 we extend Dilithium-QROM with
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key-blinding and discuss the proof of security, then repeat this process with
CSI-FiSh in Section 5, and LegRoast in Section 6. Finally we provide details of
our implementations and their performance in Section 7 before concluding in
Section 8.

In the auxiliary material provided, we include an outline of a key-blinded Picnic
scheme (Appendix B), as well as the detailed descriptions of the other schemes
and the associated proofs of unlinkability and unforgeability (Appendices A, C, D,
and E).

1.2 Related Work

As mentioned, the schemes that we choose to base blinded signature schemes off
of are Dilithium [19,27], CSI-FiSh [14], LegRoast / PorcRoast [12], and, in the ap-
pendix, Picnic [16]. While to our knowledge, this is the first attempt to construct
post-quantum key-blinded signatures, there are a few other papers who have
attempted to build similar primitives, for different reasons. In a 2018 preprint [3],
the authors considered post-quantum PKIs in vehicle-to-anything (V2X) commu-
nications. One of the techniques they developed to provide anonymity to vehicles
in such a context involved transformations on public key materials similar to that
of key-blinding. Their construction was based on the lattice scheme qTESLA,
which was a candidate for standardisation in the first two rounds of NIST’s
process. The process of key-blinding also bears a similarity to hierarchical deter-
ministic wallets used for Bitcoin [22,29]. These wallets allow a user to create child
public and secret keys for the delegation of abilities for spending. Such a protocol
has much stronger requirements than simple key-blinding, which does not need
to be hierarchical and does not need for the child secret keys to contain no
information about parent secret keys. Some work on post-quantum deterministic
wallets has been published [2], with their scheme also based on qTESLA.

It is important to distinguish between the key-blinding schemes we discuss
here and the notion of ‘blind signatures’, for which post-quantum schemes already
exist [23, 31]. Blind signatures are an interactive protocol that allow a user to
obtain a signature on a message without the signer knowing the message. This is
very different from key-blinded schemes, which have the same functionality as a
traditional signature scheme, but with the extra ability to randomize public keys.

2 Background

2.1 Onion Services

The Tor network serves millions of clients a day, providing anonymity to users
from the websites they connect to, and concealing what they are connecting to
from their Internet service provider and any other intermediary in their path [34].
An important part of the Tor networks is onion services (previously known as
hidden services). Onion services allow users to not only access content with Tor’s
strong privacy guarantees, but also serve content.
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At a high level, onion services work by uploading a three hop path (called a
circuit in Tor terminology) to a Tor node called a introduction point. This path
begins at the introduction point and ends at the onion service. Because of Tor’s
layered encryption, the introduction point does not know where the onion service
lives, only where the next node in the path lives. For a client to connect to the
onion service, they use the .onion address to find the introduction point, who
will then direct their communication towards the onion service.

In the most recent version of the rendezvous specification (the specification
that describes the process of connecting to an onion service), the .onion address
is the long-lived EdDSA public key of the onion service. Time in the Tor network
is divided into periods, with the period length a consensus parameter and the
period number the number of periods that have occurred since the Unix epoch.
So given a public key, a nonce, and consensus parameters of the Tor network,
the blinding factor t is computed by hashing together the public key, the nonce,
and the current period number, as well as some parameters of both the Tor
network and the signature scheme. As mentioned in the introduction, this value
t is treated as an integer in the range 1 to `− 1, with ` the order of the cyclic
group, so that public keys are transformed by simply multiplying by t.

The blinded key can then be used to index the descriptors while they are
held by the HSDir. Clients can derive the blinded key from the .onion address
and query for a descriptor by providing the blinded key. So, the blinded key
serves as a private index from which the descriptor may be queried. This also
implicitly means that the client is implicitly checking the connection between
the identity public key from the .onion address and the blinded public key. For
security it is important that only the actual owner of the .onion address can
upload a descriptor to a given index. This is where the signing functionality of
key-blinding is used. Onion services also upload a signature on the descriptor,
which can be verified with the blinded key. When HSDirs verify this signature,
they ensure that the descriptor is being uploaded by the actual owner of the
identity public key — all without knowing what the .onion address is.

A malicious actor with a quantum computer could forge a signature with
respect to a chosen blinded public key, and use this to upload false information
about an introduction point. This would mean that queries to the onion service
could be redirected to the adversary.

2.2 Key-Blinding Signature Scheme Definitions

Definition 1. A key-blinding signature scheme ∆ consists of four algorithms
(KeyGen,BlindPk,Sign,Verify) where

– KeyGen() generates an identity key pair (pk, sk).
– BlindPk(pk, τ) deterministically generates a blinded public key pkτ .
– Sign(m, sk, τ) may deterministically or probabilistically generate a signature
σ for the message m using the identity secret key sk and epoch τ .

– Verify(m,σ, pkτ ) accepts if the signature is valid under the message m and
epoch τ used to generate pkτ , otherwise it rejects.

5



We require the usual correctness properties for signature schemes, but ex-
tended for key-blinding. That is, if (pk, sk) is a keypair generated from KeyGen,
pkτ is then derived from BlindPk with a given nonce τ , and σ ← Sign(m, sk, τ),
then with overwhelming probability Verify(m,σ, pkτ ) will accept. Anyone without
knowledge of the identity public key can verify using the pkτ given in the descrip-
tor, while someone with knowledge of the identity key can take the additional
step of checking pkτ = BlindPk(pk, τ). Note that we do not require that blinded
keys can be blinded again.

Signatures with key-blinding must satisfy two security requirements. First,
they must be unlinkable, which means that an adversary without knowledge
of the identity public key who observes many public key blindings as well as
signatures under those blindings cannot distinguish a fresh blinding of the public
key from an entirely unrelated key. Second, the scheme must satisfy unforgeability.
This property is largely the same for signature schemes with key-blinding as it is
for typical signature schemes. However, rather than just devising an (m,σ) such
that Verify(m,σ, pk) accepts, the adversary must be able to provide an (m,σ, τ)
such that Verify(m,σ, pkτ ) accepts where pkτ ← BlindPk(pk, τ).

Earlier versions of both of these formulations appear in [24]. The security
definitions that we present here are more general. The definitions in [24] were
tied to the exact usage of key-blinding in Tor, and do not consider security in
situations where the blinding process is decoupled from the signing process, so
that multiple signatures can be issued under the same blinded public key.

Definition 2 (Unlinkability). Let ∆ = (KeyGen,BlindPk,Sign,Verify) be a
key-blinding signature scheme. Define ExpUL−CMEA

∆ (A) as follows:

– Let (pk, sk)← KeyGen() be freshly generated identity keys.
– A may query τ to a public key-blinding oracle to get pkτ ← BlindPk(pk, τ).
– A may query (m, τ) to a signing oracle to receive σm,τ ← Sign(m, sk, τ) for

any τ previously queried to the public key-blinding oracle.
– A makes a challenge query τ∗ not previously queried to the public key-

blinding oracle. A bit b is uniformly sampled, pk0 ← pk, and a fresh pair of
identity public keys (pk1, sk1) ← KeyGen() is generated. A receives pk∗b ←
BlindPk(pkb, τ

∗).
– A may additionally query the public key-blinding oracle or the signing oracle,

except that if the queried τ = τ∗, the oracles use pk∗b .
– A provides a bit b∗ after expending t-bounded computational resources, qB-

bounded public key-blinding oracle queries, and qS-bounded signing queries;
and the game outputs 1 if b∗ = b, otherwise it outputs 0.

The UL− CMEA (unlinkability under chosen message and epoch attack) advantage

is defined as AdvUL−CMEA
∆ (A) =

∣∣∣Pr[ExpUL−CMEA
∆ (A) = 1]− 1

2

∣∣∣.
Definition 3 (Unforgeability). Let ∆ = (KeyGen,BlindPk,Sign,Verify) be a
key-blinding signature scheme. Define ExpEUF−CMEA

∆ (A) as follows:

– Let (pk, sk)← KeyGen() be freshly generated identity keys.
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– A may query (m, τ) to a signing oracle which generates pkτ ← BlindPk(pk, τ)
and σm,τ ← Sign(m, sk, τ), and sends (pkτ , σm,τ ) to A.

– A submits (m∗, σ∗, τ∗) after expending t-bounded computational resources
and qS-bounded signing queries, and the game outputs 1 if (m∗, τ∗) was
not previously queried and Verify(m∗, σ∗,BlindPk(pk, τ∗)) = 1, otherwise it
outputs 0.

The EUF− CMEA (existential unforgeability under chosen message and epoch
attack) advantage is defined as AdvEUF−CMEA

∆ (A) = Pr[ExpEUF−CMEA
∆ (A) = 1].

3 Unlinkability of Signature Schemes with Key-Blinding

We want to establish that an adversary who has access to a blinding oracle and
a signing oracle still cannot distinguish a new blinding of the identity public
key from the blinding of a fresh public key. We observed a common technique
that could be used for showing unlinkability among the signature schemes we
consider. To establish unlinkability, we devise a property we call independent
blinding, which asks that the distribution of the output of the blinding function
is independent from its input. This means that seeing any number of blindings
of a public key leaks no information on the identity public key.

While our techniques provide a generic framework to establish unlinkability,
they do not extend to showing unforgeability or provide a way to generically
construct schemes with key-blinding out of Fiat–Shamir style singature schemes.
This is because the mechanism by which blinding is accomplished changes depend-
ing on the scheme. As a result, there is no common framework for constructing
a key-blinding scheme, and the proof of unforgeability similarly must take the
blinding mechanism into account.

To guarantee that the signing oracle leaks no information about the identity
public key, we require that the distribution of signatures is dependent only on
the public key. This is best characterized by a property we call signing with
oracle reprogramming, which states that if we have the ability to reprogram
the random oracle used in the signature scheme, then we can create signatures
indistinguishable from real ones for any message.

Many signature schemes show their security by first establishing just such
a property. As an example, for signature schemes built from an identification
protocol and the Fiat–Shamir heuristic, the zero-knowledge property is typically
proven by establishing the ability to simulate transcripts given only the public
key. When given control of the random oracle, we can sample transcripts and
reprogram the random oracle to generate a signature.

To formalize this notion, we require a concept we call a reprogrammed point
extractor. This is a simple function, efficiently computable and publicly known to
all, which, given a signature σ, public key, and message, can extract the point on
which the random oracle is reprogrammed to make the signature verify.

It is best to illustrate this with an example. Consider a generic form of the
Probabilistic Signature Scheme [7] defined with respect to a trapdoor permutation
T . To sign a message, sample a random salt r and compute x = T−1(H(pk‖m‖r)).
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The signature is σ = (x, r). To verify a signature, simply check that T (x) =
H(pk‖m‖r). It is straightforward to show that signatures can be generated if the
random oracle can be reprogrammed. On input of a message m, sample a random
(x, r) and reprogram H so that H(pk‖m‖r) = T (x). If T is a permutation, it
is easy to see that (x, r) will have the same distribution as in a real signature,
and the reprogramming cannot be detected as long as r is sufficiently long (so
that the adversary is unlikely to have queried pk‖m‖r beforehand). Let Ext
denote our reprogrammed point extractor. For the example above, we have
Ext((x, r), pk,m) = pk‖m‖r.

Definition 4 (Signing with oracle reprogramming). Let Σ be a signature
scheme that relies on a random oracle H. We say that the signature scheme
admits signing with oracle reprogramming if there exists a reprogrammed point
extractor Ext and a forgery function Forge that takes in pk,m and returns (y, σ)

such that Σ.VerifyH:Ext(σ,pk,m)7→y(pk,m, σ)→ ‘accept’, where H : x 7→ y denotes
the random oracle reprogrammed such that H(x) = y.

In order to use oracle reprogramming to sign a message, we need to consider
the probability that an adversary is capable of noticing that the real signing
algorithm wasn’t used. This amounts to considering the joint distribution of
the signature as well as the input and output of the hash function on the
reprogrammed point.

Definition 5. Let Σ = (Sign,Verify) be a signature scheme defined with respect
to a random oracle H and a public key space PK that admits signing with oracle
reprogramming via a point extractor Ext and a forgery function Forge.

For a public key and message pk,m, we consider the adversary’s ability to
distinguish the distribution of (yforged, σforged)← Forge(pk,m) from the distribu-
tion of (yreal, σreal) where σreal ← Sign(pk,m) and yreal = H(Ext(σreal, pk,m))
(i.e., the output of the hash on the input that would be reprogrammed).

We denote L1 distance between these distributions as δ, that is

δ =
∑
σ,y

∣∣Pr[σreal = σ, yreal = y]− Pr[σforged = σ, yforged = y]
∣∣ .

As well, we need to consider the ability of an adversary to detect that repro-
gramming has occurred. This can be evaluated by considering the min-entropy of
the point that is reprogrammed, to ensure that the probability that an adversary
queries this point prior to reprogramming is low. Let hmin denote the min-entropy
of Ext(σ, pk,m), where (y, σ)← Forge(pk,m).

Note that in the above definition we are implicitly assuming that the statistical
distance and the entropy are not dependent on m, pk, or H. For all of the schemes
that we construct this is the case. Even if these values were dependent on pk, m,
or H, the scheme could still be secure as long as they were sufficiently small on
average. However to simplify the proof and notation, our definition only considers
schemes where they do not depend on pk, m, or H.
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We now consider the unlinkability experiment ExpUL−CMEA
∆ . We will show

a reduction from an adversary who makes queries to the signing oracle to an
adversary who makes none.

Lemma 1. Let ∆ be a key-blinding signature scheme which admits signing with
oracle reprogramming with L1 distance δ and min-entropy of reprogrammed points
hmin. Let A be an adversary making qB queries to the blinding oracle, qS queries
to the signing oracle, and qH queries to the random oracle. Using A, we construct
an adversary AqS=0 that makes no signing queries (i.e., a key-only adversary)
for which AdvUL−CMEA

∆ (A) ≤ AdvUL−CMEA
∆ (AqS=0) + qHqS2−hmin + qSδ.

Proof. To construct the adversary AqS=0 while relying on the adversary A as a
subroutine, we must show how to handle queries to the blinding oracle and the
signing oracle. For queries to the blinding oracle, AqS=0 can simply pass along
these queries to the blinding oracle provided to them.

To handle the signing queries, we rely on signing with oracle reprogramming.
Whenever a signing query is made with respect to a blinded public key pkτi , we
reprogram the random oracle in order to provide a signature. Thus we need to
consider the adversary’s ability to distinguish that the secret key is not being
used to sign messages. To realize this, the adversary either needs to observe
that the oracle has been reprogrammed, or notice a difference in the observed
distribution of some part of the signature.

To distinguish that reprogramming has occurred during signing, the adversary
must have queried the random oracle on the reprogrammed point previously. In
total, qS points will be reprogrammed. So the adversary makes qH guesses, and
then qS points are chosen to be reprogrammed from a distribution with min
entropy hmin, and we want to consider the probability of a match between the
qH and qS points. We can upper-bound this by qHqS2−hmin .

Next we consider the output distribution of the programmed points. There
are qS reprogrammed points, and the statistical (L1) distance between the forged
values and the real values is δ, so the adversary’s advantage in distinguishing
based on the distribution of reprogrammed values is at most qSδ. ut

We now only need to consider the advantage of AqS=0, an adversary who
makes no queries to the signing oracle. So, we need only consider how the blinding
oracle and random oracle provide information to the adversary.

To characterize the security of blinding, we want to insist that the distribution
of the public key returned by BlindPk is independent of the identity public key
input, so that no knowledge is gained. However care must be taken here, because
the BlindPk algorithm is actually deterministic on the inputs pk and τ . So when
we refer to the ‘distribution’ of BlindPk we need to be clear over what randomness.

In practice, the BlindPk function hashes the public key and the nonce τ to
generate some randomness, and then uses that randomness to blind the public
key. To separate out the process of hashing to generate randomness and using the
randomness, we will define a new function randBlind(pk; r), which takes in a public
key and some randomness, and blinds the public key. Then BlindPk is defined
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by making randBlind deterministic through the random oracle H. Specifically,
BlindPk(pk, τ) = randBlind(pk;H(pk‖τ)).

Definition 6 (Independent Blinding). Let ∆ be a key-blinding signature
scheme and let n be a positive integer. Let pk0, pk1, . . . , pkn be public keys gener-
ated from KeyGen. Sample uniform randomness r1, r2, . . . , rn. The independent
blinding advantage, denoted AdvInd−Blind

∆,n (A), is the advantage that an adversary
has in distinguishing the following two distributions:

1) randBlind(pk0; r1), randBlind(pk0; r2), . . . , randBlind(pk0; rn)

2) randBlind(pk1; r1), randBlind(pk2; r2), . . . , randBlind(pkn; rn)

This ensures that the adversary AqS=0 may observe many blindings of the
public key with respect to arbitrary nonces but what they see is close to a
distribution independent of the identity public key.

Lemma 2. Let ∆ be a key-blinding signature scheme and let hpk be the min-
entropy of the public key returned from ∆.KeyGen. Let AqS=0 be an UL− CMEA
adversary that makes no queries to its signing oracle. Then there exists an
algorithm B such that AdvUL−CMEA

∆ (AqS=0) ≤ AdvInd−Blind
∆,n (B) + qH2−hpk , where

n is the number of blinding queries AqS=0 makes to its public key-blinding oracle
and the runtime of B is approximately the same as the runtime of A.

Proof. We use a simple game-hopping proof to bound the adversary’s suc-
cess probability. Game G0 proceeds according to ExpUL−CMEA with the ad-
versary making no signing queries by assumption. In game G1, when the ad-
versary queries the blinding oracle with input τ , rather than responding with
BlindPk(pk, τ) = randBlind(pk,H(pk‖τ)), we sample a uniformly random r and
return randBlind(pk, r). Note that there is no difference between these games
until an adversary queries H(pk‖τ) for some τ ; we let bad be the event that the
adversary makes such a query. Games G0 and G1 are identical-until-bad [6].

In gameG2 we modify the response to each blinding query from randBlind(pk, r)
by sampling a fresh pk′ each time from KeyGen and returning randBlind(pk′, r).
We can construct, from an adversary that distinguishes G1 from G2, a reduction
B that distinguishes the two distributions in the independent blinding property:
G1 uses the first distribution in Definition 6, whereas G2 uses the second. Thus
G2 can be distinguished from G1 with advantage at most AdvInd−Blind

∆,n (B).
We now consider the probability of event bad—i.e., the adversary querying

H(pk‖τ)—in G2. Since none of the blindings actually use pk, the success prob-
ability is bounded by the adversary’s ability to guess the public key. For this
we use the min-entropy of the public key returned from key-generation. Over
qH queries, the probability that an adversary is able to guess the public key is
bounded by qH2−hpk . By the fundamental lemma of game playing [6], this is the
probability that an adversary is able to distinguish between game G0 and G1.

Finally, in game G2 all blinded public keys are independent of the original
key, so everything the adversary sees is independent of the challenge bit b, and
thus the adversary’s advantage in G2 is 0, yielding the desired result. ut
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blDilithium-QROM.KeyGen()

1 : K ← {0, 1}256

2 : (s1, s2)
$←− S`η × S

k
η

3 : t← As1 + s2

4 : t1 ← Power2Roundq(t, d− 1)

5 : t0 ← t− bt1/2c · 2d

6 : pk ← t1

7 : sk ← (s1, s2, t0, K)

8 : return (pk, sk)

blDilithium-QROM.BlindPk(pk = t1, τ)

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : t
′ ← As

′
1 + s

′
2

3 : t
′
1 ← Power2Roundq(t

′
, d− 1)

4 : t1,τ ← t1 + t
′
1

5 : pkτ ← t1,τ

6 : return pkτ

Fig. 2. Key generation and blinding algorithms for blDilithium-QROM.

One could go to the effort of computing or bounding the min-entropy hpk of
the public key returned from KeyGen for each scheme. It is convenient to observe
that 2−hpk ≤ AdvEUF−CMEA

∆ (A) for any adversary A: otherwise, for a scheme
where certain public keys have abnormally high change of being generated, an
adversary could break unforgeability by repeatedly running KeyGen until the
desired public key (and a corresponding secret key) is generated. Thus,

Corollary 1. Let ∆ and AqS=0 be as in Lemma 2. Then there exist algorithms
B1,B2 such that AdvUL−CMEA

∆ (AqS=0) ≤ AdvInd−Blind
∆,n (B1)+qHAdvEUF−CMEA

∆ (B2),

where n is the number of blinding queries AqS=0 makes to its public key-blinding
oracle and the runtimes of B1 and B2 are approximately the same as that of A.

4 A Lattice-Based Key-Blinding Scheme

Dilithium [19] is a finalist in the NIST post-quantum signature standardization
process and comes from a long line of lattice-based signature schemes. We present
a key-blinded version of Dilithium-QROM [27] which modifies Dilithium to permit
lossy key generation, hence allowing a reduction from the scheme to Module
Learning with Errors (MLWE) assumption. Later, in Section 4.3, we discuss the
challenges in blinding Dilithium itself.

Our construction, blDilithium-QROM utilizes the fact addition is homomor-
phic. As a result, the A matrix is a public matrix used by all parties in the
network. In addition, both signing and verification use the public key when
sampling the challenge c. Finally, the identity public key consists consists of an
extra bit as this permits key-blinding.

4.1 blDilithium-QROM Description

We make use of functions defined in [27]. In addition, our notation mirrors that
in [27]. A complete description is in Appendix A.

Signing is performed by using G to sample blinding secrets adding these to
the identity public key secrets, and performing the operations in KeyGen. Then,
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the procedure in [27] is followed except that the public key is added to the hash
to produce the challenge c. Verification is also similar to that in [27] except that
ct1,τ is multiplied by 2d−1. The full scheme is supplied in Appendix A.

The parameters are identical to the parameters in [27], except that d = 7 and
β = 644.

4.2 blDilithium-QROM Security

We now consider the security of blDilithium-QROM by addressing unforgeability
and unlinkability as defined in Section 2. Since the proof of unforgeability closely
follows the proof of unforgeability for Dilithium-QROM in [27], we give a summary
here and provide the detailed proof in Appendix A. In addition, the proof of
unlinkability can be found in Appendix A due to space constraints.

We first address unforgeability, in which we follow the framework set out
in [27]. To begin, we create a version of blDilithium-QROM where the identity
public key pk = t, which we then use to construct an identification protocol
ID whose Fiat-Shamir transform is equivalent to the scheme with the larger
public key. We then follow the techniques in [27] to show that ID is non-abort
honest verifier zero knowledge (naHVZK) and lossy, and establish bounds on
its correctness and min-entropy. This allows us to use Theorem 3.1 of [27] to
establish the following bound:

Theorem 1. Let A be any adversary that makes at most qH hash queries and qS
signing queries against the unforgeability of blDilithium-QROM with parameters
as specified in Subsection 4.1. Then there exists an algorithm B such that

AdvEUF−CMEA
blDilithium-QROM(A) ≤ AdvSA-MLWE

k,`,U (B) + 8(qH + 1) · 2−137 + 2−2899

In general, the proof of naHVZK and bounds on correctness and min-entropy
are identical to those in [27], except that the blinding factor is introduced and
‖2cs‖∞ must be bounded by β. Lossiness differs in that the added blinding factor
contributes to the bound on size of the solutions of a specific equation, hence
raising the bound εls.

We now turn our attention to unlinkability and discuss independent blinding
and signing with oracle reprogramming discussed in Section 3.

Theorem 2. For any adversary A that makes qS signing queries and qH random
oracle queries, there exists an algorithm B such that

AdvUL−CMEA
blDilithium-QROM,t(A) ≤ 2tAdvSA-MLWE

m,k,U,A (B1)+qHAdvEUF−CMEA
blDilithium-QROM(B2)+qHqS2−2899

At a high level, the theorem follows from the fact a blinded public key t + t′

can be replaced by t + t̃′ where t̃′ is uniformly sampled. Since we are working in
Rkq , then t+ t̃′ is itself uniformly random. We make t hops away from independent
blindings of a single public key using the replacement as above, then use another
t hops to return to independent blindings of independent public keys.

We also know that blDilithium-QROM permits signing with oracle reprogram-
ming as we can use the simulator from unforgeability to create a forgery function
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with δ = 0 and the min-entropy bound comes directly from the min-entropy
bound in unforgeability.

As we make no changes to the set of parameters that contributes to MLWE
hardness, the classical and quantum bit-security from [27] apply here. In particular,
they argue that as there is no known attack that leverages the module structure
of the assumption, it is common to directly apply LWE bit security directly to
MLWE security. We make the further assumption that the SA-MLWE assumption
is also as secure as the MLWE assumption.

4.3 Key-blinding Dilithium

We briefly describe a key-blinded version of Dilithium [19] but we provide no
security analysis or guarantees.

As is with blDilithium-QROM, A is a public parameter of the network and
thus ρ can be omitted from the scheme. In addition, Power2Round is modified to
release one extra bit for t1 while keeping t0 the same. The appropriate changes
to Sign and Verify are made in a similar fashion to the changes made from
Dilithium-QROM to blDilithium-QROM.

Note that during signing, tr may be recomputed as it is dependent solely on
the identity public key and not the blinded public key. One possibility could be
to set tr = CRH(s1,τ , ‖s2,τ ).

No parameters need to be changed to modify the correctness of the blinded
scheme.

5 An Isogeny-Based Key-Blinding Scheme

In this section we briefly describe how to realize a key-blinding signature scheme
from CSI-FiSh [14], which is an isogeny-based signature scheme that uses the
structure of the CSIDH [15] group action. The ‘group’ here refers to class group
Cl(O), withO being the endomorphism ring EndFp(E), the ring of endomorphisms
from a curve E to itself defined over Fp, which is an order in the imaginary
quadratic field Q(

√
−p). A main contribution of the CSI-FiSh paper was to

calculate the precise structure of this group, so that it can be described as a
cyclic group of order N . This allows for two crucial operations with respect to
the group action: group elements can now be sampled uniformly from the group,
and group elements can now be given a canonical representation as a member
of ZN , so that for example, when revealing to an adversary a group element
g = g1 · g2, we can be assured that no information about g1 or g2 is leaked by
how g is represented.

For our purpose, we will describe the scheme as an abstract group action, and
avoid notation that refers to how the group is actually constructed. For complete
details about the group action we refer to the CSI-FiSh paper [14].

We briefly recall the details of a group action. We have a group G and a set
E along with an operation ? : G× E → E. The operation ? satisfies the property
that if id ∈ G is the identity group element, then id ? E = E for all E ∈ E .
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Furthermore, for g1, g2 ∈ G, it must be the case that g1 ? (g2 ? E) = (g1 · g2) ? E.
In fact, the group action described in [14] is both free and transitive, meaning
that for E1, E2 ∈ E there is one and only one g ∈ G such that g ? E1 = E2.
Furthermore, the group G in our case is cyclic, and we will denote the order N .

In CSI-Fish, signatures correspond to a zero-knowledge proof of knowledge of
a secret group element gsk such that gsk ? E0 = Epk, with Epk being the public
key and E0 being a system parameter. Proving knowledge of such a gsk is done
via a simple sigma protocol. The commitment is created by uniformly sampling

g
$←− G and computing Ecom = g ? Epk as the commitment. The verifier then

selects a bit b
$←− {0, 1} as the challenge, and the prover responds by sending g if

b = 0, and g · gsk if b = 1.

The verifier then checks: if b = 0 that g ? Epk = Ecom; and if b = 1 that
(g · gsk) ? E0 = Ecom. Soundness follows from the fact that, from two responses
g and g · gsk, the secret key gsk can quickly be recovered. Honest-verifier zero-
knowledge can be shown by simulating transcripts in a straightforward way (here
we rely on the fact that group elements have a canonical representation).

The basic idea of how key-blinding functionality can be added to the scheme
is already apparent. From a value τ , a group element gτ can be generated, and
the public key Epk is blinded to Eτ = gτ ? Epk. Anyone who knows the public
key and τ can perform this operation, but to sign a message, one must know gτ
and gsk so the scheme is still unforgeable. Furthermore, because the group action
is transitive, the action of gτ entirely hides Epk. Observing many blindings still
leaks no information about Epk, ensuring that the scheme is unlinkable.

Of course, the soundness of this zero-knowledge scheme is only 1/2, and
would have to be repeated many times in order for the signature scheme to
be existentially unforgeable. The authors of CSI-FiSh employed many clever
techniques in order to improve on the efficiency of the scheme over just repeating
the signature scheme 128 times. Most notably, the public keys of CSI-FiSh
consist of many curves Epk,1, Epk,2, . . . , Epk,L, generated by computing gsk,1 ?E0,
gsk,2 ? E0, etc. Then rather than choosing a single bit for the challenge, an index
from 0 to L can be chosen. This increases the soundness significantly, and so
the protocol can be repeated fewer times to achieve the same level of security,
allowing for a trade-off between the signature size and the public key size. To
blind, we can similarly sample independent blinding factors gτ,1, gτ,2, . . . and
apply each of them to each part of the public key.

A further advantage that CSI-FiSh optionally takes is to then ‘Merkleize’
the public key. Rather than including each of Epk,1, . . . , Epk,L, key generation
commits to these public keys by constructing a Merkle tree with each curve as
a leaf node. When signing a message, each Epk,i that gets used, as well as the
Merkle path that proves the commitment, is provided. This causes the public
key to be only 32 Bytes, at the expense of increasing the size of signatures and
making signing and verification slightly slower. Unfortunately, it is not possible to
use this technique for a blinded version. The raw Epk,i values must be available
in order to construct the blinded version of the public key, and so ‘Merkleization’
is impossible.
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blCSI-FiSh.KeyGen()

1 : for i ∈ [L] do

2 : gsk,i
$←− ZN

3 : Epk,i ← gsk,i ? E0

4 : endfor

5 : return (pk, sk) = ((Epk,i)i∈[L], (gsk,i)i∈[L])

blCSI-FiSh.BlindPk((Epk,i)i∈[L], τ)

1 : (gτ,i)i∈[L] ← KDF ((Epk,i)i∈[L]‖τ)

2 : for i ∈ [L] do

3 : Eτ,i ← gτ,i ? Epk,i

4 : endfor

5 : return pkτ = (Eτ,i)i∈[L]

In Appendix D we describe signing and verification, which are essentially
unchanged from in CSI-FiSh. There we also prove the unlinkability of the scheme,
and discuss the proof of unforgeability of the scheme.

6 A Number-theoretic Key-Blinding Scheme

LegRoast and PorcRoast are new adaptations of Picnic that use the Legendre
Symbol as a symmetric PRF [12,17]. In this section we show how the mathematical
structure of LegRoast enables a more efficient key-blinding signature scheme.

Recall that the Legendre symbol modulo a prime p, denoted (ap ), is defined as

0 if a ≡ 0 (mod p), 1 if a is a quadratic residue modulo p, and −1 if it is not. To
use the Legendre symbol as a 1-bit keyed PRF with input X and key K, we can
define a function that returns values in {0, 1}. For an odd prime p, define LK(X)
to return 0 if K +X is a quadratic residue or 0 (mod p), and 1 otherwise. This
concept can be generalized to consider the `-th power residue, instead of just
quadratic residues. This allows for a keyed PRF with log ` bits of output to be
defined as

L`K(X) =

{
i, if (X +K)/gi ≡ h` (mod p) for some h ∈ F×p
0, if K +X ≡ 0 (mod p).

A key property of this PRF is that it is a group homomorphism from F×p to
Z`. This is helpful for proving statements in zero-knowledge about preimages
of the PRF. To prove knowledge of a K such that L`K(X) = s, one can sample
a random value r ∈ F×p and send (K +X) · r and L`0(r). The prover then only
needs to prove that the multiplication of (K + X) · r was computed correctly
for the verifier to calculate s and be convinced of knowledge of K.1 Since the
equation being proven consists of a single multiplication gate, the resulting proof
can be comparatively short.

LegRoast and PorcRoast [12] expand this idea into a signature scheme that
uses the Fiat–Shamir heuristic. Public keys consist of the output of L compu-
tations of the Legendre PRF, with inputs I = i1, . . . , iL, which can be public

1 The verifier must also be convinced that the prover did not lie about the value of
L`0(r). This is accomplished by having the prover commit to this value before the
challenge X is issued, so that the prover cannot choose the output of the PRF in a
way to help them.
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Algorithm 1 blLegRoast.BlindPk

Input: identity public key pk = (w1, w2, . . . , wL), epoch τ
Output: blinded public key pkτ = (w1,τ , w2,τ , . . . , wL,τ )
1: T ← KDF (pk||τ)
2: v1 ← L`T (j1), . . . , vL ← L`T (jL)
3: w1,τ ← w1 + v1 (mod `), . . . , wL,τ ← wL + vL (mod `)
4: return pkτ

parameters. We define the function F , which is parameterized by ` and I, as
taking in the secret key K and returning L`K(im) for m ∈ [L]. Hence, key genera-
tion consists of sampling a random secret key K ∈ F×p and computing the public

key F `I(K) =
(
L`K(i1), . . . ,L`K(iL)

)
.

The same homomorphic property that makes the Legendre symbol an attrac-
tive option for zero knowledge proofs is also what allows for a blinding mechanism.
Hashing the nonce and public key to a value T ∈ F×p , we can calculate L com-
putations of the Legendre PRF with separate inputs j1, . . . , jL. The public key
blinded under the value T becomes

(
L`K(i1) + L`T (j1), . . . ,L`K(iL) + L`T (jL)

)
,

where addition is performed modulo `. Due to the homomorphic property of L,
this can also be written as

(
L`0((K + im) · (T + jm))

)
m∈[L].

As mentioned, LegRoast works by presenting parts of the public key multiplied
by random values r(j) ∈ F×p , the results of which are denoted by o(j). Then the
signer proves knowledge of K by presenting a zero knowledge proof that a
random linear combination of B (K + I(j)) · r(j) − o(j) terms is equal to 0;
here the I(j) values are a random re-indexing of the i(j) values in the public
key. We call such a linear combination the error term, which should be equal
to zero. Once the coefficients {λ(j)} of the linear combination are defined, the

error term is E =
∑B
j=1 λ

(j)
(

(K + I(j)) · r(j) − oj
)

= K ·
(∑B

j=1 λ
(j)r(j)

)
+∑B

j=1 λ
(j)(I(j)r(j) − o(j)). Since only the K and r(j) values are secret, the only

time we have a secret value multiplied by a secret value is in the K ·
∑
λ(j)r(j)

term, so this can be verified to be 0 with only one multiplication gate.

If we are using a blinded public key, then the corresponding error term is the
summation of λ(j)((K+I(j))(T+J (j))r(j)−o(j)) terms. Through rearranging in a
similar way to that of LegRoast, we get an error term that has three multiplication
gates as opposed to one. Due to the nature of the zero-knowledge proof system
used, the complete description of signing and verifying is quite large, and so we
move it to Appendix E. We focus on a description of the blinding process.

To complete the security assessment for blLegRoast, we still need to establish
(i) the independent blinding property, (ii) the signing with oracle reprogramming
property, and (iii) the existential unforgeability of the scheme. As the scheme uses
the Fiat–Shamir heuristic, signing with reprogramming is possible by choosing the
output of the hash function in advance and constructing the signature accordingly.
The existential unforgeability of the scheme follows from how finding a K and T
that satisfy the relations informed by the public key is still hard. As these proofs
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require careful details of the scheme itself, we defer them to Appendix E, where
the complete description of the scheme can be found.

7 Implementation Details

We implemented the blDilithium-QROM, the blCSI-FiSh, and blLegRoast schemes;
code for each is available at http://github.com/tedeaton/pq-key-blinding.
The code for blCSI-FiSh and blLegRoast is forked from the CSI-FiSh and
LegRoast code respectively [11, 13] and is written primarily in C. The code
for blDilithium-QROM is written in Sage. Results can be seen in Figure 1 in
Section 1. Our performance metrics indicate that the increase over the unblinded
version of schemes is quite reasonable.

blDilithium-QROM. For blDilithium-QROM, key generation and verification
are in fact faster since a fixed parameter A is used for all users and can be
pregenerated, rather than being pseudorandomly generated each time. The signing
procedure of blDilithium-QROM is three times slower than that of Dilithium-
QROM. We caution that, since our blDilithium-QROM implementation is written
in Sage, the implementation is non-optimized and results not be used an absolute
measure of performance, but can still give insight when compared to a similar
Sage implementation of non-blinded Dilithium-QROM.

blLegRoast. Blinded LegRoast’s performance is compelling both in absolute terms
(under 1 ms for key generation and blinding, under 20 ms for signing and verifying)
and comparative terms (no worse than 1.5× slower than unblinded LegRoast).

blPicnic. We leave an implementation of blPicnic as future work. New advance-
ments to the zero knowledge protocol that Picnic uses are still being made [4],
so the performance of the scheme, and any blinded version, will change. We can
summarize what we expect to see in a blPicnic implementation however. Public
keys should be maintained at a straightforward 32 bytes, which is very attractive.
We do not have exact calculations for the signature size, but the circuit being
used is twice as large (for two encryptions), so we would expect the size to be
roughly twice as large. In practice it may not be quite twice as large, however, as
some of the values sent are independent of the length of the circuit.

blCSI-FiSh. Our blCSI-FiSh implementation achieves sizes and performance
effectively matching that of CSI-FiSh-unMerkleized. The CSI-FiSh and blCSI-
FiSh implementations use the CSIDH-512 parameter set. This parameter set
aims to achieve NIST level 1 security (comparable to the security of AES-128
against a quantum adversary), though whether it achieves this level of security
has been a matter of contention [30]. Unfortunately, increasing the parameters
in CSI-FiSh is a matter of great difficulty. It is essential to CSI-FiSh that the
structure of the class group be known. Calculating the order N of the group was
a subexponential computation that took the CSIDH authors 52 core years. If
the parameters are increased, then a new computation must happen, which will
almost certainly be infeasible. Quantum computers could calculate the structure
of the class group much more easily, so by the time CSI-FiSh is needed, there
may also be the ability to use it by computing the class group number.
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Tor integration. Recall that Tor uses identity public keys as the URL for .onion
addresses. This means that, unless the onion service lookup process changes, users
directly interact with an onion service’s public key, whether by clicking on it as
a link or copying and pasting it into a browser window. This motivates keeping
public keys as small as possible. For this purpose, blPicnic and blLegRoast are
the most attractive of the schemes considered. In the context of Tor, the process
for connecting to an onion service is quite lengthy (several seconds, usually), so
there may be less sensitivity to increased computation time.

8 Conclusion

We have considered the problem of building post-quantum key blinding schemes.
We have shown that the unlinkability property can be reduced to two properties
that are often relatively easy to establish: that blinding properly re-randomizes
the public key (independent blinding) and that the distribution of signatures
is only dependent on the public key (signing with oracle reprogramming). We
have shown four different ways that post-quantum key blinding can be achieved:
with supersingular isogenies via CSI-FiSh, lattices via Dilithium-QROM, with
only symmetric primitives via Picnic, and by a number theoretic construction via
LegRoast. We implemented blDilithium-QROM, blCSI-FiSh, and blLegRoast,
and saw small performance impact compared to the unblinded versions.

Each of these four schemes is built out of the Fiat–Shamir paradigm. We did
not consider any schemes built out of other ways to build signature schemes, such
as hash-based signatures like SPHINCS+ [9], or the hash-and-sign paradigm like
Rainbow [18] or Falcon [32].

It is difficult to envision a hash-based key blinding scheme. As public keys are
the root of a Merkle tree, the only simple operation to blind a public key would
be to hash it again. This could satisfy independent blinding, but not signing with
oracle reprogramming: hash-based signatures work by providing paths up to the
root, so the identity public key would be revealed on that path.

Hash-and-sign algorithms appear to have the opposite problem. A blinded
version would almost certainly satisfy the signing with oracle programming
property. If the trapdoored function is F , then by choosing a point x in the
domain of F and programming the hash function so that H(msg) = F (x), we
obtain a signature; this is how hash-and-sign signature schemes often prove
security. But it is not clear how to justify the independent blinding property. The
most simple blinding mechanism would be to compose the trapdoor function F
with another mapping G based on the blinding factor. This requires the range
of F to match the domain of G, which makes it an interesting problem to be
used with a hash-and-sign scheme. As well, to ensure the independent blinding
property, we need that F ◦G cannot be decomposed into the two mappings, which
is a more novel security assumption. Because RSA is a trapdoor permutation,
the structure of its mapping may allow for key-blinding, but it is not clear if any
post-quantum primitive immediately does.
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For these reasons, signature schemes that follow the Fiat–Shamir paradigm
appear to admit key blinding much more readily. While homomorphic properties
over the key space are certainly useful for key blinding (as in Dilithium and
CSI-FiSh), they are not actually necessary, as the Picnic construction shows.
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A blDilithium-QROM Security Proof

A.1 blDilithium-QROM Preliminaries

Throughout this section, vectors are written in lowercase bold-face and matrices
are written in uppercase bold-face. Let q be prime, then Zq denotes the integers
modulo q, and R and Rq denote the rings Z[x]/〈xn + 1〉 and Zq[x]/〈xn + 1〉
respectively.

For some w ∈ Zq, ‖w‖∞ denotes
∣∣w′∣∣ where w′ ∈ Z such that w′ ≡ w

(mod q) and − q−12 ≤ w
′ ≤ w−1

2 . This norm can be extended as follows. For some
w = wn−1x

n−1 + · · ·+ w1x+ w0 ∈ R, ‖w‖∞ = max (‖w1‖∞ , . . . ,‖wn−1‖∞), and
for some w = (w1, . . . , wk) ∈ Rk, ‖w‖∞ = max (‖w1‖∞ , . . . ,‖wk‖∞). We let Sη
denote the set of w ∈ R such that ‖w‖∞ ≤ η. In addition, we also define the L2

norm for w ∈ R as ‖w‖ =
√
‖w0‖2∞ + · · ·+‖wn−1‖2∞.

ChSet denotes the challenge space. In the context of identification protocols,
ChSet is the set of possible challenges a verifier can submit to the prover. In the
context of signature schemes arrived at via the Fiat-Shamir transform, ChSet is
the output domain of the hash function H used to digest the message.

G is also a hash function that takes in elements of Rkq × Rkq × {0, 1}∗ and

returns elements of S`η × Skη .
We make use of several supporting algorithms with full descriptions in [27]

which extract or compute on higher and lower order bits of elements in Zq.
These algorithms are extended to elements of Rq and Rkq by coefficient-wise
and element-wise application. We give a general description of the supporting
algorithms:

– Power2Roundq(r, d) extracts the higher (log(r)− d) order bits of r.
– HighBitsq(r, α) extracts the higher (≈ log(r)− logα) order bits of r.
– LowBitsq(r, α) extracts the lower (≈ logα) order bits of r.
– MakeHintq(z, r, α) constructs a hint to allow the computation of the higher

order bits of r + z without the need to store z.
– UseHintq(h, r, α) uses the hint to compute the higher order bits of r + z.

The interactions of these algorithms are outlined by Lemmas 4.1 and 4.2 of [27],
which we make use of in the proof of unforgeability.

We now discuss the MLWE assumption which was introduced in [28] as a
generalization of the LWE assumption introduced in [33]. We leverage the decision
version of the assumption, which posits that the following problem is hard given
appropriate parameter selection.

Definition 7. The decisional MLWEm,k,χ problem over the ring Rq is to distin-

guish the pair (A, t) for A
$←− Rm×kq , t

$←− Rmq from the pair (A,As1 + s2) where

A
$←− Rm×kq , s1

$←− χ(Rkq ), s2
$←− χ(Rmq ). The MLWEm,k,χ advantage is defined as

AdvMLWE
m,k,χ(A) =

∣∣∣∣Pr[A wins decisional MLWEm,k,χ over Rq]−
1

2

∣∣∣∣
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We introduce a modified version of the MLWE assumption in which the A
matrix is a parameter of decisional MLWE problem. This modified assumption
is required because each signer in the anonymity network shares the same A
matrix. We refer to this assumption as the MLWE assumption with static A,
which assumes that the following problem is hard given appropriate parameter
selection.

Definition 8. The decisional SA-MLWEm,k,χ,A problem over the ring Rq is to

distinguish t for t
$←− Rmq from As1 + s2 where s1

$←− χ(Rkq ), s2
$←− χ(Rmq ). The

SA-MLWEm,k,χ advantage is defined as

AdvSA-MLWE
m,k,χ,A (A) =

∣∣∣∣Pr[A wins decisional SA-MLWEm,k,χ,A over Rq]−
1

2

∣∣∣∣
A.2 blDilithium-QROM Specification

We now write out a version of blDilithium-QROM in which both t1 and t0 are
published in the identity public key. This step is necessary for both the proofs
of unforgeability and unlinkability. Observe that signatures generated via the
procedure in Figure 3 are identical to those generated in Figure 5 given the same
inputs and randomness, hence the scheme in Figure 3 must be at least as secure
as the scheme in Figure 5 as it simply releases less information in the identity
public key.

A.3 blDilithium-QROM Unforgeability

We begin by proving the unforgeability of blDilithium-QROM in the context of
key-blinded signature schemes (see Definition 3), which we achieve by emulating
the proof found in [27] while introducing the blinding procedure into relevant
algorithms. At a high level, we begin by defining an identification protocol
blDilithium-QROM-ID, addressing four key properties (naHVZK, correctness, lossi-
ness, and min entropy), and applying the Fiat-Shamir transform to arrive at
a signature scheme equivalent to blDilithium-QROM. This allows us to leverage
Theorem 3.1 of [27] to bound AdvEUF−CMEA

blDilithium-QROM(A).

Non Abort Honest Verifier Zero-Knowledge We begin by showing that
blDilithium-QROM-ID is naHVZK with εzk = 0 as defined in Definition 2.5 of [27].
This entails showing that transcripts of honest interactions of blDilithium-QROM-ID
are statistically indistinguishable from the output of some transcript simulator
that only has access to the public key.

Lemma 3. If maxs∈Sη,c∈ChSet‖2cs‖∞ ≤ β then blDilithium-QROM-ID is naHVZK
with εzk = 0.
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blDilithium-QROM.KeyGen()

1 : K ← {0, 1}256

2 : (s1, s2)
$←− S`η × S

k
η

3 : t← As1 + s2

4 : t1 ← Power2Roundq(t, d− 1)

5 : t0 ← t− bt1/2c · 2d

6 : pk ← t1

7 : sk ← (s1, s2, t0, K)

8 : return (pk, sk)

blDilithium-QROM.BlindPk(pk = t1, τ)

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : t
′ ← As

′
1 + s

′
2

3 : t
′
1 ← Power2Roundq(t

′
, d− 1)

4 : t1,τ ← t1 + t
′
1

5 : pkτ ← t1,τ

6 : return pkτ

blDilithium-QROM.Sign(M,pk = t1, sk = (s1, s2, t0,K), τ)

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : s1,τ ← s1 + s
′
1

3 : s2,τ ← s2 + s
′
2

4 : tτ ← As1,τ + s2,τ

5 : t1,τ ← Power2Roundq(tτ , d− 1)

6 : t0,τ ← tτ − bt1,τ/2c · 2d

7 : κ← 0

8 : while (z,h) = (⊥,⊥) and κ ≤ 200/(1− δ) do

9 : κ← κ+ 1

10 : y
$←− S`γ′−1

11 : w ← Ay

12 : w1 ← HighBitsq(w, 2γ)

13 : c← H(M‖w1‖t1,τ )
14 : z← y + cs1,τ

15 : if ‖z‖∞ ≥ γ
′ − β or

∥∥LowBitsq(w − cs2,τ , 2γ)∥∥∞ ≥ γ − β then (z,h)← (⊥,⊥)

16 : else h← MakeHintq(−ct0,τ ,w − cs2,τ + ct0,τ , 2γ)

17 : return σ = (z,h, c)

blDilithium-QROM.Verify(M,σ = (z,h, c), pkτ = t1,τ )

1 : w
′
1 ← UseHintq(h,Az− ct1,τ · 2d−1

, 2γ)

2 : if ‖z‖∞ < γ
′ − β and c = H(M‖w1‖t1,τ ) then return accept

3 : else return reject

Fig. 3. Key generation, blinding, signing, and verification algorithms for blinded
Dilithium-QROM (blDilithium-QROM) signature scheme.
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blDilithium-QROM Dilithium-QROM
recommended recommended

q 245 − 21283 245 − 21283
n 512 512

(k, `) (4,4) (4,4)

d 7 15

ChSet = {c ∈ R |‖c‖∞ = 1 ∧‖c‖ = . . . }
√

46
√

46
γ 905679 905679
γ′ 905679 905679
η 7 7
β 644 322

BKZ block-size to break LWE 480
Best known classical bit-cost 136
Best known quantum bit-cost 127

Fig. 4. Parameters for the blDilithium-QROM scheme. Dilithium-QROM parameters
are included for comparison

Proof. Suppose s1, s2 come from a valid identity keypair i.e. As1 + s2 = t. For
a given z ∈ S`γ′−β−1 and c ∈ ChSet, the probability z was generated in Trans is
equal to

Pr[y
$←− S`γ′−1 | y + c(s1 + s′1) = z] = Pr[y

$←− S`γ′−1 | y = z− c(s1 + s′1)]

Since
∥∥c(s1 + s2)

∥∥
∞ ≤ β, then z− c(s1 + s′1) ∈ S`γ′−1 thus

Pr[y
$←− S`γ′−1 | y = z− c(s1 + s2)] =

1∣∣∣S`γ′−1∣∣∣
Hence, every z ∈ S`γ′−β−1 has an equal probability of being generated. In addition,

it follows that the probability of not producing a z ∈ S`γ′−β−1 in Trans is

1−
∣∣∣S`γ′−β−1∣∣∣ /∣∣∣S`γ′−1∣∣∣, so the distribution of (c, z) is identical between Trans and

Sim.
Finally, observe that

w− c(s2 + s′2) = Ay− c(s2 + s′2) = A(z− c(s1 + s′1))− (s2 + s′2) = Az− c(t + t′)

Thus Trans and Sim produce h from identical distribution as well.
As the output distributions of Trans and Sim are exactly identical, εzk = 0.

Correctness We now consider the correctness error of blDilithium-QROM-ID
in the sense of Definition 2.3 of [27], which involves the probability of both the
prover failing and the verifier failing on a valid output of the prover.
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blDilithium-QROM.KeyGen()

1 : K ← {0, 1}256

2 : (s1, s2)
$←− S`η × S

k
η

3 : t← As1 + s2

4 : t1 ← Power2Roundq(t, d)

5 : t0 ← t− t1 · 2d

6 : pk ← (t1, t0)

7 : sk ← (s1, s2, K)

8 : return (pk, sk)

blDilithium-QROM.BlindPk(pk = (t1, t0), τ)

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : t
′ ← As

′
1 + s

′
2

3 : t← t1 · 2d + t0

4 : tτ ← t + t
′

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : pkτ ← (t1,τ , t0,τ )

8 : return pkτ

blDilithium-QROM.Sign(M,pk = (t1, t0), sk = (s1, s2,K), τ)

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : s1,τ ← s1 + s
′
1

3 : s2,τ ← s2 + s
′
2

4 : tτ ← As1,τ + s2,τ

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : κ← 0

8 : while (z,h) = (⊥,⊥) and κ ≤ 200/(1− δ) do

9 : κ← κ+ 1

10 : y
$←− S`γ′−1

11 : w ← Ay

12 : w1 ← HighBitsq(w, 2γ)

13 : c← H(M‖w1‖t1,τ )
14 : z← y + cs1,τ

15 : if ‖z‖∞ ≥ γ
′ − β or

∥∥LowBitsq(w − cs2,τ , 2γ)∥∥∞ ≥ γ − β then (z,h)← (⊥,⊥)

16 : else h← MakeHintq(−ct0,τ ,w − cs2,τ + ct0,τ , 2γ)

17 : return σ = (z,h, c)

blDilithium-QROM.Verify(M,σ = (z,h, c), pkτ = (t1,τ , t0,τ ))

1 : w
′
1 ← UseHintq(h,Az− ct1,τ · 2d, 2γ)

2 : if ‖z‖∞ < γ
′ − β and c = H(M‖w1‖t1,τ ) then return accept

3 : else return reject

Fig. 5. Key generation, blinding, signing, and verification algorithms for
blDilithium-QROM with extra information published in the identity public key. This
scheme is used for the proofs of unforgeability and unlinkability.
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blDilithium-QROM-ID.KeyGen()

1 : (s1, s2)
$←− S`η × S

k
η

2 : t← As1 + s2

3 : t1 ← Power2Roundq(t, d)

4 : t0 ← t− t1 · 2d

5 : pk ← (t1, t0)

6 : sk ← (s1, s2, pk)

7 : return (pk, sk)

blDilithium-QROM-ID.Prv1(sk = (s1, s2, pk), τ)

1 : y
$←− S`γ′−1

2 : w ← Ay

3 : w1 ← HighBitsq(w, 2γ)

4 : return (W = w1, St = (w,y))

blDilithium-QROM-ID.Prv2(sk = (s1, s2, pk),W = w1, c, St = (w,y), τ)

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : s1,τ ← s1 + s
′
1

3 : s2,τ ← s2 + s
′
2

4 : tτ ← As1,τ + s2,τ

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : z← y + cs1,τ

8 : if ‖z‖∞ ≥ γ
′ − β or

∥∥LowBitsq(w − cs2,τ , 2γ)∥∥∞ ≥ γ − β then (z,h)← (⊥,⊥)

9 : else h← MakeHintq(−ct0,τ ,w − cs2,τ + ct0,τ , 2γ)

10 : return Z = (z,h)

blDilithium-QROM-ID.Verify(pk = (t1, t0),W = w1, c, Z = (z,h), τ)

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : t
′ ← As

′
1 + s

′
2

3 : t← t1 · 2d + t0

4 : tτ ← t + t
′

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : if ‖z‖∞ < γ
′ − β and w1 = UseHintq(h,Az− ct1,τ · 2d, 2γ) then return accept

8 : else return reject

Fig. 6. Key generation, proving, and verification algorithms for an identification scheme
(blDilithium-QROM-ID) used in the proof of unforgeability of the blDilithium-QROM
signature scheme.
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Trans

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : s1,τ ← s1 + s
′
1

3 : s2,τ ← s2 + s
′
2

4 : tτ ← As1,τ + s2,τ

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : y
$←− S`γ′−1

8 : w ← Ay

9 : w1 ← HighBitsq(w, 2γ)

10 : c
$←− ChSet

11 : z← y + cs1,τ

12 : if ‖z‖∞ ≥ γ
′ − β then return (⊥, (⊥,⊥))

13 : if
∥∥LowBitsq(w − cs2,τ , 2γ)∥∥∞ ≥ γ − β then

14 : return (⊥, (⊥,⊥))
15 : h← MakeHintq(−ct0,τ ,w − cs2,τ + ct0,τ , 2γ)

16 : return (c, (z,h))

Sim

1 : (s
′
1, s
′
2)← G(pk‖τ)

2 : t
′ ← As

′
1 + s

′
2

3 : t← t1 · 2d + t0

4 : tτ ← t + t
′

5 : t1,τ ← Power2Roundq(tτ , d)

6 : t0,τ ← tτ − t1,τ · 2d

7 : with probability 1−

∣∣∣S`γ′−β−1

∣∣∣∣∣∣S`
γ′−1

∣∣∣ return (⊥, (⊥,⊥))

8 : z
$←− S`γ′−β−1

9 : c
$←− ChSet

10 : if
∥∥LowBitsq(Az− ctτ , 2γ)

∥∥
∞ ≥ γ − β then

11 : return (⊥, (⊥,⊥))
12 : h← MakeHintq(−ct0,τ ,Az− ctτ + ct0,τ , 2γ)

13 : return (c, (z,h))

Fig. 7. Real and simulated transcripts of the blDilithium-QROM-ID protocol.

Lemma 4. If maxs∈Sη,c∈ChSet‖2cs‖∞ ≤ β, maxt0∈S′
2d
,c∈ChSet‖2ct0‖∞ ≤ γ, β �

γ′, and β + 1 < 2β, then blDilithium-QROM-ID has correctness error

δ ≈ 1− exp

(
−βn

(
`

γ′
+
k

γ

))
Proof. We begin by computing the probability Prv1 or Prv2 does not output
(⊥, (⊥,⊥)). The probability (⊥, (⊥,⊥)) is not output in line 12 of Trans is simply
the probability it is not output in line 7 of Sim, thus this probability is∣∣∣S`γ′−β−1∣∣∣∣∣∣S`γ′−1∣∣∣ =

(
2(γ′ − β)− 1

2γ′ − 1

)n`
>

(
1− β

γ′

)n`
≈ exp

(
−βn`
γ′

)
as β � γ′. On the assumption that the distribution of Az− c(t + t′) mod 2γ is
close to uniform when z ∈ Skγ′−β−1 is uniformly sampled, then the probability
(⊥, (⊥,⊥)) is not output in line 14 of Trans or equivalently line 11 of Sim is

Pr[z
$←− S`γ′−β−1 |

∥∥LowBitsq(Az− c(t + t′))
∥∥
∞ < γ−β] ≈

∣∣∣Skγ−β−1∣∣∣∣∣∣Skγ−1∣∣∣ ≈ exp

(
−βnk

γ

)
Hence

Pr[y
$←− S`γ′−1, c

$←− ChSet | (z,h) 6= (⊥,⊥)] ≈ exp

(
−βn

(
`

γ′
+
k

γ

))
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Finally, assume (z,h) 6= (⊥,⊥). Then blDilithium-QROM-ID.Verify will always
accept. Clearly, ‖z‖∞ < γ′ − β. Also, since

w − c(s2 + s′2) = Az− c(t0 + t′0)− c(t1 + t′1) · 2d

and
∥∥c(t0 + t′0)

∥∥
∞ < γ and

∥∥LowBitsq(w − c(s2 + s′2), 2γ)
∥∥
∞ < γ−β, by Lemmas

4.1 and 4.2 of [27],

UseHintq(h,Az− c(t1 + t′1) · 2d, 2γ) = HighBitsq(w − c(s2 + s′2), 2γ) = w1

Hence, blDilithium-QROM-ID has correctness error based solely off of the proba-
bility Prv fails, thus

δ ≈ 1− exp

(
−βn

(
`

γ′
+
k

γ

))

Lossiness We now show that a bounded adversary has trouble distinguishing
valid identity public keys as done in Fig 6 and randomly generated identity public
keys as done in Fig 8. In addition, given a randomly generated identity public
key, any unbounded adversary has only a little more than 1/|ChSet| probability
of impersonating the prover. More concretely, we address these two properties as
defined in Definition 2.8 of [27].

blDilithium-QROM-ID.LosKeyGen()

1 : t
$←− Rkq

2 : t1 ← Power2Roundq(t, d)

3 : t0 ← t− t1 · 2d

4 : return pk = (t1, t0)

Fig. 8. Lossy key generator of blDilithium-QROM-ID.

Lemma 5. For any adversary A,

AdvLOSS
blDilithium-QROM-ID(A) = AdvSA-MLWE

k,`,U (A)

where U is the uniform distribution over Sη.

Proof. Differentiating between the output of blDilithium-QROM-ID.KeyGen and
blDilithium-QROM-ID.LosKeyGen is clearly equivalent to differentiating between
MLWE samples with static A and uniform samples over Rkq .
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Game LOSSY-IMP

1 : pkls = (t1, t0)← blDilithium-QROM-ID.LosKeyGen()

2 : τ ← A()

3 : (w1, St)← A(pkls, τ)

4 : c← ChSet

5 : (z,h)← A(St, c, τ)

6 : return Verify(pkls,w1, c, (z,h))

Fig. 9. LOSSY-IMP game.

Lemma 6. If q ≡ 5 (mod 8), maxs∈Sη,c∈ChSet‖2cs‖∞ ≤ β, 4γ + 2dβ + 2, 2γ′ +

(2d−2)β−2 <
√
q/2, and 2d < 4γ′+(2d+1−4)β−4, then blDilithium-QROM-ID

has εls-lossy soundness for

εls ≤
1

|ChSet|
+ 2|ChSet|2 ·

(
(4γ′ + (2d+1 − 4)β − 3)` · (8γ + 2d+1β + 5)k

qk

)n
Proof. Let A be an unbounded adversary executed in the LOSSY-IMP game
as shown in Fig 9. We first consider the case where there exist two distinct
(c, (z,h)), (c′, (z′,h′)) such that A is able to impersonate the prover. It follows
that ‖z‖∞ ,

∥∥z′∥∥∞ < γ′ − β and

w1 = UseHintq(h,Az−(t1+t′1)c ·2d, 2γ) = UseHintq(h
′,Az′−(t1+t′1)c′ ·2d, 2γ)

Thus by Lemma 4.1 of [27]∥∥∥Az− (t1 + t′1)c · 2d −w1 · 2γ
∥∥∥
∞
≤ 2γ + 1∥∥∥Az′ − (t1 + t′1)c′ · 2d −w1 · 2γ

∥∥∥
∞
≤ 2γ + 1

So by the triangle equality,∥∥∥A(z− z′)− (t1 + t′1) · (c− c′) · 2d
∥∥∥
∞
≤ 4γ + 2

Hence, for some u such that ‖u‖∞ ≤ 4γ + 2,

A(z− z′ − s′1 · 2d(c− c′)) + (u− s′2 · 2d(c− c′)) = t1 · 2d(c− c′)

Since ‖2cs1‖∞ ≤ β, then
∥∥z− z′ − s′1 · 2d(c− c′)

∥∥
∞ ≤ 2(γ′ − β − 1) + 2dβ and∥∥u− s′2 · 2d(c− c′)

∥∥
∞ ≤ 4γ + 2 + 2dβ, then by Lemma 4.6 of [27], the above

equation is satisfied with probability

2|ChSet|2 ·

(
(4γ′ + (2d+1 − 4)β − 3)` · (8γ + 2d+1β + 5)k

qk

)n
In the case where there is only one c that allows A to impersonate the prover,
then A only has a 1/|ChSet| probability of winning the LOSSY-IMP game. The
Lemma follows from combining probabilities of both these cases.
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Min Entropy We finally consider the probability that the w1 output is distinct
for every run of the prover. As Prv1 is identical between Dilithium-QROM-ID and
blDilithium-QROM-ID, Lemma 4.7 of [27] applies directly to this setting. As such,
we restate Lemma 4.7 here.

Lemma 7 (Lemma 4.7 of [27]). If 2γ, 2γ′ <
√
q/2 and ` ≤ k then blDilithium-QROM-ID

has

α > n` · log

(
min

(
q

(4γ + 1)(4γ′ + 1)
, 2γ′ − 1

))

bits of min-entropy as defined in Definition 2.6 of [27].

Unforgeability under Chosen Message and Epoch Attack We now arrive
at showing the unforgeability of blDilithium-QROM in the context of blinded sig-
nature schemes. First observe that FS[blDilithium-QROM-ID,H, 200

1−δ ] is equivalent
to blDilithium-QROM.

The following Theorem is a direct result of preceding Lemmas as well as
Theorem 3.1 of [27].

Theorem 3. Let A be any adversary that makes at most qH hash queries and qS
signing queries against the unforgeability of blDilithium-QROM with parameters
as specified in Figure 4. Then there exists an algorithm B such that

AdvEUF−CMEA
blDilithium-QROM(A) ≤ AdvSA-MLWE

k,`,U (B) + 8(qH + 1) · 2−137 + 2−2899

where Time(A) ≈ Time(B).

Proof. By Theorem 3.1 of [27],

AdvEUF−CMEA
blDilithium-QROM(A) ≤ AdvLOSS

blDilithium-QROM-ID(B)+8(qH+1)εls+κmqSεzk+21−α

By Lemma 5,

AdvLOSS
blDilithium-QROM-ID(B) = AdvSA-MLWE

k,`,U (B)

where U is the uniform distribution over Sη. By Lemma 6,

εls ≤
1

|ChSet|
+ 2|ChSet|2 ·

(
(4γ′ + (2d+1 − 4)β − 3)` · (8γ + 2d+1β + 5)k

qk

)n

Substituting in the parameters from Figure 4 and noting that the magnitude
of |ChSet| is

(
512
46

)
· 246 > 2265, we get that εls ≤ 2−265 + 2−138 ≤ 2−137. Also, by

construction, κm = 200
1−δ ≈ 3681. By Lemma 3, εzk = 0. Finally, by Lemma 7,

21−α < 2−2899. The theorem follows directly from these observations.
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A.4 blDilithium-QROM Unlinkability

We now proceed to showing that blDilithium-QROM is unlinkable, and begin by
demonstrating that it satisfies the independent blinding property.

Lemma 8. If the MWLE problem is hard, then blDilithium-QROM satisfies in-
dependent blinding. In particular, for any adversary A, there exists an adversary
B such that

AdvInd−Blind
blDilithium-QROM,t(A) ≤ 2tAdvSA-MLWE

m,k,U,A (B)

where U is the uniform distribution over Sη.

Proof. We begin by defining the randBlind function for blDilithium-QROM as
identical to BlindPk except that (s′1, s

′
2) are uniformly sampled from S`η × Skη

rather than output from G(pk‖τ).
Let G0 be a game where A is given independent blindings of a single identity

public key and game G4 be a game where A is given independent blindings of
independent identity public keys.

We first introduce a game G1 which differs from G0 in that each output
of randBlind, specifically t0 + t′i for 1 ≤ i ≤ t where t′i is an MLWE sample,
is replaced with t0 + t̃′i for 1 ≤ i ≤ t where t̃′i is randomly and uniformly
sampled from Rkq . Note that any adversary A that can differentiate between a

single sample t0 + t′ and t0 + t̃′ can be used to construct an adversary B that
differentiates between plain MLWE samples, as the MLWE challenge can be
transformed into an input A uses by simply adding t0 to the challenge. As we
must replace each of the t samples of t0 + t′i individually, the triangle equality
implies that

∣∣Pr[AG0 ⇒ 1]− Pr[AG1 ⇒ 1]
∣∣ ≤ tAdvSA-MLWE

m,k,U,A (B).
We now introduce G2, which is identical to G1 except that each sample

t0 + t̃′i for 1 ≤ i ≤ t is replaced with a sample t̃i where t̃i is randomly and
uniformly sampled from Rkq . Recall that t̃′i is randomly and uniformly sampled

from Rkq , thus it is effectively randomly permuting t0 over Rkq so G1 and G2 are
indistinguishable.

In G3, we now take the reverse step of replacing each t̃i for 1 ≤ i ≤ t in
G2 with ti + (t̃i − ti). Note t̃i − ti is uniformly random over Rkq . G3 is clearly
equivalent to G2.

Finally, we make the hop from G3 to G4 by replacing each ti + (t̃i − ti) with
ti + t′i where t′i is an MLWE sample for 1 ≤ i ≤ t. As t̃i− ti is uniformly random
over Rkq , the bound in the difference between G3 and G4 is the same as the bound
in the difference between G0 and G1. Hence by the triangle equality,∣∣∣Pr[AG0 ⇒ 1]− Pr[AG4 ⇒ 1]

∣∣∣ = AdvInd−Blind
blDilithium-QROM,t(A) ≤ 2tAdvSA-MLWE

m,k,U,A (B)

We now show that blDilithium-QROM permits signing with oracle repro-
gramming as specified in Definition 4. Let Forge output (y = c, σ = (z,h, c))
where z, h, and c are output from Sim in Figure 7. In addition, let Ext output
M‖UseHintq(h,Az− ct1,τ · 2d, 2γ)‖t1,τ . Since by Lemma 3 blDilithium-QROM is
naHVZK given appropriate parameters, then real signatures and the output of
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Forge are drawn from the exact same distributions, thus δ = 0. Furthermore, the
min entropy of Ext is solely dependent on w1 = Az− ct1,τ · 2d, as the adversary
has control over M and knowledge of t1,τ , hence the min entropy of Ext is the
same as the min entropy from Lemma 7.

We are now ready to consider unlinkability under chosen message and epoch
attack, which follows directly from the preceding Lemmas as well as the Lemmas
in Section 3.

Theorem 4. For any adversary A that makes qS signing queries and qH random
oracle queries, there exists an algorithm B such that

AdvUL−CMEA
blDilithium-QROM,t(A) ≤ 2tAdvSA-MLWE

m,k,U,A (B1)+qHAdvEUF−CMEA
blDilithium-QROM(B2)+qHqS2−2899

B A Generic Zero-Knowledge Key-Blinding Scheme

In this section we explain how one of the most unique submissions to NIST’s
post-quantum standardization effort, Picnic [16], can also be transformed into
a key-blinded signature scheme. Picnic improves upon techniques introduced
in [20, 25] to construct a signature scheme out of the generic zero-knowledge
proof system ZKB++. A secret key in Picnic is the secret key to a symmetric key
encryption function, k ∈ {0, 1}λ. The public key is a pair of values (x, y) ∈ {0, 1}2λ
such that y = Enck(x) for some suitable encryption function Enc.

To sign a message msg, the signer constructs a generic zero-knowledge proof,
dependent on msg that they know a key k under which x is encrypted to y.
The hash of msg is then mixed into the randomness used to generate this zero-
knowledge proof in such a way to result in an existentially unforgeable signature
scheme. The zero-knowledge proof itself is based on the ‘MPC in the head’
methodology proposed in [25], which noted a fundamental connection between
zero-knowledge proofs and multi-party computation (MPC).

We present a rough outline of the signature scheme Picnic, and refer to [16]
for full details. Consider three separate parties, A, B, and C, who possess private
values a, b, and c, respectively. They are using multi-party computation to
compute y = Enck(x) for some fixed value x and k = a⊕ b⊕ c. In the end, no
party will learn k. Indeed, for certain configurations of multi-party computation,
even if two out of the three parties collaborate, they cannot learn k.

We can consider the views of each of these parties, consisting of all incoming
and outgoing messages as well as all intermediate values in the computation.
Because parties can collaborate and still not learn k, the views of two out
of the three parties similarly do not contain enough information to decide k.
However these views also attest—to a certain extent—to the validity of the
computation: One can examine the transcript of the parties views to ascertain
that all computations and incoming and outgoing messages were computed
correctly.

This realization allows the authors of [25] to show that a secure MPC scheme
can be transformed into a zero-knowledge proof. Someone who knows the secret
key k can split it up into three parts, a, b, and c, and then run the MPC protocol
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‘in their head’, with each party having a part of k. The respective transcripts of
each parties view of the protocol can be committed to, after which a verifier can
challenge the prover to reveal the views of two out of the three parties. For a
prover to cheat, they must make at least one of the parties misbehave, which can
be detected by the verifier with constant probability. But the scheme is actually
zero knowledge, as transcripts can easily be simulated by having the party who is
not revealed misbehave. By applying the Fiat–Shamir transform, one can obtain
a signature scheme: this is Picnic.

Adding a key-blinding functionality to Picnic can be done by encrypting the
public key a second time, this time under information derived from the nonce
τ . Then the signature will be a zero-knowledge proof of the statement “I know
the keys k, kτ such that Enckτ (Enck(x)) = yτ”. It’s easy to see that this simple
mechanism gets us most of the way towards key-blinding functionality. Anyone
who knows τ and the previous public key y can derive the new public key yτ
simply by encrypting. Furthermore, the new yτ is entirely disconnected from y
under standard assumptions on the security of the encryption scheme. Anyone
who knows τ and y will be unable to sign messages, even though this gives them
kτ as they do not have k and thus cannot construct the signature.

One issue with this system is that while y may be entirely changed by the
blinding process, x does not change. If we keep the current system of having the
public key system consist of both x and y, with x generated randomly by each
user, then the unlinkability of the system is trivially broken, as the x component
will not change. To fix this, we must rely on the same technique that we did in
the lattice case: x must be a fixed system parameter shared by all users.

blPicnic.KeyGen()

1 : k
$←− {0, 1}λ

2 : y ← Enck(x)

// x is a system parameter

3 : return (pk, sk) = (y, k)

blPicnic.BlindPk(y, τ)

1 : kτ ← KDF (y‖τ)
2 : yτ ← Enckτ (y)

3 : return pkτ = yτ

Fig. 10. Key generation and blinding algorithms for blinded Picnic (blPicnic) signature
scheme.

The general idea behind the blPicnic Sign and Verify algorithms do not
substantially change from Picnic’s sign and verification functions. The difference
is that the circuit for security is twice as long to perform two encryption functions.
As MPC-in-the-head protocols like ZKB++ can handle arbitrary circuits and
inputs, this does not change what is possible. In Appendix C we discuss the proof
of the unlinkability property.
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C blPicnic Proof

Here we outline the proof of unlinkability for blPicnic. For the independent
blinding property, we need to show that

randBlind(pk0; r1), . . . , randBlind(pk0; rn)

is indistinguishable from

randBlind(pk1; r1), . . . , randBlind(pkn; rn),

where for a public key y = Enck(x), we define randBlind(y, r) as just Encr(y).
From this it is clear why the proof of unlinkability applies. To distinguish the two
distributions is to distinguish many encryptions of the same plaintext versus many
encryptions of different plaintexts. This reduces to the indistinguishability of the
encryption scheme used. We can proceed by a simple game-hopping argument,
where in game i we swap randBlind(pk0; ri) for randBlind(pki; ri). As long as
the ciphertexts are indistinguishable, the hop is justified, and we get that the
advantage in breaking the independent blinding property is less than n times the
advantage in breaking the indistinguishability of the ciphertext.

The proof of the signing with oracle reprogramming is similar to all Fiat-
Shamir schemes. While we do not include all of the details (because we do not
explicitly describe the signing protocol), we note that it is essentially the same
as the proof for blLegRoast. Proceed through the protocol, but choose which
parties will ‘cheat’ in advance. Then, set the outputs of those parties accordingly
so that all checks pass. Reprogram the oracle so that those parties internal
states stay secret. All checks will pass and the distribution of the signatures and
reprogrammed points is identical.

The proof of the unforgeability of the scheme is similarly largely unchanged.
The zero-knowledge protocol is meant to work for arbitrary circuits, so encrypting
a plaintext twice rather than once is certainly still secure.

However, double encryption does open the possibility of meet-in-the-middle
attacks. As the blinded public key now a yτ value such that yτ = Enckτ (Enck(x)),
an adversary can sign messages by finding any (k, kτ ) such that this relation
holds. If the length of the block is ` bits, then an adversary can create a list
of 2`/2 keys k′ and the associated value Enck′(x). By then sampling k′τ values
and seeing if Deck′τ (yτ ) appears in the list, an adversary can find a secret key

that allows them to construct forgeries in time roughly O(2`/2). Thus, double
encryption impacts the security of the underlying one-way function, and the
block length ` may need to be proportionally increased as a result.

D blCSI-FiSh Proof

The greatest benefit of the CSI-FiSh scheme is that it requires the fewest changes
to signing and verification. In this sense it is the most similar to the Ed25519 key-
blinding scheme, where the public and secret keys are blinded in a straightforward
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way and signing and verification need not change. In Figure 11 we describe the
signing and verification procedures. Note that except for the fact that the signing
procedure starts by blinding the public key and incorporating the blinding factor
into the secret key, it is not changed from in CSI-FiSh.

blCSI-FiSh.Sign(msg, pk = (Epk,i)i∈[L], sk = (gsk,i)i∈[L], τ)

1 : (gτ,i)i∈[L] ← KDF ((Epk,i)i∈[L]||τ)

2 : for i ∈ [L] do

3 : gτ,i ← gτ,i + gsk,i (mod N)

4 : endfor

5 : skτ,0 ← 0

6 : for i ∈ [M ] do

7 : bi
$←− ZN

8 : Ei ← bi ? E0

9 : endfor

10 : (c1, . . . , cM )← H(E1||E2|| . . . EM ||msg), ci ∈ {−L, . . . , L}.
11 : for i ∈ [M ] do

12 : ri ← bi − sign(ci)gτ,ci (mod N)

13 : endfor

14 : return σ = (r1, . . . , rM , c1, . . . , cM )

blCSI-FiSh.Verify(msg, blpk = (Eτ,i)i∈[L], σ = (r1, . . . , rM , c1, . . . , cM ))

1 : Let Eτ,−i = E
t
pk,i, the quadratic twist

2 : for i ∈ [M ] do

3 : Ei ← ri ? Eci

4 : endfor

5 : if (c1, . . . , cM ) = H(E1|| . . . ||EM ||msg) then return accept

6 : else return reject

Fig. 11. Key generation and blinding algorithms for blinded CSI-FiSh (blCSI-FiSh)
signature scheme.

D.1 Unlinkability

To show that the scheme satisfies unlinkability, we need to prove the independent
blinding property and the signing with oracle reprogramming property. We
begin with the easier of the two, independent blinding. CSI-FiSh in fact satisfies
the strongest possible independent blinding, as the adversaries advantage in
distinguishing the two distributions is statistically 0. This is because the the
distribution of randBlind(pk, r) for a uniform r is actually uniform over the entire
public key space and independent of pk.

This fact comes from the group action structure. Because we are using a

regular group action, the act of sampling a group element gτ,i
$←− ZN and applying
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it to Epk,i provides a uniformly random element of the set, the distribution of
which is thus independent of Epk,i. So the act of blinding each entry in the
public key with a uniform group element causes the entire public key to be
perfectly uniformly random and independent, and thus the adversary’s advantage
in distinguishing the two distributions is 0.

For the signing with oracle reprogramming property, the proof is again a
relatively straightforward consequence of the Fiat-Shamir paradigm. By choosing
the indices (c1, . . . , cM ) that will be returned from H in advance, we can easily

construct a signature that will verify by selecting ri
$←− ZN and computing

Ei ← ri ? Eci . It is easy to check the correctness and to see that the fact that
our group action is free and transitive will guarantee that the distribution of the
signatures generated is statistically identical. Furthermore, the Extract function
will return the point E1|| . . . ||EM ||msg, and as the Ei have a distribution uniform
over the set (which has size roughly 2256), the resulting min-entropy is 2256M ,
more than sufficient.

D.2 Unforgeability

The proof of unforgeability is straightforward and not particularly impacted by
the addition of blinding. In the CSI-FiSh paper [14], the security of the scheme is
proven by showing that the scheme satisfies special soundness, unique responses,
large min entropy and satisfies honest-verifier zero knowledge. None of these
proofs are changed by the addition of the blinding factor. The blinding factor
merely introduces an arbitrary ‘offset’ for each of the parts of the public key, but
this offset does not materially change anything about the security of the scheme,
even if an adversary knows the offset.

E blLegRoast Specification and Proof

E.1 Algorithm Description

Here we detail the blinded version of LegRoast or PorcRoast. The scheme mostly
resembles the original, but with a few key changes. For the blinded version, we
are proving knowledge of a pair (K,T ) ∈ Fp such that F `I(K) + F `J (T ) = pkτ
(more accurately, we are proving a relaxation of this relation, but more on this
later). This is done through proving that the error term from equation 1 is equal
to zero. LegRoast’s error term is very simple, consisting of a single multiplication
gate. Our blinded version requires three. This increases the signature length, but
also requires some revisions to how the signature scheme works.
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E =

B∑
j=1

λ(j)
(

(K + I(j)) · (T + J (j)) · r(j) − o(j)
)

= K ·

T ·
 B∑
j=1

λ(j)r(j)

+

B∑
j=1

λ(j)r(j)J (j)


+ T ·

 B∑
j=1

λ(j)I(j)r(j)

+

B∑
j=1

λ(j)
(
I(j)J (j)r(j) − o(j)

)
, (1)

One issue is that because LegRoast has a single multiplication gate, the output
of the gate is publicly known. This allows for some optimizations. As our blinded
version has multiple nested multiplication gates, we need to more closely follow
the zero-knowledge protocol from [5] that LegRoast uses. This means that the
shares of the output gates z are not known, and a correction term ∆z must be

committed to by the prover. But since the indices I
(j)
e are not known until after

the prover has committed to the seeds, the correction values ∆z are known in a
round after the other correction values. To fix this issue, we insert an additional
round for the prover. After the λ challenge has been generated, the prover must
commit to the ∆z correction terms before they get the ε challenge values. Other
than this, our protocol largely follows that of LegRoast, except with the added
values for the two additional multiplication gates used in the computation.

Algorithm 2 blLegRoast.BlindPk

Input: identity public key pk = (w1, w2, . . . , wL), epoch τ
Output: blinded public key pkτ = (w1,τ , w2,τ , . . . , wL,τ )
1: T ← KDF (pk||τ)
2: v1 ← L`T (j1), . . . , vL ← L`T (jL)
3: w1,τ ← w1 + v1 (mod `), . . . , wL,τ ← wL + vL (mod `)
4: return pkτ

E.2 blLegRoast Proof

We now show that blLegRoast satisfies the independent blinding property (Def-
inition 6). We define randBlind by simply using a random T ∈ F×p instead of

having it determined by the hash function. To show that AdvInd−Blind(A) is
small, we need to reduce to the security of L the ability to distinguish whether
K1 = K2 = · · · = Kn or not in the following matrix:
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Algorithm 3 blLegRoast.Sign

Input: message m, blinded secret key skτ = (K,T )
Output: signature σ

Prover part 1: Generating Pre-processing triples and input shares

1: Pick a random salt
$←− {0, 1}2λ.

2: for e ∈ [M ] do

3: Sample a root seed sde
$←− {0, 1}λ.

4: Build binary tree from sde with leaves sde,1, . . . , sde,N .
5: for i ∈ [N ] do

6: Sample shares:



Ke,i, Te,i,

r
(1)
e,i , . . . , r

(B)
e,i ,

a
(1)
e,i , a

(2)
e,i , a

(3)
e,i ,

b
(1)
e,i , b

(2)
e,i , b

(3)
e,i ,

c
(1)
e,i , c

(2)
e,i , c

(3)
e,i ,

z
(1)
e,i , z

(2)
e,i , z

(3)
e,i


← Expand(sde,i).

7: Commit to seed: come,i ← Hcom(salt, e, i, sde,i)

8: Compute witness offsets: ∆Ke ← K −
∑N
i=1Ke,i, ∆Te ← T −

∑N
i=1 Ti,e

9: Adjust first shares: Ke,1 ← Ke,1 +∆Ke, Te,1 ← Te,1 +∆Te.
10: for k ∈ [3] do

11: Compute triple: a
(k)
e ←

∑N
i=1 a

(k)
e,i , b

(k)
e ←

∑N
i=1 b

(k)
e,i , c

(k)
e ← a

(k)
e · b(k)e .

12: Compute triple offset: ∆c
(k)
e ← c

(k)
e −

∑N
i=1 c

(k)
e,i .

13: Adjust first share: c
(k)
e,1 ← c

(k)
e,1 +∆c

(k)
e .

14: for j ∈ [B] do

15: Compute residue symbol: s
(j)
e ← L`0(r

(j)
e ), where r

(j)
e ←

∑N
i=1 r

(j)
e,i .

16: Set σ1 ←
(

(come,i)i∈[N ], (s
(j)
e )j∈[B],∆Ke,∆Te, (∆c

(k)
e )k∈[3]

)
e∈[M ]

.

Verifier part 1: Issuing public key index challenge
17: Compute challenge hash: h1 ← H1(msg, salt, σ1).

18: Expand hash: (I
(j)
e , J

(j)
e )e∈[M ],j∈[B] ← Expand(h1).

Prover part 2: Compute public product values
19: for e ∈ [M ] do
20: for j ∈ [B] do

21: Compute output value: o
(j)
e ← (K + I

(j)
e )(T + J

(j)
e ) · r(j)e .

22: Set σ2 ← (o
(j)
e )e∈[M ],j∈[B].

Verifier part 2: Linear combination challenge
23: Compute challenge hash: h2 ← H2(h1, σ2).

24: Expand the hash (λ
(1)
e , λ

(2)
e , . . . , λ

(B)
e )e∈[M ] ← Expand(h2).
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Prover part 3: Constructing output shares for multiplication gates
25: for e ∈ [M ] do
26: Compute first multiplication gate offset:

∆z(1)e ← T ·

∑
j

λ(j)
e r(j)e

−∑
i

z
(1)
e,i .

27: Compute second multiplication gate offset:

∆z(2)e ← K ·


∑

j

λ(j)
e J(j)

e r(j)e

+ T ·
∑
j

λ(j)
e r(j)e

−∑
i

z
(2)
e,i .

28: Compute final multiplication gate offset:

∆z(3)e ← T ·

∑
j

λ(j)
e I(j)e r(j)e

−∑
i

z
(3)
e,i .

29: for k ∈ [3] do

30: Adjust first shares: z
(k)
e,1 ← z

(k)
e,1 +∆z

(k)
e .

31: Set σ3 ← (∆z
(1)
e ,∆z

(2)
e ,∆z

(3)
e )e∈[M ].

Verifier part 3: Multiplication gate challenge
32: Compute challenge hash: h3 ← H3(h2, σ3).

33: Expand the hash (ε
(1)
e , ε

(2)
e , ε

(3)
e )e∈[M ] ← Expand(h3).

Prover part 4: Committing to the views of the MPC parties
34: for e ∈ [M ] do

// Views for first multiplication gate
35: for i ∈ [N ] do

36: Compute shares: α
(1)
i,e ← a

(1)
e,i + ε

(1)
e · Te,i,

37: β
(1)
e,i ← b

(1)
e,i +

∑
j λ

(j)
e r

(j)
e,i .

38: Compute values α
(1)
e ←

∑
i α

(1)
e,i and β

(1)
e ←

∑
i β

(1)
e,i .

39: for i ∈ [N ] do

40: Compute γ
(1)
i,e ← ε

(1)
e z

(1)
e,i − c

(1)
e,i + α

(1)
e b

(1)
e,i + β

(1)
e a

(1)
e,i .

41: If i = 1, set γ
(1)
e,i ← γ

(1)
e,i − α

(1)
e · β(1)

e .

// Views for second multiplication gate
42: for i ∈ [N ] do

43: Compute shares: α
(2)
e,i ← a

(2)
e,i + ε

(2)
e ·Ke,i,

44: β
(2)
e,i ← b

(2)
e,i + z

(1)
e,i +

∑
j λ

(j)
e J

(j)
e r

(j)
e,i .

45: Compute values α
(2)
e ←

∑
i α

(2)
e,i and β

(2)
e ←

∑
i β

(2)
e,i .

46: for i ∈ [N ] do

47: Compute γ
(2)
e,i ← ε

(2)
e z

(2)
e,i − c

(2)
e,i + α

(2)
e b

(2)
e,i + β

(2)
e a

(2)
e,i .

48: If i = 1, set γ
(2)
e,i ← γ

(2)
e,i − α

(2)
e · β(2)

e .
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// Views for final multiplication gate
49: for i ∈ [N ] do

50: Compute shares: α
(3)
e,i ← a

(3)
e,i + ε

(3)
e · Te,i

51: β
(3)
e,i ← b

(3)
e,i +

∑
j λ

(j)
e I

(j)
e r

(j)
e,i

52: Compute values α
(3)
e ←

∑
i α

(3)
e,i , β

(3)
e ←

∑
i β

(3)
e,i .

53: for i ∈ [N ] do

54: Compute γ
(3)
e,i ← ε

(3)
e z

(3)
e,i − c

(3)
e,i + α

(3)
e b

(3)
e,i + β

(3)
e a

(3)
e,i .

55: If i = 1, set γ
(3)
e,i ← γ

(3)
e,i − α

(3)
e · β(3)

e .

56: Compute output values: ωe,i ← z
(2)
e,i + z

(3)
e,i +

∑
j λ

(j)
e I

(j)
e J

(j)
e r

(j)
e,i

57: If i = 1, set ωe,i ← ωe,i −
∑
j λ

(j)
e o

(j)
e .

58: Set σ4 ←
(

(α
(k)
e , β

(k)
e , (α

(k)
e,i , β

(k)
e,i , γ

(k)
e,i )i∈[N ])k∈[3], (ωe,i)i∈[N ]

)
e∈[M ]

.

Verifier Part 4: Challenge on the sacrificing protocol
59: Compute challenge hash h4 ← H4(h3, σ4)
60: Expand hash (ie)e∈[M ] ← Expand(h4), where each ie ∈ [N ].

Prover Part 5: Opening the views of the sacrificing protocol
61: for e ∈ [M ] do
62: Set seedse ← {log2(N) nodes needed to compute sde,i for i ∈ [N ] \ {ie}}.

return σ =



salt, h1, h4,(
∆Ke,∆Te, o

(1)
e , . . . , o

(B)
e

)
e∈[M ](

α
(k)
e , β

(k)
e , γ

(k)
e ,∆z

(k)
e

)
e∈[M ],k∈[3](

seedse, come,i

)
e∈[M ]


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Algorithm 4 blLegRoast.Verify

Input: Blinded public key pkτ = (w1,τ , . . . , wL,τ ), signature σ
Output: accept or reject
1: Parse signature σ as

σ =



salt, h1, h4,(
∆Ke,∆Te, o

(1)
e , . . . , o

(B)
e

)
e∈[M ](

α
(k)
e , β

(k)
e , γ

(k)
e ,∆z

(k)
e

)
e∈[M ],k∈[3](

seedse, come,i

)
e∈[M ]


2: Compute h2 ← H2

(
h1, (o

(j)
e )e∈[M ],j∈[B]

)
.

3: Compute h3 ← H3

(
h2, (∆z

(k)
e )e∈[M ],k∈[3]

)
.

4: Expand challenge hash 1: (I
(j)
e , J

(j)
e )e∈[M ],j∈[B] ← Expand(h1).

5: Expand challenge hash 2: (λ
(1)
e , λ

(2)
e , . . . , λ

(B)
e )e∈[M ]Expand(h2).

6: Expand challenge hash 3: (ε
(1)
e , ε

(2)
e , ε

(3)
e )e∈[M ] ← Expand(h3).

7: Expand challenge hash 4: (ie)e∈[M ] ← Expand(h4).
8: for e ∈ [M ] do
9: Use seedse to compute sde,i for i ∈ [N ] \ {i}.

10: for i ∈ [N ] do

11: Sample shares:



Ke,i, Te,i,

r
(1)
e,i , . . . , r

(B)
e,i ,

a
(1)
e,i , a

(2)
e,i , a

(3)
e,i ,

b
(1)
e,i , b

(2)
e,i , b

(3)
e,i ,

c
(1)
e,i , c

(2)
e,i , c

(3)
e,i ,

z
(1)
e,i , z

(2)
e,i , z

(3)
e,i


← Expand(sde,i).

12: if i = 1 then
13: Adjust shares: Ke,1 ← Ke,1 +∆Ke, T1 ← T1 +∆Te
14: for k ∈ [3] do

15: c
(k)
e,1 ← c

(k)
e,1 +∆c

(k)
e , z

(k)
e,1 ← z

(k)
e,1 +∆z

(k)
e .

16: Recompute commitments come,i ← Hcom(salt, e, i, sde,i).
// First multiplication gate

17: Recompute shares: α
(1)
e,i ← a

(1)
e,i + ε

(1)
e · Te,i, β

(1)

e,i ← b
(1)
e,i +

∑
j λ

(j)
e r

(j)
e,i .

// Second multiplication gate

18: α
(2)
e,i ← a

(2)
e,i + ε

(2)
e ·Ke,i, β

(2)

e,i ← b
(2)
e,i + z

(1)
e,i +

∑
j λ

(j)
e J

(j)
e r

(j)
e,i .

// Final multiplication gates

19: α
(3)
e,i ← a

(3)
e,i + ε

(3)
e · Te,i, β

(3)

e,i ← b
(3)
e,i +

∑
j λ

(j)
e I

(j)
e r

(j)
e,i .
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20: for k ∈ [3] do

21: Recompute share: γ
(k)
e,i ← ε

(k)
e z

(k)
e,i − c

(k)
e,i + α

(k)
e b

(k)
e,i + β

(k)
e a

(k)
e,i

22: If i = 1 set γ
(k)
e,1 ← γ

(k)
e,1 − α

(k)
e β

(k)
e .

23: Recompute output: ωe,i ← z
(2)
e,i + z

(3)
e,i +

∑
j λ

(j)I
(j)
e J

(j)
e r

(j)
e,i .

24: If i = 1, set ωe,1 ← ωe,1 −
∑
j λ

(j)
e o

(j)
e .

25: for k ∈ [3] do

26: Compute missing shares: α
(k)

e,i
← α

(k)
e −

∑
i 6=i α

(k)
e,i

27: β
(k)

e,i ← β
(k)
e −

∑
i6=i β

(k)

e,i

28: Compute missing check value share: γ
(k)

e,i
← −

∑
i6=i γ

(k)
e,i .

29: Recompute missing output share: ωe,i ← −
∑
i 6=i ωe,i.

30: for j ∈ [B] do

31: Recompute residuosity symbols: s
(j)
e ← L`0(o

(j)
e )− pk

I
(j)
e

.

32: Check 1:

h1 = H1(msg, salt, ((come,i)i∈[N ], (s
(j)
e )j∈[B],∆Ke,∆Te, (∆c

(k)
e )k∈[3])e∈[M ])

33: Check 2:

h4 = H4

(
h3,
(

(α(k)
e , β(k)

e , (α
(k)
e,i , β

(k)

e,i , γ
(k)
e,i )i∈[N ])k∈[3](ωe,i)i∈[N ]

)
e∈[M ]

)
34: Output accept if both checks pass, fail otherwise.


F `I(K1) + F `J (T1)
F `I(K2) + F `J (T2)

...
F `I(Kn) + F `J (Tn)

 =


L`K1

(i1) + L`T1
(j1) . . . L`K1

(iL) + L`T1
(jL)

L`K2
(i1) + L`T2

(j1) . . . L`K2
(iL) + L`T2

(jL)
...

. . .
...

L`Kn(i1) + L`Tn(j1) . . . L`Kn(iL) + L`Tn(jL)

 .

The natural property of L to reduce to is its security as a PRF. If, for
each key Ti the result on the inputs {im} for m ∈ [L] is indistinguishable from
random, then each row of the matrix is indistinguishable from uniformly random,
independent of whether the Ki values are all the same or not. This means that
rather than relying on a search version of the problem that defines the security
of the Legendre PRF, we require a decisional version.

Definition 9 (Decisional Fixed Input Power Residue Symbol Problem).
Let p be an odd prime and ` be a positive integer with ` | p − 1. Let J =
(j1, j2, . . . , jL) ∈ FLp . Let OPow be an oracle that, when queried samples a random

T
$←− Fp and returns F `J (T ). Let ORan be an oracle that returns a uniform element

form ZL` . The Decisional Fixed Input Power Residue Symbol Problem is, given
p, `,J , L as input distinguish the two oracles with non-negligible probability. We
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write AdvInd−PRF(A) to denote∣∣∣Pr[1← AOPow ]− Pr[1← AORan ]
∣∣∣ .

We note that the security of “plain” LegRoast does not depend on such a
property. It requires only a search version of the problem, where A is required to
actually find the corresponding T value. The security of the decisional variant
and its relation to the search variant is still conjectural. Damg̊ard’s original 1988
paper [17] that proposed the use of the Legendre function as a PRF investigates
statistical properties with respect to standard randomness tests, but this does
not constitute a serious cryptanalytic effort. Grassi et al.’s 2016 paper [21] is
largely responsible for the renewed interest in the Legendre function as a PRF.
They defined a decisional variant similar to our own, except allowing for adaptive
queries. However, later cryptanalytic works [10,26] focused on the search variant.
Security of our scheme relies on the decisional variant; significantly more research
on the hardness of the decisional variant is needed before this scheme can be
confidently used.

Lemma 9. If the Legendre PRF is pseudo-random, then blLegRoast satisfies
the independent blinding property (Definition 6). In particular, for any adver-
sary A that distinguishes a random oracle from the power residue symbols with
advantage AdvInd−PRF(A) (defined above), we have that AdvInd−Blind

blLegRoast(A) ≤
2 ·AdvInd−PRF(A).

Proof. Let game G0 be one in which A is given independent blindings of the
same public key, and game G3 be where A is given independent blindings of
independent public keys. We will introduce intermediate games G1 and G2, and
bound the difference in probability between subsequent hops.

In game G1, we replace the correct values from F `J (Ti) with uniformly random
outputs in ZL` for i ∈ [n]. Since the Ti values are uniformly random already,

this replacement causes at most a difference AdvInd−PRF(A), that is |Pr[1 ←
AG0 ]− Pr[1← AG1 ]| ≤ AdvInd−PRF.

As F `I(K) is now being added to uniformly random values, we can replace it
with whatever we like and cause no change in the distribution. Thus, for game
G2 we replace each the n instances of F `I(K) by drawing a random Ki and
using F `I(Ki) instead. Again, this does not change the distribution of what the
adversary has access to, so |PrG1

[1← A]− PrG2
[1← A]| = 0.

Finally, for game G3, we swap the F `J (Ti) values back to being honestly
generated from Ti, instead of just uniformly random. At this point we have cor-
rectly generated F `I(Ki) and F `J (Ti) values, with all Ki uniform and independent.

This again introduces a difference bounded by AdvInd−PRF. Summing up the
differences across all games, we obtain∣∣∣∣Pr

G0

[1← A]− Pr
G3

[1← A]

∣∣∣∣ ≤ 2 ·AdvInd−PRF(A)

ut
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It remains to be shown that the signing with oracle reprogramming property
is satisfied and the the scheme is existentially unforgeable. In LegRoast, the
proof of existential unforgeability has a fairly straightforward structure. First,
the authors show that an adversary A that attacks the existential unforgeability
under chosen message attack can be used to construct an adversary R that
makes no signing queries. This is done by essentially proving the signing with
oracle reprogramming property that we defined in Section 3. Then to justify
the key-only security, they show that with high probability, an adversary that
has successfully constructed a signature has, with all but negligible probability,
queried a witness to a β-relaxation of the PRF relation. Finally, they show that,
with all but negligible probability, the only witness to such a relaxation is the
actual secret key K.

We take a similar approach for the blinded version of LegRoast. The proof
that an EU-CMA adversary implies a EU-KO one also works as a proof of the
signing with oracle reprogramming property, and closely mirrors the original
proof. The proof showing that a key only adversary can be used to recover a
witness for the relaxed relation is also similar, with appropriate modifications
made for the additional multiplication gates and the extra round. Finally, the
proof that the only witness of the relaxation is the original (K,T ) proceeds
similarly, with a small modification needed to account for the flexibility in having
the T parameter. We will present these proofs in the opposite order, starting
by talking about the underlying relation and building towards the proof of the
EU-CMA security.

Underlying (relaxed) relation The security of the blinded LegRoast scheme
depends on the ability of the adversary to find values K and T such that
F `I(K) + F `J (T ) = blpk. In the signature scheme, because of a random subset of
the indices of the public key are verified, we need to consider a β-relaxation of
finding such a K and T , where only ‘enough’ of the indices match. We adapt
Definitions 1 and 2 from [12] to our situation.

Definition 10 (Additive `th-power residue PRF relation). For an odd
prime p, a positive integer ` | p − 1 and lists I,J ∈ ZLp we define the additive

`th power residue PRF relation R+
L` with output length L as

R+
L` = {(F `I(K) + F `J (T ), (K,T )) ∈ ZL` × Fp × Fp}.

Definition 11 (Additive β-approximate PRF relation). For β ∈ [0, 1], an
odd prime p, a positive integer ` | p− 1, and lists I,J ∈ ZLp define the additive

β-approximate PRF relation R+
βL` with output length L as

R+
βL` = {(s, (K,T )) ∈ ZL` ×Fp×Fp | ∃a ∈ Z` : d(s+(a, . . . , a), F `I(K)+F `J (T )) ≤ βL},

where d(·, ·) denotes the Hamming distance.

We can then adapt Theorem 1 from [12] to our situation.
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Theorem 5. Let B(n, q) denote the binomial distribution with n samples each
with success probability q. Let C(n, q,m) denote the cumulative distribution func-
tion with at least m successes, i.e., C(n, q,m) = Pr[B(n, q) ≥ m]. Take K,T ∈ Fp
and s = F `I(K) + F `J (T ). Then with probability at least

1− `p2 · C

(
L,

1

`
+

1
√
p

+
2

p
, (1− β)L

)

over the choice of I,J , there exists only one witness for s ∈ R+
βL` , which is

(K,T ), the witness for the exact relation R+
L` .

To prove the theorem we will require Lemma 1 from [12].

Lemma 10. Let p be a prime and ` | p− 1. For any K,K ′ ∈ Fp with K 6= K ′,
and a ∈ Z`, we have

Pr
i

$←−Fp

[L`(K + i) = L`(K ′ + i) + a] ≤ 1

`
+

1
√
p

+
2

p
.

Proof (of Theorem 5). For any K ′, T ′, j ∈ Fp with K ′ 6= K, and any a ∈
Z`, we let a′ = L`(T ′ + j) − L`(T + j) + a. Then by Lemma 10 we have
that the probability, over the choice i that L`(K + i) = L(K ′ + i) + a′ is
bounded. Rearranging the terms of a′ we have a bound on the probability that
L`(K + i) + L(T + j) = L`(K ′ + i) + L`(T ′ + j) + a. As each of the i values is
sampled independently, we get that the probability that for a tuple (K ′, T ′, a)
we have that d(F `I(K ′) + F `J (T ′), F `I(K) + F `J (T ) + (a, . . . , a)) ≤ βL is

C(L, 1/`+ 1/
√
p+ 2/p, (1− β)L).

This is true for any K ′ 6= K, and any T ′ or a. There are (p− 1) choices for
K ′, p choices for T ′, and ` choices for a. So the probability that there exists
such a K ′, T ′, and a is upper bounded by the previous probability multiplied by
`(p− 1)p, which we replace with `p2 for simplicity.

Relaxed relation implies key-only security

Theorem 6. Let qcom, q1, q2, q3, and q4 be the number of queries that an adver-
sary A makes to random oracles Hcom,H1,H2,H3, and H4 respectively. Fix a
constant β ∈ {0, 1}. If A succeeds in breaking the existential unforgeability of
blLegRoast with advantage a then there exists an adversary R capable of finding
a β-approximate witness for blpk with probability at least

a− MN(qsd + q1 + q2 + q3 + q4)2

22λ
− Pr[X + Y + Z +W = M ]

where X is a r.v. distributed as the max(X1, . . . , Xq1), with each Xi distributed
as B(M, (1− β)B), and Y , Z, and W defined similarly, but with:
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– Yi ranging from i = 1 to q2 and Yi distributed as B(M −X, 1/p),
– Zi ranging from i = 1 to q3 and Zi distributed as B(M −X − Y, 3/p),
– Wi ranging from i = 1 to q4 and Wi distributed as B(M −X − Y − Z, 1/N).

Proof. We define how the reduction algorithm R will operate. To begin with,
R is provided s = F `I(K) + F `J (T ) which is passed along to A as the blinded
public key. R will maintain Hcom,H1H2,H3, and H4 as random oracles. Typical
to random oracle proofs, R will employ the ‘lazy sampling’ methodology, and
respond consistently when given repeated queries and otherwise sample a random
output and provide it to A, maintaining a table of all inputs and outputs. In
general, the sampled output is entirely uniform, with some small exceptions:

– The same value is never returned twice (no collisions).

– When the adversary makes a query toH1 of the form
(

(come,i)i∈[N ], . . .
)
e∈[M ]

,

add the come,i values to a list of values to never return for new queries. This
means that A cannot cannot provide a commitment and then later find an
opening to that commitment.

– Do the same thing for queries to H2 of the form (h1, σ2) (do not return h1),
queries to H3 of the form (h2, σ3) (do not return h2), and queries to H4 of
the form (h3, σ4) (do not return h3). This ensures that the adversary is forced
to adhere to the ‘correct’ order of the Fiat-Shamir paradigm.

Note that R clearly runs in time roughly the same as A. We will show that, if
A succeeds then with high probability, embedded into A’s queries to the random
oracles is enough information to recover a witness (K ′, T ′).

The remainder of the proof works very similarly as in [12]. We call specific
attention to the cases where the proof differs.

Extracting a β-relaxed witness. To recover a witness, R looks at the queries
made to the hash function. Let Qi denote the set of query-responses to oracle Hi.
For each query σ1 = ((come,i)i∈[N ], . . . ,∆Ke, ∆Te, . . . )e∈[M ] to H1, check and
see if each come,i is the output for a query (salt, e, i, sde,i) to Hcom. If so, then
by expanding sde,i to recover Ke,i for each e, i, summing them together over i
and adding in ∆Ke, then doing the same for T , we have a candidate witness.
For each query to H1 where this is possible, we maintain a table Ti of inputs.
The table Ti is indexed by a query σ1 and the round e and contains the values

Ke, Te, (r
(j)
e,i )i∈[N ],j∈[B], (a

(k)
e,i , b

(k)
e,i , c

(k)
e,i , z

(k)
e,i )i∈[N ],k∈[3]. Our task is to show that if

no such candidate witness can be constructed, then it is only with negligible
probability that A can create a valid signature.

Cheating in the First Phase. Let σbest1 , hbest1 be the best query-response pair
from H1 that A receives. ‘Best’ here refers to maximizing the probability that
A can cheat from this query because the chosen indices that result from the
output ‘line up’ in a way favourable to the adversary. For a query-response pair

((msg, salt, σ1), h1) to H∞, define G1(σ1, h1 = {I(j)e }e∈[M ],j∈[B]) as the rounds
e ∈ [M ] for which:
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– An entry at index [σ1, e] exist in Ti.
– L`((Ke + I

(j)
e )(Te + J

(j)
e )r

(j)
e ) = s

(j)
e + pk

I
(j)
e ,J

(j)
e

for all j ∈ [B].

We then rely on the following lemma from [12]:

Lemma 11. If a witness (K,T ) cannot be recovered from the queries to H1 then
for any positive integer x, we have that for all query-response pairs to H1

Pr[#G1(σ1, e) > x] ≤ Pr[X > x]

where X is a random variable distributed as max(X1, X2, . . . , Xq1) where each
Xi is i.i.d. B(M, (1− β)B).

Cheating in the second phase. For the second round, any ‘functional’ (could

possibly verify) query-response pair ((h1, σ2 = (o
(j)
e )e∈[M ],j∈[B]), (λ

(j)
e )e∈[M ],j∈[B])

we define the set of good rounds G(h1, σ2, h2) as:

– ∅ if h1 is not the output of a query σ1 to H1. Otherwise this cannot lead to

a valid signature. Let σ1 = (. . . , (s
(j)
e )j∈[B], . . . ).

– ∅ if there is an index (e, j) such that L`(o(j)e ) 6= s
(j)
e + pk

I
(j)
e ,J

(j)
e

. If there is,

then the signature will not verify, because the check on h1 will fail when
reconstructing the s values.

– The values e ∈ [M ] for which the following procedure passes:
• Using the associated σ1, recover the inputs from T [σ1, e].

• With these inputs, as well as the I
(j)
e , J (e), o

(j)
e , and λ

(j)
e values, calculate

if the error term E found in Equation 1 is equal to 0.

We once again must establish that if a witness for the relation cannot be
recovered from the inputs, then the size of G2(h1, σ2, h2) is bounded. Obviously
we must be in the third case, or else G2(h1, σ2, h2) is empty. There are two
possibilities:

– A given index e ∈ [M ] is also in G1(σ1, h1).
– If the index in not in G1(σ1, h1), then it must be due to the fact that there is

an index j ∈ [B] such that L`((Ke + I
(j)
e )(Te + J

(j)
e )r

(j)
e ) 6= s

(j)
e + pk

I
(j)
e ,J

(j)
e

.

But since we have that L`(o(j)e ) = s
(j)
e + pk

I
(j)
e ,J

(j)
e

, this means that the same

index has the property that L`((Ke + I
(j)
e )(Te + J

(j)
e )r

(j)
e ) 6= o

(j)
e . This in

turn means that the error term is a non-zero linear function in the λ
(j)
e values.

So, over the random choices of λ, the probability that the error term works
out to be 0 anyways is equal to 1/p. This allows us to establish the following
Lemma:

Lemma 12. If a witness (K,T ) cannot be recovered from the queries to H1,
then for any positive integer x, we have that for all query-response pairs to H2

Pr[#G2(h1, σ2, h2) > x]leqPr[X + Y > x]

where X is a random variable distributed as in Lemma 11, and Y is distributed
as max(Y1, Y2, . . . , Yq2) with each Yi is i.i.d. B(M −X, 1p ).
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This proof essentially states that we must either be in the first or second case,
and that in the second case the probability that a round works out is bounded
by 1/p, as already discussed. Remaining details for this part of the proof can
similarly be found in [12].

Cheating in the third phase. For round three, we continue with our characterization
of the best possible input an adversary can construct. Recall that the input to

H3 consists of an h2 and the ∆z
(k)
e values. For an input-output pair, define the

set G3(h2, σ3, h3) as

– ∅ if h2 is not the output of a previous query (h1, σ2) to H2, which in turn is
associated with a query σ1 that has already been made to H1. Otherwise,
the signature will never verify.

– The values e ∈ [M ] such that the following procedure passes: trace back to
the input to the fist phase and recover the seeds in order to generate the
shares of K, T , r(j), a(k), b(k), c(k), and z(k). By summing over these shares
and incorporating the committed to ∆ values, we get the candidate state of
the equations at the time when the ε(k) values become defined. This in turn
allows us to define the corresponding α(k), β(k), γ(k), and ω(k) values, by

α(1)
e =a(1)e + ε(1)e · Te β(1)

e = b(1)e +
∑
j

λ(j)e r(j)e

α(2)
e =a(2)e + ε(2)e ·Ke β(2)

e = b(2)e + z(1)e +
∑
j

λ(j)e J (j)
e r(j)e

α(3)
e =a(3)e + ε(3)e · Te β(3)

e = b(3)e +
∑
j

λ(j)e I(j)e r(j)e

γ(k)e =ε(k)e z(k)e − c(k)e + α(k)
e b(k)e + β(k)

e a(k)e − α(k)
e β(k)

e

ωe =z(2)e + z(3)e +
∑
j

λ(j)e I(j)e J (j)
e r(j)e −

∑
j

λ(j)e o(j)e .

Then pass if all of γ
(k)
e and ω

(k)
e are equal to zero.

Again, we need to bound the number of such rounds in the event that a
witness cannot be recovered from the queries to H1. Clearly it must be the case
that we can trace the query h2 back to the original input to H1, or else the size
of G3(h2, σ3, h3) is zero. For each index e ∈ [M ], it may be the case that the
index is in G2(h1, σ2, h2). Assume it is not. Since the index is not in G2, we can
see that it must be the case that the error term is not equal to zero. A simple
reduction shows that if x(k) and y(k) are the inputs to the kth multiplication
gate, we have that,

γ(k)e = ε(k)e cdot(z(k)e − x(k)e · y(k)e )− c(k)e + a(k)e · b(k)e .

We can see that this is equal to zero only if either:
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– z
(k)
e = x

(k)
e · y(k)e and c

(k)
e = a

(k)
e · b(k)e (that is, the ∆z

(k)
e and ∆c

(k)
e values

were chosen properly so that z and c really are equal to the product of the
inputs).

– ε
(k)
e = (a

(k)
e · b(k)e − c(k)e )(z

(k)
e − x(k)e · y(k)e )−1.

As the ε(k) values are chosen uniformly at random, for each of the γ values, the

chances that γ
(k)
e = 0 without z

(k)
e = x

(k)
e · y(k)e is 1/p. But if, for each k, we do

have z
(k)
e = x

(k)
e · y(k)e then the corresponding ωe value will in fact be equal to

the error term. But since we are assuming that this round is not in G2(h1, σ2, h2)
we have that the error term is in fact not equal to zero. So we have that for least

one of the γ
(k)
e terms we must have that z

(k)
e is not equal to the inputs. Thus the

probability that all values are equal to zero is at most 3/p.
This allows us, as in the previous round, to bound the size of G3(h2, σ3, h3):

Lemma 13. If a witness (K,T ) cannot be recovered from the queries to H1,
then for any positive integer x, we have that for all query-response pairs to H3

Pr[#G3(h2, σ3, h3) > x] ≤ Pr[X + Y + Z > x]

where X is a random variable distributed as in Lemma 11, and Y is distributed
as in 12, and Z is distributed as max(Z1, Z2, . . . , Zq2) with each Zi is i.i.d.
B(M −X − Y, 3p ).

Cheating in the fourth phase. Assume without loss of generality that A verifies
the signature that they submit as a forgery. Recall that queries to H4 should
take the form

h3, σ4 =
(

(α(k)
e , β(k)

e , (α
(k)
e,i , β

(k)
e,i , γ

(k)
e,i )i∈[N ])k∈[3], (ωe,i)i∈[N ]

)
e∈[M ]

.

For each such query σ4 we can bound the probability that the response leads A
to be able to construct a valid signature.

As usual, we note that h3 must be the output of a query to H3 — if the
adversary decided to come up with the h3 value in some other way, then after
they have queried it to H4 no input that they provide to H3 will lead to h3.
Similarly, we can work our way backwards to the original query to H1.

Assume that in a given round e we have that e /∈ G3(h2, σ3, h3). Then it

is the case that at least one of the associated γ
(k)
e or ωe values is not equal to

zero. In this case, the only way that we can end up with a valid signature is if
exactly N − 1 of the parties behave honestly. If all parties behave honestly, then

the final signature will not validate because the γ
(k)

e,ie
or ωe,ie values will not be

correct. If more than N − 2 parties misbehave then the verifier will not replicate
that misbehaviour. With exactly N − 1 parties misbehaving, then for any round,
the probability that that party is chosen to stay concealed by the protocol is
clearly 1/N . As a result, we can give our final bound on the probability that the
adversary winning.

The reduction simulates all oracles correctly, except that it does not return
collisions or allow the adversary to cheat at commitments to the random oracles.
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In [12], the authors establish that the probability that an adversary notices this
inconsistency is at most

MN(qsd + q1 + q2 + q3 + q4)2

22λ
. (2)

And given that the adversary does not notice this incongruence we have that the
probability that they are able to find a signature is less than

Pr[X + Y + Z +W = M ]

where X, Y , and Z are distributed according to Lemmas 11, 12, and 13, and
W is distributed as max(W1, . . . ,Wq4) with each Wi distributed i.i.d. as B(M −
X − Y − Z, 1/N).

EU-CMA implies key-only security and signing with oracle reprogram-
ming In order to simulate signatures with oracle reprogramming, we can define
our Forge function as follow.

1. To cheat in the first round, the simulator simply samples the values ∆Ke

and ∆Te uniformly at random, rather than calculating them using T . The
simulator also aborts if a salt is reused from an earlier round. The reduction
queries the random oracle (which is also managed by them) to obtain h1,

which is expanded to the I
(j)
e , J

(j)
e values.

2. For the second part of proving, rather than genuinely generating the o
(j)
e

values, the simulator will sample them uniformly and then post select so

that L`(o(j)e )− s(j)e = blpk
I
(j)
e ,J

(j)
e

. Then they again query this to the random

oracle to obtain the λ
(j)
e values.

3. For prover part 3, simply select each ∆z
(k)
e value to be uniformly random.

Set σ3 in the usual way and query for the ε
(k)
e values.

4. For the simulation of prover part 4, the simulator will need to cheat so the
openings can be provided for the requested parties that look correct, and
the overall proof lines up. To do this, they will decide which parties will be
opened in advance, and then later program the random oracle to provide
this output. So for each e ∈ [M ], the simulator samples ie ∈ {1, . . . , N} at
random. Then it behaves entirely honestly except for when working with the
values for the ieth party in round e. This party is calculated last, and we set
the γ and ω values according to how they are set in verification, rather than
how they are set in an honest signing instance. That is, we set

γ
(k)

e,ie
←−

∑
i 6=ie

γ
(k)
e,i ωe,ie ←−

∑
i 6=ie

ωe,i.

Then σ4 is prepared accordingly. Rather than querying the random oracle
H4, we instead reprogram it so that (h3, σ4) maps to the desired (ie)e∈[M ]

values.
5. Finally for part 5, the simulator can generate the seeds as desired and return

the signature as expected.
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Simulation Indistinguishability. The random oracles are all simulated perfectly.
The programmed output is chosen uniformly at random, and so as long as it
has not been previously queried, the programmed output is indistinguishable
from a real one. As the oracle H4 is reprogrammed on the point (h3, σ4), this is
the output of the Ext function. That is, Ext takes in the signature σ, uses it to
reconstruct h3 and σ4 according to the Verify function, and returns them as the
reprogrammed point.

The min-entropy of this point is quite high. We need to consider the min-
entropy of this input from the beginning of the signing routine. All of the α, β,
and γ values are derived in part from the a, b, c, and z values. These in turn are
derived be expanding the seeds, which are chosen from the uniformly sampled
root seed sde. Therefore the entropy of the programmed point is bounded by the
entropy of the sampled root vector. As a root vector is sampled for each round,
the min entropy of the overall programmed point can be bounded by 2λ·M .

We must consider the distribution of the reprogrammed point and the returned
signature. Most of the parts of the signature are exactly the same as what they
would have been without any cheating (just possibly calculated a different way),

except for the ∆ correction values: ∆Ke, ∆Te, and ∆z
(k)
e are all chosen uniformly

at random rather than calculated based on K, T , and the output values. But,
this does not actually change the overall distribution of the signatures. Since the

unknown shares Ke,ie
, Te,ie , z

(k)

e,ie
are never seen by verifier, and are generated

uniformly from Expand(sde,ie), they just as easily could have been the values such
that the ∆ values are calculated correctly. Therefore the distribution, conditioned
on what a verifier sees as part of the signature, is exactly the same, and we can
sign with oracle reprogramming.

Similarly, the distribution of the programmed output, yforged is entirely
unchanged from yreal, as both are taken uniformly from {1, . . . , N}M , and
independent of anything else in the signatures. So we can conclude that the
statistical distance δ between our real and forged σ and y is in fact 0.

For the complete details on how signing with oracle reprogramming shows
that an adversary attacking the existential unforgeability can be used to construct
an adversary attacking the key-only security, we refer to the LegRoast paper [12],
which shows exactly this in their Lemma 3.
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