
Three-Round Secure Multiparty Computation from Black-Box
Two-Round Oblivious Transfer

Arpita Patra
Indian Institute of Science

Akshayaram Srinivasan
Tata Institute of Fundamental Research

Abstract

We give constructions of three-round secure multiparty computation (MPC) protocols for
general functions that make black-box use of a two-round oblivious transfer. For the case of
semi-honest adversaries, we make use of a two-round, semi-honest secure oblivious transfer in
the plain model. This resolves the round-complexity of black-box (semi-honest) MPC protocols
from minimal assumptions and answers an open question of Applebaum et al. (ITCS 2020).
For the case of malicious adversaries, we make use of a two-round maliciously-secure oblivious
transfer in the common random/reference string model that satisfies a (mild) variant of adaptive
security for the receiver.

1

Contents

1 Introduction 3
1.1 Our Results . 3

2 Technical Overview 4
2.1 Semi-Honest Setting . 6
2.2 Malicious Setting . 7

3 Preliminaries 9
3.1 Universal Composition Framework . 9
3.2 Garbled Circuits . 10
3.3 Oblivious Transfer . 11
3.4 Non-Interactive Secure Computation . 12
3.5 Bivariate Polynomials . 13

4 3-Round Semi-Honest MPC 13
4.1 Step-1: Protocol for F3MULTPlus . 14
4.2 Step-2: Protocol for Arbitrary Functions . 20

5 3-round Malicious MPC 21
5.1 First Step: Special Functionality with Input Dependent Abort 21
5.2 Conforming Protocols and The Round-collapsing Compiler 34
5.3 Second Step: Special Functionality with Standard Security 36
5.4 Third Step: Bootstrapping from Special to General Functions in 3 Rounds 52

A Universal Composition Framework 65
A.1 The basic model of execution . 65
A.2 Security of protocols . 66
A.3 Hybrid protocols . 67
A.4 The Common Reference/Random String Functionality 68
A.5 General Functionality . 69
A.6 General Functionality with Input Dependent Abort 69

2

1 Introduction

Secure Multiparty Computation (MPC) is a fundamental cryptographic primitive that allows a set
of mutually distrusting parties to compute a joint function of their private inputs. The security
guarantee provided here is that any adversary corrupting an arbitrary subset of the participating
parties cannot learn anything about the inputs of the honest parties except what is leaked from the
output of the function. The seminal feasibility results of Yao [Yao86] and Goldreich, Micali, and
Wigderson [GMW87] showed that any multiparty functionality can be securely computed.

An important line of research in this area aims to construct efficient MPC protocols that mini-
mizes the number of rounds of communication. The work of Beaver, Micali, and Rogaway [BMR90]
initiated this research direction and gave a construction of a constant-round protocol for computing
general functions. On the lower bounds side, it is known that a single-round of communication is
insufficient for securely computing most functionalities and hence, the minimum number of rounds
needed to securely compute general functions is two.

A recent line of work has led to constructions of round-optimal (i.e., two-round) secure multiparty
computation protocols under various cryptographic assumptions. The work of Garg et al. [GGHR14]
gave a construction of such a protocol based on indistinguishability obfuscation [BGI+01, GGH+13]
and subsequent work of Gordon et al. [GLS15] improved the assumption to a witness encryption
scheme [GGSW13]. Later, Mukherjee and Wichs [MW16] (and the subsequent works [BP16, PS16])
gave a protocol based on the Learning with Errors assumption [Reg05], Garg and Srinivasan [GS17]
gave a construction from Bilinear maps and Boyle et al. [BGI17, BGI+18] gave a construction
from the Decisional Diffie-Hellman (DDH) assumption. Finally, the works of Benhamouda and
Lin [BL18] and Garg and Srinivasan [GS18] gave constructions of two-round MPC protocols based
on the minimal assumption that two-round oblivious transfer (OT) exists.

Black-Box Round Complexity. A cryptographic protocol P is said to make black-box use of
an underlying primitive Q if P only makes input/output calls to Q and is agnostic to how Q is
implemented. Apart from being a fundamental theoretical question, black-box protocols tend to be
more efficient than their non-black-box counterparts and are usually viewed as the first step towards
practicality. Unfortunately, the constructions of two-round MPC protocols from [BL18, GS18]
made non-black-box use of a two-round OT. On the other hand, a recent work of Applebaum et
al. [ABG+20] showed that such non-black-box use is inherent by providing a black-box separation
between these two primitives. As far as positive results are concerned, we do know of 4-round MPC
protocols making black-box use of a two-round OT from [ACJ17, GIS18, LLW20]. These works left
open the following intriguing question (which was explicitly mentioned in [ABG+20]):

Can we construct a three-round secure multiparty computation protocol for general functions
making black-box use of a two-round OT?

1.1 Our Results

In this work, we give a near complete answer to the above question. For the case of semi-honest
adversaries, we fully resolve the problem and show that two-round OT is black-box complete for
three-round MPC. Specifically,

Informal Theorem 1.1. Let f be an arbitrary multiparty functionality. There exists a three-round
protocol that securely computes f against semi-honest adversaries corrupting an arbitrary subset of

3

the parties. The protocol makes black-box use of a two-round, semi-honest secure OT and is in the
plain model. The computational cost of the protocol grows polynomially with the circuit size of f
and the security parameter.

For the case of malicious adversaries, we give a three-round MPC protocol that makes black-box
use of two-round, malicious-secure OT that additionally satisfies an equivocality property for the
receiver’s message. Specifically, we require the existence of a special algorithm that can equivocate
the first round receiver OT message to both bits 0 and 1. Such equivocality property is implied by a
two-round OT that is secure against a malicious adversary that can adaptively corrupt the receiver
or, it can be obtained from black-box use of a dual-mode public-key encryption scheme [PVW08].
The main theorem we show for malicious adversaries is the following:

Informal Theorem 1.2. Let f be an arbitrary multiparty functionality. There exists a three-
round protocol that UC-realizes f (with unanimous abort) against malicious adversaries corrupting
an arbitrary subset of the parties. The protocol makes black-box use of a two-round, UC-secure OT
against malicious adversaries with equivocal receiver security and is in the common random/reference
string model. The computational cost of the protocol grows polynomially with the circuit size of f
and the security parameter.

We note that the work of Garg and Srinivasan [GS18] gave a generic transformation from any
two-round, malicious-secure OT to one that additionally satisfies the equivocal receiver property.
Unfortunately, this transformation makes non-black-box use of a PRG (but makes black-box use of
OT). We leave open the interesting problem of obtaining a black-box transformation, or showing
that such non-black-box use is inherent.

2 Technical Overview

In this section, we give a high-level overview of the main techniques used in the construction of our
MPC protocols in the semi-honest and the malicious setting.

Starting Point. Our work builds on the recent results of [BL18, GS18] which gave constructions
of two-round secure multiparty computation from two-round oblivious transfer. The key technical
contribution in these works is the design of a round-collapsing compiler that takes a larger round
protocol for securely computing the required functionality and squishes the number of rounds to
two. Specifically, instead of the parties interacting with each other as in the larger round protocol,
the round-collapsing compiler gave a mechanism wherein the garbled circuits generated by each
party performs this interaction. The interaction between garbled circuits is enabled by making
use of a two-round oblivious transfer. Unfortunately, these constructions [BL18, GS18] require
non-black-box use of cryptographic primitives.

If we look closely into these constructions, we observe that there is only one place where non-
black-box use of cryptography is needed. Specifically, the garbled circuits which perform the inter-
action on behalf of the parties use the code of the underlying larger round protocol. Thus, if the
larger round protocol makes use of cryptographic primitives such as an oblivious transfer, then the
squished protocol makes non-black-box use of these primitives. On the other hand, if the larger
round protocol only made use of information-theoretic operations, then the resultant two-round
protocol makes black-box use of cryptography. Unfortunately, the negative results in [Kus89] rules

4

out information-theoretic secure computation protocols for most functions in the dishonest major-
ity setting. Furthermore, the work of Applebaum et al. [ABG+20] showed that such non-black-box
use of oblivious transfer is inherent if we want to construct a two-round MPC protocol. However,
their work left open the problem of constructing a black-box three-round MPC protocol based on
two-round oblivious transfer.

The work of Garg, Ishai, and Srinivasan [GIS18] observed that if the parties apriori shared
random OT correlations, then one can use the results of [Kil88, IPS08] to construct an information-
theoretic MPC protocol in the OT correlations model. Now, squishing the number of rounds of such
a protocol using the round-collapsing compiler of [BL18, GS18] gives rise to an MPC protocol that
makes black-box use of cryptography. Garg et al. [GIS18] also gave a method of generating such
correlations in a single round using a primitive called non-interactive oblivious transfer. This gives
rise to the following three-round protocol that makes black-box use of cryptographic operations: use
the first round to generate random OT correlations relying on non-interactive oblivious transfer,
and use the next two rounds to implement the round-collapsing compiler of [BL18, GS18]. However,
a non-interactive oblivious transfer is a stronger primitive and it is not known whether this can be
constructed from a two-round oblivious transfer.

Double Selection Functionality. If we abstract out the other details from [GIS18], then the
main ingredient needed to instantiate the black-box version of the round-collapsing compiler is a
three-round protocol for a special multiparty functionality that we call as the double selection. In
this functionality, only three of the n parties, say, P1, P2 and P3 have private inputs. The input of P1

is given by two bits (α, r), the input of P2 is given by two bits (x0, x1) and the input of P3 is given by
two strings (y0, y1). The functionality first computes xα ⊕ r and then computes yxα⊕r and delivers
(xα ⊕ r, yxα⊕r) to every party (and not just to P1, P2, and P3.). In other words, the functionality
first selects xα from (x0, x1), XORs xα with r and then again selects yxα⊕r from (y0, y1) and hence,
the name double selection. The work of Garg et al. [GIS18] can be viewed as giving a three-round
protocol for the double selection functionality based on non-interactive oblivious transfer. The goal
of this work is to give such a protocol based only on black-box use of a two-round oblivious transfer.

We first note that if we relax the requirement to say that, only one of {P1, P2, P3} gets the
output at the end of the third round, then based on prior work, it is possible to design a black-box
three-round protocol for this relaxed functionality. Indeed, one can express the double selection
functionality as a degree-3 polynomial (over F2) and use the protocol from [ACJ17] to securely
evaluate a degree-3 polynomial. Additionally, it is not too hard to see that if we invoke such
a protocol thrice, then we can enable each one of {P1, P2, P3} to get the output of the double
selection functionality at the end of the third round. However, the main technical challenge here
is to enable each of the n parties and not just {P1, P2, P3}, to reconstruct the output at the end
of the third round. This requirement is equivalent to constructing a three-party protocol with a
special property called as publicly-decodable transcript [ABG+20]. Roughly speaking, this property
requires the existence of an efficient algorithm that takes the transcript of the three-party protocol
and gives the output of the double selection functionality. For the sake of simplicity, let us restrict
ourselves to protocols where the last round (i.e., the third round) message contains the output in
the clear. We now explain how to construct such a protocol making black-box use of two-round
oblivious transfer.

5

Key Idea: “Cascading Oblivious Transfer.” Since the last round message of the protocol
contains the output of the functionality in the clear, this implies that there exists some party that
can compute this output at the end of the second round and then broadcast this value to all the
parties in the third round. This seems particularly challenging if we restrict ourselves to making
black-box use of a two-round oblivious transfer. Indeed, this implies that we need a mechanism to
compute the output of a degree-3 function in two rounds using a two-round oblivious transfer that
only enables degree-2 computation. This apparent mismatch in the degree is the key challenge that
we need to tackle.

This is where our idea of “cascading oblivious transfer” comes into the picture. Specifically, in
our protocol, one of the parties, say P3, computes a sender OT message with respect to a receiver OT
message generated by P1 (that encodes P1’s input). The sender inputs used by P3 to generate this
message are in fact, two other sender OT messages computed by P3 with respect to a receiver OT
message generated by P2 (that encodes P2’s input). Thus, the “inner" sender OT message encodes
a degree two computation of P2 and P3’s inputs and the “outer" sender OT message encodes a
degree-3 computation of P1, P2 and P3’s inputs. This idea of cascading two sender OT messages by
P3 allows P1 to compute a degree-3 function in two rounds and thus, enabling us to solve the degree
mismatch problem. Let us first see how to implement this “cascading oblivious transfer" idea in the
semi-honest setting and later explain the additional challenges that arise in the malicious setting.

2.1 Semi-Honest Setting

In the first round, P1 computes two receiver OT messages: otr that encodes α as the choice bit
and otr′ that encodes r as the choice bit. In parallel, P2 computes two receiver OT messages otr0
that encodes its input x0 and otr1 that encodes x1. P1 broadcasts (otr, otr′) and P2 broadcasts
(otr0, otr1) in the first round. In the second round, P3 chooses a random bit mask and computes
two sender OT messages: ots0 with respect to otr0 using (y0⊕mask, y1⊕mask) as its sender inputs
and ots1 with respect to otr1 using again (y0⊕mask, y1⊕mask) as its inputs. It then computes the
“cascading" sender OT message ots with respect to otr using (ots0, ots1) as its two sender messages.
Additionally, it computes ots′ with respect to otr′ with (mask, y1⊕y0⊕mask) as its sender messages.
It then sends (ots, ots′) to P1 in the second round.

Now, the randomness used in generating otr enables P1 to recover otsα from ots. However, recall
that otsα is generated with respect to otrα and the randomness used for generating this message is
available with P2. Thus, to enable P1 to decrypt otsα, in the second round, P2 computes a sender
OT message with respect to otr with the input and randomness used for computing otr0 and otr1
as the two sender inputs. Thus, P1 can first recover xα and the randomness used for generating
otrα from P2’s second round message and then obtain yxα ⊕mask := xα(y1 ⊕ y0)⊕ y0 ⊕mask from
otsα. P1 also computes r(y1⊕ y0)⊕mask from ots′ using the randomness used in generating otr′. It
adds these two values to get yxα⊕r. In the last round, P1 broadcasts (xα ⊕ r, yxα⊕r). This protocol
satisfies correctness and we can show that this protocol is secure against semi-honest adversaries by
relying on the semi-honest security of the two-round oblivious transfer.

From Double Selection to General Functions. To give a protocol for general functions, we
can use the reduction from general functions to double selection implicit in the work of [GIS18].
Alternatively, we can use the above idea of cascading oblivious transfer to give a three-round secure
protocol for a related degree-3 function called as 3MULTPlus. We can then rely on completeness
results from [BGI+18, GIS18, ABG+20] who showed a round-preserving black-box reduction from a

6

semi-honest protocol for computing general functions to a secure protocol for 3MULTPlus function-
ality. In the main body, we construct a protocol for securely computing 3MULTPlus and directly
rely on the above completeness theorem to give a self-contained version of our semi-honest MPC
result.

2.2 Malicious Setting

In the malicious setting, many other challenges arise and we now explain our ideas to solve them.

Challenge-1: Attack by a malicious P3. Let us start with the bare-bones version of the mali-
cious protocol which is just the semi-honest protocol but with all the oblivious transfer invocations
replaced with a malicious secure version. On inspection, we see that a corrupt P3 can completely
break the security of this protocol. Specifically, P3 can compute ots0 and ots1 on two different pairs
of inputs, say using (mask,mask) and (1⊕mask, 1⊕mask) respectively and compute ots′ on inputs
(mask,mask). Depending on the message received from P1 in the last round, corrupt P3 learns the
value α. In order to prevent such an attack, we need a mechanism to ensure that P3 uses consistent
inputs to compute both ots0 and ots1.

One way to ensure consistency of P3’s inputs is to ask P3 to give a zero-knowledge proof that
the inputs used in both these computations are consistent. However, a naïve way of implementing
such a zero-knowledge proof makes non-black-box use of cryptographic primitives which we want
to avoid. To give a “black-box” zero-knowledge proof, we make use of “MPC-in-the-head” approach
of Ishai et al. [IKOS07].

Solution: “MPC-in-the-head” Approach. To convey the main idea, we first explain a simple
solution that blows-up the number of rounds and later show how to squish the number of rounds.
P3 imagines m-servers in its head (for some appropriately chosen parameter m). It then shares
y0, y1,mask among these m servers using a threshold linear secret sharing scheme with a threshold
parameter t. For each i ∈ [m], P3 computes {otsi0, otsi1, otsi, ots′

i} using the shares given to the i-th
server. Specifically, the values (y0, y1,mask) in the original computation are replaced with the shares
(yi0, y

i
1,maski) given to the i-th server. P3 sends {otsi, ots′i}i∈[m] to P1 in the second round. P1 now

chooses a random subset T of [m] of size t and asks P3 to reveal the shares and the randomness used
in the computation of (otsi, ots′i) for every i ∈ T . P1 now checks if these computations are correct.
If they are all correct, then for each i ∈ [m], P1 recovers the share of the output and reconstructs
the output. Here, we are crucially relying on the fact xα(y1⊕ y0)⊕ y0⊕mask and r(y1⊕ y0)⊕mask
recovered by P1 in the bare-bones protocol are linear functions of y0, y1,mask and the secret sharing
scheme used by P3 supports linear operations on the shares. This ensures that P1 can recover the
correct output from the shares. However, this idea seems to blow-up the number of rounds to 4.
To squish the number of rounds to 2, we make use of the [JKKR17] trick, wherein P1, in the first
round, uses a t-out-of-m oblivious transfer to commit to its set T and P3 in the second round uses
the m sets of inputs, randomness as its sender inputs.

We can now show that if a malicious P3 is using inconsistent inputs in “many" server executions
then it gets caught with overwhelming probability. On the other hand, if P3 is using inconsistent
inputs in a “small" number of server executions, then we can rely on the error correcting properties
of the secret sharing scheme to recover the correct output.1

1Here, we need to additionally ensure that malicious P3 is generating the shares correctly. Hence, we make use of

7

Need for Equivocal Receiver Security. Here, another technical issue arises and to solve this,
we need the oblivious transfer to satisfy the equivocality property on the receiver’s message. To see
why this additional property is required, consider the case where P2 is honest but P1 is corrupted.
Since the adversary is rushing, the honest P2 sends both otr0, otr1 before receiving otr, otr′. Recall
that in the second round, P2 generates a sender OT message with respect to otr with the input and
the randomness used in otr0 and otr1 as its OT inputs. Unfortunately, this leads to the following
issue during simulation. We cannot know the value of xα unless we receive otr from the corrupt P1.
This value is obtained only after we send both otr0, otr1. However, since xα and the randomness
used in generating otrα are needed to compute the sender OT message from P2, we need to generate
otrα in a way that it correctly encodes xα. To solve this issue, we rely on the equivocality property
of the receiver’s message. Specifically, since the first round OT message of the receiver can be
equivocated to both bits 0 and 1, we use the equivocal simulator to generate randomness that is
consistent with the encoding of xα. We then use this randomness to generate the second round OT
message. As mentioned earlier, this property is satisfied by any two-round oblivious transfer that
is secure against adversaries that can adaptively corrupt the receiver or it can be obtained from a
dual-mode public-key encryption scheme [PVW08].

Challenge-2: Attack by Malicious P2. In the previous step, we prevented a malicious P3 from
breaking the security of the protocol. However, we observe that a malicious P2 can still break
the security of the protocol by mounting an input dependent abort. Specifically, a corrupt P2 can
generate the second round OT message with respect to otr such that only one of its two sender inputs
contains the correct randomness used in generating (otr0, otr1). It sets the other sender input to be
some junk value. If the input α of P1 corresponds to the position that contains the junk value, then
P1 aborts at the end of the second round. This enables P2 to learn the value α. A first natural idea
to prevent this attack is to use a zero-knowledge proof to show that P2 is using the correct inputs in
generating the sender OT message. However, unlike the previous step, the relation that we want to
prove (or equivalently, the functionality computed by the MPC) involves a cryptographic statement
and in those cases, the “MPC-in-the-head” approach leads to non-black-box use of cryptographic
primitives. Thus, we need a new approach to deal with this issue.

Solution: Using an OT-Combiner. We first observe that if the input α of P1 was uniformly
random, then the probability that a corrupt P2 can guess α to force P1 to abort is 1/2. For κ = Ω(λ)
(where λ is the security parameter), consider invoking the above protocol κ times on independently
chosen random P1 inputs (α1, . . . , ακ). Then, the probability that corrupt P2 can guess more than λ
of these inputs is negligible. Given this observation, consider the following two-party functionality:

1. The input of P1 is given by two bits (α, r) and the input of P2 is given by two other bits
(x0, x1).

2. P1 and P2 also share κ = Ω(λ) random OT correlations with P1 acting as the receiver and P2

acting as the sender. Additionally, a corrupt P2 might learn λ of these receiver correlations.
We call these as “leaky" OT correlations.

3. At the end of the protocol, we want to both P1 and P2 to learn (xα ⊕ r).

a pairwise verifiable secret sharing based on bivariate polynomials and do additional checks on the shares to ensure
that the sharing is done correctly.

8

A statistically secure protocol for the above functionality is obtained by first implementing the
information-theoretic OT combiner protocol from [CDFR17] to extract “pure" OT correlations from
the above “leaky" OT correlations and then use the information-theoretic two-party protocols [Kil88,
IPS08, IKO+11] in the OT correlations model to securely compute xα ⊕ r. Unfortunately, this
protocol does not run in two rounds. To squish the number of rounds, we apply the round collapsing
compiler of [BL18, GS18] to this larger round protocol and use the protocol from the first step (the
one that suffers from input dependent abort) to set up the leaky OT correlations. Since the above
protocol is statistical, the squished protocol only makes black-box use of cryptographic operations.
Additionally, to enable the party P3 to output yxα⊕r, we use the following observation about the
compiler given in [GS18]: even if a party is not participating in the protocol, the garbled circuit
generated by the party can listen to the protocol transcript and thus, learn the output. This
observation allows the garbled circuit generated by P3 to listen to the protocol between P1 and P2

and obtain xα⊕r. This garbled circuit can then output yxα⊕r. This allows us to obtain a three-round
black-box protocol for the double selection functionality that does not suffer from input dependent
abort.

From Double Selection to General Functions. To give a protocol for general functions, we use
the techniques in [GIS18] to show that double selection is black-box complete for designing three-
round secure protocols against malicious adversaries. Specifically, we apply the round-collapsing
compiler to statistically secure protocols in the OT correlations model [Kil88, IPS08] and use the
above protocol to implement the double selection functionality. This gives rise to a three-round
MPC protocol that makes black-box use of a two-round, malicious-secure oblivious transfer with
equivocal receiver security.

3 Preliminaries

We recall some standard cryptographic definitions in this section. Let λ denote the security param-
eter. A function µ(·) : N → R+ is said to be negligible if for any polynomial poly(·), there exists
λ0 ∈ N such that for all λ > λ0, we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified
negligible function and poly(·) to denote an unspecified polynomial function. We say that two distri-
bution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable (denoted
by X

c
≈ Y) if for every PPT distinguisher D there exists a negligible function negl(·) such that,

|Pr[D(Xλ) = 1]−Pr[D(Yλ) = 1]| ≤ negl(λ). We use
s
≈ to denote statistical indistinguishability and

≡ to denote that the two distributions are identical. For a binary string x of length n, we use x[k]
to denote the k-th bit of the string x for some k ∈ [n].

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the
contents of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite
set S, we denote x← S as the process of sampling x uniformly from the set S. We will use PPT to
denote Probabilistic Polynomial Time algorithm. By default, we allow our adversarial algorithms
to take a polynomimal sized advice (i.e., non-uniform PPT algorithms).

3.1 Universal Composition Framework

We work in the the Universal Composition (UC) framework [Can01] to formalize and analyze the
security of our protocols. Our protocols can also be analyzed in the stand-alone setting, using the

9

composability framework of [Can00a], or in other UC-like frameworks, like that of [PW00]. We
refer the reader to [Can00b] for the details on the UC framework and for completeness, we provide
a brief overview in Appendix A.

3.2 Garbled Circuits

We recall the definition of garbling scheme for circuits [Yao86] (see Applebaum et al. [AIK04,
App17], Lindell and Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and further
discussion). A garbling scheme for circuits is a tuple of PPT algorithms (Garble,Eval). Garble is the
circuit garbling procedure and Eval is the corresponding evaluation procedure. More formally:

• (C̃, {labw,b}w∈inp(C),b∈{0,1})← Garble
(
1λ,C

)
: Garble takes as input a security parameter 1λ, a

circuit C, and outputs a garbled circuit C̃ along with labels labw,b where w ∈ inp(C) (inp(C) is
the set of input wires of C) and b ∈ {0, 1}. Each label labw,b is assumed to be in {0, 1}λ.

• y ← Eval
(
C̃, {labw,xw}w∈inp(C)

)
: Given a garbled circuit C̃ and a sequence of input labels

{labw,xw}w∈inp(C) (referred to as the garbled input), Eval outputs a string y.

Correctness. For correctness, we require that for any circuit C and any input x ∈ {0, 1}|inp(C)|,
we have that:

Pr
[
C(x) = Eval

(
C̃, {labw,xw}w∈inp(C)

)]
= 1

where (C̃, {labw,b}w∈inp(C),b∈{0,1})← Garble
(
1λ,C

)
.

Security. For security, we require that there exists a PPT simulator SimGC such that for any
circuit C and any input x ∈ {0, 1}|inp(C)|, we have that:(

C̃, {labw,xw}w∈inp(C)

)
c
≈ SimGC

(
1|C|, 1|x|,C(x)

)
where (C̃, {labw,b}w∈inp(C),b∈{0,1})← Garble

(
1λ,C

)
.

Authenticity of Input labels. We require for any circuit C and input x ∈ {0, 1}|inp(C)| and for
any PPT adversary A, the probability that the following game outputs 1 is negligible.

(
C̃, {labw}w∈inp(C)

)
← Sim

(
1|C|, 1|x|,C(x)

)
{lab′w}w∈inp(C) ← A(C̃, {labw}w∈inp(C))

y = Eval(C̃, {lab′w}w∈inp(C))

({labw}w∈inp(C) 6= {lab′w}w∈inp(C))
∧

(y 6= ⊥)

Remark 3.1. The authenticity of input labels property was needed in [GS18] to achieve security
with unanimous abort. [GS18] noted that we can add this property to any garbled circuit construction
by digitally signing the labels and including the signatures along with the labels and including the
verification key along with the garbled circuit C̃. The evaluation procedure first checks the signatures
before proceeding with the actual evaluation of garbled circuit.

10

3.3 Oblivious Transfer

In this paper, we consider a 1-out-of-2 oblivious transfer protocol (OT), similar to [CCM98, NP01,
AIR01, DHRS04, PVW08, HK12] where one party, the sender, has input composed of two strings
(s0, s1) and the input of the second party, the receiver, is a bit β. The receiver should learn sβ and
nothing regarding s1−β , while the sender should gain no information about β.

Semi-Honest Secure Two-Round Oblivious Transfer. A two-round semi-honest OT protocol
〈S,R〉 is defined by three probabilistic algorithms (OT1,OT2,OT3) as follows. The receiver runs the
algorithm OT1 with the security parameter 1λ, and a bit β ∈ {0, 1} as input and the random tape
set to ω and obtains otr. The receiver then sends otr to the sender, who obtains ots by evaluating
OT2(otr, (s0, s1)) (with a uniform random tape), where s0, s1 ∈ {0, 1}λ are the sender’s input
messages. The sender then sends ots to the receiver who obtains sβ by evaluating OT3(ots, (β, ω)).

- Correctness. For every choice bit β ∈ {0, 1} and the random tape ω of the receiver, and
any input messages s0 and s1 of the sender we require that, if otr := OT1(1λ, β;ω), ots ←
OT2(otr, (s0, s1)), then OT3(ots, (β, ω)) = sβ with probability 1.

- Receiver’s security. We require that,{
otr : ω ← {0, 1}∗, otr := OT1(1λ, 0;ω)

}
c
≈
{
otr : ω ← {0, 1}∗, otr := OT1(1λ, 1;ω)

}
.

- Sender’s security. We require that for any choice of β ∈ {0, 1} and any strings
K0,K1, L0, L1 ∈ {0, 1}λ with L0 = L1 = Kβ , we have that,{

β, ω ← {0, 1}∗,OT2(1λ, otr,K0,K1)
}

c
≈
{
β, ω ← {0, 1}∗,OT2(1λ, otr, L0, L1)

}
where otr := OT1(1λ, β;ω).

Remark 3.2. We note that we can relax the correctness requirement to have a negligible probability
of error. For the sake of simplicity of exposition, we stick to protocols having perfect correctness.

Maliciously Secure Two-Round Oblivious Transfer with Equivocal Receiver Security.
We consider the stronger notion of oblivious transfer with security against malicious adversaries
in the common random/reference string model. In addition to the standard security against mali-
cious receivers, we need this protocol to satisfy a special property called equivocal receiver security
introduced in [GS18]. Informally, this property says that the first round message of the receiver
can be equivocated to both choice bits 0 and 1. In terms of syntax, we supplement the syntax of
semi-honest oblivious transfer with an algorithm KOT that takes the security parameter 1λ as input
and outputs the common random/reference string crs. Also, the three algorithms OT1,OT2 and
OT3 additionally take crs as input. Furthermore, instead of using the entire random tape of OT1

algorithm as input to OT3, we let the OT1 algorithm to output some secret information which is
then used by OT3.

- Correctness. For every choice bit β ∈ {0, 1} and any input messages s0 and s1 of the sender,
we require that, if crs ← KOT(1λ), (otr, µ) ← OT1(crs, β), ots ← OT2(crs, otr, (s0, s1)), then
OT3(crs, ots, (β, µ)) = sβ with probability 1.

11

- Equivocal Receiver’s security. We require the existence of a PPT simulator SimR =
(Sim1

R,Sim
2
R) such that for any sequence of (β1, . . . , βn) where each βi ∈ {0, 1} and n = poly(λ),

we have:{
(crs, {(otri, µiβi)}i∈[n]) : (crs, td)← Sim1

R(1λ), {(otri, µi0, µi1)← Sim2
R(crs, td)}i∈[n]

}
c
≈{

(crs, {OT1(crs, βi)}i∈[n]) : crs← KOT(1λ)
}
.

- Checking Validity of Receiver’s Key. There is a deterministic polynomial time algorithm
CheckValid that takes as input crs, otr, β, µ and outputs 1 if and only if there exists some
ω ∈ {0, 1}∗ such that (otr, µ) := OT1(crs, β;ω).

- Sender’s security. We require the existence of PPT algorithm SimS = (Sim1
S ,Sim

2
S) such

that for any choice of Ki
0,K

i
1 ∈ {0, 1}λ for i ∈ [n] where n = poly(λ), PPT adversary A and

any PPT distinguisher D, we have:∣∣∣Pr[INDREAL
S,A,D(1λ, {Ki

0,K
i
1}i∈[n]) = 1]− Pr[INDIDEAL

S,A,D (1λ, {Ki
0,K

i
1}i∈[n]) = 1]

∣∣∣ ≤ negl(λ).

Experiment INDREAL
S,A,D(1λ, {Ki

0,K
i
1}i∈[n]):

crs← KOT(1λ)
{otri}i∈[n] ← A(crs)

otsi ← OT2(crs, otri, (Ki
0,K

i
1)), ∀i ∈ [n]

Output D(crs, {otsi}i∈[n])

Experiment INDIDEAL
S,A,D (1λ, {Ki

0,K
i
1}i∈[n]):

(crs, td)← Sim1
S(1λ)

{otri}i∈[n] ← A(crs)

βi := Sim2
S(crs, td, otri) ∀i ∈ [n]

Li0 := Ki
βi

and Li1 := Ki
βi

otsi ← OT2(crs, otr, (Li0, L
i
1)), ∀i ∈ [n]

Output D(crs, {otsi}i∈[n])

Remark 3.3. We note that a two-round malicious secure oblivious transfer with equivocal receiver
security implies a standard two-round malicious oblivious transfer that implements the ideal OT
functionality.

Remark 3.4. A two-round malicious-secure oblivious transfer with equivocal receiver security can
be instantiated from black-box use of any of the following primitives:

• A two-round malicious-secure oblivious transfer that is secure against an adversary that can
adaptively corrupt the receiver [CFGN96, CLOS02].

• A dual-mode public key encryption scheme [PVW08].

3.4 Non-Interactive Secure Computation

We now recall the notion of non-interactive secure computation introduced in the works of Ishai
et al. [IPS08, IKO+11]. A non-interactive secure computation ΠNISC for a function f (that is
possibly randomized) is a two-party protocol between a receiver and a sender and is given by a tuple
of algorithms (KNISC,NISC1,NISC2,NISC3). The algorithm KNISC is a common random/reference
string generating algorithm that takes the security parameter 1λ (encoded in unary) and samples
crs from some pre-defined distribution. The receiver runs NISC1 algorithm on crs and its input x

12

(with a random tape ω) to get msg1 which it sends to the sender. The sender runs NISC2 on crs, the
message msg1 sent by the receiver and its own input y to get msg2 which it sends to the receiver.
The receiver runs NISC3 on crs, the sender’s message msg2 and (x, ω) to get the output f(x, y). The
works of Ishai et al. [IPS08, IKO+11] showed the following theorem.

Theorem 3.5 ([IPS08, IKO+11]). Let f be any (possibly randomized) two-party functionality. There
exists a non-interactive secure computation protocol ΠNISC that UC-realizes Ff making black-box
access to a two-round, malicious-secure oblivious transfer.

Rabin-OT functionality. In this work, we will be interested in a non-interactive secure com-
putation protocol that securely realizes the Rabin OT functionality F(m,p)-RaOT. The (m, p)-Rabin
OT is a randomized functionality takes m strings s1, . . . , sm from the sender and for each i ∈ [m],
it independently replaces si with s′i where s

′
i = si with probability p and s′i = ⊥ with probability

1− p. It then outputs (s′1, . . . , s
′
m) to the receiver. This functionality is formally given in Fig. 3.

3.5 Bivariate Polynomials

In this subsection, we recall some simple facts about (symmetric) bivariate polynomials. Let F be a
finite field such that |F| > n for some n ∈ N. Let α1, . . . , αn be distinct non-zero elements from F.

Definition 3.6. A bivariate polynomial over F with degree t is a polynomial over two variables
such that the degree of both these variables is t. Such a polynomial can be expressed as: f(x, y) =∑i=t

i=0

∑j=t
j=0 ci,jx

iyj where ci,j ∈ F. In a symmetric bivariate polynomial ci,j = cj,i for all i, j ∈ [0, t]

We now recall the following two standard facts about symmetric bivariate polynomials.

Fact 3.7. Let K ⊆ [n] be a set of indices such that |K| ≥ t+ 1, let {fk(x)}k∈K be a set of degree-t
polynomials over F. If for every i, j ∈ K, it holds that fi(αj) = fj(αi), then there exists a unique
symmetric bivariate polynomial S of degree-t over F such that fk(x) = S(x, αk) for every k ∈ K.

Fact 3.8. Let I ⊆ [n] be a set of indices such that |I| ≤ t. For two elements s1, s2 ∈ F, let S1 and
S2 be random symmetric degree-t bivariate polynomials such that S1(0, 0) = s1 and S2(0, 0) = s2.
Then,

{(i, S1(x, αi))}i∈I ≡ {(i, S2(x, αi))}i∈I

4 3-Round Semi-Honest MPC

In this section, we give a three-round, semi-honest secure protocol for computing arbitrary mul-
tiparty functionalities making black-box use of a two-round, semi-honest secure oblivious transfer
in the plain model. We do this in two steps. In the first step, we give a three round protocol for
securely computing the F3MULTPlus functionality (described below) against semi-honest adversaries.
In the second step, we use the results from [BGI+18, GIS18, ABG+20] to extend this to securely
compute general functions.

13

4.1 Step-1: Protocol for F3MULTPlus

Let us first recall the F3MULTPlus functionality. It is a n-party functionality that takes input from
3 parties and delivers output to every party. Specifically, let us denote the parties that provide
inputs to this functionality by P1, P2, and P3. The input of Pi for i ∈ {1, 2, 3} is given by (xi, yi) ∈
{0, 1} × {0, 1}. The output of the functionality is given by x1 · x2 · x3 + y1 + y2 + y3 (where + and
· are over F2). The main theorem that we show in this subsection is:

Theorem 4.1. There is an efficient three-round protocol that makes black-box use of a two-round,
semi-honest oblivious transfer and securely computes the F3MULTPlus functionality against semi-
honest adversaries corrupting an arbitrary subset of the parties. The protocol is in the plain model.

Building Π3MULTPlus. In Figure 1, we give the formal description of the protocol and provide an
informal overview below.

At a high-level, the degree-3 computation in the F3MULTPlus functionality is achieved by cascading
OT messages i.e., making a sender OT message to include two other sender OT message as its
inputs. Since OT enables degree-2 computation, cascading OT brings the desired result of a degree-
3 computation. The innovation lies in being able to do this in 2 rounds for OTs that are run in
parallel. The last round is spent on a single broadcast of a value by each party and subsequent
local accumulation of these broadcasted values to obtain the final result. We elaborate on this
idea below. P1, acting as a receiver, publishes an OT receiver message otr for its input x1. In
parallel, P2, acting as a receiver, publishes two OT receiver messages, otr0, otr1 for two (additive)
shares x2,0, x2,1 of its input x2. In the second round. P3 splits its input x3 into two additive shares,
x3,0, x3,1, and prepares two OT sender messages with respect to the receiver messages otr0, otr1
using (x3,0, x3,1) as the input in both the messages. Let these be denoted by ots0, ots1. The crux of
our construction is then to use ots0, ots1 as a sender input in response to P1’s receiver message otr.
With this sender message, P1 can retrieve otsx1 , but in order to decode otsx1 , it needs the receiver’s
input and randomness used for otsx1 , which are held by P2. Responding to P1’s receiver message
otr, P2 computes a sender OT message with input ((x2,0, ω2,0), (x2,1, ω2,1)). Using this message, P1

can retrieve x2,x1 and the corresponding randomness while x2,1−x1 and the matching randomness
are hidden. Deducing from the OT correctness, we can now conclude that P1 in the end of the
computation receives x3,x2,x1

which can be written as x2,x1(x3,0+x3,1)+x3,0 = (x1·x2+x2,0)·x3+x3,0,
since x2,x1 = x1(x2,0 + x2,1) + x2,0. To cancel out the extra multiplicative term x2,0 · x3 in the
expression, another OT instance is needed between P2, P3, where P3 enacts a receiver with input
x3 and P2 enacts a sender with input x2,0,0, x2,0,1, two additive shares of x2,0. Once all the OTs
conclude in the first two rounds, each of P1, P2 and P3 accumulates their appropriate local data
(which includes their other input yi) and broadcasts. These broadcasts enable every party to
compute the final result via plain addition. Lastly, each of these three parties distributes shares
of 0 amongst P1, P2, P3 to be added to their local sum before broadcast. This step is required for
simulation for the case of more than one honest parties in the quorum P1, P2, P3.

Inputs: Pi for i ∈ [3] inputs (xi, yi).

Protocol Π3MULTPlus

14

Output: For each i ∈ [n], Pi outputs x1x2x3 + y1 + y2 + y3.

Primitive: A two-round semi-honest secure oblivious transfer protocol defined by (OT1,OT2,OT3).

Round-1: In the first round,

• P1 chooses a random string ω ← {0, 1}∗ and computes otr := OT1(1λ, x1;ω).

• P2 chooses two random strings ω0, ω1 ← {0, 1}∗. It chooses random bits x2,0, x2,1 ← {0, 1}
subject to x2 = x2,1 + x2,0. It computes otr0 := OT1(1λ, x2,0;ω0) and otr1 := OT1(1λ, x2,1;ω1).

• P3 chooses a random string ω′ ← {0, 1}∗ and computes otr3 := OT1(1λ, x3;ω′).

• P1 broadcasts otr, P2 broadcasts (otr0, otr1) and P3 broadcasts otr3.

• For every i ∈ [3], Pi chooses a random additive secret sharing of 0 given by (δi1, δ
i
2, δ

i
3) and sends

the share δij to party Pj for j ∈ [3] \ {i} via private channels. We note that we can simulate a
single round of private channel messages in two-rounds over public channels by making use of a
two-round oblivious transfer.

Round-2: In the second round,

• P2 computes ots ← OT2(otr, (x2,0, ω0), (x2,1, ω1)). It then chooses random bits x2,0,0, x2,0,1 ←
{0, 1} subject to x2,0 = x2,0,0 + x2,0,1. It computes ots3 ← OT2(otr3, x2,0,0, x2,0,1).

• P3 chooses random bits x3,0, x3,1 ← {0, 1} subject to x3 = x3,0 +x3,1. For each b ∈ {0, 1}, it first
computes otsb ← OT2(otrb, x3,0, x3,1). It then computes ots← OT2(otr, ots0, ots1).

• P2 broadcasts (ots, ots3) and P3 broadcasts ots.

Round-3: In the last round,

• For each i ∈ [3], Pi computes δi = δ1i + δ2i + δ3i .

• P2 sets z2 := x2,0,0 + y2 + δ2.

• P3 computes x2,0,x3 := OT3(ots3, (x3, ω
′)) and sets z3 = x2,0,x3 + x3,0 + y3 + δ3.

• P1 computes (x2,x1
, ωx1

) := OT3(ots, (x1, ω)) and otsx1
:= OT3(ots, (x1, ω)). It then computes

x3,x2,x1
:= OT3(otsx1

, (x2,x1
, ωx1

)). It then sets z1 := x3,x2,x1
+ y1 + δ1.

• P1 broadcasts z1, P2 broadcasts z2 and P3 broadcasts z3.

Output: Every party outputs z1 + z2 + z3.

Figure 1: Protocol Π3MULTPlus

In Lemma 4.2, we show the correctness and in Lemma 4.3, we show the security of the protocol.
We start with the correctness proof.

Lemma 4.2 (Correctness). Protocol Π3MULTPlus (Figure 1) correctly computes the F3MULTPlus func-
tionality.

Proof. We first observe that x2,0,x3 computed by P3 in Round-3 is equal to x3(x2,0,0+x2,0,1)+x2,0,0 =
x3 · x2,0 + x2,0,0. Therefore, z3 = x3 · x2,0 + x2,0,0 + x3,0 + y3 + δ3. We then observe that x2,x1 and
otsx1 computed by P1 are equal to x1 ·x2 +x2,0 and OT2(OT1(1λ, x2,x1 ;ωx1), x3,0, x3,1) respectively.
Therefore, x3,x2,x1

computed by P1 is equal to x2,x1(x3,0 + x3,1) + x3,0 = (x1 · x2 + x2,0) · x3 + x3,0.
This implies that z1 = (x1 · x2 + x2,0) · x3 + x3,0 + y1 + δ1. Finally, we observe that (δ1, δ2, δ3) form

15

an additive secret sharing of 0. Hence,

z1 + z2 + z3 = ((x1 · x2 + x2,0) · x3 + x3,0 + y1 + δ1)

+ (x2,0,0 + y2 + δ2) + (x3 · x2,0 + x2,0,0 + x3,0 + y3 + δ3)

= x1 · x2 · x3 + y1 + y2 + y3

This completes the proof of correctness.

We now show the semi-honest security of the protocol.

Lemma 4.3 (Security). Protocol Π3MULTPlus (Figure 1) securely computes F3MULTPlus functionality
against a semi-honest adversary corrupting an arbitrary subset of parties.

Proof. Let A be a semi-honest adversary against the protocol. Let C be the set of parties corrupted
by A and let H be the set of honest parties. If {P1, P2, P3} ⊆ C, then the description of the
simulator is trivial and hence, we assume that {P1, P2, P3} ∩H 6= ∅. We now describe a simulator
Sim that simulates the view of the adversary A.

Interaction with environment Z. For every input value corresponding to the set of corrupted
parties C that Sim receives from the environment Z, Sim writes this value to A’s input tape.
Similarly, the contents of A’s output tape is written to Sim’s output tape. We now describe how
Sim simulates the interaction of honest parties with A.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

• Initialization. Sim sets the random tape of A with a uniformly chosen string and starts the
interaction with A.

• Round-1 messages from Sim to A:

– If P1 ∈ H, then Sim chooses a random string ω ← {0, 1}∗ and sets otr := OT1(1λ, 0;ω).

– If P2 ∈ H, then Sim chooses a random bit x2,0 ← {0, 1} and sets x2,1 = x2,0. It then
chooses two random strings ω0, ω1 ← {0, 1}∗ and computes otr0 := OT1(1λ, x2,0;ω0) and
otr1 := OT1(1λ, x2,1;ω1).

– If P3 ∈ H, Sim chooses a random string ω′ ← {0, 1}∗ and sets otr3 := OT1(1λ, 0;ω′).

– For each Pi ∈ C ∩ {P1, P2, P3}, Sim sends a random bit on behalf of every Pj ∈ H ∩
{P1, P2, P3} to Pi through private channels.

– Sim sends the rest of the first round messages on behalf of the honest parties to A.

• Round-2 messages from Sim to A:

– If P2 ∈ H, then Sim does the following:

∗ Sim sets ots← OT2(otr, (x2,0, ω0), (x2,1, ω1)).
∗ It then chooses a random bit x2,0,0 ← {0, 1} and sets x2,0,1 = x2,0,0. It then computes

ots3 ← OT2(otr3, x2,0,0, x2,0,1).

16

– If P3 ∈ H, then Sim does the following:

∗ Sim chooses a random bit x3,0 and sets x3,1 := x3,0.
∗ For each b ∈ {0, 1}, it first computes otsb ← OT2(otrb, x3,0, x3,1). It then computes

ots← OT2(otr, ots0, ots1).

– Sim sends the second round messages on behalf of the honest parties to A.

• Round-3 messages from Sim to A.

– For every Pi ∈ C ∩ {P1, P2, P3}, Sim computes zi by using the messages sent in the first
two rounds, the input (xi, yi) (received from the environment) and the random tape of
party Pi (that it set).

– Let z be the output of the F3MULTPlus functionality (obtained by Sim by querying the
ideal functionality).

– For every Pi ∈ H ∩ {P1, P2, P3}, Sim chooses zi uniformly at random from {0, 1} subject

to ⊕
i∈H∩{P1,P2,P3}

zi = z ⊕
(

⊕
i∈C∩{P1,P2,P3}

zi

)
.

– Sim sends {zi}i∈H∩{P1,P2,P2} to A.

Proof of Indistinguishability. We now show that the simulated interaction is indistinguishable
to the real world interaction via a hybrid argument.

• Hybrid0 : This corresponds to the view of the adversary and the outputs of the honest parties
in the real world execution of the protocol.

• Hybrid1 : Skip this hybrid change if P1 6∈ H. In this hybrid, we set otr sent by P1 in the first
round to be equal to OT1(1λ, 0;ω) instead of OT1(1λ, x1;ω). In round-3, instead of using the
OT3 computation, we use the knowledge of inputs and random tape of P2 and P3 to recover
(x2,x1 , ωx1) and otsx1 respectively.

• Hybrid2 : Skip this hybrid if P3 6∈ H. In this hybrid, we set otr3 sent by P3 in the first round
to be equal to OT1(1λ, 0;ω′) instead of OT1(1λ, x3;ω′). In round-3, instead of using the OT3

computation, we use the knowledge of inputs and random tape of P2 to recover x2,0,x3 .

• Hybrid3 : Skip this hybrid if P2 6∈ H. In this hybrid, we set ots ←
OT2(otr, (x2,x1 , ωx1), (x2,x1 , ωx1)) instead of OT2(otr, (x2,0, ω0), (x2,1, ω1)). Similarly, we set
ots3 to be equal to OT2(otr3, x2,0,x3 , x2,0,x3) instead of OT2(otr3, x2,0,0, x2,0,1).

• Hybrid4 : Skip this hybrid if P2 6∈ H. In this hybrid, we set otr1−x1 to be OT1(1λ, x2,x1 ;ω1−x1)

instead of OT1(1λ, x2,1−x1 ;ω1−x1). Here, we are making use of the observation that ω1−x1 is
not needed to simulate the other messages.

• Hybrid5 : Skip this hybrid if P2 6∈ H. In this hybrid, we set x2,1−x1 = x2,x1 and x2,0,1−x3 =
x2,0,x3 . Notice that this is only a syntactic change and hence, Hybrid4 is identically distributed
to Hybrid5.

17

• Hybrid6 : Skip this hybrid if P3 6∈ H. In this hybrid, for each b ∈ {0, 1}, we set
otsb ← OT2(otrb, x3,x2,b , x3,x2,b) instead of OT2(otrb, x3,0, x3,1). We then set ots ←
OT2(otr, otsx1 , otsx1). Thus, to generate ots we only make use of x3,x2,x1

.

• Hybrid7 : Skip this hybrid if P3 6∈ H. In this hybrid, we set x3,1−x2,x1 = x3,x2,x1
. Note that

this change is only syntactic and hence, Hybrid7 is identically distributed to Hybrid6.

• Hybrid8 : Let i∗ be the smallest integer such that Pi∗ ∈ H ∩ {P1, P2, P3}. In this hybrid, we
set zi∗ = z −

∑
j∈[3]\{i∗} zj instead of computing it as in the previous hybrid.

• Hybrid9 : For every i ∈ H ∩ {P1, P2, P3} and i 6= i∗, we choose zi uniformly at random.

• Hybrid10 : Skip this hybrid if P2 6∈ H. In this hybrid, we reset ots ←
OT2(otm1, (x2,0, ω0), (x2,1, ω1)) instead of OT2(otr, (x2,x1 , ωx1), (x2,x1 , ωx1)). Note that since
we have set x2,0 = x2,1, the only difference between the two pairs of sender inputs is in the
second component (i.e., the ω part).

• Hybrid11 : Skip this hybrid if P3 6∈ H. In this hybrid, we reset for each b ∈ {0, 1}, otsb =
OT2(otrb, x3,0, x3,1) and ots ← OT2(otr, ots0, ots1). Note that we have set x3,0 = x3,1 =
x3,x2,x1

.

• Hybrid12 : This hybrid is identically distributed to the simulated interaction.

We now argue that for every i ∈ [12], Hybridi is computationally indistinguishable from Hybridi−1

using the security of the two-round oblivious transfer.

Claim 4.4. Assuming the receiver security of the two-round semi-honest oblivious transfer, we have
Hybrid0

c
≈ Hybrid1.

Proof. Assume for the sake of contradiction that the adversary A can distinguish between the out-
puts of Hybrid0 and Hybrid1 with non-negligible advantage. We will use this adversary to construct
an adversary B that breaks the receiver security of oblivious transfer.
B interacts with the challenger against the receiver OT security by giving 0 and x1 as the

challenge bits. It receives otr from the external challenger. It uses the received otr as the message
from honest P1 in the first round. In the last round, B uses the knowledge of the inputs and the
random tape of the other parties to recover (x2,x1 , ωx1) and otsx1 . It then computes x3,x2,x1

:=
OT3(otsx1 , (x2,x1 , ωx1)) and sets z1 := x3,x2,x1

+ y1 + δ1. It broadcasts z1 in the final round.
Notice that if otr contains the choice bit x1, then the view of A along with the outputs of

the honest parties is identical to Hybrid0. Else, it is identically distributed to Hybrid1. Thus, if
A can distinguish between Hybrid0 and Hybrid1 with non-negligible advantage, then B can break
the receiver security of the two-round oblivious transfer with non-negligible advantage which is a
contradiction.

Claim 4.5. Assuming the receiver security of the two-round oblivious transfer, we have Hybrid1

c
≈

Hybrid2.

Proof. The proof of this claim is similar to Claim 4.4.

Claim 4.6. Assuming the sender security of two-round oblivious transfer, we have Hybrid2

c
≈

Hybrid3.

18

Proof. Notice that if P1 is not corrupted then it directly follows from the security of oblivious
transfer in the no corruption setting that OT2(otr, (x2,x1 , ωx1), (x2,x1 , ωx1)) is computationally in-
distinguishable to OT2(otr, (x2,0, ω0), (x2,1, ω1)). A similar argument can be made for the case where
P3 is not corrupted. Hence, in the rest of the proof, we assume that both P1 and P3 are corrupted.

Assume for the sake of contradiction that the adversary A can distinguish between the outputs
of Hybrid2 and Hybrid3 with non-negligible advantage. We will use A to construct another adversary
B that can break the sender security of two-round oblivious transfer.
B sends x1 as the receiver’s choice bit and (x2,0, ω0), (x2,1, ω1) as the sender’s input messages for

the first oblivious transfer and sends x3 as the receiver’s choice bit and (x2,0,0, x2,0,1) as the sender’s
input messages for the second oblivious transfer. It receives (x1, ω, ots) as the first challenge and
(x3, ω

′, ots3) as the second challenge. It sets the appropriate parts of the random tape of P1 and
P3 to be ω and ω′ respectively and begins the interaction with A. In the second round, it uses the
received challenge string (ots, ots3) as the messages sent by honest P2. The rest of the steps are
identical to the previous hybrid.

Notice that if the challenge second round sender OT messages contain ((x2,0, ω0), (x2,1, ω1)) and
(x2,0,0, x2,0,1) as the sender’s input messages, then the view of A and the outputs of the honest
parties is identical to the output of Hybrid2. Else, it is identically distributed to the output of
Hybrid3. Thus, if A can distinguish between Hybrid2 and Hybrid3 with non-negligible advantage
then, B breaks the sender security of two-round oblivious transfer with the same advantage. This
is a contradiction.

Claim 4.7. Assuming the receiver security of the two-round oblivious transfer, we have Hybrid3

c
≈

Hybrid4.

Proof. Assume for the sake of contradiction that the adversary A can distinguish between the out-
puts of Hybrid3 and Hybrid4 with non-negligible advantage. We will use this adversary to construct
an adversary B that breaks the receiver security of oblivious transfer.
B interacts with the challenger against the receiver OT security by giving x2,x1 and x2,1−x1 as the

challenge bits. It receives otr∗ from the external challenger. It generates otrx1 := OT1(1λ, x2,x1 ;ωx1)
as in the previous hybrid and sets otr1−x1 = otr∗. It broadcasts (otr0, otr1) as the first round
message from honest P2. In the second round, B generates ots3 as in the previous hybrid and uses
(x2,x1 , ωx1) to generate ots := OT2(otr, (x2,x1 , ωx1), (x2,x1 , ωx1)). The rest of the steps are identical
to the previous hybrid.

Notice that if otr∗ contains the choice bit x2,1−x1 then the view of A along with the outputs
of the honest parties is identical to Hybrid3. Else, it is identically distributed to Hybrid4. Thus, if
A can distinguish between Hybrid3 and Hybrid4 with non-negligible advantage, then B can break
the receiver security of the two-round oblivious transfer with non-negligible advantage which is a
contradiction.

Claim 4.8. Assuming the sender security of two-round oblivious transfer, we have Hybrid5

c
≈

Hybrid6.

Proof. We prove this claim by making use of an intermediate hybrid.

Hybrid′5 : In this hybrid, we compute otsb ← OT2(otrb, x3,x2,b , x3,x2,b) instead of OT2(otrb, x3,0, x3,1)
for each b ∈ {0, 1}. We compute ots as in Hybrid5.

19

Notice that the only difference between Hybrid5 and Hybrid′5 is how otsb is computed for each
b ∈ {0, 1}. We can use an identical argument as in Claim 4.6 and rely on the sender security of the
two-round oblivious transfer to show that Hybrid5 and Hybrid′5 are computationally indistinguishable.

Further, we observe that the only difference between Hybrid′5 and Hybrid6 is in the computation of
ots. In Hybrid6, it is computed as ots1 ← OT2(otr, otsx1 , otsx1) whereas in Hybrid′5, it is computed as
ots1 ← OT2(otr, ots0, ots1). Again, via an identical argument to Claim 4.6, we can rely on the sender
security of two-round oblivious transfer and show that Hybrid′5 and Hybrid6 are computationally
indistinguishable.

This shows that Hybrid5 and Hybrid6 are computationally indistinguishable.

Claim 4.9. Hybrid7 ≡ Hybrid8.

Proof. The proof follows from the observation that in both hybrids z1 + z2 + z3 = z.

Claim 4.10. Hybrid8 ≡ Hybrid9

Proof. The proof follows from the fact that (δ1, δ2, δ3) form a random secret sharing of 0.

Claim 4.11. Assuming the sender security of two-round oblivious transfer, Hybrid9

c
≈ Hybrid10.

Proof. The proof is identical to the proof of Claim 4.6.

Claim 4.12. Assuming the sender security of the two-round oblivious transfer, we have Hybrid10

c
≈

Hybrid11.

Proof. The proof of this claim is identical to Claim 4.8.

Claim 4.13. Hybrid11 ≡ Hybrid12

Proof. Recall that (x2,0, x2,1), (x2,0,0, x2,0,1) and (x3,0, x3,1) form a random secret sharing of x2, x2,0

and x3 respectively. Thus, it now follows that if P2 ∈ H then x2,x1 , x2,0,x3 are identically distributed
to random bits. A similar argument shows that if P3 ∈ H, then x3,x2,x3

is identically distributed to
a random bit.

This completes the proof of security.

4.2 Step-2: Protocol for Arbitrary Functions

We first recall the theorem about completeness of F3MULTPlus from [ABG+20, Theorem 6.4].

Theorem 4.14 ([BGI+18, GIS18, ABG+20]). Let f be an n-party functionality. There exists
a protocol Πf for securely computing f against a semi-honest adversary (corrupting an arbitrary
subset of parties), where Πf makes parallel calls to the F3MULTPlus functionality and uses no further
interaction. The protocol Πf can either be: (1) computationally secure using a black-box PRG, where
the complexity of the parties is polynomial in n, the security parameter λ and the circuit size of f ,
or alternatively (2) perfectly secure, where the complexity of the parties is polynomial in n and the
branching program size of f .

From Theorem 4.1 and the UC composition theorem [Can01], we get the following corollary.

20

Corollary 4.15. Let f be an n-party functionality. There is a three-round protocol that makes
black-box use of a two-round, semi-honest secure oblivious transfer and securely computes f against
a semi-honest adversary corrupting an arbitrary subset of parties. The complexity of the parties is
polynomial in n, the security parameter λ and the circuit size of f .

5 3-round Malicious MPC

In this section, we give a construction of a 3-round protocol that computes any multiparty func-
tionality with UC-security against malicious adversaries. The protocol makes black-box use of a
two-round, malicious-secure oblivious transfer with equivocal receiver security. We do this in three
steps. In the first step, we define a special n-party functionality called double selection and give
a two-round, black-box protocol that securely computes this functionality. However, this protocol
satisfies only a weaker notion of security which is security with input dependent abort (see Ap-
pendix A.6). In the second step, we use the protocol from the first step and give a three-round
protocol that securely computes this double selection functionality with standard security. In the
final step, we show how to bootstrap the protocol from the second step to a black-box, three-round
protocol for general functions.

5.1 First Step: Special Functionality with Input Dependent Abort

In this subsection, we define a special n-party functionality F†dSelPri in Figure 2 and give a black-
box, two-round protocol that computes F†dSelPri. This functionality captures input-dependent abort
attack that can be launched by a corrupt P2 against P1, causing loss of input privacy of P1.

F†dSelPri is parameterized by an n-party function dSelPri whose description follows. dSelPri receives (α, r) ∈
{0, 1} × {0, 1} from P1, (y0, y1) ∈ {0, 1} × {0, 1} from P2 and for every 3 ≤ i ≤ n, it receives (zi0, z

i
1) ∈

{0, 1}λ × {0, 1}λ from Pi. dSelPri delivers (yα, {ziyα⊕r}3≤i≤n) to P1 and the other parties do not get any
outputs. Let xi be the input of party Pi to dSelPri (note that xi for different parties maybe of different
lengths) and let S be the adversary. The functionality F†dSelPri proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid, Pi, xi) to the functionality.

2. If P2 is corrupted then S may send (predicate, sid,EQβ) where EQβ is the equality predicate that takes
the first component of P1’s input α and outputs 1 iff β = α.

3. Upon receiving the inputs from all parties, evaluate out := dSelPri(x1, . . . , xn). If P1 is corrupted, the
functionality delivers out to S.

4. If P1 is not corrupted, then on receiving (generateOutput, sid) from S, the ideal functionality computes
pred = EQβ(α) (if (predicate, sid,EQβ) is received; if such a message is not received, it sets pred = 0).
If pred = 0, it gives (output, sid, P1, out) to P1. Else, if pred = 1, it sends (output, sid, P1, abort). (And
ignores the message if inputs from all parties in {P1, . . . , Pn} have not been received.) On the other
hand, if (abort, sid) is received then, it sends (output, sid, P1, abort) to P1.

Functionality F†dSelPri

Figure 2: Functionality F†dSelPri
We show the following theorem.

21

Theorem 5.1. There exists a two-round protocol Π†dSelPri that UC-realizes the functionality F†dSelPri
in the F(m,p)-RaOT (described in Figure 3) hybrid model making black-box access to a two-round,
malicious-secure oblivious transfer with equivocal receiver security.

As a corollary of Theorem 3.5, we get:

Corollary 5.2. There exists a two-round protocol Π†dSelPri that UC-realizes the functionality F†dSelPri
making black-box access to a two-round, malicious-secure oblivious transfer with equivocal receiver
security.

Let S be an adversary.

• A party Pi (and S on behalf of Pi if Pi is corrupted) sends (receiver, sid, Pi).

• Another party Pj (and S on behalf of Pj if Pj is corrupted) sends (sender, sid, Pj , (s1, . . . , sm)) to the
functionality where sj ∈ {0, 1}∗ for each j ∈ [m].

• On receiving both these messages, for each j ∈ [m], the functionality independently sets s′j = sj with
probability p and sets s′j = ⊥ with probability 1− p.

• On receiving (generateOutput, sid) from S (if Pj is corrupted), the functionality delivers
(output, sid, (s′1, . . . , s

′
m)) to Pi.

Functionality F(m,p)-RaOT

Figure 3: Functionality F(m,p)-RaOT

Building Π†dSelPri. The formal description of Π†dSelPri is given in Figure 4. We present a high-level
idea first. We begin with the description of a protocol that computes a simplified version of the
function dSelPri in the face of a semi-honest adversary. The simplified version does not involve a
mask bit r from P1 and additionally, assumes that P3 as the lone provider of a pair z0, z1. The goal
is to let P1 learn (yα, zyα) at the end of the second round. To construct a two-round protocol for the
simplified functionality, we use the idea of “cascading oblivious transfer.” P1 produces an OT receiver
message otr with α as the choice bit. P2 produces two OT receiver messages {otrb}b∈{0,1} where
otrb is generated using yb as the choice bit for each b ∈ {0, 1}. For each b ∈ {0, 1}, P3 generates OT
sender messages otsb in response to otrb with (z0, z1) as input. P3 finally uses ots0, ots1 to compute
an OT sender message in response to otr. This enables P1 to obtain otsα from P3. Lastly, to enable
P1 to decrypt otsα, P2 sends a sender message to P1 in response to otr with ((y0, µ0), (y1, µ1)) as the
inputs, where µb denotes the second component of the output of OT1 while generating otrb. Now,
P1 has (yα, µα) and otsα and can extract zyα .

The inclusion of the random mask bit r requires P1 to produce another OT receiver message
otr with r as the input. To this, P3 generates a sender OT message with input (0, z1 − z0). This
ensures that P1 obtains its outcome as zyα + r(z1 − z0) = (yα + r)(z1 − z0) + z0 which is same as
zyα+r. Lastly, to ensure that a corrupt P1 learns zyα+r and nothing beyond, P3 chooses a random
mask and uses (z0 + mask, z1 + mask), instead of (z0, z1), as the input for preparing ots0, ots1 and
likewise, it uses (−mask, z1 − z0 −mask) instead of (0, z1 − z0), as the sender input. This not only
ensures that the end result remains unaffected, but also guarantees that nothing beyond the end
result is learnt from the two summands.

22

To make the above idea work against a malicious adversary, we inspect the roles of the various
parties and try to see the kind of attack that they can mount. P1’s role only includes preparing
two OT receiver messages and therefore a corrupt P1 is taken care by the sender security of the OT
against malicious receivers. Next, a corrupt P2 plays the role of two receivers to P3 and one sender
to P1, where the messages and matching randomnesses used for the former role are fed as input
in the latter role. While OT’s sender security takes care, and in effect, fixes P2’s input through
the receiver messages, there is still a scope for P2 to launch a selective failure or input-dependent
attack against P1 by selectively choosing only one of the OT sender inputs correctly. This allows it
to learn P1’s input α, by simply observing whether P1 aborts or not. But the functionality F†dSelPri
allows this attack, and preventing this attack is taken care in the next section. This brings us to
the last case where P3 can be corrupt.

P3 prepares three OT sender messages, wherein the third instance takes the result of first two
instances as input and in addition, the inputs to the first two instances need to be identical, namely
(z0 + mask, z1 + mask). Tackling a corrupt P3 clearly requires to step beyond OT receiver security
against malicious senders. Here, we deploy MPC-in-the-head approach [IKOS07] for the consistency
check, where P3 prepares states of m virtual parties in its head that jointly hold a secret sharing of
z0, z1,mask. The sharing is pairwise checkable and adheres to a threshold that dictates its security.
A bivariate polynomial based sharing scheme fits the bill. Next, the i-th virtual party’s state
includes the OT sender messages that are prepared by simply replicating P3’s computation on the
i-th shares of z0, z1,mask. Now, the goal is to open some number of the states to P1 for checking
and we need to ensure that this number (a) is not big enough to violate P3’s privacy, (b) but is
enough to either catch a corrupt P3 or error-correct the faults. Here, we invoke a 2-party NISC
between P1 and P3 for computing the Rabin OT functionality F(m,p)-RaOT, where P3 inputs the m
states. F(m,p)-RaOT ensures each state is chosen to be revealed to P1 independently with probability
p. Using Chernoff bounds, we can conclude that the probability that more than the threshold
number of states are revealed to P1 is negligible. Consequently, the secrets z0, z1,mask are safe
from P1 with overwhelming probability. On the other hand, a corrupt P3 either gets caught with
overwhelming probability when it prepares a “large” number of wrong states and in the case where
it ends up maligning small number of states, we rely on error correction to ensure the recovery of
information. Since the NISC realizing F(m,p)-RaOT makes black-box use of a two-round oblivious
transfer [IPS08, IKO+11], our final construction is black-box, as desired.

Inputs: P1 inputs (α, r) ∈ {0, 1} × {0, 1}, P2 inputs (y0, y1) ∈ {0, 1} × {0, 1}. For every 3 ≤ i ≤ n, Pi
inputs (zi0, z

i
1) ∈ {0, 1}λ × {0, 1}λ.

Output: P1 outputs (yα, {ziyα⊕r}3≤i≤n) and the other parties do not get any outputs.

Primitives: (a) A malicious-secure two-round OT with equivocal receiver security defined by
(KOT,OT1,OT2,OT3) (see Section 3.3). We use OT∗1 to denote an algorithm that takes a crs
and q(λ)-bit string (for some polynomial q(·)) as input and applies OT1 to each bit of that string.
(b) Functionality F(m,p)-RaOT where m = 3λ+ 1 and p = λ/2m.

Common Random/Reference String Generation: For each i ∈ [n], sample crsi ← KOT(1λ). Set
the crs to be (crs1, . . . , crsn).

Protocol Π†dSelPri

23

Round-1: In the first round,

• P1 computes (otr, µ)← OT1(crs1, α) and (otr, µ)← OT1(crs1, r). Additionally, for each i ∈ [3, n],
P1 sends (receiver, i, P1) to the F(m,p)-RaOT functionality.

• For each b ∈ {0, 1}, P2 computes (otrb, µb)← OT1(crs2, yb).

• For each i ∈ [3, n], Pi does the following:

– It chooses maski ← {0, 1}λ uniformly at random.
– It chooses three random degree-λ symmetric bivariate polynomials Si0, Si1, Si2 over GF(2λ) such

that Si0(0, 0) = zi0, Si1(0, 0) = zi1 and Si2(0, 0) = maski.
– For each j ∈ [m] and for each γ ∈ [0, 2], let f i,jγ (x) = Siγ(x, j) (where we associate j with the
j-th element in GF(2λ)).

– For each j ∈ [m] and for each γ ∈ [0, 2], it computes (otri,jγ , µ
i,j
γ) := OT∗1(crsi, f i,jγ (x)).

• P1 broadcasts (otr, otr), P2 broadcasts (otr0, otr1) and for each i ∈ [3, n], Pi broadcasts
{otri,jγ }j∈[m],γ∈[0,2] to every party.

Round-2: In the second round,

• P2 computes ots← OT2(crs1, otr, (y0, µ0), (y1, µ1)).

• For every i ∈ [3, n], Pi does the following for each j ∈ [m],

– For each b ∈ {0, 1}, it chooses τ i,jb ← {0, 1}∗ and computes otsi,jb := OT2(crs2, otrb, f
i,j
0 (0) +

f i,j2 (0), f i,j1 (0) + f i,j2 (0); τ i,jb).
– It chooses random τ i,j ← {0, 1}∗ and computes otsi,j := OT2(crs1, otr, otsi,j0 , otsi,j1 ; τ i,j).
– It chooses random τ i,j ← {0, 1}∗ and computes ots

i,j ← OT2(crs1, otr,−f i,j2 (0), f i,j1 (0) −
f i,j0 (0)− f i,j2 (0); τ i,j).

– It sets the string si,j = ({f i,jγ (x), µi,jγ }γ∈[0,2], {ots
i,j
b , τ

i,j
b }b∈{0,1}, τ i,j , τ

i,j).

It then sends (sender, i, Pi, (si,1, . . . , si,m)) to the F(m,p)-RaOT functionality.

• P2 sends ots and for every i ∈ [3, n], Pi sends ({otsi,j , otsi,j}j∈[m]) to P1 via private channels
(which can implemented in two rounds over a public-channel model using a two-round OT).

Output: To compute the output, P1 does the following:

• For each i ∈ [3, n],

– It receives (output, i, (si,1, . . . , si,m)) as the output from F(m,p)-RaOT functionality.
– Let Ji ⊆ [m] such that for each j ∈ Ji, sij 6= ⊥.
– For each j ∈ Ji:
∗ It parses si,j as ({f i,jγ (x), µi,jγ }γ∈[0,2], {ots

i,j
b , τ

i,j
b }b∈{0,1}, τ i,j , τ

i,j).
∗ For each γ ∈ [0, 2], it checks if CheckValid(crsi, otri,jγ , (f

i,j
γ (x), µi,jγ)) (where CheckValid is

the algorithm for checking the validity of receiver’s key (see Section 3.3)) outputs 1 and if
f i,jγ (x) is a degree-λ polynomial.

∗ For every k ∈ Ji \ {j} and γ ∈ [0, 2], it checks if f i,jγ (k) = f i,kγ (j).

∗ It checks if otsi,j := OT2(crs1, otr, otsi,j0 , otsi,j1 ; τ i,j) and ots
i,j ←

OT2(crs1, otr,−f i,j2 (0), f i,j1 (0)− f i,j0 (0)− f i,j2 (0); τ i,j).
∗ It also checks if otsi,jb := OT2(crs2, otrb, f

i,j
0 (0) + f i,j2 (0), f i,j1 (0) + f i,j2 (0); τ i,jb) for each

b ∈ {0, 1}.
∗ If any of the above checks fail, it aborts.

24

– It computes (yα, µα) := OT3(crs1, ots, (α, µ)). It then runs CheckValid(crs2, otrα, (yα, µα)). If
the algorithm outputs 1, then it proceeds. Otherwise, it aborts.

– For each j ∈ [m],
∗ It computes otsi,jα := OT3(crs1, otsi,j , (α, µ)).
∗ It then computes Shi,jyα := OT3(crs2, otsi,jα , (yα, µα)).

∗ It also computes Sh
i,j

r := OT3(crs1, ots
i,j
, (r, µ)).

– It computes zi as the Reed-Solomon decoding of {Shi,jyα + Sh
i,j

r }j∈[m], correcting at most λ
errors.

It outputs (yα, {zi}i∈[3,n]).

Figure 4: Protocol Π†dSelPri

The following lemma is sufficient to prove Theorem 5.1.

Lemma 5.3. Let A be an (possibly malicious) adversary corrupting an arbitrary subset of parties
in the protocol Π†dSelPri. There exists a simulator Sim such that for any environment Z,

EXECF†dSelPri,Sim,Z
c
≈ EXEC

Π†dSelPri,A,Z

Proof. Let C ⊂ [n] be the set of parties corrupted by A and let H = {P1, . . . , Pn}\C denote the set
of uncorrupted parties. Since we assume that A is static, the set of corrupted parties C is decided
before the beginning of the protocol. We now give the description of the ideal world simulator Sim.
Sim internally uses the simulators (SimR, SimS) of the oblivious transfer (see Section 3.3).

Interaction with environment Z. For every input value corresponding to the set of corrupted
parties C that Sim receives from the environment Z, Sim writes this value to A’s input tape.
Similarly, the contents of A’s output tape is written to Sim’s output tape. We now describe how
Sim simulates the interaction of honest parties with A.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

Common Random/Reference String Generation: Sim generates the crs as follows:

• For each i ∈ [n], if Pi ∈ C, then Sim samples (crsi, tdi)← Sim1
S(1λ). Else, it samples

(crsi, tdi)← Sim1
R(1λ).

• Sim sets the crs to be (crs1, . . . , crsn).

Round-1 messages from Sim to A: Sim does the following:

• If P1 ∈ H, it samples (otr, µ0, µ1)← Sim2
R(crs1, td1) and (otr, µ0, µ1)← Sim2

R(crs1, td1).

• If P2 ∈ H, then for each b ∈ {0, 1}, it samples (otrb, µb,0, µb,1)← Sim2
R(crs2, td2).

• For each i ∈ [3, n], if Pi ∈ H, it does the following:

25

– For each j ∈ [m], it independently sets coini,j = 1 with probability p and coini,j = 0 with
probability 1− p.

– If
∑

j∈[m] coin
i,j > λ, it aborts and outputs a special symbol error.

– Else, it samples random symmetric bivariate polynomials Si0, Si1, Si2 with degree-λ over
GF(2λ).

– For each j ∈ [m] and for each γ ∈ [0, 2], let f i,jγ (x) = Siγ(x, j) (where we associate j with
the j-th element in GF(2λ)).

– For each j ∈ [m] such that coini,j = 1 and for each γ ∈ [0, 2], it computes (otri,jγ , µ
i,j
γ) :=

OT∗1(crsi, f i,jγ (x)).

– For each j ∈ [m] such that coini,j = 0, it computes (otmi,j
γ , µ

i,j
γ)← OT∗1(crsi, 02λ(λ+1)).

• It sends the first round messages on behalf of the honest parties to A.

Round-2 messages from Sim to A: To generate the round-2 messages, Sim does the follow-
ing:

• If P1 ∈ C, it runs Sim2
S(crs1, td1, otr) to obtain α and Sim2

S(crs1, td1, otr) to obtain r. It sets
x1 = (α, r).

• If P2 ∈ C, for each b ∈ {0, 1}, it runs Sim2
S(crs2, td2, otrb) to obtain yb. It sets x2 = (y0, y1)

• For each i ∈ [3, n], if Pi ∈ C, for each γ ∈ [0, 2] and for each j ∈ [m], it runs Sim2
S(crsi, tdi, otri,jγ)

to recover f i,jγ (x). It applies the Reed-Solomon decoding on {f i,j0 (0)}j∈[m] and {f
i,j
1 (0)}j∈[m]

to obtain zi0 and zi1 respectively. It sets xi = (zi0, z
i
1).

• For each i ∈ [n] such that Pi ∈ C, it sends (input, sid, Pi, xi) to the ideal functionality.

• If P1 ∈ C, Sim does the following:

– It obtains the output (yα, {ziyα⊕r}i∈[3,n]) from the ideal functionality.

– If P2 ∈ H, then it computes ots← OT2(crs1, otr, (yα, µ
α
yα), (yα, µ

α
yα)).

– For each i ∈ [3, n], if Pi ∈ H, Sim does the following:

∗ It chooses a random mask maski ← {0, 1}λ.
∗ Let Ji ⊆ [m] such that coini,j = 1.
∗ It resamples Si1, Si2 such that for each j ∈ Ji and γ ∈ [1, 2], Siγ(x, j) = f i,jγ (x),
Si1(0, 0) = ziyα⊕r, and S

i
2(0, 0) = maski.

∗ For every j ∈ [m] \ Ji and γ ∈ [1, 2], it resets f i,jγ (x) = Siγ(x, j).

∗ For each j ∈ [m] \ Ji, it chooses τ i,jα ← {0, 1}∗ and computes otsi,jα :=
OT2(crs2, otrα, f

i,j
1 (0) + f i,j2 (0), f i,j1 (0) + f i,j2 (0); τ i,jb). For each j ∈ Ji, it computes

{otsi,jb }b∈{0,1} as in the original protocol.
∗ It chooses random τ i,j ← {0, 1}∗ and computes otsi,j :=
OT2(crs1, otr, otsi,jα , ots

i,j
α ; τ i,j) for each j ∈ [m] \ Ji. For each j ∈ Ji, it gen-

erates otsi,j as in the original protocol.

26

∗ It chooses random τ i,j ← {0, 1}∗ and computes
otsi,j ← OT2(crs1, otr,−f i,j2 (0),−f i,j2 (0); τ i,j) for each j ∈ [m] \ Ji. For each
j ∈ Ji, it computes otsi,j as in the original protocol.
∗ For each j ∈ Ji, it sets the string si,j = ({f i,jγ (x), µi,jγ }γ∈[0,2], {ots

i,j
b , τ

i,j
b }b∈{0,1},

τ i,j , τ i,j) and for j ∈ [m] \ Ji, it sets si,j = ⊥.
∗ It gives (output, i, (si,1, . . . , si,m)) as the output from F(m,p)-RaOT functionality to P1.

• If P1 ∈ H, since all the messages in the second round are sent to P1 via private channels, Sim
does not have to simulate any second round messages from honest parties.

• Sim sends the messages generated on behalf of the honest parties to A.

Output phase: If P1 ∈ H, then Sim does the following.

• For each i ∈ [3, n] such that Pi ∈ C,

– It intercepts the message (sender, i, Pi, (si,1, . . . , si,m)) that Pi sends to the F(m,p)-RaOT

functionality.

– It initializes a graph G with the vertex set to be [m] and no edges.

– For each j ∈ [m],

∗ It parses si,j as ({f i,jγ (x), µi,jγ }γ∈[0,2], {ots
i,j
b , τ

i,j
b }b∈{0,1}, τ

i,j , τ i,j).

∗ For each γ ∈ [0, 2], it checks if CheckValid(crsi, otri,jγ , (f
i,j
γ (x), µi,jγ)) outputs 1 and if

f i,jγ (x) is a degree-λ polynomial. If not, it adds an edge from j to every other vertex
in the graph G.
∗ For every k ∈ [m] \ {j} and γ ∈ [0, 2], it checks if f i,jγ (k) = f i,kγ (j). If not, it adds an

edge from vertex j to vertex k in G.
∗ It checks if otsi,j := OT2(crs1, otr, otsi,j0 , otsi,j1 ; τ i,j) and otsi,j ←

OT2(crs1, otr,−f i,j2 (0), f i,j1 (0) − f i,j0 (0) − f i,j2 (0); τ i,j). If not, it adds an edge
from j to every other vertex in the graph G.
∗ It also checks if otsi,jb := OT2(crs2, otrb, f

i,j
0 (0)+f i,j2 (0), f i,j1 (0)+f i,j2 (0); τ i,jb) for each

b ∈ {0, 1}. If not, it adds an edge from j to every other vertex in the graph G.

– It runs the 2-approximation algorithm to find the minimum vertex cover for the graph
G. Let B be the vertex cover output by the algorithm.

– If |B| > λ for each corrupted Pi, then Sim sends (abort, sid) to the ideal functionality. If
|B| ≤ λ, it proceeds to the next step.

• If P2 ∈ C,

– For each b ∈ {0, 1}, it runs (yb, µ
′
b) := OT3(crs1, ots, (α, µb)).

– If there exists a bit b∗ such that CheckValid(crs2, otrb∗ , (yb∗ , µb∗)) = 0 but CheckValid(crs2,
otr1−b∗ , (y1−b∗ , µ1−b∗)) = 1, then Sim sends (predicate, sid,EQb∗) to the ideal functionality.

• Sim sends (generateOutput, sid) to the ideal functionality and stops.

27

Proof of Indistinguishability. We now show that for any environment Z,

EXECF†dSelPri,Sim,Z
c
≈ EXEC

Π†dSelPri,A,Z

We show this via a hybrid argument.

• Hybrid0 : This corresponds to EXEC
Π†dSelPri,A,Z

which includes the output of the adversary and
the outputs of all the honest parties.

• Hybrid1 : For each i ∈ [3, n] such that Pi ∈ H, we do the following:

– For each j ∈ [m], we independently set coini,j = 1 with probability p and set coini,j = 0
with probability 1− p.

– Let Ji ⊆ [m] such that for each j ∈ Ji, coini,j = 1. If |Ji| > λ, we abort and output a
special symbol error.

– When Pi sends (sender, i, Pi, (si,1, . . . , si,m)) to the F(m,p)-RaOT functionality, for each
j ∈ [m], we set si,j = si,j if coini,j = 1 and otherwise, set si,j = ⊥.

– We deliver (output, i, (si,1, . . . , si,m)) as the output from F(m,p)-RaOT functionality to P1.

• Hybrid2 : In this hybrid, we make the following changes:

– CRS Generation. Instead of sampling crs1 as the output of KOT(1λ), if P1 ∈ H, we
sample (crs1, td1) ← Sim1

R(1λ) and otherwise, we sample (crs1, td1) ← Sim1
S(1λ). We

include the above sampled crs1 as part of the crs.

– Round-1 message from P1. Skip this change if P1 ∈ C. Instead of generating otr and
otr as the first component of the outputs OT1(crs1, α) and OT1(crs1, r) respectively, we
generate them as the first component of the outputs of two independent executions of
Sim2

R(crs1, td1).

– Skip the following changes if P1 ∈ H.

∗ Input Extraction. Let otr, otr be the messages sent by A in the first round on
behalf of P1. We first run Sim2

S(crs1, td1, otr) and Sim2
S(crs1, td1, otr) to obtain α and

r respectively.
∗ Round-2 message from honest P2. If P2 ∈ H, we generate ots ←
OT2(crs1, otr, (yα, µα), (yα, µα)).
∗ Round-2 message from honest Pi where i ∈ [3, n]. For every i ∈ [3, n] for

which Pi ∈ H and for each j ∈ [m] \ Ji (recall that Ji is the set of indices j
for which coini,j = 1), we generate otsi,j ← OT2(crs1, otr, otsi,jα , ots

i,j
α). Further,

let (msgi,j0 ,msgi,j1) = (−f i,j2 (0), f i,j1 (0) − f i,j0 (0) − f i,j2 (0)). We generate otsi,j ←
OT2(crs1, otr,msgi,jr ,msgi,jr).

• Hybrid3 : In this hybrid, we make the following changes:

– CRS Generation. Instead of sampling crs2 as the output of KOT(1λ), if P2 ∈ H, we
sample (crs2, td2) ← Sim1

R(1λ) and otherwise, we sample (crs2, td2) ← Sim1
S(1λ). We

include the above sampled crs2 as part of the crs.

28

– Round-1 message from P2. Skip this change if P2 ∈ C. Instead of generating otm0
1 and

otm1
1 as the first component of the outputs OT1(crs2, y0) and OT1(crs2, y1) respectively,

we generate them as the first component of the outputs of two independent executions
of Sim2

R(crs2, td2).
– Round-2 message from P2. Skip this change if P2 ∈ C. In this hybrid, if
P1 ∈ C, we generate ots as OT2(crs1, otr, (yα, µ

α
yα), (yα, µ

α
yα)) where for each b ∈ {0, 1},

(otrb, µb,0, µb,1)← Sim2
R(crs2, td2)

– Skip the following changes if P2 ∈ H.
∗ Input Extraction. Let otr0, otr1 be the first round messages that A sends on behalf

of P2. For each b ∈ {0, 1}, we run Sim2
S(crs2, td2, otrb) to obtain yb.

∗ Round-2 computation of honest Pi where i ∈ [3, n]. Skip this change if there
does not exist any i ∈ [3, n] such that Pi ∈ H. For every j ∈ [m] \ Ji, we compute
otsi,jb := OT2(crs2, otrb, f

i,j
yb (0) + f i,j2 (0), f i,jyb (0) + f i,j2 (0); τ i,jb) (for uniformly chosen

τ i,jb). The rest of the computation is exactly as in the previous hybrid.

• Hybrid4 : In this hybrid, we make the following changes:

– CRS Generation. For each i ∈ [3, n], if Pi ∈ H, we generate (crsi, tdi) ← Sim1
R(1λ)

and if Pi ∈ C, we generate (crsi, tdi)← Sim1
S(1λ).

– Round-1 message from honest Pi where i ∈ [3, n]. For every i ∈ [3, n] such that
Pi is honest and for each j ∈ [m] \ Ji and for each γ ∈ [0, 2], generate otri,jγ as the first
component of OT∗1(crsi, 02λ(λ+1)).

– Skip the following changes if Pi ∈ H.
∗ Input Extraction. Let {otri,jγ }j∈[m],γ∈[0,2] be the first round messages sent by Pi.

We run Sim2
S(crsi, tdi, otri,jγ) to recover f i,jγ (x). We then apply the Reed-Solomon

decoding on {f i,j0 (0)}j∈[m] and {f
i,j
1 (0)}j∈[m] to obtain zi0 and zi1 respectively.

• Hybrid5 : Skip this hybrid if P1 ∈ H. In this hybrid, for each i ∈ [3, n] such that Pi ∈ H, we
make the following changes in the generation of the round-1 and round-2 messages:

– Round-1 message:
∗ We sample random bivariate polynomials Si0, Si1, Si2 with degree-λ over GF(2λ).
∗ For each j ∈ [m] and for each γ ∈ [0, 2], let f i,jγ (x) = Siγ(x, j).

∗ For each j ∈ Ji and for each γ ∈ [0, 2], wecompute (otmi,j
γ , µ

i,j
γ) := OT∗1(crsi, f i,jγ (x)).

– Round-2 message:
∗ We choose a random mask maski ← {0, 1}λ.
∗ We resample Si1, Si2 such that for each j ∈ Ji and γ ∈ [1, 2], Siγ(x, j) = f i,jγ (x),
Si1(0, 0) = ziyα⊕r, and S

i
2(0, 0) = maski.

∗ For every j ∈ [m] \ Ji and γ ∈ [1, 2], we reset f i,jγ (x) = Siγ(x, j).

∗ For each j ∈ [m] \ Ji, we choose a random τ i,jb ← {0, 1}∗ and compute otsi,jb :=

OT2(crs2, otrb, f
i,j
1 (0) + f i,j2 (0), f i,j1 (0) + f i,j2 (0); τ i,jb).

∗ We choose a random τ i,j ← {0, 1}∗ and compute otsi,j :=
OT2(crs1, otr, otsi,jα , ots

i,j
α ; τ i,j) for each j ∈ [m] \ Ji.

29

∗ We then choose random τ i,j ← {0, 1}∗ and compute
otsi,j ← OT2(crs1, otr,−f i,j2 (0),−f i,j2 (0); τ i,j) for each j ∈ [m] \ Ji.

• Hybrid6 : Skip this hybrid change if P1 ∈ H. In this hybrid, instead of using the actual
inputs of honest parties to compute the output of the ideal functionality, we query the ideal
functionality on the inputs of the corrupted parties and obtain the output (yα, {ziyα⊕r}i∈[3,n]).
We then use this output to generate the second round messages of the protocol on behalf of
the honest parties. This change is only syntactic and hence, this hybrid is identical to the
previous hybrid.

• Hybrid7 : Skip this hybrid change if P1 ∈ C. In this hybrid, we make the following changes.
For each i ∈ [3, n] such that Pi ∈ C,

– We intercept the message (sender, i, Pi, (si,1, . . . , si,m)) that Pi sends to the F(m,p)-RaOT

functionality.

– We initialize a graph G with the vertex set to be [m] and no edges and perform the same
checks as in the simulation to generate the output of honest P1.

Note that Hybrid7 is identically distributed to EXECF†dSelPri,Sim,Z
.

We now show that for each i ∈ [7], Hybridi
c
≈ Hybridi−1 by giving reductions to the security of

the two-round, malicious-secure oblivious transfer protocol with equivocal receiver security.

Claim 5.4. Hybrid0

s
≈ Hybrid1

Proof. We note that the only difference between Hybrid0 and Hybrid1 is that in some cases Hybrid1

outputs the special symbol error and aborts. We now show that the probability that Hybrid1 outputs
error is at most 2−O(λ).

Pr[Hybrid1 outputs error] = Pr[∃i ∈ [3, n] s.t. Pi ∈ H and |Ji| > λ]

≤ nPr[|Ji| > λ] (By union bound)

= nPr[
∑
j∈[m]

coini,j > λ]

≤ ne−
λ
8 (From Chernoff bounds)

≤ 2−O(λ)

Claim 5.5. Assume the equivocal receiver security and the sender security properties of the oblivious
transfer. Then, Hybrid1

c
≈ Hybrid2.

Proof. We consider two cases depending on whether P1 is honest or not.

• Case-1: P1 ∈ H. Assume for the sake of contradiction that there exists a distinguisherD that
can distinguish between the outputs of Hybrid1 and Hybrid2 with non-negligible advantage. We
will construct an adversary B against the equivocal receiver security property of the oblivious
transfer.

30

B interacts with the challenger for the oblivious transfer protocol and gives α and r as the
challenge choice bits. It receives crs1, the first round messages (otr, otr) and (µ, µ). B uses
crs1 to generate the crs and starts the interaction with A. It sends (otr, otr) as the first round
messages from honest P1. It generates the rest of the first and second round messages from
other honest parties as in Hybrid1. Finally, to compute the output, it uses (α, µ) and (r, µ)
as inputs to the corresponding OT3 executions and generates the output of honest P1 exactly
as in the protocol. It finally runs the distinguisher D on the view of the adversary and the
output of honest P1 and outputs whatever D outputs.

We note that if the messages from the challenger are generated using the real algorithms
then the input to D is generated identically to the output of Hybrid1. Else, the input to D
is distributed identically to the output of Hybrid2. Hence, it follows that B can break the
equivocal receiver security property with non-negligible advantage which is a contradiction.

• Case-2: P1 ∈ C. Assume for the sake of contradiction that there exists a distinguisher D that
can distinguish between the outputs of Hybrid1 and Hybrid2 with non-negligible advantage. We
will construct an adversary B that breaks the sender security of the oblivious transfer. The
description of B is given below.

B interacts with the challenger and gives the following pairs of inputs as the sender challenge
messages. If P2 ∈ H, it sends (y0, µ0) and (y1, µ1) to the challenger. Additionally, for each
i ∈ [3, n] such that Pi ∈ H, it sends {otsi,j0 , otsi,j1 } and (−f i,j2 (0), f i,j1 (0)− f i,j0 (0)− f i,j2 (0)) for
each j ∈ [m]\Ji as the sender challenge messages. It receives crs1 from the challenger and uses
it to generate the crs. B then starts the interaction with A. It generates the round-1 messages
from the other honest parties as in Hybrid1. It receives (otr, otr) from A sent on behalf of the
corrupt P1. If P2 ∈ H, B forwards otr as the first round message sent by corrupt receiver
to the external challenger corresponding to the challenge messages (y0, µ0) and (y1, µ1). For
each i ∈ [3, n] such that Pi ∈ H, B forwards otr as the receiver message corresponding to
the challenge messages {otsi,j0 , otsi,j1 } and otr as the receiver message corresponding to the
challenge messages (−f i,j2 (0), f i,j1 (0) − f i,j0 (0) − f i,j2 (0)) for each j ∈ [m] \ Ji. B receives ots
(if P2 ∈ H) and for each i ∈ [3, n] such that Pi ∈ H and for each j ∈ [m] \ Ji, it obtains
otsi,j , otsi,j from the external challenger. It generates the rest of the second-round messages
sent on behalf of the honest parties as in Hybrid1. At the end, it runs D on the view of A and
outputs whatever it outputs.

Note that if the view generated by the external challenger corresponds to the real world
distribution then the input to D is distributed identically to the output of Hybrid1. Else, it is
distributed identically to the output of Hybrid2. Hence, it follows that B can break the sender
security of the oblivious transfer with non-negligible advantage which is a contradiction.

Claim 5.6. Assume the equivocal receiver security and the sender security properties of the oblivious
transfer. Then, Hybrid2

c
≈ Hybrid3.

Proof. We consider two cases depending on whether P2 is honest or not.

• Case-1: P2 ∈ H. Assume for the sake of contradiction that there exists a distinguisherD that
can distinguish between the outputs of Hybrid2 and Hybrid3 with non-negligible advantage. We

31

will construct an adversary B against the equivocal receiver security property of the oblivious
transfer.

B interacts with the challenger for the oblivious transfer protocol and gives y0 and y1 as the
challenge choice bits. It receives crs2, the first round messages (otr0, otr1) and (µ0, µ1). B uses
crs2 to generate the crs and starts the interaction with A. It sends (otr0, otr1) as the first
round messages from honest P2. It generates the first round messages from the rest of the
honest parties as in Hybrid2. To generate the second round message on behalf of P2, it uses µα
received from the challenger. Specifically, it generates ots← OT2(crs1, otr, (yα, µα), (yα, µα)).
As in the first round, it generates the second round messages from the rest of the honest
parties as in Hybrid2. If P1 ∈ H, it computes the output of P1 as in Hybrid2. It finally runs the
distinguisher D on the view of the adversary and the output of P1 (if P1 ∈ H) and outputs
whatever D outputs.

We note that if the messages from the challenger are generated using the real algorithms
then the input to D is generated identically to the output of Hybrid2. Else, the input to D
is distributed identically to the output of Hybrid3. Hence, it follows that B can break the
equivocal receiver security property with non-negligible advantage which is a contradiction.

• Case-2: P2 ∈ C. Assume for the sake of contradiction that there exists a distinguisher D that
can distinguish between the outputs of Hybrid2 and Hybrid3 with non-negligible advantage. We
now construct an adversary B that breaks the sender security of the oblivious transfer.

B interacts with the challenger and gives the following pairs of inputs as the sender challenge
messages. For each i ∈ [3, n] such that Pi ∈ H and for each b ∈ {0, 1}, it sends {f i,j0 (0) +

f i,j2 (0), f i,j1 (0)+f i,j2 (0)} for each j ∈ [m]\Ji as the challenge messages. It receives crs2 from the
challenger and uses it to generate the crs. B then starts the interaction with A. It generates
the round-1 messages from the other honest parties as in Hybrid2. It receives (otr0, otr1) from
A sent on behalf of the corrupt P2. For each i ∈ [3, n] such that Pi ∈ H and for each b ∈ {0, 1},
B forwards otrb as the first round message sent by corrupt receiver to the external challenger.
For each i ∈ [3, n] such that Pi ∈ H and for each j ∈ [m] \ Ji and b ∈ {0, 1}, B obtains otsi,jb
from the external challenger. It generates the rest of the second-round messages sent on behalf
of the honest parties as in Hybrid2. If P1 ∈ H, it computes the output of P1 as in Hybrid2. At
the end, it runs D on the view of A and the output of P1 (if P1 ∈ H) and outputs whatever
it outputs.

Note that if the view generated by the external challenger corresponds to the real world
distribution then the input to D is distributed identically to the output of Hybrid2. Else, it is
distributed identically to the output of Hybrid3. Hence, it follows that B can break the sender
security of the oblivious transfer with non-negligible advantage which is a contradiction.

Claim 5.7. Assume the equivocal receiver security and the sender security of the oblivious transfer.
Then, Hybrid3

c
≈ Hybrid4.

Proof. We consider a sequence of hybrids Hybrid3 ≡ Hybrid3,2 up to Hybrid3,n ≡ Hybrid4 where in
Hybrid3,i for i ∈ [3, n], we change the distribution of crsk and the first round messages generated
by Pk (if Pk ∈ H) for every k ≤ i. To prove that Hybrid3

c
≈ Hybrid4, it is sufficient to show that

32

for every i ∈ [3, n], Hybrid3,i

c
≈ Hybrid3,i−1. We now show this by considering the cases when Pi is

honest or not.

• Case-1: Pi ∈ C. In the case Pi ∈ C, the only change in Hybrid3,i and in Hybrid3,i−1 is in
how crsi is generated (the input extraction step does not affect the view of the adversary).
Note that in Hybrid3,i−1, crsi is generated as the output of KOT(1λ) whereas in Hybrid3,i, it is
generated as the first component of the output of Sim1

S(1λ). Hence, it follows directly from
the sender security of oblivious transfer that Hybrid3,i

c
≈ Hybrid3,i−1.

• Case-2: Pi ∈ H. In order to show that Hybrid3,i−1

c
≈ Hybrid3,i when Pi ∈ H, we con-

sider an intermediate distribution Hybrid′3,i−1. In this distribution, crsi is generated as the
first component of the output of Sim1

R(1λ) and additionally, otri,jγ is generated as output
of Sim2

R(crsi, tdi) (where tdi is generated by Sim1
R) for each γ ∈ [0, 2]. We can show that

Hybrid3,i−1

c
≈ Hybrid′3,i−1 and Hybrid′3,i−1

c
≈ Hybrid3,i via a reduction to the equivocal receiver

security in a similar manner to the proofs of Claim 5.6 and Claim 5.5.

Claim 5.8. Hybrid4

s
≈ Hybrid5.

Proof. For any i ∈ [3, n], consider any Pi ∈ H. We note that in Hybrid4, the α component of
the sender messages in {otsi,j}j∈[m] constitute a λ-out-of-m secret sharing of the field element
yα(zi1−zi0)+zi0+maski. Similarly, the r component of the sender messages in {otsi,j}j∈[m] constitute
a λ-out-of-m secret sharing of the field element r(zi1 − zi0) − maski. Since |Ji| ≤ λ, it follows from
fact 3.8 that conditioned on the view of the adversary maski is uniformly distributed. Hence,
Hybrid4 is distributed identically to the distribution where α component of the sender messages in
{otsi,j}j∈[m] constitute a λ-out-of-m secret sharing of the field element (yα⊕r)(zi1−zi0)+zi0 +maski

and the r component of the sender messages in {otsi,j}j∈[m] constitute a λ-out-of-m secret sharing
of the field element −maski. Note that this intermediate distribution is identical to Hybrid5 from
Fact 3.8 since |Ji| ≤ λ.

Claim 5.9. Hybrid6

s
≈ Hybrid7

Proof. Consider some i ∈ [3, n] such that Pi ∈ C. We first show that if B output by the 2-
approximation algorithm has size greater than λ, then an honest P1 in Hybrid6 also outputs abort
except with probability 2−O(λ).

Note that if |B| > λ, then the size of the minimum vertex cover for the graph G is of size > λ/2.
This means that the maximum matching in the graph is of size > λ/4. If for at least one edge, (a, b)
of this matching, both sia and sib are non-⊥, then P1 will abort in Hybrid6. For any edge (a, b) in the
matching, the probability that either sia or sib is ⊥ is at most 1− p2. Since p = λ

2m and m = 3λ+ 1,
we have 1

7 < p < 1
6 and so 1− p2 is at most a constant. This event is independent for each edge of

the matching. Thus, for every edge of the matching, the si’s corresponding to at least one of the
vertices are set to ⊥ by the F(m,p)-RaOT functionality is 2−O(λ). Thus, P1 in Hybrid6 outputs abort
except with probability 2−O(λ).

On the other hand, if |B| ≤ λ, it follows from Fact 3.7 and the error correcting properties of the
Reed-Solomon codes that zi0, zi1 extracted by the simulator in Hybrid7 is consistent with the outputs

33

obtained by honest P1 in Hybrid6. Specifically, if yα ⊕ r = 0 then honest P1 in Hybrid6 obtains the
extracted value zi0 (and vice versa). This completes the proof of the claim.

5.2 Conforming Protocols and The Round-collapsing Compiler

The steps 2 and 3 of building a maliciously-secure MPC protocol for a general function require the
usage of a conforming protocol introduced in [GS18]. In this subsection, we recall this notion and
present a slightly modified version given in [GIS18]. Further, these two steps will build upon the
round-collapsing compiler of [GS18] and we give an informal description in this sub-section.

Specification of a Conforming Protocol. Consider an n-party deterministic2 MPC proto-
col Φ between parties P1, . . . , Pn with inputs x1, . . . , xn, respectively computing some function
f(x1, . . . , xn). For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi. A conforming pro-
tocol Φ is defined by functions pre, post, and computations steps or what we call actions φ1, · · ·φT .
The protocol Φ proceeds in three stages: the pre-processing stage, the computation stage and the
output stage.

• Pre-processing phase: For each i ∈ [n], party Pi first samples vi ∈ {0, 1}` (where ` is the
parameter of the protocol) as the output of a randomized function pre(1λ, i) and sets zi as

zi = (xi ⊕ vi[(i− 1)`/n+ 1, (i− 1)`/n+m])‖0`/n−m

where vi[(i − 1)`/n + 1, (i − 1)`/n + m] denotes the bits of the string vi in the positions
[(i − 1)`/n + 1, (i − 1)`/n + m]. Pi retains vi as the secret information and broadcasts zi to
every other party. We require that vi[k] = 0 for all k ∈ [`]\ {(i− 1)`/n+ 1, . . . , i`/n}.3

• Computation phase: For each i ∈ [n], party Pi sets st := (z1‖ · · · ‖zn). Next, for each
t ∈ {1 · · ·T} parties proceed as follows:

1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [`].

2. Party Pi computes one NAND gate as st[h] = NAND
(
st[f]⊕ vi[f], st[g]⊕ vi[g]

)
⊕ vi[h]

and broadcasts st[h] to every other party.

3. Every party Pj for j 6= i updates st[h] to the bit value received from Pi.

We require that for all t, t′ ∈ [T] such that t 6= t′, we have that if φt = (·, ·, ·, h) and φt′ =
(·, ·, ·, h′) then h 6= h′. Also, we denote Ai ⊂ [T] to be the set of rounds in with party Pi sends
a bit. Namely, Ai = {t ∈ T | φt = (i, ·, ·, ·)} .

• Output phase: For each i ∈ [n], party Pi outputs post(st, vi).

We now recall the following theorem proved in [GS18].
2Randomized protocols can be handled by including the randomness used by a party as part of its input.
3Here, we slightly differ from the formulation used in [GS18, GIS18]. In their work, pre is defined to additionally

take xi as input and outputs (zi, vi). However, the transformation from any protocol to a conforming protocol given
in these works has the above structure where the last `/n−m bits of zi are 0 and the first m bits of zi is the XOR
of xi and vi[(i− 1)`/n + 1, (i− 1)`/n + m].

34

Theorem 5.10 ([GS18]). Any MPC protocol Π can be transformed into a conforming protocol Φ
while inheriting the correctness and the security of the original protocol. Furthermore, the post
function of Φ is just a projection function (i.e., it outputs some bits of st)4 and the simulated
message zi (for every honest party) is (ri‖0`/n−m) where ri is a uniformly chosen random string of
length m (independent of other simulated messages).

The High-level Idea of the Round-collapsing Compiler. We first recall the core idea used
in the construction of the round-collapsing compiler of [GS18, GIS18]. In the above mentioned
works, each party runs the pre-processing phase of the conforming protocol to obtain the public
state zi and the private state vi. In simple terms, the public state of any Pi can be viewed as
a large array with the initial positions filled in with the masked input of Pi and the subsequent
positions left empty. Looking ahead, these empty spots would be filled with the bits that are sent
and received during the computation phase of the conforming protocol. The private state, also an
array, contains the masks. The positions in this array that correspond to bits that are revealed to
all parties are set to 0 and the rest are populated with bits that are uniformly picked. At the end of
the pre-processing step, every Pi broadcasts the public state zi, while retaining the private state vi.
The concatenation of the public states generated by all the parties constitutes the joint public state.
In every round of the computation phase of Φ, one position of the joint public state gets updated
based on the bit that is communicated in that round (recall that in each round of Φ, only one party
sends a single bit). The message bit sent by a party in each round is a function of the private state
of the speaker and the joint public state updated until that round. In the two-round protocol, the
round-by-round updates on the public state are emulated via a bunch of garbled circuits (precisely
n garbled circuits, one for each party, corresponding to every round of Φ). All the garbled circuits
that emulate a party’s role in the conforming protocol has that party’s private state hardwired.
The garbled circuit corresponding to party Pi in the rth round takes as input the entire public
state after (r − 1)-th round and outputs the labels for the next garbled circuit that corresponds to
the updated state. When the party Pi is the speaker in the r-th round, this update is local and
hence, the garbled circuit can trivially output the labels corresponding to the updated state. On
the other hand, if Pi is not the speaker, then the garbled circuit can only output the labels for all
the positions in the state except the one that will be updated. The main technical contribution
of the round-squishing technique is to use OTs to release the label for the updated position for a
listening party. We now explain how this is done.

In the compiled protocol, for every bit to be communicated (which is assumed to be an output
of a NAND gate), the speaker party generates 4 OT receiver messages encoding the output of the
NAND gate on all four possible inputs. These messages are broadcasted to the other parties during
the first round of the protocol. The actual receiver OT message which contains the correct bit to
be sent in that round is determined by the updated joint public state until the previous round.
Now, the speaker’s garbled circuit in the r-th round not only outputs the labels corresponding to
the updated state but also outputs the randomness corresponding to one of the four OT receiver
message that contains the correct bit to be sent. On the other hand, the listening garbled circuit
in r-th round outputs the corresponding OT sender message, prepared using the labels (of its next
circuit) for the bit position to be updated in round r. This allows every party to learn the label
for the communicated bit in the listening party’s next garbled circuit. With the above, all that

4We note that this property can be generically added to any conforming protocol by expanding the computation
phase to include more actions.

35

remains is to publish the labels for the first set of GCs corresponding the joint public state. This
would trigger the execution of Φ emulated using garbled circuits. In the compiler of [GS18, GIS18]
this step is done in round 2, since the public state of every party is sent in round-1 and hence,
the labels for the joint state can be made available in round-2. Subsequently, the series of garbled
circuit evaluation and the output computation take place locally at every party’s end.

5.3 Second Step: Special Functionality with Standard Security

In this subsection, we define the n-party version of the double-selection functionality FdSel and give
a three-round protocol for securely realizing this functionality. This protocol makes black-box use
of a two-round malicious-secure OT with equivocal receiver security and is in the F†dSelPri hybrid
model. We give the description of the function FdSel in Figure 5.

FdSel is parameterized by an n-party function dSel whose description follows. dSel receives (α, r) ∈ {0, 1}×
{0, 1} from P1 and (y0, y1) ∈ {0, 1} × {0, 1} from P2. For every 3 ≤ i ≤ n, dSelPri receives (zi0, z

i
1) ∈

{0, 1}λ × {0, 1}λ from Pi. dSel delivers (yα ⊕ r, {ziyα⊕r}3≤i≤n) to every party (and this is where dSelPri
differs from dSel). Let xi be the input of party Pi to dSel (note that xi for different parties maybe of
different lengths) and let S be the adversary. The functionality FdSel proceeds as follows:

1. For each i ∈ [3, n], Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid, Pi, xi) to the function-
ality.

2. If either of P1 or P2 is honest, then for each i ∈ {1, 2}, Pi (and S on behalf of Pi if Pi is corrupted)
sends (input, sid, Pi, xi) to the functionality.

3. If P1 and P2 are both corrupted, S sends (Corrupt, sid, β) where β ∈ {0, 1}.

4. Upon receiving the inputs from all parties, the functionality computes:

out :=

{
(yα ⊕ r, {ziyα⊕r}i∈[3,n]) If P1 or P2 is honest.
(β, {ziβ}i∈[3,n]) If P1 and P2 are corrupt.

5. The functionality delivers (output, sid, out) to S. On receiving (generateOutput, sid) from S, the ideal
functionality delivers (output, sid, Pi, out) to every uncorrupted party Pi. On the other hand, if S sends
(abort, sid), then the functionality sends (output, sid, Pi, abort) to every uncorrupted party Pi. (And
ignores the message if inputs from all parties in {P1, . . . , Pn} have not been received.)

Functionality FdSel

Figure 5: Functionality FdSel

The main theorem we prove in this subsection is:

Theorem 5.11. There exists a three-round protocol ΠdSel that UC-realizes the FdSel functionality.
ΠdSel makes black-box use of a two-round malicious-secure OT with equivocal receiver security in the
F†dSelPri-hybrid model.

Building ΠdSel. To construct ΠdSel, at a high level, we apply the round-collapsing compiler
of [GS18, GIS18] to a conforming protocol that implements a simple two-party functionality cap-
tured by OTplus in the Fκ-LeakyOT-hybrid model (Figure 6). OTplus gets two bits (α, r) from the

36

receiver and two bits (s0, s1) from the sender and delivers (sα⊕ r) to both parties. An information-
theoretic protocol for securely computing the function OTplus in the Fκ-LeakyOT-hybrid model is
guaranteed from an OT combiner protocol [HKN+05, CDFR17] followed by a secure computation
protocol in the OT-hybrid model [Kil88, IKO+11]. Specifically,

Theorem 5.12 ([CDFR17, Kil88, IKO+11]). Let κ = Ω(λ) and consider the Fκ-LeakyOT func-
tionality described in Figure 6. There exists a statistically secure protocol that UC-realizes the
FOTplus functionality making a single call to the Fκ-LeakyOT functionality. Furthermore, the inputs
to Fκ-LeakyOT given by an honest receiver in the above protocol are uniformly chosen (α1, . . . , ακ)
and the inputs given by an honest sender are (∅, {(si0, si1)}i∈[κ]) where {(si0, si1)}i∈[κ] are uniformly
chosen.

Let S be an adversary corrupting at most one among {P1, P2}.

• A party P1 (and S on behalf of P1 if P1 is corrupted) sends (receiver, sid, P1, α1, . . . , ακ).

• Another party P2 (and S on behalf of P2 if P2 is corrupted) sends (sender, sid, P2, (K, {(si0, si1)}i∈[κ])) to
the functionality where K ⊆ [κ] is a set of size at most λ and sib ∈ {0, 1} for each i ∈ [κ] and b ∈ {0, 1}.

• On receiving both these messages, the functionality computes out1 := {(αi, siαi)}i∈[κ] and out2 :=
{αi}i∈K .

• For i ∈ {1, 2}, if Pi is corrupted, the functionality delivers (output, sid, Pi, outi) to S. On re-
ceiving (generateOutput, sid) from S (if either of P1 or P2 is corrupted), the functionality deliv-
ers (output, sid, Pi, outi) to every honest Pi. On the other hand, if S sends (abort, sid), it sends
(output, sid, Pi, abort) to every honest Pi.

Functionality Fκ-LeakyOT

Figure 6: Functionality Fκ-LeakyOT

The above theorem implies that a protocol for realizing FOTplus has the following structure:

• Call to Fκ-LeakyOT functionality. The honest P1 samples uniform bits (α1, . . . , ακ) as
input to the functionality. The honest P2 samples uniform bits {(si0, si1)}i∈[κ] and sends
(∅, {(si0, si1)}i∈[κ]) to the functionality.

• Protocol ΠOTplus. Using the output of Fκ-LeakyOT functionality, P1 and P2 interact with each
other using the statistically-secure protocol ΠOTplus (from Theorem 5.12) that realizes the
FOTplus functionality. In this protocol, P1’s input is given by ((α, r), (s1

α1
, α1), . . . , (sκακ , ακ))

and P2’s input is given by ((y0, y1), (s1
0, s

1
1), . . . , (sκ0 , s

κ
1)) (where (α, r) are the P1’s inputs to

the FOTplus functionality and y0, y1 are P2’s inputs). Without loss of generality, we assume
that the last message from P1 to P2 contains the output of FOTplus.

Let Φ be the conforming protocol obtained as result of the transformation given in Theorem 5.10
to the protocol ΠOTplus. We assume without loss of generality that the input of P1 in Φ is of the
form (siα1

, . . . , siακ , α1, . . . , αk, α, r) and that of P2 is ({si0, si1}i∈[κ], y0, y1). We further assume w.l.o.g.
that at the end of the computation phase of Φ, st[`/2] (for each i ∈ {1, 2}) contains the output of
the protocol (i.e., v1[`/2] = v2[`/2] = 0) and post just outputs this bit. We now present an informal
description of ΠdSel.

37

Informal Description of ΠdSel. As mentioned earlier, ΠdSel is obtained by applying the round-
collapsing compiler of [GS18, GIS18] to the conforming protocol Φ using Π†dSelPri to implement the
double-selection functionality. However, the main challenge is that Π†dSelPri suffers from an input-
dependent abort issue and we need a mechanism to overcome this. Towards this goal, in ΠdSel, we
run κ copies of F†dSelPri with the input of P1 in the k-th copy being {αk, v1[k]}k∈[κ] (where v1 is the
private state of P1 as per the round-collapsing compiler and αk is uniformly chosen), the input of
P2 being a random pair of bits (sk0, s

k
1) and the inputs for the rest of parties being equal to a pair

of secret keys for a SKE scheme (the role of these keys will be clear soon). These κ-executions of
Π†dSelPri lead to P1 and P2 sharing κ-random OT correlations. It is these κ-random OT correlations
that serve as the input and output of the leaky OT functionality. Specifically, as argued in the
proof, we show that a corrupt P2 cannot guess more than λ among (α1, . . . , ακ) without triggering
an abort by an honest P1 with overwhelming probability. In other words, the size of the set K that
a corrupt P2 sends to the Fκ-LeakyOT functionality is at most λ. This allows us to use the security
of the conforming protocol Φ to argue the security of the round-collapsed protocol.

Having defined the inputs to Φ, we now discuss how the labels corresponding to the initial public
joint state for every party’s garbled circuit are made available in 3 rounds. Note that the part of the
public state that corresponds to the OT correlation given to P1 is revealed to P1 only by the end of
round-2 by the Π†dSelPri-functionality. Thus, P1 can send its labels corresponding to the joint public
state in round-3. However, this poses a challenge for the other parties as they do not learn this
value by the beginning of round-3. This is where we use the secret keys used in the calls to F†dSelPri.
Recall that P1 gets Pj ’s secret key corresponding to the bit skαk ⊕ v1[k] from F†dSelPri functionality
at the end of round-2. In round-3, P1 sends this secret key and Pj sends a pair of encryptions,
encrypting b-th label under b-th key for b ∈ {0, 1}. Putting these two things together, all parties
can recover the label for Pj ’s circuit corresponding to the bit skαk ⊕ v1[k]. This way all the parties
obtain the labels for the inital joint public state for the first set of garbled circuits. This will trigger
evaluation of the bunch of circuits emulating Φ.

The garbled circuits generated by P1 and P2 will perform the interaction as dictated by the
protocol Φ while the garbled circuits generated by all other parties will listen to this interaction.
By the virtue of listening to this interaction, the last garbled circuit of every party in {P3, . . . , Pn}
will output the labels for st that has (sα⊕r) at the position `/2. We now introduce another layer of
garbled circuits for only P3 to Pn that take the labels for st, hard-wires zi0, zi1 and outputs zist[`/2] if
st does not indicate an abort of P1 or P2. Without loss of generality, we can assume that st contains
this information on abort. 5

Lastly, in the formal description, we consider the F†dSelPri functionality instantiated with n + 1
parties with party P2 additionally playing the role of Pn+1. Specifically, the inputs of party P2

includes (y0, y1) as well as (z2
0 , z

2
1). We give the description of the first three rounds of the protocol

ΠdSel in the F†dSelPri-hybrid model in Figure 7.

Inputs: P1 inputs (α, r) ∈ {0, 1} × {0, 1}, P2 inputs (y0, y1) ∈ {0, 1} × {0, 1}. For every 3 ≤ i ≤ n, Pi

Protocol ΠdSel

5To tackle a malicious behaviour of Pi, we make them commit to zi0, z
i
1 via OT receiver messages in the first round

and reveal the opening information via the garbled circuit.

38

inputs (zi0, z
i
1) ∈ {0, 1}λ × {0, 1}λ.

Output: Every party outputs (yα ⊕ r, {ziyα⊕r}3≤i≤n) and the other parties do not get any outputs.

Primitives and Functionalities: (a) A malicious-secure, two-round OT with equivocal receiver security
defined by (KOT,OT1,OT2,OT3) (see Section 3.3). We use OT∗1 to denote an algorithm that takes a
crs and q(λ)-bit string (for some polynomial q(·)) as input and applies OT1 to each bit of that string.
(b) Functionality F†dSelPri. (c) The conforming protocol Φ obtained as a result of the transformation
in Theorem 5.10 to ΠOTplus as discussed. (d) Garbling scheme (Garble,Eval) (see Section 3.2) (e) A
symmetric-key Encryption Scheme (Gen,Enc,Dec).

Common Random/Reference String: For each i ∈ [n], sample crsi ← KOT(1λ) and output {crsi}i∈[n]
as the common random/reference string.

Round-1: In the first round,

• Parties P1 and P2 run pre(1λ, 1) and pre(1λ, 2) to get v1 and v2 respectively. For each i ∈ [3, n],
Pi sets vi = 0`.

• P1 chooses κ random bits α1, . . . , ακ and P2 chooses random pairs of bits (sk0 , s
k
1) for each k ∈ [κ].

• For each i ∈ [2, n] and for each k ∈ [κ], Pi chooses two random secret keys (ski,k0 , ski,k1) using
Gen(1λ).

• For each k ∈ [κ], P1 sends (input, k, P1, (αk, v1[k])), P2 sends (input, k, P2, (s
k
0 , s

k
1)) and for each

i ∈ [2, n], Pi sends (input, k, Pi, (sk
i,k
0 , ski,k1)) to F†dSelPri.

• For each i ∈ [3, n], for each b ∈ {0, 1}, Pi computes (otrib, µ
i
b)← OT∗1(crsi, zib).

• For each i ∈ [3, n], Pi broadcasts {otrib}b∈{0,1} to every other party.

Round-2: In the second round,

• P1 sets xpart1 := (α1, . . . , ακ, α, r) and P2 sets x2 := ({sk0 , sk1}k∈[κ], y0, y1).

• P1 and P2 respectively set zpart1 := (xpart1 ⊕ v1[κ+ 1, 2κ+ 2])‖0`/2−(2κ+2) and z2 := (x2⊕ v2[`/2 +
1, `/2 + 2κ+ 2])‖0`/2−(2κ+2).

• For each i ∈ {1, 2} and for each t such that φt = (i, f, g, h) (Ai is the set of such values of t), for
each α, β ∈ {0, 1}, Pi computes: (otri,t,α,β , µi,t,α,β)← OT1(crsi, vi[h]⊕NAND(vi[f]⊕α, vi[g]⊕β)).

• P1 broadcasts
(
zpart1 , {otri,t,α,β}t∈A1,α,β∈{0,1}

)
and P2 broadcasts

(
z2, {otri,t,α,β}t∈A2,α,β∈{0,1}

)
to

every other party.

Round-3: In the final round, each party Pi does the following:

• If i = 1, P1 receives for each k ∈ [κ], (output, k, P1, (x1[k], {ski,kx1[k]⊕v1[k]}i∈[2,n])) from F†dSelPri
where x1[k] = skαk .

a

• Pi sets st := 0κ‖
(
zpart1 ‖z2

)
.

• If i ∈ [3, n], Pi computes (C̃hkC
i
, labi,T+1)← Garble(1λ,ChkCi[{zib, µib}b∈{0,1}]).

• If i ∈ {1, 2}, Pi sets labi,T+1 = {⊥,⊥}k∈[`].
• for each t from T down to 1,

1. Parse φt as (i∗, f, g, h).
2. If i = i∗ then it computes (where Ci,t is described in Figure 9)

(
C̃i,t, labi,t

)
←

Garble(1λ, Ci,t[vi, {µi,t,α,β}α,β ,⊥, labi,t+1]).

39

3. If i 6= i∗ then for every α, β ∈ {0, 1}, it sets otsi∗,t,α,β ← OT2(crsi
∗
, otri

∗,t,α,β , labi,t+1
h,0 , labi,t+1

h,1)

and computes
(
C̃i,t, labi,t

)
← Garble(1λ, Ci,t[vi,⊥, {otsi

∗,t,α,β}α,β , labi,t+1]).

• Each Pi sends
(
{C̃i,t}t∈[T],{labi,1k,st[k]}k∈[κ+1,`]

)
to every other party and if i ∈ [3, n], it also sends

C̃hkC
i
. In addition, P1 sends

{
lab1,1k,x1[k]⊕v1[k], x1[k]⊕v1[k], {ski,kx1[k]⊕v1[k]}i∈[2,n]

}
k∈[κ]

and for each

i ∈ [2, n], Pi sends {Enc(ski,k0 , labi,1k,0),Enc(ski,k1 , labi,1k,1)}k∈[κ].

Output. Each party Pi does the following:

• It sets st[k] = x1[k]⊕ v1[k] for each k ∈ [κ] receiving the value from P1’s broadcast.

• For each j ∈ [2, n] and k ∈ [κ], it recovers labj,1k,st[k] ← Dec(skj,kst[k],Enc(sk
i,k
st[k], lab

i,1
k,st[k])).

• Let l̃ab
1,1

:=
{
{lab1,1k,x1[k]⊕v1[k]}k∈[κ], {lab

1,1
k,st[k]}k∈[κ+1,`]

}
.

• For each j ∈ [2, n], let l̃ab
j,1

:= {labj,1k,st[k]}k∈[`].

• for each t from 1 to T do:

1. Parse φt as (i∗, f, g, h).

2. Compute ((α, β, γ), µ, l̃ab
i∗,t+1

) := Eval(C̃i
∗,t, l̃ab

i∗,t
).

3. Set st[h] := γ.
4. for each j 6= i∗ do:

(a) Compute (ots, {labj,t+1
k }k∈[`]\{h}) := Eval(C̃j,t, l̃ab

j,t
).

(b) Recover labj,t+1
h := OT3(crsi

∗
, ots, (γ, µ)).

(c) Set l̃ab
j,t+1

:= {labj,t+1
k }k∈[`].

• For each j ∈ [3, n],

– Compute (zj , µj) := Eval(C̃hkC
j
, l̃ab

j,T+1
)

– Run CheckValid(crsj , otrjst[`/2], (z
j , µj)).

• If any of runs of the CheckValid algorithm outputs 0 then abort. Otherwise, output
(st[`/2], {zjst[`/2]}j∈[3,n]).

aNote that this message is received in the end of round-2, since Π†dSelPri is a 2-round protocol.

Figure 7: Protocol ΠdSel

Input. st

Hard-coded Information. vi, {µi,t,α,β}α,β , {otst,α,β}α,β and lab = {labk,0, labk,1}k∈[`].

• Let φt = (i∗, f, g, h).

• if i = i∗ then:

– Compute st[h] := NAND(st[f]⊕ vi[f], st[g]⊕ vi[g])⊕ vi[h].

Circuit Ci,t

40

– Output ((st[f], st[g], st[h]), µi,t,st[f],st[g], {labk,st[k]}k∈[`]).

• else:

– Output (otsi
∗,t,st[f],st[g], {labk,st[k]}k∈[`]\{h}).

Figure 8: Circuit Ci,t

Input. st

Hard-coded Information. {zib, µib}b∈{0,1}.

• Check from st if P1 or P2 have not aborted. We assume w.l.o.g. that this information is public from st.

• If no abort occurs, then output zist[`/2], µ
i
st[`/2]. Otherwise, output ⊥.

Circuit ChkCi

Figure 9: Circuit ChkCi

Lemma 5.13. Let A be an (possibly malicious) adversary corrupting an arbitrary subset of parties
in the protocol ΠdSel. There exists a simulator Sim such that for any environment Z,

EXECFdSel,Sim,Z
c
≈ EXECΠdSel,A,Z

Proof. Let C ⊂ {P1, . . . , Pn} be the set of parties corrupted by A and let H = {P1, . . . , Pn} \ C
denote the set of honest parties. Since we assume that A is static, the set of corrupted parties C is
decided before the beginning of the protocol. We now give the description of the ideal world simula-
tor Sim. Sim internally uses the simulators (SimR, SimS) of the oblivious transfer (see Section 3.3),
SimΦ of the conforming protocol Φ, and the simulator for garbled circuit SimGC.

Interaction with environment Z. For every input value corresponding to the set of corrupted
parties C that Sim receives from the environment Z, Sim writes this value to A’s input tape.
Similarly, the contents of A’s output tape is written to Sim’s output tape. We now describe how
Sim simulates the interaction of honest parties with A.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

Common Random/Reference String Generation: Sim generates the crs as follows:

• For each i ∈ [n], if Pi ∈ C, then Sim samples (crsi, tdi)← Sim1
S(1λ). Else, it samples

(crsi, tdi)← Sim1
R(1λ).

• Sim sets the crs to be (crs1, . . . , crsn).

41

Round-1 message from Sim to A. To generate the round-1 message, Sim does the following:

• For each i ∈ [3, n], if Pi ∈ H, for each b ∈ {0, 1}, Sim computes
(otrib, {µ

i,k
b,0, µ

i,k
b,1}k∈[λ])← Sim2

R(crsi, tdi).6

• Sim sends the first round messages on behalf of the honest parties to A.

Round-2 message from Sim to A. For each i ∈ {1, 2} such that Pi ∈ H, Sim does the
following:

• It sets zi := ri‖0`/2−(2κ+2) where ri is chosen uniformly from {0, 1}2κ+2.

• If i = 1, it sets zpart1 = z1[κ+ 1, `/2].

• For each t ∈ Ai and for each α, β ∈ {0, 1}, it generates
(otri,t,α,β, µi,t,α,β0 , µi,t,α,β1)← Sim2

R(crsi, tdi).

• Sim sends the second round message on behalf of the honest parties to A.

Extraction and Faithful execution. Sim does the following:

• Computing z1 if P1 ∈ C:

– Sim intercepts the message (input, k, P1, (αk, v1[k])) that A sends to F†dSelPri for each
k ∈ [κ].

– If P2 ∈ C, Sim intercepts the message (input, k, P2, (s
k
0, s

k
1)) that A sends to F†dSelPri for

each k ∈ [κ].

– If P2 ∈ H, Sim chooses a uniform random bit skαk for each k ∈ [κ].

– Sim sets z1 := (s1
α1
⊕ v1[1], . . . , sκακ ⊕ v1[κ])‖zpart1 .

• Extraction.

– For each i ∈ {1, 2} such that Pi ∈ C and for each t ∈ Ai, α, β ∈ {0, 1}, Sim computes
bi,t,α,β = Sim2

S(crsi, tdi, otri,t,α,β).

– Additionally, for each i ∈ [3, n] such that Pi ∈ C and for each b ∈ {0, 1}, Sim computes
zib := Sim2

S(crsi, tdi, otrib). It sends (input, sid, Pi, (zi0, z
i
1)) to the ideal functionality on

behalf of corrupt Pi.

• Faithful Interaction. We define an interactive procedure
Faithful(i, {zi}i∈{1,2}, {bi,t,α,β}t∈Ai,α,β) that on input i ∈ {1, 2}, {zi}i∈{1,2},
{bi,t,α,β}t∈Ai,α,β∈{0,1} (z1 as extracted above and z2 as received from P2 in a round-2
broadcast) produces protocol Φ message on behalf of party Pi (acting consistently/faithfully
with the extracted values) as follows:

– Set st∗ := z1‖ . . . ‖zn.
– For t ∈ {1 · · ·T}

6Here, we slightly abuse the notation and use Sim2
R to compute the output of OT∗1.

42

∗ Parse φt = (i∗, f, g, h).
∗ If i 6= i∗ then it waits for a bit from Pi∗ and sets st∗[h] to be the received bit once it

is received.
∗ Set st∗[h] := bi

∗,t,st∗[f],st∗[g] and output it to all the other parties.

• If P1 and P2 are in C.

– Sim obtains the transcript Z of Φ by implementing the messages sent by corrupt Pi for
i ∈ {1, 2} using Faithful(i, {zi}i∈[2], {bi,t,α,β}t∈Ai,α,β).

– Let st∗T be the state at the end of the faithful execution of one of the corrupt parties (this
value is the same for all corrupt parties). It sends (Corrupt, sid, δ := st∗T [`/2]) to the ideal
functionality.

– Sim receives (δ, {ziδ}i∈[3,n]) from the ideal functionality.
– OT Receiver Equivocation for the inputs of honest Pi for i ∈ [3, n]. For each
i ∈ [3, n] such that Pi ∈ H, Sim sets µi := {µi,k

δ,ziδ[k]
}k∈[λ]. This step ensures that corrupt

P1 finds the correct {ziδ}i∈[3,n] via the last layer of garbled circuits.

Round-3 message from Sim to A. To generate the round-3 message Sim does the following:

• Initialize aux = ⊥. Here, aux is used to denote the inputs and outputs of A implicitly gives
to the Fκ-LeakyOT-functionality when interacting with an honest party.

• Updating the value of aux.

– If P1 ∈ H and P2 ∈ C.
∗ For each k ∈ [κ], it intercepts the message (input, k, P2, (s

i
0, s

i
1)) that A sends on

behalf of corrupt P2 to F†dSelPri.
∗ For each k ∈ [κ], Sim additionally intercepts the message (predicate, k,EQβk) that A

might send to the F†dSelPri functionality. If the number of such k for which A sends
this message is greater than λ, then Sim sends (abort, sid) to the functionality FdSel.
∗ On the other hand, if the number of such k for which A sends this message is less

than or equal to λ, Sim does the following:
· Let K be the subset of [κ] such that A sends the message (predicate, k,EQβk).
· For every k ∈ K, it chooses a uniform bit αk.
· If for any such k, αk = βk then, Sim sends (abort, sid) to the functionality FdSel.
· Else, it sets aux := (K, {αk}k∈K , {(si0, si1)}i∈[κ]).

– If P1 ∈ C and P2 ∈ H.

∗ Sim sets aux := {(αk, skαk)}k∈[κ] where skαk was the bit that was randomly chosen
while computing z1.

• If P1 or P2 is in H.

– For each i ∈ {1, 2} such that Pi ∈ C, Sim sends zi to SimΦ on behalf of the corrupted
party Pi. It also initializes SimΦ with the value aux. This starts the computation phase
of Φ with the simulator SimΦ .

43

– Sim provides computation phase messages from corrupted parties to SimΦ by fol-
lowing a faithful execution. More formally, for every corrupted party Pi where
i ∈ {1, 2}, Sim generates messages on behalf of Pi for SimΦ using the procedure
Faithful(i, {zi}i∈[2], {bi,t,α,β}t∈Ai,α,β).

– At some point during the execution, SimΦ will return the extracted inputs {xi}i∈C∩{P1,P2}
of the corrupted parties. For each i ∈ C ∩ {P1, P2}, Sim sends (input, sid, Pi, xi) to the
ideal functionality and obtains the output (δ := yα ⊕ r, {ziδ}i∈[3,n]). It sends δ as the
output to SimΦ. SimΦ completes the rest of the execution of the protocol.

– Let Z ∈ {0, 1}t where Zt is the bit sent in the tth round of the computation phase of Φ be
output of this execution. And let st∗T be the state value at the end of faithful execution
of one of the corrupted parties (this value is the same for all the parties). Also, set
for each t ∈ ∪i∈H∩{P1,P2}Ai and α, β ∈ {0, 1} set µi,t,α,β := µi,t,α,βZt

. The last step here
corresponds to OT receiver equivocation so that the bit opened in tth round is as per
the simulation of Φ with SimΦ.

– For each i ∈ [3, n] such that Pi ∈ H, Sim sets µi := {µi,k
δ,ziδ[k]

}k∈[λ].

• For each i ∈ [2, n], if Pi ∈ H, Sim chooses ski,k uniformly from Gen(1λ). For each i ∈ [2, n],
if Pi ∈ C, then Sim intercepts the message (input, k, Pi, (sk

i,k
0 , ski,k1)) that A sends to F†dSelPri

for each k ∈ [κ] and sets ski,k := ski,kz1[k]. If P1 ∈ C, it delivers (output, k, (z1[k], {ski,k}i∈[2,n])

for each k ∈ [κ].

• For each i ∈ [n] such that Pi ∈ H, Sim does the following:

– If i ∈ [3, n], it computes
(
C̃hkC

i
, {labi,T+1

k }k∈[`]

)
← SimGC(1λ, 1|ChkC

i|, 1`, outi) where outi
is ⊥ if st∗T leads to an abort of either P1 or P2 and is otherwise, equals to (ziδ, µ

i).

– If i ∈ {1, 2}, it sets labi,T+1
k = ⊥ for every k ∈ [`].

– for each t from T down to 1,

∗ Parse φt as (i∗, f, g, h).
∗ Set α∗ := st∗T [f], β∗ := st∗T [g], and γ∗T := st∗[h].
∗ If i = i∗ then computes(

C̃i,t, {labi,tk }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(

(α∗, β∗, γ∗), µi,t,α
∗,β∗ , {labi,t+1

k }k∈[`]

))
.

∗ If i 6= i∗ then set otsi∗,t,α∗,β∗ ← OT2(crsi
∗
, otri

∗,t,α∗,β∗ , labi,t+1
h , labi,t+1

h) and computes(
C̃i,t, {labi,tk }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(
otsi

∗,t,α∗,β∗ , {labi,t+1
k }k∈[`]\{h}

))
.

– It sends
(
{C̃i,t}t∈[T],{lab

i,1
k }k∈[κ+1,`]

)
to A. If i ∈ [3, n], then Sim sends C̃hkC

i
.

– If i = 1, Sim additionally sends ({lab1,1
k , z1[k], ski,k}k∈[κ]). Else, Sim chooses a uni-

form key ski,k using Gen(1λ) and sets ski,kz1[k] = ski,k and ski,k1−z1[k] = sk
i,k. Sim sends

{Enc(ski,k0 , labi,1k),Enc(ski,k1 , labi,1k)}k∈[κ].

44

Output Computation. For every i ∈ [n] \ H, Sim obtains the second round message from
A on behalf of the malicious parties. Subsequent to obtaining these messages, Sim uses the honest
output computing procedure to see if the execution of garbled circuits proceeds consistently with
the expected faithful execution. If the computation succeeds then, Sim sends (generateOutput, sid)
to the ideal functionality. Otherwise, it sends (abort, sid).

Proof of Indistinguishability. We now show that the real execution and the simulated execution
are computationally indistinguishable via a hybrid argument.

• Hybrid0 : This corresponds to the view of the adversary and the output of the honest parties
in the real execution of the protocol.

• Hybrid1 : In this hybrid, we make the following changes:

– CRS Generation. For each i ∈ [3, n], if Pi ∈ H, we sample (crsi, tdi)← Sim1
R(1λ) and

if Pi ∈ C, we sample (crsi, tdi) ← Sim1
S(1λ). We use the above sampled crsi to generate

the crs.

– Round-1 message from honest Pi where i ∈ [3, n]. For every i ∈ [3, n] such that Pi
is honest and for each b ∈ {0, 1}, we compute (otrib, {µ

i,k
b,0, µ

i,k
b,1}k∈[λ])← Sim2

R(crsi, tdi).

– Input Extraction. For each i ∈ [3, n] such that Pi ∈ C and for each b ∈ {0, 1},
we compute zib := Sim2

S(crsi, tdi, otrib). For every i ∈ [3, n] such that Pi ∈ C, we send
(input, sid, Pi, (zi0, z

i
1)) to the ideal functionality.

• Hybrid2 : In this hybrid, we make the following changes:

– CRS Generation. For each i ∈ {1, 2} such that Pi ∈ C, we sample (crsi, tdi) ←
Sim1

S(1λ). We use the sampled crsi to generate the crs.

– Input Extraction. For each i ∈ {1, 2} such that Pi ∈ C and for each t ∈ Ai, α, β ∈
{0, 1}, we compute bi,t,αβ = Sim2

S(crsi, tdi, otri,t,α,β).

– Round-3 message from honest Pi where i ∈ [n]. For each t ∈ [T],

∗ Let φt = (i∗, f, g, h).
∗ For each i 6∈ [n] \ {i∗} such that Pi ∈ H, compute for each α, β ∈ {0, 1},
otsi,t,α,β ← OT2(crsi

∗
, otri

∗,t,α,β, labi,t
bi∗,t,α,β

, labi,t
bi∗,t,α,β

). Here, if Pi∗ ∈ C, then bi∗,t,α,β

is the extracted value. Otherwise, if Pi∗ ∈ H, then bi∗,t,α,β = vi∗ [h]⊕NAND(vi∗ [f]⊕
α, vi∗ [g]⊕ β).

• Hybrid3 : In this hybrid, we make the following changes:

– CRS Generation. For each i ∈ {1, 2}, if Pi ∈ H, sample (crsi, tdi) ← Sim1
R(1λ) and

use crsi to generate the crs.

– Round-2 message: For each i ∈ {1, 2}, if Pi ∈ H, and for each t ∈ Ai and α, β ∈ {0, 1},
generate (otri,t,α,β, µi,t,α,β0 , µi,t,α,β1)← Sim2

R(crsi, tdi).

• Hybrid4 : In this hybrid, we make the following changes:

– Computing z1 when P1 ∈ C. Skip the following changes if P1 ∈ H.

45

∗ We intercept the message (input, k, P1, (αk, v1[k])) that A sends to F†dSelPri for each
k ∈ [κ].
∗ If P2 ∈ C, we intercept the message (input, k, P2, (s

k
0, s

k
1)) that A sends to F†dSelPri

for each k ∈ [κ].
∗ If P2 ∈ H, we choose a uniform random bit skαk for each k ∈ [κ].
∗ We set z1 := (s1

α1
⊕ v1[1], . . . , sκακ ⊕ v1[κ])‖zpart1 .

– Skip the following changes if either of P1 or P2 is in H.

∗ We obtain the transcript Z of Φ by implementing the messages sent by corrupt Pi
for i ∈ {1, 2} using Faithful(i, {zi}i∈[2], {bi,t,α,β}t∈Ai,α,β) (where z1 as extracted above
and z2 as received from P2 in a round-2 broadcast).
∗ Let st∗T be the state at the end of the faithful execution of one of the corrupt parties

(this value is the same for all corrupt parties). We send (Corrupt, sid, δ := st∗T [`/2])
to the ideal functionality.
∗ We receive (δ, {ziδ}i∈[3,n]) from the ideal functionality.

∗ For each i ∈ [3, n] such that Pi ∈ H, we set µi := {µi,k
δ,ziδ[k]

} for each k ∈ [λ].

• Hybrid5 : Skip this hybrid if (P1, P2) ∈ H ×H or if (P1, P2) ∈ C ×C. In this hybrid, we make
the following changes.

– Initialize aux = ⊥.
– If P1 ∈ H and P2 ∈ C.
∗ For each k ∈ [κ], we intercept the message (input, k, P2, (s

i
0, s

i
1)) that A sends on

behalf of corrupt P2 to F†dSelPri.
∗ For each k ∈ [κ], we intercept the message (predicate, k,EQβk) that A might send to

the F†dSelPri functionality. If the number of such k for which A sends this message is
greater than λ, then we send (abort, sid) to the functionality FdSel.
∗ On the other hand, if the number of such k for which A sends this message is less

than or equal to λ, we do the following:
· Let K be the subset of [κ] such that A sends the message (predicate, k,EQβk).
· For every k ∈ K, we choose a uniform bit αk.
· If for any such k, αk = βk then, we send (abort, sid) to the functionality FdSel.
· Else, we set aux := (K, {αk}k∈K , {(si0, si1)}i∈[κ]).

∗ If we have not yet sent the abort message then for every k 6∈ K, we use the honest
P ′1s randomness to choose a uniform bit αk and set z1 := (s1

α1
⊕ v1[1], . . . , sκακ ⊕

v1[κ])‖zpart1 .

– If P1 ∈ C and P2 ∈ H.

∗ We set aux := {(αk, skαk)}k∈[κ] where skαk was the bit that was randomly chosen while
computing z1.

• Hybrid6 : In this hybrid, we make the following changes:

– If both P1 and P2 are honest, then compute z1 using the honest P1 and P2’s randomness.

46

– For each i ∈ [2, n], if Pi ∈ C, we intercept the message (input, k, Pi, (sk
i,k
0 , ski,k1)) that A

sends to F†dSelPri for each k ∈ [κ]. For each i ∈ [2, n], if Pi ∈ H, then we choose ski,k0 , ski,k1

as the output of Gen(1λ). We set ski,k := ski,kz1[k]. If P1 ∈ C, for each k ∈ [κ], we deliver

(output, k, (z1[k], {ski,k}i∈[2,n]) as the output from F†dSelPri.

– For each i ∈ [2, n], if Pi ∈ H, we send {(Enc(ski,k0 , labi,1k,z1[k]),Enc(sk
i,k
1 , labi,1k,z1[k]))}k∈[κ] in

round-3.

• Hybrid6+t for t ∈ [0, T]. This distribution is the same as hybrid Hybrid6+t−1 except we change
the distribution of the garbled circuits (in the third round) that play a role in the execution of
the tth round of the protocol Φ; namely, the action φt = (i∗, f, g, h). We describe the changes
more formally below.

– Skip the following change if both P1 and P2 are corrupted. In this hybrid, we complete
the execution of Φ using honest party inputs and randomness. In this execution, the
messages on behalf of corrupted parties are generated via faithful execution. Specifically,
we send {zi}i∈{P1,P2}∩C to the honest parties on behalf of the corrupted party Pi in this
mental execution of Φ. This starts the computation phase of Φ. In this computation
phase, we generate the honest party messages using the inputs and random coins of the
honest parties and generate the messages of the each malicious party Pi by executing
Faithful

(
i, {zi}i∈{1,2}, {bi,t,α,β}t∈Ai,α,β

)
.

– Let Z ∈ {0, 1}T be the transcript obtained using the above step if either of P1 or P2

is honest. Otherwise, let Z be the transcript obtained as in Hybrid4. Let st∗T be the
local state of one of the corrupted party the end of faithful execution and let st∗t be the
joint public state at the end of the t-th round of the computation phase. Finally, let
α∗ := st∗T [f], β∗ := st∗T [g] and γ∗ := st∗T [h]. In Hybrid6+t we make the following changes
with respect to hybrid Hybrid6+t−1:

∗ We make the following two changes in how we generate messages for other honest
parties Pi (i.e., Pi ∈ H \ {Pi∗}). We do not generate four otsi,t,α,β values but just
one of them; namely, we generate otsi,t,α∗,β∗ as OT2(crsi

∗
, otri,t,α

∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

).
Second, we generate the garbled circuit(

C̃i,t, {labi,tk }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(
otsi,t,α

∗,β∗ , {labi,t+1
k,st∗t [k]}k∈[`]\{h}

))
,

where {labi,t+1
k,st∗t [k]}k∈[`] are the honestly generated input labels for the garbled circuit

C̃i,t+1 (for any t + 1 ≤ T) and for t = T , {labi,T+1
k,st∗T [k]}k∈[`] are computed as per the

protocol specification.
∗ If Pi∗ ∈ C then skip these changes. We make two changes in how we generate

messages on behalf of Pi∗ . First, for all α, β ∈ {0, 1}, we set µi∗,t,α∗,β∗ as µi
∗,t,α∗,β∗

Zt

rather than µi
∗,t,α∗,β∗

vi∗ [h]⊕NAND(vi∗ [f]⊕α∗,vi∗ [g]⊕β∗) (note that these two values are the same
when using the honest party’s input and randomness). Second, it generates the
garbled circuit(
C̃i
∗,t, {labi

∗,t
k }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(

(α∗, β∗, γ∗), µi
∗,t,α∗,β∗ , {labi

∗,t+1
k,st∗t [k]}k∈[`]

))
,

47

where {labi
∗,t+1
k,st∗t [k]}k∈[`] are the honestly generated input labels for the garbled circuit

C̃i
∗,t+1 (for any t + 1 ≤ T) and for t = T , {labi

∗,T+1
k,st∗T [k]}k∈[`] are computed as per the

protocol specification.

• Hybrid7+T : In this hybrid, for each i ∈ [3, n] such that Pi ∈ H, we compute(
C̃hkC

i
, {labi,T+1

k }k∈[`]

)
← SimGC(1λ, 1|ChkC

i|, 1`, outi) where outi is ⊥ is st∗T leads to an abort
of either P1 or P2 and is otherwise, equal to (ziδ, µ

i).

• Hybrid8+T : In this hybrid, we modify the output phase of the computation to execute the
garbled circuits provided by A on behalf of the corrupted parties and see if the execution of
garbled circuits proceeds consistently with the transcript Z. If the computation succeeds then
for each Pi ∈ H, we instruct the parties to output the result of the output computation phase;
else, we instruct them to output ⊥. This hybrid is computationally indistinguishable to the
previous hybrid from the authenticity of input labels property of garbled circuits.

• Hybrid9+T : Skip this hybrid change if P1 and P2 are in C. In this hybrid, we just change
how the transcript Z, {zi}i∈H∩{P1,P2}, and the value st∗T are generated. Instead of generating
these using honest party inputs in execution with a faithful execution of Φ, we generate it
via the simulator SimΦ (of the maliciously secure protocol Φ) with aux as additional input.
Specifically, we generate zi as (ri‖0`/2−(2κ+2)) where ri is uniformly chosen random string
of length 2κ + 2 for each Pi ∈ H s.t. i ∈ {1, 2}. To generate the transcript, we execute
the simulator SimΦ where messages on behalf of each corrupted party Pi are generated using
Faithful(i, {zi}i∈[n]\H , {bi,t,α,β}t∈Ai,α,β). (Note that SimΦ might rewind Faithful. This can
be achieved since Faithful is just a polynomial time interactive procedure that can also be
rewound.). Note that the value aux contains the inputs and the outputs of the adversary
(corrupting either P1 or P2 in the protocol Φ) that is implicitly given to the Fκ-LeakyOT

functionality. It now follows from the statistical security of Φ that Hybrid8+T is statistically
close to Hybrid9+T .

We note that Hybrid9+T is identically distributed to EXECFdSel,Sim,Z .

We now show that for each i ∈ [9 + T], either Hybridi
c
≈ Hybridi−1, or Hybridi

s
≈ Hybridi−1 or

Hybridi ≡ Hybridi−1.

Claim 5.14. Assuming the equivocal receiver security and the sender security of the oblivious trans-
fer, we have Hybrid1

c
≈ Hybrid0.

Proof. We consider a sequence of hybrids Hybrid0 ≡ Hybrid0,2 up to Hybrid0,n ≡ Hybrid1 where in
Hybrid0,i for i ∈ [3, n], we change the distribution of crsk and the first round messages generated by
Pk (if Pk ∈ H) for every k ≤ i as in Hybrid1. To prove that Hybrid0

c
≈ Hybrid1, it is sufficient to

show that for every i ∈ [3, n], Hybrid0,i

c
≈ Hybrid0,i−1. We now show this by considering the cases

when Pi is honest or not.

• Case-1: Pi ∈ C. In the case Pi ∈ C, the only change in Hybrid0,i and in Hybrid0,i−1 is in
how crsi is generated (the input extraction step does not affect the view of the adversary).
Note that in Hybrid0,i−1, crsi is generated as the output of KOT(1λ) whereas in Hybrid0,i, it is

48

generated as the first component of the output of Sim1
S(1λ). Hence, it follows directly from

the sender security of oblivious transfer that Hybrid0,i

c
≈ Hybrid0,i−1.

• Case-2: Pi ∈ H. In order to show that Hybrid0,i−1

c
≈ Hybrid0,i when Pi ∈ H, we give a reduc-

tion to the equivocal receiver security of oblivious transfer. This reduction gives {zib}b∈{0,1}
as the challenge message and receives crsi and {otmi,b

γ , µi,b}b∈{0,1} from the challenger. It then
uses the received values to generate the view of the adversary and compute the output as in
Hybrid0,i−1. If the received messages crsi and {otmi,b

γ , µi,b}b∈{0,1} are generated using the real
algorithms then the view of the adversary and the outputs of the honest parties are identical
to the output of Hybrid0,i−1. Else, they are identical to the output of Hybrid0,i. This shows
that any distinguisher against Hybrid0,i−1 and Hybrid0,i can be used to break the equivocal
receiver security of oblivious transfer which is a contradiction.

Claim 5.15. Assuming the sender security of the oblivious transfer, we have Hybrid1

c
≈ Hybrid2.

Proof. We consider a couple of intermediate distributions Hybrid1 ≡ Hybrid1,0, Hybrid1,1, and
Hybrid2 ≡ Hybrid1,2. For each i ∈ {1, 2}, in Hybrid1,i, we change the distribution of crsi (if Pi
is corrupted) and the second round OT messages generated by other honest parties with respect
to the first round messages sent by Pi as in Hybrid2. We now show that for each i ∈ {1, 2},
Hybrid1,i

c
≈ Hybrid1,i−1. We consider two cases depending on whether Pi ∈ H or Pi ∈ C.

• Case-1: Pi ∈ H. Note that the only change in Hybrid1,i and Hybrid1,i−1 is that in Hybrid1,i, for
every j ∈ [n]\{i} such that Pj ∈ H, for every t ∈ Ai and α, β ∈ {0, 1}, we compute otsj,t,α,β ←
OT2(crsi, otri,t,α,β1 , labj,t+1

h,bi,t,α,β
, labj,t+1

h,bi,t,α,β
) (where bi,t,α,β = vi[h] ⊕ NAND(vi[f] ⊕ α, vi[g] ⊕ β))

whereas in Hybrid1,i−1, we compute otmj,t,α,β ← OT2(crsi, otri,t,α,β , labj,t+1
h,0 , labj,t+1

h,1). Note
that since otri,t,α,β is computed by an honest party, it now follows from the semi-honest sender
security of the oblivious transfer (which is implied by security against malicious receivers) that
Hybrid1,i−1

c
≈ Hybrid1,i.

• Case-2: Pi ∈ C. In this case, we give a reduction to the sender security of the oblivious
transfer. Assume for the sake of contradiction that there exists a distinguisher D that can
distinguish between the outputs of Hybrid1,i−1 and Hybrid1,i with non-negligible advantage. We
will use this distinguisher to construct an adversary B against the sender security of oblivious
transfer.

For each t ∈ Ai such that φt = (i, f, g, h), B interacts with the challenger against the sender
security and gives {labj,t+1

h,0 , labj,t+1
h,1 } for each j ∈ [n] such that Pj ∈ H as the challenge

sender strings. It receives crsi from the external challenger and uses it to generate the crs. It
then begins the interaction with A. On receiving {otri,t,α,β}t∈Ai,α,β∈{0,1} from A, B forwards
otri,t,α,β as the adversarial receiver message corresponding to the challenges {labj,t+1

h,0 , labj,t+1
h,1 }

for each j ∈ [n] such that Pj ∈ H. It does this for each t ∈ Ai, α, β ∈ {0, 1}. B receives
{otsj,t,α,β}t∈Ai,α,β∈{0,1} for each Pj ∈ H from the external challenger. B uses these strings
to generate the third round message of the protocol and computes the output of all honest
parties as in Hybrid1,i−1. It finally runs D on the view of the adversary and the outputs of the
honest parties and outputs whatever D outputs.

49

Now, if the distribution of crsi and the second round OT messages generated by the challenger
are computed using the real algorithms, then the input to D is identical to Hybrid1,i−1. Else,
it is identical to Hybrid1,i. Thus, if D can distinguish between Hybrid1,i−1 and Hybrid1,i with
non-negligible advantage, then B can break the sender security of the oblivious transfer with
the same advantage which is a contradiction.

Claim 5.16. Assuming the equivocal receiver security of the oblivious transfer, Hybrid2

c
≈ Hybrid3.

Proof. We consider a sequence of hybrids Hybrid2 ≡ Hybrid2,0 up to Hybrid2,2 ≡ Hybrid3 where in
Hybrid2,i for i ∈ {1, 2}, we change the distribution of crsk and the first round messages generated
by Pk (if Pk ∈ H) for every k ≤ i. To prove that Hybrid2

c
≈ Hybrid3, it is sufficient to show that for

every i ∈ {1, 2}, Hybrid2,i

c
≈ Hybrid2,i−1.

To show that Hybrid2,i−1

c
≈ Hybrid2,i when Pi ∈ H, we give a reduction to the equiv-

ocal receiver security of oblivious transfer. This reduction gives {vi[h] ⊕ NAND(vi[f] ⊕
α, vi[g] ⊕ β)}t∈Ai,(α,β)∈{0,1}×{0,1},φt=(i,f,g,h) as the challenge message bits and receives crsi and
{otri,t,α,β , µi,t,α,β}t∈Ai,(α,β)∈{0,1}×{0,1} from the challenger. It then uses the received values to gen-
erate the view of the adversary and compute the output of honest parties as in Hybrid2,i−1. If
the received messages crsi and {otri,t,α,β , µi,t,α,β}t∈Ai,(α,β)∈{0,1}×{0,1} are generated using the real
algorithms then the view of the adversary and the outputs of the honest parties are identical to
the output of Hybrid2,i−1. Else, they are identical to the output of Hybrid2,i. This shows that any
distinguisher against Hybrid2,i−1 and Hybrid2,i can be used to break the equivocal receiver security
of oblivious transfer.

Claim 5.17. Hybrid3 ≡ Hybrid4

Proof. Note that for each k ∈ [κ], z1[k] computed in this step is identical to x1[k]⊕v1[k] that will be
output by F†dSelPri to a corrupt P1. Thus, we observe that the faithful procedure perfectly emulates
the messages that A sends on behalf of the corrupt parties in the conforming protocol Φ. Thus,
for each i ∈ [3, n] such that Pi ∈ H, zist∗[`/2] denotes the correct output obtained by the parties in
the case when P1 and P2 are corrupt. Additionally, we haven’t changed the view of the adversary
between Hybrid3 and Hybrid4 and thus, these two hybrids are identical.

Claim 5.18. Hybrid4

s
≈ Hybrid5

Proof. Note that the only difference between Hybrid5 and Hybrid4 is that in Hybrid5, if the number
of indices for which adversary A sends the message (predicate, ·, ·) to the F†dSelPri functionality is
greater than λ then we abort.

Let K ⊆ [κ] be the indices k such that A sends (predicate, k,EQβk) to F†dSelPri functionality. We
argue that if |K| > λ then an honest party P1 outputs abort except with probability at most 2−λ.
This follows from the fact that α1, . . . , ακ are chosen uniformly at random and hence, for any k,
the probability that βk = αk is 1/2. Hence, the probability for every k ∈ K, βk 6= αk is at most
2−λ.

Claim 5.19. Assuming the semantic security of the symmetric key encryption, we have Hybrid5

c
≈

Hybrid6.

50

Proof. Assume for the sake of contradiction that there exists a distinguisher D that can distinguish
between the Hybrid5 and Hybrid6 with non-negligible advantage. We now use D to construct an
adversary B that breaks the semantic security of the symmetric key encryption.

By a standard averaging argument, we infer that there exists i ∈ [2, n] such that Pi ∈ H and two
distributions Hybrid′0 and Hybrid′1 (described below) such that D can distinguish between Hybrid′0
and Hybrid′1 with non-negligible advantage. In both these distributions, for any i′ ∈ [2, n] such
that Pi′ ∈ H and i′ < i, the ciphertexts generated by Pi′ in the third round are identical to its
distribution in Hybrid6, whereas for any i′ > i, these ciphertexts are identical to its distribution in
Hybrid5. The only difference between these two hybrids is in the distribution of the ciphertexts sent
by Pi in the last round. In Hybrid′0, it is distributed as in Hybrid5, whereas in Hybrid′1, it is identical
to Hybrid6.

For each k ∈ [κ], B interacts with κ challenge oracles (each instantiated with an independent
secret key). It gives {labi,11−z1[k], lab

i,1
z1[k]} as the two challenge messages to the k-th oracle for each

k ∈ [κ]. It receives ct∗i,k for each k ∈ [κ]. B chooses an independent key ski,kz1[k] and generates cti,kz1[k] =

Enc(ski,kz1[k], lab
i,1
k,z1[k]) and sets cti,k1−z1[k] := ct∗i,k. It sends {(cti,k0 , cti,k1)}k∈[κ] as the ciphertexts from

party Pi in the final round. It generates the rest of the messages and the output of the honest
parties as Hybrid′0. It finally runs the distinguisher on the view of the adversary and the outputs of
the honest parties and outputs whatever D outputs.

Note that if ct∗i,k is an encryption of labi,11−z1[k] then the inputs to D are identical to Hybrid′0.
Otherwise, the inputs to D are identical to Hybrid′1. This contradicts the semantic security of the
symmetric key encryption.

Claim 5.20. Assuming the security of garbled circuits, we have for each t ∈ [T] that Hybrid6+t

c
≈

Hybrid6+t−1.

Proof. Let Z ∈ {0, 1}T be the transcript obtained as in the hybrid description if either of P1 or P2 is
honest. Otherwise, let Z be the transcript obtained as in Hybrid4. Let st∗T be the joint public state
at the end of faithful execution and let st∗t be the joint public state at the end of the t-th round of
the computation phase. Let φt = (i∗, f, g, h). Finally, let α∗ := st∗T [f], β∗ := st∗T [g] and γ∗ := st∗T [h].
To show that Hybrid6+t−1

c
≈ Hybrid6+t, we consider a couple of intermediate distributions:

• Hybrid6+t−1,1 : We make the following two changes in how we generate messages for other
honest parties Pi (i.e., Pi ∈ H \ {Pi∗}). We do not generate four otsi,t,α,β values but just one
of them; namely, we generate otsi,t,α

∗,β∗ as OT2(crsi
∗
, otri,t,α

∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

) (note that
if i∗ is honest then Zt = vi∗ [h] ⊕ NAND(vi∗ [f

∗] ⊕ α∗, vi∗ [g] ⊕ β∗)). Second, we generate the
garbled circuit(

C̃i,t, {labi,tk }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(
otsi,t,α

∗,β∗ , {labi,t+1
k,st∗t [k]}k∈[`]\{h}

))
,

where {labi,t+1
k,st∗t [k]}k∈[`] are the honestly generated input labels for the garbled circuit C̃i,t+1 (for

any t+ 1 ≤ T) and for t = T , {labi,T+1
k,st∗T [k]}k∈[`] are computed as per the protocol specification.

It follows from |H \ {Pi∗}| invocations of the security of garbled circuits that Hybrid6+t−1,1

c
≈

Hybrid6+t−1.

51

• Hybrid6+t−1,2 : Skip this hybrid change if Pi∗ 6∈ H. We set µi
∗,t,α∗,β∗ as

µi
∗,t,α∗,β∗

vi∗ [h]⊕NAND(vi∗ [f]⊕α∗,vi∗ [g]⊕β∗) and compute

(
C̃i
∗,t, {labi

∗,t
k }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(

(α∗, β∗, γ∗), µi
∗,t,α∗,β∗ , {labi

∗,t+1
k,st∗t [k]}k∈[`]

))
,

where {labi
∗,t+1
k,st∗t [k]}k∈[`] are the honestly generated input labels for the garbled circuit C̃i∗,t+1 (for

any t+ 1 ≤ T) and for t = T , {labi
∗,T+1
k,st∗T [k]}k∈[`] are computed as per the protocol specification.

It follows from the security of the garbled circuit that Hybrid6+t−1,2

c
≈ Hybrid6+t−1,1.

• Hybrid6+t−1,3 : Skip this hybrid change if Pi∗ /∈ H. In this hybrid, we set µi∗,t,α∗,β∗ as µt,α
∗,β∗

Zt

rather than µi
∗,t,α∗,β∗

vi∗ [h]⊕NAND(vi∗ [f]⊕α∗,vi∗ [g]⊕β∗). Since for the case of honest parties, these two
values are the same, it follows that Hybrid6+t−1,3 is identically distributed to Hybrid6+t−1,2.

Observe that Hybrid6+t−1,3 is identically distributed to Hybrid6+t.

Claim 5.21. Assuming the security of garbled circuits, we have Hybrid6+T

c
≈ Hybrid7+T .

Proof. Notice that the only difference between Hybrid6+T and Hybrid7+T is that in Hybrid7+T , all

the garbled circuits C̃hkC
i
for every i ∈ [3, n] such that Pi ∈ H is generated using SimGC whereas

in Hybrid6+T , it is generated using the real garbling procedure. It directly follows from |H ∩
{P3, . . . , Pn}| invocations of the security of garbled circuits that Hybrid6+T

c
≈ Hybrid7+T .

Since we argued inline that Hybrid7+T

c
≈ Hybrid8+T and Hybrid8+T

s
≈ Hybrid9+T , this completes

the proof of the lemma.

5.4 Third Step: Bootstrapping from Special to General Functions in 3 Rounds

In this section, we build a 3-round MPC protocol for any multiparty function f in the FdSel-hybrid
model. The main theorem we show in this subsection is the following.

Theorem 5.22. Let f be a n-party functionality. There exists a protocol Πf that UC-realizes f
in three rounds against malicious adversaries corrupting an arbitrary number of parties. Πf makes
black-box use of a two-round, malicious-secure OT with equivocal receiver security and is in the
FdSel-hybrid model.

Building Πf . The protocol Πf is obtained as a result of applying the round-collapsing compiler
in [GS18, GIS18] to perfect/statistical protocols in the OT-correlations model (e.g., [Kil88, IPS08]).
Specifically, the protocol we round-collapse has the following structure.

• Generating OT Correlations. Every pair of parties invoke a certain number of OT execu-
tions on uniformly chosen random inputs.

52

• Protocol Π. The parties augment their inputs with the OT correlations generated in the
previous phase. The parties then use the perfect/statistical protocol from [Kil88, IPS08] in
the OT correlations model to securely compute f .

Let Φ be the conforming protocol obtained as a result of the transformation in Theorem 5.10
to Π. For every i, j ∈ [n] such that i 6= j, let κ be the number of random OT correlations required
between party Pi (acting as the receiver) and Pj (acting as the sender) in the protocol Φ. The
building blocks we use for Πf are the conforming protocol Φ, a two-round, malicious-secure OT
with equivocal receiver security, a garbling scheme for circuits and a symmetric key encryption.
Further, we assume without loss of generality, that the first (n − 1)κ bits of the augmented input
of party Pi in Φ contains the bits obtained from every other party (acting as sender) in the OT
correlations generation phase. Specifically, the first κ bits are the received bits from P1 (if i 6= 1)
and the second set of κ bits are the received bits from P2 (if i 6= 2) and so on. We denote a function
GetIndex that takes i, j, k as inputs (where i, j ∈ [n], i 6= j and k ∈ [κ]) and returns an index
ind ∈ [`] of the state st of the conforming protocol that corresponds to the received bit in the k-th
OT correlation between Pi (acting as the receiver) and Pj (acting as the sender). We now present
an information description of Πf below and the formal description in Figure 10.

Building on the round-collapsing compiler of [GS18, GIS18], the main challenge in Πf is in
making the first set of labels for the joint state available within 3 rounds. Unlike [GS18, GIS18],
the input to the conforming protocol in our case not only includes the actual inputs of the parties,
but also the OT correlations. The generation of the latter (to be specific, the output bit of an
OT) is completed only at the end of round-2. As a result, the public state of a party can be made
available to all only in round-3 and the labels for the joint state in round-4. We overcome this
challenge using the double selection FdSel functionality. The double selection functionality allows
the parties to learn the labels corresponding to masked value of the correlation bits at the end of
round-3 allowing them to trigger the evaluation of garbled circuits at the end of round-3.

Inputs: Pi for i ∈ [n] inputs xi.

Output: Every party outputs f(x1, . . . , xn).

Primitives and Functionalities: (a) A malicious-secure two-round OT with equivocal receiver security
(KOT,OT1,OT2,OT3) (see Section 3.3), (b) Functionality FdSel (c) The conforming protocol Φ
obtained as a result of the transformation in Theorem 5.10 to Π as discussed (c) Garbling scheme
(Garble,Eval) (see Section 3.2) (d) A symmetric-key Encryption Scheme (Gen,Enc,Dec).

Common Random/Reference String: For each i ∈ [n], sample crsi ← KOT(1λ) and output {crsi}i∈[n]
as the common random/reference string.

Round-1: In the first round,

• Each Pi runs pre(1λ, i) to get vi.

• For each i, j ∈ [n] and i 6= j and for each k ∈ [κ], the parties invoke an instance of functionality
FdSel as follows:

– Pi, taking the role of P1, sends (input, (i, j, k), Pi, (α
i,j
k , r

i,j
k)) to FdSel where α

i,j
k is a uniformly

chosen bit and ri,jk := vi[GetIndex(i, j, k)].

Protocol Πf

53

– Pj , taking the role of P2, sends (input, (i, j, k), Pj , (y
i,j
k,0, y

i,j
k,1) to FdSel where y

i,j
k,0, y

i,j
k,1 are uni-

formly chosen bits.
– For every s ∈ [n], Ps inputs (input, (i, j, k), Ps, (sk

s,i,j
k,0 , sks,i,jk,1)) to FdSel where sk

s,i,j
k,0 , sks,i,jk,1 are

sampled using Gen(1λ).

Round-2: In the second round, every Pi does the following

• It sets xparti := (xi, {αi,jk , y
j,i
k,0, y

j,i
k,1}j∈[n]\{i},k∈[κ]).

• It sets zparti := xparti ⊕ vi[(i− 1)`/n+ (n− 1)κ+ 1, i`/n].

• For each i ∈ [n] and for each t such that φt = (i, f, g, h) (Ai is the set of such values of t), for each
α, β ∈ {0, 1}, it computes: (otri,t,α,β , µi,t,α,β)← OT1(crsi, vi[h]⊕ NAND(vi[f]⊕ α, vi[g]⊕ β)).

• It broadcasts
(
zparti , {otri,t,α,β}t∈Ai,α,β∈{0,1}

)
.

Round-3: In the final round, each party Pi does the following:

• It sets st =
(

(0(n−1)κ‖zpart1)|| . . . ||(0(n−1)κ‖zpartn)
)
.

• It sets labi,T+1 := {labi,T+1
k,0 , labi,T+1

k,1 }k∈[`] where for each k ∈ [`] and b ∈ {0, 1}, labi,T+1
k,b := ⊥.

• for each t from T down to 1,

1. Let φt as (i∗, f, g, h).
2. If i = i∗, then it computes

(
C̃i,t, labi,t

)
← Garble(1λ, Ci,t[vi, {µi,t,α,β}α,β ,⊥, labi,t+1]) (where

Ci,t is described in Figure 9).
3. If i 6= i∗ then for every α, β ∈ {0, 1}, it sets otsi∗,t,α,β ← OT2(crsi

∗
, otri

∗,t,α,β , labi,t+1
h,0 , labi,t+1

h,1)

and computes
(
C̃i,t, labi,t

)
← Garble(1λ, Ci,t[vi,⊥, {otsi,t,α,β}α,β , labi,t+1]) (where Ci,t is de-

scribed in Figure 9).

• Each Pi broadcasts {C̃i,t}t∈[T], and for each j ∈ [n] and k 6∈ [(j−1)`/n+1, (j−1)`/n+(n−1)κ],
Pi broadcasts lab

i,1
k,st[k]. In addition, Pi broadcasts for each j, j′ ∈ [n] such that j 6= j′ and k ∈ [κ],(

cti,j,j
′

k,0 = Enc(ski,j,j
′

k,0 , labi,1GetIndex(j,j′,k),0), cti,j,j
′

k,1 = Enc(ski,j,j
′

k,1 , labi,1GetIndex(j,j′,k),1)
)
.

Output: Each party Pi does the following:

• For each j, j′ ∈ [n] such that j 6= j′ and for each k ∈ [κ], let η := GetIndex(i, j, k) and do the
following:

1. Receive (output, (j, j′, k), Pi, (zη, {sks,j,j
′

k,zη
}s∈[n])) from FdSel functionality.

2. Reset st[η] = zη.

3. For each s ∈ [n], set labs,1η,st[η] ← Dec(sks,j,j
′

k,st[η], ct
s,j,j′

k,st[η]).

• For every j ∈ [n], let l̃ab
j,1

= {labj,1k,st[k]}k∈[`], where {lab
j,1
k,st[k]}k∈[(j−1)`/n+1,(j−1)`/n+(n−1)κ] are

decrypted as above and the rest received from Pj ’s round-3 message.

• for each t from 1 to T do:

1. Parse φt as (i∗, f, g, h).

2. Compute ((α, β, γ), µ, l̃ab
i∗,t+1

) := Eval(C̃i
∗,t, l̃ab

i∗,t
).

3. Set st[h] := γ.
4. for each j 6= i∗ do:

54

(a) Compute (ots, {labj,t+1
k,st[k]}k∈[`]\{h}) := Eval(C̃j,t, l̃ab

j,t
).

(b) Recover labj,t+1
h,st[h] := OT3(crsi

∗
, ots, (γ, µ)).

(c) Set l̃ab
j,t+1

:= {labj,t+1
k,st[k]}k∈[`].

• Output post(st, vi).

Figure 10: Protocol Πf

Lemma 5.23. Let A be an (possibly malicious) adversary corrupting an arbitrary subset of parties
in the protocol Πf . There exists a simulator Sim such that for any environment Z,

EXECFf ,Sim,Z
c
≈ EXECΠf ,A,Z

Proof. Let C ⊂ {P1, . . . , Pn} be the set of parties corrupted by A and let H = {P1, . . . , Pn} \ C
denote the set of uncorrupted parties. Since we assume that A is static, the set of corrupted
parties C is decided before the beginning of the protocol. We now give the description of the ideal
world simulator Sim. Sim internally uses the simulators (SimR, SimS) of the oblivious transfer (see
Section 3.3), SimΦ of the conforming protocol Φ, and the simulator for garbled circuit SimGC.

Interaction with environment Z. For every input value corresponding to the set of corrupted
parties C that Sim receives from the environment Z, Sim writes this value to A’s input tape.
Similarly, the contents of A’s output tape is written to Sim’s output tape. We now describe how
Sim simulates the interaction of honest parties with A.

Simulating the interaction with A: For every concurrent interaction with the session identifier
sid that A may start, the simulator does the following:

Common Random/Reference String Generation: Sim generates the crs as follows:

• For each i ∈ [n], if Pi ∈ C, then Sim samples (crsi, tdi)← Sim1
S(1λ). Else, it samples

(crsi, tdi)← Sim1
R(1λ).

• Sim sets the crs to (crs1, . . . , crsn).

Initialization and Round-1. Sim does the following:

• Initialize aux = ⊥. aux is a list contains the input and output of every corrupt party given to
each invocation of the OT with an honest party in the correlation generation phase.

• Updating aux.

– For each Pi ∈ H,Pj ∈ C and for each k ∈ [κ], it adds ((i, j, k), (yi,jk,0, y
i,j
k,1)) to aux from

the intercepted message (input, (i, j, k), Pj , (y
i,j
k,0, y

i,j
k,1)) that A sends to FdSel on behalf of

corrupt Pj .

55

– For each Pi ∈ C,Pj ∈ H and for each k ∈ [κ], it adds ((i, j, k), (αi,jk , y
i,j

k,αi,jk
)) where yi,j

k,αi,jk

is uniformly chosen to aux from the intercepted message (input, (i, j, k), Pi, (α
i,j
k , r

i,j
k))

that A sends to FdSel on behalf of corrupt Pi.

• For each i ∈ [n] such that Pi ∈ H, Sim does the following:

– It sets zi := ri‖0`/n−m where ri is chosen uniformly from {0, 1}m where m is the total
length of the inputs of Pi (which includes the actual input and OT correlation).

– It sets zparti = zi[(n− 1)κ+ 1, `/n].

Round-2 message from Sim to A. For each i ∈ [n] such that Pi ∈ H, Sim does the following:

• For each t ∈ Ai and for each α, β ∈ {0, 1}, it generates
(otri,t,α,β , µi,t,α,β0 , µi,t,α,β1)← Sim2

R(crsi, tdi).

• Sim sends the second round message on behalf of the honest parties to A.

• Extraction from OT. For each i ∈ [n] such that Pi ∈ C and for each t ∈ Ai, α, β ∈ {0, 1},
Sim computes bi,t,α,β = Sim2

S(crsi, tdi, otri,t,α,β).

• Setting up st∗.

Initialization: It initializes st∗ =
(

(0(n−1)κ‖zpart1)|| . . . ||(0(n−1)κ‖zpartn)
)
.

Setting the positions for OT output Correlation for Honest parties: For each j ∈
[n] such that Pj ∈ H and for each k ∈ [(j − 1)`/n + 1, (j − 1)`/n + (n − 1)κ], it
sets st∗[k] = zj [k − (j − 1)`/n].

Setting the input positions of every Pi ∈ C: For every i ∈ [n] such that Pi ∈ C:
For every j 6= i such that Pj ∈ H and for each k ∈ [κ], let (input, (i, j, k), Pi, (α

i,j
k , r

i,j
k))

be the intercepted message that A sends to FdSel.

– It sets st∗[GetIndex(i, j, k)] := yi,j
k,αi,jk

⊕ ri,jk where yi,j
k,αi,jk

was the bit that Sim chose
previously.

For every j 6= i such that Pj ∈ C and for each k ∈ [κ], let (Corrupt, (i, j, k), βi,jk) be the
intercepted message that A sends to FdSel

– It sets st∗[GetIndex(i, j, k)] := βi,jk .

Faithful execution. We define an interactive procedure Faithful(i, st∗, {bi,t,α,β}t∈Ai,α,β) that
on input i ∈ [n], st∗, {bi,t,α,β}t∈Ai,α,β∈{0,1} produces protocol Φ message on behalf of party Pi (acting
consistently/faithfully with the extracted values) as follows: For t ∈ {1 · · ·T}

• Parse φt = (i∗, f, g, h).

• If i 6= i∗ then it waits for a bit from Pi∗ and sets st∗[h] to be the received bit once it is received.
Otherwise, set st∗[h] := bi

∗,t,st∗[f],st∗[g] and send it to all the other parties.

56

Round-3 message from Sim to A. To generate the round-3 message Sim does the following:

• Sim initializes SimΦ with value (H, st∗, aux). This starts the computation phase of Φ with the
simulator SimΦ .

• Sim provides computation phase messages from corrupted parties to SimΦ by following a
faithful execution. More formally, for every Pi ∈ C where i ∈ [n], Sim generates messages on
behalf of Pi for SimΦ using the procedure Faithful(i, st∗, {bi,t,α,β}t∈Ai,α,β).

• At some point during the execution, SimΦ will return the extracted inputs {xi}Pi∈C of the
corrupted parties. For each Pi ∈ C, Sim sends (input, sid, Pi, xi) to the ideal functionality Ff
and obtains the output out. It sends out as the output to SimΦ. SimΦ completes the rest of
the execution of the protocol.

• Let Z ∈ {0, 1}t where Zt is the bit sent in the tth round of the computation phase of Φ. And let
st∗T be the state value at the end of faithful execution of one of the corrupted parties (this value
is the same for all the parties). For each t ∈ ∪i∈HAi and α, β ∈ {0, 1}, set µi,t,α,β := µi,t,α,βZt

.

• For each i, j ∈ [n] s.t. i 6= j and for each k ∈ [κ], Sim does the following:

– Let η := GetIndex(i, j, k).

– For every s ∈ [n] such that Ps ∈ H, it samples sks,i,jk,0 , sk
s,i,j
k,1 using Gen(1λ).

– For every s ∈ [n] such that Ps ∈ C, it intercepts the message
(input, (i, j, k), Ps, (sk

s,i,j
k,0 , sk

s,i,j
k,1)) that A sends on behalf of corrupt Ps.

– It delivers (output, (i, j, k), (st∗[η], {sks,i,jk,st∗[η]}s∈[n]) as the output from FdSel to A.

• For each i ∈ [n] such that Pi ∈ H, Sim does the following:

– For each k ∈ [`], it sets labi,T+1
k := ⊥.

– for each t from T down to 1,

∗ Parse φt as (i∗, f, g, h).
∗ Set α∗ := st∗T [f], β∗ := st∗T [g], and γ∗ := st∗T [h].
∗ If i = i∗ then compute(

C̃i,t, {labi,tk,st∗T [k]}k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(

(α∗, β∗, γ∗), µi
∗,t,α∗,β∗ , {labi,t+1

k }k∈[`]

))
.

∗ If i 6= i∗ then set otsi,t,α∗,β∗ ← OT2(crsi
∗
, otri

∗,t,α∗,β∗ , labi,t+1
h , labi,t+1

h) and compute(
C̃i,t, {labi,tk }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(
otsi,t,α

∗,β∗ , {labi,t+1
k }k∈[`]\{h}

))
.

– Sim sends {C̃i,t}t∈[T], and for each j ∈ [n] and k 6∈ [(j− 1)`/n+ 1, (j− 1)`/n+ (n− 1)κ],
it sends labi,1k . In addition, it sends for each j, j′ ∈ [n] such that j 6= j′ and k ∈ [κ],(
Enc(ski,j,j

′

k,0 , labi,1GetIndex(j,j′,k)),Enc(sk
i,j,j′

k,1 , labi,1GetIndex(j,j′,k))
)
.

57

Output Computation. For every i ∈ [n] \ H, Sim obtains the second round message from
A on behalf of the malicious parties. Subsequent to obtaining these messages, Sim uses the honest
output computing procedure to see if the execution of garbled circuits proceeds consistently with
the expected faithful execution. If the computation succeeds then, Sim sends (generateOutput, sid)
to the ideal functionality. Otherwise, it sends (abort, sid).

Proof of Indistinguishability. We now show that the real execution and the simulated execution
are computationally indistinguishable via a hybrid argument.

• Hybrid0 : This corresponds to the view of the adversary and the output of the honest parties
in the real execution of the protocol.

• Hybrid1 : In this hybrid, we make the following changes:

– CRS Generation. For each i ∈ [n] such that Pi ∈ C, we sample (crsi, tdi)← Sim1
S(1λ).

We use the sampled crsi to generate the crs.

– Input Extraction. For each i ∈ [n] such that Pi ∈ C and for each t ∈ Ai, α, β ∈ {0, 1},
we compute bi,t,α,β = Sim2

S(crsi, tdi, otri,t,α,β).

– Round-3 message from honest Pi where i ∈ [n]. For each t ∈ [T],

∗ Let φt = (i∗, f, g, h).
∗ For each i 6∈ [n] \ {i∗}, compute for each α, β ∈ {0, 1}, otsi

∗,t,α,β ←
OT2(crsi

∗
, otri

∗,t,α,β, labi,t
bi,t,α,β

, labi,t
bi,t,α,β

). Here, if Pi∗ ∈ C, then bi
∗,t,α,β is the ex-

tracted value. Otherwise, if Pi∗ ∈ H, then bi∗,t,α,β = vi∗ [h]⊕NAND(vi∗ [f]⊕α, vi∗ [g]⊕
β)

The indistinguishability between Hybrid0 and Hybrid1 is argued using the sender security of
two-round oblivious transfer similar to Claim 5.15.

• Hybrid2 : In this hybrid, we make the following changes:

– CRS Generation. For each i ∈ [n], if Pi ∈ H, sample (crsi, tdi) ← Sim1
R(1λ) and use

crsi to generate the crs.

– Round-2 message: For each i ∈ [n], if Pi ∈ H, and for each t ∈ Ai and α, β ∈ {0, 1},
generate (otri,t,α,β, µi,t,α,β0 , µi,t,α,β1)← Sim2

R(crsi, tdi).

The indistinguishability between Hybrid1 and Hybrid2 is argued using the equivocal receiver
security of the oblivious transfer similar to Claim 5.16.

• Hybrid3 : In this hybrid, we do the following changes:

– We initialize aux = ⊥.
– We set st∗ =

(
(0(n−1)κ‖zpart1)|| . . . ||(0(n−1)κ‖zpartn)

)
.

– For every i ∈ [n] such that Pi ∈ C:

∗ For every j 6= i such that Pj ∈ H and for each k ∈ [κ],
· We intercept the message (input, (i, j, k), Pi, (α

i,j
k , r

i,j
k)) that A sends to FdSel.

58

· We choose a random bit yi,j
k,αi,jk

.

· We set st∗[GetIndex(i, j, k)] := yi,j
k,αi,jk

⊕ ri,jk .

· We add ((i, j, k), (αi,jk , y
i,j

k,αi,jk
)) to aux.

∗ For every j 6= i such that Pj ∈ C and for each k ∈ [κ],
· We intercept the message (Corrupt, (i, j, k), βi,jk) that A sends to FdSel.
· We set st∗[GetIndex(i, j, k)] := βi,jk .

– For each i ∈ [n] such that Pi ∈ H,

∗ For each j ∈ [n] such that Pj ∈ C and for each k ∈ [κ], we intercept the message
(input, (i, j, k), Pj , (y

i,j
k,0, y

i,j
k,1)) that A sends on behalf of corrupt Pj .

∗ We set st∗[GetIndex(i, j, k)] := yi,j
k,αi,jk

⊕ ri,jk where αi,jk , r
i,j
k and (yi,jk,0, y

i,j
k,1) (if Pj ∈ H)

are computed using honest parties’ randomness.
∗ We add ((i, j, k), (yi,jk,0, y

i,j
k,1)) to aux if Pj ∈ C.

We note that st∗ that is computed as above is consistent with the adversarial and the honest
parties input/randomness in the correlations phase. Furthermore, the value aux contains the
inputs and the outputs of adversarial parties during OT invocations with an honest party in
the correlations phase. Also, we haven’t made any changes to the distribution of the messages
in Hybrid3 (when compared to Hybrid2) and hence, these two hybrids are identical.

• Hybrid4 : In this hybrid, we make the following changes:

– For each i, j ∈ [n] s.t. i 6= j and for each k ∈ [κ], we do the following:

∗ Let η := GetIndex(i, j, k).
∗ For every s ∈ [n] such that Ps ∈ H, we sample sks,i,jk,0 , sk

s,i,j
k,1 using Gen(1λ).

∗ For every s ∈ [n] such that Ps ∈ C, we intercept the message
(input, (i, j, k), Pq, (sk

s,i,j
k,0 , sk

s,i,j
k,1)) that A sends on behalf of corrupt Ps.

∗ We deliver (output, (i, j, k), (st∗[η], {sks,i,jk,st∗[η]}s∈[n]) as the output from FdSel to A.

– For each i ∈ [n] such that Pi ∈ H, for each j, j′ ∈ [n] such that j 6= j′ and k ∈ [κ],

∗ Let η = GetIndex(j, j′, k).

∗ We send
(
Enc(ski,j,j

′

k,0 , labi,1η,st∗[η]),Enc(sk
i,j,j′

k,1 , labi,1η,st∗[η])
)
in the final round.

The indistinguishability between Hybrid3 and Hybrid4 is argued using the semantic security of
the symmetric key encryption similar to Claim 5.19.

• Hybrid4+t for t ∈ [0, T]. This distribution is the same as hybrid Hybrid4+t−1 except we change
the distribution of the garbled circuits (in the third round) that play a role in the execution of
the tth round of the protocol Φ; namely, the action φt = (i∗, f, g, h). We describe the changes
more formally below.

– In this hybrid, we complete the execution of Φ using honest party inputs and random-
ness. The messages on behalf of corrupted parties are generated via faithful execu-
tion. Specifically, we use st∗ and start the mental execution of Φ. In this computation

59

phase, we generate the honest party messages using the inputs and random coins of the
honest parties and generate the messages of the each malicious party Pi by executing
Faithful

(
i, st∗, {bi,t,α,β}t∈Ai,α,β

)
.

– Let Z ∈ {0, 1}T be the transcript obtained using the above step. Let st∗T be the public
state of one of the corrupted parties at the end of faithful execution and let st∗t be
the public state of the parties at the end of the t-th round of the computation phase.
Finally, let α∗ := st∗T [f], β∗ := st∗T [g] and γ∗ := st∗T [h]. In Hybrid4+t we make the
following changes with respect to hybrid Hybrid4+t−1:

∗ We make the following two changes in how we generate messages for other honest
parties Pi (i.e., Pi ∈ H\{Pi∗}). We do not generate four otsi∗,t,α,β values but just one
of them; namely, we generate otsi

∗,t,α∗,β∗ as OT2(crsi
∗
, otri

∗,t,α∗,β∗ , labi,t+1
h,Zt

, labi,t+1
h,Zt

).
Second, we generate the garbled circuit(

C̃i,t, {labi,tk }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(
otsi

∗,t,α∗,β∗ , {labi,t+1
k,st∗t [k]}k∈[`]\{h}

))
,

where {labi,t+1
k,st∗t [k]}k∈[`] are the honestly generated input labels for the garbled circuit

C̃i,t+1 (for any t ≤ T − 1) and for t = T , {labi,T+1
k,st∗T [k] := ⊥}k∈[`].

∗ If Pi∗ ∈ C then skip these changes. We make two changes in how we generate
messages on behalf of Pi∗ . First, for all α, β ∈ {0, 1}, we set µi∗,t,α∗,β∗ as µi

∗,t,α∗,β∗

Zt

rather than µi
∗,t,α∗,β∗

vi∗ [h]⊕NAND(vi∗ [f]⊕α∗,vi∗ [g]⊕β∗) (note that these two values are the same
when using the honest party’s input and randomness). Second, it generates the
garbled circuit(
C̃i
∗,t, {labi

∗,t
k }k∈[`]

)
← SimGC

(
1λ, 1|C

i,t|, 1`,
(

(α∗, β∗, γ∗), µi
∗,t,α∗,β∗ , {labi

∗,t+1
k,st∗t [k]}k∈[`]

))
,

where {labi,t+1
k,st∗t [k]}k∈[`] are the honestly generated input labels for the garbled circuit

C̃i,t+1 (for any t ≤ T − 1) and for t = T , {labi,T+1
k,st∗T [k] := ⊥}k∈[`].

The indistinguishability between Hybrid4+t−1 and Hybrid4+t for every t ∈ [T] is argued using
the security of the garbled circuits similar to Claim 5.20.

• Hybrid5+T : In this hybrid, we modify the output phase of the computation to execute the
garbled circuits provided by A on behalf of the corrupted parties and see if the execution of
garbled circuits proceeds consistently with the transcript Z. If the computation succeeds then
for each Pi ∈ H, we instruct the parties in H to output the result of the output computation;
else, we instruct them to output ⊥. This hybrid is computationally indistinguishable to the
previous hybrid from the authenticity of input labels property of garbled circuits.

• Hybrid6+T : In this hybrid, we just change how the transcript Z, {zi}i∈H}, and the value
st∗T are generated. Instead of generating these using honest party inputs in execution with
a faithful execution of Φ, we generate it via the simulator SimΦ (of the maliciously secure
protocol Φ) with aux as additional input. Specifically, we generate zi as (ri‖0`/n−m) where
ri is uniformly chosen random string of length m for each Pi ∈ H. We compute st∗T as
described in the simulation. To generate the transcript, we execute the simulator SimΦ on

60

input (H, st∗, aux) where messages on behalf of each corrupted party Pi are generated using
Faithful(i, st∗, {bi,t,α,β}t∈Ai,α,β). (Note that SimΦ might rewind Faithful. This can be achieved
since Faithful is just a polynomial time interactive procedure that can also be rewound.). Note
that the value aux contains the inputs and the outputs of the adversary in every OT invocation
with an honest party in the correlations phase. It now follows from the statistical security of
Φ that Hybrid6+T is identically statistically close to Hybrid5+T .

We note that Hybrid6+T is identically distributed to EXECFf ,Sim,Z .

Acknowledgements. We thank Benny Applebaum and Yuval Ishai for useful discussions.

References

[ABG+20] Benny Applebaum, Zvika Brakerski, Sanjam Garg, Yuval Ishai, and Akshayaram Srini-
vasan. Separating two-round secure computation from oblivious transfer. In Thomas
Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages
71:1–71:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[ACJ17] Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to
round-optimal secure multiparty computation. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 468–499. Springer, Hei-
delberg, August 2017.

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in NC0. In 45th
FOCS, pages 166–175. IEEE Computer Society Press, October 2004.

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell
digital goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 119–135. Springer, Heidelberg, May 2001.

[App17] Benny Applebaum. Garbled circuits as randomized encodings of functions: a primer.
In Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography, pages 1–44.
Springer International Publishing, 2017.

[BCL+05] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. Secure compu-
tation without authentication. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 361–377. Springer, Heidelberg, August 2005.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, August
2001.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimizing
rounds, communication, and computation. In Jean-Sébastien Coron and Jesper Buus

61

Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 163–193.
Springer, Heidelberg, May 2017.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations of
homomorphic secret sharing. In ITCS 2018, pages 21:1–21:21, January 2018.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12, pages 784–796.
ACM Press, October 2012.

[BL18] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round
oblivious transfer via garbled interactive circuits. In Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part
II, pages 500–532, 2018.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May
1990.

[BP16] Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE with
short ciphertexts. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 190–213. Springer, Heidelberg, August 2016.

[Can00a] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, 13(1):143–202, January 2000.

[Can00b] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.
org/2000/067.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[Can04] Ran Canetti. Universally composable signature, certification, and authentication. In
17th IEEE Computer Security Foundations Workshop, (CSFW-17 2004), 28-30 June
2004, Pacific Grove, CA, USA, page 219, 2004.

[CCM98] Christian Cachin, Claude Crépeau, and Julien Marcil. Oblivious transfer with a
memory-bounded receiver. In 39th FOCS, pages 493–502. IEEE Computer Society
Press, November 1998.

[CDFR17] Ignacio Cascudo, Ivan Damgård, Oriol Farràs, and Samuel Ranellucci. Resource-efficient
OT combiners with active security. In Yael Kalai and Leonid Reyzin, editors, TCC 2017,
Part II, volume 10678 of LNCS, pages 461–486. Springer, Heidelberg, November 2017.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg,
August 2001.

62

http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-
party computation. In 28th ACM STOC, pages 639–648. ACM Press, May 1996.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable
two-party and multi-party secure computation. In 34th ACM STOC, pages 494–503.
ACM Press, May 2002.

[CLP10] Ran Canetti, Huijia Lin, and Rafael Pass. Adaptive hardness and composable security
in the plain model from standard assumptions. In 51st FOCS, pages 541–550. IEEE
Computer Society Press, October 2010.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg,
August 2003.

[DHRS04] Yan Zong Ding, Danny Harnik, Alon Rosen, and Ronen Shaltiel. Constant-round obliv-
ious transfer in the bounded storage model. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 446–472. Springer, Heidelberg, February 2004.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGHR14] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC
from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349
of LNCS, pages 74–94. Springer, Heidelberg, February 2014.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 467–476. ACM Press, June 2013.

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: Information-
theoretic and black-box. In TCC 2018, Part I, LNCS, pages 123–151. Springer, Heidel-
berg, March 2018.

[GLS15] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer, Heidelberg,
August 2015.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
ACM STOC, pages 218–229. ACM Press, May 1987.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

63

[GS17] Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two-round MPC from
bilinear maps. In 58th FOCS, pages 588–599. IEEE Computer Society Press, 2017.

[GS18] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. LNCS, pages 468–499. Springer, Heidelberg, 2018.

[HK12] Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-message obliv-
ious transfer. Journal of Cryptology, 25(1):158–193, January 2012.

[HKN+05] Danny Harnik, Joe Kilian, Moni Naor, Omer Reingold, and Alon Rosen. On robust
combiners for oblivious transfer and other primitives. In Ronald Cramer, editor, EU-
ROCRYPT 2005, volume 3494 of LNCS, pages 96–113. Springer, Heidelberg, May 2005.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai.
Efficient non-interactive secure computation. In Kenneth G. Paterson, editor, EURO-
CRYPT 2011, volume 6632 of LNCS, pages 406–425. Springer, Heidelberg, May 2011.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th ACM
STOC, pages 21–30. ACM Press, June 2007.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[JKKR17] Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and Ron Rothblum.
Distinguisher-dependent simulation in two rounds and its applications. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 158–189. Springer, Heidelberg, August 2017.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM STOC, pages
20–31. ACM Press, May 1988.

[Kus89] Eyal Kushilevitz. Privacy and communication complexity. In 30th FOCS, pages 416–
421. IEEE Computer Society Press, October / November 1989.

[LLW20] Huijia Lin, Tianren Liu, and Hoeteck Wee. Information-theoretic 2-round MPC without
round collapsing: Adaptive security, and more. In Rafael Pass and Krzysztof Pietrzak,
editors, Theory of Cryptography - 18th International Conference, TCC 2020, Durham,
NC, USA, November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes
in Computer Science, pages 502–531. Springer, 2020.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party
computation. Journal of Cryptology, 22(2):161–188, April 2009.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 735–763. Springer, Heidelberg, May 2016.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In S. Rao Kosaraju,
editor, 12th SODA, pages 448–457. ACM-SIAM, January 2001.

64

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986 of LNCS, pages 217–
238. Springer, Heidelberg, October / November 2016.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and
composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure
reactive systems. In S. Jajodia and P. Samarati, editors, ACM CCS 00, pages 245–254.
ACM Press, November 2000.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM
Press, May 2005.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

A Universal Composition Framework

Below we briefly review the Universal Composition (UC) security. For full details see [Can01]. Most
parts of this section has been taken verbatim from [CLP10]. A reader familiar with the notion of
UC security can safely skip this section.

A.1 The basic model of execution

Following [GMR88, Gol01], a protocol is represented as an interactive Turing machine (ITM), which
represents the program to be run within each participant. Specifically, an ITM has three tapes that
can be written to by other ITMs: the input and subroutine output tapes model the inputs from and
the outputs to other programs running within the same “entity" (say, the same physical computer),
and the incoming communication tapes and outgoing communication tapes model messages received
from and to be sent to the network. It also has an identity tape that cannot be written to by the
ITM itself. The identity tape contains the program of the ITM (in some standard encoding) plus
additional identifying information specified below. Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifer that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITM
belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance.
Typically the PID is also used to associate ITIs with “parties", or clusters, that represent some
administrative domains or physical computers.

The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

We assume that all ITMs are probabilistic polynomial time (PPT). An ITM is PPT if there
exists a constant c > 0 such that, at any point during its run, the overall number of steps taken by

65

M is at most nc, where n is the overall number of bits written on the input tape ofM in this run. (In
fact, in order to guarantee that the overall protocol execution process is bounded by a polynomial,
we define n as the total number of bits written to the input tape of M , minus the overall number
of bits written by M to input tapes of other ITMs.; see [Can01].)

A.2 Security of protocols

Protocols that securely carry out a given task (or, protocol problem) are defined in three steps, as
follows. First, the process of executing a protocol in an adversarial environment is formalized. Next,
an “ideal process" for carrying out the task at hand is formalized. In the ideal process the parties
do not communicate with each other. Instead they have access to an “ideal functionality," which is
essentially an incorruptible “trusted party" that is programmed to capture the desired functionality
of the task at hand. A protocol is said to securely realize an ideal functionality if the process of
running the protocol amounts to “emulating" the ideal process for that ideal functionality. Below
we overview the model of protocol execution (called the real-life model), the ideal process, and the
notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversary A that controls the communication among the parties, and an
environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter n ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by the
environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on
the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [Can04, BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

In this work, we consider the setting of static corruptions. In the static corruption setting, the
set of corrupted parties is determined at the start of the protocol execution and does not change
during the execution.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists of
only a single bit.

66

Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . . as
described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random variable
describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party") that
interacts with the parties and the adversary. More specifically, in the ideal protocol for functionality
F all parties simply hand their inputs to an ITI running F . (We will simply call this ITI F . The
SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is null.)) In
addition, F can interact with the adversary according to its code. Whenever F outputs a value to
a party, the party immediately copies this value to its own output tape. We call the parties in the
ideal protocol dummy parties. Let Π(F) denote the ideal protocol for functionality F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ if
for any adversary A there exists an adversary S such that no environment Z, on any input, can
tell with non-negligible probability whether it is interacting with A and parties running Π, or
it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition A.1. Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction for
UC security we have EXECφ,S,Z

c
≈ EXECΠ,A,Z .

Definition A.2. Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes
F if Π UC-emulates the ideal process Π(F).

A.3 Hybrid protocols

Hybrid protocols are protocols where, in addition to communicating as usual as in the standard
model of execution, the parties also have access to (multiple copies of) an ideal functionality.
Hybrid protocols represent protocols that use idealizations of underlying primitives, or alternatively
make trust assumptions on the underlying network. They are also instrumental in stating the
universal composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid protocol with
access to an ideal functionality F), the parties may give inputs to and receive outputs from an
unbounded number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal process.
That is, giving input to a copy of F is done by writing the input value on the input tape of that
copy. Similarly, each copy of F writes the output values to the subroutine output tape of the
corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

67

The copies of F are differentiated using their sub-session IDs (see UC with joint state [CR03]).
All inputs to each copy and all outputs from each copy carry the corresponding sub-session ID.
The model does not specify how the sub-session IDs are generated, nor does it specify how parties
“agree" on the sub-session ID of a certain protocol copy that is to be run by them. These tasks
are left to the protocol. This convention seems to simplify formulating ideal functionalities, and
designing protocols that securely realize them, by freeing the functionality from the need to choose
the sub-session IDs and guarantee their uniqueness. In addition, it seems to reflect common practice
of protocol design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

The universal composition operation. We define the universal composition operation and
state the universal composition theorem. Let ρ be an F-hybrid protocol, and let Π be a protocol
that securely realizes F . The composed protocol ρΠ is constructed by modifying the code of each
ITM in ρ so that the first message sent to each copy of F is replaced with an invocation of a new
copy of Π with fresh random input, with the same SID (different invocations of F are given different
sub-session IDs), and with the contents of that message as input. Each subsequent message to that
copy of F is replaced with an activation of the corresponding copy of Π, with the contents of that
message given to Π as new input. Each output value generated by a copy of Π is treated as a
message received from the corresponding copy of F . The copy of Π will start sending and receiving
messages as specified in its code. Notice that if Π is a G-hybrid protocol (i.e., ρ uses ideal evaluation
calls to some functionality G) then so is ρΠ.

The universal composition theorem. Let F be an ideal functionality. In its general form,
the composition theorem basically says that if Π is a protocol that UC-realizes F then, for any F-
hybrid protocol ρ, we have that an execution of the composed protocol ρΠ “emulates" an execution
of protocol ρ. That is, for any adversary A there exists a simulator S such that no environment
machine Z can tell with non-negligible probability whether it is interacting with A and protocol ρΠ

or with S and protocol ρ, in a UC interaction. As a corollary, we get that if protocol ρ UC-realizes
F , then so does protocol ρΠ. 7

Theorem A.3 (Universal Composition [Can01].). Let F be an ideal functionality. Let ρ be a
F-hybrid protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some functionality
G, then so does ρΠ.

A.4 The Common Reference/Random String Functionality

In the common reference string (CRS) model [CF01, CLOS02], all parties in the system obtain from
a trusted party a reference string, which is sampled according to a pre-specified distribution D.
The reference string is referred to as the CRS. In the UC framework, this is modeled by an ideal
functionality FDcrs that samples a string ρ from a pre-specified distribution D and sets ρ as the CRS.
FDcrs is described in Figure 11.

7The universal composition theorem in [Can01] applies only to “subroutine respecting protocols", namely protocols
that do not share subroutines with any other protocol in the system.

68

Functionality FD
crs

FD
crs runs with parties P1, . . . Pn and is parameterized by a sampling algorithm D.

1. Upon activation with session id sid proceed as follows. Sample ρ = D(r), where r denotes
uniform random coins, and send (crs, sid, ρ) to the adversary.

2. On receiving (crs, sid) from the adversary, send (crs, sid, ρ) to every party.

Figure 11: The Common Reference String Functionality.

When the distribution D in FDcrs is sent to be the uniform distribution (on a string of appropriate
length) then we obtain the common random string functionality denoted as Fcrs.

A.5 General Functionality

We consider the general-UC functionality F , which securely evaluates any polynomial-time (possibly
randomize) function f : ({0, 1}`in)n → ({0, 1}`out)n. The functionality Ff is parameterized with a
function f and is described in Figure 12. In this paper we will only be concerned with the static
corruption model.

Functionality Ff

Ff parameterized by an (possibly randomized) n-ary function f , running with parties P =
{P1, . . . Pn} (of which some may be corrupted) and an adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid,P, Pi, xi) to the
functionality.

2. Upon receiving the inputs from all parties, evaluate (y1, . . . yn)← f(x1, . . . , xn). For every Pi
that is corrupted send adversary S the message (output, sid,P, Pi, yi).

3. On receiving (generateOutput, sid,P) from S the ideal functionality, outputs
(output, sid,P, Pi, yi) to every Pi. (And ignores the message if inputs from all parties
in P have not been received.)

Figure 12: General Functionality.

A.6 General Functionality with Input Dependent Abort

We also consider a weaker notion of security, called as input-dependent abort, where we allow an
adversary to correlate the abort of an honest party with the inputs of all other honest parties. We
follow the modeling used by [IKO+11] and describe the ideal functionality F†f in Figure 13.

69

Functionality F†f

F†f parameterized by an (possibly randomized) n-ary function f , running with parties P =
{P1, . . . Pn} (of which some may be corrupted) and an adversary S, proceeds as follows:

1. Each party Pi (and S on behalf of Pi if Pi is corrupted) sends (input, sid,P, Pi, xi) to the
functionality.

2. S additionally sends (predicate, sid, φ) where φ denotes the description of a predicate φ :
({0, 1}`in)n → {0, 1}.

3. Upon receiving the inputs from all parties, evaluate (y1, . . . yn) ← f(x1, . . . , xn) and z. For
every Pi that is corrupted send adversary S the message (output, sid,P, Pi, yi).

4. On receiving (generateOutput, sid,P) from S, the ideal functionality computes z =
φ(x1, . . . , xn). If z = 0, it outputs (output, sid,P, Pi, yi) to every Pi. Else, if z = 1, it
sends (output, sid,P, Pi, abort) to every Pi (And ignores the message if inputs from all parties
in P have not been received.)

Figure 13: General Functionality with Input Dependent Abort.

70

	Introduction
	Our Results

	Technical Overview
	Semi-Honest Setting
	Malicious Setting

	Preliminaries
	Universal Composition Framework
	Garbled Circuits
	Oblivious Transfer
	Non-Interactive Secure Computation
	Bivariate Polynomials

	3-Round Semi-Honest MPC
	Step-1: Protocol for F3MULTPlus
	Step-2: Protocol for Arbitrary Functions

	3-round Malicious MPC
	First Step: Special Functionality with Input Dependent Abort
	Conforming Protocols and The Round-collapsing Compiler
	Second Step: Special Functionality with Standard Security
	Third Step: Bootstrapping from Special to General Functions in 3 Rounds

	Universal Composition Framework
	The basic model of execution
	Security of protocols
	Hybrid protocols
	The Common Reference/Random String Functionality
	General Functionality
	General Functionality with Input Dependent Abort

