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Abstract—Due to the enormous energy consuming involved
in the proof of work (POW) process, the resource-efficient
blockchain system is urged to be released. The verifiable delay
function (VDF), being slow to compute and easy to verify,
is believed to be the kernel function of the next-generation
blockchain system. In general, the reduction over a class group,
involving many complex operations, such as the large-number
division and multiplication operations, takes a large portion in
the VDF. In this paper, for the first time, we propose a high-
speed architecture for the reduction by incorporating algorithmic
transformations and architectural optimizations. Firstly, based on
the fastest reduction algorithm, we present a modified version
to make it more hardware-friendly by introducing a novel
transformation method that can efficiently remove the large-
number divisions. Secondly, highly parallelized and pipelined
architectures are devised respectively for the large-number mul-
tiplication and addition operations to reduce the latency and
the critical path. Thirdly, a compact state machine is developed
to enable maximum overlapping in time for computations. The
experiment results show that when computing 209715 reduction
steps with the input width of 2048 bits, the proposed design
only takes 137.652ms running on an Altera Stratix-10 FPGA at
100MHz frequency, while the original algorithm needs 3278ms
when operating over an i7-6850K CPU at 3.6GHz frequency.
Thus we have obtained a drastic speedup of nearly 24x over an
advanced CPU.

Index Terms—Verifiable delay function, blockchain, reduction,
hardware architecture, FPGA

I. INTRODUCTION

A verifiable delay function (VDF) is a function which is

slow to evaluate and easy to verify [1], [2]. A number of

specified sequential steps are required to acquire the evaluation

result, while the verification procedure is efficient and public.

There are a lot of applications of VDF in decentralized

systems, such as generating a verifiable randomness beacon

in a trust-less environment and constructing resource-efficient

blockchains. For instance, a classic approach to get a ran-

domness beacon is to apply an extractor function to a public

entropy source, such as stock prices [2]. This approach is

unreliable when the attacker tries to control the beacon results

by influencing the stock price according to their simulations.

Due to the heavy computation of the evaluation function,

a VDF can be applied to make it unachievable to get the

simulation results before the beacon is announced. As for
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the resource-efficient blockchain, also called next-generation

blockchain, is much different from the proof-of-work (POW)

blockchain like Bitcoin or Ethereum. POW blockchains, which

consume a large (and growing) amount of energy, are gradually

replaced by some resource-efficient blockchains such as the

proof-of-stake [3]–[7], proof-of-storage [8], and proof-of space

[9], [10] blockchains. VDFs are applied to these projects

to resist simulation attacks from which the resource-efficient

blockchains suffer a lot. Some other applications of VDFs

were also introduced in [2].

Two brilliant VDFs are proposed recently by Wesolowski

and Pietrzak respectively [1], [11], [12]. The evaluation func-

tions are the same in both schemes and the verification

procedures are different. Both of them construct evaluation

functions with repeated squaring in a group of unknown order,

which is believed cannot be sped up in parallel. This is

what we focus on in this paper, openly proposing the fastest

hardware design to prevent the blockchain systems from being

attacked. Benefiting from the convenience of generating the

appropriate parameters without any trusted party, using a class

group of Binary quadratic forms is considered as a good choice

for evaluation. The reduction and squaring of binary quadratic

forms are the computations in the evaluation function. For the

original version of the evaluation, 90% of the time is taken

by the reduction operations. Thanks to the competition hosted

by the CHIA company, many simplifications for the reduction

algorithm have been proposed. By approximating the large

integers using small (like 64-bit) numbers, Akashnil Dutta

improved the reduction by almost 5x [13]. With the help of the

fast reduction algorithm, reduction time is decreased to about

60% of the overall time budget. However, there are still exist

large integer divisions, which are not friendly for hardware

implementation.

In order to make the VDF more effective, a modified fast

reduction algorithm and the corresponding hardware archi-

tecture are proposed in this paper. By introducing a group

of selective parameters, large-number divisions are discarded,

which makes it more friendly for hardware implementation.

Highly-parallelized architectures are also devised for large-

number multiplication and addition to reduce the long latency

and the critical path. Moreover, a compact state machine

is developed to enable maximum overlapping in time for

computations.

The rest of this work is structured as follows. Section II

summaries the definition of VDF, binary quadratic forms,



and the fast reduction algorithm. The proposed modified fast

reduction algorithm is presented in Section III. Hardware

architectures are shown in Section IV. Experiment results and

comparisons are shown in Section V. Finally, Section VI draws

the conclusion.

II. BACKGROUND

A. VDF

A verifiable delay function (VDF) is a function f : X → Y
that takes a prescribed time to compute and cannot be paral-

lelly processed. However, the output can be quickly verified

by public when the result is computed. Moreover, every input

x ∈ X must have a unique valid output y ∈ Y . In more detail,

a VDF consists of three algorithms: Setup(λ, T ), Eval(pp, x),
and V erify(pp, x, y, π).

• Setup(λ, T ) takes a security parameter λ and a time

bound T , and generates public parameters pp.

• Eval(pp, x) takes a number of sequential steps to output

a y and a proof π.

• V erify(pp, x, y, π) outputs accept if y is indeed the

correct output for x, or outputs reject.

Repeated squaring in a group of unknown order is the

best-known method for achieving a non-parallelizable sequen-

tial operation in the evaluation function [14]. An unknown

group order prevents the repeated squaring computation being

shorted by modulo the order of the group. The traditional RSA

group scheme uses a multiplicative group Z/N , where N is

the product of two unknown primes. When N = pq, the order

of the group equals to (p−1)(q−1). It is extremely difficult to

calculate the factors of N , so the group order is considered as

unknown. However, a trusted third-party is needed to generate

the order N and destroy the prime factors once N is created.

Therefore, class groups of binary quadratic forms are presented

to get a group of unknown order more effectively and more

securely, without any trusted party.

B. Binary Quadratic Forms

Consider a class group of a negative prime discriminant d,

where |d| ≡ 3 mod 4. When |d| is sufficiently large, the order

of the group is so complicated to be computed that it can be

considered as unknown. The class group is explained clearly

in [14], [15], and we only introduce several basic concepts

and algorithms which are needed in our work.

• A binary quaratic form is f(x, y) = ax2 + bxy + cy2,

where a, b, c ∈ R and they are not all equal to zero. And

f = (a, b, c) is called a form. The discriminant of a form

is Δ(f) = b2 − 4ac.
• For a given f(a, b, c) and n, a solution (x, y) ∈ Z

2 to the

equation n = ax2 + bxy + cy2 is called a representation

of n by f .

• A form f = (a, b, c) is called normal if −a < b ≤ a. If

f(a, b, c) is normal and a ≤ c (if a = c then b ≥ 0), f is

called reduced.

The normalization algorithm and reduction algorithm are

shown in Alg. 1 and Alg. 2, respectively. A intermediate value

r is computed with a and b, and is used to update f(a, b, c)
to a normalization form. Similar operation is repeated after a

normalization to get the reduced form.

Algorithm 1 Normalization

Input: f(a, b, c), Δ < 0, a > 0
Output: f(a, b, c), −a < b ≤ a
1: r =

⌊
a−b
2a

⌋
;

2: η(f) = (a, b+ 2ra, ar2 + br + c);
3: Update f = η(f)

Algorithm 2 Reduction

Input: f(a, b, c), Δ < 0, a > 0
Output: f(a, b, c), −a < b ≤ a, a ≤ c, and if a = c then

b ≥ 0
1: Normalize f ;

2: repeat
3: s =

⌊
c+b
2c

⌋
;

4: ρ(f) = (c,−b+ 2sc, cs2 − bs+ a);
5: Updatef = ρ(f);
6: until f is reduced

C. Fast Reduction Algorithm

Due to the heavy computation of large-number division and

multiplication, the reduction of a binary quadratic form is

extremely slow to compute. In the repeated squaring proce-

dure, almost 90% of the time is taken in the reduction steps.

Therefore, a competition was hosted by the CHIA company

to find the simplification algorithm for reduction. The fast

reduction algorithm proposed by Akashnil Dutta stood out in

the first round competition. The main idea of this algorithm

is using small numbers to simulate the large numbers and

performing reduction on those small numbers. Intermediate

variables are generated in the small reduction loops, and the

large numbers are updated with these variables when the small

reductions are done. These steps are repeated until a reduced

form is gotten. The detailed algorithm is depicted in Alg. 3.

Algorithm 3 Fast Reduction

Input: f(a, b, c),Δ < 0, a > 0
Output: f(a, b, c), −a < b ≤ a, a ≤ c and if a = c then

b ≥ 0
1: if f is reduced then
2: Return f ;

3: else
4: repeat
5: Effective bits of a, b, c are computed and denoted

as a num, b num and c num.

6: The maximun number and the minimum one are

chosen as max num and min num.

7: if max num−min num > 31 then
8: Normalize f ;

9: else
10: (x, y, z) are generated by extracting the most

significant 64 bits of (a, b, c).



11: x � (max num− a num+ 1);
12: y � (max num− b num+ 1);
13: z � (max num− c num+ 1);
14: Set u = 1, v = 0,m = 0, n = 1;

15: repeat
16: δ = y ≥ 0 ? (b+ c)/(2c) : −(−b+ c)/(2c)
17: (x′, y′, z′) = (z,−y + 2δz, x− δy + δ2z)
18: (u′, v′,m′, n′) = (v,−u+δv, n,−m+δn)
19: Update(x, y, z) and (u, v,m, n);
20: until x < z ‖ z > 0
21: a′ = u2a+ umb+m2c;
22: b′ = 2uva+ (un+ vm)b+ 2mnc;
23: c′ = v2a+ vnb+ n2c;
24: Update (a, b, c);
25: end if
26: until f is reduced

27: end if

There are some simple transformations when testing

whether f(a, b, c) is reduced in the fast reduction algorithm,

which is shown in Alg. 4.

Algorithm 4 Test Reduction

Input: f(a, b, c)
Output: f(a, b, c), check
1: if |a| < |b| ‖ |c| < |b| then
2: Return f(a, b, c) and check = 0
3: else
4: if a > c then
5: f(a′, b′, c′) = f(c,−b, a)
6: else if a == c && b < 0 then
7: f(a′, b′, c′) = f(a,−b, c)
8: else
9: f(a′, b′, c′) = f(a, b, c)

10: end if
11: Return f(a′, b′, c′) and check = 1
12: end if

According to Akashnil’s test, reduction steps in repeated

squaring are sped up by almost 5 times by applying the fast re-

duction algorithm [13]. The reduction time decreases to about

60% of the overall time budget, which is the fastest scheme

in the competition. Therefore, we choose this algorithm to

implement our hardware accelerator.

III. MODIFIED FAST REDUCTION ALGORITHM

The key advantage of fast reduction algorithm is that the

multiplications and divisions of large numbers are decreased.

Multiplication can be accelerated by parallel processing. But

the division of large numbers is really unfriendly for hardware

implementation. Hence, a modified fast reduction (MFR) al-

gorithm is proposed to remove large number divisions and

make the algorithm more friendly for hardware acceleration.

We notice that the function of normalization in the fast

reduction algorithm is to make variables (a, b, c) closer to each

other. Therefore, we choose a group of specified parameters

to update these variables, which achieves the same target

without any division of large numbers. Only some large-

number additions and subtractions are involved. These can also

be accelerated by parallel processing. The detailed algorithm

is depicted in Alg. 5.

Algorithm 5 Modified Fast Reduction

Input: f(a, b, c),Δ < 0, a > 0
Output: f(a, b, c), −a < b ≤ a, a ≤ c and if a = c then

b ≥ 0
1: Test whether f is reduced.

2: if f is reduce then
3: Return f ;

4: else
5: repeat
6: Effective bits of a, b, c are computed and denoted

as a num, b num and c num.

7: The maximun number and the minimum one are

chosen as max num and min num.

8: if max num−min num > 31 then
9: (a′, b′, c′) = (c, c− b, a− b+ c)

10: Update(a, b, c);
11: else
12: (x, y, z) are generated by extracting the most

significant 64 bits of (a, b, c).
13: x � (max num− a num+ 1);
14: y � (max num− b num+ 1);
15: z � (max num− c num+ 1);
16: Set u = 1, v = 0, w = 0, x = 1;

17: repeat
18: δ = y ≥ 0 ? (b+ c)/(2c) : −(−b+ c)/(2c)
19: (x′, y′, z′) = (z,−y + 2δz, x− δy + δ2z)
20: (u′, v′,m′, n′) = (v,−u+δv, n,−m+δn)
21: Update(x, y, z) and (u, v,m, n);
22: until x < z ‖ z > 0
23: a′ = u2a+ umb+m2c;
24: b′ = 2uva+ (un+ vm)b+ 2mnc;
25: c′ = v2a+ vnb+ n2c;
26: Update (a, b, c);
27: end if
28: until f is reduced

29: end if

IV. THE PROPOSED ARCHITECTURE

Based on the modified fast reduction algorithm (MFR)

shown in Alg. 5, A well-designed hardware architecture is

proposed in this section. Fig. 1 shows the top-level architecture

of the MFR.

The whole architecture is composed of four main modules:

1) Test-Reduction; 2) Pre-Calculation; 3) App-Reduce; and

4) Tran-Calculation. The Test-Reduction module tests whether

the input form is reduced. The Pre-Calculation module counts

the effective bits and extracts the most significant 64 bits to

represent the large number. When the signal Check equals “1”,

these small numbers from the Pre-Calculation module are sent

to App-Reduce module to operate the reduction algorithm for

64-bit numbers. The Tran-Calculation module updates the old



Fig. 1. Top-Level Entity

form using the transformation parameters T (u, v, w, x) from

the App-Reduce module. These four modules will be detailed

in the following.

Test-Reduction In this module, the carry select adder(CAS)

[16] architecture is adopted to reduce the critical path. For

instance, the 2048-bit addition is divided into 32 64-bit addi-

tions, which does not cause too much delay. As shown in Fig.

2, ai+ bi and ai+ bi+1 are calculated at the same time. The

final result addi is decided by ci − 1 which is the highest bit

of addi−1. After all mid-values are calculated, the sign bits of

the result are generated by adding the sign bit of a, the sign

bit of b, and the possible carry bit from the previous adder.

The total delay of this architecture is one 64-bit adder, 31 64-

bit multiplexers (MUXs), and one full adder, which is much

faster than a large 2049-bit adder.

Fig. 2. Carry Select Adder

Fig. 3. Test Reduction

The top-level architecture of this module is shown in Fig.

3. A comparer is placed after the fast addition unit, which

outputs “0” when the input equals to 0, outputs “1” when the

MSB of input is 0, and outputs “2” when the most significant

bit (MSB) is 1. According to the pseudo-code in Alg. 4, the

outputs of these comparators are used with some MUXs to

generate the final results.

Pre-Calculation The most significant bits of the triple-

inputs should be firstly confirmed in this module. As shown

in Fig. 4, a tree structure is adopted to find the MSB more

efficiently. The whole procedure is cut into three stages to

shrink calculation loads. In the first stage, the first nonzero

element of 32 64-bit numbers is found and decomposed into

16 4-bit integers. In the second stage, the first nonzero 4-bit is

acquired. And in the third stage, a small size lookup table is

used to locate the exact MSB. At last, the numbers of effective

bits are calculated by two shift operators and two adders.

Fig. 4. Bit-Counter

Fig. 5. Pre-Calculation

Fig. 5 shows the top-level architecture of the whole

module. Bit-counter generates the lengths of these three

inputs. The maximum one and the minimum one of

(a num, b num, c num) can be found out through four

MUXs and three comparers. If max num−min num > 31,

the signal check will be set high. 4c−b and a−b are calculated

in parallel for high-speed design, and the results are added up

to obtain c1. f(a0, b0, c0) or f(a1, b1, c1) are chosen to be



output as f(a out, b out, c out) by the signal check through

a MUX.

APP-Reduce A loop architecture is adopted in this module,

which is shown in Fig. 6. c − b and c + b are calculated in

parallel, and the results are selected out by the sign bit of b.
The middle variable delta is generated by a 64-bit divider

with pipelines inserted. Then, f(a, b, c) and T (u, v, w, x)
are updated with delta using several adders and multipliers.

Before the “App-reduce” is done, new f(a, b, c) will be sent to

the input MUX to get into loop again. a and c are compared

to obtain the signal done, and T (u, v, w, x) is exported once

the signal done gets high.

Fig. 6. App-Reduce

Tran-Calculation As declared by the pseudo-code in Alg.

5, multipliers for large numbers and the three-input adders

for large numbers are needed in this module. The adder is

similar to the architecture in Fig. 2, and small three-input

adders are used to calculate the partial sum. Both ai + bi + ci
and ai + bi + ci + 1 are generated, and the exact partial sum

is selected by the propagating carry with a series of MUXs.

As for the large-number multiplier, the Karatsuba scheme is

adopted. A large-number multiplication is divided into several

small multiplications. Then the additions of partial products

are performed with a carry-select architecture which is similar

to the fast-add module.

V. EXPERIMENT RESULTS AND COMPARISON

TABLE I
EXPERIMENT RESULTS OF 209715 GROUPS OF INPUT FOR THE

REDUCTION

Total Time Loops
MFR (proposed) 3232ms 7230871
Fast Reduction 3278ms 7229027
Proportion 98.60% 100.03%

Due to the fact that there is no existing hardware imple-

mentation in the open literature for the reduction of binary

quadratic forms, we compare our scheme with software imple-

mentation. We test Akashnil’s code on a server with i7-6850K

@3.6GHZ for comparison. Based on Akashnil’s platform, our

algorithm is also deployed on the same server. 209715 groups

of input are used for the test. As shown in Table I, the MFR

takes 3232ms while the original algorithm needs 3278ms. And,

MFR takes 7230871 loops in total while Akashnil’s code needs

7229027 loops. Benefiting from discarding the large-number

division, our algorithm is a little faster than the fast reduction

algorithm by 1.40%, although a little more loops are needed.

We code our architecture with RTL and implement it on

quartus 18.0 platform with 1SM21BHU2F53E2VGS1 board.

Table II shows the implementation results. ALM utilization is

189938, which takes about 27% resource of the board. Besides,

1483 DSPs and 333022 registers are consumed, which take

27% and 12% respectively. We get the timing closure at

100MHz and test the same work as what we have done

with software. It takes 137.652ms to finish 209715 times of

reductions, which is 24x faster than the software.

TABLE II
IMPLEMENTATION RESULTS

Resource Number Total Percentage
ALMs 189938 702720 27%
Registers 333022 2810880 12%
DSPs 1483 3960 37%

VI. CONCLUSION

In this paper, we propose a modified fast reduction algo-

rithm for the VDF, which can effectively remove the large-

number divisions. Software simulation shows that the pro-

posed algorithm achieves a slight better performance than

the state-of-art algorithm. Moreover, a well-designed hardware

architecture based on the proposed reduction algorithm is

also proposed. The multiplication and addition operations are

highly parallelized and a compact state machine is presented.

The experiment results show that when computing 209715

reduction steps with the input width of 2048 bits, the proposed

design only takes 137.652ms running on the Altera Stratix-

10 FPGA at 100MHz frequency, while the original algorithm

needs 3278ms when operating over the i7-6850K server at

3.6GHz frequency. Thus we have obtained a drastic speedup

of nearly 24 times over an advanced CPU.
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