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Abstract

In 2012, Aaronson and Christiano introduced the idea of hidden subspace states to build
public-key quantum money [STOC ’12]. Since then, this idea has been applied to realize several
other cryptographic primitives which enjoy some form of unclonability.

In this work, we study a generalization of hidden subspace states to hidden coset states. This
notion was considered independently by Vidick and Zhang [Eurocrypt ’21], in the context of
proofs of quantum knowledge from quantum money schemes. We explore unclonable properties
of coset states and several applications:

• We show that, assuming indistinguishability obfuscation (𝗂𝖮), hidden coset states possess a
certain direct product hardness property, which immediately implies a tokenized signature
scheme in the plain model. Previously, a tokenized signature scheme was known only
relative to an oracle, from a work of Ben-David and Sattath [QCrypt ’17].

• Combining a tokenized signature scheme with extractable witness encryption, we give a
construction of an unclonable decryption scheme in the plain model. The latter primitive
was recently proposed by Georgiou and Zhandry [ePrint ’20], who gave a construction
relative to a classical oracle.

• We conjecture that coset states satisfy a certain natural (information-theoretic) monogamy-
of-entanglement property. Assuming this conjecture is true, we remove the requirement
for extractable witness encryption in our unclonable decryption construction, by relying
instead on compute-and-compare obfuscation for the class of unpredictable distributions.
This conjecture was later proved by Culf and Vidick in a follow-up work.

• Finally, we give a construction of a copy-protection scheme for pseudorandom functions
(PRFs) in the plain model. Our scheme is secure either assuming 𝗂𝖮, 𝖮𝖶𝖥 and extractable
witness encryption, or assuming 𝗂𝖮,𝖮𝖶𝖥, compute-and-compare obfuscation for the class
of unpredictable distributions, and the strong monogamy property mentioned above. This
is the first example of a copy-protection scheme with provable security in the plain model
for a class of functions that is not evasive.
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1 Introduction

The no-cloning principle of quantum mechanics asserts that quantum information cannot be gener-
ically copied. This principle has profound consequences in quantum cryptography, as it puts a
fundamental restriction on the possible strategies that a malicious party can implement. One of
these consequences is that quantum information enables cryptographic tasks that are provably im-
possible to realize classically, the most famous example being information-theoretically secure key
distribution [BB84].

Beyond this, the no-cloning principle opens up an exciting avenue to realize cryptographic tasks
which enjoy some form of unclonability, e.g. quantum money [Wie83, AC12, FGH+12, Zha19a,
Kan18], quantum tokens for digital signatures [BS16], copy-protection of programs [Aar09, ALL+20,
CMP20], and more recently unclonable encryption [Got02, BL19] and decryption [GZ20].

In this work, we revisit the hidden subspace idea proposed by Aaronson and Christiano, which
has been employed towards several of the applications above. We propose a generalization of this
idea, which involves hidden cosets (affine subspaces), and we show applications of this to signature
tokens, unclonable decryption and copy-protection.

Given a subspace 𝐴 ⊆ 𝔽𝑛
2 , the corresponding subspace state is defined as a uniform superposition

over all strings in the subspace 𝐴, i.e.

|𝐴⟩ := 1√︀
|𝐴|

∑︁
𝑥∈𝐴
|𝑥⟩ ,

The first property that makes this state useful is that applying a Hadamard on all qubits creates a
uniform superposition over all strings in 𝐴⊥, the orthogonal complement of 𝐴, i.e. 𝐻⊗𝑛 |𝐴⟩ = |𝐴⊥⟩.

The second property, which is crucial for constructing unclonable primitives with some form
of verification, is the following. Given one copy of |𝐴⟩, where 𝐴 ⊆ 𝐹𝑛

2 is uniformly random of
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dimension 𝑛/2, it is impossible to produce two copies of |𝐴⟩ except with negligible probability. As
shown by [AC12], unclonability holds even when given quantum access to oracles for membership
in 𝐴 and 𝐴⊥, as long as the number of queries is polynomially bounded. On the other hand, such
membership oracles allow for verifying the state |𝐴⟩, leading to publicly-verifiable quantum money,
where the verification procedure is the following:

• Given an alleged quantum money state |𝜓⟩, query the oracle for membership in 𝐴 on input
|𝜓⟩. Measure the outcome register, and verify that the outcome is 1.

• If so, apply 𝐻⊗𝑛 to the query register, and query the oracle for membership in 𝐴⊥. Measure
the outcome register, and accept the money state if the outcome is 1.

It is not difficult to see that the unique state that passes this verification procedure is |𝐴⟩.
In order to obtain a quantum money scheme in the plain model (without oracles), Aaronson and

Christiano suggest instantiating the oracles with some form of program obfuscation. This vision is
realized subsequently in [Zha19a], where access to the oracles for subspace membership is replaced
by a suitable obfuscation of the membership programs, which can be built from indistinguishability
obfuscation (iO). More precisely, Zhandry shows that, letting 𝑃𝐴 and 𝑃𝐴⊥ be programs that check
membership in 𝐴 and 𝐴⊥ respectively, any computationally bounded adversary who receives a
uniformly random subspace state |𝐴⟩ together with 𝗂𝖮(𝑃𝐴) and 𝗂𝖮(𝑃𝐴⊥) cannot produce two copies
of |𝐴⟩ except with negligible probability.

The subspace state idea was later employed to obtain quantum tokens for digital signatures
[BS16]. What these are is best explained by the (award-winning) infographic in [BS16] (see the
ancillary arXiv files there). Concisely, a quantum signature token allows Alice to provide Bob with
the ability to sign one and only one message in her name, where such signature can be publicly
verified using Alice’s public key. The construction of quantum tokens for digital signatures from
[BS16] is the following.

• Alice samples a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 , which constitutes her secret key. A

signature token is the state |𝐴⟩.

• Anyone in possession of a token |𝐴⟩ can sign message 0 by outputting a string 𝑣 ∈ 𝐴 (this
can be obtained by measuring |𝐴⟩ in the computational basis), and can sign message 1 by
outputting a string 𝑤 ∈ 𝐴⊥ (this can be done by measuring |𝐴⟩ in the Hadamard basis).

• Signatures can be publicly verified assuming quantum access to an oracle for subspace mem-
bership in 𝐴 and in 𝐴⊥ (such access can be thought of as Alice’s public key).

In order to guarantee security of the scheme, i.e. that Bob cannot produce a valid signature for more
than one message, Ben-David and Sattath prove the following strengthening of the original property
proven by Aaronson and Christiano. Namely, they show that any query-bounded adversary with
quantum access to oracles for membership in 𝐴 and 𝐴⊥ cannot produce, except with negligible
probability, a pair (𝑣, 𝑤) where 𝑣 ∈ 𝐴 ∖ {0} and 𝑤 ∈ 𝐴⊥ ∖ {0}. We refer to this property as a direct
product hardness property.

The natural step to obtain a signature token scheme in the plain model is to instantiate the
subspace membership oracles using 𝗂𝖮, analogously to the quantum money application. However,
unlike for the case of quantum money, here one runs into a technical barrier, which we expand
upon in Section 2.1. Thus, a signature token scheme is not known in the plain model, and this has
remained an open question since [BS16].
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In general, a similar difficulty in obtaining schemes that are secure in the plain model as opposed
to an oracle model seems prevalent in works about other unclonable primitives. For example, in
the case of copy-protection of programs, we know that copy-protection of a large class of evasive
programs, namely compute-and-compare programs, is possible with provable non-trivial security
against fully malicious adversaries in the quantum random oracle model (QROM) [CMP20]. Other
results achieving provable security in the plain model are secure only against a restricted class
of adversaries [AP21, KNY20, BJL+21]. To make the contrast between plain model and oracle
model even more stark, all unlearnable programs can be copy-protected assuming access to (highly
structured) oracles [ALL+20], but we know, on the other hand, that a copy-protection scheme for
all unlearnable programs in the plain model does not exist (assuming Learning With Errors is hard
for quantum computers) [AP21].

Likewise, for the recently proposed task of unclonable decryption, the only currently known
scheme is secure only in a model with access to subspace membership oracles [GZ20].

1.1 Our Results

We study a generalization of subspace states, which we refer to as coset states. This notion has
also been studied independently in a work of Vidick and Zhang [VZ21], in the context of proofs of
quantum knowledge from quantum money schemes.

For 𝐴 ⊆ 𝔽𝑛
2 , and 𝑠, 𝑠′ ∈ 𝔽𝑛

2 , the corresponding coset state is:

|𝐴𝑠,𝑠′⟩ :=
∑︁
𝑥∈𝐴

(−1)⟨𝑥,𝑠′⟩ |𝑥+ 𝑠⟩ ,

where here ⟨𝑥, 𝑠′⟩ denotes the inner product of 𝑥 and 𝑠′. In the computational basis, the quantum
state is a superposition over all elements in the coset 𝐴 + 𝑠, while, in the Hadamard basis, it is a
superposition over all elements in 𝐴⊥+𝑠′. Let 𝑃𝐴+𝑠 and 𝑃𝐴⊥+𝑠′ be programs that check membership
in the cosets 𝐴+ 𝑠 and 𝐴⊥ + 𝑠′ respectively. To check if a state |𝜓⟩ is a coset state with respect to
𝐴, 𝑠, 𝑠′, one can compute 𝑃𝐴+𝑠 in the computational basis, and check that the outcome is 1; then,
apply 𝐻⊗𝑛 followed by 𝑃𝐴⊥+𝑠′ , and check that the outcome is 1.

Computational Direct Product Hardness. Our first technical result is establishing a com-
putational direct product hardness property in the plain model, assuming post-quantum 𝗂𝖮 and
one-way functions.

Theorem 1.1 (Informal). Any quantum polynomial-time adversary who receives |𝐴𝑠,𝑠′⟩ and pro-
grams 𝗂𝖮(𝑃𝐴+𝑠) and 𝗂𝖮(𝑃𝐴⊥+𝑠′) for uniformly random 𝐴 ⊆ 𝔽𝑛

2 , 𝑠, 𝑠
′ ∈ 𝔽𝑛

2 , cannot produce a pair
(𝑣, 𝑤) ∈ (𝐴+ 𝑠)× (𝐴⊥ + 𝑠′), except with negligible probability in 𝑛.

As we mentioned earlier, this is in contrast to regular subspace states, for which a similar direct
product hardness is currently not known in the plain model, but only in a model with access to
subspace membership oracles.

We then apply this property to obtain the following primitives.

Signature Tokens. Our direct product hardness immediately implies a signature token scheme
in the plain model (from post-quantum 𝗂𝖮 and one-way functions), thus resolving the main question
left open in [BS16].
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Theorem 1.2 (Informal). Assuming post-quantum 𝗂𝖮 and one-way functions, there exists a signa-
ture token scheme.

In this signature token scheme, the public verification key is the pair (𝗂𝖮(𝑃𝐴+𝑠), 𝗂𝖮(𝑃𝐴⊥+𝑠′)),
and a signature token is the coset state |𝐴𝑠,𝑠′⟩. Producing signatures for both messages 0 and 1 is
equivalent to finding elements in both 𝐴+ 𝑠 and 𝐴⊥ + 𝑠′, which violates our computational direct
product hardness property.

Unclonable Decryption. Unclonable decryption, also known as single-decryptor encryption, was
introduced in [GZ20]. Informally, a single-decryptor encryption scheme is a (public-key) encryption
scheme in which the secret key is a quantum state. The scheme satisfies a standard notion of security
(in our case, CPA security), as well as the following additional security guarantee: no efficient
quantum algorithm with one decryption key is able to produce two working decryption keys. We
build a single-decryptor encryption scheme using a signature tokens scheme and extractable witness
encryption in a black-box way. By leveraging our previous result about the existence of a signature
token scheme in the plain model, we are able to prove security without the need for the structured
oracles used in the original construction of [GZ20].

Theorem 1.3 (Informal). Assuming post-quantum 𝗂𝖮, one-way functions, and extractable witness
encryption, there exists a public-key single-decryptor encryption scheme.

Copy-protection of PRFs. The notion of a copy-protection scheme was introduced by Aaronson
in [Aar09] and recently explored further in [AP21, CMP20, ALL+20, BJL+21].

In a copy-protection scheme, the vendor of a classical program wishes to provide a user the
ability to run the program on any input, while ensuring that the functionality cannot be “pirated”:
informally, the adversary, given one copy of the program, cannot produce two programs that enable
evaluating the program correctly.

Copy-protection is trivially impossible classically, since classical information can always be
copied. This impossibility can be in principle circumvented if the classical program is encoded
in a quantum state, due to the no-cloning principle. However, positive results have so far been
limited. A copy-protection scheme [CMP20] is known for a class of evasive programs, known as
compute-and-compare programs, with provable non-trivial security against fully malicious adver-
saries in the Quantum Random Oracle Model (QROM). Other schemes in the plain model are
only secure against restricted classes of adversaries (which behave honestly in certain parts of the
protocol) [AP21, KNY20, BJL+21]. Copy-protection schemes for more general functionalities are
known [ALL+20], but these are only secure assuming very structured oracles (which depend on the
functionality that is being copy-protected).

In this work, we present a copy-protection scheme for a family of pseudorandom functions
(PRFs). In such a scheme, for any classical key 𝐾 for the PRF, anyone in possession of a quantum
key 𝜌𝐾 is able to evaluate 𝑃𝑅𝐹 (𝐾,𝑥) on any input 𝑥.

The copy-protection property that our scheme satisfies is that given a quantum key 𝜌𝐾 , no
efficient algorithm can produce two (possibly entangled) keys such that these two keys allow for
simultaneous correct evaluation on uniformly random inputs, with noticeable probability.

Similarly to the unclonable decryption scheme, our copy-protection scheme is secure assuming
post-quantum 𝗂𝖮, one-way functions, and extractable witness encryption.
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Theorem 1.4 (Informal). Assuming post-quantum 𝗂𝖮, one-way functions, and extractable witness
encryption, there exists a copy-protection scheme for a family of PRFs.

We remark that our scheme requires a particular kind of PRFs, namely puncturing and extracting
with small enough error (we refer to Section 7.2 for precise definitions). However, PRFs satisfying
these properties can be built from just one-way functions.

The existence of extractable witness encryption is considered to be a very strong assumption. In
particular, it was shown to be impossible in general (under a special-purpose obfuscation conjecture)
[GGHW17]. However, we emphasize that no provably secure copy-protection schemes with standard
malicious security in the plain model are known at all. Given the central role of PRFs in the
construction of many other cryptographic primitives, we expect that our copy-protection scheme,
and the techniques developed along the way, will play an important role as a building block to
realize unclonable versions of other primitives.

To avoid the use of extractable witness encryption, we put forth a (information-theoretic) con-
jecture about a monogamy of entanglement property of coset states, which we discuss below 1.

Assuming this conjecture is true, we show that both unclonable decryption and copy-protection
of PRFs can be constructed without extractable witness encryption, by relying instead on compute-
and-compare obfuscation [WZ17, GKW17] (more details on the latter can be found in Section 3.3).

Theorem 1.5 (Informal). Assuming post-quantum 𝗂𝖮, one-way functions, and obfuscation of compute-
and-compare programs against unpredictable distributions, there exist: (i) a public-key single-decryptor
encryption scheme, and (ii) a copy-protection scheme for a family of PRFs.

As potential evidence in support of the monogamy-of-entanglement conjecture, we prove a weaker
version of the monogamy of entanglement property, which we believe will still be of independent
interest (more details on this are below).

Remark 1.6. While 𝗂𝖮 was recently constructed based on widely-believed computational assump-
tions [JLS20], the latter construction is not quantum resistant, and the situation is less clear
quantumly. However, several works have proposed candidate post-quantum obfuscation schemes
[BGMZ18, WW20, BDGM20], and based on these works 𝗂𝖮 seems plausible in the post-quantum
setting as well.

Remark 1.7. Compute-and-compare obfuscation against unpredictable distributions is known to ex-
ist assuming LWE (or 𝗂𝖮) and assuming the existence of Extremely Lossy Functions (ELFs) [Zha19b]
[WZ17, GKW17]. Unfortunately, the only known constructions of ELFs rely on hardness assump-
tions that are broken by quantum computers (exponential hardness of decisional Diffie-Hellman). To
remedy this, we give a construction of computate-and-compare obfuscation against sub-exponentially
unpredictable distributions, from plain LWE (see Theorem 3.3, and its proof in Appendix B). The
latter weaker obfuscation is sufficient to prove security of our single-decryptor encryption scheme,
and copy-protection scheme for PRFs, if one additionally assumes sub-exponentially secure 𝗂𝖮 and
one-way functions.

1This conjecture is proved true in the follow-up work by Culf and Vidick [CV21] after the first version of this
paper.
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Monogamy-of-Entanglement. As previously mentioned, we conjecture that coset states addi-
tionally satisfy a certain (information-theoretic) monogamy of entanglement property, similar to
the one satisfied by BB84 states, which is studied extensively in [TFKW13]. Unlike the monogamy
property of BB84 states, the monogamy property we put forth is well-suited for applications with
public verification, in a sense made more precise below.

This monogamy property states that Alice, Bob and Charlie cannot cooperatively win the fol-
lowing game with a challenger, except with negligible probability. The challenger first prepares a
uniformly random coset state |𝐴𝑠,𝑠′⟩ and gives the state to Alice. Alice outputs two (possibly en-
tangled) quantum states and sends them to Bob and Charlie respectively. Finally, Bob and Charlie
both get the description of the subspace 𝐴. The game is won if Bob outputs a vector in 𝐴+ 𝑠 and
Charlie outputs a vector in 𝐴⊥ + 𝑠′.

Notice that if Alice were told 𝐴 before she had to send the quantum states to Bob and Charlie,
then she could recover 𝑠 and 𝑠′ (efficiently) given |𝐴𝑠,𝑠′⟩. Crucially, 𝐴 is only revealed to Bob
and Charlie after Alice has sent them the quantum states (analogously to the usual monogamy-of-
entanglement game based on BB84 states, where 𝜃 is only revealed to Bob and Charlie after they
receive their states from Alice.).

We note that the hardness of this game is an information-theoretic conjecture. As such, there
is hope that it can be proven unconditionally.

Under this conjecture, we show that the problem remains hard (computationally) even if Alice
additionally receives the programs 𝗂𝖮(𝑃𝐴+𝑠) and 𝗂𝖮(𝑃𝐴⊥+𝑠′). Based on this result, we then obtain
unclonable decryption and copy-protection of PRFs from post-quantum 𝗂𝖮 and one-way functions,
and compute-and-compare obfuscation against unpredictable distributions. We thus remove the
need for extractable witness encryption (more details on this are provided in the technical overview,
Section 2.1).

As evidence in support of our conjecture, we prove a weaker information-theoretic monogamy
property, namely that Alice, Bob and Charlie cannot win at a monogamy game that is identical to
the one described above, except that at the last step, Bob and Charlie are each required to return a
pair in (𝐴+ 𝑠)× (𝐴⊥+ 𝑠′), instead of a single element each. Since coset states have more algebraic
structure than BB84 states, a more refined analysis is required to prove this (weaker) property
compared to that of [TFKW13]. We again extend this monogamy result to the case where Alice
receives programs 𝗂𝖮(𝑃𝐴+𝑠) and 𝗂𝖮(𝑃𝐴⊥+𝑠′).

We emphasize that our monogamy result for coset states differs from the similar monogamy
result for BB84 states in one crucial way: the result still holds when Alice receives programs that
allow her to verify the correctness of her state (namely 𝗂𝖮(𝑃𝐴+𝑠) and 𝗂𝖮(𝑃𝐴⊥+𝑠′)). This is not the
case for the BB84 monogamy result. In fact, Lutomirski [Lut10] showed that an adversary who is
given |𝑥𝜃⟩ and a public verification oracle that outputs 1 if the input state is correct and 0 otherwise,
can efficiently copy the state |𝑥𝜃⟩. At the core of this difference is the fact that coset states are
highly entangled, whereas strings of BB84 states have no entanglement at all.

For this reason, we believe that the monogamy property of coset states may be of independent
interest, and may find application in contexts where public verification of states is important.

Proof for the Strong Monogamy-of-Entanglement Conjecture. After the first version of
this paper, Vidick and Culf posted a follow-up paper [CV21] that proved the strong monogamy-of-
entanglement conjecture stated above (formalized in Section 4.4). We thank Vidick and Culf for
following up on our work.
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The readers can therefore consider the “strong monogamy-of-entanglement conjecture” removed
from the assumptions in all formal statements in this paper.
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through a Quantum Postdoctoral Fellowship. J. L., Q. L. and M. Z. are supported by the NSF. J.
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2 Technical Overview

2.1 Computational Direct Product Hardness for Coset States

Our first technical contribution is to establish a computational direct product hardness property for
coset states. In this section, we aim to give some intuition for the barrier to proving such a property
for regular subspace states, and why resorting to coset states helps.

We establish the following: a computationally bounded adversary who receives |𝐴𝑠,𝑠′⟩ and pro-
grams 𝗂𝖮(𝑃𝐴+𝑠) and 𝗂𝖮(𝑃𝐴⊥+𝑠′) for uniformly random 𝐴, 𝑠, 𝑠′, cannot produce a pair (𝑣, 𝑤), where
𝑣 ∈ 𝐴+ 𝑠 and 𝑤 ∈ 𝐴⊥ + 𝑠′, except with negligible probability.

The first version of this direct product hardness property involved regular subspace states, and
was information-theoretic. It was proven by Ben-David and Sattath [BS16], and it established the
following: given a uniformly random subspace state |𝐴⟩, where 𝐴 ⊆ 𝔽𝑛

2 has dimension 𝑛/2, no
adversary can produce a pair of vectors 𝑣, 𝑤 such that 𝑣 ∈ 𝐴 and 𝑤 ∈ 𝐴⊥ respectively, even with
access to oracles for membership in 𝐴 and in 𝐴⊥.

The first successful instantiation of the membership oracles in the plain model is due to Zhandry,
in the context of public-key quantum money [Zha19a]. Zhandry showed that replacing the mem-
bership oracles with indistinguishability obfuscations of the membership programs 𝑃𝐴 and 𝑃𝐴⊥

is sufficient to prevent an adversary from copying the subspace state, and thus is sufficient for
public-key quantum money. In what follows, we provide some intuition as to how one proves this
“computational no-cloning” property, and why the same proof idea does not extend naturally to the
direct product hardness property for regular subspace states.

In [Zha19a], Zhandry shows that 𝗂𝖮 realizes what he refers to as a subspace-hiding obfuscator. A
subspace hiding obfuscator 𝗌𝗁𝖮 has the property that any computationally bounded adversary who
chooses a subspace 𝐴 cannot distinguish between 𝗌𝗁𝖮(𝑃𝐴) and 𝗌𝗁𝖮(𝑃𝐵) for a uniformly random
superspace 𝐵 of 𝐴 (of not too large dimension). In turn, a subspace hiding obfuscator can then be
used to show that an adversary who receives |𝐴⟩, 𝗌𝗁𝖮(𝑃𝐴) and 𝗌𝗁𝖮(𝑃𝐴⊥), for a uniformly random
𝐴, cannot produce two copies of |𝐴⟩. This is done in the following way. For the rest of the section,
we assume that 𝐴 ⊆ 𝔽𝑛

2 has dimension 𝑛/2.

• Replace 𝗌𝗁𝖮(𝑃𝐴) with 𝗌𝗁𝖮(𝑃𝐵) for a uniformly random superspace 𝐵 of 𝐴, where dim(𝐵) =
3
4𝑛. Replace 𝗌𝗁𝖮(𝑃𝐴⊥) with 𝗌𝗁𝖮(𝑃𝐶) for a uniformly random superspace 𝐶 of 𝐴⊥, where
dim(𝐶) = 3

4𝑛.

• Argue that the task of copying a subspace state |𝐴⟩, for a uniformly random subspace 𝐶⊥ ⊆
𝐴 ⊆ 𝐵 (even knowing 𝐵 and 𝐶 directly) is just as hard as the task of copying a uniformly
random subspace state of dimension |𝐴′⟩ ⊆ 𝔽𝑛/2

2 where dim(𝐴′) = 𝑛
4 . The intuition for this

is that knowing 𝐶⊥ fixes 𝑛
4 dimensions out of the 𝑛

2 original dimensions of 𝐴. Then, you
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can think of the first copying task as equivalent to the second up to a change of basis. Such
reduction completely removes the adversary’s knowledge about the membership programs.

• The latter task is of course hard (it would even be hard with access to membership oracles
for 𝐴′ and 𝐴′⊥).

One can try to apply the same idea to prove a computational direct product hardness property
for subspace states, where the task is no longer to copy |𝐴⟩, but rather we wish to show that
a bounded adversary receiving |𝐴⟩ and programs 𝗂𝖮(𝑃𝐴) and 𝗂𝖮(𝑃𝐴⊥), for uniformly random 𝐴,
cannot produce a pair (𝑣, 𝑤), where 𝑣 ∈ 𝐴 and 𝑤 ∈ 𝐴⊥. Applying the same replacements as above
using 𝗌𝗁𝖮 allows us to reduce this task to the task of finding a pair of vectors in 𝐴 × 𝐴⊥ given
|𝐴⟩,𝐵,𝐶, such that 𝐶⊥ ⊆ 𝐴 ⊆ 𝐵. Unfortunately, unlike in the case of copying, this task is easy,
because any pair of vectors in 𝐶⊥ × 𝐵⊥ also belongs to 𝐴× 𝐴⊥. This is the technical hurdle that
ones runs into when trying to apply the proof idea from [Zha19a] to obtain a computational direct
hardness property for subspace states.

Our first result is that we overcome this hurdle by using coset states. In the case of cosets,
the natural analog of the argument above results in a replacement of the program that checks
membership in 𝐴+𝑠 with a program that checks membership in 𝐵+𝑠. Similarly, we replace 𝐴⊥+𝑠′

with 𝐶+𝑠′. The crucial observation is that, since 𝐵+𝑠 = 𝐵+𝑠+𝑡 for any 𝑡 ∈ 𝐵, the programs 𝑃𝐵+𝑠

and 𝑃𝐵+𝑠+𝑡 are functionally equivalent. So, an adversary who receives 𝗂𝖮(𝑃𝐵+𝑠) cannot distinguish
this from 𝗂𝖮(𝑃𝐵+𝑠+𝑡) for any 𝑡. We can thus argue that 𝑡 functions as a randomizing mask that
prevents the adversary from guessing 𝑠 and finding a vector in 𝐴+ 𝑠.

Signature Tokens. The computational direct product hardness immediately gives a signature
token scheme in the plain model:

• Alice samples a key (𝐴, 𝑠, 𝑠′) uniformly at random. This constitutes her secret key. The
verification key is (𝗂𝖮(𝑃𝐴+𝑠), 𝗂𝖮(𝑃𝐴⊥+𝑠′)). A signature token is |𝐴𝑠,𝑠′⟩.

• Anyone in possession of a token can sign message 0 by outputting a string 𝑣 ∈ 𝐴+ 𝑠 (this can
be obtained by measuring the token in the computational basis), and can sign message 1 by
outputting a string 𝑤 ∈ 𝐴⊥ + 𝑠′ (this can be done by measuring the token in the Hadamard
basis).

• Signatures can be publicly verified using Alice’s public key.

If an algorithm produces both signatures for messages 0 and 1, it finds vectors 𝑣 ∈ 𝐴 + 𝑠 and
𝑤 ∈ 𝐴⊥ + 𝑠′, which violates computational direct product hardness.

2.2 Unclonable Decryption

Our second result is an unclonable decryption scheme (also known as a single-decryptor encryption
scheme [GZ20] - we will use the two terms interchangeably in the rest of the paper) from black-box
use of a signature token scheme and extractable witness encryption. This construction removes the
need for structured oracles, as used in the construction of [GZ20].

Additionally, we show that, assuming the conjectured monogamy property described in Section
1.1, we obtain an unclonable decryption scheme from just 𝗂𝖮 and post-quantum one-way functions,
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where 𝗂𝖮 is used to construct obfuscators for both subspace-membership programs and compute-
and-compare programs [GKW17, WZ17].

In this overview, we focus on the construction from the monogamy property, as we think it is
conceptually more interesting.

Recall that a single-decryptor encryption scheme is a public-key encryption scheme in which
the secret key is a quantum state. On top of the usual encryption security notions, one can define
“single-decryptor” security: this requires that it is not possible for an adversary who is given the
secret key to produce two (possibly entangled) decryption keys, which both enable simultaneous
successful decryption of ciphertexts. A simplified version of our single-decryptor encryption scheme
is the following. Let 𝑛 ∈ ℕ.

• The key generation procedure samples uniformly at random 𝐴 ⊆ 𝔽𝑛
2 , with dim(𝐴) = 𝑛

2 and
𝑠, 𝑠′ ∈ 𝔽𝑛

2 uniformly at random. The public key is the pair (𝗂𝖮(𝑃𝐴+𝑠), 𝗂𝖮(𝑃𝐴⊥+𝑠′)). The
(quantum) secret key is the coset state |𝐴𝑠,𝑠′⟩.

• To encrypt a message 𝑚, sample uniformly 𝑟 ← {0, 1}, and set 𝑅 = 𝗂𝖮(𝑃𝐴+𝑠) if 𝑟 = 0 and
𝑅 = 𝗂𝖮(𝑃𝐴⊥+𝑠′) if 𝑟 = 1. Then, let 𝐶 be the following program:

𝐶: on input 𝑣, output the message 𝑚 if 𝑅(𝑣) = 1 and otherwise output ⊥.

The ciphertext is then (𝑟, 𝗂𝖮(𝐶)).

• To decrypt a ciphertext (𝑟, 𝗂𝖮(𝐶)) with the quantum key |𝐴𝑠,𝑠′⟩, one simply runs the program
𝗂𝖮(𝐶) coherently on input |𝐴𝑠,𝑠′⟩ if 𝑟 = 0, and on 𝐻⊗𝑛 |𝐴𝑠,𝑠′⟩ if 𝑟 = 1.

In the full scheme, we actually amplify security by sampling 𝑟 ← {0, 1}𝜆, and having 𝜆 coset
states, but we choose to keep the presentation in this section as simple as possible.

The high level idea for single-decryptor security is the following. Assume for the moment that
𝗂𝖮 were an ideal obfuscator (we will argue after this that 𝗂𝖮 is good enough). Consider a pirate
who receives a secret key, produces two copies of it, and gives one to Bob and the other to Charlie.
Suppose both Bob and Charlie can decrypt ciphertexts (𝑟, 𝗂𝖮(𝐶)) correctly with probability close to
1, over the randomness in the choice of 𝑟 (which is crucially chosen only after Bob and Charlie have
received their copies). Then, there must be some efficient quantum algorithm, which uses Bob’s
(resp. Charlie’s) auxiliary quantum information (whatever state he has received from the pirate),
and is able to output a vector in 𝐴+ 𝑠. This is because in the case of 𝑟 = 0, the program 𝐶 outputs
the plaintext message 𝑚 exclusively on inputs 𝑣 ∈ 𝐴+𝑠. Similarly, there must be an algorithm that
outputs a vector in 𝐴⊥ + 𝑠′ starting from Bob’s (resp. Charlie’s) auxiliary quantum information.
Notice that this doesn’t imply that Bob can simultaneously output a pair in (𝐴 + 𝑠) × (𝐴⊥ + 𝑠′),
because explicitly recovering a vector in one coset might destroy the auxiliary quantum information
preventing recovery of a vector in the other (and this very fact is of course crucial to the direct
product hardness). Hence, in order to argue that it is not possible for both Bob and Charlie to be
decrypting with probability close to 1, we have to use the fact that Bob and Charlie have separate
auxiliary quantum information, and that each of them can recover vectors in 𝐴+𝑠 or 𝐴⊥+𝑠′, which
means that this can be done simultaneously, now violating the direct product hardness property.

The crux of the security proof is establishing that 𝗂𝖮 is a good enough obfuscator to enable this
argument to go through.

To this end, we first notice that there is an alternative way of computing membership in 𝐴+ 𝑠,
which is functionally equivalent to the program 𝐶 defined above.
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Let 𝖢𝖺𝗇𝐴(𝑠) be a function that computes the lexicographically smallest vector in 𝐴 + 𝑠 (think
of this as a representative of the coset). It is not hard to see that a vector 𝑡 is in 𝐴 + 𝑠 if and
only if 𝖢𝖺𝗇𝐴(𝑡) = 𝖢𝖺𝗇𝐴(𝑠). Also 𝖢𝖺𝗇𝐴 is efficiently computable given 𝐴. Therefore, a functionally
equivalent program to 𝐶, in the case that 𝑟 = 0, is:̃︀𝐶: on input 𝑣, output 𝑚 if 𝖢𝖺𝗇𝐴(𝑣) = 𝖢𝖺𝗇𝐴(𝑠), otherwise output ⊥.

By the security of 𝗂𝖮, an adversary can’t distinguish 𝗂𝖮(𝐶) from 𝗂𝖮( ̃︀𝐶).
The key insight is that now the program ̃︀𝐶 is a compute-and-compare program [GKW17, WZ17].

The latter is a program described by three parameters: an efficiently computable function 𝑓 , a target
𝑦 and an output 𝑧. The program outputs 𝑧 on input 𝑥 if 𝑓(𝑥) = 𝑦, and otherwise outputs ⊥. In
our case, 𝑓 = 𝖢𝖺𝗇𝐴, 𝑦 = 𝖢𝖺𝗇𝐴(𝑠), and 𝑧 = 𝑚. Goyal et al. [GKW17] and Wichs et al. [WZ17]
show that, assuming LWE or assuming 𝗂𝖮 and certain PRGs, a compute-and-compare program can
be obfuscated provided 𝑦 is (computationally) unpredictable given the function 𝑓 and the auxiliary
information. More precisely, the obfuscation guarantee is that the obfuscated compute-and-compare
program is indistinguishable from the obfuscation of a (simulated) program that outputs zero on
every input (notice, as a sanity check, that if 𝑦 is unpredictable given 𝑓 , then the compute-and-
compare program must output zero almost everywhere as well). We will provide more discussion
on compute-and-compare obfuscation for unpredictable distributions in the presence of quantum
auxiliary input in Section 3.3 and Appendix B.

• By the security of 𝗂𝖮, we can replace the ciphertext (0, 𝗂𝖮(𝐶)), with the ciphertext (0, 𝗂𝖮(𝖢𝖢.𝖮𝖻𝖿( ̃︀𝐶)))
where 𝖢𝖢.𝖮𝖻𝖿 is an obfuscator for compute-and-compare programs (this is because 𝐶 has the
same functionality as 𝖢𝖢.𝖮𝖻𝖿( ̃︀𝐶)).

• By the security of CC.Obf, we can replace the latter with (0, 𝗂𝖮(𝖢𝖢.𝖮𝖻𝖿(𝑍))), where 𝑍 is the
zero program. It is clearly impossible to decrypt from the latter, since no information about
the message is present.

Thus, assuming 𝗂𝖮 cannot be broken, a Bob that is able to decrypt implies an adversary breaking
the compute-and-compare obfuscation. This implies that there must be an efficient algorithm that
can predict 𝑦 = 𝖢𝖺𝗇𝐴(𝑠) with non-negligible probability given the function 𝖢𝖺𝗇𝐴 and the auxiliary
information received by Bob. Similarly for Charlie.

Therefore, if Bob and Charlie, with their own quantum auxiliary information, can both inde-
pendently decrypt respectively (0, 𝗂𝖮(𝐶)) and (1, 𝗂𝖮(𝐶 ′)) with high probability (where here 𝐶 and
𝐶 ′ only differ in that the former releases the encrypted message on input a vector in 𝐴+ 𝑠, and 𝐶 ′

on input a vector in 𝐴⊥ + 𝑠′), then there exist efficient quantum algorithms for Bob and Charlie
that take as input the descriptions of 𝖢𝖺𝗇𝐴(·) and 𝖢𝖺𝗇𝐴⊥(·) respectively (or of the subspace 𝐴),
and their respective auxiliary information, and recover 𝖢𝖺𝗇𝐴(𝑠) and 𝖢𝖺𝗇𝐴⊥(𝑠′) respectively with
non-negligible probability. Since 𝖢𝖺𝗇𝐴(𝑠) ∈ 𝐴+ 𝑠 and 𝖢𝖺𝗇𝐴⊥(𝑠′) ∈ 𝐴⊥+ 𝑠′, this violates the strong
monogamy property of coset states described in Section 1.1.

Recall that this states that Alice, Bob and Charlie cannot cooperatively win the following game
with a challenger, except with negligible probability. The challenger first prepares a uniformly
random coset state |𝐴𝑠,𝑠′⟩ and gives the state to Alice. Alice outputs two (possibly entangled)
quantum states and sends them to Bob and Charlie respectively. Finally, Bob and Charlie both get
the description of the subspace 𝐴. The game is won if Bob outputs a vector in 𝐴 + 𝑠 and Charlie
outputs a vector in 𝐴⊥+𝑠′. Crucially, in this monogamy property, Bob and Charlie will both receive
the description of the subspace 𝐴 in the final stage, yet it is still not possible for both of them to
be simultaneously successful.
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What allows to deduce the existence of efficient extracting algorithms is the fact that the obfusca-
tion of compute-and-compare programs from [GKW17, WZ17] holds provided 𝑦 is computationally
unpredictable given 𝑓 (and the auxiliary information). Thus, an algorithm that breaks the obfus-
cation property implies an efficient algorithm that outputs 𝑦 (with noticeable probability) given 𝑓
(and the auxiliary information).

In our other construction from signature tokens and extractable witness encryption, one can
directly reduce unclonable decryption security to direct product hardness. We do not discuss the
details of this construction in this section, instead we refer the reader to Section 6.5.

2.3 Copy-Protecting PRFs

Our last contribution is the construction of copy-protected PRFs assuming post-quantum 𝗂𝖮, one-
way functions and the monogamy property we discussed in the previous section. Alternatively just
as for unclonable decryption, we can do away with the monogamy property by assuming extractable
witness encryption.

A copy-protectable PRF is a regular PRF 𝐹 : {0, 1}𝑘 × {0, 1}𝑚 → {0, 1}𝑚′ , except that it is
augmented with a quantum key generation procedure, which we refer to as QKeyGen. This takes as
input the classical PRF key 𝐾 and outputs a quantum state 𝜌𝐾 . The state 𝜌𝐾 allows to efficiently
compute 𝐹 (𝐾,𝑥) on any input 𝑥 (where correctness holds with overwhelming probability). Beyond
the standard PRF security, the copy-protected PRF satisfies the following additional security guar-
antee: any computationally bounded adversary that receives 𝜌𝐾 cannot process 𝜌𝐾 into two states,
such that each state enables efficient evaluation of 𝐹 (𝐾, ·) on uniformly random inputs.

A simplified version of our construction has the following structure. For the rest of the section,
we take all subspaces to be of 𝔽𝑛

2 with dimension 𝑛/2.

• The quantum key generation procedure QKeyGen takes as input a classical PRF key 𝐾 and
outputs a quantum key. The latter consists of a number of uniformly sampled coset states
|(𝐴𝑖)𝑠𝑖,𝑠′𝑖⟩, for 𝑖 ∈ [𝜆], together with a (classical) obfuscation of the classical program 𝑃 that
operates as follows. 𝑃 takes an input of the form (𝑥, 𝑣1, . . . , 𝑣𝜆); checks that each vector 𝑣𝑖
belongs to the correct coset (𝐴𝑖 + 𝑠𝑖 if 𝑥𝑖 = 0, and 𝐴⊥𝑖 + 𝑠′𝑖 if 𝑥𝑖 = 1); if so, outputs the value
𝐹 (𝐾,𝑥), otherwise outputs ⊥.

• A party in possession of the quantum key can evaluate the PRF on input 𝑥 as follows: for each
𝑖 such that 𝑥𝑖 = 1, apply 𝐻⊗𝑛 to |(𝐴𝑖)𝑠𝑖,𝑠′𝑖⟩. Measure each resulting coset state in the standard
basis to obtain vectors 𝑣1, . . . , 𝑣𝜆. Run the obfuscated program on input (𝑥, 𝑣1, . . . , 𝑣𝜆).

Notice that the program has the classical PRF key 𝐾 hardcoded, as well as the values 𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖,

so giving the program in the clear to the adversary would be completely insecure: once the adversary
knows the key 𝐾, he can trivially copy the functionality 𝐹 (𝐾, ·); and even if the key 𝐾 is hidden
by the obfuscation, but the 𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖 are known, a copy of the (classical) obfuscated program 𝑃 ,

together with the 𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖 is sufficient to evaluate 𝐹 (𝐾, ·) on any input.

So, the hope is that an appropriate obfuscation will be sufficient to hide all of these parameters.
If this is the case, then the intuition for why the scheme is secure is that in order for two parties to
simultaneously evaluate correctly on uniformly random inputs, each party should be able to produce
a vector in 𝐴𝑖+ 𝑠 or in 𝐴⊥𝑖 + 𝑠′𝑖. If the two parties accomplish this separately, then this implies that
it is possible to simultaneously extract a vector in 𝐴𝑖 + 𝑠𝑖 and one in 𝐴⊥𝑖 + 𝑠′𝑖, which should not be
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possible. 2

We will use 𝗂𝖮 to obfuscate the program 𝑃 . In the next part of this overview, we will discuss
how we are able to deal with the fact that the PRF key 𝐾 and the cosets are hardcoded in the
program 𝑃 . First of all, we describe a bit more precisely the copy-protection security that we wish
to achieve. The latter is captured by the following security game between a challenger and an
adversary (𝐴,𝐵,𝐶):

• The challenger samples a uniformly random PRF key 𝐾 and runs QKeyGen to generate 𝜌𝐾 .
Sends 𝜌𝐾 to 𝐴.

• 𝐴 sends quantum registers to two spatially separated parties 𝐵 and 𝐶.

• The challenger samples uniformly random inputs 𝑥, 𝑥′ to 𝐹 (𝐾, ·). Sends 𝑥 to 𝐵 and 𝑥′ to 𝐶.

• 𝐵 and 𝐶 return 𝑦 and 𝑦′ respectively to the challenger.

(𝐴,𝐵,𝐶) wins if 𝑦 = 𝐹 (𝐾,𝑥) and 𝑦′ = 𝐹 (𝐾,𝑥′).
Since the obfuscation we are using is not VBB, but only 𝗂𝖮, there are two potential issues with

security. 𝐵 and 𝐶 could be returning correct answers not because they are able to produce vectors
in the appropriate cosets, but because:

(i) 𝗂𝖮(𝑃 ) leaks information about the PRF key 𝐾.

(ii) 𝗂𝖮(𝑃 ) leaks information about the cosets.

We handle issue (i) via a delicate “puncturing” argument [SW14]. At a high level, a puncturable
PRF 𝐹 is a PRF augmented with a procedure that takes a key 𝐾 and an input value 𝑥, and
produces a “punctured” key 𝐾 ∖ {𝑥}, which enables evaluation of 𝐹 (𝐾, ·) at any point other than 𝑥.
The security guarantee is that a computationally bounded adversary possessing the punctured key
𝐾 ∖ {𝑥} cannot distinguish between 𝐹 (𝐾,𝑥) and a uniformly random value (more generally, one
can puncture the key at any polynomially sized set of points). Puncturable PRFs can be obtained
from OWFs using the [GGM86] construction [BW13].

By puncturing 𝐾 precisely at the challenge inputs 𝑥 and 𝑥′, one is able to hardcode a punctured
PRF key 𝐾 ∖ {𝑥, 𝑥′} in the program 𝑃 , instead of 𝐾, and setting the output of program 𝑃 at 𝑥
to uniformly random 𝑧 and 𝑧′, instead of to 𝐹 (𝐾,𝑥) and 𝐹 (𝐾,𝑥′) respectively. The full argument
is technical, and relies on the “hidden trigger” technique introduced in [SW14], which allows the
“puncturing” technique to work even when the program 𝑃 is generated before 𝑥 and 𝑥′ are sampled.

Once we have replaced the outputs of the program 𝑃 on the challenge inputs 𝑥, 𝑥′ with uniformly
random outputs 𝑧, 𝑧′, we can handle issue (ii) in a similar way to the case of unclonable decryption
in the previous section.

By the security of 𝗂𝖮, we can replace the behaviour of program 𝑃 at 𝑥 by a suitable functionally
equivalent compute-and-compare program that checks membership in the appropriate cosets. We
then replace this by an obfuscation of the same compute-and-compare program, and finally by an
obfuscation of the zero program. We can then perform a similar reduction as in the previous section

2Again, we point out that we could not draw this conclusion if only a single party were able to do the following
two things, each with non-negligible probability: produce a vector in 𝐴 + 𝑠𝑖 and produce a vector in 𝐴⊥ + 𝑠′𝑖. This
is because in a quantum world, being able to perform two tasks with good probability, does not imply being able to
perform both tasks simultaneously. So it is crucial that both parties are able to separately recover the vectors.
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from an adversary breaking copy-protection security (and thus the security of the compute-and-
compare obfuscation) to an adversary breaking the monogamy of entanglement game described in
the previous section.

As in the previous section, we can replace the reliance on the conjectured monogamy property
by extractable witness encryption. In fact, formally, we directly reduce the security of our copy-
protected PRFs to the security of our unclonable decryption scheme.

3 Preliminaries

In this paper, we use 𝜆 to denote security parameters. We denote a function belonging to the class
of polynomial functions by 𝗉𝗈𝗅𝗒(·). We say a function 𝑓(·) : ℕ→ ℝ+ is negligible if for all constant
𝑐 > 0, 𝑓(𝑛) < 1

𝑛𝑐 for all large enough 𝑛. We use 𝗇𝖾𝗀𝗅(·) to denote a negligible function. We say a
function 𝑓(·) : ℕ→ ℝ+ is sub-exponential if there exists a constant 0 < 𝑐 < 1, such that 𝑓(𝑛) = 2𝑛

𝑐

for all large enough 𝑛. We use 𝗌𝗎𝖻𝖾𝗑𝗉(·) to denote a sub-exponential function.
When we refer to a probabilistic algorithm 𝒜, sometimes we need to specify the randomness 𝑟

used by 𝒜 when running on some input 𝑥. We write this as 𝒜(𝑥; 𝑟).
For a finite set 𝑆, we use 𝑥 ← 𝑆 to denote uniform sampling of 𝑥 from the set 𝑆. We denote

[𝑛] = {1, 2, · · · , 𝑛}. A binary string 𝑥 ∈ {0, 1}ℓ is represented as 𝑥1𝑥2 · · ·𝑥ℓ. For two strings 𝑥, 𝑦,
𝑥||𝑦 is the concatenation of 𝑥 and 𝑦.

We refer to a probabilistic polynomial-time algorithm as PPT, and we refer to a quantum
polynomial-time algorithm as QPT.

We will assume familiarity with basic quantum information and computation concepts. We refer
the reader to Appendix A.1 and [NC02] for a reference.

3.1 Pseudorandom Functions

For the rest of this paper, we will assume that all of the classical cryptographic primitives used are
post-quantum (i.e. secure against quantum adversaries), and we sometimes omit mentioning this
for convenience, except in formal definitions and theorems.

Definition 3.1 (PRF). A pseudorandom function (PRF) is a function 𝐹 : {0, 1}𝑘 × {0, 1}𝑛 →
{0, 1}𝑚, where {0, 1}𝑘 is the key space, and {0, 1}𝑛 and {0, 1}𝑚 are the domain and range. 𝑘, 𝑛 and
𝑚 are implicity functions of a security parameter 𝜆. The following should hold:

• For every 𝐾 ∈ {0, 1}𝑘, 𝐹 (𝐾, ·) is efficiently computable;

• PRF security: no efficient quantum adversary 𝒜 making quantum queries can distinguish
between a truly random function and the function 𝐹 (𝐾, ·); that is for every such 𝒜, there
exists a negligible function 𝗇𝖾𝗀𝗅,⃒⃒⃒⃒

Pr
𝐾←{0,1}𝑘

[︁
𝒜𝐹 (𝐾,·)() = 1

]︁
− Pr

𝑂:{0,1}𝑛→{0,1}𝑚

[︀
𝒜𝑂() = 1

]︀⃒⃒⃒⃒
≤ 𝗇𝖾𝗀𝗅(𝜆)

3.2 Indistinguishability Obfuscation

Definition 3.2 (Indistinguishability Obfuscator (iO) [BGI+01, GGH+16, SW14]). A uniform PPT
machine 𝗂𝖮 is an indistinguishability obfuscator for a circuit class {𝒞𝜆}𝜆∈ℕ if the following conditions
are satisfied:
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• For all 𝜆, all 𝐶 ∈ 𝒞𝜆, all inputs 𝑥, we have

Pr
[︁ ̂︀𝐶(𝑥) = 𝐶(𝑥) | ̂︀𝐶 ← 𝗂𝖮(1𝜆, 𝐶)

]︁
= 1

• (Post-quantum security): For all (not necessarily uniform) QPT adversaries (𝖲𝖺𝗆𝗉, 𝐷), the
following holds: if Pr[∀𝑥,𝐶0(𝑥) = 𝐶1(𝑥) : (𝐶0, 𝐶1, 𝜎) ← 𝖲𝖺𝗆𝗉(1𝜆)] > 1 − 𝛼(𝜆) for some
negligible function 𝛼, then there exists a negligible function 𝛽 such that:⃒⃒⃒⃒

⃒Pr [︁𝐷(𝜎, 𝗂𝖮(1𝜆, 𝐶0)) = 1 : (𝐶0, 𝐶1, 𝜎)← 𝖲𝖺𝗆𝗉(1𝜆)
]︁

−Pr
[︁
𝐷(𝜎, 𝗂𝖮(1𝜆, 𝐶1)) = 1 : (𝐶0, 𝐶1, 𝜎)← 𝖲𝖺𝗆𝗉(1𝜆)

]︁ ⃒⃒⃒⃒⃒ ≤ 𝛽(𝜆)
Whenever we assume the existence of 𝗂𝖮 in the rest of the paper, we refer to 𝗂𝖮 for the class of

polynomial-size circuits, i.e. when 𝒞𝜆 is the collection of all circuits of size at most 𝜆.
We will also make use of the stronger notion of sub-exponentially secure 𝗂𝖮. By the latter, we

mean that the distinguishing advantage above is 1/𝗌𝗎𝖻𝖾𝗑𝗉 for some sub-exponential function 𝗌𝗎𝖻𝖾𝗑𝗉,
instead of negligible (while the adversary is still 𝑄𝑃𝑇 ).

Similarly, we will also make use of sub-exponentially secure one-way functions. For the latter,
the advantage is again 1/𝗌𝗎𝖻𝖾𝗑𝗉 (and the adversary is 𝑄𝑃𝑇 ).

3.3 Compute-and-Compare Obfuscation

Definition 3.3 (Compute-and-Compare Program). Given a function 𝑓 : {0, 1}ℓ𝗂𝗇 → {0, 1}ℓ𝗈𝗎𝗍 along
with a target value 𝑦 ∈ {0, 1}ℓ𝗈𝗎𝗍 and a message 𝑧 ∈ {0, 1}ℓ𝗆𝗌𝗀 , we define the compute-and-compare
program:

𝖢𝖢[𝑓, 𝑦, 𝑧](𝑥) =

{︃
𝑧 if 𝑓(𝑥) = 𝑦

⊥ otherwise

We define the following class of unpredictable distributions over pairs of the form (𝖢𝖢[𝑓, 𝑦, 𝑧], 𝖺𝗎𝗑),
where 𝖺𝗎𝗑 is auxiliary quantum information. These distributions are such that 𝑦 is computationally
unpredictable given 𝑓 and 𝖺𝗎𝗑.

Definition 3.4 (Unpredictable Distributions). We say that a family of distributions 𝐷 = {𝐷𝜆}
where 𝐷𝜆 is a distribution over pairs of the form (𝖢𝖢[𝑓, 𝑦, 𝑧], 𝖺𝗎𝗑) where 𝖺𝗎𝗑 is a quantum state,
belongs to the class of unpredictable distributions if the following holds. There exists a negligible
function 𝗇𝖾𝗀𝗅 such that, for all QPT algorithms 𝒜,

Pr
(𝖢𝖢[𝑓,𝑦,𝑧],𝖺𝗎𝗑)←𝐷𝜆

[︁
𝐴(1𝜆, 𝑓, 𝖺𝗎𝗑) = 𝑦

]︁
≤ 𝗇𝖾𝗀𝗅(𝜆).

We further define the class of sub-exponentially unpredictable distributions, where we require the
guessing probability to be inverse sub-exponential in the security parameter.
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Definition 3.5 (Sub-Exponentially Unpredictable Distributions). We say that a family of distri-
butions 𝐷 = {𝐷𝜆} where 𝐷𝜆 is a distribution over pairs of the form (𝖢𝖢[𝑓, 𝑦, 𝑧], 𝖺𝗎𝗑) where 𝖺𝗎𝗑 is a
quantum state, belongs to the class of sub-exponentially unpredictable distributions if the following
holds. There exists a sub-exponential function 𝗌𝗎𝖻𝖾𝗑𝗉 such that, for all QPT algorithms 𝒜,

Pr
(𝖢𝖢[𝑓,𝑦,𝑧],𝖺𝗎𝗑)←𝐷𝜆

[︁
𝐴(1𝜆, 𝑓, 𝖺𝗎𝗑) = 𝑦

]︁
≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝜆).

We assume that a program 𝑃 has an associated set of parameters 𝑃.𝗉𝖺𝗋𝖺𝗆 (e.g input size, output
size, circuit size, etc.), which we are not required to hide.

Definition 3.6 (Compute-and-Compare Obfuscation). A PPT algorithm 𝖢𝖢.𝖮𝖻𝖿 is an obfuscator
for the class of unpredictable distributions (or sub-exponentially unpredictable distributions) if for
any family of distributions 𝐷 = {𝐷𝜆} belonging to the class, the following holds:

• Functionality Preserving: there exists a negligible function 𝗇𝖾𝗀𝗅 such that for all 𝜆, every
program 𝑃 in the support of 𝐷𝜆,

Pr[∀𝑥, ̃︀𝑃 (𝑥) = 𝑃 (𝑥), ̃︀𝑃 ← 𝖢𝖢.𝖮𝖻𝖿(1𝜆, 𝑃 )] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

• Distributional Indistinguishability: there exists an efficient simulator 𝖲𝗂𝗆 such that:

(𝖢𝖢.𝖮𝖻𝖿(1𝜆, 𝑃 ), 𝖺𝗎𝗑) ≈𝑐 (𝖲𝗂𝗆(1𝜆, 𝑃.𝗉𝖺𝗋𝖺𝗆), 𝖺𝗎𝗑)

where (𝑃, 𝖺𝗎𝗑)← 𝐷𝜆.

Combining the results of [WZ17, GKW17] with those of [Zha19b], we have the following two
theorems. For the proofs and discussions, we refer the readers to Appendix B. Note that although
Theorem B.2 is a strictly stronger statement, currently we do not know of any post-quantum
construction for ELFs.

Theorem B.1. Assuming the existence of post-quantum 𝗂𝖮 and the quantum hardness of LWE,
there exist obfuscators for sub-exponentially unpredictable distributions, as in Definition 3.6.

Theorem B.2. Assuming the existence of post-quantum 𝗂𝖮 and post-quantum extremely lossy func-
tions (ELFs), there exist obfuscators as in Definition 3.6. for any unpredictable distributions.

3.4 Subspace Hiding Obfuscation

Subspace-hiding obfuscation was introduced by Zhandry [Zha19a] as a key component in construct-
ing public-key quantum money. This notion requires that the obfuscation of a circuit that computes
membership in a subspace 𝐴 is indistinguishable from the obfuscation of a circuit that computes
membership in a uniformly random superspace of 𝐴 (of dimension sufficiently far from the full
dimension). The formal definition is as follows.

Definition 3.7 ([Zha19a]). A subspace hiding obfuscator (shO) for a field 𝔽 and dimensions 𝑑0, 𝑑1
is a PPT algorithm 𝗌𝗁𝖮 such that:

• Input. 𝗌𝗁𝖮 takes as input the description of a linear subspace 𝑆 ⊆ 𝔽𝑛 of dimension 𝑑 ∈
{𝑑0, 𝑑1}.
For concreteness, we will assume 𝑆 is given as a matrix whose rows form a basis for 𝑆.
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• Output. 𝗌𝗁𝖮 outputs a circuit 𝑆 that computes membership in 𝑆. Precisely, let 𝑆(𝑥) be the
function that decides membership in 𝑆. Then there exists a negligible function 𝗇𝖾𝗀𝗅,

Pr[𝑆(𝑥) = 𝑆(𝑥) ∀𝑥 : 𝑆 ← 𝗌𝗁𝖮(𝑆)] ≥ 1− 𝗇𝖾𝗀𝗅(𝑛)

• Security. For security, consider the following game between an adversary and a challenger.

– The adversary submits to the challenger a subspace 𝑆0 of dimension 𝑑0.
– The challenger samples a uniformly random subspace 𝑆1 ⊆ 𝔽𝑛 of dimension 𝑑1 such that
𝑆0 ⊆ 𝑆1.
It then runs 𝑆 ← 𝗌𝗁𝖮(𝑆𝑏), and gives 𝑆 to the adversary.

– The adversary makes a guess 𝑏′ for 𝑏.

𝗌𝗁𝖮 is secure if all QPT adversaries have negligible advantage in this game.

Zhandry [Zha19a] gives a construction of a subspace hiding obfuscator based on one-way func-
tions and 𝗂𝖮.

Theorem 3.8 (Theorem 6.3 in [Zha19a]). If injective one-way functions exist, then any indistin-
guishability obfuscator, appropriately padded, is also a subspace hiding obfuscator for field 𝔽 and
dimensions 𝑑0, 𝑑1, as long as |𝔽|𝑛−𝑑1 is exponential.

3.5 Extractable Witness Encryption

In this subsection, we describe the primitive of witness encryption [GGHW17] with extractable
security, which will we use in our construction of unclonable decryption in Section 6.5.

Definition 3.9 (Extractable Witness Encryption). An extractable witness encryption scheme for
an NP relation 𝑅 is a pair of algorithms (𝖤𝗇𝖼,𝖣𝖾𝖼):

• 𝖤𝗇𝖼(1𝜆, 𝑥,𝑚) → 𝖼𝗍 : takes as input a security parameter 𝜆 in unary, an instance 𝑥 and a
message 𝑚, and outputs a ciphertext 𝖼𝗍.

• 𝖣𝖾𝖼(𝖼𝗍, 𝑤)→ 𝑚/⊥ : takes as input a ciphertext 𝖼𝗍 and a witness 𝑤 and outputs a message 𝑚
or ⊥ (for decryption failure).

The scheme satisfies the following:

Correctness: For any security parameter 𝜆 ∈ ℕ, for any 𝑚 ∈ {0, 1}, for any 𝑥 and 𝑤 such that
𝑅(𝑥,𝑤) = 1, we have that:

Pr[𝖣𝖾𝖼(𝖤𝗇𝖼(1𝜆, 𝑥,𝑚), 𝑤] = 𝑚] = 1

Extractable Security: For any QPT adversary 𝒜, polynomial-time sampler (𝑥, 𝖺𝗎𝗑)← 𝖲𝖺𝗆𝗉(1𝜆)
and for any polynomial 𝑞(·), there exists a QPT extractor 𝐸 and a polynomial 𝑝(·), such that:

Pr

[︂
𝒜(1𝜆, 𝑥, 𝖼𝗍, 𝖺𝗎𝗑) = 𝑚

⃒⃒⃒⃒
𝑚← {0, 1}, (𝑥, 𝖺𝗎𝗑)← 𝖲𝖺𝗆𝗉(1𝜆),

𝖼𝗍← 𝖤𝗇𝖼(1𝜆, 𝑥,𝑚)

]︂
≥ 1

2
+

1

𝑞(𝜆)

→ Pr
[︁
𝐸(1𝜆, 𝑥, 𝖺𝗎𝗑) = 𝑤 s.t. 𝑅(𝑥,𝑤) = 1 : (𝑥, 𝖺𝗎𝗑)← 𝖲𝖺𝗆𝗉(1𝜆)

]︁
≥ 1

𝑝(𝜆)
.
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3.6 Testing Quantum Adversaries: Projective Implementation

In this section, we include several definitions about measurements, which are relevant to testing
whether quantum adversaries are successful in the security games of Section 6.2. Part of this
section is taken verbatim from [ALL+20]. As this section only pertains directly to our security
definitions for unclonable decryption schemes, the reader can skip ahead, and return to this section
when reading Section 6.2. In particular, this section is not needed to understand Sections 4 and 5.

In classical cryptographic security games, the challenger typically gets some information from
the adversary and checks if this information satisfies certain properties. However, in a setting where
the adversary is required to return quantum information to the challenger, classical definitions of
“testing” whether a quantum state returned by the adversary satisfies certain properties may result
in various failures as discussed in [Zha20], as this state may be in a superposition of “successful”
and “unsuccessful” adversaries. We provide here a short description of some of the difficulties in the
quantum setting, and we refer the reader to [Zha20] for a more in-depth discussion.

As an example, consider a security game in which an adversary is required to return some
information to a challenger, which enables evaluation of a program on any input. Such a scenario
is natural in copy-protection, where the adversary (a “pirate”) attempts to create two copies of a
copy-protected program, given just a single copy (and one can think of these two copies as being
returned to the challenger for testing).

Naturally, one would consider a copy-protected program to be “good” if it enables correct eval-
uation on all inputs, or at least on a large fraction of all inputs. Testing correct evaluation on all
inputs is of course not possible efficiently (not even classically). Instead, one would typically have
the challenger estimate the fraction of correct evaluations to high statistical confidence by picking a
large enough number of inputs uniformly at random (or from an appropriate distribution), running
the copy-protected program on these inputs, and computing the fraction of correct evaluations.
Unfortunately, such a test does not easily translate to the quantum setting. The reason is that the
challenger only gets a single copy of the program, which in a quantum world cannot be generically
copied. Moreover, in general, each evaluation may alter the copy-protected program in an irre-
versible way (if the outcome of the evaluation is not deterministic). Thus, estimating the fraction
of inputs on which the copy-protected program received from the adversary evaluates correctly is
not in general possible. For instance, consider an adversary who sends a state 1√

2
|𝑃0⟩+ 1√

2
|𝑃1⟩ to

the challenger, where |𝑃0⟩ is a copy-protected program that evaluates perfectly on every input, and
|𝑃1⟩ is a useless program. Using this state, evaluation is successful on any input with probability
1/2. Thus, even a single evaluation collapses the state either to |𝑃0⟩ or to |𝑃1⟩, preventing the
challenger from performing subsequent evaluations on the original state. In fact, it is impossible to
have a generic procedure that estimates the “average success probability of evalutation” to very high
precision, as this would imply a procedure that distinguishes between the state 1√

2
|𝑃0⟩ + 1√

2
|𝑃1⟩

and the state |𝑃0⟩ almost perfectly, which is impossible since the two states have large overlap.

Projective Implementation Motivated by the discussion above, [Zha20] formalizes a new mea-
surement procedure for testing a state received by an adversary. We will be adopting this procedure
when defining security of single-decryptor encryption schemes in Section 6.2.

Consider the following procedure as a binary POVM 𝒫 acting on an alleged-copy-protected
program 𝜌: sample a uniformly random input 𝑥, evaluates the copy-protected program on 𝑥, and
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checks if the output is correct. In a nutshell, the new procedure consists of applying an appropriate
projective measurement which measures the success probability of the tested state 𝜌 under 𝒫, and
to output “accept” if the success probability is high enough. Of course, such measurement will not
be able extract the exact success probability of 𝜌, as this is impossible from we have argued in
the discussion above. Rather, the measurement will output a success probability from a finite set,
such that the expected value of the output matches the true success probability of 𝜌. We will now
describe this procedure in more detail.

The starting point is that a POVM specifies exactly the probability distribution over outcomes
{0, 1} (“success” or “failure”) on any copy-protected program, but it does not uniquely determine the
post-measurement state. Zhandry shows that, for any binary POVM 𝒫 = (𝑃, 𝐼 −𝑃 ), there exists a
particularly nice implementation of 𝒫 which is projective, and such that the post-measurement state
is an eigenvector of 𝑃 . In particular, Zhandry observes that there exists a projective measurement
ℰ which measures the success probability of a state with respect to 𝒫. More precisely,

• ℰ outputs a distribution 𝐷 of the form (𝑝, 1−𝑝) from a finite set of distribution over outcomes
{0, 1}. (we stress that ℰ actually outputs a distribution).

• The post-measurement state upon obtaining outcome (𝑝, 1−𝑝) is an eigenvector (or a mixture
of eigenvectors) of 𝑃 with eigenvalue 𝑝.

A measurement ℰ which satisfies these properties is the measurement in the common eigenbasis
of 𝑃 and 𝐼 − 𝑃 (such common eigenbasis exists since 𝑃 and 𝐼 − 𝑃 commute).

Note that since ℰ is projective, we are guaranteed that applying the same measurement twice
will yield the same outcome. Thus, what we obtain from applying ℰ is a state with a “well-defined”
success probability with respect to 𝒫: we know exactly how good the leftover program is with
respect to the initial testing procedure 𝒫.

Formally, to complete the implementation of 𝒫, after having applied ℰ , one outputs the bit
1 with probability 𝑝, and the bit 0 with probability 1 − 𝑝. This is summarized in the following
definition.

Definition 3.10 (Projective Implementation of a POVM). Let 𝒫 = (𝑃,𝑄) be a binary outcome
POVM. Let 𝒟 be a finite set of distributions (𝑝, 1− 𝑝) over outcomes {0, 1}. Let ℰ = {𝐸𝑝}(𝑝,1−𝑝)∈𝒟
be a projective measurement with index set 𝒟. Consider the following measurement procedure:

(i) Apply the projective measurement ℰ and obtain as outcome a distribution (𝑝, 1−𝑝) over {0, 1};

(ii) Output a bit according to this distribution, i.e. output 1 w.p 𝑝 and output 0 w.p 1− 𝑝.

We say the above measurement procedure is a projective implementation of 𝒫, which we denote by
𝖯𝗋𝗈𝗃𝖨𝗆𝗉(𝒫), if it is equivalent to 𝒫 (i.e. it produces the same probability distribution over outcomes).

Zhandry shows that any binary POVM has a projective implementation, as in the previous
definition.

Lemma 3.11 (Adapted from Lemma 1 in [Zha20]). Any binary outcome POVM 𝒫 = (𝑃,𝑄) has a
projective implementation 𝖯𝗋𝗈𝗃𝖨𝗆𝗉(𝒫).

Moreover, if the outcome is a distribution (𝑝, 1−𝑝) when measuring under ℰ, the collapsed state
𝜌′ is a mixture of eigenvectors of 𝑃 with eigenvalue 𝑝, and it is also a mixture of eigenvectors of 𝑄
with eigenvalue 1− 𝑝.
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As anticipated, the procedure that we will eventually use to test a state received from the
adversary will be to:

(i) Measure the success probability of the state,

(ii) Accept if the outcome is large enough.

As you may guess at this point, we will employ the projective measurement ℰ defined previously
for step (𝑖). We call this variant of the projective implementation a threshold implementation.

Threshold Implementation The concept of threshold implementation of a POVM was proposed
by Zhandry, and formalized by Aaronson, Liu, Liu, Zhandry and Zhang [ALL+20]. The following
is a formal definition.

Definition 3.12 (Threshold Implementation). Let 𝒫 = (𝑃,𝑄) be a binary POVM. Let 𝖯𝗋𝗈𝗃𝖨𝗆𝗉(𝒫)
be a projective implementation of 𝒫, and let ℰ be the projective measurement in the first step of
𝖯𝗋𝗈𝗃𝖨𝗆𝗉(𝒫) (using the same notation as in Definition 3.10). Let 𝛾 > 0. We refer to the following
measurement procedure as a threshold implementation of 𝒫 with parameter 𝛾, and we denote is as
𝖳𝖨𝛾(𝒫).

• Apply the projective measurement ℰ, and obtain as outcome a vector (𝑝, 1− 𝑝);

• Output a bit according to the distribution (𝑝, 1− 𝑝): output 1 if 𝑝 ≥ 𝛾, and 0 otherwise.

For simplicity, for any quantum state 𝜌, we denote by Tr[𝖳𝖨𝛾(𝒫) 𝜌] the probability that the
threshold implementation applied to 𝜌 outputs 𝟏. Thus, whenever 𝖳𝖨𝛾(𝒫) appears inside a trace
Tr, we treat 𝖳𝖨𝛾(𝒫) as a projection onto the 1 outcome (i.e. the space spanned by eigenvectors of
𝑃 with eigenvalue at least 𝛾).

Similarly to Lemma 3.11, we have the following lemma.

Lemma 3.13. Any binary outcome POVM 𝒫 = (𝑃,𝑄) has a threshold implementation 𝖳𝖨𝛾(𝒫) for
any 𝛾.

In this work, we are interested in threshold implementations of POVMs with a particular struc-
ture. These POVMs represent a challenger’s test of a quantum state received from an adversary in
a security game (like the POVM described earlier for testing whether a program evaluates correctly
on a uniformly random input). These POVMs have the following structure:

• Sample a projective measurement from a set of projective measurements ℐ, according to some
distribution 𝐷 over ℐ.

• Apply this projective measurement.

We refer to POVMs of this form as mixtures of projective measurements. The following is a
formal definition.
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Definition 3.14 (Mixture of Projective Measurements). Let ℛ, ℐ be sets. Let 𝐷 : ℛ → ℐ.
Let {(𝑃𝑖, 𝑄𝑖)}𝑖∈𝐼 be a collection of binary projective measurements. The mixture of projective
measurements associated to ℛ, ℐ, 𝐷 and {(𝑃𝑖, 𝑄𝑖)}𝑖∈𝐼 is the binary POVM 𝒫𝐷 = (𝑃𝐷, 𝑄𝐷) defined
as follows:

𝑃𝐷 =
∑︁
𝑖∈ℐ

Pr[𝑖← 𝐷(𝑅)]𝑃𝑖, 𝑄𝐷 =
∑︁
𝑖∈ℐ

Pr[𝑖← 𝐷(𝑅)]𝑄𝑖,

where 𝑅 is uniformly distributed in ℛ.

In other words, 𝒫𝐷 is implemented in the following way: sample randomness 𝑟 ← ℛ, compute
the index 𝑖 = 𝐷(𝑟), and apply the projective measurement (𝑃𝑖, 𝑄𝑖). Thus, for any quantum state
𝜌, Tr[𝑃𝐷𝜌] is the probability that a projective measurement (𝑃𝑖, 𝑄𝑖), sampled according to the
distribution induced by 𝐷, applied to 𝜌 outputs 1.

The following lemma will be important in the proof of security for our single-decryptor encryption
scheme in Section 6.

Informally, the lemma states the following. Let 𝒫𝐷0 and 𝒫𝐷1 be two mixtures of projective mea-
surements, where 𝐷0 and 𝐷1 are two computationally indistinguishable distributions. Let 𝛾, 𝛾′ > 0
be inverse-polynomially close. Then for any (efficiently constructible) state 𝜌, the probabilities of
obtaining outcome 1 upon measuring 𝖳𝖨𝛾(𝒫𝐷0) and 𝖳𝖨𝛾′(𝒫𝐷1) respectively are negligibly close.

Theorem 3.15 (Theorem 6.5 in [Zha20]). Let 𝛾 > 0. Let 𝒫 be a collection of projective measure-
ments indexed by some set ℐ. Let 𝜌 be an efficiently constructible mixed state, and let 𝐷0, 𝐷1 be two
efficiently sampleable and computationally indistinguishable distributions over ℐ. For any inverse
polynomial 𝜖, there exists a negligible function 𝛿 such that

Tr[𝖳𝖨𝛾−𝜖(𝒫𝐷1)𝜌] ≥ Tr[𝖳𝖨𝛾(𝒫𝐷0)𝜌]− 𝛿 ,

where 𝒫𝐷𝑖 is the mixture of projective measurements associated to 𝒫 and 𝐷𝑖.

Approximating Threshold Implementation Projective and threshold implementations of POVMs
are unfortunately not efficiently computable in general.

However, they can be approximated if the POVM is a mixture of projective measurements, as
shown by Zhandry [Zha20], using a technique first introduced by Marriott and Watrous [MW05] in
the context of error reduction for quantum Arthur-Merlin games.

We will make use of the following lemma from a subsequent work of Aaronson et al. [ALL+20].

Lemma 3.16 (Corollary 1 in [ALL+20]). For any 𝜖, 𝛿, 𝛾 ∈ (0, 1), any collection of projective mea-
surements 𝒫 = {(𝑃𝑖, 𝑄𝑖)}𝑖∈ℐ , where ℐ is some index set, and any distribution 𝐷 over ℐ, there exists
a measurement procedure 𝖠𝖳𝖨𝜖,𝛿𝒫,𝐷,𝛾 that satisfies the following:

• 𝖠𝖳𝖨𝜖,𝛿𝒫,𝐷,𝛾 implements a binary outcome measurement. For simplicity, we denote the probability
of the measurement outputting 𝟏 on 𝜌 by Tr[𝖠𝖳𝖨𝜖,𝛿𝒫,𝐷,𝛾 𝜌].

• For all quantum states 𝜌, Tr[𝖠𝖳𝖨𝜖,𝛿𝒫,𝐷,𝛾 𝜌] ≥ Tr[𝖳𝖨𝛾(𝒫𝐷) 𝜌]− 𝛿.
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• For all quantum states 𝜌, let 𝜌′ be the post-measurement state after applying 𝖠𝖳𝖨𝜖,𝛿𝒫,𝐷,𝛾 on 𝜌,
and obtaining outcome 1. Then, Tr[𝖳𝖨𝛾−2𝜖(𝒫𝐷) 𝜌′] ≥ 1− 2𝛿.

• The expected running time is 𝑇𝒫,𝐷 · 𝗉𝗈𝗅𝗒(1/𝜖, 1/(log 𝛿)), where 𝑇𝒫,𝐷 is the combined running
time of sampling according to 𝐷, of mapping 𝑖 to (𝑃𝑖, 𝑄𝑖), and of implementing the projective
measurement (𝑃𝑖, 𝑄𝑖).

Intuitively the corollary says that if a quantum state 𝜌 has weight 𝑝 on eigenvectors with eigen-
values at least 𝛾, then the measurement 𝖠𝖳𝖨𝜖,𝛿𝒫,𝐷,𝛾 will produce with probability at least 𝑝 − 𝛿 a
post-measurement state which has weight 1 − 2𝛿 on eigenvectors with eigenvalues at least 𝛾 − 2𝜖.
Moreover, the running time for implementing 𝖠𝖳𝖨𝜖,𝛿𝒫,𝐷,𝛾 is proportional to 𝗉𝗈𝗅𝗒(1/𝜖, 1/(log 𝛿)), which
is a polynomial in 𝜆 as long as 𝜖 is any inverse polynomial and 𝛿 is any inverse sub-exponential
function.

Crucially for applications to single-decryption encryption and copy-protection, the above lemma
can be generalized to pairs of POVMs on bipartite states.

Lemma 3.17 (Lemma 3 in [ALL+20]). Let 𝒫1 and 𝒫2 be two collections of projective measurements,
indexed by elements of ℐ, and let 𝐷1 and 𝐷2 be probability distributions over ℐ.

For any 𝜖, 𝛿, 𝛾 ∈ (0, 1), let 𝖠𝖳𝖨𝜖,𝛿𝒫1,𝐷1,𝛾
and 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝐷2,𝛾

be the measuring algorithms above. They
satisfy:

• For any bipartite (possibly entangled, mixed) quantum state 𝜌 ∈ ℋ1 ⊗ℋ2,

Tr
[︀(︀
𝖠𝖳𝖨𝜖,𝛿𝒫1,𝐷1,𝛾

⊗ 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝐷2,𝛾

)︀
𝜌
]︀
≥ Tr

[︀(︀
𝖳𝖨𝛾(𝒫1,𝐷1)⊗ 𝖳𝖨𝛾(𝒫2,𝐷2)

)︀
𝜌
]︀
− 2𝛿,

where 𝒫𝑖,𝐷𝑖 is the mixture of projective measurement corresponding to 𝒫𝑖, 𝐷𝑖.

• For any (possibly entangled, mixed) quantum state 𝜌 ∈ ℋ1 ⊗ ℋ2, let 𝜌′ be the (normalized)
post-measurement state after applying the measurements 𝖠𝖳𝖨𝜖,𝛿𝒫1,𝐷1,𝛾

and 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝐷2,𝛾
to 𝜌 and

obtaining outcomes 1 for both. Then,

Tr
[︀(︀
𝖳𝖨𝛾−2𝜖(𝒫1,𝐷1)⊗ 𝖳𝖨𝛾−2𝜖(𝒫2,𝐷2)

)︀
𝜌′
]︀
≥ 1− 4𝛿.

4 Coset States

This section is organized as follows. In Section 4.1, we introduce coset states. In Section 4.2, we
show that coset states satisfy both an information-theoretic and a computational direct product
hardness property. The latter immediately yields a signature token scheme in the plain model
assuming 𝗂𝖮, (this is described in Section 5). In Section 4.3 we show that coset states satisfy both
an information-theoretic monogamy of entanglement property (analogous to that satisfied by BB84
states [TFKW13]), and a computational monogamy of entanglement property. The latter is used in
Section 6.5 to obtain an unclonable decryption scheme from 𝗂𝖮 and extractable witness encryption.
In Section 4.4, we describe a strong version of the monogamy property, which we conjecture to be
true. The latter is used in Section 6.3 to obtain an unclonable decryption scheme which does not
assume extractable witness encryption.
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4.1 Definitions

In this subsection, we provide the basic definitions and properties of coset states.
For any subspace 𝐴, its complement is 𝐴⊥ = {𝑏 ∈ 𝔽𝑛 | ⟨𝑎, 𝑏⟩ mod 2 = 0 , ∀𝑎 ∈ 𝐴}. It satisfies

dim(𝐴) + dim(𝐴⊥) = 𝑛. We also let |𝐴| = 2dim(𝐴) denote the size of the subspace 𝐴.

Definition 4.1 (Subspace States). For any subspace 𝐴 ⊆ 𝔽𝑛
2 , the subspace state |𝐴⟩ is defined as

|𝐴⟩ = 1√︀
|𝐴|

∑︁
𝑎∈𝐴
|𝑎⟩ .

Note that given 𝐴, the subspace state |𝐴⟩ can be constructed efficiently.

Definition 4.2 (Coset States). For any subspace 𝐴 ⊆ 𝔽𝑛
2 and vectors 𝑠, 𝑠′ ∈ 𝔽𝑛

2 , the coset state
|𝐴𝑠,𝑠′⟩ is defined as:

|𝐴𝑠,𝑠′⟩ =
1√︀
|𝐴|

∑︁
𝑎∈𝐴

(−1)⟨𝑠′,𝑎⟩ |𝑎+ 𝑠⟩ .

Note that by applying 𝐻⊗𝑛, which is QFT for 𝔽𝑛
2 , to the state |𝐴𝑠,𝑠′⟩, one obtains exactly |𝐴⊥𝑠′,𝑠⟩.

Additionally, note that given |𝐴⟩ and 𝑠, 𝑠′, one can efficiently construct |𝐴𝑠,𝑠′⟩ as follows:∑︁
𝑎

|𝑎⟩ add 𝑠−−−→
∑︁
𝑎

|𝑎+ 𝑠⟩ 𝐻⊗𝑛

−−−→
∑︁

𝑎′∈𝐴⊥

(−1)⟨𝑎′,𝑠⟩ |𝑎′⟩

adding 𝑠′−−−−−→
∑︁

𝑎′∈𝐴⊥

(−1)⟨𝑎′,𝑠⟩ |𝑎′ + 𝑠′⟩ 𝐻⊗𝑛

−−−→
∑︁
𝑎∈𝐴

(−1)⟨𝑎,𝑠′⟩ |𝑎+ 𝑠⟩

For a subspace 𝐴 and vectors 𝑠, 𝑠′, we define 𝐴 + 𝑠 = {𝑣 + 𝑠 : 𝑣 ∈ 𝐴}, and 𝐴⊥ + 𝑠′ = {𝑣 + 𝑠′ :
𝑣 ∈ 𝐴⊥}.

It is also convenient for later sections to define a canonical representative, with respect to
subspace 𝐴, of the coset 𝐴+ 𝑠.

Definition 4.3 (Canonical representative of a coset). For a subspace 𝐴, we define the function
𝖢𝖺𝗇𝐴(·) such that 𝖢𝖺𝗇𝐴(𝑠) is the lexicographically smallest vector contained in 𝐴 + 𝑠 (we call this
the canonical representative of coset 𝐴+ 𝑠).

Note that if 𝑠 ∈ 𝐴 + 𝑠, then 𝖢𝖺𝗇𝐴(𝑠) = 𝖢𝖺𝗇𝐴(𝑠). Also note that 𝖢𝖺𝗇𝐴 is polynomial-time
computable given the description of 𝐴. The algorithm to compute 𝖢𝖺𝗇𝐴 is the following:

1. Initialize the answer to be empty.

2. In the first step, let the first entry of the answer be 0 and check if a vector starting with 0
is in 𝐴+ 𝑠. This can be done efficiently by solving a linear system (by knowing 𝐴 and 𝑠). If
such a vector is not in 𝐴+ 𝑠, let the first entry of the answer be 1.

3. Iterate the same procedure for all entries, and output the answer.

When it is clear from the context, for ease of notation, we will write 𝐴+ 𝑠 to mean the program
that checks membership in 𝐴 + 𝑠. For example, we will often write 𝗂𝖮(𝐴 + 𝑠) to mean an 𝗂𝖮
obfuscation of the program that checks membership in 𝐴+ 𝑠.

The following equivalences, which follow straightforwardly from the security of 𝗂𝖮, will be useful
in our security proofs later on.
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Lemma 4.4. For any subspace 𝐴 ⊆ 𝔽𝑛
2 ,

• 𝗂𝖮(𝐴+ 𝑠) ≈𝑐 𝗂𝖮(𝗌𝗁𝖮𝐴(· − 𝑠)) ,
where 𝗌𝗁𝖮𝐴() denotes the program 𝗌𝗁𝖮(𝐴), and 𝗌𝗁𝖮 is the subspace hiding obfuscator defined
in Section 3.4. So, 𝗌𝗁𝖮𝐴(· − 𝑠) is the program that on input 𝑥, runs program 𝗌𝗁𝖮(𝐴) on input
𝑥− 𝑠.

• 𝗂𝖮(𝐴+ 𝑠) ≈𝑐 𝗂𝖮(𝖢𝖢[𝖢𝖺𝗇𝐴,𝖢𝖺𝗇𝐴(𝑠)]) ,

where recall that 𝖢𝖢[𝖢𝖺𝗇𝐴,𝖢𝖺𝗇𝐴(𝑠)] refers to the compute-and-compare program which on input
𝑥 outputs 1 if and only if 𝖢𝖺𝗇𝐴(𝑥) = 𝖢𝖺𝗇𝐴(𝑠).

4.2 Direct Product Hardness

In this section, we argue that coset states satisfy both an information-theoretic and a computational
direct product hardness property.

4.2.1 Information-Theoretic Direct Product Hardness

Theorem 4.5. Let 𝐴 ⊆ 𝔽𝑛
2 be a uniformly random subspace of dimension 𝑛/2, and 𝑠, 𝑠′ be uniformly

random in 𝔽𝑛
2 . Let 𝜖 > 0 be such that 1/𝜖 = 𝑜(2𝑛/2). Given one copy of |𝐴𝑠,𝑠′⟩, and a quantum

membership oracle for 𝐴 + 𝑠 and 𝐴⊥ + 𝑠′, an adversary needs Ω(
√
𝜖2𝑛/2) queries to output a pair

(𝑣, 𝑤) such that 𝑣 ∈ 𝐴+ 𝑠 and 𝑤 ∈ 𝐴⊥ + 𝑠′ with probability at least 𝜖.

The proof is a simple random self-reduction to the analogous statement from Ben-David and
Sattath [BS16] for regular subspace states. The proof is given in Section 4.2.3.

4.2.2 Computational direct product hardness

Next, we present the computational version of the direct product hardness property. This estab-
lishes that Theorem 4.5 still holds, even if an adversary is given 𝗂𝖮 obfuscations of the subspace
membership checking programs.

Theorem 4.6. Assume the existence of post-quantum 𝗂𝖮 and one-way function. Let 𝐴 ⊆ 𝔽𝑛
2 be a

uniformly random subspace of dimension 𝑛/2, and 𝑠, 𝑠′ be uniformly random in 𝔽𝑛
2 . Given one copy

of |𝐴𝑠,𝑠′⟩, 𝗂𝖮(𝐴+ 𝑠) and 𝗂𝖮(𝐴⊥+ 𝑠′), any polynomial time adversary outputs a pair (𝑣, 𝑤) such that
𝑣 ∈ 𝐴+ 𝑠 and 𝑤 ∈ 𝐴⊥ + 𝑠′ with negligible probability.

4.2.3 Proof of Theorem 4.5

We first present the theorem from Ben-David and Sattath [BS16].

Theorem 4.7 ([BS16]). Let 𝐴 ⊆ 𝔽𝑛
2 be a uniformly random subspace of dimension 𝑛/2, and let

𝜖 > 0 be such that 1/𝜖 = 𝑜(2𝑛/2). Given one copy of |𝐴⟩, and a quantum membership oracle for 𝐴
and 𝐴⊥, an adversary needs Ω(

√
𝜖2𝑛/2) queries to output a pair (𝑣, 𝑤) such that 𝑣 ∈ 𝐴 ∖ {0} and

𝑤 ∈ 𝐴⊥ ∖ {0} with probability 𝜖.

Proof of Theorem 4.5. Let 𝒜 be an adversary for Theorem 4.5 who suceeds with probability 𝑝, we
construct an adversary 𝒜′ for Theorem 4.7 with almost the same success probability making the
same number of queries. 𝒜′ proceeds as follows.
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• 𝒜′ receives |𝐴⟩ for some 𝐴 ⊆ 𝔽𝑛
2 . Samples 𝑠, 𝑠′ uniformly at random, and creates the state

|𝐴𝑠,𝑠′⟩.

• 𝒜′ gives |𝐴𝑠,𝑠′⟩ as input to 𝒜. 𝒜 also needs to get access to oracle 𝐴+ 𝑠 and 𝐴⊥ + 𝑠′. 𝒜′ can
simulate them by having access to 𝐴,𝐴⊥ and knowing 𝑠, 𝑠′. It receives 𝑣, 𝑤 in return from 𝒜.
𝒜′ outputs (𝑣 − 𝑠, 𝑤 − 𝑠′).

With probability 𝑝, 𝒜 returns 𝑣, 𝑤 such that 𝑣 ∈ 𝐴 + 𝑠 and 𝑤 ∈ 𝐴⊥ + 𝑠′. Thus the output of
𝒜′ (𝑣 − 𝑠, 𝑤 − 𝑠′) is such that 𝑣 − 𝑠 ∈ 𝐴 and 𝑤 − 𝑠′ ∈ 𝐴⊥. All that is left to argue is that with
overwhelming probability 𝑣 − 𝑠 ̸= 0 and 𝑤− 𝑠 ̸= 0. Note that there are 2𝑛/2 · 2𝑛/2 pairs (𝑠, 𝑠′) such
that |𝐴𝑠,𝑠′⟩ = |𝐴𝑠,𝑠′⟩, since translating 𝑠 and 𝑠′ by an element in 𝐴 and 𝐴⊥ respectively does not
affect the state. Note further that only 2𝑛/2+1− 1 pairs are such that 𝑣− 𝑠 = 0 or 𝑤− 𝑠′ = 0. Since
𝑠 and 𝑠′ are sampled uniformly at random, the probability that 𝑣− 𝑠 = 0 or 𝑤− 𝑠′ = 0 is 2𝑛/2+1−1

2𝑛 ,
which is negligible.

4.2.4 Proof of Theorem 4.6

Proof. We consider the following hybrids.

• Hyb 0: This is the game of Theorem 4.6: 𝐴 ⊆ 𝔽𝑛
2 , 𝑠, 𝑠′ are sampled uniformly at random. 𝒜

receives 𝗂𝖮(𝐴+ 𝑠), 𝗂𝖮(𝐴⊥ + 𝑠′), and |𝐴𝑠,𝑠′⟩. 𝒜 wins if it returns (𝑣, 𝑤) ∈ (𝐴+ 𝑠)× (𝐴⊥ + 𝑠′).

• Hyb 1: Same as Hyb 0 except 𝒜 gets 𝗂𝖮(𝗌𝗁𝖮𝐴(· − 𝑠)), 𝗂𝖮(𝐴⊥ + 𝑠′) and |𝐴𝑠,𝑠′⟩. Recall that
𝗌𝗁𝖮𝐴 is the program 𝗌𝗁𝖮(𝐴), and so 𝗌𝗁𝖮𝐴(·−𝑠)) is the program that on input 𝑥, runs program
𝗌𝗁𝖮(𝐴) on input 𝑥− 𝑠.

• Hyb 2: Same as Hyb 1 except 𝒜 gets 𝗂𝖮(𝗌𝗁𝖮𝐵(· − 𝑠)), 𝗂𝖮(𝐴⊥+ 𝑠′) and |𝐴𝑠,𝑠′⟩, for a uniformly
random superspace 𝐵 of 𝐴, of dimension 3/4𝑛.

• Hyb 3: Same as Hyb 2 except for the following. The challenger samples 𝑠, 𝑠′, 𝐴, and a uniformly
random superspace 𝐵 of 𝐴 as before. The challenger sets 𝑡 = 𝑠+𝑤𝐵, where 𝑤𝐵 ← 𝐵. Sends
𝗂𝖮(𝗌𝗁𝖮𝐵(· − 𝑡)), 𝗂𝖮(𝐴⊥ + 𝑠′) and |𝐴𝑠,𝑠′⟩ to 𝒜.

• Hyb 4: Same as Hyb 3 except 𝒜 gets 𝗂𝖮(𝗌𝗁𝖮𝐵(· − 𝑡)), 𝗂𝖮(𝗌𝗁𝖮𝐴⊥(· − 𝑠′)) and |𝐴𝑠,𝑠′⟩.

• Hyb 5: Same as Hyb 4 except 𝒜 gets 𝗂𝖮(𝗌𝗁𝖮𝐵(· − 𝑡)), 𝗂𝖮(𝗌𝗁𝖮𝐶⊥(· − 𝑠′)) and |𝐴𝑠,𝑠′⟩, for a
uniformly random superspace 𝐴⊥ ⊆ 𝐶⊥ of dimension 3𝑛/4.

• Hyb 6: Same as Hyb 5 except for the following. The challenger sets 𝑡′ = 𝑠′ + 𝑤𝐶⊥ , where
𝑤𝐶⊥ ← 𝐶⊥. 𝒜 gets 𝗂𝖮(𝗌𝗁𝖮𝐵(· − 𝑡)), 𝗂𝖮(𝗌𝗁𝖮𝐶⊥(· − 𝑡′)) and |𝐴𝑠,𝑠′⟩.

• Hyb 7: Same as Hyb 6 except the challenger sends 𝐵,𝐶, 𝑡, 𝑡′ in the clear to 𝒜.

Claim 4.8. For any QPT adversary 𝒜,

|Pr[𝒜 wins in Hyb 1]− Pr[𝒜 wins in Hyb 0]| = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. Suppose for a contradiction there was a QPT adversary 𝒜 such that:

|Pr[𝒜 wins in Hyb 1]− Pr[𝒜 wins in Hyb 0]| (1)
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is non-negligible. Such an adversary can be used to construct 𝒜′ which distinguishes 𝗂𝖮(𝐴+𝑠) from
𝗂𝖮(𝗌𝗁𝖮𝐴(· − 𝑠)), which is impossible by the security of the (outer) 𝗂𝖮, since 𝐴+ 𝑠 and 𝗌𝗁𝖮𝐴(· − 𝑠)
compute the same functionality.

Fix 𝑛, let 𝐴 ⊆ 𝔽𝑛
2 , 𝑠, 𝑠′ ∈ 𝔽𝑛

2 be such that the difference in (1) is maximized. Suppose
Pr[𝒜 wins in Hyb 1] > Pr[𝒜 wins in Hyb 0], the other case being similar.
𝒜′ proceeds as follows:

• Receives as a challenge a circuit 𝑃 which is either 𝗂𝖮(𝐴+ 𝑠) or 𝗂𝖮(𝗌𝗁𝖮𝐴(· − 𝑠)). Creates the
state |𝐴𝑠,𝑠′⟩. Gives 𝑃 , 𝗂𝖮(𝐴⊥ + 𝑠′) and |𝐴𝑠,𝑠′⟩ as input to 𝒜.

• 𝒜 returns a pair (𝑣, 𝑤). If 𝑣 ∈ 𝐴+𝑠 and 𝑤 ∈ 𝐴⊥+𝑠′, then 𝒜′ guesses that 𝑃 = 𝗂𝖮(𝗌𝗁𝖮𝐴(·−𝑠)),
otherwise that 𝑃 = 𝗂𝖮(𝐴+ 𝑠).

It is straightforward to verify that 𝒜′ succeeds at distinguishing with non-negligible probability.

Claim 4.9. For any QPT adversary 𝒜,

|Pr[𝒜 wins in Hyb 2]− Pr[𝒜 wins in Hyb 1]| = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. Suppose for a contradiction there was a QPT adversary 𝒜 such that:

|Pr[𝒜 wins in Hyb 2]− Pr[𝒜 wins in Hyb 1]| ,

is non-negligible.
We argue that 𝒜 can be used to construct an adversary 𝒜′ that breaks the security of 𝗌𝗁𝖮.
Fix 𝑛. Suppose Pr[𝒜 wins in Hyb 2] > Pr[𝒜 wins in Hyb 1], the other case being similar.
𝒜′ proceeds as follows:

• Sample 𝐴 ⊆ 𝔽𝑛
2 uniformly at random. Send 𝐴 to the challenger.

• The challenger returns a program 𝑃 which is either 𝗌𝗁𝖮𝐴 or 𝗌𝗁𝖮𝐵. 𝒜′ samples uniformly
𝑠, 𝑠′ ∈ 𝔽𝑛

2 , and creates the state |𝐴𝑠,𝑠′⟩. Gives 𝗂𝖮(𝑃 (· − 𝑠)), 𝗂𝖮(𝐴⊥ + 𝑠′) and |𝐴𝑠,𝑠′⟩ as input
to 𝒜.

• 𝒜 returns a pair (𝑣, 𝑤). If 𝑣 ∈ 𝐴 + 𝑠 and 𝑤 ∈ 𝐴⊥ + 𝑠′, then 𝒜′ guesses that 𝑃 = 𝗌𝗁𝖮𝐵,
otherwise that 𝑃 = 𝗌𝗁𝖮𝐴.

It is straightforward to verify that 𝒜′ succeeds at the security game for 𝗌𝗁𝖮 with non-negligible
advantage.

Claim 4.10. For any QPT adversary 𝒜,

|Pr[𝒜 wins in Hyb 3]− Pr[𝒜 wins in Hyb 2]| = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. The proof is similar to the proof of Lemma 4.8, and follows from the security of 𝗂𝖮 and the
fact that 𝗌𝗁𝖮𝐵(·−𝑠) and 𝗌𝗁𝖮𝐵(·− 𝑡) compute the same functionality. This is because for any vector
𝑤𝐵 ∈ 𝐵, 𝐵 + 𝑤𝑏 is the same subspace as 𝐵.

Claim 4.11. For any QPT adversary 𝒜, and 𝑗 = 4, 5, 6, we have

|Pr[𝒜 wins in Hyb j]− Pr[𝒜 wins in Hyb (j-1)]| = 𝗇𝖾𝗀𝗅(𝜆)
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Proof. The proofs are analogous to those of Lemmas 4.8, 4.9, 4.10.

Lemma 4.12. For any QPT adversary 𝒜 for Hyb 6, there exists an adversary 𝒜′ for Hyb 7 such
that

Pr[𝒜′ wins in Hyb 7] ≥ Pr[𝒜 wins in Hyb 6] .

Proof. This is immediate.

Lemma 4.13. For any (unbounded) adversary 𝒜,

Pr[𝒜 wins in Hyb 7] = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. Suppose there exists an adversary 𝒜 for Hyb 7 that wins with probability 𝑝.
We first show that, without loss of generality, one can take 𝐵 to be the subspace of vectors such

that the last 𝑛/4 entries are zero (and the rest are free), and one can take 𝐶 to be such that the
last 3/4𝑛 entries are zero (and the rest are free). We construct the following adversary 𝒜′ for the
game where 𝐵 and 𝐶 have the special form above with trailing zeros, call these 𝐵* and 𝐶*, from
an adversary 𝒜 for the game of Hyb 7.

• 𝒜′ receives a state |𝐴𝑠,𝑠′⟩, together with 𝑡 and 𝑡′, for some 𝐶* ⊆ 𝐴 ⊆ 𝐵*, where 𝑡 = 𝑠+ 𝑤𝐵*

for 𝑤𝐵* ← 𝐵*, and 𝑡′ = 𝑠′ + 𝑤𝐶⊥
*

, where 𝑤𝐶⊥
*
← 𝐶⊥* .

• 𝒜′ picks uniformly random subspaces 𝐵 and 𝐶 of dimension 3
4𝑛 and 𝑛

4 respectively such that
𝐶 ⊆ 𝐵, and a uniformly random isomorphism 𝒯 mapping 𝐶* to 𝐶 and 𝐵* to 𝐵 (which can be
sampled efficiently). We think of 𝒯 as a change-of-basis matrix (in particular when we take
its transpose). 𝒜′ applies to |𝐴𝑠,𝑠′⟩ the unitary 𝑈𝒯 which acts as 𝒯 on the standard basis
elements. 𝒜′ gives 𝑈𝒯 |𝐴⟩ to 𝒜 together with 𝐵, 𝐶, 𝒯 (𝑡) and (𝒯 −1)𝑇 (𝑡′). 𝒜′ receives a pair
(𝑣, 𝑤) from 𝒜. 𝒜′ outputs (𝒯 −1(𝑣), 𝒯 𝑇 (𝑤)).

First, notice that

𝑈𝒯 |𝐴𝑠,𝑠′⟩ = 𝑈𝒯
∑︁
𝑣∈𝐴

(−1)⟨𝑣,𝑠′⟩ |𝑣 + 𝑠⟩

=
∑︁
𝑣∈𝐴

(−1)⟨𝑣,𝑠′⟩ |𝒯 (𝑣) + 𝒯 (𝑠)⟩

=
∑︁

𝑤∈𝒯 (𝒜)

(−1)⟨𝒯 −1(𝑤),𝑠′⟩ |𝑤 + 𝒯 (𝑠)⟩

=
∑︁

𝑤∈𝒯 (𝐴)

(−1)⟨𝑤,(𝒯 −1)𝑇 (𝑠′)⟩ |𝑤 + 𝒯 (𝑠)⟩

= |𝒯 (𝐴)𝑧,𝑧′⟩ ,

where 𝑧 = 𝒯 (𝑠) and 𝑧′ = (𝒯 −1)𝑇 (𝑠′).
Notice that 𝒯 (𝐴) is a uniformly random subspace between 𝐶 and 𝐵, and that 𝑧 and 𝑧′ are

uniformly random vectors in 𝔽𝑛
2 . Moreover, we argue that:

(i) 𝒯 (𝑡) is distributed as a uniformly random element of 𝑧 +𝐵.

(ii) (𝒯 −1)𝑇 (𝑡′) is distributed as a uniformly random element of 𝑧′ + 𝐶⊥.
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For (i), notice that

𝒯 (𝑡) = 𝒯 (𝑠+ 𝑤𝐵*) = 𝒯 (𝑠) + 𝒯 (𝑤𝐵*) = 𝑧 + 𝒯 (𝑤𝐵*) ,

where 𝑤𝐵* is uniformly random in 𝐵*. Since 𝒯 is an isomorphism with 𝒯 (𝐵*) = 𝐵, then 𝒯 (𝑤𝐵*)
is uniformly random in 𝐵. Thus, 𝒯 (𝑡) is distributed as a uniformly random element in 𝑧 +𝐵.

For (ii), notice that

(𝒯 −1)𝑇 (𝑡′) = (𝒯 −1)𝑇 (𝑠′ + 𝑤𝐶⊥
*
) = (𝒯 −1)𝑇 (𝑠′) + (𝒯 −1)𝑇 (𝑤𝐶⊥

*
) = 𝑧′ + (𝒯 −1)𝑇 (𝑤𝐶⊥

*
) ,

where 𝑤𝐶⊥
*

is uniformly random in 𝐶⊥* . We claim that (𝒯 −1)𝑇 (𝑤𝐶⊥
*
) is uniformly random in 𝐶⊥.

Notice, first, that the latter belongs to 𝐶⊥. Let 𝑥 ∈ 𝐶, then

⟨(𝒯 −1)𝑇 (𝑤𝐶⊥
*
), 𝑥⟩ = ⟨𝑤𝐶⊥

*
, 𝒯 −1(𝑥)⟩ = 0 ,

where the last equality follows because 𝑤𝐶⊥
*
∈ 𝐶⊥* , and 𝒯 −1(𝐶) = 𝐶*. The claim follows from the

fact that (𝒯 −1)𝑇 is a bijection.
Hence, 𝒜 receives inputs from the correct distribution, and thus, with probability 𝑝, 𝒜 returns

a pair (𝑣, 𝑤) such that 𝑣 ∈ 𝒯 (𝐴) + 𝑧 and 𝑤 ∈ 𝒯 (𝐴)⊥ + 𝑧′, where 𝑧 = 𝒯 (𝑠) and 𝑧′ ∈ (𝒯 −1)𝑇 (𝑠′). 𝒜′
returns (𝑣′, 𝑤′) = (𝒯 −1(𝑣), 𝒯 𝑇 (𝑤)).

Notice that:

• If 𝑣 ∈ 𝒯 (𝐴) + 𝑧, where 𝑧 = 𝒯 (𝑠), then 𝒯 −1(𝑣) ∈ 𝐴+ 𝑠.

• If 𝑤 ∈ 𝒯 (𝐴)⊥ + 𝑧′, where 𝑧′ ∈ (𝒯 −1)𝑇 (𝑠′), then 𝒯 𝑇 (𝑤) ∈ 𝐴⊥ + 𝑠′. This is because, for any
𝑢 ∈ 𝐴:

⟨𝒯 𝑇 (𝑤), 𝑢⟩ = ⟨𝑤, 𝒯 (𝑢)⟩ = 0 .

Thus, with probability 𝑝, 𝒜′ returns a pair (𝑣′, 𝑤′) where 𝑣′ ∈ 𝐴+𝑠 and 𝑤′ ∈ 𝐴⊥+𝑠′, as desired.

So, we can now assume that 𝐵 is the space of vectors such that the last 𝑛
4 entries are zero,

and 𝐶 is the space of vectors such that the last 3
4𝑛 entries are zero. Notice then that the sampled

subspace 𝐴 is uniformly random subspace subject to the last 𝑛
4 entries being zero, and the first 𝑛

4
entries being free. From an adversary 𝒜 for Hybrid 7 with such 𝐵 and 𝐶, we will construct an
adversary 𝒜′ for the information-theoretic direct-product game where the ambient subspace is 𝔽𝑛′

2 ,
where 𝑛′ = 𝑛

2 .

• 𝒜′ receives |𝐴𝑠,𝑠′⟩, for uniformly random 𝐴 ⊆ 𝔽𝑛′
2 of dimension 𝑛′/2 and uniformly random

𝑠, 𝑠′ ∈ 𝔽𝑛′
2 . 𝒜′ samples 𝑠, 𝑠′, 𝑠, 𝑠′ ← 𝔽

𝑛
4
2 .

Let |𝜑⟩ = 1
2𝑛/8

∑︀
𝑥∈{0,1}𝑛/4(−1)⟨𝑥,𝑠′⟩ |𝑥+ 𝑠⟩. 𝒜′0 creates the state

|𝑊 ⟩ = |𝜑⟩ ⊗ |𝐴𝑠,𝑠′⟩ ⊗ |𝑠⟩ ,

𝒜′ gives to 𝒜 as input the state |𝑊 ⟩, together with 𝑡 = 03𝑛/4||𝑠 + 𝑤𝐵 for 𝑤𝐵 ← 𝐵 and 𝑡′ =

𝑠′||03𝑛/4 +𝑤𝐶⊥ , for 𝑤𝐶⊥ ← 𝐶⊥. 𝒜 returns a pair (𝑣, 𝑤) ∈ 𝔽𝑛
2 ×𝔽𝑛

2 . Let 𝑣′ = [𝑣]𝑛
4
+1, 3

4
𝑛 ∈ 𝔽𝑛/2

2

be the “middle” 𝑛/2 entries of 𝑣. Let 𝑤′ = [𝑤]𝑛
4
+1, 3

4
𝑛 ∈ 𝔽𝑛/2

2 . 𝒜′ outputs (𝑣′, 𝑤′).
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Notice that

|𝑊 ⟩ = |𝜑⟩ ⊗ |𝐴𝑠,𝑠′⟩ ⊗ |𝑠⟩
=

∑︁
𝑥∈{0,1}𝑛/4,𝑣∈𝐴

(−1)⟨𝑥,𝑠′⟩(−1)⟨𝑣,𝑠′⟩
⃒⃒⃒
(𝑥+ 𝑠)||(𝑣 + 𝑠)||𝑠

⟩
=

∑︁
𝑥∈{0,1}𝑛/4,𝑣∈𝐴

(−1)⟨(𝑥||𝑣||0𝑛/4),(𝑠′||𝑠′||𝑠′)⟩
⃒⃒⃒
𝑥||𝑣||0𝑛/4 + 𝑠||𝑠||𝑠

⟩
=

∑︁
𝑤∈𝐴

(−1)⟨𝑤,𝑧′⟩ |𝑤 + 𝑧⟩ = |𝐴𝑧,𝑧′⟩ ,

where 𝑧 = 𝑠||𝑠||𝑠, 𝑧′ = 𝑠′||𝑠′||𝑠′, and 𝐴 ⊆ 𝔽𝑛
2 is the subspace in which the first 𝑛/4 entries are free,

the middle 𝑛/2 entries belong to subspace 𝐴, and the last 𝑛/4 entries are zero (notice that there is
a freedom for the choice of 𝑠′ in the above calculation).

Notice that the subspace 𝐴, when averaging over the choice of 𝐴, is distributed precisely as in
the game of Hybrid 7 (with the special choice of 𝐵 and 𝐶); 𝑧, 𝑧′ are uniformly random in 𝔽𝑛

2 ; 𝑡 is
uniformly random from 𝑧 +𝐵, and 𝑡′ is uniformly random from 𝑧′ +𝐶⊥. Thus, with probability 𝑝,
𝒜 returns to 𝒜′ a pair (𝑣, 𝑤) such that 𝑣 ∈ 𝐴+ 𝑧 and 𝑤 ∈ 𝐴⊥+ 𝑧′. It follows that, with probability
𝑝, the answer (𝑣′, 𝑤′) returned by 𝒜′ is such that 𝑣′ ∈ 𝐴+ 𝑠 and 𝑤′ ∈ 𝐴⊥ + 𝑠′.

Thus, by Theorem 4.5, we deduce that 𝑝 must be negligible.

Therefore, we have shown that the advantage in distinguishing Hybrid 0 and Hybrid 6 is negli-
gible, and the success probability in Hybrid 6 is at most the success probability in Hybrid 7, which
is negligible). Hence, the probability of success in the original game is also negligible.

4.3 Monogamy-of-Entanglement Property

In this subsection, we argue that coset states satisfy an information-theoretic and a computational
monogamy-of-entanglement property. We will not make use of these properties directly, instead we
will have to rely on a stronger conjectured monogamy-of-entanglement property, which is presented
in subsection 4.4. Thus, the properties that we prove in this subsection serve merely as “evidence”
in support of the stronger conjecture.

4.3.1 Information-Theoretic Monogamy-of-Entanglement

Let 𝑛 ∈ ℕ. Consider the following game between a challenger and an adversary (𝒜0,𝒜1,𝒜2).

• The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 of dimension 𝑛

2 , and two uniformly
random elements 𝑠, 𝑠′ ∈ 𝔽𝑛

2 . Sends |𝐴𝑠,𝑠′⟩ to 𝒜0.

• 𝒜0 creates a bipartite state on registers 𝖡 and 𝖢. Then, 𝒜0 sends register 𝖡 to 𝒜1, and 𝖢 to
𝒜2.

• The description of 𝐴 is then sent to both 𝒜1,𝒜2.

• 𝒜1 and 𝒜2 return respectively (𝑠1, 𝑠
′
1) and (𝑠2, 𝑠

′
2).
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(𝒜0,𝒜1,𝒜2) wins if, for 𝑖 ∈ {1, 2}, 𝑠𝑖 ∈ 𝐴+ 𝑠 and 𝑠′𝑖 ∈ 𝐴⊥ + 𝑠′ .

Let 𝖨𝖳𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes the value 1 if the game
above is won by adversary (𝒜0,𝒜1,𝒜2), and takes the value 0 otherwise. We have the following
theorem.

Theorem 4.14. There exists a sub-exponential function 𝗌𝗎𝖻𝖾𝗑𝗉 such that, for any (unbounded)
adversary (𝒜0,𝒜1,𝒜2),

Pr[𝖨𝖳𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) = 1] ≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝑛) .

We refer the reader to Appendix C.1 for the proof.

4.3.2 Computational monogamy

We describe a computational version of the monogamy game from the previous section. In the
computational version, 𝒜0 additionally receives the programs 𝗂𝖮(𝐴+ 𝑠) and 𝗂𝖮(𝐴′+ 𝑠′). The game
is between a challenger and an adversary (𝒜0,𝒜1,𝒜2).

• The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛 of dimension 𝑛
2 , and two uniformly

random elements 𝑠, 𝑠′ ∈ 𝔽𝑛
2 . It sends |𝐴𝑠,𝑠′⟩, 𝗂𝖮(𝐴+ 𝑠), and 𝗂𝖮(𝐴⊥ + 𝑠′) to 𝒜0.

• 𝒜0 creates a bipartite state on registers 𝖡 and 𝖢. Then, 𝒜0 sends register 𝖡 to 𝒜1, and 𝖢 to
𝒜2.

• The description of 𝐴 is then sent to both 𝒜1,𝒜2.

• 𝒜1 and 𝒜2 return respectively (𝑠1, 𝑠
′
1) and (𝑠2, 𝑠

′
2).

(𝒜0,𝒜1,𝒜2) wins if, for 𝑖 ∈ {1, 2}, 𝑠𝑖 ∈ 𝐴+ 𝑠 and 𝑠′𝑖 ∈ 𝐴⊥ + 𝑠′ .

Let 𝖢𝗈𝗆𝗉𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes the value 1 if the game
above is won by adversary (𝒜0,𝒜1,𝒜2), and takes the value 0 otherwise.

Theorem 4.15. Assume the existence of post-quantum 𝗂𝖮 and one-way function, there exists a
negligible function 𝗇𝖾𝗀𝗅(·), for any QPT adversary (𝒜0,𝒜1,𝒜2),

Pr[𝖢𝗈𝗆𝗉𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) = 1] = 𝗇𝖾𝗀𝗅(𝑛) .

The proof is very similar to the proof of Theorem 4.6. We refer the reader to Appendix C.2 for
the full details.

4.4 Conjectured Strong Monogamy Property

In this section, we describe a stronger version of the monogamy property, which we conjecture to
hold. The monogamy property is a slight (but significant) variation of the one stated in the last
section (which we proved to be true). Recall that there 𝒜1 and 𝒜2 are required to return pairs
(𝑠1, 𝑠

′
1) and (𝑠2, 𝑠

′
2) respectively, such that both 𝑠1, 𝑠2 ∈ 𝐴 + 𝑠 and 𝑠′1, 𝑠

′
2 ∈ 𝐴⊥ + 𝑠′. Now, we

require that it is hard for 𝒜1 and 𝒜2 to even return a single string 𝑠1 and 𝑠2 respectively such that
𝑠1 ∈ 𝐴+ 𝑠 and 𝑠2 ∈ 𝐴⊥ + 𝑠′.

Formally, consider the following game between a challenger and an adversary (𝒜0,𝒜1,𝒜2).
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• The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 of dimension 𝑛

2 , and two uniformly
random elements 𝑠, 𝑠′ ∈ 𝔽𝑛

2 . It sends |𝐴𝑠,𝑠′⟩ to 𝒜0.

• 𝒜0 creates a bipartite state on registers 𝖡 and 𝖢. Then, 𝒜0 sends register 𝖡 to 𝒜1, and 𝖢 to
𝒜2.

• The description of 𝐴 is then sent to both 𝒜1,𝒜2.

• 𝒜1 and 𝒜2 return respectively 𝑠1 and 𝑠2.

Let 𝖨𝖳𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes the value 1 if the game
above is won by adversary (𝒜0,𝒜1,𝒜2), and takes the value 0 otherwise. We conjecture the follow-
ing:

Conjecture 4.16. There exists a sub-exponential function 𝗌𝗎𝖻𝖾𝗑𝗉 such that, for any (unbounded)
adversary (𝒜0,𝒜1,𝒜2),

Pr[𝖨𝖳𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) = 1] ≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝑛) .

Remark 4.17. This conjecture is later proved in a follow-up work by Culf and Vidick after the first
version of this paper. We refer the readers to [CV21] for details of the proof.

Assuming the conjecture is true, and assuming post-quantum 𝗂𝖮 and one-way functions, we are
able to prove the following computational strong monogamy statement. Consider a game between a
challenger and an adversary (𝒜0,𝒜1,𝒜2), which is identical to the one described above except that
all 𝒜0 additionally gets the membership checking programs 𝗂𝖮(𝐴+ 𝑠) and 𝗂𝖮(𝐴⊥ + 𝑠′).

• The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 of dimension 𝑛

2 , and two uniformly
random elements 𝑠, 𝑠′ ∈ 𝔽𝑛

2 . It sends |𝐴𝑠,𝑠′⟩, 𝗂𝖮(𝐴+ 𝑠), and 𝗂𝖮(𝐴⊥ + 𝑠′) to 𝒜0.

• 𝒜0 creates a bipartite state on registers 𝖡 and 𝖢. Then, 𝒜0 sends register 𝖡 to 𝒜1, and 𝖢 to
𝒜2.

• The description of 𝐴 is then sent to both 𝒜1,𝒜2.

• 𝒜1 and 𝒜2 return respectively 𝑠1 and 𝑠2.

(𝒜0,𝒜1,𝒜2) wins if, for 𝑠1 ∈ 𝐴+ 𝑠 and 𝑠2 ∈ 𝐴⊥ + 𝑠′.

Let 𝖢𝗈𝗆𝗉𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) be a random variable which takes the value 1 if the
game above is won by adversary (𝒜0,𝒜1,𝒜2), and takes the value 0 otherwise.

Theorem 4.18. Assuming Conjecture 4.16 holds, and assuming the existence of post-quantum
𝗂𝖮 and one-way functions, then there exists a negligible function 𝗇𝖾𝗀𝗅(·), for any QPT adversary
(𝒜0,𝒜1,𝒜2),

Pr[𝖢𝗈𝗆𝗉𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) = 1] = 𝗇𝖾𝗀𝗅(𝑛) .

We can further show a ‘sub-exponential strong monogamy property’ if we additionally assume
sub-exponentially secure 𝗂𝖮 and one-way functions.
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Theorem 4.19. Assuming Conjecture 4.16 holds, and assuming the existence of sub-exponentially
secure post-quantum 𝗂𝖮 and one-way functions, then for any QPT adversary (𝒜0,𝒜1,𝒜2),

Pr[𝖢𝗈𝗆𝗉𝖲𝗍𝗋𝗈𝗇𝗀𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒((𝒜0,𝒜1,𝒜2), 𝑛) = 1] ≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝑛) .

The proof is almost identical to that of Theorem 4.15, therefore we omit the proof here and refer
to the proof of Theorem 4.15.

In the rest of the work, whenever we mention ‘strong monogamy property’ or ‘strong monogamy-
of-entanglement property’, we refer to the computational monogamy property in Theorem 4.18
above. Whenever we mention ‘sub-exponentially strong monogamy property’ or ‘sub-exponentially
strong monogamy-of-entanglement property’, we refer to the computational monogamy property in
Theorem 4.19.

5 Tokenized Signature Scheme from iO

In this section, we present a construction for tokenized signatures with unforgeability security based
on the computational direct product hardness(Theorem 4.6). We improved upon the scheme in
[BS16] by removing the need of (highly structured) oracles or post-quantum VBB obfuscation.

5.1 Definitions

Definition 5.1 (Tokenized signature scheme). A tokenized signature (TS) scheme consists of a
tuple of QPT algorithms (𝖪𝖾𝗒𝖦𝖾𝗇,𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇, 𝖲𝗂𝗀𝗇,𝖵𝖾𝗋𝗂𝖿𝗒) with the following properties:

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆) → (𝗌𝗄, 𝗉𝗄): Takes as input 1𝜆, where 𝜆 is a security parameter, and outputs a
secret key, public (verification) key pair (𝗌𝗄, 𝗉𝗄).

• 𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇(𝗌𝗄)→ |𝗍𝗄⟩: Takes as input a secret key 𝗌𝗄 and outputs a signing token |𝗍𝗄⟩.

• 𝖲𝗂𝗀𝗇(𝑚, |𝗍𝗄⟩) → (𝑚, 𝗌𝗂𝗀)/⊥: Takes as input a message 𝑚 ∈ {0, 1}* and a token |𝗍𝗄⟩, and
outputs either a message, signature pair (𝑚, 𝗌𝗂𝗀) or ⊥.

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄,𝑚, 𝗌𝗂𝗀)→ 0/1: Takes as input an verification key, an alleged message, signature pair
(𝑚, 𝗌𝗂𝗀), and outputs 0 (“reject”) or 1 (“accept”).

• 𝖱𝖾𝗏𝗈𝗄𝖾(𝗉𝗄, |𝗍𝗄⟩) → 0/1: Takes in public key 𝗉𝗄 and a claimed token |𝗍𝗄⟩, and outputs 0
(“reject”) or 1 (“accept”).

These algorithms satisfy the following. First is correctness. There exists a negligible function
𝗇𝖾𝗀𝗅(·), for any 𝜆 ∈ ℕ, 𝑚 ∈ {0, 1}*,

Pr[𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄,𝑚, 𝗌𝗂𝗀) = 1 :(𝑚, 𝗌𝗂𝗀)← 𝖲𝗂𝗀𝗇(𝑚, |𝗍𝗄⟩), |𝗍𝗄⟩ ← 𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇(𝗌𝗄),

(𝗌𝗄, 𝗉𝗄)← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆) .

Definition 5.2 (Length restricted TS scheme). A TS scheme is 𝑟-restricted if it holds only for
𝑚 ∈ {0, 1}𝑟. We refer to a scheme that is 1-restricted as a one-bit TS scheme.
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Notation-wise, we introduce an additional algorithm 𝖵𝖾𝗋𝗂𝖿𝗒ℓ. The latter takes as input a pub-
lic key 𝗉𝗄 and ℓ pairs (𝑚ℓ, 𝗌𝗂𝗀ℓ), . . . , (𝑚ℓ, 𝗌𝗂𝗀ℓ). It checks that 𝑚𝑖 ̸= 𝑚𝑗 for all 𝑖 ̸= 𝑗, and
𝖵𝖾𝗋𝗂𝖿𝗒(𝑚𝑖, 𝗌𝗂𝗀𝑖) = 1 for all 𝑖 ∈ [ℓ]; it outputs 1 if and only if they all hold.

Next we define unforgeability.

Definition 5.3 (1-Unforgeability). A TS scheme is 1-unforgeable if for every QPT adversary 𝒜,
there exists a negligible function 𝗇𝖾𝗀𝗅(·), for every 𝜆:

Pr

[︂
(𝑚0, 𝗌𝗂𝗀0,𝑚1, 𝗌𝗂𝗀1)← 𝒜(𝗉𝗄, |𝗍𝗄⟩)
𝖵𝖾𝗋𝗂𝖿𝗒2(𝗉𝗄,𝑚0, 𝗌𝗂𝗀0,𝑚1, 𝗌𝗂𝗀1) = 1

:
(𝗌𝗄, 𝗉𝗄)← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)
|𝗍𝗄⟩ ← 𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇(𝗌𝗄)

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆) .

Definition 5.4 (Unforgeability). A TS scheme is unforgeable if for every QPT adversary 𝒜, there
exists a negligible function 𝗇𝖾𝗀𝗅(·), for every 𝜆, 𝑙 = 𝗉𝗈𝗅𝗒(𝜆):

Pr

⎡⎢⎢⎢⎣ {𝑚𝑖, 𝗌𝗂𝗀𝑖}𝑖∈[𝑙+1] ← 𝒜(𝗉𝗄, {|𝗍𝗄𝑖⟩}𝑖∈[𝑙])
𝖵𝖾𝗋𝗂𝖿𝗒𝑙+1(𝗉𝗄, {𝑚𝑖, 𝗌𝗂𝗀𝑖}𝑖∈[𝑙+1]) = 1

:

(𝗌𝗄, 𝗉𝗄)← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆)
|𝗍𝗄1⟩ ← 𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇(𝗌𝗄)

...
|𝗍𝗄𝑙⟩ ← 𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇(𝗌𝗄)

⎤⎥⎥⎥⎦ ≤ 𝗇𝖾𝗀𝗅(𝜆) .

Finally we have revocability.

Definition 5.5 (Revocability). A revocable tokenized signature scheme satisfies:

• Correctness:

Pr
[︀
𝖱𝖾𝗏𝗈𝗄𝖾(𝗉𝗄, |𝗍𝗄⟩) = 1

⃒⃒
(𝗉𝗄, 𝗌𝗄)← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆), |𝗍𝗄⟩ ← 𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇(𝗌𝗄)

]︀
= 1.

• Revocability: For every ℓ ≤ 𝗉𝗈𝗅𝗒(𝜆), 𝑡 ≤ ℓ, and every QPT 𝒜 with ℓ signing tokens |𝗍𝗄1⟩ ⊗
· · · ⊗ |𝗍𝗄ℓ⟩ and 𝗉𝗄, which has generated 𝑡 signatures (𝑚1, 𝗌𝗂𝗀1), · · · , (𝑚𝑡, 𝗌𝗂𝗀𝑡) and a state 𝜎:

Pr [𝖵𝖾𝗋𝗂𝖿𝗒𝑡(𝗉𝗄, (𝑚1, 𝗌𝗂𝗀1), · · · , (𝑚𝑡, 𝗌𝗂𝗀𝑡)) = 1 ∧ 𝖱𝖾𝗏𝗈𝗄𝖾ℓ−𝑡+1(𝜎) = 1] ≤ 𝗇𝖾𝗀𝗅(𝜆)

Here 𝖱𝖾𝗏𝗈𝗄𝖾ℓ−𝑡+1 means applying 𝖱𝖾𝗏𝗈𝗄𝖾 on all ℓ− 𝑡+ 1 registers of 𝜎, and outputs 1 if they
all output 1.

The revocability property follows straightforwardly from unforgeability [BS16]. Thus to show a
construction is secure, we only need to focus on proving unforgeability. The following theorem says
1-unforgeability is sufficient to achieve a full blown TS scheme.

Theorem 5.6 ([BS16]). A one-bit 1-unforgeable TS scheme implies a (full blown) TS scheme,
assuming the existence of a quantum-secure digital signature scheme.

In the next section, we give our construction of a one-bit 1-unforgeable TS scheme from coset
states.

5.2 Tokenized Signature Construction

Construction.

• 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆): Set 𝑛 = 𝗉𝗈𝗅𝗒(𝜆). Sample uniformly 𝐴 ⊆ 𝔽𝑛
2 . Sample 𝑠, 𝑠′ ← 𝔽𝑛

2 . Output
𝗌𝗄 = (𝐴, 𝑠, 𝑠′) (where by 𝐴 we mean a description of the subspace 𝐴) and 𝗉𝗄 = (𝗂𝖮(𝐴 +
𝑠), 𝗂𝖮(𝐴⊥ + 𝑠′)).
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• 𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇(𝗌𝗄): Takes as input 𝗌𝗄 of the form (𝐴, 𝑠, 𝑠′). Outputs |𝗍𝗄⟩ = |𝐴𝑠,𝑠′⟩.

• 𝖲𝗂𝗀𝗇(𝑚, |𝗍𝗄⟩): Takes as input 𝑚 ∈ {0, 1} and a state |𝗍𝗄⟩ on 𝑛 qubits. Compute 𝐻⊗𝑛|𝗍𝗄⟩ if
𝑚 = 1, otherwise do nothing to the quantum state. It then measures in the standard basis.
Let 𝗌𝗂𝗀 be the outcome. Output (𝑚, 𝗌𝗂𝗀).

• 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, (𝑚, 𝗌𝗂𝗀)): Parse 𝗉𝗄 as 𝗉𝗄 = (𝐶0, 𝐶1) where 𝐶0 and 𝐶1 are circuits. Output 𝐶𝑚(𝗌𝗂𝗀).

• 𝖱𝖾𝗏𝗈𝗄𝖾(𝗉𝗄, |𝗍𝗄⟩): Parse 𝗉𝗄 as 𝗉𝗄 = (𝐶0, 𝐶1). Then:

– Coherently compute 𝐶0 on input |𝗍𝗄⟩, and measure the output of the circuit. If the latter
is 1, uncompute 𝐶0, and proceed to the next step. Otherwise halt and output 0.

– Apply 𝐻⊗𝑛. Coherently compute 𝐶1 and measure the output of the circuit. If the latter
is 1, output 1.

Theorem 5.7. Assuming post-quantum 𝗂𝖮 and one-way function, the scheme of Construction 5.2
is a one-bit 1-unforgeable tokenized signature scheme.

Proof. Security follows immediately from Theorem 4.6.

Corollary 5.8. Assuming post-quantum 𝗂𝖮, one-way function(which implies digital signature) and
a quantum-secure digital signature scheme, there exists a (full blown) tokenized signature scheme.

Proof. This is an immediate consequence of Theorems 5.6 and 5.7.

6 Single-Decryptor Encryption

In this section, we formally introduce unclonable decryption, i.e. single-decryptor encryption [GZ20].
Then we describe two constructions and prove their security.

Our first construction (Section 6.3) relies on the strong monogamy-of-entanglement property
(Conjecture 4.16), the existence of post-quantum one-way function, indistinguishability obfuscation
and compute-and-compare obfuscation for (sub-exponentially) unpredictable distributions (whose
existence has been discussed in Section 3.3 and Appendix B). Our second construction (Section 6.5)
has a similar structure. It does not rely on the strong monogamy-of-entanglement property for coset
states, but on the (weaker) direct product hardness property (Theorem 4.6). However, the construc-
tion additionally relies on a much stronger cryptographic primitive – post-quantum extractable
witness encryption (as well post-quantum one-way functions and indistinguishability obfuscation).

6.1 Definitions

Definition 6.1 (Single-Decryptor Encryption Scheme). A single-decryptor encryption scheme con-
sists of the following efficient algorithms:

• 𝖲𝖾𝗍𝗎𝗉(1𝜆) → (𝗌𝗄, 𝗉𝗄) : a (classical) probabilistic algorithm that takes as input a security pa-
rameter 𝜆 and outputs a classical secret key 𝗌𝗄 and public key 𝗉𝗄.

• 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄) → 𝜌𝗌𝗄 : a quantum algorithm that takes as input a secret key 𝗌𝗄 and outputs a
quantum secret key 𝜌𝗌𝗄.
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• 𝖤𝗇𝖼(𝗉𝗄,𝑚) → 𝖼𝗍 : a (classical) probabilistic algorithm that takes as input a public key 𝗉𝗄, a
message 𝑚 and outputs a classical ciphertext 𝖼𝗍.

• 𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍) → 𝑚/⊥ : a quantum algorithm that takes as input a quantum secret key 𝜌𝗌𝗄 and
a ciphertext 𝖼𝗍, and outputs a message 𝑚 or a decryption failure symbol ⊥.

A secure single-decryptor encryption scheme should satisfy the following:

Correctness: There exists a negligible function 𝗇𝖾𝗀𝗅(·), for all 𝜆 ∈ ℕ, for all 𝑚 ∈ℳ,

Pr

[︂
𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍) = 𝑚

⃒⃒⃒⃒
(𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆), 𝜌𝗌𝗄 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄)

𝖼𝗍← 𝖤𝗇𝖼(𝗉𝗄,𝑚)

]︂
≥ 1− 𝗇𝖾𝗀𝗅(𝜆)

Note that correctness implies that a honestly generated quantum decryption key can be used
to decrypt correctly polynomially many times, from the gentle measurement lemma [Aar05].

CPA Security: The scheme should satisfy (post-quantum) CPA security, i.e. indistinguishability
under chosen-plaintext attacks: for every (stateful) QPT adversary 𝒜, there exists a negligible
function 𝗇𝖾𝗀𝗅(·) such that for all 𝜆 ∈ ℕ, the following holds:

Pr

⎡⎣𝒜(𝖼𝗍) = 𝑏 :
(𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆)

((𝑚0,𝑚1) ∈ℳ2)← 𝒜(1𝜆, 𝗉𝗄)
𝑏← {0, 1}; 𝖼𝗍← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏)

⎤⎦ ≤ 1

2
+ 𝗇𝖾𝗀𝗅(𝜆),

Anti-Piracy Security Next, we define anti-piracy security via the anti-piracy game below. Recall
that, intuitively, anti-piracy security says that it is infeasible for a pirate who receives a quantum
secret key to produce two quantum keys, which both allow successful decryption. This can be
formalized into ways:

• (CPA-style anti-piracy) We can ask the pirate to provide a pair of messages (𝑚0,𝑚1) along
with two quantum secret keys, and we test whether the two keys allow to (simultanoeusly)
distinguish encryptions of 𝑚0 and 𝑚1.

• (random challenge anti-piracy) We do not ask the pirate to provide a pair of plaintext mes-
sages, but only a pair of quantum secret keys, and we test whether the two quantum secret
keys allow for simultaneous decryption of encryptions of uniformly random messages.

The reader might expect that, similarly to standard definitions of encryption security, the former
implies the latter, i.e. that CPA-security (it is infeasible to distinguish encryptions of chosen plain-
texts with better than negligible advantage) implies that it is infeasible to decrypt uniformly random
challenges with non-negligible probability. However, for the case of anti-piracy security, this impli-
cation does not hold, as we explain in more detail in Appendix D.4. This subtlety essentially arises
due to the fact that there are two parties involved, having to simultaneously make the correct guess.
Therefore, we will state both definitions here, and we will later argue that our construction satisfies
both.

In Section 6.2, we will introduce an even stronger definition of CPA-style anti-piracy (and a
stronger definition for random challenge anti-piracy in Appendix D.3). We will eventually prove
that our constructions satisfy both of the strong definitions. We chose to start our presentation of
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unclonable decryption with the definitions in this section since they are much more intuitive than
the stronger version of Section 6.2.

In order to describe the security games, it is convenient to first introduce the concept of a
quantum decryptor. The following definition is implicitly with respect to some single-decryptor
encryption scheme (𝖲𝖾𝗍𝗎𝗉,𝖰𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼).

Definition 6.2 (Quantum decryptor). A quantum decryptor for ciphertexts of length 𝑛, is a pair
(𝜌, 𝑈) where 𝜌 is a state, and 𝑈 is a general quantum circuit acting on 𝑛 +𝑚 qubits, where 𝑚 is
the number of qubits of 𝜌.

For a ciphertext 𝑐 of length 𝑛, we say that we run the quantum decryptor (𝜌, 𝑈) on ciphertext 𝑐
to mean that we execute the circuit 𝑈 on inputs |𝑐⟩ and 𝜌.

We are now ready to describe the CPA-style anti-piracy game.

Definition 6.3 (Anti-Piracy Game, CPA-style). Let 𝜆 ∈ ℕ+. The CPA-style anti-piracy game is
the following game between a challenger and an adversary 𝒜.

1. Setup Phase: The challenger samples keys (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆).

2. Quantum Key Generation Phase: The challenger sends 𝒜 the classical public key 𝗉𝗄 and
one copy of quantum decryption key 𝜌𝗌𝗄 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄).

3. Output Phase: 𝒜 outputs a pair of distinct messages (𝑚0,𝑚1). It also outputs a (possibly
mixed and entangled) state 𝜎 over two registers 𝑅1, 𝑅2 and two general quantum circuits 𝑈1 and
𝑈2. We interpret 𝒜’s output as two (possibly entangled) quantum decryptors 𝖣1 = (𝜎[𝑅1], 𝑈1)
and 𝖣2 = (𝜎[𝑅2], 𝑈2).

4. Challenge Phase: The challenger samples 𝑏1, 𝑏2 and 𝑟1, 𝑟2 uniformly at random and gener-
ates ciphertexts 𝑐1 = 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏1 ; 𝑟1) and 𝑐2 = 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏2 ; 𝑟2). The challenger runs quantum
decryptor 𝖣1 on 𝑐1 and 𝖣2 on 𝑐2, and checks that 𝖣1 outputs 𝑚𝑏1 and 𝖣2 outputs 𝑚𝑏2. If so,
the challenger outputs 1 (the game is won by the adversary), otherwise outputs 0.

We denote by 𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖢𝖯𝖠(𝟣𝜆,𝒜) a random variable for the output of the game.

Note that an adversary can succeed in this game with probability at least 1/2. It simply gives
𝜌𝗌𝗄 to the first quantum decryptor and the second decryptor randomly guesses the plaintext.

We remark that one could have equivalently formulated this definition by having the pirate send
registers 𝑅1 and 𝑅2 to two separated parties Bob and Charlie, who then receive ciphertexts from
the challenger sampled as in the Challenge Phase above. The two formulations are equivalent upon
identifying the quantum circuits 𝑈1 and 𝑈2.

Definition 6.4 (Anti-Piracy Security, CPA-style). Let 𝛾 : ℕ+ → [0, 1]. A single-decryptor encryp-
tion scheme satisfies 𝛾-anti-piracy security, if for any QPT adversary 𝒜, there exists a negligible
function 𝗇𝖾𝗀𝗅(·) such that the following holds for all 𝜆 ∈ ℕ:

Pr
[︁
𝑏 = 1, 𝑏← 𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖢𝖯𝖠(𝟣𝜆,𝒜)

]︁
≤ 1

2
+ 𝛾(𝜆) + 𝗇𝖾𝗀𝗅(𝜆) (2)

Unless specified otherwise, when discussing anti-piracy security of an unclonable encryption
scheme in this work, we refer to CPA-style anti-piracy security.
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It is not difficult to show that if 𝛾-anti-piracy security holds for all inverse poly 𝛾, then this
directly implies CPA security (we refer the reader to the appendix (Appendix D.1) for the proof of
this implication).

Next, we define an anti-piracy game with random challenge plaintexts. This quantifies how
well an efficient adversary can produce two “quantum decryptors” both of which enable successful
decryption of encryptions of uniformly random plaintexts. This security notion will be directly
useful in the security proof for copy-protection of PRFs in Section 7.

Definition 6.5 (Anti-Piracy Game, with random challenge plaintexts). Let 𝜆 ∈ ℕ+. The anti-
piracy game with random challenge plaintexts is the following game between a challenger and an
adversary 𝒜.

1. Setup Phase: The challenger samples keys (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆).

2. Quantum Key Generation Phase: The challenger sends 𝒜 the classical public key 𝗉𝗄 and
one copy of quantum decryption key 𝜌𝗌𝗄 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄).

3. Output Phase: 𝒜 outputs a (possibly mixed and entangled) state 𝜎 over two registers 𝑅1, 𝑅2

and two general quantum circuits 𝑈1 and 𝑈2. We interpret 𝒜’s output as two (possibly entan-
gled) quantum decryptors 𝖣1 = (𝜎[𝑅1], 𝑈1) and 𝖣2 = (𝜎[𝑅2], 𝑈2).

4. Challenge Phase: The challenger samples 𝑚1,𝑚2 ← ℳ and 𝑟1, 𝑟2 uniformly at random,
and generates ciphertexts 𝑐1 = 𝖤𝗇𝖼(𝗉𝗄,𝑚1; 𝑟1) and 𝑐2 = 𝖤𝗇𝖼(𝗉𝗄,𝑚2; 𝑟2). The challenger runs
quantum decryptor 𝖣1 on 𝑐1 and 𝖣2 on 𝑐2, and checks that 𝖣1 outputs 𝑚1 and 𝖣2 outputs
𝑚2. If so, the challenger outputs 1 (the game is won by the adversary), otherwise outputs 0.

We denote by 𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖦𝗎𝖾𝗌𝗌(𝟣𝜆,𝒜) a random variable for the output of the game.

Note that an adversary can succeed in this game with probability at least 1/|ℳ|. The adversary
simply gives 𝜌𝗌𝗄 to the first quantum decryptor and the second decryptor randomly guesses the
plaintext.

Definition 6.6 (Anti-Piracy Security, with random challenge plaintexts). Let 𝛾 : ℕ+ → [0, 1]. A
single-decryptor encryption scheme satisfies 𝛾-anti-piracy security with random challenge plaintexts,
if for any QPT adversary 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·) such that the following holds
for all 𝜆 ∈ ℕ:

Pr
[︁
𝑏 = 1, 𝑏← 𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖦𝗎𝖾𝗌𝗌(𝟣𝜆,𝒜)

]︁
≤ 1

|ℳ| + 𝛾(𝜆) + 𝗇𝖾𝗀𝗅(𝜆) (3)

where ℳ is the message space.

Remark 6.7. In the rest of the section, we will mainly focus on Definition 6.4 and the stronger
version of it from the next section. We will appeal to Definition 6.6 when we prove security of our
copy-protection scheme for PRFs.
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6.2 Strong Anti-Piracy Security

The stronger definition of anti-piracy security that we introduce in this section is more technically
involved, and less intuitive, than the definitions in the previous section, but is easier to work with
when proving security of our constructions. This section relies on preliminary concepts introduced
in Section 3.6. We will refer to the anti-piracy security notions defined in the previous section as
regular anti-piracy” to distinguish them from strong anti-piracy defined in this section.

In order to describe the anti-piracy game in this section, we first need to formalize a pro-
cedure to test good quantum decryptors and the notion of a good quantum decryptor. Again,
the following definitions are implicitly with respect to some single-decryptor encryption scheme
(𝖲𝖾𝗍𝗎𝗉,𝖰𝖪𝖾𝗒𝖦𝖾𝗇,𝖤𝗇𝖼,𝖣𝖾𝖼).

We first describe a procedure to test good quantum decryptors. The procedure is parametrized
by a threshold value 𝛾. We are guaranteed that, if the procedure passes, then the post-measurement
state is a 𝛾-good decryptor.

Definition 6.8 (Testing a quantum decryptor). Let 𝛾 ∈ [0, 1]. Let 𝗉𝗄 be a public key, and (𝑚0,𝑚1)
a pair of messages. We refer to the following procedure as a test for a 𝛾-good quantum decryptor
with respect to 𝗉𝗄 and (𝑚0,𝑚1):

• The procedure takes as input a quantum decryptor (𝜌, 𝑈).

• Let 𝒫 = (𝑃, 𝐼 − 𝑃 ) be the following mixture of projective measurements (in the sense of
Definition 3.14) acting on some quantum state 𝜌′:

– Sample a uniform 𝑏← {0, 1}. Compute 𝑐← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏).

– Run the quantum decryptor (𝜌′, 𝑈) on input 𝑐. Check whether the outcome is 𝑚𝑏. If so,
output 1, otherwise output 0.

• Let 𝖳𝖨1/2+𝛾(𝒫) be the threshold implementation of 𝒫 with threshold value 1
2 + 𝛾, as defined in

Definition 3.12. Run 𝖳𝖨1/2+𝛾(𝒫) on 𝜌, and output the outcome. If the output is 1, we say that
the test passed, otherwise the test failed.

By Lemma 3.13, we have the following corollary.

Corollary 6.9 (𝛾-good Decryptor). Let 𝛾 ∈ [0, 1]. Let (𝜌, 𝑈) be a quantum decryptor. Let
𝖳𝖨1/2+𝛾(𝒫) be the test for a 𝛾-good decryptor defined above. Then, the post-measurement state
conditioned on output 1 is a mixture of states which are in the span of all eigenvectors of 𝑃 with
eigenvalues at least 1/2 + 𝛾. We refer to the latter state as a 𝛾-good decryptor with respect to
(𝑚0,𝑚1).

Now we are ready to define the strong 𝛾-anti-piracy game.

Definition 6.10 (Strong Anti-Piracy Game). Let 𝜆 ∈ ℕ+, and 𝛾 ∈ [0, 1]. The strong 𝛾-anti-piracy
game is the following game between a challenger and an adversary 𝒜.

1. Setup Phase: The challenger samples keys (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆).

2. Quantum Key Generation Phase: The challenger sends 𝒜 the classical public key 𝗉𝗄 and
one copy of quantum decryption key 𝜌𝗌𝗄 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄).
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3. Output Phase: 𝒜 outputs a pair of distinct messages (𝑚0,𝑚1). It also outputs a (possibly
mixed and entangled) state 𝜎 over two registers 𝑅1, 𝑅2 and two general quantum circuits 𝑈1 and
𝑈2. We interpret 𝒜’s output as two (possibly entangled) quantum decryptors 𝖣1 = (𝜎[𝑅1], 𝑈1)
and 𝖣2 = (𝜎[𝑅2], 𝑈2).

4. Challenge Phase: The challenger runs the test for a 𝛾-good decryptor with respect to 𝗉𝗄 and
(𝑚0,𝑚1) on 𝖣1 and 𝖣2. The challenger outputs 1 if both tests pass, otherwise outputs 0.

We denote by 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒(𝟣𝜆, 𝛾,𝒜) a random variable for the output of the game.

Definition 6.11 (Strong Anti-Piracy-Security). Let 𝛾 : ℕ+ → [0, 1]. A single-decryptor encryption
scheme satisfies strong 𝛾-anti-piracy security, if for any QPT adversary 𝒜, there exists a negligible
function 𝗇𝖾𝗀𝗅(·) such that the following holds for all 𝜆 ∈ ℕ:

Pr
[︁
𝑏 = 1, 𝑏← 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒(𝟣𝜆, 𝛾(𝜆),𝒜)

]︁
≤ 𝗇𝖾𝗀𝗅(𝜆) (4)

Definition 6.11 implies Definition 6.4.

Theorem 6.12. Let 𝛾 : ℕ+ → [0, 1]. Suppose a single-decryptor encryption scheme satisfies strong
𝛾-anti-piracy security (Definition 6.11). Then, it also satisfies 𝛾-anti-piracy security (Definition
6.4).

Proof. We refer the reader to appendix (Appendix D.2) for the proof.

In a similar way, one can define a stronger version of random challenge anti-piracy security
(Definition 6.6). We leave the details to (Appendix D.3).

6.3 Construction from Strong Monogamy Property

In this section, we give our first construction of a single-decryptor encryption scheme, whose security
relies on the strong monogamy-of-entanglement property from Section 4.4.

In the rest of the paper, to simplify notation, whenever it is clear from the context, we will
denote a program that checks membership in a set 𝑆 simply by 𝑆.

Construction 1.

• 𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗌𝗄, 𝗉𝗄) :

– Sample 𝜅 random (𝑛/2)-dimensional subspaces 𝐴𝑖 ⊆ 𝔽𝑛
2 for 𝑖 = 1, 2, · · · , 𝜅, where 𝑛 = 𝜆

and 𝜅 = 𝜅(𝜆) is a polynomial in 𝜆.
– For each 𝑖 ∈ [𝜅], choose two uniformly random vectors 𝑠𝑖, 𝑠′𝑖 ∈ 𝔽𝑛

2 .
– Prepare the programs 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (where we assume that the programs
𝐴𝑖 + 𝑠𝑖 and 𝐴⊥𝑖 + 𝑠′𝑖 are padded to some appropriate length).

– Output 𝗌𝗄 = {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[𝜅], 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴

⊥
𝑖 + 𝑠′𝑖)}𝑖∈[𝜅].

• 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄) → 𝜌𝗌𝗄 : on input 𝗌𝗄 = {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[𝜅], output the “quantum secret key” 𝜌𝗌𝗄 =

{|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[𝜅]. Recall that each |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩ is

|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩ = 1√︀

|𝐴𝑖|
∑︁
𝑎∈𝐴𝑖

(−1)⟨𝑎,𝑠′𝑖⟩ |𝑎+ 𝑠𝑖⟩ .
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• 𝖤𝗇𝖼(𝗉𝗄,𝑚)→ 𝖼𝗍 : on input a public key 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴
⊥
𝑖 + 𝑠′𝑖)}𝑖∈[𝜅] and message 𝑚:

– Sample a uniformly random string 𝑟 ← {0, 1}𝜅.
– Let 𝑟𝑖 be the 𝑖-th bit of 𝑟. Define 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖). Let P𝑚,𝑟 be

the following program:

On input 𝑢 = 𝑢1||𝑢2|| · · · ||𝑢𝜅 (where each 𝑢𝑖 ∈ 𝔽𝑛
2 ):

1. If for all 𝑖 ∈ [𝜅], 𝑅𝑟𝑖
𝑖 (𝑢𝑖) = 1:

Output 𝑚
2. Else:

Output ⊥

Figure 1: Program 𝑃𝑚,𝑟

– Let P̂𝑚,𝑟 = 𝗂𝖮(P𝑚,𝑟). Output ciphertext 𝖼𝗍 = (P̂𝑚,𝑟, 𝑟).

• 𝖣𝖾𝖼(𝜌𝗌𝗄, 𝖼𝗍)→ 𝑚/⊥ : on input 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[𝜅] and 𝖼𝗍 = (P̂𝑚,𝑟, 𝑟):

– For each 𝑖 ∈ [𝜅], if 𝑟𝑖 = 1, apply 𝐻⊗𝑛 to the 𝑖-th state |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩; if 𝑟𝑖 = 0, leave the 𝑖-th

state |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩ unchanged. Denote the resulting state by 𝜌*𝗌𝗄.

– Evaluate the program P̂𝑚,𝑟 on input 𝜌*𝗌𝗄 in superposition; measure the evaluation register
and denote the outcome by 𝑚′. Output 𝑚′.

– Rewind by applying the operations in the first step again.

Correctness. Honest evaluation applies 𝐻⊗𝑛 to |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩ whenever 𝑟𝑖 = 1. Clearly, the coherent

evaluation of 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) on |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩ always outputs 1, and likewise the coherent evaluation of

𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) on 𝐻⊗𝑛 |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩ also always outputs 1. Therefore, by definition of P̂𝑚,𝑟, the evaluation

P̂𝑚,𝑟(𝜌
*
𝗌𝗄) outputs 𝑚 with probability 1.

Theorem 6.13 (Strong Anti-Piracy). Assuming the existence of post-quantum 𝗂𝖮, one-way func-
tions, compute-and-compare obfuscation for the class of unpredictable distributions (as in Defini-
tion 3.6), and the strong monogamy-of-entanglement property (Conjecture 4.16), the single-decryptor
encryption scheme of Construction 1 has strong 𝛾-anti-piracy security for any inverse polynomial
𝛾.

Similarly, assuming the existence of post-quantum sub-exponentially secure 𝗂𝖮 and one-way func-
tions, the quantum hardness of LWE and assuming the strong monogamy-of-entanglement property
(Conjecture 4.16), the single-decryptor encryption scheme of Construction 1 has strong 𝛾-anti-piracy
security for any inverse polynomial 𝛾.

In the above theorem, ELFs and the quantum hardness of LWE are for building the corresponding
compute-and-compare obfuscation (see Theorem B.2 and Theorem B.1). We will prove this theorem
in Section 6.4.

We remark that this does not immediately imply that there exists a negligible 𝛾 such that strong
𝛾-anti-piracy holds. The slightly subtle reason is that the parameter 𝛾 in strong 𝛾-anti-piracy is

40



actually a parameter of the security game (rather than a measure of the success probability of an
adversary in the game).

From Theorem 6.12, we know that strong 𝛾-anti-piracy security implies regular 𝛾-anti-piracy
security. Thus, for any inverse-polynomial 𝛾, the scheme of Construction 1 has regular 𝛾-anti-piracy
security. For regular anti-piracy security, it is straightforward to see that a scheme that satisfies the
notion for any inverse-polynomial 𝛾, also satisfies it for 𝛾 = 0. Thus, we have the following.

Corollary 6.14 (Regular Anti-Piracy). Assuming the existence of post-quantum 𝗂𝖮, one-way func-
tions, compute-and-compare obfuscation for the class of unpredictable distributions (as in Defini-
tion 3.6), and the strong monogamy-of-entanglement property (Conjecture 4.16), the single-decryptor
encryption scheme of Construction 1 has regular 𝛾-anti-piracy security for 𝛾 = 0.

Similarly, assuming the existence of post-quantum sub-exponentially secure 𝗂𝖮 and one-way func-
tions, the quantum hardness of LWE and assuming the strong monogamy-of-entanglement property
(Conjecture 4.16), the single-decryptor encryption scheme of Construction 1 has regular 𝛾-anti-
piracy security for 𝛾 = 0.

As mentioned earlier, it is not clear whether anti-piracy security, CPA-style (Definition 6.3)
implies anti-piracy with random challenge inputs (Definition 6.5). Thus, we will also separately
prove the latter, since in Section 7 we will reduce security of our PRF copy-protection scheme to it.

Theorem 6.15 (Regular Anti-Piracy, For Random Challenge Plaintexts). Assuming the existence
of post-quantum 𝗂𝖮, one-way functions, compute-and-compare obfuscation for the class of unpre-
dictable distributions (as in Definition 3.6), and the strong monogamy-of-entanglement property
(Conjecture 4.16), the single-decryptor encryption scheme has 𝛾-anti-piracy security against ran-
dom challenge plaintexts for 𝛾 = 0.

Similarly, assuming the existence of post-quantum sub-exponentially secure 𝗂𝖮 and one-way func-
tions, the quantum hardness of LWE and assuming the strong monogamy-of-entanglement property
(Conjecture 4.16), the single-decryptor encryption scheme has 𝛾-anti-piracy security against random
challenge plaintexts for 𝛾 = 0.

Proof. We refer the reader to Appendix D.3. The proof follows a similar outline as the proof of
CPA-style anti-piracy.

6.4 Proof of Strong Anti-Piracy Security of Construction 1

In this section, we prove Theorem 6.13. We only focus on the first half of the theorem, as the second
half follows the same outline of the first one. The only differences between them are:

• They either base on strong monogamy-of-entanglement or sub-exponentially strong monogamy-
of-entanglement.

• Thus, they rely on either compute-and-compare obfuscation for any unpredictable distribution
(post-quantum ELFs) or sub-exponentially unpredictable distributions (the quantum hardness
of LWE).

The proof proceeds via two hybrids. We will mark changes between consecutive hybrids in red.
We denote the advantage of adversary 𝒜 in Hybrid 𝑖 by 𝖠𝖽𝗏𝒜,𝑖. Let 𝛾 be any inverse-polynomial.
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Hybrid 0. This is the strong 𝛾-anti-piracy game from Definition 6.10:

1. The challenger samples (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and sends 𝗉𝗄 to adversary𝒜. Let 𝗌𝗄 = {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[𝜅]

and 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴
⊥
𝑖 + 𝑠′𝑖)}𝑖∈[𝜅].

2. The challenger prepares the quantum key 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[𝜅] ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄), and sends 𝜌𝗌𝗄

to 𝒜.

3. 𝒜 produces a quantum state 𝜎 over two registers 𝑅1, 𝑅2, unitaries 𝑈1, 𝑈2. and a pair of
messages (𝑚0,𝑚1). Sends this information to the challenger.

4. For 𝑖 ∈ {1, 2}, let 𝒫𝑖,𝐷 be the following mixture of projective measurements acting on some
quantum state 𝜌′:

• Sample a uniform 𝑏← {0, 1}. Compute 𝑐← 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏).
• Run the quantum decryptor (𝜌′, 𝑈𝑖) on input 𝑐. Check whether the outcome is 𝑚𝑏. If so,

output 1, otherwise output 0.

Formally, let 𝐷 be the distribution over pairs (𝑏, 𝑐) of (bit, ciphertext) defined in the first
bullet point, and let 𝒫𝑖 = {𝑀 𝑖

(𝑏,𝑐)}𝑏,𝑐 be a collection of projective measurements where 𝑀 𝑖
(𝑏,𝑐)

is the projective measurement described in the second bullet point. Then, 𝒫𝑖,𝐷 is the mixture
of projective measurements associated to 𝐷 and 𝒫𝑖 (as in Definition 3.14).

5. The challenger runs 𝖳𝖨 1
2
+𝛾(𝒫1,𝐷) and 𝖳𝖨 1

2
+𝛾(𝒫2,𝐷) on quantum decryptors (𝜎[𝑅1], 𝑈1) and

(𝜎[𝑅2], 𝑈2) respectively. 𝒜 wins if both measurements output 1.

Hybrid 1. Hybrid 1 is the same as Hybrid 0, except in step 5 the challenger runs the approximate
threshold implementations 𝖠𝖳𝖨𝜖,𝛿𝒫1,𝐷, 1

2
+𝛾

and 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝐷, 1
2
+𝛾

, where 𝜖 = 𝛾
4 , and 𝛿 is some negligible

function of 𝜆.

1. The challenger samples (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and sends 𝗉𝗄 to adversary𝒜. Let 𝗌𝗄 = {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[𝜅]

and 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴
⊥
𝑖 + 𝑠′𝑖)}𝑖∈[𝜅].

2. The challenger prepares the quantum key 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[𝜅] ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄), and sends 𝜌𝗌𝗄

to 𝒜.

3. 𝒜 produces a quantum state 𝜎 over two registers 𝑅1, 𝑅2, unitaries 𝑈1, 𝑈2. and a pair of
messages (𝑚0,𝑚1). Sends this information to the challenger.

4. Let 𝒫1,𝐷 and 𝒫2,𝐷 be as in Hybrid 0.

5. The challenger runs 𝖠𝖳𝖨𝜖,𝛿𝒫1,𝐷, 1
2
+𝛾

and 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝐷, 1
2
+𝛾

on (𝜎[𝑅1], 𝑈1) and (𝜎[𝑅2], 𝑈2). 𝒜 wins if
both measurements output 1.

By Lemma 3.17, we have 𝖠𝖽𝗏𝒜,1 ≥ 𝖠𝖽𝗏𝒜,0 − 2𝛿. Moreover, by Lemma 3.16, for each 𝑖 ∈ {1, 2},
𝖠𝖳𝖨𝜖,𝛿𝒫𝑖,𝐷, 1

2
+𝛾

runs in time 𝗉𝗈𝗅𝗒(log(1/𝛿), 1/𝜖). The latter is polynomial for our choice of 𝜖 and 𝛿.

We complete the proof of Theorem 6.13 by showing that the advantage 𝖠𝖽𝗏𝒜,1 in Hybrid 1 is
negligible.
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Lemma 6.16. 𝖠𝖽𝗏𝒜,1 is negligible.

Proof. Suppose for a contradiction that 𝖠𝖽𝗏𝒜,1 is non-negligible. Then, applying 𝖠𝖳𝖨𝜖,𝛿𝒫1,𝐷, 1
2
+𝛾

and

𝖠𝖳𝖨𝜖,𝛿𝒫2,𝐷, 1
2
+𝛾

on 𝜎[𝑅1] and 𝜎[𝑅2] results in two outcomes 1 with non-negligible probability. Let 𝜎′

be the bipartite state conditioned on both outcomes being 1.
From the second bullet point of Lemma 3.17, we have the following:

Tr
[︀(︀
𝖳𝖨 1

2
+𝛾−2𝜖(𝒫1,𝐷)⊗ 𝖳𝖨 1

2
+𝛾−2𝜖(𝒫2,𝐷)

)︀
𝜎′
]︀
≥ 1− 4𝛿, (5)

where recall that, for ease of notation, when we write 𝖳𝖨 inside of a trace we are referring to the
projection on the 1 outcome. The observation says that the collapsed state 𝜎′[𝑅1] is negligibly close
to being a (𝛾 − 2𝜖)-good decryptor with respect to ciphertexts generated according to distribution
𝐷. Similarly for 𝜎′[𝑅2].

We then define a different but computationally close distribution 𝐷′ over pairs (𝑏, 𝑐) of (bit,
ciphertext). Let (𝑚0,𝑚1) be the pair of messages chosen by 𝒜.

1. Sample 𝑏← {0, 1} and 𝑟 ← {0, 1}𝜅.

2. Let 𝖢𝖺𝗇𝑖,0(·) = 𝖢𝖺𝗇𝐴𝑖(·) and 𝖢𝖺𝗇𝑖,1(·) = 𝖢𝖺𝗇𝐴⊥
𝑖
(·) where 𝖢𝖺𝗇𝐴𝑖(·),𝖢𝖺𝗇𝐴⊥

𝑖
(·) are the functions

defined in Definition 4.3.

3. Define function 𝑓 as follows:

𝑓(𝑢1, · · · , 𝑢𝜅) = 𝖢𝖺𝗇1,𝑟1(𝑢1)|| · · · ||𝖢𝖺𝗇𝜅,𝑟𝜅(𝑢𝜅).

Let 𝑠𝑖,0 = 𝑠𝑖 and 𝑠𝑖,1 = 𝑠′𝑖. Let the “lock value” 𝑦 be the following:

𝑦 = 𝖢𝖺𝗇1,𝑟1(𝑠1,𝑟1)|| · · · ||𝖢𝖺𝗇𝜅,𝑟𝜅(𝑠𝜅,𝑟𝜅).

Let 𝐶𝑚𝑏,𝑟 be the compute-and-compare program 𝖢𝖢[𝑓, 𝑦,𝑚𝑏].

4. Run the obfuscation algorithm 𝖢𝖢.𝖮𝖻𝖿 on 𝐶𝑚𝑏,𝑟 and obtain the obfuscated program ̃︁𝖢𝖢𝑚𝑏,𝑟 =

𝖢𝖢.𝖮𝖻𝖿(𝐶𝑚𝑏,𝑟). Let ̂︁𝖢𝖢𝑚𝑏,𝑟 = 𝗂𝖮(̃︁𝖢𝖢𝑚𝑏,𝑟).

5. Let 𝑐 = (̂︁𝖢𝖢𝑚𝑏,𝑟, 𝑟). Output (𝑏, 𝑐).

Since the programs 𝐶𝑚𝑏,𝑟 and 𝑃𝑚𝑏,𝑟 (from Fig. 1) are functionally equivalent, the two distri-
butions 𝐷 and 𝐷′ are computationally indistinguishable assuming post-quantum security of 𝗂𝖮. A
direct application of Theorem 3.15, together with (5), gives the following corollary. Let 𝒫1,𝐷′ be the
same mixture of projective measurements as 𝒫1,𝐷, except that pairs of (bit, ciphertext) are sampled
according to distribution 𝐷′ instead of 𝐷.

Corollary 6.17. Let 𝐷,𝐷′ be the distributions defined above. Let 𝜎′ be the post-measurement state
conditioned on 𝖠𝖳𝖨𝜖,𝛿𝒫1,𝐷, 1

2
+𝛾

and 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝐷, 1
2
+𝛾

both outputting 1 on 𝜎[𝑅1] and 𝜎[𝑅2]. For any inverse

polynomial 𝜖′, there exists a negligible function 𝛿′ such that:

Tr
[︀(︀
𝖳𝖨 1

2
+𝛾−2𝜖−𝜖′(𝒫1,𝐷′)⊗ 𝖳𝖨 1

2
+𝛾−2𝜖−𝜖′(𝒫2,𝐷′)

)︀
𝜎′
]︀
≥ 1− 4𝛿 − 𝛿′.
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Intuitively, the above corollary says that if 𝜎′[𝑅1] and 𝜎′[𝑅2] are both negligibly close to being
(𝛾−2𝜖)-good decryptors with respect to ciphertexts generated according to 𝐷, then, for any inverse
polynomial 𝜖′, they are also negligibly close to being (𝛾 − 2𝜖− 𝜖′)-good decryptors with respect to
ciphertexts generated according to 𝐷′. By setting 𝜖′ = 𝜖 = 𝛾

4 , we have that there exists a negligible
function 𝗇𝖾𝗀𝗅 such that:

Tr
[︀(︀
𝖳𝖨 1

2
+ 𝛾

4
(𝒫1,𝐷′)⊗ 𝖳𝖨 1

2
+ 𝛾

4
(𝒫2,𝐷′)

)︀
𝜎′
]︀
≥ 1− 𝗇𝖾𝗀𝗅(𝜆). (6)

The rest of the proof amounts to showing that all of the above implies that there exists an
efficient algorithm breaking the computational strong monogamy-of-entanglement property. Before
giving the full details, we provide a sketch of how the proof proceeds.

(i) First notice that if the “lock value” 𝑦, as defined in the description of 𝐷′, is computationally
unpredictable given the quantum decryptor 𝜎[𝑅1] (and the additional classical auxiliary infor-
mation), then the security of compute-and-compare obfuscation implies that we can replace
𝐷′ with a distribution 𝐷′′ that contains no information at all about the plaintext (with respect
to which no quantum decryptor can have any advantage beyond random guessing).

(ii) From (6), we know that conditioned on the (approximate) threshold implementation mea-
surement accepting on both sides (which happens with non-negligible probability), each side
is (close to) a 𝛾

4 -good decryptor with respect to 𝐷′. Notice that this implies the existence
of an efficient algorithm that takes 𝜎[𝑅1] as auxiliary information, and distinguishes between
𝐷′ and 𝐷′′. By the security of compute-and-compare obfuscation, this implies that the lock
value in the left ciphertext must be predictable given 𝜎[𝑅1] (and the classical auxiliary infor-
mation). Similarly the lock value in the right ciphertext must be predictable given 𝜎[𝑅2] (and
the classical auxiliary information).

(iii) Since lock values consist of concatenations of canonical representatives of either the coset
𝐴𝑖 + 𝑠𝑖 or 𝐴⊥𝑖 + 𝑠′𝑖, one would like to conclude that it is possible to extract (with non-
negligible probability) one representative on each side (i.e. one using the information in
register 𝑅1, and one using the information in register 𝑅2). However, one has to be cautious,
since this deduction does not work in general! In fact, successfully extracting on 𝑅1’s side
might destroy the (entangled) quantum information on 𝑅2’s side, preventing a successful
simultaneous extraction.

(iv) The key is that if each side is (close to) a 𝛾
4 -good decryptor, then no matter what measurement

is performed on the left side, and no matter what outcome is obtained, the state on the right
side is still in the support of 𝛾

4 -good decryptors. This means that extraction will still succeed
with non-negligible probability on the right side. This implies a strategy that succeeds at
extracting canonical representatives simultaneously on both sides. Finally, since for each 𝑖 the
choice of whether to encrypt using 𝐴𝑖 + 𝑠𝑖 or 𝐴⊥𝑖 + 𝑠′𝑖 is independent and uniformly random,
with overwhelming probability there will be some 𝑖 such that the extracting algorithm will
recover 𝑠𝑖 and 𝑠′𝑖 simultaneously, breaking the strong monogamy-of-entanglement property.

Extracting from register 𝑅1. Let 𝒫1,𝐷′ = (𝑃1,𝐷′ , 𝐼 − 𝑃1,𝐷′). Recall that from Equation (6) we
have

Tr[𝖳𝖨1/2+ 𝛾
4
(𝒫1,𝐷′)𝜎′[𝑅1]] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆).
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This implies that 𝜎′[𝑅1] has 1− 𝗇𝖾𝗀𝗅(𝜆) weight over eigenvectors of 𝑃1,𝐷′ whose eigenvalues are at
least 1/2 + 𝛾

4 . Therefore,

Tr[𝑃1,𝐷′ 𝜎′[𝑅1]] ≥
1

2
+
𝛾

4
− 𝗇𝖾𝗀𝗅. (7)

Hence, if we view (𝜎′[𝑅1], 𝑈1) as a quantum decryptor, its advantage on challenges sampled from
𝐷′ is noticeably greater than random guessing.

Let 𝖲𝗂𝗆 be an efficient simulator for the compute-and-compare obfuscation scheme that we
employ (using the notation of Definition 3.6). We define 𝐷′′ to be the following distribution over
pairs (𝑏, 𝑐) of (bit, ciphertext).

• Let ̃︂𝖲𝗂𝗆 = 𝖲𝗂𝗆(1𝜆, 𝗉𝖺𝗋𝖺𝗆) where 𝗉𝖺𝗋𝖺𝗆 consists of the parameters of the compute-and-compare
program being obfuscated in the description of 𝐷′ (input size, output size, circuit size - these
are the parameters of 𝐶𝑚𝑏,𝑟).

• Let 𝑐 = (𝗂𝖮(̃︂𝖲𝗂𝗆), 𝑟). Output (𝑏, 𝑐).

Because the simulated ciphertext generated in 𝐷′′ is independent of 𝑚𝑏, the quantum decryptor
(𝜎′[𝑅1], 𝑈1) cannot enable guessing 𝑏 with better than 1/2 probability. More concretely, let 𝒫1,𝐷′′ =
(𝑃1,𝐷′′ , 𝑃2,𝐷′′) be the mixture of projective measurements which is the same as 𝒫1,𝐷′ except pairs
of (bit, ciphertext) are sampled according to 𝐷′′ instead of 𝐷′. Then,

Tr[𝑃1,𝐷′′ 𝜎′[𝑅1]] =
1

2
. (8)

Since the quantum decryptor (𝜎′[𝑅1], 𝑈1) behaves noticeably differently on distributions 𝐷′ and
𝐷′′, it can be used as a distinguisher for the two related distributions ̂︀𝐷′ and ̂︀𝐷′′, defined as follows
(these implicitly depend on some adversary 𝒜):

1. ̂︀𝐷′: a distribution over pairs of programs and auxiliary information

(𝐶,𝖠𝖴𝖷) ,

where 𝖠𝖴𝖷 = (𝗉𝗄,𝑚𝑏, 𝑟, 𝜎
′[𝑅1], 𝑈1), with the latter being sampled like the homonymous pa-

rameters in Hybrid 0, and 𝐶 = ̃︁𝖢𝖢𝑚𝑏,𝑟 is an obfuscated compute-and-compare as in 𝐷′.

2. ̂︀𝐷′′: a distribution over pairs of programs and auxiliary information

(𝐶,𝖠𝖴𝖷) ,

where 𝖠𝖴𝖷 = (𝗉𝗄,𝑚𝑏, 𝑟, 𝜎
′[𝑅1], 𝑈1), with the latter being sampled like the homonymous pa-

rameters in Hybrid 0, and 𝐶 = ̃︂𝖲𝗂𝗆 as in 𝐷′′.

To distinguish ̂︀𝐷′ and ̂︀𝐷′′, a distinguisher runs the quantum decryptor (𝜎′[𝑅1], 𝑈1) on input
(𝗂𝖮(𝐶), 𝑟) and checks whether the output is equal to 𝑚𝑏. By the definition of ̂︀𝐷′ and ̂︀𝐷′′, it is
straightforward to see that in the first case this procedure is equivalent to performing the measure-
ment 𝒫1,𝐷′ (recall that the latter depends on 𝑈1) on 𝜎′[𝑅1], and in the second case this procedure
is equivalent to performing the measurement 𝒫1,𝐷′′ on 𝜎′[𝑅1]. By (7) and (8), the advantage of this
distinguisher is at least 𝛾

4 − 𝗇𝖾𝗀𝗅, which is noticeable.
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Thus, by the security of compute-and-compare obfuscation, the distribution ̂︀𝐷′ over pairs of
(compute-and-compare program, auxiliary information) is not computationally unpredictable (as in
Definition 3.4). In particular, the contrapositive of Definition 3.4 is that there exists an efficient
algorithmℳ1 that succeeds at the following with non-negligible probability:

• Let (𝖢𝖢[𝑓, 𝑦,𝑚],𝖠𝖴𝖷)← ̂︀𝐷′.
• ℳ1 receives 𝑓 and 𝖠𝖴𝖷, and outputs 𝑦′. ℳ1 is successful if 𝑦′ = 𝑦.

In our case, for a fixed {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[𝜅] and 𝑟, the function 𝑓 is defined as:

𝑓(𝑢1, · · · , 𝑢𝜅) = 𝖢𝖺𝗇1,𝑟1(𝑢1)|| · · · ||𝖢𝖺𝗇𝜅,𝑟𝜅(𝑢𝜅)

Notice that this function is efficiently computable given descriptions of the subspaces 𝐴𝑖. Thus, in
our case, the contrapositive of Definition 3.4 says that there exists an adversary which receives the
description of the function 𝑓 and 𝖠𝖴𝖷, which in particular includes the description of the subspaces
𝐴𝑖, and is able to guess the appropriate coset representatives, depending on the bits of 𝑟. The
existence of this adversary will be crucial in our reduction to an adversary for the computational
strong monogamy-of-entanglement game. Notice that in the monogamy-of-entanglement game, each
of the two parties 𝒜1 and 𝒜2 receives the descriptions of the subspaces 𝐴𝑖, but not of the cosets,
which they have to guess.

Extracting on register 𝑅2. If two registers are entangled, then performing measurements on one
register will generally result in destruction of the quantum information on the other side. We show
that this does not happen in our case, and that one can extract coset representatives from register
𝑅1, in a way that the leftover state on 𝑅2 also allows for extraction of coset representatives. Recall
the definition of 𝛾-good decryptor from Corollary 6.9. Informally, a quantum decryptor (𝜌, 𝑈) is a
𝛾-good decryptor with respect to a distribution 𝐷 over pairs of (bit, ciphertext) if 𝜌 is a mixture
of states which are all in the span of eigenvectors of the 𝛾-good decryptor test with respect to 𝐷,
with eigenvalues greater than 1

2 + 𝛾.

Claim 6.18. Let 𝜌 be a bipartite state on registers 𝑅1 and 𝑅2. Let 𝑈1 and 𝑈2 be general quantum
circuits acting respectively on 𝑅1 and 𝑅2 (plus a register containing ciphertexts). Suppose that
(𝜌[𝑅1], 𝑈1) and (𝜌[𝑅2], 𝑈2) are both 𝛾-good decryptors with respect to a distribution 𝐷 over pairs of
(bit, ciphertext). Let 𝑀 be any POVM on 𝑅1. Then, the post-measurement state on 𝑅2 (together
with 𝑈2) conditioned on any outcome is still a 𝛾-good decryptor with respect to distribution 𝐷.

Proof. Assume 𝜌 is a pure state. The general statement follows from the fact that a mixed state is
a convex mixture of pure states.

We can write 𝜌 in an eigenbasis of products of eigenvectors of 𝑃1,𝐷 and 𝑃2,𝐷. The hypothesis
that both (𝜌[𝑅1], 𝑈1) and (𝜌[𝑅2], 𝑈2) are both 𝛾-good decryptors implies that 𝜌 can be written as
follows: 𝜌 =

∑︀
𝑖,𝑗:𝑝𝑖,𝑞𝑗≥1/2+𝛾 𝛼𝑖,𝑗 |𝑥𝑖⟩ ⊗ |𝑦𝑗⟩, where 𝑥𝑖 is an eigenvector of 𝑃1,𝐷 with eigenvalue 𝑝𝑖

and 𝑦𝑗 is an eigenvector of 𝑃2,𝐷 with eigenvalue 𝑞𝑗 . In particular, note that only the eigenvectors
corresponding to eigenvalues 𝑝𝑖, 𝑞𝑗 ≥ 1/2+𝛾 have non-zero weight. Finally, notice that applying any
POVM 𝑀 on 𝑅1 (or in general any quantum operation on 𝑅1) does not change the support of the
resulting traced out state on 𝑅2: the support still consists of eigenvectors of 𝑃2,𝐷 with eigenvalues
≥ 1/2 + 𝛾.
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Now, let 𝜎′ be as defined in Corollary 6.17. Then, Equation (6) implies that both 𝜎′[𝑅1] and
𝜎′[𝑅2] are negligibly close to being 𝛾

4 -good decryptors with respect to 𝐷′. By Claim 6.18 (together
with simple triangle inequalities) this implies that, conditioned on algorithm ℳ1 successfully out-
putting the lock value (which happens with non-negligible probability), the remaining state 𝜎′′[𝑅2]
is still a 𝛾

4 -good decryptor with respect to 𝐷′.
By the same argument as for ℳ1, there exists an algorithm ℳ2 that takes the description

of the function 𝑓 and auxiliary information 𝖠𝖴𝖷 = (𝗉𝗄,𝑚𝑏, 𝑟, 𝜎
′′[𝑅2], 𝑈2) and outputs the lock

value with non-negligible probability. Thus, ℳ1 and ℳ2 simultaneously output a lock value with
non-negligible probability.

Breaking the strong monogamy-of-entanglement property. We now give a formal descrip-
tion of an adversary (𝒜0,𝒜1,𝒜2) breaking the strong monogamy-of-entanglement property (Theo-
rem 4.18) of coset states, given an adversary 𝒜 that breaks the 𝛾-anti-piracy-game, and algorithms
ℳ1 andℳ2 as described above.

1. The challenger picks a uniformly random subspace 𝐴 ⊆ 𝔽𝑛
2 and two uniformly random elements

𝑠, 𝑠′ ∈ 𝔽𝑛
2 . It sends |𝐴𝑠,𝑠′⟩ and 𝗂𝖮(𝐴+ 𝑠), 𝗂𝖮(𝐴⊥ + 𝑠′) to 𝒜0.

2. 𝒜0 simulates the game in Hybrid 1:

• Samples 𝑖* ← [𝜅]. Generates 𝜌𝗌𝗄 = {|𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖⟩}𝑖∈[𝜅] and 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴

⊥ +
𝑠′𝑖)}𝑖∈[𝜅] where 𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖 are uniformly random except |𝐴𝑖*,𝑠𝑖* ,𝑠

′
𝑖*
⟩ = |𝐴𝑠,𝑠′⟩, 𝗂𝖮(𝐴𝑖*+𝑠𝑖*) =

𝗂𝖮(𝐴+ 𝑠) and 𝗂𝖮(𝐴⊥𝑖* + 𝑠′𝑖*) = 𝗂𝖮(𝐴⊥ + 𝑠′).

• 𝒜0 gives 𝜌𝗌𝗄 and 𝗉𝗄 to the adversary𝒜 for the 𝛾-anti-piracy game. 𝒜0 obtains 𝜎[𝑅1], 𝜎[𝑅2]

together with 𝑈1, 𝑈2 and (𝑚0,𝑚1). 𝒜0 applies 𝖠𝖳𝖨𝜖,𝛿𝒫1,𝐷, 1
2
+𝛾

and 𝖠𝖳𝖨𝜖,𝛿𝒫2,𝐷, 1
2
+𝛾

to 𝜎, where

𝐷 is the distribution over pairs of (bit, ciphertext) defined in Hybrid 0 (which is efficiently
sampleable given 𝗉𝗄.) If if any of the two outcomes is 0, 𝒜0 halts. If both outcomes are
1, let the collpased state be 𝜎′.

It sends 𝜎′[𝑅1], 𝗉𝗄 to 𝒜1 and 𝜎′[𝑅2], 𝗉𝗄 to 𝒜2. Both 𝒜1,𝒜2 also get the description of 𝐴𝑖 (for
all 𝑖 ̸= 𝑖*).

3. The challenger gives the description of 𝐴 (equivalently, 𝐴𝑖*) to 𝒜1 and 𝒜2.

4. 𝒜1 samples 𝑚𝑏1,𝑅1 as a uniformly random message in {𝑚0,𝑚1} and 𝑟𝑅1 ← {0, 1}𝜅. Let
𝖠𝖴𝖷𝑅1 = (𝗉𝗄,𝑚𝑏1,𝑅1 , 𝑟𝑅1 , 𝜎

′[𝑅1]) and 𝑓𝑅1 be the function corresponding to 𝑟𝑅1 . Because 𝒜1

gets the description of all 𝐴𝑖, the description of 𝑓𝑅1 is efficiently computable. It runs ℳ1 on
𝑓𝑅1 ,𝖠𝖴𝖷𝑅1 and gets the outcome 𝑦𝑅1 .

5. Similarly for 𝒜2, it prepares 𝑓𝑅2 ,𝖠𝖴𝖷𝑅2 , runsℳ2 and gets the outcome 𝑦𝑅2 .

It follows from the previous analysis that, with non-negligible probability, both 𝑦𝑅1 and 𝑦𝑅2 are
correct lock values. Since 𝑟𝑅1,𝑖* ̸= 𝑟𝑅2,𝑖* with overwhelming probability, this violates the strong
monogamy-of-entanglement property.

Thus, the advantage in Hybrid 1 is negligible. This implies that the advantage in Hybrid 0 is
also negligible, which concludes the proof of Theorem 6.13.
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6.5 Construction from Extractable Witness Encryption

In this section, we give an alternative construction of a single-decryptor encryption scheme. This
construction uses a quantum signature token scheme as a black box. The construction is con-
ceptually very similar to that of Section 6.3, but it uses extractable witness encryption instead
of compute-and-compare obfuscation to deduce simultaneous extraction. Because the extraction
guarantee from extractable witness encryption is stronger than the one from compute-and-compare
obfuscation (we elaborate on this difference in Section 6.6), we do not need to reduce security of
the scheme to the strong monogamy-of-entanglement property, but instead we are able to reduce
security of the scheme to security of the signature token scheme (which, recall, is a primitive that
we show how to construct using the computational direct product hardness property of coset states
in Section 5).

In the following construction, let 𝖶𝖤 = (𝖶𝖤.𝖤𝗇𝖼,𝖶𝖤.𝖤𝗇𝖼) be an extractable witness encryption
scheme (as in Definition 3.9), and let 𝖳𝖲 = (𝖳𝖲.𝖪𝖾𝗒𝖦𝖾𝗇,𝖳𝖲.𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇,𝖳𝖲.𝖲𝗂𝗀𝗇,𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒) be an
unforgeable signature token scheme (as in Definitions 5.1 and 5.4). The construction below works
to encrypt single bit messages, but can be extended to messages of polynomial length without loss
of generality.

Construction 2.

• 𝖲𝖾𝗍𝗎𝗉(1𝜆)→ (𝗉𝗄, 𝗌𝗄): Let 𝜅 = 𝜅(𝜆) be a polynomial.

– For each 𝑖 ∈ [𝜅], compute (𝖳𝖲.𝗌𝗄𝑖,𝖳𝖲.𝗉𝗄𝑖)← 𝖳𝖲.𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆).

– Output 𝗉𝗄 = {𝖳𝖲.𝗉𝗄𝑖}𝑖∈[𝜅] and 𝗌𝗄 = {𝖳𝖲.𝗌𝗄𝑖}𝑖∈[𝜅].

• 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝗌𝗄)→ 𝜌𝗌𝗄 : On input 𝗌𝗄 = {𝖳𝖲.𝗌𝗄𝑖}𝑖∈[𝜅]:

– For 𝑖 ∈ [𝜅], compute |𝗍𝗄𝑖⟩ ← 𝖳𝖲.𝖳𝗈𝗄𝖾𝗇𝖦𝖾𝗇(𝖳𝖲.𝗌𝗄𝑖)

– Output 𝜌𝗌𝗄 = {|𝗍𝗄𝑖⟩}𝑖∈[𝜅]
• 𝖤𝗇𝖼(𝗉𝗄,𝑚)→ 𝖼𝗍: On input a public key 𝗉𝗄 = {𝖳𝖲.𝗉𝗄𝑖}𝑖∈[𝜅] and a message 𝑚 ∈ {0, 1};

– Sample a random string 𝑟 ← {0, 1}𝜅

– Compute 𝖼𝗍𝑟,𝑚 ←𝖶𝖤.𝖤𝗇𝖼(1𝑛, 𝑟,𝑚), where 𝑟 is an instance of the language 𝐿, defined by
the following 𝑁𝑃 relation 𝑅𝐿. In what follows, let 𝑤 be parsed as 𝑤 = 𝑤1|| · · · ||𝑤𝜅, for
𝑤𝑖’s of the appropriate length.

𝑅𝐿(𝑟, 𝑤) =

{︃
1 if 𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒(𝖳𝖲.𝗉𝗄𝑖, 𝑟𝑖, 𝑤𝑖) = 1 for all 𝑖 ∈ [𝜅],

0 otherwise.
(9)

That is, each 𝑤𝑖 should be a valid signature of 𝑟𝑖.

– Output the ciphertext 𝖼𝗍 = (𝖼𝗍𝑟,𝑚, 𝑟).

• 𝖣𝖾𝖼(𝖼𝗍, 𝜌𝗌𝗄) → 𝑚/⊥: On input a ciphertext 𝖼𝗍 = (𝖼𝗍𝑟,𝑚, 𝑟) and a quantum secret key 𝜌𝗌𝗄 =
{|𝗍𝗄𝑖⟩}𝑖∈[𝜅].

– For each 𝑖 ∈ [𝜅], sign message 𝑟𝑖 by running (𝑟𝑖, 𝗌𝗂𝗀𝑖) ← 𝖳𝖲.𝖲𝗂𝗀𝗇(|𝗍𝗄𝑖⟩ , 𝑟𝑖). Let 𝑤 =
𝗌𝗂𝗀1|| · · · ||𝗌𝗂𝗀𝜅.
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– Output 𝑚/⊥ ←𝖶𝖤.𝖣𝖾𝖼(𝖼𝗍𝑟,𝑚, 𝗌𝗂𝗀1|| · · · ||𝗌𝗂𝗀𝜅).

Note in the decryption algorithm 𝖣𝖾𝖼, we run 𝖳𝖲.𝖲𝗂𝗀𝗇 and 𝖶𝖤.𝖣𝖾𝖼 coherently, so that (by the
gentle measurement lemma) an honest user can rewind and use the quantum key polynomially
many times.

6.6 Security of Construction 2

The proofs of security are straightforward, and similar to the proofs given in [GZ20], except that
here we have a new definition of 𝛾-anti-piracy security, and we use a tokenized signature scheme
instead of a one-shot signature scheme. The proof also resembles our proof of security for the
construction from the strong monogamy-of-entanglement property.

We sketch the proofs here and omit some details.

Correctness and Efficiency. It is straightforward to see that all procedures are efficient and
that correctness follows from the correctness of the 𝖶𝖤 and 𝖳𝖲 schemes.

CPA Security. CPA security relies on extractable security of the witness encryption scheme and
on unforgeability of the tokenized signature scheme. Suppose that there exists a QPT adversary 𝒜
that succeeds with non-negligible probability in its CPA security game, by the extractable security
of witness encryption, there exists an extractor that extracts witness 𝑤 = 𝗌𝗂𝗀𝑖|| · · · ||𝗌𝗂𝗀𝜅, where each
𝗌𝗂𝗀𝑖 is the signature of a random bit 𝑟𝑖 that can 𝖳𝖲.𝖵𝖾𝗋𝗂𝖿𝗒. This clearly violates the unforgeability
of 𝖳𝖲, since the adversary 𝒜 in CPA security game is not given any tokens.

(Strong) 𝛾-Anti-Piracy. Strong 𝛾-anti-piracy security for any inverse-polynomial 𝛾 also follows
from extractable security of the witness encryption scheme and unforgeability of tokenized signature
scheme scheme.

Suppose that there exists a QPT adversary (𝒜0,𝒜1,𝒜2) that succeeds with non-negligible prob-
ability in the 𝛾-anti-piracy game. Then, with non-negligible probability over the randomness of the
challenger, 𝒜0 outputs a state 𝜎 such that 𝜎[𝑅1] and 𝜎[𝑅2] simultaneously pass the 𝛾-good decryp-
tor test with non-negligible probability. Therefore, by applying the corresponding approximation
threshold implementation (𝖠𝖳𝖨), the resulting state 𝜎′[𝑅1] and 𝜎′[𝑅2] are negligibly close to being
(𝛾 − 𝜖)-good decryptors, for any inverse polynomial 𝜖.

Since (𝛾 − 𝜖) is inverse-polynomial, then by the extractable security of the witness encryp-
tion scheme, there must exist an extractor 𝐸1 on the 𝑅1 side that extracts, with non-negligible
probability, a witness 𝑤1 = 𝗌𝗂𝗀1,1|| · · · ||𝗌𝗂𝗀1,𝜅 (where each 𝗌𝗂𝗀1,𝑖 is a signature for bit 𝑟𝑅1,𝑖). Sim-
ilarly, by Claim 6.18, there also exists an extractor 𝐸2 on the 𝑅2 side that extracts witness
𝑤2 = 𝗌𝗂𝗀2,1|| · · · ||𝗌𝗂𝗀2,𝜅 (where each 𝗌𝗂𝗀2,𝑖 is a signature for bit 𝑟𝑅2,𝑖) from the leftover state af-
ter extraction on 𝑅1. Since 𝑟𝑅1 , 𝑟𝑅2 are independently sampled, with probability (1− 1/2𝜅), there
exists a position 𝑖* where 𝑟𝑅1,𝑖* ̸= 𝑟𝑅2,𝑖* . We can then construct an adversary that breaks the
1-unforgeability of tokenized signatures by getting one token |𝗍𝗄𝑖*⟩ and successfully producing sig-
natures on two different messages 𝑟𝑅1,𝑖* ̸= 𝑟𝑅2,𝑖* .
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7 Copy-Protection of Pseudorandom Functions

In this section, we formally define copy-protection of pseudorandom functions. Then, we describe a
construction that essentially builds on the single-decryptor encryption scheme described in Section
6.3 (together with post-quantum sub-exponentially secure one-way functions and 𝗂𝖮). The same
construction can be based on the single-decryptor encryption scheme from Section 6.5, but we omit
the details to avoid redundancy. In Section 7.2, we give definitions of certain families of PRFs which
we use in our construction. We remark that all of the PRFs that we use can be constructed from
post-quantum one-way functions.

7.1 Definitions

In what follows, the PRF 𝐹 : [𝐾]× [𝑁 ]→ [𝑀 ], implicitly depends on a security parameter 𝜆. We
denote by 𝖲𝖾𝗍𝗎𝗉(·) the procedure which on input 1𝜆, outputs a PRF key.

Definition 7.1 (Copy-Protection of PRF). A copy-protection scheme for a PRF 𝐹 : [𝐾]× [𝑁 ]→
[𝑀 ] consists of the following QPT algorithms:

𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾): takes a key 𝐾 and outputs a quantum key 𝜌𝐾 ;

𝖤𝗏𝖺𝗅(𝜌𝐾 , 𝑥): takes a quantum key 𝜌𝐾 and an input 𝑥 ∈ [𝑁 ]. It outputs a classical string 𝑦 ∈ [𝑀 ].

A copy-protection scheme should satisfy the following properties:

Definition 7.2 (Correctness). There exists a negligible function 𝗇𝖾𝗀𝗅(·), such that for all 𝜆, all
𝐾 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆), all inputs 𝑥,

Pr[𝖤𝗏𝖺𝗅(𝜌𝐾 , 𝑥) = 𝐹 (𝐾,𝑥) : 𝜌𝐾 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾)] ≥ 1− 𝗇𝖾𝗀𝗅(𝜆) .

Note that the correctness property implies that the evaluation procedure has an “almost unique”
output. This means that the PRF can be evaluated (and rewound) polynomially many times,
without disturbing the quantum key 𝜌𝐾 , except negligibly.

Definition 7.3 (Anti-Piracy Security). Let 𝜆 ∈ ℕ+. Consider the following game between a chal-
lenger and an adversary 𝒜:

1. The challenger samples 𝐾 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and 𝜌𝐾 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾). It gives 𝜌𝐾 to 𝒜;

2. 𝒜 returns to the challenger a bipartite state 𝜎 on registers 𝑅1 and 𝑅2, as well as general
quantum circuits 𝑈1 and 𝑈2.

3. The challenger samples uniformly random 𝑢,𝑤 ← [𝑁 ]. Then runs 𝑈1 on input (𝜎[𝑅1], 𝑢),
and runs 𝑈2 on input (𝜎[𝑅2], 𝑤). The outcome of the game is 1 if and only if the outputs are
𝐹 (𝐾,𝑢) and 𝐹 (𝐾,𝑤) respectively.

Denote by 𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍𝗂𝗈𝗇𝖦𝖺𝗆𝖾(𝟣𝜆,𝒜) a random variable for the output of the game.
We say the scheme has anti-piracy security if for every polynomial-time quantum algorithm 𝒜,

there exists a negligible function 𝗇𝖾𝗀𝗅(·), for all 𝜆 ∈ ℕ+,

Pr
[︁
𝑏 = 1, 𝑏← 𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍𝗂𝗈𝗇𝖦𝖺𝗆𝖾(𝟣𝜆,𝒜)

]︁
= 𝗇𝖾𝗀𝗅(𝜆) .
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We give a stronger anti-piracy definition, which is an indistinguishability definition and is specif-
ically for copy-protecting PRFs. We will show that our construction also satisfies this definition.

Definition 7.4 (Indistinguishability Anti-Piracy Security for PRF). Let 𝜆 ∈ ℕ+. Consider the
following game between a challenger and an adversary 𝒜:

1. The challenger runs 𝐾 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆), and 𝜌𝐾 ← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾). It gives 𝜌𝐾 to 𝒜;

2. 𝒜 returns to the challenger a bipartite state 𝜎 on registers 𝑅1 and 𝑅2, as well as general
quantum circuits 𝑈1 and 𝑈2.

3. The challenger samples two uniformly random inputs 𝑢,𝑤 ← [𝑁 ] and two uniformly random
strings 𝑦1, 𝑦2 ← [𝑀 ] (these are of the same length as the PRF output).

4. The challenger flips two coins independently: 𝑏1, 𝑏2 ← {0, 1}. If 𝑏1 = 0, it gives (𝑢, 𝐹 (𝐾,𝑢), 𝜎[𝑅1])
as input to 𝑈1; else it gives (𝑢, 𝑦1, 𝜎[𝑅1]) as input to 𝑈1. Let 𝑏′1 be the output. Similarly, if
𝑏2 = 0, it gives (𝑤,𝐹 (𝐾,𝑤), 𝜎[𝑅2]) as input to 𝑈2; else it gives (𝑤, 𝑦2, 𝜎[𝑅2]) as input to 𝑈2.
Let 𝑏′2 be the output.

5. The outcome of the game is 1 if 𝑏′1 = 𝑏1 and 𝑏′2 = 𝑏2.

Denote by 𝖨𝗇𝖽𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍𝗂𝗈𝗇𝖦𝖺𝗆𝖾(𝟣𝜆,𝒜) a random variable for the output of the game.
We say the scheme has indistinguishability anti-piracy security if for every polynomial-time quan-

tum algorithm 𝒜, there exists a negligible function 𝗇𝖾𝗀𝗅(·), for all 𝜆 ∈ ℕ+,

Pr
[︁
𝑏 = 1, 𝑏← 𝖨𝗇𝖽𝖢𝗈𝗉𝗒𝖯𝗋𝗈𝗍𝖾𝖼𝗍𝗂𝗈𝗇𝖦𝖺𝗆𝖾(𝟣𝜆,𝒜)

]︁
=

1

2
+ 𝗇𝖾𝗀𝗅(𝜆) .

Similarly to the relationship between CPA-style unclonable decryption (Definition 6.3) and anti-
piracy with random challenge inputs (Definition 6.5), it is not clear whether Definition 7.4 implies
Definition 7.3 (this subtlety arises due to the fact that there are two parties involved, having to
simultaneously make the correct guess). Thus, we will give separate statements and security proofs
in the next section.

7.2 Preliminaries: Puncturable PRFs and related notions

A puncturable PRF is a PRF augmented with a procedure that allows to “puncture” a PRF key
𝐾 at a set of points 𝑆, in such a way that the adversary with the punctured key can evaluate the
PRF at all points except the points in 𝑆. Moreover, even given the punctured key, an adversary
cannot distinguish between a uniformly random value and the evaluation of the PRF at a point 𝑆
with respect to the original unpunctured key. Formally:

Definition 7.5 ((Post-quantum) Puncturable PRF). A PRF family 𝐹 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) with
key generation procedure 𝖪𝖾𝗒𝖦𝖾𝗇𝐹 is said to be puncturable if there exists an algorithm 𝖯𝗎𝗇𝖼𝗍𝗎𝗋𝖾𝐹 ,
satisfying the following conditions:

• Functionality preserved under puncturing: Let 𝑆 ⊆ {0, 1}𝑛(𝜆). For all 𝑥 ∈ {0, 1}𝑛(𝜆)
where 𝑥 /∈ 𝑆, we have that:

Pr[𝐹 (𝐾,𝑥) = 𝐹 (𝐾𝑆 , 𝑥) : 𝐾 ← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆),𝐾𝑆 ← 𝖯𝗎𝗇𝖼𝗍𝗎𝗋𝖾𝐹 (𝐾,𝑆)] = 1
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• Pseudorandom at punctured points: For every 𝑄𝑃𝑇 adversary (𝐴1, 𝐴2), there exists a
negligible function 𝗇𝖾𝗀𝗅 such that the following holds. Consider an experiment where 𝐾 ←
𝖪𝖾𝗒𝖦𝖾𝗇𝐹 (1

𝜆), (𝑆, 𝜎)← 𝐴1(1
𝜆), and 𝐾𝑆 ← 𝖯𝗎𝗇𝖼𝗍𝗎𝗋𝖾𝐹 (𝐾,𝑆). Then, for all 𝑥 ∈ 𝑆,⃒⃒⃒⃒

Pr[𝐴2(𝜎,𝐾𝑆 , 𝑆, 𝐹 (𝐾,𝑥)) = 1]− Pr
𝑟←{0,1}𝑚(𝜆)

[𝐴2(𝜎,𝐾𝑆 , 𝑆, 𝑟) = 1]

⃒⃒⃒⃒
≤ 𝗇𝖾𝗀𝗅(𝜆)

Definition 7.6. A statistically injective (puncturable) PRF family with (negligible) failure probabil-
ity 𝜖(·) is a (puncturable) PRF family 𝐹 such that with probability 1− 𝜖(𝜆) over the random choice
of key 𝐾 ← 𝖪𝖾𝗒𝖦𝖾𝗇𝐹 (1

𝜆), we have that 𝐹 (𝐾, ·) is injective.

We will also make use of extracting PRFs: these are PRFs that are strong extractors on their
inputs in the following sense.

Definition 7.7 (Extracting PRF). An extracting (puncturable) PRF with error 𝜖(·) for min-entropy
𝑘(·) is a (puncturable) PRF 𝐹 mapping 𝑛(𝜆) bits to 𝑚(𝜆) bits such that for all 𝜆, if 𝑋 is any
distribution over 𝑛(𝜆) bits with min-entropy greater than 𝑘(𝜆), then the statistical distance between
(𝐾,𝐹 (𝐾,𝑋)) and (𝐾, 𝑟 ← {0, 1}𝑚(𝜆)) is at most 𝜖(·), where 𝐾 ← 𝖪𝖾𝗒𝖦𝖾𝗇(1𝜆).

Puncturable PRFs can be straightforwardly built by modifying the [GGM86] tree-based construc-
tion of PRFs, which only assumes one-way functions. [SW14] showed that puncturable statistically
injective PRFs and extracting puncturable PRFs with the required input-output size can be built
from one-way functions as well. These constructions can all be made post-quantum as shown in
[Zha12]. Thus, the following theorems from [SW14] hold also against bounded quantum adversaries.

Theorem 7.8 ([SW14] Theorem 1, [GGM86]). If post-quantum one-way functions exist, then for
all efficiently computable functions 𝑛(𝜆) and 𝑚(𝜆), there exists a post-quantum puncturable PRF
family that maps 𝑛(𝜆) bits to 𝑚(𝜆) bits.

Theorem 7.9 ([SW14] Theorem 2). If post-quantum one-way functions exist, then for all efficiently
computable functions 𝑛(𝜆), 𝑚(𝜆), and 𝑒(𝜆) such that 𝑚(𝜆) ≥ 2𝑛(𝜆) + 𝑒(𝜆), there exists a post-
quantum puncturable statistically injective PRF family with failure probability 2−𝑒(𝜆) that maps 𝑛(𝜆)
bits to 𝑚(𝜆) bits.

Theorem 7.10 ([SW14] Theorem 3). If post-quantum one-way functions exist, then for all effi-
ciently computable functions 𝑛(𝜆), 𝑚(𝜆), 𝑘(𝜆), and 𝑒(𝜆) such that 𝑛(𝜆) ≥ 𝑘(𝜆) ≥ 𝑚(𝜆)+2𝑒(𝜆)+2,
there exists a post-quantum extracting puncturable PRF family that maps 𝑛(𝜆) bits to 𝑚(𝜆) bits with
error 2−𝑒(𝜆) for min-entropy 𝑘(𝜆).

7.3 Construction

In this section, we describe a construction of a copy-protection scheme for a class of PRFs. We will
eventually reduce security of this construction to security of the single-decryptor encryption scheme
of Section 6.3, and we will therefore inherit the same assumptions. A similar construction can be
based on the single-decryptor encryption scheme of Section 6.5.

Let 𝜆 be the security parameter. Our construction copy-protects a PRF 𝐹1 : [𝐾𝜆]× [𝑁𝜆]→ [𝑀𝜆]
where 𝑁 = 2𝑛(𝜆) and 𝑀 = 2𝑚(𝜆), for some polynomials 𝑛(𝜆) and 𝑚(𝜆), satisfying 𝑛(𝜆) ≥ 𝑚(𝜆) +
2𝜆 + 4. For convenience, we will omit writing the dependence on 𝜆, when it is clear from the
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context. Moreover, 𝐹1 should be a puncturable extracting PRF with error 2−𝜆−1 for min-entropy
𝑘(𝜆) = 𝑛(𝜆) (i.e., a uniform distribution over all possible inputs). By Theorem 7.10, such PRFs
exist assuming post-quantum one-way functions.

In our construction, we will parse the input 𝑥 to 𝐹1(𝐾1, ·) as three substrings 𝑥0||𝑥1||𝑥2, where
each 𝑥𝑖 is of length ℓ𝑖 for 𝑖 ∈ {0, 1, 2} and 𝑛 = ℓ0 + ℓ1 + ℓ2. ℓ2 − ℓ0 should also be large enough (we
will specify later how large). Our copy-protection construction for 𝐹1 will make use of the following
additional building blocks:

1. A puncturable statistically injective PRF 𝐹2 with failure probability 2−𝜆 that accepts inputs
of length ℓ2 and outputs strings of length ℓ1. By Theorem 7.9, such a PRF exists assuming
one-way functions exist, and as long as ℓ1 ≥ 2ℓ2 + 𝜆.

2. A puncturable PRF 𝐹3 that accepts inputs of length ℓ1 and outputs strings of length ℓ2. By
Lemma 7.14 in [SW14], assuming one-way functions exist, 𝐹3 is a puncturable PRF.

Note that PRF 𝐹1 is the PRF that we will copy-protect. The PRFs 𝐹2 and 𝐹3 are just building
blocks in the construction.

Next, we describe a copy-protection scheme for the PRF 𝐹1, using the above building blocks.
The description is contained in Figures 2 and 3.

𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾1): Sample uniformly random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors
𝑠𝑖, 𝑠

′
𝑖 for 𝑖 = 1, 2, · · · , ℓ0. Sample PRF keys𝐾2,𝐾3 for 𝐹2, 𝐹3. Let 𝑃 be the program

described in Figure 3. Output the quantum key 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

𝖤𝗏𝖺𝗅(𝜌𝐾 , 𝑥): Let 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )). Parse 𝑥 as 𝑥 = 𝑥0||𝑥1||𝑥2 where 𝑥0 is of

length ℓ0. For all 𝑖 ∈ [ℓ0], if 𝑥0,𝑖 is 1, apply 𝐻⊗𝑛 to |𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩. Otherwise, leave the

state unchanged.

Let 𝜎 be the resulting state (which can be interpreted as a superposition over tuples
of 𝑙0 vectors). Run 𝗂𝖮(𝑃 ) coherently on input 𝑥 and 𝜎, and measure the final output
register to obtain 𝑦.

Figure 2: Quantum copy-protection scheme for PRFs.

The program 𝑃 , described in Figure 3, takes as input 𝑥 and ℓ0 vectors 𝑣1, · · · , 𝑣ℓ0 , and has two
modes. If 𝑥 is not in the sparse hidden trigger set (not passing the ‘if’ check in the first line), the
program is in the normal mode: it outputs a PRF evaluation of 𝑥 if and only if every 𝑣𝑖 is in the
appropriate coset. Otherwise, the program is in the hidden trigger mode. It will compute a circuit
𝑄′ from the input 𝑥 and output 𝑄′(𝑣1, · · · , 𝑣ℓ0). On almost all inputs except a sparse set of hidden
triggers, the program runs in its normal mode. For 𝑖 ∈ [𝑙0], define the programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖)
and 𝑅1

𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (where the inputs to 𝗂𝖮 should be appropriately padded).
We prove the following theorem:

Theorem 7.11. Assuming the existence of post-quantum 𝗂𝖮, one-way functions, compute-and-
compare obfuscation for the class of unpredictable distributions (as in Definition 3.6), and the strong
monogamy-of-entanglement property (Conjecture 4.16), our construction satisfies anti-piracy secu-
rity (as in Definition 7.3).
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Hardcoded: Keys 𝐾1,𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

Hidden Trigger Mode: Treat 𝑄′ as a (classical) circuit and output
𝑄′(𝑣1, · · · , 𝑣ℓ0).

2. Otherwise, check if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅
𝑥0,𝑖

𝑖 (𝑣𝑖) = 1 (where 𝑥0,𝑖 is
the 𝑖-th bit of 𝑥0).

Normal Mode: If so, output 𝐹1(𝐾1, 𝑥). Otherwise, output ⊥.

Figure 3: Program 𝑃

Similarly, assuming the existence of post-quantum sub-exponentially secure 𝗂𝖮 and one-way func-
tions, the quantum hardness of LWE and assuming the strong monogamy-of-entanglement property
(Conjecture 4.16), our construction satisfies anti-piracy security.

We show correctness of our construction in Section 7.4, and anti-piracy security in Section 7.5.
The following theorem states that our construction also satisfies Definition 7.4.

Theorem 7.12. Assuming the existence of post-quantum 𝗂𝖮, one-way functions, compute-and-
compare obfuscation for the class of unpredictable distributions (as in Definition 3.6), and the strong
monogamy-of-entanglement property (Conjecture 4.16), our construction satisfies indistinguishability-
based anti-piracy security (as in Definition 7.4).

Similarly, assuming the existence of post-quantum sub-exponentially secure 𝗂𝖮 and one-way func-
tions, the quantum hardness of LWE and assuming the strong monogamy-of-entanglement property
(Conjecture 4.16), our construction satisfies indistinguishability-based anti-piracy security.

We include the proof of the latter theorem in Appendix F.

7.4 Proof of Correctness

First, it is easy to see that all procedures are efficient. We then show that our construction satisfies
correctness.

Lemma 7.13. The above construction has correctness.

Proof. First, we observe that for an input 𝑥, keys 𝐾2,𝐾2, if the step 1 check in the program 𝑃 is
not met, then the output of 𝖤𝗏𝖺𝗅(𝜌𝐾 , 𝑥) will be the same as 𝐹1(𝐾1, ·) with probability 1.

Therefore, let us assume there exists a fixed input 𝑥* = 𝑥*0||𝑥*1||𝑥*2 such that for an inverse
polynomial fraction of possible keys 𝐾2,𝐾3, the step 1 check is passed. Define �̂�*2 be the first ℓ0 bits
of 𝑥*2 and 𝐹3(𝐾3, ·) be the function that outputs the first ℓ0 bits of 𝐹3(𝐾3, ·). 𝐹3 is a PRF because
it is a truncation of another PRF 𝐹3. To pass the step 1 check, (𝑥*0, 𝑥*1, �̂�*2) should at least satisfy:

𝐹3(𝐾3, 𝑥
*
1)⊕ 𝑥*0 = �̂�*2.
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Thus, for an inverse polynomial fraction of 𝐾3, the above equation holds. This gives a non-
uniform algorithm for breaking the security of 𝐹3 and violates the security of 𝐹3 as a consequence:
given oracle access to 𝐹3(𝐾3, ·) for a random 𝐾3, or a truly random function 𝑓(·), the algorithm
simply queries on 𝑥*1 and checks if the output is 𝑥*0⊕ �̂�*2; if yes, it outputs 1 (indicating the function
is 𝐹3(𝐾3, ·)); otherwise, it outputs 0 (indicating the function is a truly random funtion). Since the
above equation holds for an inverse polynomial fraction of 𝐾3, our non-uniform algorithm succeeds
with an inverse polynomial probability.

Since non-uniform security of PRFs can be based on non-uniform security of OWFs, the correct-
ness of our construction relies on the existence of non-uniform secure post-quantum OWFs.

7.5 Proof of Anti-Piracy Security

In this subsection, we prove the anti-piracy security. Before proving anti-piracy, we give the following
helper lemma from [SW14].

Lemma 7.14 (Lemma 1 in [SW14]). Except with negligible probability over the choice of the key
𝐾2, the following two statements hold:

1. For any fixed 𝑥1, there exists at most one pair (𝑥0, 𝑥2) that will cause the step 1 check in
Program 𝑃 to pass.

2. There are at most 2ℓ2 values of 𝑥 that can cause the step 1 check to pass.

The proof will exploit the sparse hidden triggers in the program 𝑃 . Intuitively, we want to show
that sampling a unifomly random input is indistinguishable from sampling an element from the
sparse hidden trigger set. Then, we will reduce an adversary that successfully evaluates on hidden
triggers to an adversary that breaks the single decryptor encryption scheme of Section 6.

Definition 7.15 (Hidden Trigger Inputs). An input 𝑥 is a hidden trigger input of the program 𝑃
(defined in Figure 3) if it makes the step 1 check in the program be satisfied.

We will prove a lemma says that no efficient algorithm, given the quantum key, can distinguish
between the following two cases: (i) sample two uniformly random inputs, and (ii) sample two
inputs in the hidden trigger set.

Before describing the lemma, we describe an efficient procedure which takes as input an in-
put/output pair for 𝐹1, PRF keys 𝐾2,𝐾3, descriptions of cosets, and produces a hidden trigger
input.

Definition 7.16. The procedure 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 takes as input 𝑥0 (of length ℓ0), 𝑦 (of length 𝑚, where
𝑚 is the length of the output of 𝐹1), two PRF keys 𝐾2,𝐾3 and hidden cosets {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]:

1. Let 𝑄 be the program (padded to length ℓ2− ℓ0) that takes as input 𝑣1, · · · , 𝑣ℓ0 and outputs 𝑦 if
and only if for every input 𝑣𝑖, if 𝑥0,𝑖 = 0, then 𝑣𝑖 is in 𝐴𝑖 + 𝑠𝑖 and otherwise it is in 𝐴⊥𝑖 + 𝑠′𝑖.

2. 𝑥′1 ← 𝐹2(𝐾2, 𝑥0||𝑄);

3. 𝑥′2 ← 𝐹3(𝐾3, 𝑥
′
1)⊕ (𝑥0||𝑄).

4. Output 𝑥′ = 𝑥0||𝑥′1||𝑥′2.
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Note that for any 𝑥0, 𝑦, 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 will produce an input 𝑥′ such that it starts with 𝑥0 and the
evaluation of 𝑃 on input 𝑥′ and valid vectors 𝑣1, · · · , 𝑣ℓ0 is 𝑦.

The following lemma says that any efficient algorithm cannot distinguish if it gets two inputs
sampled uniformly at random, or two hidden trigger inputs (sampled according to Definition 7.16):

Lemma 7.17. Assuming post-quantum 𝗂𝖮 and one-way functions, any efficient QPT algorithm 𝒜
cannot win the following game with non-negligible advantage:

• A challenger samples 𝐾1 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and prepares a quantum key 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 ))

(where recall that 𝑃 has keys 𝐾1,𝐾2,𝐾3 hardcoded).

• The challenger then samples a random input 𝑢 ← [𝑁 ]. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢). Parse the input
as 𝑢 = 𝑢0||𝑢1||𝑢2.
Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• Similarly, it samples a random input 𝑤 ← [𝑁 ]. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤). Parse the input as
𝑤 = 𝑤0||𝑤1||𝑤2.

Let 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]).

• The challenger flips a coin 𝑏, and sends (𝜌𝐾 , 𝑢, 𝑤) or (𝜌𝐾 , 𝑢
′, 𝑤′) to 𝒜, depending on the

outcome. 𝒜 wins if it guesses 𝑏.

One might wonder whether it is sufficient to just show a version of the above lemma which
says that any efficient algorithm cannot distinguish if it gets one uniformly random input or one
random hidden trigger input, and use a hybrid argument to show indistinguishability in the case
of two samples. However, this is not the case, as one cannot efficiently sample a random hidden
trigger input when given only the public information in the security game (in particular 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋
requires knowing 𝐾2,𝐾3), and so the typical reduction would not go through.

Next, we show that if Lemma 7.17 holds, then our construction satisfies anti-piracy security
Theorem 7.11. After this, to finish the proof, we will only need to prove Lemma 7.17. The core of
the latter proof is the “hidden trigger” technique used in [SW14], which we will prove in Appendix E.

Proof for Theorem 7.11. We mark the changes between the current hybrid and the previous in red.

Hybrid 0. Hybrid 0 is the original anti-piracy security game.

1. The challenger samples 𝐾1 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 ))← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾1).

Note that here 𝑃 hardcodes 𝐾1,𝐾2,𝐾3.

2. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2] as well as quantum circuits 𝑈1, 𝑈2.

3. The challenger also prepares two inputs 𝑢,𝑤 as follows:

• It samples 𝑢 uniformly at random. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢).
• It samples 𝑤 uniformly at random. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤).

4. The outcome of the game is 1 if and only if both quantum programs successfully produce 𝑦𝑢
and 𝑦𝑤 respectively.
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Hybrid 1 The difference between Hybrids 0 and 1 corresponds exactly to the two cases that the
adversary needs to distinguish between in the game of Lemma 7.17.

1. The challenger samples 𝐾1 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 ))← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾1).

Note that here 𝑃 hardcodes 𝐾1,𝐾2,𝐾3.

2. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2] as well as quantum circuits 𝑈1, 𝑈2.

3. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows:

• It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢).
Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤).
Let 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

4. The outcome of the game is 1 if and only if both quantum programs successfully produce 𝑦𝑢
and 𝑦𝑤 respectively.

Assume there exists an algorithm that distinguishes Hybrid 0 and 1 with non-negligible prob-
ability 𝜖(𝜆), then these exists an algorithm that breaks the game in Lemma 7.17 with probability
𝜖(𝜆)− 𝗇𝖾𝗀𝗅(𝜆).

The reduction algorithm receives 𝜌𝑘 and 𝑢,𝑤 or 𝑢′, 𝑤′ from the challenger in Lemma 7.17; it
computes 𝑦𝑢, 𝑦𝑤 using 𝗂𝖮(𝑃 ) on the received inputs respectively and gives them to the quantum
decryptor states 𝜎[𝑅1], 𝜎[𝑅2]. If they both decrypt correctly, then the reduction outputs 0 (i.e. it
guess that sampling was uniform), otherwise it outputs 1 (i.e. it guesses that hidden trigger inputs
were sampled).

Hybrid 2. In this hybrid, if 𝑢0 ̸= 𝑤0 (which happens with overwhelming probability), 𝐹1(𝐾1, 𝑢)
and 𝐹1(𝐾1, 𝑤) are replaced with truly random strings. Since both inputs have enough min-entropy
ℓ1+ℓ2 ≥ 𝑚+2𝜆+4 (as 𝑢1||𝑢2 and 𝑤1||𝑤2 are completely uniform and not given to the adversary) and
𝐹1 is an extracting puncturable PRF, both outcomes 𝑦𝑢, 𝑦𝑤 are statistically close to independently
random outcomes. Thus, Hybrid 1 and Hybrid 2 are statistically close.

1. The challenger samples 𝐾1 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 ))← 𝖰𝖪𝖾𝗒𝖦𝖾𝗇(𝐾1).

Note that here 𝑃 hardcodes 𝐾1,𝐾2,𝐾3.

2. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2] as well as quantum circuits 𝑈1, 𝑈2.

3. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows:

• It samples 𝑢0 uniformly at random. It then samples a uniformly random 𝑦𝑢.
Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• It samples 𝑤0 uniformly at random. It then samples a uniformly random 𝑦𝑤.
Let 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

4. The outcome of the game is 1 if and only if both quantum programs successfully produce 𝑦𝑢
and 𝑦𝑤 respectively.
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Hybrid 3. The game in this hybrid has exactly the same distribution as that of Hybrid 2 (in
the sense that all sampled values are distributed identically). We only change the order in which
some values are sampled, and recognize that certain procedures become identical to encryptions
in our single-decryptor encryption scheme from Section 6. Thus, 𝒜 wins the game with the same
probability as in Hybrid 2.

1. The challenger first samples {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0] and prepares the quantum states {|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0].
It treat the the quantum states {|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0] as the quantum decryption key 𝜌𝗌𝗄 for our
single-decryptor encryption scheme and the secret key 𝗌𝗄 is {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]. Similarly, let

𝗉𝗄 = {𝑅0
𝑖 , 𝑅

1
𝑖 }𝑖∈[ℓ0] where 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖).

2. It samples 𝑦𝑢, 𝑦𝑤 uniformly at random. Let (𝑢0, 𝑄0)← 𝖤𝗇𝖼(𝗉𝗄, 𝑦𝑢) and (𝑤0, 𝑄1)← 𝖤𝗇𝖼(𝗉𝗄, 𝑦𝑤)
where 𝖤𝗇𝖼(𝗉𝗄, ·) is the encryption algorithm of the single-decryptor encryption scheme of
Construction 1.

3. The challenger sets 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

4. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2] as well as quantum circuits 𝑈1, 𝑈2.

5. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows (as 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 does):

• Let 𝑢′1 ← 𝐹2(𝐾2, 𝑢0||𝑄0) and 𝑢′2 ← 𝐹3(𝐾3, 𝑢
′
1)⊕ (𝑢0||𝑄0). Let 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

• Let 𝑤′1 ← 𝐹2(𝐾2, 𝑤0||𝑄1) and 𝑤′2 ← 𝐹3(𝐾3, 𝑤
′
1)⊕ (𝑤0||𝑄1). Let 𝑤′ = 𝑤0||𝑤′1||𝑤′2.

6. The outcome of the game is 1 if and only if both quantum programs successfully produce 𝑦𝑢
and 𝑦𝑤 respectively.

Note that the only differences of Hybrids 2 and 3 are the orders of executions. Namely, in Hybrid 3,
{𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖} are sampled much earlier than when 𝜌𝑘 is prepared. Similarly, the obfuscation programs

sampled in 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 are now sampled much earlier than sampling 𝑢′ and 𝑤′. We write Hybrid
3 in a way that is similar to the weak anti-piracy security game of the single-decryptor encryption
scheme of Construction 1.

Given an algorithm 𝒜 that wins the game in Hybrid 3 with non-negligible probability 𝛾(𝜆),
we can build another algorithm ℬ that breaks the (regular) 𝛾-anti-piracy security with random
challenge plaintexts (see Definition 6.6) of the underlying single-decryptor encryption scheme.

• ℬ plays as the challenger in the game of Hybrid 3.

• ℬ receives 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0] and 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴

⊥
𝑖 + 𝑠′𝑖)}𝑖∈[ℓ0] in the anti-piracy

game of single-decryptor encryption.

• ℬ prepares 𝐾1,𝐾2,𝐾3 and the program 𝑃 . Let 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

• ℬ gives 𝜌𝐾 to 𝒜, and 𝒜 prepares a pair of (potentially entangled) quantum states 𝜎[𝑅1], 𝜎[𝑅2]
as well as quantum circuits 𝑈1, 𝑈2.

• ℬ outputs the decryptors (𝜎[𝑅1],P1) and (𝜎[𝑅2],P2), where P1 and P2 are defined as follows:
on input (𝜌1, 𝖼𝗍1 = (𝑢0||𝑄1)) and (𝜌2, 𝖼𝗍2 = (𝑤0||𝑄2)) respectively (where 𝖼𝗍1 and 𝖼𝗍2 represent
encryptions of random 𝑦𝑢 and 𝑦𝑤), P1 and P2 behave respectively as follows:
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– P1: Let 𝑢′1 ← 𝐹2(𝐾2, 𝑢0||𝑄0) and 𝑢′2 ← 𝐹3(𝐾3, 𝑢
′
1)⊕ (𝑢0||𝑄0). Let 𝑢′ = 𝑢0||𝑢′1||𝑢′2. Run

(𝜌1, 𝑈1) on 𝑢′.

– P2: Let 𝑤′1 ← 𝐹2(𝐾2, 𝑤0||𝑄1) and 𝑤′2 ← 𝐹3(𝐾3, 𝑤
′
1) ⊕ (𝑤0||𝑄1). Let 𝑤′ = 𝑤0||𝑤′1||𝑤′2.

Run (𝜌2, 𝑈2) on 𝑤′ respectively.

We know that whenever 𝒜 succeeds in the game of Hyb 3, it outputs 𝑦𝑢, 𝑦𝑤 correctly. Thus, the
programs prepared by ℬ successfully decrypts encryptions of uniformly random plaintexts. Thus,
ℬ breaks 𝛾-anti-piracy security with random challenge plaintexts.

References

[Aar05] Scott Aaronson. “Limitations of Quantum Advice and One-Way Communication”. In:
Theory of Computing 1.1 (2005), pp. 1–28. doi: 10.4086/toc.2005.v001a001. url:
https://doi.org/10.4086/toc.2005.v001a001.

[Aar09] Scott Aaronson. “Quantum copy-protection and quantum money”. In: 2009 24th An-
nual IEEE Conference on Computational Complexity. IEEE. 2009, pp. 229–242.

[AC02] Mark Adcock and Richard Cleve. “A quantum Goldreich-Levin theorem with cryp-
tographic applications”. In: Annual Symposium on Theoretical Aspects of Computer
Science. Springer. 2002, pp. 323–334.

[AC12] Scott Aaronson and Paul Christiano. “Quantum money from hidden subspaces”. In:
Proceedings of the forty-fourth annual ACM symposium on Theory of computing. ACM.
2012, pp. 41–60.

[ALL+20] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New
approaches for quantum copy-protection. 2020.

[AP21] Prabhanjan Ananth and Rolando L. La Placa. Secure Software Leasing. 2021.

[BB84] Charles H Bennett and Gilles Brassard. Proceedings of the IEEE International Con-
ference on Computers, Systems and Signal Processing. 1984.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
Pairings are not Necessary for iO: Circular-Secure LWE Suffices. Cryptology ePrint
Archive, Report 2020/1024. https://eprint.iacr.org/2020/1024. 2020.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. “On the (im) possibility of obfuscating programs”. In: Annual
International Cryptology Conference. Springer. 2001, pp. 1–18.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. “Preventing Zeroizing
Attacks on GGH15”. In: Proceedings of TCC 2018. 2018.

[BJL+21] Anne Broadbent, Stacey Jeffery, Sébastien Lord, Supartha Podder, and Aarthi Sun-
daram. Secure Software Leasing Without Assumptions. 2021. arXiv: 2101.12739 [quant-ph].

[BL19] Anne Broadbent and Sébastien Lord. “Uncloneable Quantum Encryption via Random
Oracles”. In: IACR Cryptology ePrint Archive 2019 (2019), p. 257.

[BS16] Shalev Ben-David and Or Sattath. “Quantum tokens for digital signatures”. In: arXiv
preprint arXiv:1609.09047 (2016).

59

https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.4086/toc.2005.v001a001
https://eprint.iacr.org/2020/1024
https://arxiv.org/abs/2101.12739


[BW13] Dan Boneh and Brent Waters. “Constrained pseudorandom functions and their appli-
cations”. In: International conference on the theory and application of cryptology and
information security. Springer. 2013, pp. 280–300.

[CMP20] Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection
of compute-and-compare programs in the quantum random oracle model. 2020. arXiv:
2009.13865 [quant-ph].

[CV21] Eric Culf and Thomas Vidick. “A monogamy-of-entanglement game for subspace coset
states”. In: CoRR abs/2107.13324 (2021). arXiv: 2107.13324. url: https://arxiv.
org/abs/2107.13324.

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter Shor.
“Quantum money from knots”. In: Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference. 2012, pp. 276–289.

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. “Candidate indistinguishability obfuscation and functional encryption for all
circuits”. In: SIAM Journal on Computing 45.3 (2016), pp. 882–929.

[GGHW17] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. “On the implausibility of
differing-inputs obfuscation and extractable witness encryption with auxiliary input”.
In: Algorithmica 79.4 (2017), pp. 1353–1373.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random
Functions”. In: J. ACM 33.4 (Aug. 1986), pp. 792–807. issn: 0004-5411. doi: 10.
1145/6490.6503. url: https://doi.org/10.1145/6490.6503.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. “Lockable obfuscation”. In: 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). IEEE.
2017, pp. 612–621.

[GL89] Oded Goldreich and Leonid A Levin. “A hard-core predicate for all one-way functions”.
In: Proceedings of the twenty-first annual ACM symposium on Theory of computing.
1989, pp. 25–32.

[Got02] Daniel Gottesman. “Uncloneable encryption”. In: arXiv preprint quant-ph/0210062
(2002).

[GZ20] Marios Georgiou and Mark Zhandry. Unclonable Decryption Keys. Cryptology ePrint
Archive, Report 2020/877. https://eprint.iacr.org/2020/877. 2020.

[JLS20] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability Obfuscation from Well-
Founded Assumptions. Cryptology ePrint Archive, Report 2020/1003. https://eprint.
iacr.org/2020/1003. 2020.

[Kan18] Daniel M Kane. “Quantum money from modular forms”. In: arXiv preprint arXiv:1809.05925
(2018).

[KNY20] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure Software Leasing
from Standard Assumptions. 2020. arXiv: 2010.11186 [quant-ph].

[Lut10] Andrew Lutomirski. “An online attack against Wiesner’s quantum money”. In: arXiv
preprint arXiv:1010.0256 (2010).

60

https://arxiv.org/abs/2009.13865
https://arxiv.org/abs/2107.13324
https://arxiv.org/abs/2107.13324
https://arxiv.org/abs/2107.13324
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/6490.6503
https://eprint.iacr.org/2020/877
https://eprint.iacr.org/2020/1003
https://eprint.iacr.org/2020/1003
https://arxiv.org/abs/2010.11186


[MW05] Chris Marriott and John Watrous. “Quantum arthur–merlin games”. In: computational
complexity 14.2 (2005), pp. 122–152.

[NC02] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information.
2002.

[PW11] Chris Peikert and Brent Waters. “Lossy trapdoor functions and their applications”. In:
SIAM Journal on Computing 40.6 (2011), pp. 1803–1844.

[SW14] Amit Sahai and Brent Waters. “How to use indistinguishability obfuscation: deniable
encryption, and more”. In: Proceedings of the forty-sixth annual ACM symposium on
Theory of computing. 2014, pp. 475–484.

[TFKW13] Marco Tomamichel, Serge Fehr, Jędrzej Kaniewski, and Stephanie Wehner. “A monogamy-
of-entanglement game with applications to device-independent quantum cryptogra-
phy”. In: New Journal of Physics 15.10 (2013), p. 103002.

[VZ21] Thomas Vidick and Tina Zhang. “Classical proofs of quantum knowledge”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2021, pp. 630–660.

[Wie83] Stephen Wiesner. “Conjugate coding”. In: ACM Sigact News 15.1 (1983), pp. 78–88.

[WW20] Hoeteck Wee and Daniel Wichs. Candidate Obfuscation via Oblivious LWE Sampling.
Cryptology ePrint Archive, Report 2020/1042. https://eprint.iacr.org/2020/
1042. 2020.

[WZ17] Daniel Wichs and Giorgos Zirdelis. “Obfuscating compute-and-compare programs un-
der LWE”. In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Sci-
ence (FOCS). IEEE. 2017, pp. 600–611.

[Zha12] Mark Zhandry. “How to Construct Quantum Random Functions”. In: Proceedings of
the 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science. FOCS
’12. USA: IEEE Computer Society, 2012, pp. 679–687. isbn: 9780769548746. doi:
10.1109/FOCS.2012.37. url: https://doi.org/10.1109/FOCS.2012.37.

[Zha19a] Mark Zhandry. “Quantum lightning never strikes the same state twice”. In: Annual
International Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2019, pp. 408–438.

[Zha19b] Mark Zhandry. “The magic of ELFs”. In: Journal of Cryptology 32.3 (2019), pp. 825–
866.

[Zha20] Mark Zhandry. Schrödinger’s Pirate: How To Trace a Quantum Decoder. Cryptology
ePrint Archive, Report 2020/1191. https://eprint.iacr.org/2020/1191. 2020.

A Additional Preliminaries

A.1 Quantum Computation and Information

A quantum system 𝑄 is defined over a finite set 𝐵 of classical states. In this work we will consider
𝐵 = {0, 1}𝑛. A pure state over 𝑄 is a unit vector in ℂ|𝐵|, which assigns a complex number to
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each element in 𝐵. In other words, let |𝜑⟩ be a pure state in 𝑄, we can write |𝜑⟩ as:

|𝜑⟩ =
∑︁
𝑥∈𝐵

𝛼𝑥|𝑥⟩

where
∑︀

𝑥∈𝐵 |𝛼𝑥|2 = 1 and {|𝑥⟩}𝑥∈𝐵 is called the “computational basis” of ℂ|𝐵|. The computa-
tional basis forms an orthonormal basis of ℂ|𝐵|.

Given two quantum systems 𝑅1 over 𝐵1 and 𝑅2 over 𝐵2, we can define a product quantum
system 𝑅1 ⊗ 𝑅2 over the set 𝐵1 × 𝐵2. Given |𝜑1⟩ ∈ 𝑅1 and |𝜑2⟩ ∈ 𝑅2, we can define the product
state |𝜑1⟩ ⊗ |𝜑2⟩ ∈ 𝑅1 ⊗𝑅2.

We say |𝜑⟩ ∈ 𝑅1 ⊗ 𝑅2 is entangled if there does not exist |𝜑1⟩ ∈ 𝑅1 and |𝜑2⟩ ∈ 𝑅2 such that
|𝜑⟩ = |𝜑1⟩ ⊗ |𝜑2⟩. For example, consider 𝐵1 = 𝐵2 = {0, 1} and 𝑅1 = 𝑅2 = ℂ2, |𝜑⟩ = |00⟩+|11⟩√

2
is

entangled. Otherwise, we say |𝜑⟩ is un-entangled.
A mixed state is a collection of pure states |𝜑𝑖⟩ for 𝑖 ∈ [𝑛], each with associated probability 𝑝𝑖,

with the condition 𝑝𝑖 ∈ [0, 1] and
∑︀𝑛

𝑖=1 𝑝𝑖 = 1. A mixed state can also be represented by the density
matrix: 𝜌 :=

∑︀𝑛
𝑖=1 𝑝𝑖 |𝜑𝑖⟩ ⟨𝜑𝑖|.

Partial Trace. For two subsystems 𝑅1 and 𝑅2 making up the composite system described
by the density matrix 𝜌. The partial trace over the 𝑅2 subsystem, denoted Tr𝑅2 , is defined as
Tr𝑅2 [𝜌] :=

∑︀
𝑗(𝐼𝑅1 ⊗ ⟨𝑗|𝑅2)𝜌(𝐼𝑅1 ⊗ |𝑗⟩𝑅2). where {|𝑗⟩} is any orthonormal basis for subsystem 𝑅2.

For a quantum state 𝜎 over two registers 𝑅1, 𝑅2, we denote the state in 𝑅1 as 𝜎[𝑅1], where
𝜎[𝑅1] = Tr𝑅2 [𝜎] is a partial trace of 𝜎. Similarly, we denote 𝜎[𝑅2] = Tr𝑅1 [𝜎].

Purification of mixed states. For a mixed state 𝜌 over system 𝑄, there exists another space
𝑄′ and a pure state |𝜓⟩ over 𝑄⊗𝑄′ such that 𝜌 is a partial trace of |𝜓⟩ ⟨𝜓| with respect to 𝑄′.

A pure state |𝜑⟩ can be manipulated by a unitary transformation 𝑈 . The resulting state |𝜑′⟩ =
𝑈 |𝜑⟩.

We can extract information from a state |𝜑⟩ by performing a measurement. A measurement
specifies an orthonormal basis, typically the computational basis, and the probability of getting
result 𝑥 is |⟨𝑥|𝜑⟩|2. After the measurement, |𝜑⟩ “collapses” to the state |𝑥⟩ if the result is 𝑥.

For example, given the pure state |𝜑⟩ = 3
5 |0⟩+ 4

5 |1⟩ measured under {|0⟩, |1⟩}, with probability
9/25 the result is 0 and |𝜑⟩ collapses to |0⟩; with probability 16/25 the result is 1 and |𝜑⟩ collapses
to |1⟩.

We finally assume a quantum computer can implement any unitary transformation (by using
these basic gates, Hadamard, phase, CNOT and 𝜋

8 gates), especially the following two unitary
transformations:

• Classical Computation: Given a function 𝑓 : 𝑋 → 𝑌 , one can implement a unitary 𝑈𝑓

over ℂ|𝑋|·|𝑌 | → ℂ|𝑋|·|𝑌 | such that for any |𝜑⟩ = ∑︀
𝑥∈𝑋,𝑦∈𝑌 𝛼𝑥,𝑦|𝑥, 𝑦⟩,

𝑈𝑓 |𝜑⟩ =
∑︁

𝑥∈𝑋,𝑦∈𝑌
𝛼𝑥,𝑦|𝑥, 𝑦 ⊕ 𝑓(𝑥)⟩

Here, ⊕ is a commutative group operation defined over 𝑌 .

• Quantum Fourier Transform: Let 𝑁 = 2𝑛. Given a quantum state |𝜑⟩ = ∑︀2𝑛−1
𝑖=0 𝑥𝑖|𝑖⟩,

by applying only 𝑂(𝑛2) basic gates, one can compute |𝜓⟩ = ∑︀2𝑛−1
𝑖=0 𝑦𝑖|𝑖⟩ where the sequence
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{𝑦𝑖}2
𝑛−1

𝑖=0 is the sequence achieved by applying the classical Fourier transform 𝖰𝖥𝖳𝑁 to the
sequence {𝑥𝑖}2

𝑛−1
𝑖=0 :

𝑦𝑘 =
1√
𝑁

2𝑛−1∑︁
𝑖=0

𝑥𝑖𝜔
𝑖𝑘
𝑛

where 𝜔𝑛 = 𝑒2𝜋𝑖/𝑁 , 𝑖 is the imaginary unit.

One property of QFT is that by preparing |0𝑛⟩ and applying 𝖰𝖥𝖳2 to each qubit, (𝖰𝖥𝖳2|0⟩)⊗𝑛 =
1√
2𝑛

∑︀
𝑥∈{0,1}𝑛 |𝑥⟩ which is a uniform superposition over all possible 𝑥 ∈ {0, 1}𝑛.

For convenience, we sometimes omit writing the normalization of a pure state.

B Compute-and-Compare Obfuscation for (Sub-Exponentially) Un-
predictable Distributions

In this section, we prove compute-and-compare obfuscation for sub-exponentially unpredictable dis-
tributions exists assuming the existence of post-quantum iO and the quantum hardness of LWE.
We show a similar statement about compute-and-compare obfuscation for any unpredictable distri-
butions assuming post-quantum 𝗂𝖮 and post-quantum extremely lossy functions. We focus on the
first result and it extends to the second case with little effort.

Our proof follows the steps below:

1. Assuming the quantum hardness of LWE, there exist lossy functions with any sub-linear
residual leakage [PW11].

2. Assuming lossy functions with any sub-linear residual leakage, there exist PRGs with sub-
exponentially unpredictable seeds (quantum auxiliary input). The proof constitutes that of
[Zha19b], with the building block ELFs (extremely loss functions) being replaced with plain
lossy functions and the last step of invoking Goldriech-Levin [GL89] being replaced with a
quantum version of Goldreich-Levin [AC02]. For the quantum version of Goldreich-Levin, we
prove a variant which holds against quantum auxiliary input.

3. Finally, assuming PRGs with sub-exponentially unpredictable seeds and post-quantum iO,
there exists compute-and-compare obfuscation for sub-exponentially unpredictable distribu-
tions [WZ17].

As proved in [WZ17], in Step 3, we can build such compute-and-compare obfuscation solely based
on the quantum hardness of LWE. However, as all the constructions in this work require iO as
a building block, we focus on the simpler construction which is based on iO. Thus, we have the
following theorem:

Theorem B.1. Assuming the existence of post-quantum 𝗂𝖮 and the quantum hardness of LWE,
there exist obfuscators as in Definition 3.6. for sub-exponentially unpredictable distributions.

In the rest of the section, we will introduce all building blocks and prove Step 2. Step 1 and 3
follow directly from previous work.

Similarly, we can prove the following theorem:
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Theorem B.2. Assuming the existence of post-quantum 𝗂𝖮 and post-quantum extremely lossy func-
tions, there exist obfuscators as in Definition 3.6. for any unpredictable distributions.

Theorem B.2 directly follows all three steps above without even replacing the building block
ELFs with plain lossy functions. Thus, we omit the proof here. However, currently we do not know
any post-quantum construction for extremly lossy functions.

B.1 Preliminaries

We first introduce lossy functions. For the purpose of this work, we ignore the need of trapdoors in
the definition. The definition is taken verbatim from [PW11].

Define the following quantities: the security parameter is 𝜆, 𝑛(𝜆) = 𝗉𝗈𝗅𝗒(𝜆) represents the input
length of the function, 𝑚(𝜆) = 𝗉𝗈𝗅𝗒(𝜆) represents the output length and 𝑘(𝜆) ≤ 𝑛(𝜆) represents the
lossiness of the collection. For convenience, we also define the residual leakage 𝑟(𝜆) := 𝑛(𝜆)− 𝑘(𝜆).
For all these quantities, we often omit the dependence on 𝜆.

Definition B.3 (Lossy Functions [PW11]). A collection of (𝑛, 𝑘)-lossy functions is given by a
tuple of (possibly probabilistic) polynomial-time algorithms (𝑆𝗅𝖿 , 𝐹𝗅𝖿) having the properties below. For
notational convenience, define the algorithms 𝑆𝗂𝗇𝗃(·) := 𝑆𝗅𝖿(·, 1) and 𝑆𝗅𝗈𝗌𝗌𝗒(·) := 𝑆𝗅𝖿(·, 0).

1. Easy to sample an injective function: 𝑆𝗂𝗇𝗃(1
𝜆) outputs 𝑠 where 𝑠 is a function index, with

overwhelming probability, 𝐹𝗅𝖿(𝑠, ·) computes a (deterministic) injective function 𝑓𝑠(·) over the
domain {0, 1}𝑛(𝜆).
For notational convenience, we assume 𝑆𝗂𝗇𝗃(1𝜆) samples a function description 𝑓𝑠(·).

2. Easy to sample a lossy function: 𝑆𝗅𝗈𝗌𝗌𝗒(1
𝜆) outputs 𝑠 where 𝑠 is a function index, 𝐹𝗅𝖿(𝑠, ·)

computes a (deterministic) function 𝑓𝑠(·) over the domain {0, 1}𝑛(𝜆) whose image has size at
most 2𝑟 = 2𝑛−𝑘, with overwhelming probability.

For notational convenience, we also assume 𝑆𝗅𝗈𝗌𝗌𝗒(1𝜆) samples a function description 𝑓𝑠(·).

3. Hard to distinguish injective from lossy: the outputs (function descriptions) of 𝑆𝗂𝗇𝗃(1𝜆) and
𝑆𝗅𝗈𝗌𝗌𝗒(1

𝜆) are computationally indistinguishable.

Theorem B.4 (Theorem 6.4, [PW11]). Assuming 𝖫𝖶𝖤𝑞,𝜒 is hard for some 𝑞, 𝜒, there exists a
collection of (𝑛, 𝑘) lossy functions where the residual leakage 𝑟 is 𝑟 = 𝑛𝑐 for any constant 𝑐 > 0.

Remark B.5. This can be done by carefully choosing parameters 𝑐1 = 𝑛1−𝑐, 𝑐2 as some constant,
𝑐3 = 1/𝑐 in Theorem 6.4 of [PW11].

Remark B.6. For the definition of extremely lossy functions,

• In bullet (2): 𝑆𝗅𝗈𝗌𝗌𝗒(1𝜆) takes another parameter 𝑟 ∈ [2𝑛] and 𝑓𝑠 sampled from 𝑆𝗅𝗈𝗌𝗌𝗒(1
𝜆, 𝑟) has

image size 𝑟, with overwhelming probability;

• In bullet (3): For any polynomial 𝑝 and inverse polynomial function 𝛿 (in 𝑛), there is a
polynomial 𝑞 such that: for any adversary 𝒜 running in time at most 𝑝, and any 𝑟 ∈ [𝑞(𝑛),𝑀 ],
it can not distinguish the outputs of 𝑆𝗂𝗇𝗃(1𝜆) between 𝑆𝗅𝗈𝗌𝗌𝗒(1

𝜆) with advantage more than 𝛿.

Second, we introduce PRGs with sub-exponentially unpredictable seeds [Zha19b, WZ17].
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Definition B.7 (PRG with Sub-Exponentially Unpredictable Seeds [Zha19b]). A family of pseu-
dorandom generators 𝐻 : 𝒳 → 𝒴 is secure for sub-exponentially unpredictable seeds if, for any sub-
exponentially unpredictable distribution on (𝑋,ℋ𝑍), no efficient adversary can distinguish (𝐻, 𝜌𝑧, 𝐻(𝑥))
from (𝐻, 𝜌𝑧, 𝑆) where (𝑥, 𝜌𝑧)← 𝐷 and 𝑆 ← 𝑈𝑌 , where 𝜌𝑧 is a quantum auxiliary input.

The following theorem follows from Appendix A in [WZ17]. Moreover, iO in the theorem state-
ment can be further replaced with LWE using the construction in their work.

Theorem B.8 ([WZ17]). Assuming PRGs with sub-exponentially unpredictable seeds and iO, there
exists compute-and-compare obfuscation for sub-exponentially unpredictable distributions.

B.2 PRGs with Sub-Exponentially Unpredictable Seeds

To prove Theorem B.1, we only need to prove PRGs with sub-exponentially unpredictable seeds
can be built from lossy functions.

Most of the proof follows [Zha19b], except we are working with plain lossy functions (not ex-
tremely lossy functions), sub-exponentially unpredictable distributions and potentially quantum
auxiliary information. We first look at the construction.

Construction 3. Let 𝑞 be the input length and 𝑚 be the output length. Let 𝜆 be a security parameter.
We will consider inputs 𝑥 as 𝑞-dimensional vectors 𝐱 ∈ 𝔽𝑞

2. Let 𝖫𝖥 be a lossy function (with some
sub-linear residual leakage, which will be specified later). Let 𝑀 = 2𝑚+𝜆+1, and let 𝑛 be the output
length of the lossy function. Set 𝑁 = 2𝑛. Let ℓ be some polynomial in 𝑚,𝜆 to be determined later.
First, we will construct a function 𝐻 ′ as follows.

Choose random 𝑓1, . . . , 𝑓ℓ ← 𝖫𝖥.𝑆𝗂𝗇𝗃(1
𝜆) where 𝑓𝑖 : [𝑀 ] → [𝑁 ], and let 1, . . . , ℓ−1 : [𝑁 ] →

[𝑀/2] = [2𝑚+𝜆] and ℓ : [𝑁 ] → [2𝑚] be sampled from pairwise independent and uniform function
families. Define 𝐟 = {𝑓1, . . . , 𝑓ℓ} and 𝐡 = {1, . . . , ℓ}. Define 𝐻 ′𝑖 : {0, 1}𝑖 → [𝑀/2] (and 𝐻 ′ℓ :
{0, 1}ℓ → [2𝑚]) as follows:

• 𝐻 ′0() = 1 ∈ [2𝑚+𝜆]

• 𝐻 ′𝑖(𝐛[1,𝑖−1], 𝑏𝑖) : compute 𝑦𝑖 = 𝐻 ′𝑖−1(𝐛[1,𝑖−1]), 𝑧𝑖 ← 𝑓𝑖(𝑦𝑖||𝑏𝑖), and output 𝑦𝑖+1 ← 𝑖(𝑧𝑖)

Then we set 𝐻 ′ = 𝐻 ′ℓ. To define 𝐻, choose a random matrix 𝐑 ∈ 𝔽ℓ×𝑞
2 . The description of 𝐻

consists of 𝐟 ,𝐡,𝐑. We set 𝐻(𝑥) = 𝐻 ′(𝐑 · 𝐱). A diagram of 𝐻 is given in Figure 4.

We have the following theorem, which will finish the proof for Theorem B.1.

Theorem B.9. Assuming lossy functions with sub-linear residual leakage, there exist PRGs with
sub-exponentially unpredictable seeds (quantum auxiliary input).

First, we have the claim from [Zha19b].

Claim B.10 (Claim 6.4, [Zha19b]). If ℓ ≥ 𝑚 + 𝜆, and if 𝐛 is drawn uniformly at random, then
(𝐻 ′, 𝐻 ′(𝐛)) is statistically close to (𝐻 ′, 𝑅) where 𝑅 is uniformly random in [2𝑚].

We will thus set ℓ = 𝑚 + 𝜆 in our construction of 𝐻 ′. We now present our main theorem
(Theorem B.9) of the section.
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Figure 4: An example instantiation for ℓ = 3, from [Zha19b].

Theorem B.9. We show that 𝐻 in Construction 3 is a pseudorandom generator that is secure for
sub-exponentially unpredictable seeds.

Let 𝜆 be the security parameter. Let (𝑥, 𝜌𝑧) ← 𝐷 be a sub-exponentially unpredictable distri-
bution where |𝑥| = 𝑞 (the input length of the PRG). In other words, there is no efficient algorithm
that given 𝜌𝑧, outputs 𝑥 with probability more than 2−𝜆

𝑐1 for some constant 0 < 𝑐1 ≤ 1. Let 𝖫𝖥 be
a (𝑚+ 𝜆+1, 𝑘)-lossy function with sub-linear residual leakage 𝑟 such that 2−𝑟 ≫ 2−𝜆

𝑐1 . Note that
there always exists a constant 𝑐 such that 𝑟 = 2(𝑚+𝜆+1)𝑐 ≪ 2𝜆

𝑐1 .
Recall that 𝐻(𝐱) = 𝐻 ′(𝐑 ·𝐱), and that 𝐻 ′(𝐛) is statistically close to random when 𝐛 is random

(by Claim B.10). Therefore, it suffices to show that the following distributions are indistinguishable:

(𝐟 ,𝐡,𝐑, 𝜌𝑧, 𝐻
′(𝐑 · 𝐱)) v.s. (𝐟 ,𝐡,𝐑, 𝜌𝑧, 𝐻

′(𝐛)) for a uniformly random 𝐛.

Suppose an adversary 𝒜 has non-negligible advantage 𝜖 in distinguishing the two distributions.
Define 𝐛(𝑖) so that the first 𝑖 bits of 𝐛(𝑖) are equal to the first 𝑖 bits of 𝐑 ·𝐱, and the remaining ℓ− 𝑖
bits are chosen uniformly at random independently of 𝐱. Define Hybrid 𝑖 to be the case where 𝒜
is given the distribution (𝐟 ,𝐡,𝐑, 𝜌𝑧, 𝐻

′(𝐛(𝑖))).
We know that 𝒜 distinguishes Hybrid 0 from Hybrid ℓ with probability 𝜖. Choose an 𝑖

uniformly at random from [ℓ]. Then the adversary distinguishes Hybrid (𝑖 − 1) from Hybrid 𝑖
with expected advantage at least 𝜖/ℓ. Next, observe that since bits 𝑖 + 1 through ℓ are random in
either case, they can be simulated independently of the challenge. Moreover, 𝐻 ′(𝐛) can be computed
given 𝐻 ′𝑖−1(𝐛[𝑖−1]), 𝑏𝑖 (be random or equal to 𝐑𝑖,𝐱), and the random 𝑏𝑖+1, . . . , 𝑏ℓ. Thus, we can
construct an adversary 𝒜′ that distinguishes the following distributions:

(𝑖, 𝐟 ,𝐡,𝐑[𝑖−1], 𝜌𝑧, 𝐻
′
𝑖−1(𝐑[𝑖−1] · 𝐱),𝐑𝑖,𝐑𝑖 · 𝐱) and (𝑖, 𝐟 ,𝐡,𝐑[𝑖−1], 𝜌𝑧, 𝐻

′
𝑖−1(𝐑[𝑖−1] · 𝐱),𝐑𝑖, 𝑏𝑖)

with advantage 𝜖/ℓ, where 𝑖 is chosen randomly in [ℓ], 𝐑[𝑖−1] consists of the first 𝑖 − 1 rows of 𝐑,
𝐑𝑖 is the 𝑖th row of 𝐑, and 𝑏𝑖 is a random bit.
𝒜′ cannot distinguish 𝑓𝑖 generated as 𝖫𝖥.𝑆𝗅𝗈𝗌𝗌𝗒(1𝜆) from the honest 𝑓𝑖 generated from 𝖫𝖥.𝑆𝗂𝗇𝗃(1

𝜆),
except with negligible probability. This means, if we generate 𝑓𝑖 ← 𝖫𝖥.𝑆𝗅𝗈𝗌𝗌𝗒(1

𝜆), we have that 𝒜′
still distinguishes the distributions

(𝑖, 𝐟 ,𝐡,𝐑[𝑖−1], 𝜌𝑧, 𝐻
′
𝑖−1(𝐑[𝑖−1] · 𝐱),𝐑𝑖,𝐑𝑖 · 𝐱) and (𝑖, 𝐟 ,𝐡,𝐑[𝑖−1], 𝜌𝑧, 𝐻

′
𝑖−1(𝐑[𝑖−1] · 𝐱),𝐑𝑖, 𝑏𝑖) (10)
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with advantage 𝜖′ = 𝜖/ℓ − 2 · 𝗇𝖾𝗀𝗅. Thus, given (𝐟 ,𝐡,𝐑[𝑖−1], 𝜌𝑧, 𝐻
′
𝑖−1(𝐑[𝑖−1] · 𝐱),𝐑𝑖), 𝒜′ is able to

compute 𝐑𝑖 · 𝐱 with probability 1
2 + 𝜖′. Note that 𝜖′ is non-negligible.

Now fix 𝐟 ,𝐡,𝐑[𝑖−1], which fixes 𝐻 ′𝑖−1. Let 𝑦𝑖 = 𝐻 ′𝑖−1(𝐑[𝑖−1] ·𝐱). Notice that since 𝐟 ,𝐡 are fixed,
there are at most 2𝑟 possible values for 𝑦𝑖. We now make the following claim:

Claim B.11. Let 𝒟 be a sub-exponentially unpredictable distribution on 𝒳 × ℋ𝑍 , with guessing
probability no more than 2−𝜆

𝑐1 . Suppose 𝑇 : 𝒳 → ℛ is drawn from a family 𝒯 of efficient functions
where the size of the image of 𝑇 is 2𝑟. Then the following distribution is also computationally
unpredictable: (𝑥, (𝑇, 𝜌𝑧, 𝑇 (𝑥))) where 𝑇 ← 𝒯 , (𝑥, 𝜌𝑧)← 𝒟, with guessing probability no more than
2𝑟 · 2−𝜆𝑐1 (as long as 𝑟 ≪ 𝜆𝑐1).

Proof. Suppose we have an efficient adversary ℬ that predicts 𝑥 with non-negligible probability 𝛾
given 𝑇, 𝜌𝑧, 𝑇 (𝑥), and suppose 𝑇 has image size 2𝑟. We then construct a new adversary 𝒞 that, given
𝑥, samples a random 𝑇 , samples (𝑥′, 𝜌𝑧′)← 𝒟, and sets 𝑎 = 𝑇 (𝑥′). It then runs ℬ(𝑇, 𝜌𝑧, 𝑎) to get a
string 𝑥′′, which it outputs. Notice that 𝑎 is sampled from the same distribution as 𝑇 (𝑥), so with
probability at least 1/2𝑟, 𝑎 = 𝑇 (𝑥). In this case, 𝑥′′ = 𝑥 with probability 𝛾. Therefore, 𝒞 outputs
𝑥 with probability 𝛾/2𝑟, which can not be greater than 2−𝜆

𝑐1 . Thus, 𝛾 is at most 2𝑟 · 2−𝜆𝑐1 .

Using Claim B.11 with 𝑇 = 𝐻 ′𝑖−1(𝐑[𝑖−1] · 𝐱), we see that (𝐱, (𝑖, 𝐟 ,𝐡,𝐑[𝑖−1], 𝜌𝑧, 𝐻
′
𝑖−1(𝐑[𝑖−1] · 𝐱))) is

computationally unpredictable. Moreover, 𝐑𝑖 ·𝐱 is a Goldreich-Levin [GL89] hardcore bit. We rely
on the following lemma, which we will prove in the next section:

Lemma B.12 (Quantum Goldreich-Levin). If there exists a quantum algorithm, that given a ran-
dom 𝑟 and an auxiliary quantum input |𝜓𝑥⟩, it computes ⟨𝑥, 𝑟⟩ with probability at least 1/2+𝜖 (where
the probability is taken over the choice of 𝑥 and random 𝑟); then there exists a quantum algorithm
that takes |𝜓𝑥⟩ and extracts 𝑥 with probability 4 · 𝜖2.

The same lemma holds if the quantum auxiliary input is a mixed state, by convexity.

Applying the quantum Goldreich-Levin theorem to the computationally unpredictable distri-
bution (𝐱, (𝑖, 𝐟 ,𝐡,𝐑[𝑖−1], 𝜌𝑧, 𝐻

′
𝑖−1(𝐑[𝑖−1] · 𝐱)) ), we see that there exists an algorithm that extracts

𝑥 with probability at least 4 · 𝜖′2. This contradicts the computationally unpredictability of the
underlying distribution, proving Theorem B.9.

B.3 Quantum Goldreich-Levin, with Quantum Auxiliary Input

In this section, we prove the final step:

Lemma B.12. If there exists a quantum algorithm, that given random 𝑟 and auxiliary quantum
input |𝜓𝑥⟩, it computes ⟨𝑥, 𝑟⟩ with probability at least 1/2 + 𝜖 (where the probability is taken over
the choice of 𝑥 and random 𝑟); then there exists a quantum algorithm that takes |𝜓𝑥⟩ and extracts
𝑥 with probability 4 · 𝜖2.

The same lemma holds if the quantum auxiliary input is a mixed state, by convexity.

The proof is the same as that in [AC02], but quantum auxiliary input about 𝑥 is considered.
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Proof. Assume there exists a unitary 𝑈 , given 𝑟 and an auxiliary quantum state |𝜓𝑥⟩, it computes
⟨𝑥, 𝑟⟩ with probability more than 1/2 + 𝜖 . Since 𝑟 is classical information, 𝑈 can be modeled as:
read 𝑟, applies 𝑈𝑟. For every 𝑥, 𝑟, we have:

𝑈 |𝑟⟩ |𝜓𝑥⟩ |𝟎𝑚⟩ = |𝑟⟩𝑈𝑟 |𝜓𝑥⟩ |𝟎𝑚⟩
= |𝑟⟩

(︁
𝛼𝑥,𝑟 |⟨𝑥, 𝑟⟩⟩ |𝜑𝑥,𝑟⟩+ 𝛽𝑥,𝑟 |⟨𝑥, 𝑟⟩⟩ |𝜑′𝑥,𝑟⟩

)︁
= |𝑟⟩ |Φ𝑥,𝑟⟩ ,

where |𝟎𝑚⟩ is the working space, 𝛼𝑥,𝑟 is the coefficient for computing ⟨𝑥, 𝑟⟩ correctly and 𝛽𝑥,𝑟 for
an incorrect answer.

Let 𝜖𝑥 be the probability that the quantum algorithm answers correctly on 𝑥 and 𝑅 be the space
of all 𝑟, we have the success probability as:

𝔼𝑟

[︀
|𝛼𝑥,𝑟|2

]︀
=

1

|𝑅|
∑︁
𝑟

|𝛼𝑥,𝑟|2 = 1/2 + 𝜖𝑥.

Now we fix an 𝑥 and 𝑟. Our algorithm for extracting 𝑥 does the following: it starts with the
state above, then (1.) it applies a 𝑍-gate(phase-flip gate) to get

|𝑟⟩
(︁
𝛼𝑥,𝑟(−1)⟨𝑥,𝑟⟩ |⟨𝑥, 𝑟⟩⟩ |𝜑𝑥,𝑟⟩+ 𝛽𝑥,𝑟(−1)⟨𝑥,𝑟⟩ |⟨𝑥, 𝑟⟩⟩ |𝜑′𝑥,𝑟⟩

)︁
= |𝑟⟩ (−1)⟨𝑥,𝑟⟩

(︁
𝛼𝑥,𝑟 |⟨𝑥, 𝑟⟩⟩ |𝜑𝑥,𝑟⟩ − 𝛽𝑥,𝑟 |⟨𝑥, 𝑟⟩⟩ |𝜑′𝑥,𝑟⟩

)︁
= |𝑟⟩ |Φ′𝑥,𝑟⟩ .

Then (2.) it applies 𝑈 †, because we have ⟨Φ𝑥,𝑟 |Φ′𝑥,𝑟⟩ = (−1)⟨𝑥,𝑟⟩(|𝛼𝑥,𝑟|2 − |𝛽𝑥,𝑟|2),

𝑈 † |𝑟⟩ |Φ′𝑥,𝑟⟩ = |𝑟⟩
(︁
(−1)⟨𝑥,𝑟⟩(|𝛼𝑥,𝑟|2 − |𝛽𝑥,𝑟|2) |𝜓𝑥⟩ |𝟎𝑚⟩+ |𝖾𝗋𝗋𝑥,𝑟⟩

)︁
,

where |𝖾𝗋𝗋𝑥,𝑟⟩ is orthogonal to |𝜓𝑥⟩ |𝟎𝑚⟩.
In the first two step, we actually compute everything over a uniform superposition of 𝑟. Next

(3.) it applies QFT on 𝑟 register,

𝖰𝖥𝖳
1√︀
|𝑅|

∑︁
𝑟

|𝑟⟩
(︁
(−1)⟨𝑥,𝑟⟩(|𝛼𝑥,𝑟|2 − |𝛽𝑥,𝑟|2) |𝜓𝑥⟩ |𝟎𝑚⟩+ |𝖾𝗋𝗋𝑥,𝑟⟩

)︁
=

1

|𝑅|
∑︁
𝑦

∑︁
𝑟

|𝑦⟩ (−1)⟨𝑦,𝑟⟩
(︁
(−1)⟨𝑥,𝑟⟩(|𝛼𝑥,𝑟|2 − |𝛽𝑥,𝑟|2) |𝜓𝑥⟩ |𝟎𝑚⟩+ |𝖾𝗋𝗋𝑥,𝑟⟩

)︁
.

Therefore, the phase on |𝑥⟩ |𝜓𝑥⟩ |𝟎𝑚⟩ is at least,

1

|𝑅|
∑︁
𝑟

(︀
|𝛼𝑥,𝑟|2 − |𝛽𝑥,𝑟|2

)︀
≥ 2 · 𝜖𝑥.

It measures 𝑟 register and with probability at least 4 · 𝜖2𝑥, it extracts 𝑥.
By convexity, the quantum algorithm succeeds in extracting 𝑥 is at least 4 · 𝜖2.
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C Proofs of Coset State Properties

C.1 Proof for Theorem 4.14

Proof of Theorem 4.14. In this section, we prove Theorem 4.14, the information-theoretic
monogamy property of coset states. The proof resembles the proof of monogamy for BB84 states
in [TFKW13]. However, the extra algebraic structure of subspace states requires a more refined
analysis. We first state the lemmas that are required for the main theorem.

Assume 𝐴 ⊆ 𝔽𝑛
2 is of dimension 𝑛/2. We use 𝖢𝖲(𝐴) to denote the set of all cosets of 𝐴. Since

dim(𝐴) = 𝑛/2, |𝖢𝖲(𝐴)| = 2𝑛/2. Note that if 𝐴 + 𝑠 ̸= 𝐴 + 𝑠0, then they are disjoint. Because each
coset 𝐴+ 𝑠 of 𝐴 has a canonical form, which is 𝖢𝖺𝗇𝐴(𝑠), we will identify 𝖢𝖲(𝐴) with the set of all
canonical vectors (where cosets are identified with their canonical vectors).

We use 𝑅𝑛
2 to denote the set of all subspaces of dimension 𝑛/2 in 𝔽𝑛

2 .

Lemma C.1. Fixing a subspace 𝐴, the coset states |𝐴𝑠,𝑠′⟩ and |𝐴𝑠0,𝑠′0
⟩ are orthogonal if and only

if 𝐴+ 𝑠 ̸= 𝐴+ 𝑠0 or 𝐴′ + 𝑠′ ̸= 𝐴′ + 𝑠′0.

Proof. If 𝐴+ 𝑠 ̸= 𝐴+ 𝑠0, then |𝐴𝑠,𝑠′⟩ has support over 𝐴+ 𝑠 but |𝐴𝑠0,𝑠′0
⟩ has support over 𝐴+ 𝑠0.

Because they have disjoint support, it is easy to see they are orthogonal.
If 𝐴′ + 𝑠′ ̸= 𝐴′ + 𝑠′0, we can apply QFT and use the same argument in the Fourier domain.

Lemma C.2. Fixing 𝐴, |𝐴𝑠,𝑠′⟩ for all 𝑠, 𝑠′ ∈ 𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥) form a basis.

Proof. We already know that the states |𝐴𝑠,𝑠′⟩ and |𝐴𝑠0,𝑠′0
⟩ are orthogonal if 𝑠, 𝑠′ ̸= 𝑠0, 𝑠

′
0. Since

there are total 2𝑛/2 × 2𝑛/2 = 2𝑛 states |𝐴𝑠,𝑠′⟩, they form a basis.

Lemma C.3. Fixing 𝐴, 1
2𝑛/2

∑︀
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥) |𝐴𝑠,𝑠′ , 𝐴𝑠,𝑠′⟩ = 1

2𝑛/2

∑︀
𝑣∈𝔽𝑛

2
|𝑣, 𝑣⟩. In other words,

the summation is independent of 𝐴 and it is an EPR pair.

Proof. ∑︁
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

|𝐴𝑠,𝑠′ , 𝐴𝑠,𝑠′⟩ =
1

|𝐴||𝐴⊥|
∑︁

𝑠,𝑠′∈𝔽𝑛
2

|𝐴𝑠,𝑠′ , 𝐴𝑠,𝑠′⟩

=
1

|𝐴||𝐴⊥|
∑︁

𝑠,𝑠′∈𝔽𝑛
2

1

|𝐴|
∑︁
𝑎∈𝐴
𝑏∈𝐴

(−1)⟨𝑎−𝑏,𝑠′⟩|𝑎+ 𝑠⟩|𝑏+ 𝑠⟩

=
2𝑛

|𝐴||𝐴⊥|
∑︁
𝑠∈𝔽𝑛

2

1

|𝐴|
∑︁
𝑎∈𝐴
|𝑎+ 𝑠⟩|𝑎+ 𝑠⟩

=
∑︁
𝑠∈𝑆
|𝑠⟩|𝑠⟩

where the first equality comes from the fact that for any vectors 𝑠0 ∈ 𝐴 + 𝑠 and 𝑠′0 ∈ 𝐴⊥ + 𝑠′,
|𝐴𝑠,𝑠′⟩ |𝐴𝑠,𝑠′⟩ = |𝐴𝑠0,𝑠′0

⟩ |𝐴𝑠0,𝑠′0
⟩.

We want to prove the following statement:
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Theorem C.4. Fix 𝑛 ∈ ℕ. For any Hilbert spaces ℋ𝐵,ℋ𝐶 , any collections of POVMs{︁{︀
𝑃𝐴
𝑠,𝑠′

}︀
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

}︁
𝐴∈𝑅𝑛

2

and
{︁{︀
𝑄𝐴

𝑠,𝑠′
}︀
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

}︁
𝐴∈𝑅𝑛

2

on the Hilbert spaces, and any CPTP map that maps |𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | into 𝒟(ℋ𝐵) ⊗ 𝒟(ℋ𝐶), we have
that,

𝔼𝐴∈𝑅𝑛
2
𝔼𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)𝖳𝗋

[︀(︀
𝑃𝐴
𝑠,𝑠′ ⊗𝑄𝐴

𝑠,𝑠′
)︀
· Φ(|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ |)

]︀
≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝑛)

where 𝗌𝗎𝖻𝖾𝗑𝗉 is a sub-exponential function.

Note that this bound directly gives Theorem 4.14, since both parties in Theorem 4.14 get the
description of 𝐴, by applying 𝖢𝖺𝗇𝐴(·), one could map any vectors in 𝐴+ 𝑠 and 𝐴⊥ + 𝑠′ to 𝖢𝖺𝗇𝐴(𝑠)
and 𝖢𝖺𝗇𝐴⊥(𝑠′).

To prove Theorem 4.14 (and the above Theorem C.4), we present the following theorem about
the monogamy game.

Theorem C.5. Fix 𝑛 ∈ ℕ. For any Hilbert spaces ℋ𝐵,ℋ𝐶 , any collections of POVMs{︁{︀
𝑃𝐴
𝑠,𝑠′

}︀
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

}︁
𝐴∈𝑅𝑛

2

and
{︁{︀
𝑄𝐴

𝑠,𝑠′
}︀
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

}︁
𝐴∈𝑅𝑛

2

on the Hilbert spaces, and any state 𝜌, we have

𝔼𝐴∈𝑅𝑛
2

∑︁
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝖳𝗋
[︀(︀
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝑃𝐴

𝑠,𝑠′ ⊗𝑄𝐴
𝑠,𝑠′

)︀
· 𝜌

]︀
≤ 1/𝗌𝗎𝖻𝖾𝗑𝗉(𝑛)

where 𝗌𝗎𝖻𝖾𝗑𝗉 is a sub-exponential function.

Next, we show that to prove Theorem 4.14, we only need to show Theorem C.5.

Lemma C.6. Theorem C.5 implies Theorem C.4 (and hence Theorem 4.14).

Proof. For convenience, let 𝑆 = 𝔽𝑛
2 . Assume there exists a strategy for the game in Theorem C.4

which achieves advantage 𝛿. We construct a strategy (preparing 𝜌 and POVMs) for the game in
Theorem C.5 which achieves the same advantage.

1. Prepare the state 𝜌 = 1
|𝑆|(𝐼 ⊗ Φ)

∑︀
𝑠,𝑠′∈𝑆 |𝑠, 𝑠⟩⟨𝑠′, 𝑠′|, which is equal to the following (for any

subspace 𝐴) by Lemma C.3,

(𝐼 ⊗ Φ)
∑︁

𝑠,𝑠′∈𝑆
|𝑠, 𝑠⟩⟨𝑠′, 𝑠′| = (𝐼 ⊗ Φ)

∑︁
𝑠1,𝑠′1∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝑠2,𝑠′2∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

|𝐴𝑠1,𝑠′1
, 𝐴𝑠1,𝑠′1

⟩⟨𝐴𝑠2,𝑠′2
, 𝐴𝑠2,𝑠′2

|

=
∑︁

𝑠1,𝑠′1∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝑠2,𝑠′2∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

|𝐴𝑠1,𝑠′1
⟩⟨𝐴𝑠2,𝑠′2

| ⊗ Φ
(︁
|𝐴𝑠1,𝑠′1

⟩⟨𝐴𝑠2,𝑠′2
|
)︁

2. 𝑃𝐴
𝑠,𝑠′ = 𝑃𝐴

𝑠,𝑠′ and 𝑄𝐴
𝑠,𝑠′ = 𝑄𝐴

𝑠,𝑠′ where 𝑃,𝑄 are POVMs for the game in Theorem C.4 and 𝑃 ,𝑄
are the POVMs for the game in Theorem C.5.
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Thus, we have that the advantage is,

𝔼𝐴∈𝑅𝑛
2

∑︁
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝖳𝗋
[︁(︁
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝑃𝐴

𝑠,𝑠′ ⊗𝑄
𝐴
𝑠,𝑠′

)︁
· 𝜌

]︁
=𝔼𝐴∈𝑅𝑛

2

1

|𝑆|
∑︁

𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝖳𝗋
[︁
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗

(︁(︁
𝑃

𝐴
𝑠,𝑠′ ⊗𝑄

𝐴
𝑠,𝑠′

)︁
· Φ

(︀
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ |

)︀)︁]︁
=𝔼𝐴∈𝑅𝑛

2

1

|𝑆|
∑︁

𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝖳𝗋
[︀
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗

(︀(︀
𝑃𝐴
𝑠,𝑠′ ⊗𝑄𝐴

𝑠,𝑠′
)︀
· Φ

(︀
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ |

)︀)︀]︀
=𝔼𝐴∈𝑅𝑛

2
𝔼𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)𝖳𝗋

[︀(︀
𝑃𝐴
𝑠,𝑠′ ⊗𝑄𝐴

𝑠,𝑠′
)︀
· Φ(|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ |)

]︀
= 𝛿

Without loss of generality, we can assume that the adversary’s strategy is pure (see more dis-
cussion in Lemma 9, [TFKW13]). In other words, all 𝑃𝐴

𝑠,𝑠′ and 𝑄𝐴
𝑠,𝑠′ are projections.

Proof of Theorem C.5. First, we define Π𝐴 as

Π𝐴 =
∑︁

𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝑃𝐴
𝑠,𝑠′ ⊗𝑄𝐴

𝑠,𝑠′

Note that Π𝐴 is a projection. By definition, the advantage is

1

|𝑅𝑛
2 |

∑︁
𝐴∈𝑅𝑛

2

∑︁
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝖳𝗋
[︀
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝑃𝐴

𝑠,𝑠′ ⊗𝑄𝐴
𝑠,𝑠′ · 𝜌

]︀

≤𝔼𝑣1,··· ,𝑣𝑛

⎡⎣ 1(︀
𝑛

𝑛/2

)︀ ∑︁
𝐴∈𝗌𝗉𝖺𝗇𝑛/2(𝑣1,··· ,𝑣𝑛)

∑︁
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝖳𝗋
[︀
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝑃𝐴

𝑠,𝑠′ ⊗𝑄𝐴
𝑠,𝑠′ · 𝜌

]︀⎤⎦
where (𝑣1, · · · , 𝑣𝑛) range over all possible bases of the space, and 𝗌𝗉𝖺𝗇𝑛/2(𝑣1, · · · , 𝑣𝑛) is the set of
all subspaces spanned by exactly 𝑛/2 vectors in (𝑣1, · · · , 𝑣𝑛).

In other words, we decompose the sampling procedure of 𝑅𝑛
2 into two steps: (1) sample a random

basis; (2) choose 𝑛/2 vectors in the basis.
Then we have, for any fixed basis 𝑣1, · · · , 𝑣𝑛,

1(︀
𝑛

𝑛/2

)︀ ∑︁
𝐴∈𝗌𝗉𝖺𝗇𝑛/2(𝑣1,··· ,𝑣𝑛)

∑︁
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝖳𝗋
[︀
|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝑃𝐴

𝑠,𝑠′ ⊗𝑄𝐴
𝑠,𝑠′ · 𝜌

]︀

=
1(︀
𝑛

𝑛/2

)︀𝖳𝗋
⎡⎣ ∑︁
𝐴∈𝗌𝗉𝖺𝗇𝑛/2(𝑣1,··· ,𝑣𝑛)

∑︁
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝑃𝐴
𝑠,𝑠′ ⊗𝑄𝐴

𝑠,𝑠′ · 𝜌

⎤⎦
≤ 1(︀

𝑛
𝑛/2

)︀
⃒⃒⃒⃒
⃒⃒ ∑︁
𝐴∈𝗌𝗉𝖺𝗇𝑛/2(𝑣1,··· ,𝑣𝑛)

Π𝐴

⃒⃒⃒⃒
⃒⃒

where | · | is the ∞-Schatten norm.
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Lemma C.7. For every fixed basis 𝑣1, · · · , 𝑣𝑛 ∈ 𝔽𝑛
2 , we have

1(︀
𝑛

𝑛/2

)︀
⃒⃒⃒⃒
⃒⃒ ∑︁
𝐴∈𝗌𝗉𝖺𝗇𝑛/2(𝑣1,··· ,𝑣𝑛)

Π𝐴

⃒⃒⃒⃒
⃒⃒ ≤ 1(︀

𝑛
𝑛/2

)︀ 𝑛/2∑︁
𝑡=0

(︂
𝑛/2

𝑡

)︂2

2−𝑡 = 𝑂
(︁
2−
√
𝑛
)︁

If we can prove the above lemma, we finished our proof for Theorem C.5.

Proof of Lemma C.7. We first show the upper bound is sub-exponentially small. By the fact that(︀
𝑛
𝑘

)︀𝑘 ≤ (︀
𝑛
𝑘

)︀
≤

(︀
𝑒𝑛
𝑘

)︀𝑘 for all 1 ≤ 𝑘 ≤ 𝑛, we have:

1(︀
𝑛

𝑛/2

)︀ 𝑛/2∑︁
𝑡=1

(︂
𝑛/2

𝑡

)︂2

2−𝑡 ≤ 1(︀
𝑛

𝑛/2

)︀ √𝑛∑︁
𝑡=1

(︂
𝑛/2

𝑡

)︂2

+ 2−
√
𝑛

≤ 1

2𝑛/2

√
𝑛∑︁

𝑡=1

(︁𝑒𝑛
2𝑡

)︁2𝑡
+ 2−

√
𝑛

≤
√
𝑛

2𝑛/2
·
(︁𝑒𝑛
2

)︁√𝑛
+ 2−

√
𝑛

=exp(−Ω(𝑛−√𝑛 log 𝑛)) + 2−
√
𝑛

Next, we prove the remaining part of the lemma. The idea is similar to that in [TFKW13].
We require the following lemma.

Lemma C.8 (Lemma 2 in [TFKW13]). Let 𝐴1, 𝐴2, · · · , 𝐴𝑁 ∈ 𝑃 (ℋ) (positive semi-definite oper-
ators on ℋ), and let {𝜋𝑘}𝑘∈[𝑁 ] be a set of 𝑁 mutually orthogonal permutations of [𝑁 ]. Then,⃒⃒⃒⃒

⃒⃒∑︁
𝑖∈[𝑁 ]

𝐴𝑖

⃒⃒⃒⃒
⃒⃒ ≤ ∑︁

𝑘∈[𝑁 ]

max
𝑖∈[𝑁 ]

⃒⃒⃒√︀
𝐴𝑖

√︁
𝐴𝜋𝑘(𝑖)

⃒⃒⃒
.

A set {𝜋𝑘}𝑘∈[𝑁 ] is called a set of mutually orthogonal permutations, if for every 𝜋 ̸= 𝜋′ in the
set, 𝜋(𝑖) ̸= 𝜋′(𝑖) for all 𝑖 ∈ [𝑁 ].

Fixing basis 𝑣1, · · · , 𝑣𝑛, there are a total of
(︀

𝑛
𝑛/2

)︀
subspaces that can be sampled by picking a

subset of {𝑣1, · · · , 𝑣𝑛} of size 𝑛/2. So, in our case, 𝑁 =
(︀

𝑛
𝑛/2

)︀
.

We define a collection of permutations on 𝗌𝗉𝖺𝗇𝑛/2(𝑣1, · · · , 𝑣𝑛) through a graph:

• Recall that each subspace 𝐴 is described as {𝑢1, · · · , 𝑢𝑛/2}, {𝑢𝑛/2+1, · · · , 𝑢𝑛} where the sub-
space is spanned by 𝑢1, · · · , 𝑢𝑛/2. {𝑢𝑛/2+1, · · · , 𝑢𝑛} are the vectors in {𝑣𝑖}𝑖∈[𝑛] that are not in
the subspace.

For convenience, we denote the basis choices for 𝐴 as a string ℓ ∈ {0, 1}𝑛 with Hamming
weight 𝑛

2 . We then define a set for all possible basis choices:

𝐶𝑛,𝑛/2 =
{︁
ℓ ∈ {0, 1}𝑛 : |ℓ| = 𝑛

2

}︁
.

• Let 𝑡 ∈ {0, · · · , 𝑛2 }. Let 𝐺𝑛,𝑡 be a graph with vertex set in 𝐶𝑛,𝑛/2 and an edge between any
ℓ, ℓ′ ∈ 𝐶𝑛,𝑛/2 where the number of positions ℓ, ℓ′ are both 1 is exactly 𝑛

2 − 𝑡.
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• We then turn the graph 𝐺𝑛,𝑡 into a directed graph by taking each edge in 𝐺𝑛,𝑡 into two directed
edges. Denote 𝑑𝑡 as the least in-degree (and also least out-degree) for each vertex.

• Then we can find 𝑑𝑡 directed cycles that cover all vertices with disjoint edges. We observe that
each such directed cycle corresponds to a permutation 𝜋𝑡,𝑗 of 𝐶𝑛,𝑛/2 where 𝑗 ∈ [𝑑𝑡], 𝑡 ∈ [𝑛/2].

• For all 𝑗 ̸= 𝑗′, 𝜋𝑡,, 𝜋𝑡,𝑗′ are orthogonal since in our construction the edges are disjoint. More-
over, for any 𝑡 ̸= 𝑡′, the permutations 𝜋𝑡,𝑗 , 𝜋𝑡′,𝑗 are orthogonal.

• The degree 𝐺𝑛,𝑡 is at least
(︀
𝑛/2
𝑡

)︀2
: because we have

(︀
𝑛/2
𝑡

)︀
choices of positions where we can

remove 𝑡 number of 1’s from the current basis string ℓ (i.e. remove 𝑡 vectors from the current
basis) and

(︀
𝑛/2
𝑡

)︀
choices for us to flip 𝑡 number of 0-positions into 1’s (i.e. add in 𝑡 vectors

from outside the current basis set).

There are a total of
∑︀𝑛/2

𝑡=0

(︀
𝑛/2
𝑡

)︀2
=

(︀
𝑛

𝑛/2

)︀
= 𝑁 permutations 𝜋𝑡,𝑗 . Therefore, by Lemma C.8 and

Π𝐴 are all projections, we have

1(︀
𝑛

𝑛/2

)︀
⃒⃒⃒⃒
⃒⃒ ∑︁
𝐴∈𝗌𝗉𝖺𝗇𝑛/2(𝑣1,··· ,𝑣𝑛)

Π𝐴

⃒⃒⃒⃒
⃒⃒ ≤ 1(︀

𝑛
𝑛/2

)︀ ∑︁
𝜋𝑡,𝑗

max
𝐴∈𝗌𝗉𝖺𝗇𝑛/2(𝑣1,··· ,𝑣𝑛)

⃒⃒⃒
Π𝐴Π𝜋𝑡,𝑗(𝐴)

⃒⃒⃒

Because Π𝐴 is a projection,
√
Π𝐴 = Π𝐴 for all 𝐴.

Next, we prove the following claim: for every𝐴,𝐴′ ∈ 𝗌𝗉𝖺𝗇𝑛/2(𝑣1, · · · , 𝑣𝑛), |Π𝐴Π𝐴′ | ≤ 2dim(𝐴∩𝐴′)−𝑛/2.
Define

Π
𝐴
=

∑︁
𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝑃𝐴
𝑠,𝑠′ ⊗ 𝐼

Π
𝐴′

=
∑︁

𝑠,𝑠′∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

|𝐴𝑠,𝑠′⟩⟨𝐴𝑠,𝑠′ | ⊗ 𝐼 ⊗𝑄𝐴
𝑠,𝑠′

From the fact that (1) for two semi-definite operators 𝐴,𝐵 such that 𝐴 ≤ 𝐵, their ∞-Schatten
norm satisfies |𝐴| ≤ |𝐵|; (2) for a semi-definite operator 𝐴, |𝐴|2 = |𝐴𝐴†|, we have:

|Π𝐴Π𝐴′ |2 ≤ |Π𝐴
Π

𝐴′
|2 =

⃒⃒⃒
Π

𝐴
Π

𝐴′
Π

𝐴′
Π

𝐴
⃒⃒⃒
=

⃒⃒⃒
Π

𝐴
Π

𝐴′
Π

𝐴
⃒⃒⃒

Then we have,

Π
𝐴
Π

𝐴′
Π

𝐴
=

∑︁
𝑠1,𝑠′1∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝑠2,𝑠′2∈𝖢𝖲(𝐴′),𝖢𝖲(𝐴′⊥)

𝑠3,𝑠′3∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

|𝐴𝑠1,𝑠′1
⟩⟨𝐴𝑠1,𝑠′1

|𝐴′𝑠2,𝑠′2⟩⟨𝐴
′
𝑠2,𝑠′2
|𝐴𝑠3,𝑠′3

⟩⟨𝐴𝑠3,𝑠′3
|

⊗ 𝑃𝐴
𝑠1,𝑠′1

𝑃𝐴
𝑠3,𝑠′3
⊗𝑄𝐴′

𝑠2,𝑠′2

=
∑︁

𝑠1,𝑠′1∈𝖢𝖲(𝐴),𝖢𝖲(𝐴⊥)

𝑠2,𝑠′2∈𝖢𝖲(𝐴′),𝖢𝖲(𝐴′⊥)

|⟨𝐴𝑠1,𝑠′1
|𝐴′𝑠2,𝑠′2⟩|

2 · |𝐴𝑠1,𝑠′1
⟩⟨𝐴𝑠1,𝑠′1

| ⊗ 𝑃𝐴
𝑠1,𝑠′1
⊗𝑄𝐴′

𝑠2,𝑠′2
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Since for all 𝑠1, 𝑠′1, 𝑠2, 𝑠′2, |𝐴𝑠1,𝑠′1
⟩⟨𝐴𝑠1,𝑠′1

| ⊗ 𝑃𝐴
𝑠1,𝑠′1
⊗𝑄𝐴′

𝑠2,𝑠′2
are projections, its Schatten-∞ norm

is bounded by the largest |⟨𝐴𝑠1,𝑠′1
|𝐴′𝑠2,𝑠′2⟩|

2.

|⟨𝐴𝑠1,𝑠′1
|𝐴′𝑠2,𝑠′2⟩| ≤

1

2𝑛/2

∑︁
𝑎∈𝑆

[𝑎 ∈ 𝐴+ 𝑠1 ∧ 𝑎 ∈ 𝐴′ + 𝑠2] = 2dim(𝐴∩𝐴′)/2𝑛/2

This is because, for all basis vectors outside of 𝐴 ∩ 𝐴′, their coefficient is determined by 𝑠1, 𝑠2.
Therefore, the only degree of freedom comes from the basis in 𝐴 ∩𝐴′.

Overall, |Π𝐴Π𝐴′ | ≤ 2dim(𝐴∩𝐴′)/2𝑛/2. Thus,

1(︀
𝑛

𝑛/2

)︀ ∑︁
𝜋𝑡,𝑗

max
𝐴∈𝗌𝗉𝖺𝗇𝑛/2(𝑣1,··· ,𝑣𝑛)

⃒⃒⃒
Π𝐴Π𝜋𝑡,𝑗(𝐴)

⃒⃒⃒
≤ 1(︀

𝑛
𝑛/2

)︀ 𝑛/2∑︁
𝑡=0

(︂
𝑛/2

𝑡

)︂2

2𝑡−𝑛/2

=
1(︀
𝑛

𝑛/2

)︀ 𝑛/2∑︁
𝑡=0

(︂
𝑛/2

𝑡

)︂2

2−𝑡

Thus, we proved Lemma C.7.

This completes the proof of Theorem C.5, and thus of Theorem 4.14.

C.2 Proof of Theorem 4.15

Proof. We consider the following hybrids.

• Hyb 0: This is the original security game 𝖢𝗈𝗆𝗉𝖬𝗈𝗇𝗈𝗀𝖺𝗆𝗒.

• Hyb 1: Same as Hyb 0 except 𝒜0 gets 𝗂𝖮(𝗌𝗁𝖮(𝐴)(·−𝑠)), 𝗂𝖮(𝐴⊥+𝑠′) and |𝐴𝑠,𝑠′⟩, for a uniformly
random superspace 𝐵 of 𝐴, of dimension 3/4𝑛.

• Hyb 2: Same as Hyb 1 except 𝒜0 gets 𝗂𝖮(𝗌𝗁𝖮(𝐵)(· − 𝑠)), 𝗂𝖮(𝐴⊥ + 𝑠′) and |𝐴𝑠,𝑠′⟩, for a
uniformly random superspace 𝐵 of 𝐴, of dimension 3/4𝑛.

• Hyb 3: Same as Hyb 2 except for the following. The challenger samples 𝑠, 𝑠′, 𝐴, and a uniformly
random superspace 𝐵 of 𝐴 as before. The challenger sets 𝑡 = 𝑠+𝑤𝐵, where 𝑤𝐵 ← 𝐵. Sends
𝗂𝖮(𝗌𝗁𝖮(𝐵)(· − 𝑡)), 𝗂𝖮(𝐴⊥ + 𝑠′) and |𝐴𝑠,𝑠′⟩ to 𝒜0.

• Hyb 4: Same as Hyb 3 except 𝒜0 gets 𝗂𝖮(𝗌𝗁𝖮(𝐵)(· − 𝑡)), 𝗂𝖮(𝗌𝗁𝖮(𝐴⊥)(· − 𝑠′)) and |𝐴𝑠,𝑠′⟩.

• Hyb 5: Same as Hyb 4 except 𝒜0 gets 𝗂𝖮(𝗌𝗁𝖮(𝐵)(· − 𝑡)), 𝗂𝖮(𝗌𝗁𝖮(𝐶⊥)(· − 𝑠′)) and |𝐴𝑠,𝑠′⟩, for
a uniformly random subspace 𝐶 ⊆ 𝐴 of dimension 𝑛/4.

• Hyb 6: Same as Hyb 5 except for the following. The challenger sets 𝑡′ = 𝑠′ + 𝑤𝐶⊥ , where
𝑤𝐶⊥ ← 𝐶⊥. 𝒜0 gets 𝗂𝖮(𝗌𝗁𝖮(𝐵)(· − 𝑡)), 𝗂𝖮(𝗌𝗁𝖮(𝐶⊥)(· − 𝑡′)) and |𝐴𝑠,𝑠′⟩.

• Hyb 7: Same as Hyb 6 except the challenger sends 𝐵,𝐶, 𝑡, 𝑡′ in the clear to 𝒜0.

Lemma C.9. For any QPT adversary (𝒜0,𝒜1,𝒜2),

|Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 1]− Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 0]| = 𝗇𝖾𝗀𝗅(𝜆) .
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Proof. Suppose for a contradiction there was a QPT adversary 𝒜 such that:

|Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 1]− Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 0]| (11)

is non-negligible.
Such an adversary can be used to construct 𝒜′ which distinguishes 𝗂𝖮(𝐴+𝑠) from 𝗂𝖮(𝗌𝗁𝖮(𝐴)(·−

𝑠), which is impossible by the security of the (outer) 𝗂𝖮, since 𝐴+ 𝑠 and 𝗂𝖮(𝐴)(· − 𝑠) compute the
same functionality.

Fix 𝑛, let 𝐴 ⊆ 𝔽𝑛
2 , 𝑠, 𝑠′ ∈ 𝔽𝑛

2 be such that the difference in (11) is maximized. Suppose
Pr[𝒜 wins in Hyb 1] > Pr[𝒜 wins in Hyb 0], the other case being similar.
𝒜′ proceeds as follows:

• Receives as a challenge a circuit 𝑃 which is either 𝗂𝖮(𝐴+ 𝑠) or 𝗂𝖮(𝗌𝗁𝖮(𝐴)(·− 𝑠)). Creates the
state |𝐴𝑠,𝑠′⟩. Gives 𝑃 , 𝗌𝗁𝖮(𝐴⊥ + 𝑠′) and |𝐴𝑠,𝑠′⟩ as input to 𝒜0.

• 𝒜0 returns a bipartite state. 𝒜′ forwards the first register to 𝒜1 and the second to 𝒜2. 𝒜1

returns (𝑠1, 𝑠′1) and 𝒜2 returns (𝑠2, 𝑠′2). 𝒜′ checks If 𝑠1, 𝑠2 ∈ 𝐴+ 𝑠 and 𝑠′1, 𝑠′2 ∈ 𝐴⊥+ 𝑠′. If so,
𝒜′ guesses that 𝑃 = 𝗂𝖮(𝗌𝗁𝖮(𝐴)(· − 𝑠)), otherwise that 𝑃 = 𝗂𝖮(𝐴+ 𝑠).

It is straightforward to verify that 𝒜′ succeeds at distinguishing with non-negligible probability.

Lemma C.10. For any QPT adversary (𝒜0,𝒜1,𝒜2),

|Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 2]− Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 1]| = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. Suppose for a contradiction there was a QPT adversary 𝒜 such that:

|Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 2]− Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 1]| ,

is non-neglibile.
We argue that 𝒜 can be used to construct an adversary 𝒜′ that breaks the security of 𝗌𝗁𝖮.
Fix 𝑛. Suppose Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 2] > Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 1], the other case

being similar.
𝒜′ proceeds as follows:

• Sample 𝐴 ⊆ 𝔽𝑛
2 uniformly at random. Send 𝐴 to the challenger.

• The challenger returns a program 𝑃 which is either 𝗌𝗁𝖮(𝐴) or 𝗌𝗁𝖮(𝐵) for a uniformly sampled
superspace 𝐵. 𝒜′ samples uniformly 𝑠, 𝑠′ ∈ 𝔽𝑛

2 , and creates the state |𝐴𝑠,𝑠′⟩. Gives 𝗂𝖮(𝑃 (·−𝑠)),
𝗂𝖮(𝐴⊥ + 𝑠′) and |𝐴𝑠,𝑠′⟩ as input to 𝒜0. The latter returns a bipartite state. 𝒜′ forwards the
first register to 𝒜1 and the second register to 𝒜2.

• 𝒜1 returns a pair (𝑠1, 𝑠
′
1) and 𝒜2 returns a pair (𝑠2, 𝑠

′
2). 𝒜′ checks that 𝑠1, 𝑠2 ∈ 𝐴 + 𝑠 and

𝑠′1, 𝑠
′
2 ∈ 𝐴⊥ + 𝑠′. If so, then 𝒜′ guesses that 𝑃 = 𝗌𝗁𝖮(𝐵), otherwise that 𝑃 = 𝗌𝗁𝖮(𝐴).

It is straightforward to verify that 𝒜′ succeeds at the security game for 𝗌𝗁𝖮 with non-negligible
advantage.

Lemma C.11. For any QPT adversary 𝒜,

|Pr[𝒜 wins in Hyb 3]− Pr[𝒜 wins in Hyb 2]| = 𝗇𝖾𝗀𝗅(𝜆) .
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Proof. The proof is similar to the proof of Lemma C.9, and follows from the security of 𝗂𝖮 and the
fact that 𝗌𝗁𝖮(𝐵)(· − 𝑠) and 𝗌𝗁𝖮(𝐵)(· − 𝑡) compute the same functionality.

Lemma C.12. For any QPT adversary 𝒜,

|Pr[𝒜 wins in Hyb 4]− Pr[𝒜 wins in Hyb 3]| = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. The proof is analogous to that of Lemma C.9.

Lemma C.13. For any QPT adversary 𝒜,

|Pr[𝒜 wins in Hyb 5]− Pr[𝒜 wins in Hyb 4]| = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. The proof is analogous to that of Lemma C.10.

Lemma C.14. For any QPT adversary 𝒜,

|Pr[𝒜 wins in Hyb 6]− Pr[𝒜 wins in Hyb 5]| = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. The proof is analogous to that of Lemma C.11.

Lemma C.15. For any QPT adversary 𝒜 for Hyb 6, there exists an adversary 𝒜′ for Hyb 7 such
that

Pr[𝒜′ wins in Hyb 7] ≥ Pr[𝒜 wins in Hyb 6] .

Proof. This is immediate.

Lemma C.16. For any adversary (𝒜0,𝒜1,𝒜2),

Pr[(𝒜0,𝒜1,𝒜2) wins in Hyb 7] = 𝗇𝖾𝗀𝗅(𝜆) .

Proof. Suppose there exists an adversary (𝒜0,𝒜1,𝒜2) for Hyb 7 that wins with probability 𝑝.
We first show that, without loss of generality, one can take 𝐵 to be the subspace of vectors such

that the last 𝑛/4 entries are zero (and the rest are free), and one can take 𝐶 to be such that the
last 3/4𝑛 entries are zero (and the rest are free). We construct the following adversary (𝒜′0,𝒜′1,𝒜′2)
for the game where 𝐵 and 𝐶 have the special form above with trailing zeros, call these 𝐵* and 𝐶*,
from an adversary (𝒜0,𝒜1,𝒜2) for the game of Hyb 7.

• 𝒜′0 receives a state |𝐴𝑠,𝑠′⟩, together with 𝑡 and 𝑡′, for some 𝐶* ⊆ 𝐴 ⊆ 𝐵*, where 𝑡 = 𝑠+ 𝑤𝐵*

for 𝑤𝐵* ← 𝐵*, and 𝑡′ = 𝑠′ + 𝑤𝐶⊥
*

, where 𝑤𝐶⊥
*
← 𝐶⊥* .

• 𝒜′0 picks uniformly random subspaces 𝐵 and 𝐶 of dimension 3
4𝑛 and 𝑛

4 respectively such that
𝐶 ⊆ 𝐵, and a uniformly random isomorphism 𝒯 mapping 𝐶* to 𝐶 and 𝐵* to 𝐵. We think of
𝒯 as a change-of-basis matrix. 𝒜′0 applies to |𝐴𝑠,𝑠′⟩ the unitary 𝑈𝒯 which acts as 𝒯 on the
standard basis elements. 𝒜′0 gives 𝑈𝒯 |𝐴⟩ to 𝒜0 together with 𝐵, 𝐶, 𝒯 (𝑡) and (𝒯 −1)𝑇 (𝑡′). 𝒜′0
receives a bipartite state from 𝒜0. Forwards the first register to 𝒜′1 and the second register
to 𝒜′2.

• 𝒜′1 forwards the received register to 𝒜1, and receives a pair (𝑠1, 𝑠
′
1) as output. 𝒜′1 returns

(𝒯 −1(𝑠1), 𝒯 𝑇 (𝑠′1)) to the challenger. 𝒜′2 proceeds analogously.
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First, notice that

𝑈𝒯 |𝐴𝑠,𝑠′⟩ = 𝑈𝒯
∑︁
𝑣∈𝐴

(−1)⟨𝑣,𝑠′⟩ |𝑣 + 𝑠⟩

=
∑︁
𝑣∈𝐴

(−1)⟨𝑣,𝑠′⟩ |𝒯 (𝑣) + 𝒯 (𝑠)⟩

=
∑︁

𝑤∈𝒯 (𝒜)

(−1)⟨𝒯 −1(𝑤),𝑠′⟩ |𝑤 + 𝒯 (𝑠)⟩

=
∑︁

𝑤∈𝒯 (𝐴)

(−1)⟨𝑤,(𝒯 −1)𝑇 (𝑠′)⟩ |𝑤 + 𝒯 (𝑠)⟩

= |𝒯 (𝐴)𝑧,𝑧′⟩ ,

where 𝑧 = 𝒯 (𝑠) and 𝑧′ = (𝒯 −1)𝑇 (𝑠′).
Notice that 𝒯 (𝐴) is a uniformly random subspace between 𝐶 and 𝐵, and that 𝑧 and 𝑧′ are

uniformly random vectors in 𝔽𝑛
2 . Moreover, we argue that:

(i) 𝒯 (𝑡) is distributed as a uniformly random element of 𝑧 +𝐵.

(ii) (𝒯 −1)𝑇 (𝑡′) is distributed as a uniformly random element of 𝑧′ + 𝐶⊥.

For (i), notice that

𝒯 (𝑡) = 𝒯 (𝑠+ 𝑤𝐵*) = 𝒯 (𝑠) + 𝒯 (𝑤𝐵*) = 𝑧 + 𝒯 (𝑤𝐵*) ,

where 𝑤𝐵* is uniformly random in 𝐵*. Since 𝒯 is an isomorphism with 𝒯 (𝐵*) = 𝐵, then 𝒯 (𝑤𝐵*)
is uniformly random in 𝐵. Thus, 𝒯 (𝑡) is distributed as a uniformly random element in 𝑧 +𝐵.

For (ii), notice that

(𝒯 −1)𝑇 (𝑡′) = (𝒯 −1)𝑇 (𝑠′ + 𝑤𝐶⊥
*
) = (𝒯 −1)𝑇 (𝑠′) + (𝒯 −1)𝑇 (𝑤𝐶⊥

*
) = 𝑧′ + (𝒯 −1)𝑇 (𝑤𝐶⊥

*
) ,

where 𝑤𝐶⊥
*

is uniformly random in 𝐶⊥* . We claim that (𝒯 −1)𝑇 (𝑤𝐶⊥
*
) is uniformly random in 𝐶⊥.

Notice, first, that the latter belongs to 𝐶⊥. Let 𝑥 ∈ 𝐶, then

⟨(𝒯 −1)𝑇 (𝑤𝐶⊥
*
), 𝑥⟩ = ⟨𝑤𝐶⊥

*
, 𝒯 −1(𝑥)⟩ = 0 ,

where the last equality follows because 𝑤𝐶⊥
*
∈ 𝐶⊥* , and 𝒯 −1(𝐶) = 𝐶*. The claim follows from the

fact that (𝒯 −1)𝑇 is a bijection.
Hence, 𝒜0 receives inputs from the correct distribution, and thus, with probability 𝑝, both 𝒜1

and 𝒜2 return the pair (𝑧 = 𝒯 (𝑠), 𝑧′(𝒯 −1)𝑇 (𝑠′)). Thus, with probability 𝑝, 𝒜′1 and 𝒜′2 both return
(𝒯 −1(𝑧), 𝒯 𝑇 (𝑧′)) = (𝑠, 𝑠′) to the challenger, as desired.

So, we can now assume that 𝐵 is the space of vectors such that the last 𝑛
4 entries are zero, and 𝐶

is the space of vectors such that the last 3
4𝑛 entries are zero. Notice then that the sampled subspace

𝐴 is uniformly random subspace subject to the last 𝑛
4 entries being zero, and the first 𝑛

4 entries
being free. From an adversary (𝒜0,𝒜1,𝒜2) for Hybrid 7 with such 𝐵 and 𝐶, we will construct an
adversary (𝒜′0,𝒜′1,𝒜′2) for the information-theoretic monogamy where the ambient subspace is 𝔽𝑛′

2 ,
where 𝑛′ = 𝑛

2 .
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• 𝒜′0 receives |𝐴𝑠,𝑠′⟩, for uniformly random 𝐴 ⊆ 𝔽𝑛′
2 of dimension 𝑛′/2 and uniformly random

𝑠, 𝑠′ ∈ 𝔽𝑛′
2 . 𝒜′0 samples 𝑠, 𝑠′, 𝑠, 𝑠′ ← 𝔽

𝑛
4
2 . Let |𝜑⟩ = 1

2𝑛/8

∑︀
𝑥∈{0,1}𝑛/4(−1)⟨𝑥,𝑠′⟩ |𝑥+ 𝑠⟩. 𝒜′0

creates the state
|𝑊 ⟩ = |𝜑⟩ ⊗ |𝐴𝑠,𝑠′⟩ ⊗ |𝑠⟩ ,

𝒜′0 gives to 𝒜0 as input the state |𝑊 ⟩, together with 𝑡 = 03𝑛/4||𝑠 + 𝑤𝐵 for 𝑤𝐵 ← 𝐵 and
𝑡′ = 𝑠′||03𝑛/4 + 𝑤𝐶⊥ , for 𝑤𝐶⊥ ← 𝐶⊥. 𝒜0 returns a bipartite state. 𝒜′0 forwards the first
register to 𝒜′1 and the second register to 𝒜′2.

• 𝒜′1 receives 𝐴 from the challenger. 𝒜′1 sends to 𝒜1 the previously received register, together
with the the subspace 𝐴′ ⊆ 𝔽𝑛

2 whose first 𝑛/4 entries are free, the last 𝑛/4 entries are
zero, and the middle 𝑛/2 entries belong to 𝐴. 𝒜1 returns a pair (𝑠1, 𝑠

′
1) ∈ 𝔽𝑛

2 × 𝔽𝑛
2 . Let

𝑟1 = [𝑠1]𝑛
4
+1, 3

4
𝑛 ∈ 𝔽𝑛/2

2 be the “middle” 𝑛/2 entries of 𝑠1. Let 𝑟1 = [𝑠′1]𝑛
4
+1, 3

4
𝑛 ∈ 𝔽𝑛/2

2 . 𝒜′1
outputs (𝑟1, 𝑟

′
1).

• 𝒜′2 receives 𝐴 from the challenger. 𝒜′2 sends to 𝒜2 the previously received register, together
with the the subspace 𝐴′ ⊆ 𝔽𝑛

2 whose first 𝑛/4 entries are free, the last 𝑛/4 entries are
zero, and the middle 𝑛/2 entries belong to 𝐴. 𝒜2 returns a pair (𝑠2, 𝑠

′
2) ∈ 𝔽𝑛

2 × 𝔽𝑛
2 . Let

𝑟2 = [𝑠2]𝑛
4
+1, 3

4
𝑛 ∈ 𝔽𝑛/2

2 be the “middle” 𝑛/2 entries of 𝑠2. Let 𝑟′2 = [𝑠′2]𝑛
4
+1, 3

4
𝑛 ∈ 𝔽𝑛/2

2 . 𝒜′2
outputs (𝑟2, 𝑟

′
2).

Notice that

|𝑊 ⟩ = |𝜑⟩ ⊗ |𝐴𝑠,𝑠′⟩ ⊗ |𝑠⟩
=

∑︁
𝑥∈{0,1}𝑛/4,𝑣∈𝐴

(−1)⟨𝑥,𝑠′⟩(−1)⟨𝑣,𝑠′⟩
⃒⃒⃒
(𝑥+ 𝑠)||(𝑣 + 𝑠)||𝑠

⟩
=

∑︁
𝑥∈{0,1}𝑛/4,𝑣∈𝐴

(−1)⟨(𝑥||𝑣||0𝑛/4),(𝑠′||𝑠′||𝑠′)⟩
⃒⃒⃒
𝑥||𝑣||0𝑛/4 + 𝑠||𝑠||𝑠

⟩
=

∑︁
𝑤∈𝐴

(−1)⟨𝑤,𝑧′⟩ |𝑤 + 𝑧⟩ = |𝐴𝑧,𝑧′⟩ ,

where 𝑧 = 𝑠||𝑠||𝑠, 𝑧′ = 𝑠′||𝑠′||𝑠′, and 𝐴 ⊆ 𝔽𝑛
2 is the subspace in which the first 𝑛/4 entries are free,

the middle 𝑛/2 entries belong to subspace 𝐴, and the last 𝑛/4 entries are zero.
Notice that the subspace 𝐴, when averaging over the choice of 𝐴, is distributed precisely as in

the game of Hybrid 7 (with the special choice of 𝐵 and 𝐶); 𝑧, 𝑧′ are uniformly random in 𝔽𝑛
2 ; 𝑡

is uniformly random from 𝑧 + 𝐵, and 𝑡′ is uniformly random from 𝑧′ + 𝐶⊥. It follows that, with
probability 𝑝, the answers returned by 𝒜′1 and 𝒜′2 are both correct.

From the information-theoretic security of the monogamy game, Theorem 4.14, it follows that
𝑝 must be negligible.

D More Discussions On Anti-Piracy Security

D.1 Anti-Piracy Implies CPA Security

Lemma D.1. If a single-decryptor encryption scheme satisfies CPA-style 𝛾-anti-piracy security
(Definition 6.4) for all inverse poly 𝛾, it also satisfies CPA security.
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Proof. Let𝒜 be an adversary that breaks CPA security with advantage 𝛿. We construct the following
adversary ℬ that breaks its CPA-style (𝛿/2)-anti-piracy security.
ℬ upon receiving a public key 𝗉𝗄 and a quantum key 𝜌𝗌𝗄, it prepares the following programs:

• It runs the stateful adversary 𝒜 on (1𝜆, 𝗉𝗄), it outputs (𝑚0,𝑚1).

• Let (𝜎[𝑅1], 𝑈1) be the stateful algorithm 𝒜 in the CPA security game (after outputting
(𝑚0,𝑚1)), except when it outputs a bit 𝑏, it outputs 𝑚𝑏; (𝜎[𝑅2], 𝑈2) be the honest decryption
algorithm using 𝜌𝗌𝗄; 𝖺𝗎𝗑 = (𝑚0,𝑚1) be the output of 𝒜.

First, we observe that 𝜎[𝑅1] and 𝜎[𝑅2] are un-entangled. For (𝜎[𝑅1], 𝑈1), because 𝒜 wins
CPA games with advantage 𝛿, here it also outputs the correct message with probability 1/2 + 𝛿.
For (𝜎[𝑅2], 𝑈2), by the correctness of the scheme, it outputs the correct message with probability
1− 𝗇𝖾𝗀𝗅(𝜆). Overall, ℬ wins the game with probability 1/2 + 𝛿 − 𝗇𝖾𝗀𝗅(𝜆)≫ 1/2 + 𝛿/2.

D.2 Strong Anti-Piracy Implies Regular Definition

In this section, we show the notion of strong anti-piracy security from Definition 6.11 implies that
from Definition 6.4.

Proof. Assume a single-decryptor encryption scheme satisfies the strong notation of anti-piracy. For
any adversary 𝒜, consider the game 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒:

• At the beginning of the game, the challenger takes a security parameter 𝜆 and obtains keys
(𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆).

• The challenger sends 𝒜 public-key 𝗉𝗄 and one copy of decryption key 𝜌𝗌𝗄 corresponding to 𝗉𝗄.

• 𝒜 finally outputs two (entangled) quantum decryptors 𝖣1 = (𝜎[𝑅1], 𝑈1) and 𝖣2 = (𝜎[𝑅2], 𝑈2)
and 𝖺𝗎𝗑 = (𝑚0,𝑚1) (𝑚0 ̸= 𝑚1)

• The challenger outputs 1 (for 𝒜 winning) if and only if both quantum decryptors 𝖣1,𝖣2 are
tested to be 𝛾-good with respect to 𝗉𝗄 and 𝖺𝗎𝗑.

It (the challenger outputs 1) happens with only negligible probability. In other words, with
overwhelming probability over the distribution of (𝗌𝗄, 𝗉𝗄) and (𝑚0,𝑚1), by applying projective
measurement (the projective measurement ℰ1, ℰ2 inside both threshold implementations) and ob-
taining (𝑑1, 𝑑0) and (𝑑′1, 𝑑

′
0) for 𝖣1,𝖣2 respectively, at least one of 𝑑1, 𝑑′1 is smaller than 1

2 + 𝛾, by
Definition 6.8 (the definition of 𝛾-good decryptor).

Also note that, in Definition 6.4, the game only differs in the test phase,

• The first three steps are identical to those in the above game.

• The challenger samples 𝑏1, 𝑏2 and 𝑟1, 𝑟2 uniformly at random and generates ciphertexts 𝑐1 =
𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏1 ; 𝑟1) and 𝑐2 = 𝖤𝗇𝖼(𝗉𝗄,𝑚𝑏2 ; 𝑟2). The challenger runs 𝖣𝟣 on 𝑐1 and 𝖣𝟤 on 𝑐2 and it
outputs 1 (the game is won by the adversary) if and only if 𝖣𝟣 outputs 𝑚𝑏1 and 𝖣𝟤 outputs
𝑚𝑏2 .

By the definition of projective measurement (Definition 3.10), the distribution of the second game,
can be computed by its projective measurement. In other words, the test phase can be computed
in the following equivalent way:

79



• Apply the projective measurement ℰ1, ℰ2 and obtain (𝑑1, 𝑑0) and (𝑑′1, 𝑑
′
0) for 𝖣1,𝖣2 respec-

tively. The challenger then samples two bits 𝑏1, 𝑏2 independently, where 𝑏1 = 1 with probability
𝑑1 and 𝑏2 = 1 with probability 𝑑′1. It outputs 1 if and only if 𝑏1 = 𝑏2 = 1.

Since we know that with overwhelming probability over the distribution of (𝗌𝗄, 𝗉𝗄) and (𝑚0,𝑚1),
by applying projective measurement and obtaining (𝑑1, 𝑑0) and (𝑑′1, 𝑑

′
0) for 𝖣1,𝖣2 respecitvely, at

least one of 𝑑1, 𝑑′1 is smaller than 1
2 + 𝛾, we can bound the probability of succeeding in the second

game.

Pr[𝒜 succeeds] ≤ 1 · Pr
[︂
𝑑1 ≥

1

2
+ 𝛾 ∧ 𝑑′1 ≥

1

2
+ 𝛾

]︂
+

(︂
1

2
+ 𝛾

)︂
· Pr

[︂
𝑑1 ≤

1

2
+ 𝛾 ∨ 𝑑′1 ≤

1

2
+ 𝛾

]︂
≤ 𝗇𝖾𝗀𝗅(𝜆) +

(︂
1

2
+ 𝛾

)︂
Therefore, it also satisfies the weak definition (Definition 6.4).

D.3 Strong Anti-Piracy, with Random Challenge Plaintexts

Definition D.2 (Testing a quantum decryptor, with random challenge plaintexts). Let 𝛾 ∈ [0, 1].
Let 𝗉𝗄 be a public key. We refer to the following procedure as a 𝛾-good test for a quantum decryptor
with respect to 𝗉𝗄 and random challenge plaintexts:

• The procedure takes as input a quantum decryptor (𝜌, 𝑈).

• Let 𝒫 = (𝑃, 𝐼 − 𝑃 ) be the following mixture of projective measurements (in the sense of
Definition 3.14) acting on some quantum state 𝜌′:

– Sample a uniform random message 𝑚←ℳ. Compute 𝑐← 𝖤𝗇𝖼(𝗉𝗄,𝑚).

– Run the quantum decryptor (𝜌′, 𝑈) on input 𝑐. Check whether the outcome is 𝑚. If so,
output 1, otherwise output 0.

• Let 𝖳𝖨1/|ℳ|+𝛾(𝒫) be the threshold implementation of 𝒫 with threshold value 1
|ℳ|+𝛾, as defined

in Definition 3.12. Run 𝖳𝖨1/|ℳ|+𝛾(𝒫) on (𝜌, 𝑈), and output the outcome. If the output is 1,
we say that the test passed, otherwise the test failed.

Now we are ready to define the strong 𝛾-anti-piracy game.

Definition D.3 ((Strong) 𝛾-Anti-Piracy Game, with Random Challenge Plaintexts). A strong anti-
piracy security game (for random plaintexts) for adversary 𝒜 is denoted as 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖦𝗎𝖾𝗌𝗌(𝟣𝜆),
which consists of the following steps:

1. Setup Phase: At the beginning of the game, the challenger takes a security parameter 𝜆 and
obtains keys (𝗌𝗄, 𝗉𝗄)← 𝖲𝖾𝗍𝗎𝗉(1𝜆).

2. Quantum Key Generation Phase: The challenger sends 𝒜 the public-key 𝗉𝗄 and one copy
of decryption key 𝜌𝗌𝗄.

80



3. Output Phase: Finally, 𝒜 outputs a (possibly mixed and entangled) state 𝜎 over two registers
𝑅1, 𝑅2 and two quantum circuits (𝑈1, 𝑈2). They can be viewed as two quantum decryptors
𝖣1 = (𝜎[𝑅1], 𝑈1) and 𝖣2 = (𝜎[𝑅2], 𝑈2).

4. Challenge Phase: The challenger outputs 1 (for 𝒜’s winning) if and only if both quantum
decryptors 𝖣1,𝖣2 are tested to be 𝛾-good with respect to 𝗉𝗄 and random challenge plaintexts.

Definition D.4 ((Strong) 𝛾-Anti-Piracy-Security). A single-decryptor encryption scheme satisfies
strong 𝛾-anti-piracy security against random plaintexts, if for any QPT adversary 𝒜, there exists a
negligible function 𝗇𝖾𝗀𝗅(·) such that the following holds for all 𝜆 ∈ ℕ:

Pr
[︁
𝑏 = 1, 𝑏← 𝖲𝗍𝗋𝗈𝗇𝗀𝖠𝗇𝗍𝗂𝖯𝗂𝗋𝖺𝖼𝗒𝖦𝗎𝖾𝗌𝗌(𝟣𝜆)

]︁
≤ 𝗇𝖾𝗀𝗅(𝜆) (12)

We claim Definition D.4 implies Definition 6.6. The proof is done in the same way as that in
Appendix D.2. We omit the proof here.

To prove both our constructions satisfy the strong anti-piracy security against random messages:

• Construction based on strong monogamy property: the proof works in the exactly same way,
except the compute-and-compare program 𝖢𝖢[𝑓, 𝑦,𝑚𝑏] for a uniform bit 𝑏 should be replaced
with 𝖢𝖢[𝑓, 𝑦,𝑚] for a uniformly random message 𝑚.

• Construction based on extractable witness encryption: the proof works in the exact same way.

D.4 Comparing Definition 6.4 with Definition 6.6

In Section 6, we define two anti-piracy security, namely Definition 6.4 for chosen plaintexts and
Definition 6.6 for random plaintexts. In this section, we discuss their relationship.

One would hope that anti-piracy security against chosen plaintexts (Definition 6.4) implies anti-
piracy security against random plaintexts (Definition 6.6), which is an analogue of security against
chosen plaintext attack implies security against random plaintext attack (decrypting encryptions of
random messages). However, we realize that it is unlikely to be the case for anti-piracy security.
Although it is not a formal proof, this intuition explains where thinks might fail.

Consider an adversary that breaks Definition 6.6. Assume it outputs the following decryptor
state: (︁√

𝛾 |𝗀𝗈𝗈𝖽⟩+
√︀

1− 𝛾 |𝖻𝖺𝖽⟩
)︁⊗2

,

where |𝗀𝗈𝗈𝖽⟩ is a perfect decryptor state and |𝖻𝖺𝖽⟩ is a garbage state that is orthogonal to |𝗀𝗈𝗈𝖽⟩.
It is easy to see that it breaks Definition 6.6 with advantage 𝛾2. However, each side can only win
the CPA security game with advantage at most 1/2+ 𝛾 independently. Therefore, its advantage for
Definition 6.4 is (1/2 + 𝛾)2, which is smaller than the trivial advantage 1/2.

E Proof of Lemma 7.17

We are going to show that an adversary can not distinguish a pair of uniformly inputs from a pair
of hidden trigger inputs by a sequence of hybrids. For simplicity, we first show the following lemma
about the indistinguishability of a single random input or a single hidden trigger input. We will
then show how the proof for Lemma E.1 translates to a proof for Lemma 7.17 easily.
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Note that one can not get Lemma 7.17 by simply applying Lemma E.1 twice, as one can not
sample a random hidden trigger input by only given the public information in the security game
(𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 requires knowing 𝐾2,𝐾3), which is essentially required.

Lemma E.1. Assuming post-quantum 𝗂𝖮 and one-way functions, for every efficient QPT algorithm
𝒜, it can not distinguish the following two cases with non-negligible advantage:

• A challenger samples 𝐾1 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and prepares a quantum key 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

Here 𝑃 hardcodes 𝐾1,𝐾2,𝐾3.

• It samples a random input 𝑢← [𝑁 ]. Let 𝑦 = 𝐹1(𝐾1, 𝑢). Parse the input as 𝑢 = 𝑢0||𝑢1||𝑢2.

• Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]).

• It flips a coin 𝑏 and outputs (𝜌𝐾 , 𝑢) or (𝜌𝐾 , 𝑢
′) depending on the coin.

Note that we will mark the changes between the current hybrid and the previous hybrid in red.

Proof of Lemma E.1 .

Hybrid 0. This is the original game where the input is sampled either uniformly at random or
sampled as a hidden triggers input.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 = 𝐹1(𝐾1, 𝑢).

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]).

5. Generate the program 𝑃 as in Figure 5. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then 𝑢 or 𝑢′

depending on a random coin 𝑏.

Hardcoded: Keys 𝐾1,𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

It treats 𝑄′ as a circuit and outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

2. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

Figure 5: Program 𝑃 (same as Figure 3)
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Hybrid 1 In this hybrid, the key 𝐾1 in the program 𝑃 is punctured at 𝑢, 𝑢′. The indistinguisha-
bility of Hybrid 0 and Hybrid 1 comes from the security of indistinguishability obfuscation.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 = 𝐹1(𝐾1, 𝑢).

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄 be the obfuscation program

during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

5. Generate the program 𝑃 as in Figure 6. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then 𝑢 or 𝑢′

depending on a random coin.

Hardcoded: Constants 𝑢, 𝑢′; Keys 𝐾1 ∖ {𝑢, 𝑢′},𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄(𝑣1, · · · , 𝑣ℓ0).

2. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

It treats 𝑄′ as a circuit and outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

Figure 6: Program 𝑃

Note that starting from this hybrid, whenever we mention 𝐾1 inside a program 𝑃 , we mean
to use the punctured key 𝐾1 ∖ {𝑢, 𝑢′}. Similar notations of punctured keys 𝐾2,𝐾3 inside other
programs will appear in the upcoming hybrids.
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Hybrid 2. In this hybrid, the value of 𝐹1(𝐾1, 𝑢) is replaced with a uniformly random output.
The indistinguishability of Hybrid 1 and Hybrid 2 comes from the pseudorandomness at punctured
points of a puncturable PRF.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀 ].

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄 be the obfuscation program

during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

5. Generate the program 𝑃 as in Figure 6. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then 𝑢 or 𝑢′

depending on a random coin.
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Hybrid 3. In this hybrid, the check on the second line will be skipped if 𝑥1 is equal to 𝑢1 or 𝑢′1.
By Lemma 2 of [SW14], adding this check does not affect its functionality, except with negligible
probability.

The lemma says, to skip the check on the second line, 𝑥1 will be equal to one of {𝑢1, 𝑢′1}. To see
why it does not change the functionality of the program, by Lemma 7.14 and for all but negligible
fraction of all keys 𝐾2, if 𝑥1 = 𝑢′1, there is only one way to make the check satisfied and the input
is 𝑢0, 𝑢′2. This input 𝑢′ = 𝑢0||𝑢′1||𝑢′2 is already handled in the first line. Therefore, the functionality
does not change.

After this change, 𝐹3(𝐾3, ·) will never be executed on those inputs. We can then puncture the
key 𝐾3 on them. The indistinguishability comes from the security of iO.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀 ].

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄 be the obfuscation program

during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

5. Generate the program 𝑃 as in Figure 7. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then 𝑢 or 𝑢′

depending on a random coin.

Hardcoded: Constants 𝑢, 𝑢′; Keys 𝐾1 ∖ {𝑢, 𝑢′},𝐾2,𝐾3 ∖ {𝑢1, 𝑢′1}, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄(𝑣1 · · · , 𝑣ℓ0).

2. If 𝑥1 = 𝑢1 or 𝑢′1, skip this check. If 𝐹3(𝐾3, 𝑥1) ⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and
𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

It treats 𝑄′ as a circuit and outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

Figure 7: Program 𝑃
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Hybrid 4. In this hybrid, before checking 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′), it checks if 𝑥′0||𝑄′ ̸= 𝑢0||𝑄.

Because if 𝑥′0||𝑄′ = 𝑢0||𝑄 and the last check 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′) is also satisfied, we know that

𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′) = 𝐹2(𝐾2, 𝑢0||𝑄) = 𝑢′1 (by the definition of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋).

Therefore the step 2 will be skipped (by the first check). Thus, we can puncture 𝐾2 at 𝑢0||𝑄 The
indistinguishability also comes from the security of iO.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀 ].

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄 be the obfuscation program

during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

5. Generate the program 𝑃 as in Figure 8. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then 𝑢 or 𝑢′

depending on a random coin.

Hardcoded: Constants 𝑢, 𝑢′; Keys 𝐾1 ∖ {𝑢, 𝑢′},𝐾2 ∖ {𝑢0||𝑄}, 𝐾3 ∖ {𝑢1, 𝑢′1}, 𝑅0
𝑖 , 𝑅

1
𝑖 for

all 𝑖 ∈ [ℓ0].
On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄(𝑣1 · · · ).

2. If 𝑥1 = 𝑢1 or 𝑢′1, skip this check. If 𝐹3(𝐾3, 𝑥1) ⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and
𝑥′0||𝑄′ ̸= 𝑢0||𝑄, then also check 𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

It treats 𝑄′ as a circuit and outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

Figure 8: Program 𝑃

86



Hybrid 5. In this hybrid, since the key 𝐾2 has been punctured at 𝑢0||𝑄, we can replace the
evaluation of 𝐹2(𝐾2, ·) at the input with a uniformly random value. The indistinguishability comes
from the pseudorandomness of the underlying puncturable PRF 𝐹2.

We expand the 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 procedure.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀 ].

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]) as follows:

(a) Let 𝑄 be the obfuscation of the program (padded to length ℓ2 − ℓ0) that takes inputs
𝑣1, · · · , 𝑣ℓ0 and outputs 𝑦 if and only if for every input 𝑣𝑖, if 𝑢0,𝑖 = 0, then 𝑣𝑖 is in 𝐴𝑖+ 𝑠𝑖
and otherwise it is in 𝐴⊥𝑖 + 𝑠′𝑖.

(b) 𝑢′1 ← [2ℓ1 ] (since 𝐹2(𝐾2, 𝑢0||𝑄) has been replaced with a uniformly random value).

(c) 𝑢′2 ← 𝐹3(𝐾3, 𝑢
′
1)⊕ (𝑢0||𝑄).

(d) It outputs 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

5. Generate the program 𝑃 as in Figure 8. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then 𝑢 or 𝑢′

depending on a random coin.
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Hybrid 6. In this hybrid, since the key 𝐾3 has been punctured at 𝑢′1, we can replace the eval-
uation of 𝐹3(𝐾3, ·) at 𝑢′1 with a uniformly random value. The indistinguishability comes from the
pseudorandomness of the underlying puncturable PRF 𝐹3.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to length ℓ2 − ℓ0).

It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦 ← [𝑀 ].

4. It samples 𝑢′ as follows:

(a) 𝑢′1 ← [2ℓ1 ];

(b) 𝑢′2 ← [2ℓ2 ].

(c) It outputs 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

5. Generate the program 𝑃 as in Figure 8. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then 𝑢 or 𝑢′

depending on a random coin.

In this hybrids, 𝑢, 𝑢′ are sampled independently, uniformly at random and they are symmetric
in the program. The distributions for 𝑏 = 0 and 𝑏 = 1 are identical and even unbounded adversary
can not distinguish these two cases. Therefore we finish the proof for Lemma E.1.

Remark E.2. The program 𝑃 depends on 𝑄𝑢. Although 𝑄𝑢 is indexed by 𝑢, it only depends on 𝑢0.
Thus, the distributions for 𝑏 = 0 and 𝑏 = 1 are identical

Finishing the proof for Lemma 7.17. The only difference between Lemma 7.17 and Lemma E.1
is the number of inputs sampled: either a single input 𝑢 (or 𝑢′) or a pair of independent inputs 𝑢,𝑤
(or 𝑢′, 𝑤′).

All hybrids for Lemma 7.17 are the same for the corresponding hybrids for Lemma E.1, except
two inputs are sampled. Thus every time 𝐾1,𝐾2 or 𝐾3 are punctured according to 𝑢 or 𝑢′ in the
proof of Lemma E.1, 𝐾1,𝐾2 or 𝐾3 are punctured twice according to both 𝑢, 𝑢′ and 𝑤,𝑤′ in the
proof of Lemma 7.17.

We are now giving the proof. If indistinguishability of some hybrid is not explained, it follows
from the same reason as that in the corresponding hybrid in the proof of Lemma E.1.
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Hybrid 0. The original game where both 𝑢,𝑤 are sampled uniformly at random or 𝑢′, 𝑤′ are
random hidden trigger inputs.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢).

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]).

5. It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤).

6. It samples 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]).

7. Generate the program 𝑃 as in Figure 9. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then (𝑢,𝑤)
or (𝑢′, 𝑤′) depending on a random coin 𝑏.

Hardcoded: Keys 𝐾1,𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

It treats 𝑄′ as a circuit and outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

2. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

Figure 9: Program 𝑃
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Hybrid 1. In this hybrid, the key 𝐾1 in the program 𝑃 is punctured at 𝑢, 𝑢′, 𝑤, 𝑤′.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢).

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄𝑢 be the obfuscation pro-

gram during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

5. It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤).

6. It samples 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄𝑤 be the obfuscation pro-

gram during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

7. Generate the program 𝑃 as in Figure 10. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then (𝑢,𝑤)
or (𝑢′, 𝑤′) depending on a random coin 𝑏.

Hardcoded: Keys 𝐾1 ∖ {𝑢, 𝑢′, 𝑤, 𝑤′},𝐾2,𝐾3, 𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄𝑢(𝑣1, · · · , 𝑣ℓ0). If 𝑥 = 𝑤 or 𝑤′, it outputs 𝑄𝑤(𝑣1, · · · , 𝑣ℓ0).

2. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′ and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′):

It treats 𝑄′ as a circuit and outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

Figure 10: Program 𝑃
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Hybrid 2. In this hybrid, 𝑦𝑢 and 𝑦𝑤 are sampled uniformly at random. Note that as long as
𝑢 ̸= 𝑤 (with overwhelming probability), we can apply the pseudorandomness at punctured points
of a puncturable PRF.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 ← [𝑀 ].

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄𝑢 be the obfuscation pro-

gram during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

5. It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 ← [𝑀 ].

6. It samples 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄𝑤 be the obfuscation pro-

gram during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

7. Generate the program 𝑃 as in Figure 10. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then (𝑢,𝑤)
or (𝑢′, 𝑤′) depending on a random coin 𝑏.
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Hybrid 3. In this hybrid, 𝑃 is changed by checking if 𝑥1 is equal to 𝑢1, 𝑢′1, 𝑤1 or 𝑤′1. Moreover,
𝐾3 is punctured at these points.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 ← [𝑀 ].

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄𝑢 be the obfuscation pro-

gram during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

5. It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 ← [𝑀 ].

6. It samples 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄𝑤 be the obfuscation pro-

gram during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

7. Generate the program 𝑃 as in Figure 11. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then (𝑢,𝑤)
or (𝑢′, 𝑤′) depending on a random coin 𝑏.

Hardcoded: Keys 𝐾1 ∖ {𝑢, 𝑢′, 𝑤, 𝑤′},𝐾2,𝐾3 ∖ {𝑢1, 𝑢′1, 𝑤1, 𝑤
′
1}, 𝑅0

𝑖 , 𝑅
1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄𝑢(𝑣1, · · · , 𝑣ℓ0). If 𝑥 = 𝑤 or 𝑤′, it outputs 𝑄𝑤(𝑣1, · · · , 𝑣ℓ0).

2. If 𝑥1 is equal to 𝑢1, 𝑢′1, 𝑤1 or 𝑤′1, then skip this check. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′
and 𝑥0 = 𝑥′0 and 𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

It treats 𝑄′ as a circuit and outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

Figure 11: Program 𝑃
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Hybrid 4. In this hybrid, before checking 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′), it checks if 𝑥′0||𝑄′ ̸= 𝑢0||𝑄𝑢 and

𝑥′0||𝑄′ ̸= 𝑤0||𝑄𝑤. Because if 𝑥′0||𝑄′ = 𝑢0||𝑄𝑢 and the last check 𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′) is also satisfied,

we know that

𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′) = 𝐹2(𝐾2, 𝑢0||𝑄𝑢) = 𝑢′1 (by the definition of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋).

Therefore the step 2 will be skipped (by the first check). Similarly, if 𝑥′0||𝑄′ = 𝑤0||𝑄𝑤 and the last
check 𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′) is also satisfied, we know that

𝑥1 = 𝐹2(𝐾2, 𝑥
′
0||𝑄′) = 𝐹2(𝐾2, 𝑤0||𝑄𝑤) = 𝑤′1 (by the definition of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋).

Finally, we puncture 𝐾2 at 𝑢0||𝑄𝑢 and 𝑤0||𝑄𝑤.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 ← [𝑀 ].

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄𝑢 be the obfuscation pro-

gram during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

5. It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 ← [𝑀 ].

6. It samples 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]). Let 𝑄𝑤 be the obfuscation pro-

gram during the execution of 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋.

7. Generate the program 𝑃 as in Figure 12. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then (𝑢,𝑤)
or (𝑢′, 𝑤′) depending on a random coin 𝑏.

Hardcoded: Keys 𝐾1 ∖ {𝑢, 𝑢′, 𝑤, 𝑤′},𝐾2 ∖ {𝑢0||𝑄𝑢, 𝑤0||𝑄𝑤},𝐾3 ∖ {𝑢1, 𝑢′1, 𝑤1, 𝑤
′
1},

𝑅0
𝑖 , 𝑅

1
𝑖 for all 𝑖 ∈ [ℓ0].

On input 𝑥 = 𝑥0||𝑥1||𝑥2 and vectors 𝑣1, · · · , 𝑣ℓ0 :

1. If 𝑥 = 𝑢 or 𝑢′, it outputs 𝑄𝑢(𝑣1, · · · , 𝑣ℓ0). If 𝑥 = 𝑤 or 𝑤′, it outputs 𝑄𝑤(𝑣1, · · · , 𝑣ℓ0).

2. If 𝑥1 is equal to 𝑢1, 𝑢′1, 𝑤1 or 𝑤′1, then skip this check. If 𝐹3(𝐾3, 𝑥1)⊕ 𝑥2 = 𝑥′0||𝑄′
and 𝑥0 = 𝑥′0 and 𝑥′0||𝑄′ ̸= 𝑢0||𝑄𝑢 and 𝑥′0||𝑄′ ̸= 𝑤0||𝑄𝑤 and 𝑥1 = 𝐹2(𝐾2, 𝑥

′
0||𝑄′):

It treats 𝑄′ as a circuit and outputs 𝑄′(𝑣1, · · · , 𝑣ℓ0).

3. Otherwise, it checks if the following holds: for all 𝑖 ∈ [ℓ0], 𝑅𝑥0,𝑖(𝑣𝑖) = 1.

If they all hold, outputs 𝐹1(𝐾1, 𝑥). Otherwise, outputs ⊥.

Figure 12: Program 𝑃
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Hybrid 5. In this hybrid, since the key 𝐾2 has been punctured at 𝑢0||𝑄𝑢 and 𝑤0||𝑄𝑤, we can
replace the evaluation of 𝐹2(𝐾2, ·) at these two inputs with uniformly random values, as long as 𝑢0 ̸=
𝑤0 (with overwhelming probability). The indistinguishability comes from the pseudorandomness of
the underlying puncturable PRF 𝐹2.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 ← [𝑀 ].

4. It samples 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]) as follows:

(a) Let 𝑄𝑢 be the obfuscation of the program (padded to length ℓ2 − ℓ0) that takes inputs
𝑣1, · · · , 𝑣ℓ0 and outputs 𝑦𝑢 if and only if for every input 𝑣𝑖, if 𝑢0,𝑖 = 0, then 𝑣𝑖 is in 𝐴𝑖+𝑠𝑖
and otherwise it is in 𝐴⊥𝑖 + 𝑠′𝑖.

(b) 𝑢′1 ← [2ℓ1 ] (since 𝐹2(𝐾2, 𝑢0||𝑄𝑢) has been replaced with a uniformly random value).

(c) 𝑢′2 ← 𝐹3(𝐾3, 𝑢
′
1)⊕ (𝑢0||𝑄𝑢).

(d) It outputs 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

5. It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 ← [𝑀 ].

6. It samples 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0]) as follows:

(a) Let 𝑄𝑤 be the obfuscation of the program (padded to length ℓ2 − ℓ0) that takes inputs
𝑣1, · · · , 𝑣ℓ0 and outputs 𝑦𝑤 if and only if for every input 𝑣𝑖, if 𝑤0,𝑖 = 0, then 𝑣𝑖 is in
𝐴𝑖 + 𝑠𝑖 and otherwise it is in 𝐴⊥𝑖 + 𝑠′𝑖.

(b) 𝑤′1 ← [2ℓ1 ] (since 𝐹2(𝐾2, 𝑤0||𝑄𝑤) has been replaced with a uniformly random value).

(c) 𝑤′2 ← 𝐹3(𝐾3, 𝑤
′
1)⊕ (𝑤0||𝑄𝑤).

(d) It outputs 𝑤′ = 𝑤0||𝑤′1||𝑤′2.

7. Generate the program 𝑃 as in Figure 12. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then (𝑢,𝑤)
or (𝑢′, 𝑤′) depending on a random coin 𝑏.
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Hybrid 6. In this hybrid, since the key 𝐾3 has been punctured at 𝑢′1, 𝑤′1, we can replace the
evaluation of 𝐹3(𝐾3, ·) at 𝑢′1, 𝑤′1 with uniformly random values (as long as 𝑢′1 ̸= 𝑤′1, which happens
with overwhelming probability). The indistinguishability comes from the pseudorandomness of the
underlying puncturable PRF 𝐹3.

1. It samples random subspaces 𝐴𝑖 of dimension 𝜆/2 and vectors 𝑠𝑖, 𝑠′𝑖 for 𝑖 = 1, 2, · · · , ℓ0. It
then prepares programs 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖) (padded to the length upper

bound ℓ2 − ℓ0). It prepares the quantum state |𝜓⟩ = ⨂︀
𝑖 |𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩.

2. It then samples keys 𝐾1,𝐾2,𝐾3 for 𝐹1, 𝐹2, 𝐹3.

3. It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 ← [𝑀 ].

4. It samples 𝑢′ as follows:

(a) 𝑢′1 ← [2ℓ1 ].

(b) 𝑢′2 ← [2ℓ2 ].

(c) It outputs 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

5. It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 ← [𝑀 ].

6. It samples 𝑤′ as follows:

(a) 𝑤′1 ← [2ℓ1 ].

(b) 𝑤′2 ← [2ℓ2 ].

(c) It outputs 𝑤′ = 𝑤0||𝑤′1||𝑤′2.

7. Generate the program 𝑃 as in Figure 12. The adversary is given (|𝜓⟩ , 𝗂𝖮(𝑃 )) and then (𝑢,𝑤)
or (𝑢′, 𝑤′) depending on a random coin 𝑏.

In this hybrids, 𝑢, 𝑢′, 𝑤,𝑤′ are sampled independently, uniformly at random and they are sym-
metric in the program. The distributions for 𝑏 = 0 and 𝑏 = 1 are identical and even unbounded
adversary can not distinguish these two cases. Therefore we finish the proof for Lemma 7.17.

Remark E.3. The program 𝑃 depends on 𝑄𝑢 and 𝑄𝑤. Although 𝑄𝑢 and 𝑄𝑤 are indexed by 𝑢 and
𝑤, they only depend on 𝑢0, 𝑤0 respectively. Thus, the distributions for 𝑏 = 0 and 𝑏 = 1 are identical

F Proof of Theorem 7.12

The proof for Theorem 7.12 is similar to proof for Theorem 7.11, but has some main differences
in the final reduction. We highlight the changes made: the red-colored parts are the differences
between the latter hybrid and the former hybrid; the blue-colored parts are differences between
original hybrids in proof for Theorem 7.11 and these new hybrids.
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Hybrid 0. Hybrid 0 is the original anti-piracy indistinguihsability security game.

1. A challenger samples𝐾1 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and prepares a quantum key 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

Here 𝑃 hardcodes 𝐾1,𝐾2,𝐾3.

2. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2] as well as quantum circuits 𝑈1, 𝑈2.

3. The challenger also prepares two inputs 𝑢,𝑤 as follows:

• It samples 𝑢 uniformly at random. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢).
• It samples 𝑤 uniformly at random. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤).

4. It samples 𝑦′𝑢, 𝑦′𝑤 uniformly at random.

5. The challenger then samples uniform coins 𝑏0, 𝑏1 ← {0, 1}. If 𝑏0 = 0, give (𝑢, 𝑦𝑢) to quantum
program (𝑈1, 𝜎[𝑅1]); else give (𝑢, 𝑦′𝑢) to quantum program (𝑈1, 𝜎[𝑅1]). Similarly, if 𝑏1 = 0,
give (𝑤, 𝑦𝑤) to quantum program (𝑈2, 𝜎[𝑅2]); else give (𝑤, 𝑦′𝑤).

6. The outcome of the game is 1 if and only if both quantum programs successfully produce
𝑏′0 = 𝑏0 and 𝑏′1 = 𝑏1 respectively.

Hybrid 1 The changes between Hybrid 0 and 1 are exactly the two cases the adversary needs to
distinguish between in the game of Lemma 7.17. Assume there exists an algorithm that distinguishes
Hybrid 0 and 1 with non-negligible probability 𝜖(𝜆), then these exists an algorithm that breaks the
game in Lemma 7.17 with probability 𝜖(𝜆)− 𝗇𝖾𝗀𝗅(𝜆).

The reduction algorithm receives 𝜌𝑘 and 𝑢,𝑤 or 𝑢′, 𝑤′ from the challenger in Lemma 7.17; it
computes 𝑦𝑢, 𝑦𝑤 using 𝗂𝖮(𝑃 ) on the received inputs respectively and gives them to the quantum
decryptor states 𝜎[𝑅1], 𝜎[𝑅2]. If they both output the guess correctly, then the reduction outputs 0
for 𝑢,𝑤, otherwise it outputs 1 for 𝑢′, 𝑤′.

1. A challenger samples𝐾1 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and prepares a quantum key 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

Here 𝑃 hardcodes 𝐾1,𝐾2,𝐾3.

2. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2] as well as quantum circuits 𝑈1, 𝑈2.

3. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows:

• It samples 𝑢 = 𝑢0||𝑢1||𝑢2 uniformly at random. Let 𝑦𝑢 = 𝐹1(𝐾1, 𝑢).
Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• It samples 𝑤 = 𝑤0||𝑤1||𝑤2 uniformly at random. Let 𝑦𝑤 = 𝐹1(𝐾1, 𝑤).
Let 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

4. It samples 𝑦′𝑢, 𝑦′𝑤 uniformly at random.

5. The challenger then samples uniform coins 𝑏0, 𝑏1 ← {0, 1}. If 𝑏0 = 0, give (𝑢′, 𝑦𝑢) to quantum
program (𝑈1, 𝜎[𝑅1]); else give (𝑢′, 𝑦′𝑢) to quantum program (𝑈1, 𝜎[𝑅1]). Similarly, if 𝑏1 = 0,
give (𝑤′, 𝑦𝑤) to quantum program (𝑈2, 𝜎[𝑅2]); else give (𝑤′, 𝑦′𝑤).

6. The outcome of the game is 1 if and only if both quantum programs successfully produce
𝑏′0 = 𝑏0 and 𝑏′1 = 𝑏1 respectively.
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Hybrid 2. In this hybrid, if 𝑢0 ̸= 𝑤0 (which happens with overwhelming probability), 𝐹1(𝐾1, 𝑢)
and 𝐹1(𝐾1, 𝑤) can be replaced with truly random strings. Since both inputs have enough min-
entropy ℓ1 + ℓ2 ≥ 𝑚 + 2𝜆 + 4 (as 𝑢1||𝑢2 and 𝑤1||𝑤2 are completely uniform and not given to the
adversary) and 𝐹1 is an extracting puncturable PRF, both outcomes 𝑦𝑢, 𝑦𝑤 are statistically close to
independently random outcomes. Thus, Hybrid 1 and Hybrid 2 are statistically close.

1. A challenger samples𝐾1 ← 𝖲𝖾𝗍𝗎𝗉(1𝜆) and prepares a quantum key 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

Here 𝑃 hardcodes 𝐾1,𝐾2,𝐾3.

2. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2] as well as quantum circuits 𝑈1, 𝑈2.

3. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows:

• It samples 𝑢0 uniformly at random. It then samples a uniformly random 𝑦𝑢.
Let 𝑢′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑢0, 𝑦𝑢,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

• It samples 𝑤0 uniformly at random. It then samples a uniformly random 𝑦𝑤.
Let 𝑤′ ← 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋(𝑤0, 𝑦𝑤,𝐾2,𝐾3, {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]).

4. It samples 𝑦′𝑢, 𝑦′𝑤 uniformly at random.

5. The challenger then samples uniform coins 𝑏0, 𝑏1 ← {0, 1}. If 𝑏0 = 0, give (𝑢, 𝑦𝑢) to quantum
program (𝑈1, 𝜎[𝑅1]); else give (𝑢, 𝑦′𝑢) to quantum program (𝑈1, 𝜎[𝑅1]). Similarly, if 𝑏1 = 0,
give (𝑤, 𝑦𝑤) to quantum program (𝑈2, 𝜎[𝑅2]); else give (𝑤, 𝑦′𝑤).

6. The outcome of the game is 1 if and only if both quantum programs successfully produce
𝑏′0 = 𝑏0 and 𝑏′1 = 𝑏1 respectively.

Hybrid 3.

1. A challenger first samples {𝐴𝑖, 𝑠𝑖, 𝑠
′
𝑖}𝑖∈[ℓ0] and prepares the quantum states {|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0].
It treat the the quantum states {|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0] as the quantum decryption key 𝜌𝗌𝗄 for our
single-decryptor encryption scheme and the secret key 𝗌𝗄 is {𝐴𝑖, 𝑠𝑖, 𝑠

′
𝑖}𝑖∈[ℓ0]. Similarly, let

𝗉𝗄 = {𝑅0
𝑖 , 𝑅

1
𝑖 }𝑖∈[ℓ0] where 𝑅0

𝑖 = 𝗂𝖮(𝐴𝑖 + 𝑠𝑖) and 𝑅1
𝑖 = 𝗂𝖮(𝐴⊥𝑖 + 𝑠′𝑖).

2. It samples 𝑦𝑢, 𝑦𝑤 uniformly at random. It also samples 𝑦′𝑢, 𝑦′𝑤 uniformly at random.

3. Then it flips two random coins 𝑏0, 𝑏1 ← {0, 1}. If 𝑏0 = 1, let (𝑢0, 𝑄0) ← 𝖤𝗇𝖼(𝗉𝗄, 𝑦𝑢);
else let (𝑢0, 𝑄0) ← 𝖤𝗇𝖼(𝗉𝗄, 𝑦′𝑢). Similarly, if 𝑏1 = 1, let (𝑤0, 𝑄1) ← 𝖤𝗇𝖼(𝗉𝗄, 𝑦𝑤); else, let
(𝑤0, 𝑄1) ← 𝖤𝗇𝖼(𝗉𝗄, 𝑦′𝑤). 𝖤𝗇𝖼(𝗉𝗄, ·) is the encryption algorithm of the underlying single-
decryptor encryption scheme using 𝗉𝗄.

4. The challenger constructs the program 𝑃 which hardcodes 𝐾1,𝐾2,𝐾3. It then prepares 𝜌𝐾 ,
which is ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖

⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

5. 𝒜 upon receiving 𝜌𝐾 , it runs and prepares a pair of (potentially entangled) quantum states
𝜎[𝑅1], 𝜎[𝑅2] as well as quantum circuits 𝑈1, 𝑈2.

6. The challenger also prepares two inputs 𝑢′, 𝑤′ as follows (as 𝖦𝖾𝗇𝖳𝗋𝗂𝗀𝗀𝖾𝗋 does):

97



• Let 𝑢′1 ← 𝐹2(𝐾2, 𝑢0||𝑄0) and 𝑢′2 ← 𝐹3(𝐾3, 𝑢
′
1)⊕ (𝑢0||𝑄0). Let 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

• Let 𝑤′1 ← 𝐹2(𝐾2, 𝑤0||𝑄1) and 𝑤′2 ← 𝐹3(𝐾3, 𝑤
′
1)⊕ (𝑤0||𝑄1). Let 𝑤′ = 𝑤0||𝑤′1||𝑤′2.

7. The challenger again samples uniform coins 𝛿0, 𝛿1 ← {0, 1}. If 𝛿0 = 0, give (𝑢′, 𝑦𝑢) to quantum
program (𝑈1, 𝜎[𝑅1]); else give (𝑢′, 𝑦′𝑢) to quantum program (𝑈1, 𝜎[𝑅1]). Similarly, if 𝛿1 = 0,
give (𝑤′, 𝑦𝑤) to quantum program (𝑈2, 𝜎[𝑅2]); else give (𝑤′, 𝑦′𝑤).

8. The outcome of the game is 1 if both quantum programs successfully produce the answers
below respectively:

• If (𝑈1, 𝜎[𝑅1]) outputs 0 and 𝑏0 = 𝛿0, or if it outputs 1 and 𝑏0 ̸= 𝛿0, then (𝑈1, 𝜎[𝑅1])
succeeds. Otherwise it fails.

• If (𝑈2, 𝜎[𝑅2]) outputs 0 and 𝑏1 = 𝛿1, or if it outputs 1 and 𝑏1 ̸= 𝛿1, then (𝑈2, 𝜎[𝑅2])
succeeds. Otherwise it fails.

Note that the only differences of Hyb 2 and Hyb 3 are the orders of executions and that the
challenger prepares 𝑢′, 𝑤′ from one of (𝑦𝑢, 𝑦′𝑢) and one of (𝑦𝑤, 𝑦′𝑤) respectively, instead of preparing
them from 𝑦𝑢, 𝑦𝑤 first and choosing random 𝑦′𝑢, 𝑦

′
𝑤 later. Since we will check if the random coins

match in Step 8 of Hybrid 3, the game is essentially the same to an adversary as the game in Hybrid
2.

Given an algorithm 𝒜 that wins the indistinguishability anti-piracy game for PRF in Hybrid 3
with non-negligible probability 𝛾(𝜆), we can build another algorithm ℬ that breaks the (regular)
CPA-style 𝛾-anti-piracy security (see Definition 6.4) of the underlying single-decryptor encryption
scheme.

• ℬ plays as the challenger in the game of Hybrid 3.

• ℬ will get 𝜌𝗌𝗄 = {|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0] and 𝗉𝗄 = {𝗂𝖮(𝐴𝑖 + 𝑠𝑖), 𝗂𝖮(𝐴

⊥
𝑖 + 𝑠′𝑖)}𝑖∈[ℓ0] in the anti-piracy

game.

• ℬ prepares 𝐾1,𝐾2,𝐾3 and the program 𝑃 . Let 𝜌𝐾 = ({|𝐴𝑖,𝑠𝑖,𝑠′𝑖
⟩}𝑖∈[ℓ0], 𝗂𝖮(𝑃 )).

• ℬ gives 𝜌𝐾 to 𝒜 and 𝒜 prepares a pair of (potentially entangled) quantum states 𝜎[𝑅1], 𝜎[𝑅2]
as well as quantum circuits 𝑈1, 𝑈2.

• ℬ also samples uniform random 𝑦𝑢, 𝑦
′
𝑢, 𝑦𝑤, 𝑦

′
𝑤 and sends (𝑦𝑢, 𝑦′𝑢) and (𝑦𝑤, 𝑦

′
𝑤) as the challenge

plaintexts for the two quantum programs, to the challenger of single-decryptor encryption
anti-piracy game.

• ℬ then creates quantum programs P1,P2 which will do the following steps.

• P1 receives challenge ciphertext 𝖼𝗍0 = (𝑢0, 𝑄0) (which will be encryption of either 𝑦𝑢 or 𝑦′𝑢),
and P2 receives challenge ciphertext 𝖼𝗍1 = (𝑤0, 𝑄1) (which will be encryption of either 𝑦𝑤 or
𝑦′𝑤). They each independently prepares 𝑢′, 𝑤′ as follows :

– Let 𝑢′1 ← 𝐹2(𝐾2, 𝑢0||𝑄0) and 𝑢′2 ← 𝐹3(𝐾3, 𝑢
′
1)⊕ (𝑢0||𝑄0). Let 𝑢′ = 𝑢0||𝑢′1||𝑢′2.

– Let 𝑤′1 ← 𝐹2(𝐾2, 𝑤0||𝑄1) and 𝑤′2 ← 𝐹3(𝐾3, 𝑤
′
1)⊕ (𝑤0||𝑄1). Let 𝑤′ = 𝑤0||𝑤′1||𝑤′2.
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• P1 gives either (𝑢′, 𝑦𝑢) or (𝑢′, 𝑦′𝑢) depending on a random coin 𝛿0 ← {0, 1}, to (𝜎[𝑅1], 𝑈1); P2

gives either (𝑤′, 𝑦𝑤) or (𝑤′, 𝑦′𝑤) depending on random coin 𝛿1 ← {0, 1}, to (𝜎[𝑅2], 𝑈2).

• Then P1 and P2 respectively run (𝜎[𝑅1], 𝑈1) and (𝜎[𝑅2], 𝑈2) on their challenge received to
output their answers 𝑎1 and 𝑎2.

• Finally, depending on answers received and the coins 𝛿0, 𝛿1, P1 and P2 does the following:

For P1: if (𝜎[𝑅1], 𝑈1) outputs 0(which means the program thinks it receives an input and its
PRF evaluation):

– if 𝛿0 = 0: P1 outputs 0 (for encryption of 𝑦𝑢) to the challenger.

– else, 𝛿0 = 1: P1 outputs 1 (for encryption of 𝑦′𝑢) to the challenger.

If (𝜎[𝑅1], 𝑈1) outputs 1 (which means the program thinks it receives an input and a random
value):

– if 𝛿0 = 0: P1 outputs 1 (for encryption of 𝑦′𝑢) to the challenger.

– else, 𝛿0 = 1: P1 outputs 0 (for encryption of 𝑦𝑢) to the challenger.

Similarly on the P2 and (𝜎[𝑅2], 𝑈2) side.

We observe that the advantage of ℬ in the CPA-style 𝛾-anti-piracy game of single-decryptor
encryption is the same as advantage of 𝒜 in the indistinguishability anti-piracy game for PRF.

99


	Introduction
	Our Results

	Technical Overview
	Computational Direct Product Hardness for Coset States
	Unclonable Decryption
	Copy-Protecting PRFs

	Preliminaries
	Pseudorandom Functions
	Indistinguishability Obfuscation
	Compute-and-Compare Obfuscation
	Subspace Hiding Obfuscation
	Extractable Witness Encryption
	Testing Quantum Adversaries: Projective Implementation

	Coset States
	Definitions
	Direct Product Hardness
	Monogamy-of-Entanglement Property
	Conjectured Strong Monogamy Property

	Tokenized Signature Scheme from iO
	Definitions
	Tokenized Signature Construction

	Single-Decryptor Encryption
	Definitions
	Strong Anti-Piracy Security
	Construction from Strong Monogamy Property
	Proof of Strong Anti-Piracy Security of Construction 1
	Construction from Extractable Witness Encryption
	Security of Construction 2

	Copy-Protection of Pseudorandom Functions
	Definitions
	Preliminaries: Puncturable PRFs and related notions
	Construction
	Proof of Correctness
	Proof of Anti-Piracy Security

	Additional Preliminaries
	Quantum Computation and Information

	Compute-and-Compare Obfuscation for (Sub-Exponentially) Unpredictable Distributions
	Preliminaries
	PRGs with Sub-Exponentially Unpredictable Seeds
	Quantum Goldreich-Levin, with Quantum Auxiliary Input

	Proofs of Coset State Properties
	Proof for the Information-Theoretical Monogamy-of-Entanglement Property
	Proof of the Computational Monogamy-of-Entanglement Property

	More Discussions On Anti-Piracy Security
	Anti-Piracy Implies CPA Security
	Strong Anti-Piracy Implies Regular Definition
	Strong Anti-Piracy, with Random Challenge Plaintexts
	Comparing Regular Anti-Piracy Security with Anti-Piracy Security with Random Ciphertexts

	Proof Using Hidden Trigger Techniques
	Proof of Indistinguishability Anti-Piracy Security for PRF

