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Abstract. The Sidon cryptosystem [22] is a new multivariate encryp-
tion scheme based on the theory of Sidon spaces which was presented
at PKC 2021. As is usual for this kind of schemes, its security relies on
the hardness of solving particular instances of the MQ problem and of
the MinRank problem. A nice feature of the scheme is that it enjoys
a homomorphic property due the bilinearity of its public polynomials.
Unfortunately, we will show that the Sidon cryptosystem can be bro-
ken by a polynomial time key-recovery attack. This attack relies on the
existence of solutions to the underlying MinRank instance which lie in
a subfield and which are inherent to the structure of the secret Sidon
space. We prove that such solutions can be found in polynomial time.
Our attack consists in recovering an equivalent key for the cryptosystem
by exploiting these particular solutions, and this task can be performed
very efficiently.

Keywords: Multivariate cryptography · Encryption scheme · Algebraic
attack · MinRank Problem.

1 Introduction.

In recent years, many Public Key Cryptographic (PKC) primitives have been
proposed to fulfill the need of having quantum-secure Key Encapsulation Mech-
anisms (KEMs) and Digital Signatures Schemes (DSS).

In the field of DSS, Multivariate Public Key Cryptography (MPKC) has
proven to be one of the most promising alternatives. In the ongoing NIST-PQC
standardization process, the MPKC schemes Rainbow [12] and GeMSS [9] are
in the final round, even though the last as an alternative candidate. But when
it comes to KEMs, the situation is less promising. Throughout the last 25 years,
many MPKC encryption schemes have been proposed such as HFE, ZHFE,
Extension Field Cancellation (EFC), SRP, HFERP, EFLASH and the Simple
Matrix Encryption Scheme, see [20,26,25,21,17,8], and all of them are either
extremely inefficient or have been successfully cryptanalyzed [4,7,1,24,19,18]. A



relative common structure among the MPKC schemes is that the public key
is a system of multivariate polynomials which is hard to solve directly. On the
contrary, the private key is a sequence of polynomials which is easy to solve
and which is masked in certain way to produce the public key. The two main
hard problems considered to build MPKC are the problem of solving a system
of multivariate quadratic equations over a finite field (the MQ problem) and
the following MinRank problem, which was originally defined and proven NP-
complete in [6]. The version of the MinRank problem which is relevant in our
case is given by

Problem 1 (MinRank problem).

Input : an integer r ∈ N, n matrices M (1), . . . ,M (n) ∈ Fk×kq , L a finite
extension of Fq.

Output : field elements x1, x2, . . . , xn ∈ L, not all zero, such that

Rank

(
n∑
i=1

xiM
(i)

)
≤ r.

Note that the standard formulation in the literature considers L = Fq and pos-
sibly non-square matrices. In all cases, solving a particular instance of one of
these two problems leads to either a key-recovery attack or a message-recovery
attack on a given scheme. Thus, the security of the scheme is usually estimated
via the hardness of solving particular instances of MQ or MinRank.

At PKC 2021, Raviv, Langton and Tamo proposed, for the first time, a
MPKC encryption scheme based on the theory of Sidon spaces [22]. The concept
of Sidon space was originally defined in [2]. A Sidon space is an Fq-subspace of
an extension field Fqn in which the product of any two elements factors uniquely
up to multiplicative constants in Fq. The basic idea of the scheme is as follows:
the plaintext is the equivalence class of pairs of two elements in a Sidon space
V of dimension k, two pairs with the same product being equivalent, while the
ciphertext is the product of these two elements. The private key is some informa-
tion related to the structure of V that allows to factor efficiently any ciphertext,
while the public key is a bilinear sequence (p1, . . . , p2k) of 2k homogeneous equa-
tions in two blocks of variables a and b over Fq of equal size k. This makes the
Sidon cryptosystem to have an additive homomorphic property since the sum of
the encryptions of two messages like {a1, b} , {a2, b} results in the encryption of
{a1 +a2, b}. To the best of our knowledge, this is first MQ- or MinRank- based
scheme doted with any kind of homomorphic property.

The private key can be obtained from a solution to the MinRank problem
given by the matrices M (i) ∈ Fk×kq defined by pi(a, b) = aM (i)bT for 1 ≤ i ≤
n = 2k, with r = 1 and L = Fq2k . It turns out that this MinRank instance has
many solutions, and the structure of the Sidon space can be fully extracted from
at least one of these solutions. However, to perform a key-recovery attack, the
authors argue that
(i) it is not clear how to solve this particular MinRank instance, since standard
techniques are strongly based either on the fact that the base field is small (Linear
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Algebra Search [16]) or the number of solutions is small (Minors modeling [13]
+ XL, and Support-Minors modeling [3]).
(ii) Even if one is able to find a solution to the MinRank problem, it is not clear
how this solution can be used to develop a key recovery.

Therefore, the message-recovery attack is arguably the most threatening at-
tack which may be used to design parameters, and this attack can be performed
by inverting the public bilinear system. When q is large enough, the Gröbner
basis approach outperforms the exhaustive search on a or b in O(k3qk−1), and
the authors claim a complexity of

O
((

3k + 1

k + 1

)ω)
(1)

operations in Fq for this attack, where 2 ≤ ω ≤ 3 is the linear algebra constant.
This cost is clearly exponential in k.

Contributions. The purpose of this paper is to give a polynomial-time attack
breaking the Sidon cryptosystem. Our attack relies on a rigorous analysis of the
solution set of the underlying MinRank problem. In particular, we show here
that in addition to generic solutions over Fq2k , there exist solutions over the
subfield Fqk . Moreover, all these solutions over Fqk are inherent to the Sidon
space used in the scheme. Our attack can be summarized as follows

– The first step of our attack consists in recovering these solutions over Fqk .
To this end, we propose a dedicated modeling of the MinRank problem and
prove that for this modeling the Gröbner basis computation on this algebraic
system terminates at degree 3 independently from the value of k. This shows
that this first step can be achieved in polynomial time.

– Second, it is possible to exploit these solutions in order to find an equivalent
key which is another Sidon space. This second step can be performed by
simple linear algebra operations followed by a sub-algorithm of the original
key generation process. Therefore, its cost is also expected to be polynomial.

Along with this paper, we provide a sage implementation of our attack in
[5]. This tool can also be used to verify experimentally all the theoretical claims
made in the paper and to reproduce the experiments we performed.

Roadmap. The Sidon cryptosystem from [22] is presented in Section 2. In
Section 3, we provide a detailed analysis of the underlying MinRank instance,
and this material allows us to introduce our key-recovery attack in Section 4 and
in Section 5.

Notation. Row vectors are denoted by bold lowercase letters (u,v, . . . ) and
matrices are denoted by bold uppercase letters (M ,N , . . . ). For a vector v we
use the notation vi for the i-th component of v, and for a matrix M we use the
notation M i,j for the entry in row i and column j.
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For v a vector of length k, we denote by M(v) the rank 1 symmetric matrix
of size k×k which is equal to vTv. In the following, q ≥ 3 is a prime power, and
we will consider finite extensions of Fq, namely Fqk and Fq2k . For j ∈ Z≥0 and
v = (v1, . . . , vk) a vector whose entries are elements or polynomials over a finite
extension of Fq, we define

v[j] := (vq
j

1 , . . . , v
qj

k ).

This corresponds to applying the Frobenius automorphism x 7→ xq j times on
each coordinate of v. Note that this field automorphism is the identity on Fq.
We will adopt the same notation for matrices, namely the matrix M [j] is the
matrix obtained from M by raising all its entries to the power qj .

We will also adopt in several places a coding theoretic point of view and view
a subspace C of FNq as a linear code and use the term parity-check for it to denote
a matrix H whose null-space is C, that is:

C = {x ∈ FNq : HxT = 0}.

Finally, it is convenient to consider for a vector space V , ordered bases for it,
and we will use a vector notation for the basis.

Polynomial systems. In the following, the expression K[x] denotes the poly-
nomial ring over the field K in the coordinates of x = (x1, . . . , xk). We will use
Gröbner basis techniques to solve polynomial systems, and we refer the reader
to [10] for basic definitions and properties of monomial orderings and Gröbner
bases.

2 The Sidon cryptosystem.

Several explicit constructions of Sidon spaces with relevant parameters and fac-
toring properties were proposed in [23], and the one used in [22] to instantiate
the Sidon cryptosystem is of this kind. In Section 2.1, we give some background
on Sidon spaces in general and on this specific construction. The Sidon cryp-
tosystem is presented in Section 2.2, and in Section 2.3 we discuss the important
notion of equivalent keys for this scheme.

2.1 Sidon spaces.

For integers k and n and q a prime power, let Gq(n, k) be the set of all Fq-
subspaces of Fqn of dimension k. The formal definition of a Sidon space is the
following.

Definition 1. A subspace V ∈ Gq(n, k) is called a Sidon space if for all non-zero
a, b, c, d ∈ V, if ab = cd, then {aFq, bFq} = {cFq, dFq}.
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Then, a first natural question is whether if there exist Sidon spaces of arbi-
trary dimension. A constraint on k was given by [2, Thm. 18][23, Prop. 3], where
it is proven that if V ∈ Gq(n, k) is a Sidon space, then one has

dimFq (V2) ≥ 2k

with V2 = spanFq
{uv | u, v ∈ V}. Since V2 ⊂ Fqn , this implies that k ≤ n/2, and

Sidon spaces for which this bound is an equality are referred as min-span. Note
that regardless of the existence of any factoring algorithm for V, it is crucial for
the security of the cryptosystem that the dimension of V satisfies k = Θ(n), as
pointed out in [22, Rem. 2]. In particular, the construction considered to devise
the scheme is a min-span Sidon space, i.e. n = 2k. To describe this construction,
let Wq−1 = {uq−1|u ∈ Fqk} and Wq−1 = Fqk \Wq−1.

Construction 1 [23, Const. 15] For q ≥ 3 a prime poewer and k a positive
integer, let n = 2k and let γ ∈ F∗qn be a root of an irreducible polynomial x2+bx+

c over Fqk such that c ∈Wq−1
4. Then, the subspace V = {u+uqγ|u ∈ Fqk} ⊂ Fqn

is a Sidon space of dimension k.

A Sidon space V given by Construction 1 admits the following efficient fac-
toring algorithm. This algorithm fully uses the knowledge of the element γ such
that B := {1, γ} is a basis of Fq2k over Fqk , and for x ∈ Fq2k we will denote by
[1](x) and [γ](x) the components of x in this basis. Given a product π = π1π2
where π1 and π2 lie in V, Algorithm 1 recovers π1 and π2 up to constant factors
in Fq.

Input: A product π = π1π2, where π1 = u+ uqγ and π2 = v + vqγ ∈ V,
the element γ ∈ F∗qn such that γ2 + bγ + c = 0 from
Construction 1.

Output: {π1Fq, π2Fq}.
Decompose π in the basis {1, γ}:
q0 ← [1](π) // q0 = uv − c(uv)q

q1 ← [γ](π) // q1 = uvq + uqv − b(uv)q

A← T−1(q0) // where T is map x 7→ x− cxq, A = uv
B ← q1 + bAq // B = uvq + uqv

Compute the roots α, β of A+Bx+Aqx2

// α = −1/uq−1, β = −1/vq−1

From α and β, recover {uFq, vFq} uniquely and therefore {π1Fq, π2Fq}.
Algorithm 1: Factoring algorithm for Sidon space from Construction 1.

2.2 Description of the cryptosystem.

The Sidon cryptosystem relies on Construction 1, but it might be possible to
consider another type of Sidon space such that k = Θ(n) for which an efficient
factoring algorithm exists. In this section, we briefly describe the building blocks
of the scheme, and we refer the reader to [22, §3] for further details.

4 Such a polynomial is known to exist by [23, Corollary 14].
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Keygen:

– Select a random element γ ∈ Fqn satisfying the constraints given in Con-
struction 1 in order to build the Sidon space V := {u+ uqγ|u ∈ Fqk}.

– Select ν = (ν1, . . . , νk) a random basis of V and β = (β1, . . . , βn) a random
basis of Fqn over Fq.

– Represent the matrix M(ν) = νTν ∈ Fk×kqn over the basis β:

M(ν) = νTν =

n∑
i=1

βiM
(i),

where M (i) ∈ Fk×kq for 1 ≤ i ≤ n.

– Output sk = (β,ν, γ) as secret key and pk = (M (1), . . . ,M (n)) as public
key.

As explained in the introduction, the message space correspond to the equiv-
alence class of pairs of elements {a, b} in the Sidon space V, two pairs {a, b} and
{c, d} being equivalent if their product is the same: ab = cd. If one views an

element a of V as a vector a ∈ Fkq , i.e. a =

k∑
i=1

aiνi, then the equivalence class

associated to {a, b} corresponds to all pairs {c,d} such that either aTb = cTd

or aTb = dTc. This space is of size
(qk − 1)(qk − q)

2(q − 1)
+ qk − 1 as shown in [22,

App A].

Encrypt({a, b}, pk = (M (i))ni=1):

– The ciphertext associated to (the equivalence class of) {a, b} is

c = (ci)
n
i=1 = (aM (i)bT)ni=1 ∈ Fnq . (2)

Note that this definition is compatible with the way the plaintext is defined: the
ciphertext does not depend on the particular pair {a, b} chosen in the equivalence
class of the message. An interesting property of the Sidon cryptosystem is that
it is homomorphic under the addition on half of the plaintext. That is, for two
given plaintexts {a1, b} and {a2, b} we have

Encrypt({a1, b}, pk) + Encrypt({a2, b}, pk) = Encrypt({a1 + a2, b}, pk).

To decrypt with the secret key, Bob views the ciphertext c as a product of
elements in V. Then, he is able to recover the factors using Algorithm 1 since he
completely knows the structure of V.
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Decrypt(c, sk = (β, ν, γ)):

– Compute

n∑
i=1

βici =

n∑
i=1

βi

(
aM (i)bT

)
= aM(ν)bT

= aνTνbT =

(
k∑
i=1

aiνi

)(
k∑
i=1

biνi

)
= ab, (3)

and ab is a product of elements in V.
– From the knowledge of γ, use Algorithm 1 to recover {a, b} up to a multi-

plicative factor in Fq.
– Finally, retrieve {a, b} (up to a multiplicative factor) by representing {a, b}

over the basis ν. Such an {a, b} defines the message in a unique way.

2.3 Equivalent keys for the Sidon cryptosystem.

An important notion for multivariate schemes in general is that of equivalent
keys. Two secret keys are equivalent if they lead to the same public key. In the
case of the Sidon cryptosystem, one can easily obtain the following result by
using the definition of the decryption process given in Equation (3):

Fact 1 Any Sidon space V ′ generated using Construction 1 with basis ν′ and
such that the matrix M(ν′) lies in the linear span of the M (i)’s can be used as
an equivalent key.

Equivalent keys are an important feature for our attack, since it will consist
in recovering a Sidon space V ′ 6= V which allows to decrypt any ciphertext.

3 Analysis of the underlying MinRank problem.

Given the public key (M (1), . . . ,M (n)) such that M (i) ∈ Fk×kq for 1 ≤ i ≤ n,
one has

M(ν) = νTν =

n∑
i=1

βiM
(i),

where (β1, . . . , βn) is the basis of Fqn over Fq and ν is the basis of the Sidon
space which are part of the private key. In other words, the matrix M(ν) is a

linear combination of the M (i)’s over Fqn which has rank 1, and a key-recovery
attack on the scheme requires to find specific solutions over Fqn of the MinRank

instance described by the M (i)’s. This MinRank problem is not standard in at
least two ways. First, solutions are searched in the extension field Fqn , whereas

the M (i)’s have their entries in Fq. Second, this system has surprisingly many
solutions and it is not clear at all whether the Sidon structure can be recovered
from an arbitrary solution to it. Note that the authors of [22] only studied
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the hardness of finding any solution to this MinRank problem, and the task of
determining the whole solution set was not addressed explicitly.

In this section, we examine in greater depth the properties of this solution
set. A first remark is that the solutions correspond to rank 1 matrices in the
space generated by the M (i)’s over Fqn :

Cmat :=
〈
M (1), . . . ,M (n)

〉
Fqn

. (4)

Our main result will be the existence of solutions over the subfield Fqk , i.e. rank
1 matrices in

Dmat := Cmat|F
qk

:= Cmat ∩ Fk×k
qk

.

Fact 2 The subspace Dmat = Cmat|F
qk

contains elements of rank 1.

Such elements are described in Section 3.3, and our experiments suggest that
these are the only ones in Dmat. A reader only interested in our key-recovery
attack can directly go to Section 4 and Section 5.

3.1 Restricting the number of the solutions.

We start by reviewing some elementary properties of the solution set. Since the
generators M (i) are symmetric, all the elements in Cmat are symmetric as well.
Therefore, rank 1 elements in Cmat will be of the form xTy ∈ Fk×kqn for x collinear
with y. In particular, we will be interested in the following subset of solutions
defined by

ZFqn
:=
{
x ∈ Fkqn , xTx ∈ Cmat

}
. (5)

This set is non-trivial since it contains ν from the private key. Also, there is still
one degree of freedom coming from the Fqn-linearity of Cmat. For instance, since
ν1 6= 0 in ν, the set

ZFqn ,s :=
{
x ∈ ZFqn

, x1 = s
}

is also non-trivial for s ∈ F∗qn .

3.2 Generic solutions over Fqn .

In this section, we describe a generic way to generate many solutions to the
MinRank problem. Consider any ω ∈ Fkqn such that ω ∈ ZFqn

. By definition,
there exists η = (η1, . . . , ηn) ∈ Fnqn such that

M(ω) =

n∑
`=1

η`M
(`). (6)

In particular, one has for 1 ≤ i, j ≤ k:

ωiωj =

n∑
`=1

η`M
(`)
i,j . (7)
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Then, by iterating the Frobenius map p times on this equation for 0 ≤ p ≤ n−1,
one obtains

ω
[p]
i ω

[p]
j =

n∑
`=1

η
[p]
` M

(`)
i,j (8)

since the matrices M (`) have entries in Fq. This implies that the matrix

M(ω[p]) =

n∑
`=1

η
[p]
` M

(`) (9)

belongs to Cmat for 0 ≤ p ≤ n− 1. Overall, this observation can be summarized
in the following Lemma 1.

Lemma 1 (“Stability by Frobenius”) Let Cmat as defined in Equation (4)
and let ZFqn

as defined in Equation (4). If ω ∈ ZFqn
, then ω[j] ∈ ZFqn

for any

j ≥ 0, and more generally if M ∈ Cmat, then M [j] ∈ Cmat for any j ≥ 0.

The fact that V is a Sidon space is not used at all in this reasoning. In
particular, the very same argument can be applied to a random subspace W ⊂
Fqn of dimension k along with a random secret basis ω for W. In this case, the

M (i)’s are obtained from the decomposition of the matrix M(ω) in an arbitrary
basis of Fqn over Fq, and Cmat and ZFqn

are defined in the same way as before.
For such a random subspaceW, the only solutions to the MinRank instance that
we observe in practice are given by Lemma 1:

Observation 1 (From experiments) Let W ⊂ Fqn be a random Fq-subspace
of dimension k, let ω be a random basis of W and let s ∈ F∗qn . One has∣∣ZFqn ,s

∣∣ = n.

Moreover, if s ∈ F∗q , then there exists u ∈ Fkqn with u1 = s such that

ZFqn ,s =
{
u,u[1], . . . ,u[n−1]

}
.

However, when V is a Sidon space generated using Construction 1, we ob-
served that there were many more solutions to the MinRank instance than those
just described. This behavior can be explained by the fact that there also exist
rank 1 linear combinations of the M (i)’s over the subfield Fqk , i.e. the set ZF

qk

is non-trivial. More precisely, we obtained the following experimental result.

Observation 2 (From experiments) Let V be a Sidon space generated using
Construction 1. For s ∈ F∗qk , we observed that∣∣∣ZF

qk
,s

∣∣∣ = k(qk − 1).

Moreover, if t ∈ F∗qk , t /∈ 〈s〉Fq
, we observed that∣∣∣{x ∈ ZF

qk
,s, x2 = t

}∣∣∣ = k.
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3.3 Rank 1 codewords in Dmat from the Sidon structure.

This section is dedicated to the study of the set ZF
qk

when V is a Sidon space
generated using Construction 1 with secret basis ν. For 1 ≤ i ≤ k, there exists
ui ∈ Fqk such that

νi = ui + uqi γ. (10)

Note that u := (u1, . . . , uk) is necessarily a basis of Fqk over Fq. In the following
Proposition 1, we are interested in the rank 1 matrix

M(u) = (u1, . . . , uk)T(u1, . . . , uk) ∈ Fk×k
qk

.

Proposition 1 Let M (1), . . . ,M (n) be the public matrices associated to the se-
cret Sidon space V and let u be the basis of Fqk over Fq associated to ν by
Equation (10). Then, M(u) is a rank 1 matrix in Dmat. Moreover, the same is
true for M(u[j]) for 0 ≤ j ≤ k − 1.

Proof. We do the proof for M(u) = M(u[0]) and the rest easily follows by using
Lemma 1. First, one can write M(ν) as a sum

M(ν) = A+ γB (11)

where the matrices A, B ∈ Fk×k
qk

are such that
A =

n∑
i=1

δiM
(i)

B =

n∑
i=1

ηiM
(i)

(12)

and where βi := δi + γηi is expressed in the basis {1, γ} for 1 ≤ i ≤ n with
δi, ηi ∈ Fqk . Also, recall that the primitive element γ is a root of the irreducible

polynomial x2 + bx+ c over Fqk , so that one obtains for 1 ≤ i, j ≤ k:

νiνj = (ui + uqi γ)(uj + uqjγ)

= (uiuj − c(uiuj)q) + γ(uiu
q
j + uqiuj − b(uiuj)

q). (13)

Therefore, Equation (13) shows that A = M(u) − cM(u[1]), and this matrix
belongs to Dmat by (12). By Lemma 1, the same is true for the following matrices

A[1] = M(u[1])− cqM(u[2])

A[2] = M(u[2])− cq
2

M(u[3])

...

A[k−1] = M(u[k−1])− cq
k−1

M(u[k]) = M(u[k−1])− cq
k−1

M(u).
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Then, by performing linear combinations over Fqk , one gets

A+

k−1∑
i=1

c1+q+···+q
i−1

A[i] = (1− c1+q+···+q
k−1

)M(u) = (1− c
qk−1
q−1 )M(u).

Finally, one has c
qk−1
q−1 6= 1 since c ∈ Wq−1, and therefore the matrix M(u)

can be expressed as a linear combination of the A[i]’s over Fqk . This proves
M(u) ∈ Dmat. ut

Also, note that it is easy to find other rank 1 matrices in Dmat. Indeed, by
using the second term in the right hand side of Equation (13), one notices that
the matrix B ∈ Fk×kq defined in the proof of Proposition 1 by (11) satisfies
Bi,j = uiu

q
j + uqiuj − b(uiuj)

q for 1 ≤ i, j ≤ k, and this matrix also belongs to
Dmat by (12). Notice that this equality implies that

B = uTu[1] +
(
u[1]
)T
u− b

(
u[1]
)T
u[1]

= uTu[1] +
(
u[1]
)T
u− bM(u[1]). (14)

Now, let λ ∈ Fqk and consider

M(u+ λu[1]) =
(
u+ λu[1]

)T (
u+ λu[1]

)
= uTu+ λ2

(
u[1]
)T
u[1] + λ

{
uTu[1] +

(
u[1]
)T
u

}
= M(u) + λ2M(u[1]) + λB + λbM(u[1]) (by (14)).

This implies that M(u+ λu[1]) belongs to Dmat. Since M(u+ λu[1]) is of rank
1, we have therefore proved the following generalization of Proposition 1.

Proposition 2 Let M (1), . . . ,M (n) be the public matrices associated to the se-
cret Sidon space V and let u be the basis of Fqk over Fq associated to ν by
Equation (10). One has{

λu[j] + µu[j+1] : (λ, µ) ∈ F2
qk , 0 ≤ j ≤ k − 1

}
⊂ ZF

qk
.

Finally, note that Observation 2 suggests that the inclusion given in Propo-
sition 2 is an equality. Combined with the content of Section 3.1, this gives a
complete understanding of the set of rank 1 codewords in Dmat.

In the next sections, we are going to describe our key-recovery attack which
builds upon the following facts:

– As pointed out by [22], it seems infeasible to recover the Sidon space V
directly as a solution to the MinRank problem.
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– However, from Fact 1, it is possible to decrypt by using a different Sidon
space. Moreover, contrary to the approach described in [22, §5.1] which in-
troduces an algebraic system with too many variables to be solved in prac-
tice, we will find such a space efficiently. We will then show how this can
be exploited to find sufficiently many elements of ZF

qk
that will be used to

recover an equivalent key.

4 Solving the MinRank instance over Fqk.

In this section, we show how to determine elements in the set

ZF
qk

:=
{
x ∈ Fkqk , x

Tx ∈ Cmat
}

=
{
x ∈ Fkqk , x

Tx ∈ Dmat
}
,

which corresponds to particular solutions to the MinRank instance described in
the previous section. They will be exploited in Section 5 in order to derive an
equivalent key.

4.1 Parity-check modeling.

Rather than using the generic techniques described in [22, §4] to target elements
in ZF

qk
, we found experimentally that it was more favorable to consider the

following algebraic modeling which is largely inspired by [11, §5.4]. A first remark
is that a square matrix of size k over Fqk can also be viewed as a vector of

length k2 over Fqk . To make this correspondence explicit, we will use the linear
isomorphism

vec : Fk×k
qk
→ Fk

2

qk

M 7→m

such that m(i−1)k+j = M i,j for 1 ≤ i, j ≤ k, and we consider the following

subspace of Fk
2

qk

vec(Dmat) := {vec(M), M ∈ Dmat}.

It is a subspace of dimension n over Fqk . We can consider it as linear code and

let H ∈ F(k2−n)×k2
qk

be an arbitrary parity-check matrix for it, i.e. a matrix such
that

vec(Dmat) =
{
x ∈ Fk

2

qk , Hx
T = 0

}
.

Note that since the M (i)’s have entries in Fq, it is possible to choose a parity-
check matrix whose entries lie in Fq as well. Finally, let

X := xTx =


x21 x1x2 · · · x1xk
x2x1 x22 · · · x2xk

...
...

. . .
...

xkx1 xkx2 · · · x2k

 (15)
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be a matrix in the unknowns xi corresponding to a solution x ∈ ZF
qk

. Since the

vector vec(X) belongs to vec(Dmat), one obtains the following system of k2−2k
quadratic equations given by

H vec(X)T = 0. (16)

Lemma 2 The sequence given by Equation (16) contains at most k2−2k−
(
k

2

)
linearly independent quadratic polynomials over Fqk .

Proof. Let (e1, . . . , ek2) be the canonical basis of Fk
2

qk . Owing to the symmetry

of the M (i)’s, one obtains that for 1 ≤ i < j ≤ k, the vector

σi,j = e(i−1)k+j − e(j−1)k+i

belongs to the dual code vec(Dmat)⊥. Therefore, there exists a parity-check
matrix for vec(Dmat) of the form

H =

(
U
Hσ

)
,

where the rows of Hσ ∈ F(k
2)×k

2

qk
are the σi,j and U ∈ F(k2−2k−(k

2))×k
2

qk
. The

equations coming from Hσvec(X)
T

= 0 all give the zero polynomial. Therefore,
the useful part of the system is given by

Uvec(X)T = 0,

and it contains k2 − 2k −
(
k

2

)
equations. ut

Modeling 1 (Parity-check modeling over Fqk) Let X be the matrix of un-

knowns defined in Equation (15), let n = 2k and let H =

(
U
Hσ

)
∈ F(k2−n)×k2

qk
be

a parity-check matrix for the code vec(Dmat) as described in the proof of Lemma
2, where Dmat = Cmat ∩ Fk×k

qk
. We consider the system F over Fqk given by

Uvec(X)T = 0. (17)

This system contains k2 − n−
(
k

2

)
quadratic equations in the xi variables.

It is readily verified that the solutions to Modeling 1 are in one-to-one corre-
spondence with the elements of ZF

qk
. Experimentally, these solutions were also

all of the form described in Proposition 2. If one wants to find an element in
ZF

qk
in practice, two variables must be fixed in Modeling 1 to obtain a zero-

dimensional ideal. The corresponding variety over Fqk has size ≥ k still by using
Proposition 2, and experimentally this was always an equality.

13



Modeling 2 (Recovering an element in ZF
qk

) Let (s, t) ∈ F2
qk such that t /∈

〈s〉Fq
. We consider the system Fspec obtained by fixing xk−1 = s and xk = t in

the equations of the sequence F from Modeling 1.

The approach that we use to solve this system Fspec is standard. We start by
computing a Gröbner basis for a suitable ordering and then we perform a change
of order step to deduce a basis for the lexicographic ordering to get the solutions.
Using Proposition 2, we expect k distinct solutions to Modeling 2, and therefore
the complexity of this second step is polynomial in k by using the so-called
FGLM algorithm [14]. In the following, we will focus on the complexity of the
first step.

4.2 Complexity of solving the system Fspec.

In this section, we show that, under the following Assumption 1 and Assumption
2, the system Fspec can always be solved at degree 3 independently from the value
of k.

First, note that one can permute the coordinates of the row-vector vec(X)
and the columns of U accordingly so that the

(
k+1
2

)
leftmost entries of vec(X)

correspond to all the distinct monomials xixj for 1 ≤ i ≤ j ≤ k. This is equiva-
lent to choosing a grevlex ordering on the xi variables to label the columns of U .
Also, by adding rows of Hσ to rows of U in H, it is always possible to assume
that the last

(
k
2

)
columns of the matrix U are identically zero.

Assumption 1 We assume that U is full-rank, and moreover we assume that
the submatrix U∗,{1..(k−1

2 )} is also full-rank.

The first part of Assumption 1 ensures that one can find
(
k−1
2

)
distinct leading

monomials of the form xixj for 1 ≤ i ≤ j ≤ k in the Fq-span of the poly-
nomials F , and a fortiori the equations from Modeling 1 are linearly indepen-
dent. The second part is a bit stronger: it implies that these leading monomials
will not involve xk−1 or xk. Therefore, by doing linear combinations between
the equations from the specialized system Fspec, one can obtain a set Gspec of

m := k2 − 2k −
(
k
2

)
= k2−3k

2 equations g1 = 0, · · · , gm = 0 with distinct lead-
ing monomials xixj for 1 ≤ i, j ≤ k − 2. Since the total number of quadratic
monomials of this form is equal to(

k − 1

2

)
=

(k − 1)(k − 2)

2
=
k2 − 3k

2
+ 1,

this implies that all monomials of degree 2 appear as leading terms of the gi’s
but one. With this assumption it can be proved that computing the Gröbner
basis of the algebraic system Fspec is extremely efficient: essentially it amounts
to compute the aforementioned echelonized set of quadratic polynomials Gspec,
and then the Gröbner basis is either already computed or close to be computed.
This is easily verified by making the further assumption that

14



Assumption 2 The algebraic system Fspec has exactly k distinct solutions which
do not belong to a common hyperplane of Fk−2

qk
.

This assumption was satisfied in all our experiments and is natural when con-
sidering Proposition 2 together with Observation 2, which suggests that the
inclusion given in this Proposition is an equality. Indeed, the form of the so-
lutions we get from this Proposition then suggests that Assumption 2 should
typically hold.

Buchberger’s algorithm for computing a Gröbner basis from Gspec = {g1 =
0, · · · , gm = 0} would start by computing the S-polynomials S(gi, gj) and reduce
them. There are two cases to consider.
Case 1. The missing leading monomial in the gi’s is of the form xixj . Note that
the only case where S(gi, gj) were not reduced to 0 would be when the leading
monomials of gi and gj have a common factor (see [10, Prop. 4, p.106]). In such
a case, the polynomial S(gi, gj) is of degree at most 3 and since in our situation
(i) all the monomials of degree 3 appear as multiples of leading monomials of
the gi’s,
(ii) all monomials of degree 2 appear as leading monomials in the gi’s but xixj ,
this implies that S(gi, gj) is reduced to a polynomial of the form gm+1 := µxixj+
L(x) where L is affine in the xi’s. It is impossible that µ = 0 and L 6= 0 since this
would imply that all the k solutions to Fspec lie in the affine hyperplane L(x) = 0,
which contradicts Assumption 2. If µ 6= 0, then it is clear by performing the
same reasoning that all S-polynomials S(gm+1, gi) would reduce to 0 (since they
would this time reduce to affine forms which are necessarily 0 by the previous
reasoning). We are therefore left with a Gröbner basis.
Case 2. The missing leading monomial in the gi’s is of the form x2i . The differ-
ence with the previous case is that all degree 3 monomials appear as multiples of
leading monomials of the gi’s with the exception of x3i . In such a case, S(gi, gj)
reduces to a polynomial of the form gm+1 := λx3i +µx2i +L(x) where L is again
an affine form. It is readily seen that we can not have λ = µ = 0 without that
L = 0 itself (this would contradict in the same way as before Assumption 2).
From this, it is readily seen that all S-polynomials S(gm+1, gj) reduce to 0 and
that we have a Gröbner basis again.

Remark 1 Actually the first part of Assumption 2 is already enough to prove
this kind of behavior for the Gröbner basis computation by using the fact that
the number of solutions for Gspec is equal to the number of monomials that can
not be leading monomials of an element of the ideal generated by the gi’s (this is
essentially a corollary of [15, Cor. 5, p.83]). We have avoided to use this result
to keep the proof as simple as possible. The constant monomial is an example
of such a kind (because Gspec has solutions), there are at most k − 2 monomials
of degree 1, at most one monomial of degree 2 and at most one monomial of
degree 3 of such kind. From this, it is for instance straightforward to rule out the
possibility that gm+1 6= 0 in Case 1.

Overall, one needs to go up to degree 3 in the worst case to compute the
Gröbner basis for Fspec. The final complexity is then dominated by that of
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performing Gaussian elimination at degree 3 on a matrix of size A × B with
A ≤ B :=

(
k−2+3

3

)
, say

O
((

k − 2 + 3

3

)ω)
(18)

operations in Fq, where 2 ≤ ω ≤ 3 is the linear algebra constant. Therefore,
the complexity of solving the system is in O

(
k3ω
)
, which is clearly polynomial

in the dimension k of the Sidon space.

5 Finding an equivalent Sidon space V’.

Even if recovering elements in ZF
qk

can be performed in an efficient way, it
remains to explain how this leads to a key-recovery attack. In particular, we
have yet to show how we obtain from those elements an equivalent key. We will
prove here that we obtain from a set of k + 1 elements t1, . . . , tk+1 in ZF

qk
a

Sidon space V ′ obtained by Construction 1 that meets the criterion of Fact 1,
namely that there is an ordered basis ν′ for it such that M(ν′) lies in the space

spanned by the M (i)’s. This procedure consists in

1. From t1, . . . , tk+1 in ZF
qk

we recover t = λu[j] for some λ in Fqk and j in

{0, · · · , k − 1} where u = (u1, · · · , uk) is defined from the secret basis ν of
the Sidon space of the scheme by (10).

2. From such a t, we deduce the aforementioned Sidon space V ′ as

V ′ = 〈t1 + γ′tq1, · · · , tk + γ′tqk〉Fq
,

where (t1, · · · , tk) = t and γ′ is an element generated like γ in Keygen,
namely as a root of an irreducible polynomial x2 + ex+f over Fqk such that

f ∈Wq−1.

5.1 Targeting an element of the form λu[j].

Assuming that the inclusion in Proposition 2 is an equality, one obtains that the
set ZF

qk
is equal to the union of vector spaces

ZF
qk

=

k⋃
i=1

Wi, where Wi :=
〈
u[i−1],u[i]

〉
F
qk

.

Let us notice that these vector spaces Wi satisfy a peculiar property, namely
that

Wi ∩W [1]
i =

〈
u[i]
〉

(19)

where for a set S of vectors, S[1] stands for the set {x[1] : x ∈ S}. (19) follows

from the fact that W [1]
i is the Fqk -vector space generated by u[i] and u[i+1]. In
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other words, we are able to recover one of the u[i]’s up to multiplication by an
element of Fqk if we are able to produce one of those Wi’s. This can be achieved
by using the pigeonhole principle: two among the solutions ti for 1 ≤ i ≤ k + 1
will fall into a same vector spaceWj0 . These considerations lead to the following

procedure for recovering one of those u[i]’s (up to a multiplicative constant)

Input: A set of k + 1 non-collinear vectors t1, . . . , tk+1 in ZF
qk

.
Output: A set S of elements containing at least one element collinear

with one of the u[i]’s.
for i = 1 to k do

for j = i to k + 1 do
V ← 〈ti, tj〉F

qk

if dimV ∩ V [1] = 1 then

S ← S ∪ {x} // where x generates V ∩ V [1]

end

end

end

This algorithm is of complexity O(k2) and it remains now just to explain
how from one of those elements of S which is collinear with a u[i] we are able
to produce an equivalent key for the Sidon cryptosystem. Notice that we do not
even need to have k+1 non-collinear vectors t1, . . . , tk+1 in ZF

qk
, Θ(
√
k) vectors

are indeed sufficient by using the birthday paradox to get an S containing an
element t collinear with some u[i] with probability Ω(1).

5.2 Deducing V ′ from t

How a Sidon space V ′ with the right properties can be deduced from t collinear
with some u[i] is explained by the following proposition.

Proposition 3 Let γ′ be a root of an irreducible polynomial x2 + ex + f over
Fqk such that f ∈ Wq−1. Then, the Fq-linear space V ′ generated by the ordered

basis v′ := t+γ′t[1] is a Sidon space V ′ such that M(ν′) is spanned by the M i’s.

Proof. We have

M(ν′) = M(t+ γ′t[1])

= tTt+ γ′
2
(
t[1]
)T
t[1] + γ′tTt[1] + γ′

(
t[1]
)T
t

= λ2uTu+ λ2qγ′
2
(
u[1]
)T
u[1] + λ1+qγ′

{
uTu[1] +

(
u[1]
)T
u

}
(since t = λu for λ ∈ Fqk)

= λ2M(u) + λ2qγ′
2
M(u[1]) + λ1+qγ′

{
(u+ u[1])T(u+ u[1])− uTu−

(
u[1]
)T
u[1]

}
= λ2M(u) + λ2qγ′

2
M(u[1]) + λ1+qγ′

{
M(u+ u[1])−M(u)−M(u[1])

}
∈
〈
M (1), · · · ,M (n)

〉
Fqn

(by Proposition 2).
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ut

In other words for finding V ′, we just have to

1. find an element γ′ satisfying the same constraints as γ, i.e. γ′ is a root of an
irreducible polynomial x2 + ex+ f over Fqk such that f ∈Wq−1;

2. V ′ is then generated by the basis

ν′ = {t1 + γ′tq1, . . . , tk + γ′tqk}

and leads to an equivalent key by Fact 1.

Note that Step 1. for finding γ′ ∈ Fqn can be performed in the same way as
in Keygen. This was done at random in [22], and the success probability can be
estimated using [23, Lemma 13]. Heuristically, this works in constant expected
time.

6 Conclusion.

The use of Sidon spaces for cryptography is an interesting new idea initially
proposed in [22]. However, in this paper we show that this first attempt to
build a public-key encryption scheme based on Sidon spaces is insecure. Here,
we develop a key-recovery attack which is polynomial in the dimension of the
underlying Sidon space. Besides of that, we consider worth to further study the
possibility of using Sidon spaces to devise other cryptographic primitives.
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15. Ralf Fröberg. An introduction to Gröbner bases. Pure and applied mathematics.
Wiley, 1998.

16. Louis Goubin and Nicolas Courtois. Cryptanalysis of the TTM cryptosystem. In
Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, volume
1976 of LNCS, pages 44–57. Springer, 2000.

17. Yasuhiko Ikematsu, Ray A. Perlner, Daniel Smith-Tone, Tsuyoshi Takagi, and
Jeremy Vates. HFERP - A new multivariate encryption scheme. In Post-Quantum
Cryptography - 9th International Conference, PQCrypto 2018, Fort Lauderdale,
FL, USA, April 9-11, 2018, Proceedings, pages 396–416, 2018.

18. Dustin Moody, Ray A. Perlner, and Daniel Smith-Tone. Key recovery attack on
the cubic ABC simple matrix multivariate encryption scheme. In Selected Areas in
Cryptography - SAC 2016 - 23rd International Conference, St. John’s, NL, Canada,
August 10-12, 2016, Revised Selected Papers, pages 543–558, 2016.

19. Morten Øygarden, Patrick Felke, H̊avard Raddum, and Carlos Cid. Cryptanalysis
of the multivariate encryption scheme eflash. In Stanislaw Jarecki, editor, Topics
in Cryptology – CT-RSA 2020, pages 85–105, Cham, 2020. Springer International
Publishing.

19

https://github.com/Javierverbel/cryptanalysis-sidon-cryptosystem


20. Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials
(IP): Two New Families of Asymmetric Algorithms. In EUROCRYPT, pages 33–
48, 1996.

21. Jaiberth Porras, John Baena, and Jintai Ding. Zhfe, a new multivariate public key
encryption scheme. In Michele Mosca, editor, Post-Quantum Cryptography, pages
229–245, Cham, 2014. Springer International Publishing.

22. Netanel Raviv, Ben Langton, and Itzhak Tamo. Multivariate public key cryptosys-
tem from sidon spaces. In Juan A. Garay, editor, Public-Key Cryptography – PKC
2021, pages 242–265, Cham, 2021. Springer International Publishing.

23. Ron M. Roth, Netanel Raviv, and Itzhak Tamo. Construction of Sidon spaces with
applications to coding. IEEE Transactions on Information Theory, 64(6):4412–
4422, 2018.

24. Daniel Smith-Tone and Javier A. Verbel. A rank attack against extension field
cancellation. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryp-
tography - 11th International Conference, PQCrypto 2020, Paris, France, April
15-17, 2020, Proceedings, volume 12100 of Lecture Notes in Computer Science,
pages 381–401. Springer, 2020.

25. Alan Szepieniec, Jintai Ding, and Bart Preneel. Extension field cancellation: A new
central trapdoor for multivariate quadratic systems. In Tsuyoshi Takagi, editor,
Post-Quantum Cryptography, pages 182–196, Cham, 2016. Springer International
Publishing.

26. Chengdong Tao, Adama Diene, Shaohua Tang, and Jintai Ding. Simple matrix
scheme for encryption. In PQCrypto, pages 231–242, 2013.

20


	A polynomial time key-recovery attack on the Sidon cryptosystem.

