
Bilinear Map Based One-Time Signature
Scheme with Secret Key Exposure

Marten van Dijk1,2, Deniz Gurevin2, Chenglu Jin1, Omer Khan2, and Phuong
Ha Nguyen3

1 CWI Amsterdam
{marten.van.dijk,chenglu.jin}@cwi.nl

2 University of Connecticut
{deniz.gurevin,omer.khan}@uconn.edu

3 eBay
phuongha.ntu@gmail.com

Abstract. Dijk et al. [6] presents Remote Attestation (RA) for secure
processor technology which is secure in the presence of an All Digital
State Observing (ADSO) adversary. The scheme uses a combination of
hardware security primitives and design principles together with a new
cryptographic primitive called a Public Key Session based One-Time
Signature Scheme with Secret Key Exposure (OTS-SKE). [6] shows a
hash based realization of OTS-SKE which is post quantum secure but
suffers long 8.704 KB signatures for 128-bit quantum security or 256-bit
classical security. From a classical cryptographic perspective we complete
the picture by introducing a bilinear map based OTS-SKE with short
0.125 KB signatures, 65 times shorter, and for which the security reduces
to the Computational Diffie-Hellman Problem (CDHP) – at the cost of
a 9× longer initialization phase in the RA scheme if implemented in
software (this can be improved with appropriate elliptic curve hardware
acceleration). Signing takes 560 ms at most 60% of the > 936 ms needed
for the hash based scheme.

Keywords: Remote Attestation · One Time Signatures · Secret Key Exposure

1 Introduction

An All Digital State Observing (ADSO) adversary observes all digital state in-
cluding all intermediate computed digital values as well as all digital storage such
as register values, permanent storage, and fused keys. From the digital comput-
ing perspective the ADSO adversary is a white-box adversary who can see the
internal working of any implemented crypto primitive including its manipulation
of secret keys.

Yet, as demonstrated for the first time in [6], the ADSO adversary allows
secure Remote Attestation (RA) by realizing that key material can be hidden
in non-digital form using Physical Unclonable Function (PUF) technology. The

2 Dijk et al.

main idea is to only extract a message dependent subset of the PUF’s key ma-
terial for RA and by implementing proper access control to the underlying PUF
so that no other relevant key material can leak (here we notice that processor
hardware implements ‘secure enclaves’, each enclave only able to access its own
‘partition’ of the PUF’s challenge response space; details are in [6]). This means
that signature generation can simply extract and use this message dependent
key material as a one-time signature.

This is exactly the working of the hash based realization in [6]. In essence
the PUF is used to de-obfuscate a message dependent subset of ‘leaf keys’ in
an authentication tree. The subset of leaf keys together with additional node
values for authenticating the path from the subset of leafs to the root of the
authentication tree forms a signature. The signature can be verified by the public
key which includes the root. This hash based scheme is post quantum secure but
suffers from long signatures because an O(λ) number of leaves, where λ is the
security parameter, needs to be transmitted as part of the final signature.

The hash based scheme realizes a Public Key Session based One-Time Signa-
ture Scheme with Secret Key Exposure (OTS-SKE) as introduced and defined
in [6]. Informally, an OTS-SKE scheme (1) has one (universal) public key that
can be used to verify all session signatures, with the property that (2) each
logical session with its own secret session key generates at most one signature
for which it uses a “subset” of the secret session key, and (3) this “subset” is
exposed to the (ADSO) adversary “for free.” Despite leaking these subsets of
secret session keys (for each of the sessions), the adversary cannot impersonate
a signature for a new message for any session. Our main contribution is a new
bilinear map based OTS-SKE scheme which realizes compact signatures (the al-
gebraic structure allows one to compress the subset of session key material into
a single value in the signature).

Table 1. Comparison bilinear map based OTS-SKE (this paper) and hash based OTS-
SKE [6] for 256-bit classical security. N indicates the number of sessions in the over-
arching RA scheme.

Billinear Map based OTS-SKE Hash based OTS-SKE

Key Generation 7587.3 ms 819 ms
Sign 560 ms 935 + 0.6 log2N ms

Verify 100 ms 118 + 0.4 log2N ms
Storage 116 MB 0.12N MB

Communication 0.125 KB 8.2 + 0.03 log2N KB
Lines of code 7k+ ∼ 500

Table 1 compares both OTS-SKE schemes. Clearly, for large N ≥ 1024
the sign, verify, storage, and communication costs of the hash based OTS-SKE
scheme scale to large values beyond those required for the new bilinear map
based OTS-SKE scheme introduced in this paper. In particular, the bilinear
map based OTS-SKE scheme reduces the communication cost by a factor > 65

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 3

and its sign costs is at most 60% of the sign costs of the hash based OTS-SKE
scheme. The bilinear map based scheme has a factor 9 longer key generation
(which happens during an initialization/set-up phase in the RA scheme) and a
factor 14 times more lines of code (in the secure enclave that implements the RA
scheme) giving a larger Trusted Compute Base (TCB). In the implementation
section we discuss how key generation can be made much faster by means of
elliptic curve hardware acceleration (our numbers are for the much slower soft-
ware implementation). We also notice that key generation happens off-line while
sign and communication happens on-line with throughput, latency, and band-
width constraints in practice. This means that the factor > 65 shorter signatures
and 60% of the sign cost show that the proposed bilinear map based ORS-SKE
scheme outperforms the existing hash based OTS-SKE scheme.

Our bilinear map based OTS-SKE is not post quantum secure as its security
reduces to the Computational Diffie-Hellman Problem (CDHP). In fact, by solv-
ing CDHP for the public key itself using a quantum computer, “master key” can
be extracted which can be used to impersonate any signature from past or future
using a classical computation. Thus, as soon as quantum computing resources are
available on-line and cost-effective with respect to the gain from impersonating
signatures for an instantiation of the RA scheme, then the bilinear map based
OTS-SKE should not be used. However, without sufficiently available quantum
resources, Table 1 shows that the bilinear map based OTS-SKE scheme is the
best choice with significant improvement over the hash based OTS-SKE scheme.
The current study shows into what extent classical crypto can improve effciency
and this completes the picture around OTS-SKE constructions.

Outline. Section 2 discusses related work including more detail on the hash
based OTS-SKE scheme with Figure 3. We formally define OTS-SKE schemes
in Section 3. We introduce the new bilinear map based OTS-SKE scheme in
Section 4 and show implementation results (leading to Table 1) in Section 5.

2 Related Work

Forward-secure signature schemes aim to protect the privacy of past keys even
when the current secret key has been leaked. However, these schemes have a
major shortcoming when it comes to preventing the exposure of next keys as all
the next keys skt+1, . . . , skN−1 can be computed if skt is the first compromised
key. In such case, the public key of the scheme has to be revoked and renewed. In
order to minimize the effects of key exposure, intrusion detection and prompt key
revocation mechanisms have been proposed, which can be inefficient in practice
[16].

In order to prevent the leakage of next as well as past secret keys, key-
insulated schemes (KIS) [9,10,12,14,26] and intrusion-resilient schemes (IRS) [7,
8] have been introduced. These schemes typically have an architectural design
with a user (Bob) and a base (Bob’s base) as depicted in Figure 1. Alice uses
Bob’s public key, which does not change over time, to encrypt messages sent

4 Dijk et al.

Alice Bob

Bob's
Base

M, pkBob, time = t

(C, time = t)

update/refresh

secret
state

skt+1

M

Fig. 1. The structure of an Intrusion Resilient Scheme. M is the plaintext and C is
the ciphertext.

to Bob. Even though the public key does not change over time, Bob and Bob’s
base have secret information which does change over time. Bob needs his current
secret and the secret from the Bob’s base to update towards a new decryption key
for the next period (skt+1). Bob’s base on the other hand can update its secret
information by itself based on its current secret state. User Bob and his base are
two separate components. It is assumed that the base is secure against any key
attacks for KIS but this requirement is relaxed in IRS. IRS will be vulnerable if
and only if the secret information at the user and the base is compromised at
the same time, see Figure 2. We notice that we require a secure communication
channel between the user and the base for exchanging secret information and
this can also be a point of attack in practice.

Fig. 2. The security of Intrusion Resilient Scheme.

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 5

Dijk et al. [6] proposed a Remote Attestation protocol which can remain
secure in the presence of an All Digital State Observing (ADSO) adversary (i.e.
both the ’user’ and ’base’ can leak at the same time) and solves the shortcomings
of IRS and KIS by removing the dependence on a trusted third party. The
scheme uses a Public Key Session based One-Time Signature Scheme with Secret
Key Exposure (OTS-SKE) which is post quantum secure. However, one of the
shortcomings of [6] is the usage of large sized signatures.

2.1 Hash-based OTS-SKE Scheme

Dijk et al. [6] proposed a Remote Attestation protocol which can remain secure
in the presence of an All Digital State Observing (ADSO) adversary (i.e. both
the ’user’ and ’base’ can leak at the same time) and solves the shortcomings
of IRS and KIS by removing the dependence on a trusted third party. The
scheme uses a Public Key Session based One-Time Signature Scheme with Secret
Key Exposure (OTS-SKE) which is post quantum secure. However, one of the
shortcomings of [6] is the usage of large sized signatures.

…

𝑀𝑇𝑁 −1

…

…

…

…

…

𝑂𝑇𝑆
𝐾𝑒𝑦 𝑃𝑎𝑖𝑟𝑠

𝑀𝑇0

෢𝑀𝑇

Fig. 3. Construction of Hash-based OTS-SKE in [6]. The bottom blue nodes are secret
keys in Lamport One Time Signature (OTS) scheme, and the signer needs to keep these
secret keys private. The top green node represents the root hash of the top Merkle tree
M̂T , which will be treated as a univeral public key to be shared with verifiers.

In [6], Dijk et al. introduced a hash-based scheme of one-time signature with
secret key exposure (OTS-SKE). The key idea is based on an optimized Lamport
one-time signature scheme [2,17] and an optimized Merkle tree construction [5,
19].

Fig. 3 presents the construction of the hash-based OTS-SKE scheme in [6]. At
the bottom, there are N groups of secret-verification key pairs of Lamport one-
time signature scheme [2,17]. Each group will be used in a unique session, so the
structure can support N sessions in total. Each secret key is randomly generated,

6 Dijk et al.

and its corresponding verification key is the hash of the secret key. Lamport one-
time signature signs a message by sending a message-dependent subset of all the
secret keys in one session to the verifier. By checking the indices of the received
secret keys and their hash values against the verification keys, the verifier can
verify whether the signature is valid. To avoid sending N groups of verification
keys (vk) to the verifier for initialization, the scheme in [6] uses two layers of
Merkle tree structure. Each of the lower layer Merkle trees (MT0, . . . ,MTN−1
in Fig. 3) manages all the verification keys for one session i. The higher layer
Merkle tree (M̂T in Fig. 3) compresses all lower layer Merkle trees to one root
hash, and the root hash (green node in Fig. 3) is sent over to the verifier as a
universal public key for verifying the signatures generated in every session. In
order to reduce the security of the Merkle tree to the second pre-image resistance
of the underlying hash functions, every hash evaluation in the Merkle trees needs
a random bit-mask [5]. To mitigate multi-target attacks, the authors of [6] also
suggest incorporating a random number as a hash key in every hash calls in the
OTS computation and the Merkle tree construction. In their implementation, a
pseudorandom number generator is used to generate all needed random numbers
from a seed. The seed will be shared with the verifier for verification.

3 Definition of an OTS-SKE Scheme

The following definition of an OTS-SKE scheme is a verbatim citation from [6].
An OTS-SKE scheme S consists of three procedures

S = (KeyGen,Sign,Verify) :

Key generation. Based on a security parameters λ, KeyGen generates a public
key pk together with session secret keys

ski = {ski,j}q−1j=0

and auxilairy variables auxi for each session i ∈ {0, . . . , N−1} and a-priori fixed
parameter q. We have

(pk, {ski, auxi}N−1i=0)← KeyGen(λ).

Sign. Sign takes as input the session id i with session secret key ski and auxiliary
variable auxi. Together with a message M ∈ {0, 1}n as input Sign produces a
signature σ,

σ ← Sign(ski, auxi;M).

The computation of Sign is split in three steps:

1. We have a keyed pseudo random permutation PRP(key;x) which, for each
key, is a bijective mapping from strings x ∈ {0, 1}n to {0, 1}n. We also have
an injective mapping φ from {0, 1}n to subsets of {0, . . . , q−1} (here, q ≥ n).
Sign first selects a random key and computes the subset

I = φ(PRP(key;M)) ⊆ {0, . . . , q − 1}.

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 7

2. Sign extracts a corresponding subset of the i-th session secret key:

ski,I = {ski,j}j∈I .

3. Sign uses ski,I together with auxi and input message M to produce a sig-
nature σ′. In order to make the dependence on the subset of the session key
explicit, we write

σ′ ← Sign’(ski,I , auxi;M).

Sign returns σ = (σ′, key).

Verify. Verify outputs

{true, false} ← Verify(pk, i;σ,M)

for a signed message (σ,M) for session id i. Notice that the same public key pk
is used for all sessions.

Correctness. OTS-SKE scheme S is correct if for all σ ← Sign(ski, auxi;M)
we have true← Verify(pk, i;σ,M).

Security. Even if an adversary has knowledge of subsets of session keys

{ski,Ii}N−1i=0

together with auxiliary information {auxi}N−1i=0 , the adversary cannot imperson-
ate a signature for some session with id i∗ for a new message that has not yet
been signed in session i∗. This security notion is formalized by GameOTS-SKE
for S as the following security game:

– Setup: The challenger runs KeyGen which returns

(pk, {{ski,j}q−1j=0, auxi}
N−1
i=0).

The challenger gives pk as well as {auxi}N−1i=0 to the adversary.
– Query: The adversary adaptively issues a sequence of messages Mi at most

one message for each session id i. The challenger computes

Ii = φ(PRP(keyi;Mi)) and ski,Ii = {ski,j}j∈Ii
for random keyi. The challenger gives the extracted information ski,Ii with
keyi to the adversary (as soon as Mi is received).
Notice that the adversary can use this information to sign message Mi for
session i by applying Sign’. This may lead to multiple signatures for Mi

(since fresh randomness can be used for each signature generation). However,
no signatures for other messages 6= Mi for session id i can be forged if the
following Guess does not succeed.

– Guess: The adversary selects a session number i∗ ∈ {0, . . . , N − 1} which
refers to the session for which the adversary will want to forge a signature:
The adversary outputs a signed message (σ,M∗) for session i∗ such that
M∗ 6= Mi∗ The adversary wins the game if the signature verifies, that is,

true← Verify(pk, i∗;σ,M∗).

8 Dijk et al.

In this game, A is called an OTS-SKE-EUF-CMA (OTS-SKE Existential Un-
Forgeability under Chosen Message Attack) adversary.

If A wins GameOTS-SKE with probability ≥ ε in time ≤ T , then we call
A a (T,QH , QP , ε)-OTS-SKE adversary for S, where QH and QP are the max-
imum number of queries allowed to be made by A to a hash function oracle
and PRP oracle in GameOTS-SKE. We say scheme S is (T,QH , QP , ε)-secure
against OTS-SKE-EUF-CMA attacks if no (T,QH , QP , ε)-OTS-SKE adversary
exists.

4 Bilinear Map based OTS-SKE

Bilinear map. Let G be a bilinear group of prime order p and g be a generator of
G. Here, size p of G is determined (by some functional relation) by the security
parameter λ of the to-be-explained constructions. Let e : G × G → G1 be a
bilinear map, i.e., we have the following properties

– Bilinear 4: For all x, y ∈ G and all a, b ∈ Z,

e(xa, yb) = e(x, y)ab.

– Non-degenerate 5: e(g, g) 6= 1.

For practical usage the bilinear map should be efficiently computable. The above
properties can be realized by the modified Weil pairing based on supersingular
curves.

Hash function. In addition to the bilinear map e : G × G → G1 we use a
cryptographic hash function H : {0, 1}dlog2Ne+n → Zp. H(·) is used in the
signing algorithm to hash an index message pair into an element in Zp.

OTS-SKE scheme. Below we describe our OTS-SKE scheme

S = (KeyGen,Sign,Verify) :

Key generation. We use parameters q = tn and represent index tj + b ∈
{0, . . . , q − 1} as the pair (j, b). KeyGen sets parameters, computes the public
key, and all secret keys

(pk, {{ski,j,b}n−1,t−1j=0,b=0 , auxi}
N−1
i=0)← KeyGen(λ)

as follows:

4 The definition implies e(x, yz) = e(x, y)e(x, z) and e(xz, y) = e(x, y)e(z, y) for all
x, y, z ∈ G. Also, e(ga, gb) = e(g, g)ab = e(gb, ga), hence, e(x, y) = e(y, x).

5 The definition implies for x = ga ∈ G, if e(g, x) = 1, then 1 = e(g, x) = e(g, ga) =
e(g, g)a, hence, a = 0 (since e(g, g) 6= 1), i.e., x = 1. Therefore, if e(g, x) = e(g, y),
then e(g, x/y) = 1 which implies x/y = 1 or equivalently x = y. The property
”e(g, x) = e(g, y) implies x = y” will be used in the security proof.

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 9

– (p,G,G1, e, g, g2)← IG(1λ) where λ is the security parameter and algorithm
IG generates a suitable mathematical structure for our signature scheme. g
and g2 are generators of G and G1, respectively.

– Randomly generate α ∈ Z∗p and set g1 = gα. Define F (i) = gi1h where h is a
random number chosen from G. Note that F : Zp → G.

– Generate N secret keys {ski}N−1i=0 with auxiliary information {auxi}N−1i=0 as
follows:

ski = {ski,j,b}n−1,t−1j=0,b=0

with

ski,j,b = gα2 F (itn + bntj)rivi,j and auxi = gri , (1)

where ri is a random number chosen from Zp and vi,j = gβi,j , where βi,j
are random numbers from Zp such that

∑n−1
j=0 βi,j = 0, or equivalently,∏n−1

j=0 vi,j = 1.

– Parameters pk = (p,G,G1, e, g, g1, g2, h) are made public and secret keys
{ski}N−1i=0 are kept private. The auxiliary information {auxi}N−1i=0 is kept at
the signer but is not kept secret (it can be accessed by anyone who wants
to). All other values such as α (or gα2) and random numbers {ri} and {vi,j}
are deleted.

Our key generation procedure deviates from [3] in that we have ’flatten’ their
’tree structure’ and do not have a KeyGen algorithm which keeps on generating
new secret keys by maintaining a secret state. We do not want any digital secret
state as this leaks to the ADSO-adversary in the remote attestation protocol
of [6] for which our signature scheme is used.

A second deviation is the secret sharing mechanism based on the {vi,j}, which
role will become clear in the security analysis and allows us to achieve resistance
against OTS-SKE-EUF-CMA attacks.

Signing. We compute B =
∑n−1
j=0 bjt

j with 0 ≤ bj < t as the pseudo random
permutation output B = PRP(key;M) for a random key. We define subset
φ(B) = {tj + bj}n−1j=0 of {0, . . . , q − 1} for q = tn. We represent its elements by
the pairs (j, bj). We produce

σ′ ← Sign’({ski,j,bj}n−1j=0 , sk1i;M),

which signs a plaintext M ∈ G1 as follows:

– Select a random s ∈ Zp.
– Compute x = gns2 .

– Compute hash value u = H(M,x).

– Compute y = aux
n(s+u)
i = (gri)n(s+u).

10 Dijk et al.

– Compute

ski =

n−1∏
j=0

ski,j,bj =

n−1∏
j=0

gα2 F (itn + bjnt
j)rivi,j

= gnα2

n−1∏
j=0

F (itn + bjnt
j)

ri

= gnα2 (git
n+B

1 h)nri = (gα2 F (itn +B)ri)n

and z = sks+ui = (gα2 F (itn +B)ri)n(s+u).
– Return signature σ = (σ′, key) for

σ′ = (x, y, z)

= (gns2 , (gri)n(s+u), (gα2 F (itn +B)ri)n(s+u)).

Verification. Verify(pk, i;σ,M) with σ = (σ′, key) verifies signature σ′ =
(x, y, z) for message M , where σ′ is generated during the i-th session:

– Compute u = H(M,x) and B = PRP(key;M).
– The signature verifies if and only if

e(g, z) = e(g1, g
nu
2 xyk)× e(y, h) with k = itn +B.

4.1 Correctness

The correctness of this check follows from g1 = gα, x = gns2 , y = grin(s+u),
z = (gα2 F (k)ri)n(s+u), and

e(gα, gnu2 xyk)× e(y, h)

= e(gα, gnu2 gns2 (grin(s+u))k)× e(grin(s+u), h)

= e(gα, g
n(u+s)
2 (grin(s+u))k)× e(grin(s+u), h)

= (e(gα, g2g
kri)× e(gri , h))n(s+u).

Since e(ac, b) = e(a, bc), the right hand side is equal to

(e(g, gα2 g
αkri)× e(g, hri))n(s+u)

= (e(g, gα2 (hgαk)ri))n(s+u) = e(g, (gα2 (hgk1)ri)n(s+u))

= e(g, (gα2 F (k)ri)n(s+u)) = e(g, z).

4.2 Security

Our security analysis will apply the forking lemma [21] in order to reduce an
OTS-SKE adversary A to being able to solve the Computational Diffie-Hellman
Problem (CDHP) in G. We first give some background:

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 11

Forking lemma [21]. Our scheme corresponds to a generic digital signature
scheme [21], i.e., given an input message M , the scheme produces a triple
(σ1, u, σ2) where σ1 (= x for our scheme) randomly takes its values in a large
set (in our case x ∈ G), u is the hash value H(M,σ1) and σ2 (= (y, z) for our
scheme) only depends on σ1, message M , u, and secret keys (but does not de-
pend on other randomly selected values). We notice that u does not need to be
transmitted as part of the signature since it can be computed by the verifier by
applying the hash function.

We denote by QH the number of queries that A can ask a random oracle
which models the hash functionality. Suppose that within a time bound T and
with probability ε ≥ 7QH/2

λ, where λ is the security parameter of the scheme, A
can produce a valid signature (M,σ1, u, σ2). Then there exists another algorithm
which has control over A and produces two valid signatures (M,σ1, u, σ2) and
(M,σ1, u

′, σ′2) such that u 6= u′ in expected time T ′ ≤ 84480 · TQH/ε. The new
algorithm is in control of the random oracle and simulates A for a first hash
function H(.) with u = H(M,σ1) and for a second hash function H ′(.) with
u′ = H ′(M,σ1).

Computational Diffie-Hellman problem. Our security analysis shows that
the two valid signatures can be algebraically combined allowing us to solve the
Computational Diffie-Hellman Problem (CDHP) in G: Given a triple (g, ga, gb) ∈
G3, compute gab ∈ G.6

The following theorem states the reduction of OTS-SKE-EUF-CMA security
to CDHP.

Theorem 1. Let S be the bilinear map based OTS-SKE scheme with N sessions.
Let A be a (T,QH , QP , ε)-OTS-SKE adversary for S with ε ≥ 7QH/2

λ, where λ
is the security parameter of S. Then, there exists an algorithm that solves CDHP
in G in expected time ≤ 84480 · 2TQH(QP + 1)N/ε.

The proof of our main result is as follows: Let A be a (T,QH , QP , ε)-OTS-
SKE adversary with ε ≥ 7QH/2

λ. We will show how to build an algorithm B
which can solve CDHP in G based on A.
B takes on the role of challenger in GameOTS-SKE and plays against A,

and whenever A needs to compute a hash value then B plays the role of the
hash oracle, that is, the random oracle which simulates hash function H(.); B
keeps a list LH to store the answers of the random oracle, that is, if A queries a
hash value of some input w, then B checks list LH and if an entry (w, u) for the
query is found, the same answer u will be returned to A, otherwise, B randomly
generates a value u from Zp and outputs u and appends (w, u) to LH . We only
talk about algorithm A querying the hash oracle. As it turns out B does not
query its own hash oracle at all.
B is also in charge of the random tape used by A, i.e., B is able to replay A

for the same random tape and with a random oracle that simulates a different

6 We say that the (t′, ε)-CDH assumption holds in G if no t′-time algorithm has ad-
vantage at least ε in solving the CDHP in G.

12 Dijk et al.

hash function H ′(.). As we will see, by exploiting this, A can be used by B to
solve CDHP.

Finally, B also plays the role of the PRP oracle, that is, the random oracle
which simulates the pseudo random permutation PRP. Now B selects at the
start of its execution, for each i ∈ {0, . . . , N −1}, a set of distinct random values

SetPRP (i) = {B∗0 , . . . , B∗QP+1} ⊆ {0, 1}n

together with a random keyi. Notice that the size of each set is QP + 2. The
set is used to answer PRP oracle queries from both A as well as B (it queries
itself). B maintains a list LP of triples (i,M,B): If B or A queries a PRP value
for some input (keyi;M), then B checks list LP and if an entry (i,M,B) for
the query is found, the same answer B will be returned to itself, otherwise, B
randomly generates a value B from

SetPRP (i) \ {B′ : (i,M ′, B′) ∈ LP }

and outputs B and appends (i,M,B) to LP . Notice that the PRP oracle only
outputs values from SetPRP (i) for each i. This is possible because A makes at
most a total of QP PRP queries and, as we will see below, B makes at most 2
PRP queries per session (one during Setup and one during Guess).

Let

g1 = ga and g2 = gb.

We define algorithm B with its interactions with A as follows:

– Setup: B selects a random session id i∗ ∈ {0, . . . , N − 1} together with one
random element B∗ from SetPRP (i∗). B selects a value α′ ∈ Zq at random
and defines

h = g−k
∗

1 gα
′

with k∗ = i∗tn +B∗.

B prepares pk = (p,G,G1, e, g, g1, g2, h) and transmits pk to A.
For each keyi, B queries the PRP oracle for a random dummy message
Di with the slight adaptation that the PRP oracle does not output B∗ for
session id i∗ (this corresponds to the attacker choosing a new message for
which a signature is constructed/guessed as we will see later). This results
in numbers Bi randomly selected from SetPRP (i) with Bi∗ 6= B∗. B selects
random numbers ri in Zp. Next B computes for

ki = itn +Bi

the auxiliary information

auxi = g
−1

ki−k∗

2 gr
′
i ,

which is given to A. Notice that ki∗ 6= k∗ because Bi∗ 6= B∗. Also ki =
itn +Bi 6= i∗tn +B∗ = k∗ for i 6= i∗ because 0 ≤ B∗ < tn and 0 ≤ Bi < tn.

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 13

– Query: When A issues a message Mi for session id i, then B replaces the
triple (i,Di, Bi) with (i,Mi, Bi) in the list LP of the PRP oracle. This is
allowed since B has used the PRP oracle only a single time for keyi and,
since it is chosen at random and therefore unknown to A, no extra queries
have been issued to the PRP oracle for keyi. From the perspective of A it is
as if the PRP oracle produced Bi for (keyi;Mi) (without loss of generality
the dummy message Di took the shape of Mi).

Value Bi =
∑n−1
j=0 bi,jt

j is used to compute, as before, ki = itn+Bi. Together
with the random r′i previously chosen in Setup, B constructs

ski,j,bi,j = g
−α′
ki−k∗

2 F (itn + bi,jnt
j)r
′
iv′i,j ,

for j ∈ {0, . . . , n− 1}, with

v′i,j = gβ
′
i,j such that

n−1∑
j=0

β′i,j = 0.

Values β′i,j are random in Zp conditioned on their sum being equal to 0. B
gives

ski,Bi = {ski,j,bi,j}n−1j=0 and keyi

to A. Notice that from this moment onward A can query the PRP oracle
for keyi (by assumption, at most QP times; notice that B queried the PRP
oracle for keyi at most two times – if i = i∗ – and the size of SetPRP (i) is
QP + 2).

We need to verify that the ski,Bi and auxi have the correct form. That is, see
(1),

auxi = gri and ski,j,bi,j = gα2 F (itn + bi,jnt
j)rivi,j

for some α, ri, and vi,j : We will use

α = a,

ri = r′i −
b

ki − k∗
,

vi,j = g
−α′
ki−k∗

−α
2 F (itn + bi,jnt

j)r
′
i−riv′i,j .

Since r′i is random, also ri is random. Since all v′i,j are random conditioned on∏n−1
j=0 v

′
i,j = 1, the definition of vi,j transforms ski,j,bi,j into the required form if

14 Dijk et al.

the product of all vi,j equals 1. We derive

n−1∏
j=0

vi,j =

n−1∏
j=0

g
−α′
ki−k∗

−α
2 F (itn + bi,jnt

j)r
′
i−ri

= g
−α′n
ki−k∗

−nα
2

n−1∏
j=0

g
itn+bi,jnt

j

1 h

r′i−ri

= g
−α′n
ki−k∗

−nα
2 (g

(itn+Bi)n
1 hn)r

′
i−ri

= g
−α′n
ki−k∗

−na
2 (gkin1 (g−k

∗

1 gα
′
)n)

b
ki−k∗

= g
−α′nb
ki−k∗

−nab
g
kina· b

ki−k∗ (g−k
∗
i nagα

′n)
b

ki−k∗ = 1.

Also

auxi = g
−1

ki−k∗

2 gr
′
i = g

−b
ki−k∗ gr

′
i = gri

as required.

– Guess: Adversary A produces a signature (σ,M∗) for session î such that
M∗ 6= Mî. B calls the PRP oracle for input (̂i,M∗) which returns a value

B̂ from SetPRP (̂i). If (̂i, B̂) = (i∗, B∗), then B will use signature σ in its
attempt to solve CDHP.

If (̂i, B̂) 6= (i∗, B∗), then B repeats the same computation with the same random
tape for A, the same hash and PRP oracles, but with a fresh random chosen
(i∗, B∗) in Setup and fresh random choices for v′i,j and r′i by B in Query and
Setup. Notice that even though this changes k∗ and as a consequence also the
values for h and all the key material that will be revealed to A, to A it seems
that all this key material is independent of k∗ as it matches their generation with
the random looking values vi,j and ri. Therefore, A’s choice of (̂i,M∗) and the

resulting B̂ are independent of k∗. Since there are N choices for i∗ and QP + 1
choices for B∗ (notice that B∗ ∈ SetPRP (i∗)\{Bi∗} which has QP +1 elements)
it will take T (QP + 1)N expected time until a usable signature σ is computed
(for which (̂i, B̂) = (i∗, B∗) is a lucky guess during Setup).
B simulates A a second time for (1) the same random tape (this implies that

both the first and second simulation select the same value s when producing
the final signature, hence, the same value x is used), (2) the same PRP oracle
with the same sequence {keyi}, but with (3) a random oracle which simulates
a different hash function H ′(·). B does its simulation for the same (i∗, B∗) pair
and we call a signature valid if it verifies properly using Verify and is usable
in that (̂i, B̂) = (i∗, B∗) as described above (this takes another T (QP + 1)N
expected time). Since the PRP oracle defines permutations, this is equivalent
to generating a signature for (i∗,M∗) that verifies properly and where M∗ is
output by the first simulation. Since the PRP oracle with {keyi} is fixed, the
signature scheme becomes generic in that, for σ′ = (x, y, z), values y and z only

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 15

depend on x, u = H(M∗, x), and secret keys, but no other randomly selected
values. This allows us to apply the forking lemma.

We apply the forking lemma which states that B is able to use A to produce
two valid signatures for (i∗,M∗):

σ′ = (x, y, z) with hash value u = H(M,x)

and

σ” = (x, y′, z′) with hash value u′ = H ′(M,x)

such that u 6= u′ in expected time T ′ ≤ 84480 · 2T (QP + 1)NQH/ε.
Since both signatures are valid we know

e(g, z) = e(g1, g
nu
2 xyk

∗
)× e(y, h),

e(g, z′) = e(g1, g
nu′

2 xy′k
∗
)× e(y′, h).

This implies that

(e(g, z)× e(g, z′)−1)
1

n(u−u′) = e(g, (z/z′)
1

n(u−u′))

is equal to the product of

(e(g1, g
nu
2 xyk

∗
)× e(g1, gnu

′

2 xy′k
∗
)−1)

1
n(u−u′)

= e(g1, g
n(u−u′)
2 (y/y′)k

∗
)

1
n(u−u′)

= e(g1, g2(y/y′)
k∗

n(u−u′))

= e(g1, g2)× e(g1, (y/y′)
k∗

n(u−u′))

and

(e(y, h)× e(y′, h)−1)
1

n(u−u′)

= e(y/y′, h)
1

n(u−u′)

= e(y/y′, g−k
∗

1 gα
′
)

1
n(u−u′)

= (e(y/y′, g−k
∗

1)× e(y/y′, gα
′
))

1
n(u−u′)

= e((y/y′)
−k∗

n(u−u′) , g1)× e((y/y′)
α′

n(u−u′) , g).

This proves

e(g, (z/z′)
1

n(u−u′))

= e(g1, g2)× e(g1, (y/y′)
k∗

n(u−u′))

×e((y/y′)
−k∗

n(u−u′) , g1)× e((y/y′)
α′

n(u−u′) , g)

= e(g1, g2)× e(g, (y/y′)
α′

n(u−u′)).

16 Dijk et al.

By using g1 = ga and g2 = gb we obtain

e(g, ((z/z′)/(y/y′)α
′
)

1
n(u−u′)) = e(g, gab)

from which we conclude

((z/z′)/(y/y′)α
′
)

1
n(u−u′) = gab.

This means that the two valid signatures allow B to compute gab and this solves
CDHP. We notice that the above reduction, which only uses the validity checks
of the two signatures, is not present in [3]; the above analysis can be adapted
to [3] in order to properly complete their security analysis.

Checking s + u 6= 0. The signing procedure of [3] repeats selecting a random
s and computing u = H(M,x) until s + u 6= 0. When verifying we may check
gnu2 x 6= 1 as this corresponds to s + u 6= 0. We notice that in our security
analysis we do not need this additional property s + u 6= 0. But in practice we
may exclude s + u = 0 since this is easy to do and if not excluded, then any
one who happens to solve s+H(M, gns2) = 0 (by using some table enumeration
method) will immediately be able to use this to impersonate a corresponding
signature (for s+ u = 0, y = z = 1).

5 Implementation and Performance Evaluation

In this section, we give the details of our implementation and performance anal-
ysis for our bilinear map based OTS-SKE scheme. We evaluate the performance
of our scheme and compare our results to the hash-based OTS-SKE in [6]. This
is done by implementing the Remote Attestation protocol of [6] and simulate
its performance with our bilinear map based OTS-SKE scheme and with the
hash-based scheme.

5.1 Experimental Setup

All experiments are conducted on a PC with Intel(R) Core(TM) i7-7820HQ CPU
@ 2.90GHz and 32GB memory and on Windows 10 based operating system. Intel
Software Guard Extensions (SGX) is used to provide secure enclaves for the RA
scheme. We have written our own C++ implementation along with an EPUF-
extended PUF interface simulation (see [6] for details and explanation of the
EPUF functionality).

We constructed our bilinear map based OTS-SKE scheme using the open-
source MIRACL Multiprecision Integer Cryptographic Library7 that includes
elliptic cryptography arithmetic. We used C++ language for our implementa-
tion, along with fast in-line assembly language alternatives for most critical parts
of our code to speed up performance, such as modular multiplication and expo-
nentiation. For the random number generation (RNG) in our implementation,

7 https://github.com/miracl/MIRACL

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 17

Table 2. Amortized Cost Analysis per Remote Attestation (RA) session of the bilinear
map based OTS-SKE scheme in Comparison with the hash based OTS-SKE scheme
in a 1024-session setup. In the bilinear map based scheme we use t = 4 (such that
(t/ log2 t) · 128 = 256 and 128/ log2 t = 64). In the hash based OTS-SKE scheme q′

is the number of hash calls needed for constructing a Merkle tree with q leaves, s is
chosen such that

(
q
s

)
> 2256, and parameter l = log2N . The classical security of both

schemes is 256 bits and a message signed during a RA session has 128 bits.

Bilinear Map based OTS-SKE Hash based OTS-SKE
Operation Time(ms) Repeats Total(ms) Operation Time(ms) Repeats Total(ms)

K
e
y

G
e
n
e
ra

ti
o
n

sk and aux Gen. 25 257 6425 sk Gen. 0.1 261 (q) 26.1
EPUF Interface 2.24 256 573.4 vk (= aux) Gen. 0.1 261 (q) 26.1
Encryption 0.3 256 76.8 EPUF Interface 2.24 261 (q) 584.6
Masking Encryption Key 0.0003 256 0.077 Encryption 0.3 261 (q) 78.3
vi,j Generation 4 128 512 Masking Encryption Key 0.0003 261 (q) 0.078

Bit-Mask and Hash-Key Gen. 0.3 260 (q′ + N−1
N

) 80.7
Merkle Tree Construction 0.1006 260 (q′ + N−1

N
) 26.2

Total 7587.3 Total 819.3
Total without PUF 7013.9 Total without PUF 234.7

S
ig
n

EPUF Interface 6.88 64 440.3 EPUF Interface 6.88 130 (s) 894.4
Unmasking Encryption Key 0.0003 64 0.019 Unmasking Encryption Key 0.0003 130 (s) 0.039
Decryption 0.3 64 19.2 Decryption 0.3 130 (s) 39
Signing 100 1 100 Mapping (φ) 1.5 1 1.5

M̂T Authentication Path Gen. 0.4006 15 (3(l−1)
2

+ 1) 6.01
Total 559.5 Total (934.9 + 0.6 · l) 940.9
Total without PUF 119.2 Total without PUF (40.55 + 0.6 · l) 46.55

V
e
ri
fy

Pairing for verification 33.3 3 100 Mapping (φ) 1.5 1 1.5
Precomputation for pairing 0.01 1 0.01 vk Gen. 0.1 130 (s) 13

MTi Root Verification 0.1006 259 (q′) 26
Bit-Mask and Hash-Key Gen. 0.3 269 (q′ + l) 80.7

M̂T Authentication Path Ver. 0.1006 10 (l) 1.006
Total 100 Total (118.2 + 0.4 · l) 122.2

we used a PRNG provided by MIRACL library, whose seed is then replaced by
a random number generated from the Intel SGX’s RNG.

In order to fairly compare our results against the hash-based OTS-SKE [6],
we conduct our experiments on the same processor using the same experimental
settings. We use the same RNG and TCB for both schemes. For the Extended
PUF and One Time Pad (OTP) interfaces in the RA scheme, we use the same
simulation and parameter settings as in [6]. Therefore, for the experimental de-
tails and results of EPUF and OTP interfaces, we refer readers to Sections 5.2
and 5.3 with Tables 4, 5 and 6 of [6] for timing results. The runtime, commu-
nication and storage cost analysis of hash based OTS-SKE, which is presented
here for comparison in this section, are directly retrieved from Section 5.4 with
Tables 7, 8 and 9 of [6].

5.2 Experimental Results of Bilinear Map based OTS-SKE and
Comparison with Hash based OTS-SKE

Runtime Cost Analysis. Today, the wide employment of elliptic curve cryp-
tography (ECC) in various applications relies on a variety of implementation
types from pure software or hardware implementations to hardware and software
co-design. However, pure software implementations of ECC, despite offering best
flexibility at lowest cost, cannot cope with the speed demands of many applica-
tion areas as general purpose processors are not designed for efficient handling of

18 Dijk et al.

ECC’s underlying finite field arithmetic. This makes software-based implementa-
tions impractical for applications in time-constrained environments that require
high throughput and processing. Considering these limitations, hardware-based
implementations turn out to be the more suitable alternatives. Despite this, in
this paper, we evaluate a software-based implementation of the ECC-based sig-
nature scheme that has its own computational disadvantages, but can also be
potentially accelerated using HW techniques which will be discussed later.

– Key Generation. During key generation the public key pk = (p,G,G1, e, g, g1, g2, h)
together with tn × N secret keys are generated. For our evaluation, we ex-
periment with 1 session and choose N = 1 with n log2 t = 128 (we will
extrapolate the experimental results to a larger N = 1024). This means
that a message of n bits can be mapped by means of a PRP to a string
of size 128/ log2 t with t-ary symbols that are each represented by log2 t
bits. We notice that such a string can indeed again be characterized by
(128/ log2 t) · log2 t = 128 bits. This gives (t/ log2 t) · 128 secret keys in total.
We will use t = 4 as this minimizes key generation run time and as secondary
objective minimizes the signing run time.
For pk, the points g, g1, g2 are randomly generated from G (on the elliptic
curve), which takes about 100 ms for each. In addition the points are prepro-
cessed after they are generated; this prepares them for faster computation
for pairing (as well as elliptic curve arithmetic operations) for the future,
which takes about 10−2 ms for each. These points are generated and pre-
processed only once at the beginning of key generation. Thus, despite being
very costly, the overhead of the pk generation can be considered as negligible
while working in a sufficiently large timing window (for example, if we have
N > 100 sessions). Therefore, in a 1024-session setup, we ignore this pk gen-
eration cost. On the other hand, in the initialization phase of the hash based
OTS, along with the generation of sk, we also include the vk generation in
the timing table, since a different set of vk needs to be generated in each
section (unlike the pk in bilinear map based OTS).
After generating pk, secret keys are generated. In order to generate secret
keys, random elements βi,j ∈ Zp, i ∈ {0, . . . , N − 1}, j ∈ {0, . . . , n− 1}, are
first generated. As previously stated, since random point generation on the
elliptic curve is costly, we reduce the cost of generating random points vi,j ∈
G by computing vi,j = gβi,j which takes approximately 4 ms. Compared to
the method of selecting vi,j from G randomly for each i and j (100 ms), this
is a significant speedup of almost 25 times.
Generating 1 secret key ski,j,b takes approximately 25 ms. Since we have
(t/ log2 t) · 128 = 256 keys for t = 4, we repeat this (t/ log2 t) · 128 = 256
times. The elliptic curve computations during key generation take 6.4 sec for
1 session, see Table 2. After these computations, EPUF calls are made to
obtain responses for 256 symmetric encryption keys which takes about 573
ms. This is the second biggest overhead after the costly ECC key generation.
Secret keys ski,j,b are then encrypted with the symmetric encryption keys
and EPUF responses are then used to mask the symmetric encryption keys.

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 19

Table 3. Storage Cost of Bilinear Map based and Hash based OTS-SKE Schemes
during Initialization for N = 1024 sessions.

Bilinear Map based OTS-SKE Hash based OTS-SKE

Size (bits) Quantity Total (MB) Size (bits) Quantity Total (MB)

pk 2048 1 2.5× 10−4 vk (= aux) 256 261 × 1024 8.2
sk 256 256 × 1024 8 sk 256 261 × 1024 8.2
aux 256 1024 3× 10−2 CRP 3312 261 × 1024 105.5
CRP 3312 256 × 1024 103.5 Masked AES Key 128 261 × 1024 4.1
Masked AES Key 128 256 4 RNG Seed 256 1 3.2× 10−5

MTi Roots 256 1024 (N) 3.3× 10−2

Total 115.5 Total (3 · 10−5 + 0.12 ·N) 125.9

As it can be seen from Table 2, EPUF interface is an overhead for both
schemes during key generation. However, for bilinear map based OTS-SKE,
key generation excluding PUF is still costly due to the costly arithmetic of
ECC during key generation.

– Signing. During this phase, based on the received nonce, 128/ log2 t = 64
encrypted secret keys along with their corresponding masked encryption keys
are fetched from the memory. In order to unmask the encryption keys, 64
calls are made to the EPUF interface to obtain the responses which takes
about 440 ms. The encryption keys are then unmasked, which is a much
faster operation, and the secret keys are decrypted which takes 19.2 ms.
Then the signature is generated which takes approximately 100 ms. As Table
2 shows, all components taken together costs 560 ms, about half a second.
If we exclude calls to the extended PUF interface, then it takes only 119 ms
in which the majority of the overhead comes from ECC related operations.

– Verification. Verification contains less components compared to the signing
phase and is performed outside the enclave by the remote user. Despite
containing less operations, verification is still costly (100 ms) since pairing
on the elliptic curve is performed 3 times in order to verify the signature.
On the other hand, hash based OTS-SKE verification phase is more complex
and costlier than bilinear based solution due to the additional merkle tree
construction and authentication computations.

Storage Cost. In addition to runtime cost of both methods presented previ-
ously, we also compare the storage cost in Table 3. Here, we assume that key
generation is for 1024 sessions and analyze the cost based on this assumption.
During initialization, we use 256 keys for bilinear map based OTS and 261 keys
for hash based OTS, which both use 256-bit keys. Therefore, the memory cost
for storing the sk, EPUF challenges and 128-bit masked AES keys are slightly
more for the hash based scheme. However, the vk that constitute the auxiliary
information aux in the hash based OTS is much larger compared to the aux

20 Dijk et al.

Table 4. Communication Cost between the RA Enclave and Remote User during
Signing (N=1024 sessions) of the Bilinear based and Hash based OTS-SKE. (E=Sent
by Enclave, U=Sent by Remote User)

Bilinear Map based OTS-SKE Hash based OTS-SKE

Component Size (bits) Quantity Total Size (KB) Component Size (bits) Quantity Total Size (KB)

Nonce (U) 256 1 0.031 Nonce (U) 256 1 0.031
Signature (E) 768 1 0.093 sk in Signature (E) 256 130 (s) 4.06

vk in Signature (E) 256 131 (q − s) 4.09
Authentication Path (E) 256 10 (l) 0.31

Total 0.125 Total (8.2 + 0.03 · l) 8.5

in the bilinear map based scheme. This is because each ski,j in ski in the hash
based scheme has a corresponding vki,j , while the auxiliary information in the
bilinear map based scheme is a single element for the whole session key ski. In
this case, the hash based scheme has to store 8.2 MB of vk for each session it sets
up while the bilinear map based scheme only needs to store 1 KB per session.

For the hash based OTS-SKE, the majority of the storage cost for Merkle tree
is eliminated, since the remote user generates upper-level Merkle tree authen-
tication nodes on the fly during verification (as reflected in Table 2). However,
for this, the 256-bit RNG seed needs to be stored, as it is used to regenerate
the bit-mask and hash-keys. Also, since constructing the lower-level Merkle tree
was costly during signing, only the root hash of lower-level Merkle trees in each
session to avoid this computation. Overall, the hash based signature scheme has
slightly more storage cost (approx. 10 MB) than bilinear map based scheme for
1024 sessions. However, this cost grows linearly in the number of sessions N .

Communication. Table 4 compares the size of data transmitted between the
remote user and the remote attestation enclave during the signing phase. The
bilinear map based solution is quite straightforward: After receiving the 256-bit
nonce (which is merged with the to-be signed message in order to prove fresh-
ness), a 768-bit signature σ is sent to the remote user. No other communication
needs to be performed between the remote user and the enclave. Although the
procedure is the same for hash based OTS-SKE, the signature is 43× longer.
Additionally, the rest of the q − s = 131 vki,j keys from aux for the current
session need to be sent to the user along with the log2 1024 = 10 merkle tree
nodes required in the authentication path for the user to calculate the root hash
for verification. This shows that the bilinear map based OTS-SKE significantly
reduces communication cost.

Lines of Code (LoC) within the Enclave. The code that remains inside
the enclave has to be trusted to not have a vulnerability, although this can be
exploited during interactions with the outside world. Therefore, the LoC is an
important indicator with respect to trust. The hash based OTS-SKE scheme is
a much more straightforward and compact solution in terms of implementation

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 21

compared to bilinear map based OTS-SKE. We have used the MIRACL library
for the bilinear map based solution and have only included the components
that are needed to perform necessary computations for the signature scheme.
7k+ lines of code have to reside within the enclave for the bilinear map based
solution whereas the hash based solution includes less than 500 lines of code.

Potential for Acceleration. For both solutions, the extended EPUF interface
leads to a significant overhead during key generation and signing which is due
to the excessive amount of PUF calls performed. Potentially, in a practical ap-
plication, the EPUF interface can entirely be pushed into hardware with more
circuitry and can become a component of the TCB. Depending on the availabil-
ity of resources, the number of PUFs can be increased in the TCB, which may
allow for more parallelism and acceleration. Overall, this is a micro architectural
problem and can be considered in the larger processor architecture context. In-
deed, this type of PUF acceleration method can be applied in both hash based
and bilinear map based OTS-SKE schemes. Excluding the PUF calls, we have
shown that the bilinear map based solution remains expensive and the elliptic
curve related computations are the main overhead. HW-based ECC acceleration
methods have been frequently explored and many hardware architectures have
been proposed for faster and more compact solutions [1, 11, 13, 15, 18, 23, 24],
including several methods that exploit the computing power of graphics pro-
cessing units (GPU) for ECC computations in the last decade [4, 20, 22, 25, 27].
For example, Pan et al. [20] has shown that, with GPU utilization, the elliptic
curve digital signature algorithm (ECDSA) can achieve 8.71 × 106 Operations
Per Second (OPS) for signature generation and 9.29× 105 OPS for verification.
Zhang et al. [27] has proposed an ECC GPU-based library for bilinear pairing
called ”EAGL” which can achieve 3350.9 pairings/sec on GPU at the 128-bit se-
curity level. Zhang et al. [27] achieved 8.7 ms per pairing on a 1024-bit security
level with GPU utilization, which is a 20× speedup compared to CPU imple-
mentations. This makes our bilinear map based OTS-SKE scheme more suitable
for further acceleration and improvements (e.g., with the use of a cryptographic
processor) in addition to improvements over the EPUF interface.

6 Conclusion

We introduced a bilinear map based OTS-SKE scheme with an orders of mag-
nitude smaller signature size compared to the existing hash based OTS-SKE
scheme. Signing takes only 60% of the time required by the hash based OTS-
SKE scheme. The main disadvantages of the bilinear map based scheme are that
it is not post quantum secure and key generation takes about 9× longer (al-
though the latter can be improved using ECC hardware acceleration). Without
sufficient quantum computing resources easily available, the bilinear map based
OTS-SKE is the best choice.

22 Dijk et al.

Acknowledgements

This research was supported by the National Science Foundation under Grants
No. 1617774 and 1929261.

References

1. Agnew, G., Mullin, R., Vanstone, S.: An implementation of elliptic curve cryp-
tosystems over f2155. IEEE J. Sel. Areas Commun. 11, 804–813 (1993)

2. Bos, J.N., Chaum, D.: Provably unforgeable signatures. In: Annual International
Cryptology Conference. pp. 1–14. Springer (1992)

3. Chow, S.S., Hui, L.C., Yiu, S.M., Chow, K.: Secure hierarchical identity based
signature and its application. In: International Conference on Information and
Communications Security. pp. 480–494. Springer (2004)

4. Cui, S., Großschädl, J., Liu, Z., Xu, Q.: High-speed elliptic curve cryptography on
the nvidia gt200 graphics processing unit. In: ISPEC (2014)

5. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital Signatures Out of
Second-Preimage Resistant Hash Functions. In: Buchmann, J., Ding, J. (eds.) Post-
Quantum Cryptography, vol. 5299, pp. 109–123. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008)

6. van Dijk, M., Gurevin, D., Jin, C., Khan, O., Nguyen, P.H.: Autonomous secure
remote attestation even when all used and to be used digital keys leak. IACR
Cryptol. ePrint Arch. 2021 (2021)

7. Dodis, Y., Franklin, M.K., Katz, J., Miyaji, A., Yung, M.: Intrusion-Resilient
Public-Key Encryption. In: Topics in Cryptology - CT-RSA 2003, The Cryptogra-
phers’ Track at the RSA Conference 2003, San Francisco, CA, USA, April 13-17,
2003, Proceedings. pp. 19–32 (2003)

8. Dodis, Y., Franklin, M.K., Katz, J., Miyaji, A., Yung, M.: A Generic Construction
for Intrusion-Resilient Public-Key Encryption. In: Topics in Cryptology - CT-RSA
2004, The Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA,
USA, February 23-27, 2004, Proceedings. pp. 81–98 (2004)

9. Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-Insulated Public Key Cryptosystems.
In: Advances in Cryptology - EUROCRYPT 2002, International Conference on the
Theory and Applications of Cryptographic Techniques, Amsterdam, The Nether-
lands, April 28 - May 2, 2002, Proceedings. pp. 65–82 (2002)

10. Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong Key-Insulated Signature Schemes.
In: Public Key Cryptography - PKC 2003, 6th International Workshop on Theory
and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003,
Proceedings. pp. 130–144 (2003)

11. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of
lightweight-cryptography implementations. IEEE Design Test of Computers 24(6),
522–533 (2007)

12. Franklin, M.K.: A survey of key evolving cryptosystems. IJSN 1(1/2), 46–53 (2006)
13. Gao, L., Shrivastava, S., Sobelman, G.: Elliptic curve scalar multiplier design using

fpgas. In: CHES (1999)
14. Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-Based Hierarchical

Strongly Key-Insulated Encryption and Its Application. In: Advances in Cryp-
tology - ASIACRYPT 2005, 11th International Conference on the Theory and
Application of Cryptology and Information Security, Chennai, India, December
4-8, 2005, Proceedings. pp. 495–514 (2005)

Bilinear Map Based One-Time Signature Scheme with Secret Key Exposure 23

15. Huang, M., Gaj, K., El-Ghazawi, T.: New hardware architectures for montgomery
modular multiplication algorithm. IEEE Transactions on Computers 60(7), 923–
936 (2011)

16. Itkis, G.: Forward security, adaptive cryptography: Time evolution (2004)
17. Lamport, L.: Constructing digital signatures from a one-way function. Tech. rep.,

Technical Report CSL-98, SRI International (1979)
18. Leung, K.H., Ma, K.W., Wong, W., Leong, P.: Fpga implementation of a mi-

crocoded elliptic curve cryptographic processor. Proceedings 2000 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines (Cat. No.PR00871)
pp. 68–76 (2000)

19. Merkle, R.C.: A digital signature based on a conventional encryption function. In:
Conference on the theory and application of cryptographic techniques. pp. 369–378.
Springer (1987)

20. Pan, W., Zheng, F., Zhao, Y., Zhu, W., Jing, J.: An efficient elliptic curve cryptog-
raphy signature server with gpu acceleration. IEEE Transactions on Information
Forensics and Security 12(1), 111–122 (2017)

21. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. Journal of cryptology 13(3), 361–396 (2000)

22. Pu, S., Liu, J.: Eagl: An elliptic curve arithmetic gpu-based library for bilinear
pairing. In: Pairing (2013)

23. Satoh, A., Takano, K.: A scalable dual-field elliptic curve cryptographic processor.
IEEE Transactions on Computers 52(4), 449–460 (2003)

24. Sutikno, S., Effendi, R., Surya, A.: Design and implementation of arithmetic pro-
cessor f/sub 2//sup 155/ for elliptic curve cryptosystems. IEEE. APCCAS 1998.
1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and
Integrating Systems. Proceedings (Cat. No.98EX242) pp. 647–650 (1998)

25. Szerwinski, R., Güneysu, T.: Exploiting the power of gpus for asymmetric cryp-
tography. In: CHES (2008)

26. Watanabe, Y., Shikata, J.: Identity-Based Hierarchical Key-Insulated Encryption
Without Random Oracles. In: Public-Key Cryptography - PKC 2016 - 19th IACR
International Conference on Practice and Theory in Public-Key Cryptography,
Taipei, Taiwan, March 6-9, 2016, Proceedings, Part I. pp. 255–279 (2016)

27. Zhang, Y., Xue, C., Wong, D., Mamoulis, N., Yiu, S.: Acceleration of composite
order bilinear pairing on graphics hardware. IACR Cryptol. ePrint Arch. 2011,
196 (2012)

