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Abstract

We construct, under standard hardness assumptions, the first non-malleable commit-
ments secure against quantum attacks. Our commitments are statistically binding and
satisfy the standard notion of non-malleability with respect to commitment. We obtain a
log?(λ)-round classical protocol, assuming the existence of post-quantum one-way functions.

Previously, non-malleable commitments with quantum security were only known against
a restricted class of adversaries known as synchronizing adversaries. At the heart of our
results is a new general technique that allows to modularly obtain non-malleable commit-
ments from any extractable commitment protocol, obliviously of the underlying extraction
strategy (black-box or non-black-box) or round complexity. The transformation may also
be of interest in the classical setting.
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1 Introduction

Commitments are one of the most basic cryptographic primitives. They enable a sender to
commit to a string to be opened at a later stage. As long as the commitment is not opened,
it is hiding — efficient receivers learn nothing about the committed value. Furthermore, the
commitment is statistically binding — with overwhelming probability, the commitment can be
opened to a single, information-theoretically determined value in the commitment phase. While
these basic security guarantees go a long way in terms of applications, they do not always suffice.
In particular, they do not prevent a man-in-the-middle adversary from receiving a commitment
to a given value v from one party and trying to send to another party a commitment to a related
value, say v − 1 (without knowing the committed value v at all).

Such attacks are called ”mauling attacks” and in some settings could be devastating. For
instance, consider the scenario where a city opens a bidding process for the construction of a
new city hall. Companies are instructed to commit to their proposed bid using a commitment
scheme, and these commitments are opened at the end of the bidding period. If the scheme is
”malleable”, company A may manage to underbid company B, by covertly mauling B’s com-
mitment to create their own commitment to a lower bid. More generally, ensuring independence
of private values is vital in many applications of commitments, such as coin tossing, federated
learning, and collaborative computation over private data.

In their seminal work, Dolev, Dwork and Naor introduced the concept of non-malleable
commitments to protect against mauling attacks [DDN03]. They guarantee that the value ṽ a
man-in-the-middle adversary commits to is computationally independent of the value v in the
commitment it receives (unless the man-in-the-middle simply “copies”, by relaying messages be-
tween the honest sender and receiver it interacts with, in which case ṽ = v). From its onset, the
study of non-malleable cryptography has put stress on achieving solutions without any reliance
on trusted parties or any form of trusted setup, and solutions that hold when honest parties
may not even be aware of the existence of a man-in-the-middle, and the way it manipulates the
messages they send over time. The latter is particularly important in applications where the
man-in-the-middle acts ”in the dark”. For instance, in the aforementioned example, company
A may not be aware of the competing company B.

Since their conception, non-malleable commitments have indeed proved to be a useful and
versatile building block for ensuring independence of values. They have been used in coin-
tossing protocols, secure multiparty computation protocols, non-malleable proof systems (zero-
knowledge, witness indistinguishability, multi-prover interactive proofs), and more . Techniques
developed for non-malleable commitments are also useful for building non-malleable codes, non-
malleable extractors (and two source extractors), and non-malleable time-lock puzzles. The
work of [DDN03] constructed the first non-malleable commitments against classical adversaries
based on one-way functions. Since then, a plethora of constructions have been proposed achiev-
ing different, sometimes optimal, tradeoffs between round-complexity, efficiency, and underlying
assumptions (c.f. [Bar02, PR05a, PPV08, LPV09, PW10, Wee10, Goy11, GLOV12, COSV16,
GPR16a, GKS16, Khu17, KS17, LPS17, BL18, KK19, GR19, GKLW20]).

Non-Malleability Against Quantum Adversaries. In contrast to the comprehensive un-
derstanding of non-malleability in the classical setting, our understanding of non-malleability
against quantum adversaries is very much lacking. The threat of quantum attacks has prompted
the development of post-quantum cryptography, and yet despite its important role in cryptogra-
phy, post-quantum non-malleability has yet to catch up. In this work, we construct, under stan-
dard assumptions, the first non-malleable commitments with post-quantum security, namely,
the hiding and non-malleability properties hold even against efficient quantum adversaries (and
binding continues to be information theoretic).



Prior to our work, post-quantum non-malleable commitments were not known under any
assumption. Partial progress was made by Agrawal, Bartusek, Goyal, Khurana, and Malavolta
[ABG+20] who, assuming super-polynomial quantum hardness of Learning With Errors, con-
struct post-quantum non-malleable commitments against a restricted class of adversaries known
as synchronizing adversaries. A synchronizing adversary is limited as follows: When acting as
a man-in-the-middle between a sender and a receiver, it is bound to synchronize its interactions
with the honest parties; namely, when it receives the i-th message from the sender, it immedi-
ately sends the i-th message to the receiver and vice versa. Such synchronicity may often not
exist for example due to network’s asynchronicity, lack of synchronized clocks, or concurrent
executions where parties are unaware of the existence of other executions. Enforcing synchro-
nizing behaviour in general requires a trusted setup (like a broadcast channel) and coordination
among parties to enforce message ordering.

The gold standard of non-malleability (since its introduction in [DDN03]) requires handling
general, non-synchronizing adversaries, who can arbitrarily schedule messages in the two in-
teractions (without awareness of the sender and receiver). In this work, for the first time, we
achieve this gold standard non-malleability in the post-quantum setting. As we shall explain
later on, the challenge stems from the fact that classical techniques previously used to obtain
non-malleability against non-synchronizing adversaries (e.g., as robust extraction [LP09], simu-
lation extractability [PR05a, PR05b] and so on) do not generally apply in the quantum setting.
This is due to basic quantum phenomena such as unclonability [WZ82] and state disturbance
[FP96].

Our Results in More Detail. We construct statistically binding non-malleable commit-
ments against quantum non-synchronizing adversaries, assuming post-quantum one-way func-
tions. Our main result is a modular construction of post-quantum non-malleable commitments
from post-quantum extractable commitments. The latter is a statistically binding commitment
protocol that is extractable in the following sense: There exists an efficient quantum extractor-
simulator, which given the code of any quantum sender, can simulate the arbitrary output of
the sender up to, while extracting the committed value. The construction, in fact, only requires
ε-extractability, meaning that the extractor-simulator obtains an additional simulation accuracy
parameter 11/ε, and the simulation only guarantees ε-indistinguishability

Theorem 1.1 (Informal). Assuming k-round post-quantum ε-extractable commitments, there
exist kO(1) · log? λ-round post-quantum non-malleable commitments, where λ is the security
parameter.

By default, when we say ”post-quantum” we mean protocols that can be executed by clas-
sical parties, but which are secure against quantum adversaries. In particular, starting from
a post-quantum classical ε-extractable commitment, we obtain a post-quantum classical non-
malleable commitment. Constant-round ε-extractable commitments were constructed by Chia
et al. [CCLY21] based on post-quantum one-way functions. Hence, we get the following corol-
lary.

Corollary 1.1. Assuming there exist post-quantum one-way functions, there exist O(log? λ)-
round post-quantum non-malleable commitments.

2 Technical Overview

We now give an overview of the main ideas behind our construction. Following the conven-
tion in the non-malleability literature, we refer to the interaction between Sen and A as the
left interaction/commitment, and that between Rec and A the right interaction/commitment.
Similarly, we refer to v, tg (and ṽ, t̃g) as the left (and right) committed values or tag.
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2.1 Understanding the Challenges

Before presenting our base commitments, we explain the main challenges that arise in the
quantum setting. First, we recall a basic approach toward proving non-malleability in the
classical setting via extraction. Here the basic idea is to provide a reduction that given a MIM
adversary A, can efficiently extract the value ṽ that A commits to on the right. Accordingly, if
the MIM A manages to maul the commitment to v on the left and commit to a related value
ṽ on the right, the reduction will gain information about v, and be able to break the hiding of
the commitment.

The Difficulty in MIM Extraction. Extractable commitments allow for efficient extraction
from adversarial senders in the stand-alone setting. Such extraction is traditionally done by
either means of rewinding, or more generally using the sender’s code. In the MIM setting,
where A acts as a sender on the right, while acting as a receiver on the left, extraction from
A is much more challenging. The problem is that the interaction of A with the receiver Rec
on the right may occur concurrently to its interaction with the sender Sen on the left. This
means that a reduction attempting to rewind A to extract the right committed value, may
effectively also need to rewind the sender Sen on the left. (This may happen for example if,
when the reduction rewinds A and sends A a new message, A also sends a new message in the
left commitment and expects a reply from Sen before proceeding in the right commitment.) In
such a case, extraction does not generally work — the “actual” sender of the right commitment
is essentially the MIM A combined with the sender Sen on the left. However, the reduction does
not posses the code of Sen, specifically, it does not posses its randomness. The challenge is to
perform such extraction without access to the secret randomness of the sender on the left, and
thus without compromising the hiding of the left commitment.

Indeed, classical non-malleable commitments tend to require more than plain extractable
commitments. A long array of works (c.f., [DDN03, PR05b, PR05a, LP09, PW10, LP11, Goy11])
design various safe extraction techniques, which guarantee extraction on the right without com-
promising hiding of the left committed value. These safe-extraction techniques rely on proper-
ties of specific protocols and extraction strategies, rather than general (stand-alone) extractable
commitments. For instance, the protocols of [DDN03, LP09, LP11, Goy11, GPR16b] rely on
three-message witness-indistinguishable protocols satisfying an extraction guarantee known as
special soundness, whereas the protocols in [PR05b, PR05a] rely on the specific structure of
Barak’s non-black-box zero knowledge protocol.

The Quantum Barrier. The (safe) extraction techniques used to obtain non malleability in
the classical setting fail in the quantum setting. For once, rewinding does not generally work.
We cannot record the adversary’s quantum state between rewinding attempts due to the no-
cloning theorem [WZ82]. Also, we cannot simply measure between rewindings, as this disturbs
that the adversary’s state [FP96]. In this case, even if we do extract, we may not be able
to faithfully simulate the adversary’s output state in the protocol1. Similarly, non-black-box
techniques do not generally apply. For instance, it is unclear how to apply Barak’s non-black-
box simulation technique [Bar02], due to the lack of universal arguments [BG08] for quantum
computations (this is just to mention one difficulty in using Barak’s strategy in the quantum
setting).

The difficulty of applying classical proof techniques in the setting of quantum adversaries
is indeed a well known phenomena, and in some settings, quantum proof techniques have been
successfully developed to circumvent this difficulty. Perhaps the most famous example of this

1Recall that non-malleability requires that the joint distribution of the output state of the adversary and the
committed value are indistinguishable regardless of the committed value on the left. Hence the reduction needs
to extract the committed value without disturbing the state of the quantum adversary.
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is in the context of zero-knowledge simulation. Here Watrous [Wat09] shows that in certain
settings quantum rewinding is possible and used it to obtain zero-knowledge protocols. Several
other rewinding techniques enable extraction, but disturb the adversary’s state in the process
[Unr12, CCY20, CMSZ21]. Alternatively, several recent works [AP19, BS20, ABG+20] obtain
constant round zero-knowledge via non-black-box quantum techniques, using quantum FHE
(and assuming LWE). While post-quantum extractable commitments do exist, they do not
satisfy the specific properties that the classical safe-extraction techniques require.

Given the above state of affairs, in this work, we aim to construct post-quantum non-
malleable commitments modularly based on any post-quantum extractable (or ε-extractable)
commitment. The equivalence between extractability and non-malleability is interesting on its
own from a theoretical perspective. It turns out that doing so is challenging, and requires de-
signing completely new safe-extraction techniques that work with general quantum extractable
commitments, which we explain next.

Remark 2.1. For the sake of simplicity, and toward highlighting the main new ideas in this work,
we ignore the difference between fully-extractable and ε-extractable commitments throughout
the rest of this overview. The transition from full extractable commitments to ε-extractable ones
is quite direct and is based on the common knowledge that ε-simulation is sufficient when aiming
to achieve indistinguishability-based definitions. Indeed, the definition of non-malleability is
an indistinguishability-based definition, and accordingly, showing ε-indistinguishability for any
inverse polynomial ε is sufficient. In this case, the simulators invoked in the reduction are all
still polynomial-time.

The Synchronizing Setting. As observed in [ABG+20], if restricted to synchronizing adver-
saries, such a modular construction exists using ideas from early works [CR87, DDN03]: When
committing under a tag tg ∈ [τ ] for τ ≤ λ, in every round i 6= tg send an empty message,
and in round tg, send an extractable commitment to the value v. Indeed, in the synchronizing
setting, a commitment on the left under tag tg would never interleave with the commitment on
the right under tag t̃g 6= tg. Thus, safe-extraction opportunities come for free, circumventing
the real challenge in achieving non-malleability. It is not hard to see, however, that in the non-
synchronizing setting, this approach would completely fail as the adversary can always align
the extractable commitment on the right with that on the left. The work of [ABG+20] further
constructed constant-round non-malleable commitments for a super-constant number of tags,
based on mildly super-polynomial security of quantum FHE and LWE. The non-malleabilty of
the new protocol, however, still relies on the synchronization of the left and right commitments.

2.2 Leveraging Extractable Commitments in the Non-Synchronizing Setting

We design a base protocol for a constant number of tags that, using any (post-quantum) ex-
tractable commitment scheme. The protocol guarantees extraction on the right while preserving
hiding on the left, even against a quantum non-synchronizing MIM adversary. In this overview,
we explain our base commitments in three steps:

• First, we introduce our basic idea in the simplified one-sided non-malleability setting where
the MIM is restricted to choose a smaller tag on the right than the tag on the left, t̃g < tg.

• Then, we extend the basic idea to the general setting where the MIM may also choose a
right tag that is larger t̃g > tg. We illustrate the main ideas here under the simplifying
assumption of a certain honest behavior of the adversary.

• Finally, we show how to remove the simplifying assumption on the adversary.
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Step 1: One-sided Non-malleability Let us first consider a MIM adversary that given a
commitment on the left under tag tg, produces a commitment on the right under a smaller tag
t̃g < tg. In our commitment, the sender first secret shares the value v to be committed into
shares u1, . . . , un. It then sequentially sends extractable commitments to each of the shares
u1, . . . , un – we refer to the entire batch of these sequential extractable commitments as a block-
commitment to v. The binding and hiding of this protocol follow directly from those of the
underlying extractable commitment. We focus on non-malleability.

To achieve non-malleability, the number of shares n is chosen as a function of the tag tg.
The goal is to guarantee that in every execution where the tag t̃g on the right is smaller than
the tag tg on the left, there will exist, on the left, a commitment to one of the shares ui that is
free in the sense that it does not interleave with the interaction on the right; namely, during the
commitment to ui on the left, no message is sent in the right execution (see Figure 1). Before
explaining how freeness is achieved, let us explain how we use it to establish non-malleability.

MIM

free

Figure 1: Freeness Example. Each share commitment has 4 messages and there are n = 3 shares on the
left, and ñ = 2 shares on the right. The second commitment on the left is free. Note that it splits the
second commitment on the right.

Extracting While Preserving Hiding and First-Message Binding. To argue non-malleability, we
show that we can efficiently extract all shares ũ1, . . . , ũñ on the right, while preserving the
hiding of the free share ui on the left, and by the security of secret sharing, also the hiding of
the committed value v.

Freeness guarantees that almost all commitments on the right do not interleave with the
commitment to ui on the left, more precisely, a single commitment on the right could be “split”
by the commitment to ui on the left (as in Figure 1), which prevents extraction of that right
split commitment. To deal with this, we rely on extractable commitments that are first-message
binding; namely their first sender message fixes the value of the commitment. This gives rise
to a simple extraction strategy: for any commitment on the right, where the first sender’s
message is sent before the free commitment (on the left), we can extract the corresponding
share non-uniformly; for the commitments where the first sender’s message occurs afterwards,
we use the efficient extractor. Accordingly, we get a non-uniform reduction to the hiding of the
free extractable commitment on the left.

We observe that any extractable commitment can be made first-message binding without any
additional assumptions, and while increasing round complexity by at most a constant factor.
For simplicity we describe how to achieve this assuming also non-interactive commitments.2

2In the body, we observe that Naor commitments [Nao91], which can be obtained from (post-quantum)
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We append to the original extractable commitment a first message where the sender sends
a non-interactive commitment to the committed value and add at the end a zero-knowledge
argument that this commitment is consistent with the commitment in the original extractable
commitment. Extractability follows from the extractability of the original scheme and soundness
of the argument, whereas hiding follows from that of the original scheme and the zero knowledge
property. We note that (post-quantum) zero-knowledge arguments follow from (post-quantum)
extractable commitments with a constant round complexity overhead (see e.g. [BS20]), and the
same holds for ε-zero-knowledge and ε-extractable commitments, respectively.

Guaranteeing Freeness. To achieve the required freeness property, it suffices to guarantee that
whenever t̃g < tg, the number of shares n(tg) (and hence the number of extractable commit-
ments) on the left is larger than the total number of messages on the right, which is k · n(t̃g),
where k is the number of messages in each extractable commitment. Accordingly, we choose
n(tg) = (k + 1)tg.

Step 2: Dealing with General Adversaries. The above commitment does not prevent maul-
ing of commitments under tag tg to commitments under tags t̃g > tg. To deal with general ad-
versaries, we invoke the above idea again in reverse order. That is, the sender now secret shares
the value v twice independently: once to n shares u1, . . . , un, and again to n̄ shares ū1, . . . , ūn̄.
It then sequentially sends extractable commitments to the shares u1, . . . , un, ū1, . . . , ūn̄, that is,
sending two sequential block-commitments to v. To understand the basic idea, we assume for
simplicity, in this step, that the MIM attacker always commits to shares of the same value ṽ
in the two block-commitments on the right (in Step 3, we will remove this assumption using
zero-knowledge arguments).

Our goal now is to set the number of shares n(·), n̄(·), based on the tags, to guarantee that
there exists a block-commitment on the right with respect to which there exist two extractable
commitments to shares ui and ūī on the left (one from each left block-commitment) that are
free. This means we can extract every share from that right block-commitment, while keeping
the shares ui and ūī, and hence the left committed value, hidden. We say that the corresponding
block-commitment on the right is ideally scheduled (see Figure 4).

Once we establish the existence of an ideally scheduled block, we can prove non-malleability
using a non-uniform reduction to the hiding of the extractable commitments to ui and ūī similar
to the one we used in the first step. Since we are only able to extract from one of the two block-
commitments on the right, it is important that both commit to the same value ṽ, and thus
our reduction would work, regardless of which one of the two it is able to extract from. Before
we explain how to enforce this using ZK in Step 3, we explain how the existence of an ideally
scheduled block is established.

Guaranteeing an Ideally Scheduled Block-Commitment. We prove that by setting the parame-
ters n, n̄ appropriately, an ideally scheduled block of shares always exists. For this purpose we
generalize the combinatorial argument from before. Concretely, we set n, n̄ to guarantee that:

1. Either, the number of shares n = n(tg) in the first left block-commitment is larger than
the total number of messages k · n(t̃g) in the first right block-commitment,

2. Or, the number of shares n̄ = n̄(tg) in the second left block-commitment is larger than
the total number of messages k · n̄(t̃g) in the second right block-commitment.

In addition, we require that n, n̄ are both at least 2. These conditions can be satisfied for
example by setting n = (k + 1)tg, n̄ = (k + 1)τ−tg + 1, where τ is the total number of tags
(namely, tg ∈ [τ ]).

one-way functions, and thus also from any commitment, are in fact sufficient.
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MIM

free
free
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Figure 2: Case 1

MIM id
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free
free

free
free

Figure 3: Case 2

Figure 4: Examples of an ideally scheduled block of shares (on the right). The first block of share
commitments is colored in (light/dark) blue and the second in (light/dark) yellow. We mark the com-
mitments on the left that are free with respect to the ideally scheduled block.

To see why the above is sufficient, let us assume for instance that Condition 2 of the two
above conditions holds (at this point, both are treated symmetrically). We consider two cases:

• Case 1 (depicted in Figure 2) : the commitment to share u1 (i.e., the first share of the
first block-commitment) on the left ends before the second block-commitment starts on
the right. In this case, the commitment to u1 on the left is free with respect to the second
block-commitment on the right. Furthermore, since Condition 2 holds, (by the argument
in Step 1,) there also exists a commitment to a share ūi (in the second block-commitment)
on the left that is also free with respect to the second block-commitment on the right.
Accordingly, the second block-commitment on the right is ideally scheduled.

• Case 2 (depicted in Figure 3) : the commitment to share u1 on the left ends after
the second block of share commitments starts on the right. In this case, the commitments
to shares u2, . . . , un, ū1, . . . , ūn̄ on the left are all free with respect to the first block-
commitment on the right, and thus it is ideally scheduled. (We use the fact that n ≥ 2,
to deduce that a free share u2 indeed exists.)

Step 3: Use ZK to Ensure Consistency of Right Block-Commitments. Recall that in
the last step, we made the simplifying assumption that that the MIM adversary always commits
to the same value ṽ in the two right block-commitments. The expected approach to removing
this assumption, would be to require that the sender gives a (post-quantum) zero-knowledge
argument that such consistency indeed holds.

While the soundness of the argument guarantees the required consistency on the right,
the addition of a zero knowledge proof brings about new challenges in the reduction of non-
malleability to hiding on the left, due to non-synchronizing advesaries. Indeed, in the proof of
non-malleability, before using the hiding of the extractable commitments on the left, we must use
the zero knowledge property on the left to argue that the proof does not compromise the hidden
shares. The problem is that the zero-knowledge argument on the left might interleave with our
ideally scheduled block-commitment on the right, and thus with our extraction procedure. For
instance, if the extractor wants to rewind the MIM, it might have to rewind the zero knowledge
prover on the left, which is not possible. More generally, there could be a circular dependency:
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The zero-knowledge simulation needs to be applied to the verifier’s code which depends on the
extractor’s code; however, extraction needs to be applied to the sender’s code which depends
on the simulator’s code.

To circumvent this difficulty, we would like to guarantee that an ideally scheduled block-
commitment would also be free of the zero knowledge messages on the left, namely, during
its execution, no zero knowledge messages should be sent in the left execution (see Figure 5).
Indeed, if this is the case, then we can apply the zero knowledge simulator to the verifier that
when needed runs the extractor on the right in its head. Note that since the the right block-
commitment is free from zero knowledge messages on the left, the code of the extractor, and
induced verifier, is independent of the simulator’s code, breaking the circularity.

MIM
id

eally sch
ed

u
led

free
free

free
free

Figure 5: The zero knowledge argument on the left is colored in green. The ideally scheduled block of
shares on the right is required to be free of any zero knowledge messages (as well as satisfy the same
conditions as before).

Guaranteeing (the Stronger Form of) Ideal Scheduling. To achieve the stronger form of ideal
scheduling, we augment the protocol yet again. Specifically, we repeat sequentially for ` + 1
times the second block-commitment to shares ū1, . . . , ūn̄, where ` is the number of rounds in the
zero knowledge protocol. We now require that there is a block-commitment I among the `+ 2
right block-commitments (one of u1, . . . , un, and `+ 1 of ū1, . . . , ūn̄) that is ideally scheduled in
the following stronger sense:

1. There exist shares ui and ūī such that all commitments to these shares (one to ui and
`+ 1 ones to ūi) on the left, are free of the I’th right block-commitment.

2. The I’th right block-commitment is free of the zero knowledge argument on the left.

We provide a more involved combinatorial argument (and choice of parameters n, n̄) showing
that an ideally scheduled right block-commitment I always exists. Concretely, we set n, n̄ to
guarantee that:

1. Either, the number of shares n = n(tg) in the first left block-commitment as well as the
number of shares n̄ = n̄(tg) in each of the left block-commitments 2, . . . , ` + 2 are both
larger than the total number of messages k · n(t̃g) in the first right block-commitment.

2. Or, the number of shares n̄ = n̄(tg) in each of the left block-commitments 2, . . . , ` + 2 is
larger than the total number of messages k · n̄(t̃g) in each of the right block-commitments
2, . . . , `+ 2.
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Again, we also require that n, n̄ are both at least 2. The above conditions can be satisfied for
example by setting n = (k+ 1)tg, n̄ = (k+ 1)2τ−tg + 1, where τ is the total number of tags. The
above two conditions can no longer be treated symmetrically as before. We explain separately,
how each one of them implies the existence of an ideally scheduled block on the right (in the
stronger sense defined above).

• Case 1 (applies for either one of the two conditions): the first block-commitment
on the right ends after the knowledge argument on the left had started. In this case, block
commitments 2, . . . , `+2 on the right do not interleave with any of the block commitments
on the left. Thus, we only need to establish that one of them does not interleave with the
zero knowledge argument on the left. This follows from the fact that there are ` + 1 of
them, but only ` messages in the zero knowledge argument.

• Case 2: Condition 1 holds, but Case 1 above does not hold. First, since Case 1 does not
hold, the first right block commitment does not interleave the zero knowledge argument
on the left (which only starts after this block commitments ends). Accordingly, it is left
to establish that there exist share commitments ui in left block commitment 1 and ūī in
each of the left block commitments 2, . . . , `+ 2 that are free with respect to the first right
block commitment. This is where we use Condition 1 — since the number of messages in
this right block is strictly smaller than the number of shares n, n̄ in each left block, the
required free share commitments are guaranteed to exist.

• Case 3 (applies for either one of the two conditions): the commitment to share
u1 on the left ends after the second block of share commitments starts on the right. In
this case, the commitments to shares u2, . . . , un, ū1, . . . , ūn̄, as well as the zero knowledge
argument on the left are all free with respect to the first block-commitment on the right,
and thus it is ideally scheduled. (This case is similar to the simplified case depicted in
Figure 2.)

• Case 4: Condition 2 holds, but Case 3 above does not hold. First, since Case 3 does not
hold, all the right block commitments 2, . . . , `+ 2 do not interleave with the commitment
to share u1 in the first left block commitment. Furthermore, one of these right blocks
blk ∈ {2, . . . , `+ 2} does not interleave with the zero knowledge argument on the left
(which consists of ` messages). To deduce that blk is ideally schedule, it is left to show
that there is a free share ūī in each of the left blocks 2, . . . , `+2. Here we invoke Condition
2 — the number of messages in blk is strictly smaller than the number of shares n̄ in each
of the left blocks 2, . . . , ` + 2, the required free share commitments are again guaranteed
to exist.

2.3 Tag Amplification

We now briefly overview the tag amplification process, which takes a non-malleable commitment
〈Sen,Rec〉 for t ∈ [3, O(log λ)] bit tags and transforms it into 〈Ŝen, R̂ec〉 for T = 2t−1 bit tags.
The amplification procedure is an adaptation of existing procedures from the literature mostly
similar to [KS17, ABG+20] which in turn is based on that of [DDN03]; however, unlike the first
of the two, it relies on polynomial hardness assumptions, and avoids complexity leveraging, and
unlike the second, it works against non-synchronizing adversaries and not only synchronizing
ones.

The basic way that previous amplification schemes work is as follows: to commit to a value v,
under a tag t̂g ∈ {0, 1}T for T = 2t−1, we consider t− 1 tags of the form tgi = (i, t̂g[i]) ∈ {0, 1}t
corresponding to the base scheme (here t̂g[i] is the i-th bit of t̂g). The committer then sends
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t − 1 commitments to the value v in parallel under each one of the tags tgi, using the base
protocol 〈Sen,Rec〉. Finally, a proof that all t− 1 commitments are consistent is added.

The basic idea behind the transformation is that if all the commitments are consistent, then
in order to maul a commitment to value v under tag t̂g to a commitment to a related value ṽ
under tag t̂g

′ 6= t̂g, the MIM must create a commitment to ṽ using the base protocol under tag
tg′i = (i, t̂g

′
[i]) for every i ∈ [t− 1], by potentially mauling from some of the left commitments

to v under tags {tgi = (i, t̂g[i])}i∈[t−1]. However, the fact that t̂g 6= t̂g
′

means that they differ

on at least one bit, that is, t̂g[j] 6= t̂g
′
[j] for some j. Thus, tag tg′j = (j, t̂g

′
[j]) on the right is

different from all the tags {tgi = (i, t̂g[i])}j∈[t−1] on the left. By the non-malleability of the base

protocol, the value committed to under tag tg′j = (j, t̂g
′
[j]) on the right must be independent

of the value v committed under tags {tgi = (i, t̂g[i])} on the left. Given additionally that the
values committed to in all base commitments on the right are the same, the non-malleability of
〈Ŝen, R̂ec〉 with respect to t̂g, t̂g

′
then follows.

In the setting of synchronizing MIM adversaries the above intuition can be formalized as
expected, when the proof of consistency is instantiated with a zero-knowledge argument. In the
more general setting of non-synchronizing adversaries, things become more subtle. Specifically,
if the zero knowledge argument on the left interleaves with the non-malleable commitments on
the right, then it is not clear how to leverage the non-malleability of the base protocol 〈Sen,Rec〉.
(More specifically, we need to apply zero-knowlege simulation on the code of the verifier, which
however might depend on the honest receiver Rec’s code. Then, we can no longer reduce to the
non-malleability of the base protocol.)

To overcome this difficulty, we rely on the Feige-Lapidot-Shamir trapdoor paradigm [FLS99].
The first receiver message in our protocol sets up a trapdoor (a solution to a hard problem),
and the final proof of consistency is a witness indistinguishable (WI) proof that either: (1)
the t− 1 commitments are consistent, or (2) the sender “knows” the trapdoor (where formally
knowledge is enforced using an extractable commitment). The idea behind the FLS paradigm
is that the trapdoor cannot be obtained by a sender running the protocol, and thus the validity
of assertion (1) is guaranteed on right. In contrast, we would like to ensure that the reduction
of non-malleability to hiding on the left would be able to obtain the trapdoor and use it in order
to simulate the WI proof.

We can show that the reduction can indeed do this, but only provided certain scheduling
conditions. Specifically, the trapdoor on the left should be set up before the non-malleable com-
mitment on the right occurs. In this case, we can non-uniformly obtain the witness. To deal with
the other case, we augment the protocol yet again, adding a plain non-interactive commitment
to the committed value v between the trapdoor set up phase and the non-malleable commitment
phase. In case the non-malleable commitment on the right starts before the trapdoor set up on
the left, then in particular the plain commitment on the right occurs before any commitment
was made on the left. In this case, we have a direct reduction from non-malleability to hiding,
which non-uniformly obtains the value of the plain commitment on the right (this is akin to
our earlier use of ”first-message binding”). We refer the reader to Figure 7 for the amplification
scheme and Section 6 for the proof.

Robustness. One challenge in the proof above is that even in the case that we can obtain
the trapdoor witness on the left, it is not immediate that non-malleability holds when the
commitments on the right interleave with the proof. For this, we require that the base non-
malleable commitment satisfies an extra property known as r-robustness [LP12]. This property
essentially says that the committed value on the right can be extracted without rewinding an
arbitrary r-message protocol (the WI proof in our case) executed concurrently. This allows to
switch the witness used in the WI on the left, and argue that the right committed value stays
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the same after the switch.
We show that our base protocol (described in Section 2.2) is indeed robust for an appropriate

choice of parameters. We further show that the tag amplification transformation described here,
preserves r-robustness. (See more details in Section 4.)

Two-Sided Extraction via Watrous’ Rewinding Lemma. One challenge in our analysis of
both the base protocol and the tag amplification procedure is that the adversary’s scheduling of
messages is adaptive. In particular, even though the protocol’s design guarantees that executions
always contain certain extraction opportunities, we do not know ahead of time when they will
occur. This is not a problem in the classical setting, where one can typically run first the so
called main thread to identify the extraction oppertunities and then rewind back to extract.
However, such rewinding in the quantum setting might disturb the adversary’s state.

The analysis of our base scheme circumvents this difficulty by showing a reduction to
adversaries that commit ahead of time to the timing of the so called extraction opportuni-
ties. This reduction strongly relies on the fact that the definition of non-malleability is an
indistinguishability-based definition. In contrast, r-robustness is a simulation based definition
— it requires a simulator that given the code of the MIM adversary can extract on the right,
while interacting with an r-message protocol on the left. Let us briefly explain the difficulty in
this setting.

To achieve r-robustness, we make sure there are more than r extraction opportunities on the
right. Consider a simplified scenario where the MIM gives r+ 1 extractable commitments, and
we want to extract from the ”free” extractable commitment that does not interleave with any of
the r left messages — we refer to this as non-interleaving extraction. The difficulty is that the
simulator does not know which extractable commitment would be ”free”. If the simulator starts
an extractable commitment without applying the extractor, it might miss the sole extraction
opportunity. On the other hand, if it always applies the extractor, extraction may halt when the
adversary expects a message on the left, and the simulator should give up extraction but still
faithfully simulate the left and right interactions from here. To resolve this conundrum, we need
the extractor of an extractable commitment protocol to be able to interchangeably simulate two
types of interactions, ones that will eventually constitute an extraction opportunity and ones
that will turn out not to be extractable due to the adversary’s scheduling.

Toward this, we prove a two-sided simulation lemma for extractable commitments. This
lemma shows that we can always enhance the extractor so that in case the sender in the
commitment prematurely aborts, not only can we simulate the sender’s state at that point, but
also the state of the receiver (in case of abort, extraction is not required); otherwise, the extractor
simulates the sender’s state and extracts the committed value as usual (without simulating the
state of the receiver). Using this two-sided extractor we can deal with cases where a commitment
on the right turns out not to be extractable due to scheduled messages on the left by viewing
this event as a premature abort, and then using the simulated state of the receiver to faithfully
continue the interaction (without extracting).

The proof of the lemma is inspired by [BS20] and uses the fact that up to the point of
abort a real execution and an execution simulated by the extractor are indistinguishable. Our
two-sided extractor first tosses a random coin to decide whether to simulate with extraction
or to honestly simulate the receiver anticipating an abort; if the guess failed, it tries again
(the expected number of trials is negligibly close to two). While this works smoothly in the
classical setting, in the quantum setting it should be done with care, as rewinding without state
disturbance is typically a problem. In this specific setting, however, we meet the conditions
of Watrous’ quantum rewinding lemma [Wat09] — our extractor is guaranteed to succeed with
probability close to 1/2, obliviously of the quantum internal state of the adversarial sender.
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3 Preliminaries

We rely on standard notions of classical Turing machines and Boolean circuits:

• A PPT algorithm is a probabilistic polynomial-time Turing machine.

• For a PPT algorithm M , we denote by M(x; r) the output of M on input x and random
coins r. For such an algorithm and any input x, we write m ∈ M(x) to denote the fact
that m is in the support of M(x; ·).

We follow standard notions from quantum computation.

• A QPT algorithm is a quantum polynomial-time Turing machine.

• An interactive algorithm M , in a two-party setting, has input divided into two registers
and output divided into two registers. For the input, one register Im is for an input
message from the other party, and a second register Ia is an auxiliary input that acts as
an inner state of the party. For the output, one register Om is for a message to be sent to
the other party, and another register Oa is again for auxiliary output that acts again as
an inner state. For a quantum interactive algorithm M , both input and output registers
are quantum.

The Adversarial Model. Throughout, efficient adversaries are modeled as quantum circuits
with non-uniform quantum advice (i.e. quantum auxiliary input). Formally, a polynomial-size
adversary A = {Aλ, ρλ}λ∈N, consists of a polynomial-size non-uniform sequence of quantum
circuits {Aλ}λ∈N, and a sequence of polynomial-size mixed quantum states {ρλ}λ∈N.

For an interactive quantum adversary in a classical protocol, it can be assumed without loss
of generality that its output message register is always measured in the computational basis
at the end of computation. This assumption is indeed without the loss of generality, because
whenever a quantum state is sent through a classical channel then qubits decohere and are
effectively measured in the computational basis.

3.1 Indistinguishability in the Quantum Setting.

• Let f : N→ [0, 1] be a function.

– f is negligible if for every constant c ∈ N there exists N ∈ N such that for all n > N ,
f(n) < n−c.

– f is noticeable if there exists c ∈ N, N ∈ N such that for every n ≥ N , f(n) ≥ n−c.
– f is overwhelming if it is of the form 1− µ(n), for a negligible function µ.

• We may consider random variables over bit strings or over quantum states. This will be
clear from the context.

• For two random variables X and Y supported on quantum states, quantum distinguisher
circuit D with, quantum auxiliary input ρ, and µ ∈ [0, 1], we write X ≈D,ρ,µ Y if

|Pr[D(X; ρ) = 1]− Pr[D(Y ; ρ) = 1]| ≤ µ.

• Two ensembles of random variables X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ over the same
set of indices I = ·∪λ∈NIλ are said to be computationally indistinguishable, denoted by
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X ≈c Y, if for every polynomial-size quantum distinguisher D = {Dλ, ρλ}λ∈N there exists
a negligible function µ(·) such that for all λ ∈ N, i ∈ Iλ,

Xi ≈Dλ,ρλ,µ(λ) Yi .

For a (non-negligible) function ε(λ) ∈ [0, 1], the ensembles X ,Y are ε-indistinguishable if
the the above requirement is replaced with

Xi ≈Dλ,ρλ,ε(λ)+µ(λ) Yi .

• The trace distance between two distributions X,Y supported over quantum states, de-
noted TD(X,Y ), is a generalization of statistical distance to the quantum setting and
represents the maximal distinguishing advantage between two distributions supported
over quantum states, by unbounded quantum algorithms. We thus say that ensembles
X = {Xi}λ∈N,i∈Iλ , Y = {Yi}λ∈N,i∈Iλ , supported over quantum states, are statistically
indistinguishable (and write X ≈s Y), if there exists a negligible function µ(·) such that
for all λ ∈ N, i ∈ Iλ,

TD (Xi, Yi) ≤ µ(λ) .

In what follows, we introduce the cryptographic tools used in this work. By default, all algo-
rithms are classical and efficient unless stated otherwise, and security holds against polynomial-
size non-uniform quantum adversaries with quantum advice.

3.2 Interactive Protocols, Witness Indistinguishability, and Zero Knowledge

We define proof and argument systems that are secure against quantum adversaries. In what
follows, we denote by (P,V) a protocol between two parties P and V. For common input x, we
denote by OUTV〈P,V〉(x) the output of V in the protocol. For honest verifiers, this output will
be a single bit indicating acceptance or rejection of the proof. Malicious quantum verifiers may
have arbitrary quantum output (which is formally captured by the verifier outputting its inner
quantum state).

Definition 3.1 (Classical Proof and Argument Systems for NP). Let (P,V) be a protocol with
an honest PPT prover P and an honest PPT verifier V for a language L ∈ NP, satisfying:

1. Perfect Completeness: For any λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x),

Pr[OUTV〈P(w),V〉(x) = 1] = 1 .

2. Soundness: The protocol satisfies one of the following.

• Computational Soundness: For any quantum polynomial-size prover P∗ = {P∗λ, ρλ}λ∈N,
there exists a negligible function µ(·) such that for any security parameter λ ∈ N and
any x ∈ {0, 1}λ \ L,

Pr [OUTV〈P∗λ(ρλ),V〉(x) = 1] ≤ µ(λ) .

A protocol with computational soundness is called an argument.

• Statistical Soundness: There exists a negligible function µ(·), such that for any
(unbounded) prover P∗, any security parameter λ ∈ N, and any x ∈ {0, 1}λ \ L,

Pr [OUTV〈P∗,V〉(x) = 1] ≤ µ(λ) .

A protocol with statistical soundness is called a proof.

13



3.2.1 Witness Indistinguishability

We rely on classical constant-round (public-coin) proof systems for NP that are witness-indistinguishable;
that is, proofs that use different witnesses (for the same statement) are computationally indis-
tinguishable for quantum attackers.

Definition 3.2 (WI Proof System for NP). A classical protocol proof system (P,V) for a
language L ∈ NP (as in Definition 3.1) is witness-indistinguishable if it satisfies:

Witness Indistinguishability: For every quantum polynomial-size verifier V∗ = {V∗λ, ρλ}λ,

{OUTV∗λ
〈P(w0),V∗λ(ρλ)〉(x)}λ,x,w0,w1 ≈c {OUTV∗λ

〈P(w1),V∗λ(ρλ)〉(x)}λ,x,w0,w1 ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, and w0, w1 ∈ RL(x) are witnesses for x.

Instantiations. 3-message, public-coin classical proof systems with WI follow from classical
zero-knowledge proof systems such as the parallel repetition of the 3-coloring protocol [GMW91],
which is in turn based on non-interactive perfectly-binding commitments. For the proof system
to be WI against quantum attacks, we need the non-interactive commitments to be compu-
tationally hiding against quantum adversaries, which can be instantiated for example from
QLWE.

3.2.2 Quantum Zero-Knowledge Protocols

We next define post-quantum zero-knowledge classical protocols for NP.

Definition 3.3 (Post-Quantum Zero-Knowledge Classical Protocol). Let (P,V) be a classical
protocol (argument or proof) for a language L ∈ NP as in Definition 3.1. The protocol is
quantum zero-knowledge if it satisfies:

Quantum Zero Knowledge: There exists a quantum polynomial-time simulator Sim, such
that for any quantum polynomial-size verifier V∗ = {V∗λ, ρλ}λ∈N,

{OUTV∗λ
〈P(w),V∗λ(ρλ)〉(x)}λ,x,w ≈c {Sim(x,V∗λ, ρλ)}λ,x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ, w ∈ RL(x).

Instantiations. [Wat09] showed how to construct a classical ZK proof system for NP with a
polynomial number of rounds. [BS20] show how to construct a classical ZK argument system
for NP with a constant number of rounds.

3.3 Commitments

Roughly speaking, A commitment scheme enables a party, called the committer, to commit itself
to a value to another party, the receiver. At first the value is hidden from the receiver; this
property is called hiding. At a later stage when the commitment is opened, it can only reveal
a single value as determined in the committing phase; this property is called binding. First we
define the structure of a commitment scheme.

Definition 3.4 (Commitment Schemes). A commitment scheme is an interactive protocol 〈Sen,Rec〉
with the following properties:

1. Both the committer Sen and the receiver Rec are PPT machines.
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2. The commitment scheme has two stages: a commit stage and a reveal stage. In both
stages, Sen and Rec receive a security parameter 1λ as common input. Sen additionally
receives a private input v ∈ {0, 1}poly(λ) that is the string to be committed.

3. The commit stage results in a joint output c, called the commitment, a private output for
Sen, d, called the decommitment string and a private output for Rec, b.

Without loss of generality, c can be the full transcript of the interaction between Sen and
Rec. b is the bit verdict of Rec indicating whether it accepts the commitment c or not; a
commitment is accepting if Rec accepts (i.e., b = 1) at the end of the commit stage.

4. In the reveal stage, committer Sen sends the pair (v, d) to the receiver Rec, and decides to
accept or reject the decommitment (c, v, d) deterministically. We consider the restricted
case where the receiver Rec does not keep state from the commit stage to the reveal stage.
Then, let open〈Sen,Rec〉 denote the Boolean function that corresponds to the verdict of the
receiver Rec, that is, open(c, v, d) = 1, if and only if Rec accepts the decommitment (c, v, d).

A commitment c is valid if and only if there exists a pair (v, d) such that open(c, v, d) = 1.

If Sen and Rec do not deviate from the protocol, then Rec should accept (with probability 1)
during the reveal stage.

Next we define the binding and hiding property of a commitment scheme.

Definition 3.5 (Binding). A commitment scheme 〈Sen,Rec〉 is statistically (resp. computation-
ally) binding if for every (resp. quantum polynomial-size) malicious committer Sen∗, there exists
a negligible function ν such that Sen∗ succeeds in the following game with probability at most
ν(λ):

On security parameter 1λ, Sen∗ first interacts with Rec in the commit stage to produce
commitment c. Then Sen∗ outputs two decommitments (c, v0, d0) and (c, v1, d1), and
succeeds if v1 6= v2 and Rec accepts both decommitments.

The commitment scheme is perfectly binding if no machine Sen∗ can ever succeed at the above
game.

Definition 3.6 (Hiding). A commitment scheme 〈Sen,Rec〉 is computationally hiding if for
every quantum polynomial-size receiver Rec∗ = {Rec∗λ, ρλ}λ∈N and polynomial `(·),

{OUTRec∗λ
〈Sen(v0),Rec∗λ(ρλ)〉(1λ)}λ,v0,v1

≈c{OUTRec∗λ
〈Sen(v1),Rec∗λ(ρλ)〉(1λ)}λ,v0,v1 ,

where λ ∈ N, v0, v1 ∈ {0, 1}`(λ).

In the sequel of the paper, a commitment scheme always refers to a statistically-binding
commitment.

3.4 Quantum Rewinding Lemma

We use Lemma 9 from [Wat09], which constructs a quantum algorithm for amplifying the success
probability of quantum sampler circuits under some conditions. The exact version of the lemma
is taken verbatim from [BS20].

Lemma 3.1 (Lemma 9, [Wat09]). There is a quantum algorithm R that gets as input:
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• A general quantum circuit Q with n input qubits that outputs a classical bit b and an
additional m output qubits.

• An n-qubit state |ψ〉.

• A number t ∈ N.

R executes in time t ·poly(|Q|) and outputs a distribution over m-qubit states Dψ := R(Q, |ψ〉, t)
with the following guarantees.

For an n-qubit state |ψ〉, denote by Qψ the conditional distribution of the output distribution
Q(|ψ〉), conditioned on b = 0, and denote by p(ψ) the probability that b = 0. If there exist
p0, q ∈ (0, 1), ε ∈

(
0, 1

2

)
such that:

• Amplification executes for enough time: t ≥ log(1/ε)
4·p0(1−p0) ,

• There is some minimal probability that b = 0: For every n-qubit state |ψ〉, p0 ≤ p(ψ),

• p(ψ) is input-independant, up to ε distance: For every n-qubit state |ψ〉, |p(ψ)− q| < ε,
and

• q is closer to 1
2 : p0(1− p0) ≤ q(1− q),

then for every n-qubit state |ψ〉,

TD
(
Qψ, Dψ

)
≤ 4
√
ε

log(1/ε)

p0(1− p0)
.

3.5 Non-Malleable Commitments

Standard commitment schemes are defined in 3.3.Let 〈Sen,Rec〉 be a commitment scheme. In
an interaction between a malicious sender Sen∗ and honest receiver Rec, we say that Sen∗ is
non-aborting if the Rec accepts (i.e., outputs 1) at the end of the commitment stage. Let
open〈Sen,Rec〉(c, v, d) be the function for verifying decommitments of 〈Sen,Rec〉. Define the fol-
lowing value function:

val(c) =

{
v if ∃ unique v s.t. ∃d, open〈Sen,Rec〉(c, v, d) = 1

⊥ otherwise

A commitment c is valid if val(c) 6= ⊥, and otherwise invalid.

Tag-based Commitment Scheme. Following [DDN03, PR05b], we consider tag-based com-
mitment schemes where, in addition to the security parameter, the sender and the receiver also
receive a “tag”—a.k.a. the identity—tg as common input.

We recall the definition of non-malleability from [LPV08], adapted to quantum polynomial-
size man-in-the-middle adversaries.

Let 〈Sen,Rec〉 be a tag-based commitment scheme, and let λ ∈ N be a security parameter.
Consider a man-in-the-middle (MIM) adversary A that participates in one left and one right
interactions simultaneously. In the left interactions the MIM adversary A, on auxiliary quantum
state ρ, interacts with Sen, receiving commitments to value v, using a tag tg ∈ [T ] of its choice.
In the right interactions A interacts with Rec attempting to commit to a related value ṽ, again
using a tag t̃g of length t of its choice. If the right commitment is invalid, or t̃g = tg, set
ṽi = ⊥—i.e., choosing the same tags in the left and right interactions is considered invalid.
Let mim〈Sen,Rec〉(A, ρ, v) denote a random variable that describes the value ṽ along with the
quantum output of A(ρ) at the end of the interaction where Sen commits to v on the left.
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Definition 3.7. A commitment scheme 〈Sen,Rec〉 is said to be non-malleable if for every quan-
tum polynomial-size man-in-the-middle adversary A = {Aλ, ρλ}λ∈N and a polynomial ` : N→ N,{

mim〈Sen,Rec〉(Aλ, ρλ, v)
}
λ,v,v′

≈c
{
mim〈Sen,Rec〉(Aλ, ρλ, v

′)
}
λ,v,v′

,

where λ ∈ N is the security parameter and v, v′ ∈ {0, 1}`(λ) are two committed values by the
honest sender.

Generally, the distributions in the MIM experiment include a quantum algorithm with a
quantum auxiliary state. A standard strengthening of indistinguishability definitions for distri-
butions of the above-mentioned type is to let the distinguisher prepare an entangled register,
which is entangled with the register that contains the auxiliary state of the quantum algorithm
in the distribution. In our specific case of MIM distributions the stronger definition (defined
below) is equivalent as we prove next.

Definition 3.8 (Stronger Definition of Non-Malleability). A commitment scheme 〈Sen,Rec〉
is said to be non-malleable (with respect to entanglement) if for every quantum polynomial-
size man-in-the-middle adversary A = {Aλ}λ∈N that can obtain a quantum auxiliary state, a
polynomial-size quantum state σ = {σλ}λ∈N of size at least what A obtains, and a polynomial
` : N→ N,{

mim〈Sen,Rec〉(Aλ, σ1,λ, v), σ2,λ

}
λ,v,v′

≈c
{
mim〈Sen,Rec〉(Aλ, σ1,λ, v

′), σ2,λ

}
λ,v,v′

,

where λ ∈ N is the security parameter, v, v′ ∈ {0, 1}`(λ) are two committed values by the honest
sender and σ1 is the first register of the state σ such that it is in the size of the auxiliary state
for A and σ2 is the rest of the state.

Claim 3.1. Any commitment scheme 〈Sen,Rec〉 satisfying security definition 3.7 also satisfy
security definition 3.8.

Proof. Assume 〈Sen,Rec〉 is secure with respect to Definition 3.7 and assume toward contradic-
tion that it is not secure with respect to Definition 3.8. Let A = {Aλ}λ∈N a MIM adversary
and let D = {Dλ, σλ} a distinguisher that distinguishes between,{

mim〈Sen,Rec〉(Aλ, σ1,λ, v), σ2,λ

}
λ,v,v′

,
{
mim〈Sen,Rec〉(Aλ, σ1,λ, v

′), σ2,λ

}
λ,v,v′

,

for some v, v′. Consider A′ a new MIM adversary: A′ has quantum auxiliary state σ. The MIM
execution of A′ is to run A with auxiliary state σ1, and keep the rest of σ, which we denote by
σ2, untouched on the side. D can thus distinguish between the distributions{

mim〈Sen,Rec〉(A
′
λ, σλ, v)

}
λ,v,v′

,
{
mim〈Sen,Rec〉(A

′
λ, σλ, v

′)
}
λ,v,v′

,

in contradiction to the security of 〈Sen,Rec〉 with respect to Definition 3.7.

3.6 Committed Value Oracle

Let 〈Sen,Rec〉 be a (possibly tag-based) commitment scheme. A sequential committed-value
oracle O∞[〈Sen,Rec〉] of 〈Sen,Rec〉 acts as follows in interaction with a sender Sen∗: it interacts
with Sen∗ in many sequential sessions; in each session,

• it participates with Sen∗ in the commit phase of 〈Sen,Rec〉 as the honest receiver Rec
(using a tag chosen adaptively by Sen∗), obtaining a commitment c, and
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• if Sen∗ is non-aborting in the commit phase and sends request break, it returns val(c).

The single-session oracle O1[〈Sen,Rec〉] is similar to O∞, except that it interacts with the
adversary in a single session.

Throughout, when the commitment scheme is clear from the context, we write O∞, O1 for
simplicity.

3.7 Extractable Commitments

We define the standard notion of post-quantum extractable commitments (and ε-extractable)
along with several enhancements of this notion. These enhancements of extractable commit-
ments are for both the ε-extractable and (fully) extractable versions.

Definition 3.9. Let 〈ExCom.Sen,ExCom.Rec〉 be a (possibly tag-based) commitment scheme
and O1 its (single-session) committed value oracle. We say that 〈ExCom.Sen,ExCom.Rec〉 is ε-
extractable if there exists a QPT simulator Sim1, such that, for every quantum polynomial-size
sender Sen∗ = {Sen∗λ, ρλ}λ∈N and function ε(λ) ∈ [0, 1],

• For every quantum polynomial-time distinguisher D∗ = {D∗λ, ρλ}λ∈N,{
OUTSen∗λ

(
Sen∗λ

O1

(ρλ)
)}

λ∈N
≈ε
{
Sim1(Sen∗λ, ρλ, 1

1/ε)
}
λ∈N

.

We say the scheme is (fully) extractable if there is a QPT simulator Sim1, such that, for every
quantum polynomial-size sender Sen∗ = {Sen∗λ, ρλ}λ∈N,{

OUTSen∗λ

(
Sen∗λ

O1

(ρλ)
)}

λ∈N
≈c
{
Sim1(Sen∗λ, ρλ)

}
λ∈N .

Sequential Extraction. We analogously define sequential extractability.

Definition 3.10. Let 〈ExCom.Sen,ExCom.Rec〉 be a (possibly tag-based) commitment scheme
and O∞ its sequential committed value oracle. We say that 〈ExCom.Sen,ExCom.Rec〉 is se-
quentially extractable if there exists a QPT simulator Sim∞, such that, for every quantum
polynomial-size sender Sen∗ = {Sen∗λ, ρλ}λ∈N,{

OUTSen∗λ

(
Sen∗λ

O∞(ρλ)
)}

λ∈N
≈c {Sim∞(Sen∗λ, ρλ)}λ∈N .

Sequential ε-extractability is defined analogously when considering ε-indistinguishability instead
of (plain) computational indistinguishability.

Constructions of post-quantum extractable commitments have been known for a while, ei-
ther in polynomially many rounds assuming post-quantum oblivious transfer [HSS15, LN11],
or in constant rounds assuming Learning with Errors and quantum fully homomorphic en-
cryption [BS20]. More recently Chia et al. [CCLY21] constructed post-quantum ε-extractable
commitments in constant rounds, assuming the existence of post-quantum one-way functions.
Lombardi, Ma, and Spooner [LMS21] also construct such commitments, but relying on super-
polynomial hardness of the one-way functions.

These constructions address the single-session oracle. However, a standard proof shows that
sequential extraction follows.

Lemma 3.2. Any extractable commitment is sequentially extractable. This applies also for
ε-extractability.

This lemma is implied by a stronger Lemma 4.1 proven later on.
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3.7.1 r-Robustness.

The work of [LP12] introduced the notion of r-robustness w.r.t. committed value oracle, follow-
ing similar notions of r-robustness introduced in [CLP16, LP09]. We here recall their definition,
adapted to working with quantum polynomial-size adversaries. Let 〈Sen,Rec〉 be a (possibly
tag-based) commitment scheme. Consider a man-in-the-middle adversary that participates in
an arbitrary left interaction with a limited number r of rounds, while having access to the com-
mitted value oracle O∞[〈Sen,Rec〉]. Roughly speaking, 〈Sen,Rec〉 is r-robust if the output of A
in any r-round interaction, with access to the oracle O∞[〈Sen,Rec〉], can be simulated without
the oracle. In other words, having access to the oracle does not help the adversary in breaking
the security in any r-round protocol much.

Definition 3.11 (r-robust extraction). Let 〈Sen,Rec〉 be a (possibly tag-based) commitment
scheme. We say that 〈Sen,Rec〉 is r-robust w.r.t. the committed-value oracle, if there exists a
QPT simulator Simr, such that, for every QPT adversary A = {Aλ, ρλ}λ∈N, the following holds:

• Simulation: For every PPT r-round machine B,{
OUTAλ〈B(z, 1λ), A

O∞[〈Sen,Rec〉]
λ (ρλ)〉

}
λ∈N,z∈{0,1}∗

≈c
{
OUTSim〈B(z, 1λ),Simr(Aλ, ρλ)〉

}
λ∈N,z∈{0,1}∗

.

(ε, r)-robustness is defined analogously when considering ε-indistinguishability instead of (plain)
computational indistinguishability.

3.7.2 First-message binding.

We define an additional property of extractable commitments which will come in handy later
in the construction of post-quantum non-malleable commitments. The property, which we call
first-message binding, asserts that the first message of the sender determines the committed
value. Additionally, if the first message in the extractable commitment protocol is a receiver
message, then the extractor simulates it honestly, in particular, independently of the malicious
sender’s circuit.

Definition 3.12. Let 〈ExCom.Sen,ExCom.Rec〉 be an extractable commitment scheme. We say
that the scheme has first-message binding if:

1. With overwhelming probability over the choice of the honest receiver randomness, the first
sender message in the protocol fixes the committed value.

2. If the first message in the protocol is a receiver message, in a simulated session, the
extractor ExCom.Ext samples this message by invoking the honest receiver (independently
of the malicious sender circuit).

We observe that every extractable commitment can easily be turned into an extractable
commitment with first-message binding.

Lemma 3.3. Let 〈ExCom.Sen,ExCom.Rec〉 be an extractable commitment scheme. Then there
exists an extractable commitment scheme 〈Sen,Rec〉 with first-message binding. Furthermore,
the sequential extractor Sim∞ for the scheme also satisfies Property 2 in the above definition.
The same also holds for ε-extractability.
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Proof sketch. To achieve first message binding, we append to the beginning of protocol
〈ExCom.Sen,ExCom.Rec〉 a statistically-binding commitment with (at most) two messages (such
as Naor’s commitment [Nao91], which can be based on post-quantum OWFs, which in turn fol-
low from commitments). We then run the extractable commitment protocol 〈ExCom.Sen,ExCom.Rec〉,
and end with a zero-knowledge argument of consistency between the committed value in the
initial commitment and the extractable commitment.

The first sender message is now statistically binding by the statistical binding of the initial
commitment and the soundness of the zero knowledge argument. The corresponding extractor
does not simulate nor extracts from the first initial commitment, but only simulates and extracts
from the the original extractable commitment. The same applies for a sequential extractor.

4 Two-sided Extraction

In this section, we prove a two-sided extraction lemma for any extractable commitment. We
then use it to prove a non-interleaving extraction lemma, which we later rely on.

4.1 Two-sided Extractor

We define the following variantO1
⊥ of the committed value oracleO1. Recall thatO1 participates

in a session of the commit phase of 〈ExCom.Sen,ExCom.Rec〉 with Sen∗, acting as the honest
receiver ExCom.Rec. If Sen∗ is non-aborting in the commit phase and requests break, O1 returns
the value val(c) committed in the produced commitment c.
O1
⊥ does the same, except that in the case that Sen∗ aborts, it sends back the internal state

of the honest receiver ExCom.Rec in that session. That is,

O1
⊥ returns


internal state of ExCom.Rec if Sen∗ aborts

val(c) if Sen∗ is non-aborting in c and requests break

nothing otherwise

We prove that every extractable commitment satisfes such two-sided extractability:

Claim 4.1. Let 〈ExCom.Sen,ExCom.Rec〉 be an extractable commitment scheme and O1
⊥ its

enhanced committed value oracle. There exists a QPT simulator Sim1
⊥, such that, for every

quantum polynomial-size sender Sen∗ = {Sen∗λ, ρλ}λ∈N, the following two ensembles are compu-
tationally indistinguishable,{

OUTSen∗λ

(
Sen∗λ

O1
⊥(ρλ)

)}
λ∈N
≈c
{
Sim1

⊥(Sen∗λ, ρλ)
}
λ∈N .

4.2 Proof of Two-sided Extraction

We now prove Claim 4.1. To construct the simulator Sim1
⊥, we first construct two simulators,

Sima and Simna, for aborting and non-aborting executions respectively. More precisely,

Simulating an aborting execution: Consider a modified adversary Sen∗a
O1
⊥(ρ) that proceeds

identically to Sen∗O
1
⊥(ρ), except that after sending a commitment of 〈ExCom.Sen,ExCom.Rec〉

to O1
⊥, if the commitment is non-aborting (i.e. the receiver outputs 1 at the end of the

interaction) then it terminates and outputs fail. If the commitment is aborting, it proceeds
as Sen∗ does – receives the state of ExCom.Rec and outputs its arbitrary quantum output

|φ〉. We construct Sima that on input (Sen∗, ρ) simulates the output state of Sen∗a
O1
⊥(ρ)

as follows:
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• Sima(Sen
∗, ρ) runs Sen∗(ρ) with an honest receiver ExCom.Rec in the commit phase;

let φR be the state of ExCom.Rec at the end of the commit phase.

• If the commit phase is non-aborting, it outputs fail.

• Else it returns φR to Sen∗, and outputs the output state φ of Sen∗.

Observe that whenever the commitment is aborting, Sima emulates the interaction between
Sen∗/Sen∗a and O1

⊥ perfectly, and whenever the commitment is non-aborting, Sima outputs
fail as Sen∗a does. Therefore, Sima perfectly simulates the output state of Sen∗a.

Sima(Sen
∗, ρ) ≡ Sen∗a

O1
⊥(ρ)

Simulating the non-aborting execution: Consider a modified adversary Sen∗na
O1
⊥(ρ) that

proceeds identically to Sen∗O
1
⊥(ρ), except that after sending a commitment of 〈ExCom.Sen,ExCom.Rec〉

to O1
⊥, it aborts and outputs fail if the commitment is aborting. If the commitment is

non-aborting, it proceeds as Sen∗ does – possibly requests break to obtain the commit-
ted value, and outputs φ. Since Sen∗na simply aborts if the commitment is its output is

identically distributed when it has access to O1
⊥ or O1, that is, Sen∗na

O1
⊥(ρ) ≡ Sen∗na

O(ρ).

Given that 〈ExCom.Sen,ExCom.Rec〉 is extractable, there is a simulator Sim1 that on

input (Sen∗na, ρ) simulates the output state of Sen∗na
O1

(ρ), and hence also Sen∗na
O1
⊥(ρ).

Therefore, we simply let the simulator Simna(Sen
∗, ρ) output φ ← Sim(Sen∗na, ρ), and

have

Simna(Sen
∗, ρ) ≈ Sen∗na

O1
⊥(ρ) .

Next, we combine the above two simulators into Simcomb:

Combined Simulator: Simcomb(Sen
∗, ρ) samples b← {0, 1}, and outputs φ← Simna(Sen

∗, ρ)
if b = 0 and φ← Sima(Sen

∗, ρ) if b = 1.

It holds that i) the probability that Simcomb outputs fail is negligibly close to 1/2 for every
(Sen∗, ρ), and ii) the output state of Simcomb conditioned on not outputting fail is indsitinguish-

able to the output state of Sen∗O
1
⊥(ρ).

Finally, we observe that Simcomb satisfies the required conditions for applying Watrous’s
quantum rewinding lemma, Lemma 3.1 , in order to amplify the success probability from neg-
ligibly close to 1/2 to negligibly close to 1. Formally, let R be the algorithm from Lemma 3.1 .
Our final simulator is thus:

Final Simulator: Sim1
⊥(Sen∗, ρ) outputs ← R(Simcomb, (Sen∗, ρ), λ).

More precisely, Simcomb satisfies that for every input (Sen∗, ρ), the probability that it does
not output fail is negligibly close to 1/2. Thus it satisfies the premise of Lemma 3.1 w.r.t.

q = 1/2, p0 = 1/3, and ε = 1/p(λ) for every polynomial p. Moreover, t = λ ≥ log 1/ε
4p0(1−p0) for

every inverse polynomial ε. Therefore, the trace distance between the output state of Sim1
⊥ and

that of Simcomb conditioned on not outputting fail is bounded by every inverse polynomial, and

hence Sim1
⊥ simulates the output state of Sen∗O

1
⊥(ρ). Finally, Sim1

⊥ runs in polynomial time
λpoly(|Simcomb|). This concludes the proof of the claim.
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4.3 Non-Interleaving Extraction

In this section, we leverage two-sided extraction prove a non-interleaving extraction lemma.
Roughly speaking, the lemma allows simulating any man-in-the-middle while extracting the
committed values of sessions on the right that do not interleave with the interaction on the left.

Specifically, consider a man-in-the-middle adversary A that participates in an arbitrary left
interaction with an interactive PPT machine B, while acting as a sender to multiple sequential
commitments on the right. We say that a right session is free if during its execution, no message
was exchanged between A and B. Consider a restricted commitment oracle O∞free that behaves
like the standard commitment oracle O∞, with the exception that it responds with ⊥ to any

break request in any session that is not free. We denote this experiment by 〈B(z, 1λ), A
O∞free
λ (ρλ)〉.

Lemma 4.1. Let 〈ExCom.Sen,ExCom.Rec〉 be an extractable commitment scheme. There ex-
ists a PPT simulator Sim∞free, such that, for every quantum polynomial-size adversary A =
{Aλ, ρλ}λ∈N, the following two ensembles are computationally indistinguishable,

•
{
OUTAλ〈B(z, 1λ), A

O∞free
λ (ρλ)〉

}
λ∈N,z∈{0,1}∗

•
{
OUTSim∞free

〈B(z, 1λ),Sim∞free(Aλ, ρλ)〉
}
λ∈N,z∈{0,1}∗

Proof. Using the extractor Sim1
⊥ given by Claim 4.1, we construct a sequential robust extractor

Sim∞free next. Fix a security parameter λ, auxiliary input z, and adversary A with auxiliary state
ρ. The goal of Sim∞free is simulating the output state of AO

∞
free(ρ) in interaction with B(z, 1λ),

without oracle O∞free. That is,

OUTA〈B(z, 1λ), AO
∞
free(ρ)〉 ≈ OUTSim∞free

〈B(z, 1λ),Sim∞free(A, ρ)〉

Recall that A interacts with O∞free in many sessions. In each session i, A first interacts with
O∞free in the commit phase of 〈ExCom.Sen,ExCom.Rec〉, and produce a commitment ci. After the
commit phase, A can request O∞free to return the value committed in ci, if A was non-aborting
and did not interact with B (i.e., session i is free). We denote by φi−1 and φi the quantum
states of A at the beginning and end of session i; at the very beginning of the execution φ0 = ρ.

We construct Sim∞free(A, φ0 = ρ) to simulate the evolution of the state of A, {φi}, in sequence
as follows: In every session i,

1. Sim∞free first constructs a stand-alone sender Ci that on input state φi and with access to
the enhanced oracle O1

⊥, emulates the execution of A in session i till A sends a message to
B, or reaches the end of session i. More precisely, Ci runs A(φi) internally and forwards
messages in the commitment phase between A and O1

⊥.

Case 1: A communicates with B in session i. Whenever A sends a message q to B
and expects a reply, Ci aborts in the commitment phase, and obtains from O1

⊥
the current state φR,i of the honest receiver ExCom.Rec. It then outputs (b =
1, φ′i, q, φR,i), where φ′i is the state A right after sending the message q.

Case 2: A does not communicate with B in session i. Otherwise, if no message is
sent to B till the end of the commit phase and the commit phase is non-aborting,
Ci continues to forward A’s break request to O1

⊥ and returns the committed value m
from O1

⊥ to A. It then outputs (b = 2, φ′i,⊥,⊥), where φ′i is the state of A at the
end of session i.

Observe that C
O1
⊥

i (φi) emulates the execution with A(φi) in session i perfectly till it sends
a message to B or session i ends.
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2. Sim∞free uses the extractor Sim1
⊥ guaranteed by Claim 4.1 to simulate the output state of

C
O1
⊥

i (φi), that is, (b̃, φ̃i, q, φ̃R,i) ← Sim1
⊥(Ci, φi). It then simulates the state φi+1 of A at

the end of session i as follows:

Case 1: If b̃ = 1, φ̃i is the simulated state of A after sending q to B. Sim∞free sends q to
B and receives a reply a, and completes simulating session i as follows: i) it sends
a to A(φ̃i), ii) emulates an honest receiver ExCom.Rec starting with state φ̃R,i for A
in the commit phase, and iii) since this session is not free, A cannot request for the
committed value after the commit phase. Sim∞free then obtains a simulated state φi+1

of A at the end of session i.

Case 2: If b̃ = 2, φ̃i is already the simulated state of A at the end of session i. Sim∞free
simply sets φi+1 = φ̃i.

3. After the last iteration I, Sim∞free outputs the final state φI .

If follows from Claim 4.1 that Sim1
⊥ simulates the output state of A at the end of session i

for all i in an indistinguishable way. Therefore, by a hybrid argument, the final state φI is
indistinguishable to the real output state of AO

∞
free(ρ) interacting with B. Finally, observe that

Sim∞free does not have access to any oracle and interacts with B in a straight-line fashion. The
running time of Sim∞free is polynomial as for every i, Sim1

⊥(Ci, φi) runs in polynomial time, and
the rest of the steps all have fixed polynomial time proportional to the size/time of A. Therefore,
we conclude the lemma.

Remark 4.1. We note that Lemma 4.1 in particular implies Lemma 3.2, where there is no
interaction on the left (i.e., B is empty).

5 Post-quantum Non-malleable Commitment For Few Tags

In this section, we present our construction of a classical post-quantum non-malleable commit-
ment protocol with at most a logarithmic number of tags τ . It makes use of a post-quantum
ε-extractable classical commitment scheme (ExCom.Sen,ExCom.Rec) with first-message bind-
ing, and a post-quantum classical zero-knowledge argument (P,V). We describe the protocol in
Figure 6.

Using post-quantum ε-extractable commitments with k rounds one can obtain post-quantum
ε-zero-knowledge arguments with k + O(1) rounds [Ros04, BS20]. It follows that the number
of rounds in Protocol 6 is kO(τ). Statistical binding of the commitment scheme follows readily
from the statistical binding of the extractable commitment scheme. Hiding of any commitment
scheme follows directly from non-malleability, so it remains for us to show that our commit-
ment protocol is non-malleable. Later, we also show that our commitment scheme satisfies
r-robustness, a property of the commitment protocol which we use in our tag amplification
scheme in Section 6.

Proposition 5.1. The protocol in Figure 6 is non malleable.

5.1 Ideally-Scheduled Block Commitments

Before turning to prove Proposition 5.1, we state and prove a combinatorial claim regarding
the structure of executions. We first fix relevant terminology for addressing different parts of
the protocol.
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Protocol 6

Parameters: λ is the security parameter. r is the robustness parameter. k is the total
number of messages in the extractable commitment protocol. τ ≤ O(logk(λ)) is the number
of tags. ` is the maximum between (1) the robustness parameter r, and (2) the total number
of messages in the zero knowledge argument system.

Common input: Security parameter λ ∈ N, robustness parameter r ≤ poly(λ), an
identification tag tg ∈ [τ ] for the sender.

Sender private input: A value v ∈ {0, 1}∗ to commit to.

Phase 1: Commitments to Secret Shares of Value:

• Let n := (k + 1)tg and n̄ := (k + 1)2τ−tg.

• Sen secret-shares the value v twice, first into n shares (using n out of n secret sharing)
and second into n̄ shares (using n̄ out of n̄ secret sharing): u = (u1, . . . , un) and
ū = (ū1, . . . , ūn̄), respectively.

• Sen provides extractable commitments to the two sequences of shares:

1. An extractable commitment to ui, for every i ∈ [n], sequentially, one after the
other.

2. An extractable commitment to ūi, for every i ∈ [n̄], sequentially, one after the
other. The sequential commitment to ū is repeated `+ 1 times, sequentially.

Phase 2: Zero-knowledge Argument of Consistency: The protocol ends with
Sen giving a ZK argument that its generated transcript is consistent; namely, there exists
private input and randomness for the honest sender inducing the transcript.

Decommitment. If the interaction ends in an accepting proof, the decommitment infor-
mation includes the shares u1, . . . , un along with the decommitment information for each of
their corresponding extractable commitments. The decommitment verification algorithm
checks that the shares yield the value v and then runs the decommitment verification
algorithm of the extractable commitment on each of the shares and its decommitment
information. If the ZK argument is not accepting, or the sender prematurely aborts, the
verification algorithm rejects, regardless of the decommitment information given.

Figure 6: A τ -tag post-quantum non-malleable commitment (Sen,Rec).

Block Commitments. For m,N ∈ N, a block commitment of length N and sub-block length
m for a string s = (s1, s2, . . . , sN ) ∈ {0, 1}m×N (such that ∀i ∈ [N ], si ∈ {0, 1}m) consists of N
sequential extractable commitment to each of the strings s1, . . . , sN in their respective order. In
particular, note that in Phase 1 of Protocol 6, the sender gives one block commitment of length
n with sub-block length |v| to u = (u1, . . . , un) and `+1 block commitments to ū = (ū1, . . . , ūn̄),
each of length n̄ and sub-block length |v|.
Ideally Scheduled Block Commitments. Consider a two-sided MIM execution of Proto-
col 6; that is, the MIM adversary A interacts with Sen on the left and Rec on the right.

We call an execution of a block commitment on the left free on index i with respect to a
given block commitment on the right, if interaction during the i-th extractable commitment in
that block commitment does not interleave with the interaction during the given right block
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commitment. We call an execution of a block commitment on the right free if it does not
interleave with the interaction during Phase 2 of the protocol on the left.

An execution I of a block commitment on the right is ideally scheduled if all of the above
hold:

• It is free (with respect to the second phase on the left).

• There is some index i ∈ [n] such that the block commitment to u on the left is free on
index i with respect to I.

• There is some index j ∈ [n̄] such that all ` + 1 block commitments to ū on the left are
free on the same index j with respect to I.

In case the MIM adversary aborts, we assume w.l.o.g it keeps sending messages ⊥ according to
some schedule, so that the above notion is always defined.

Claim 5.1. In every MIM execution of Protocol 6 with tag tg on the left and tag t̃g on the
right, if tg 6= t̃g, there is an ideally scheduled execution of a block commitment on the right.

Proof of Claim 5.1. Throughout, we refer to the first block commitment as the top block com-
mitment, and to the subsequent `+1 block commitments as the bottom block commitments. We
also refer to the commitments given from Sen to the MIM adversary as the left commitments,
and accordingly, to the commitments given from the adversary to Rec as the right commitments.
Recall that for k the number of messages in the extractable commitment protocol we have:

• The block length of the top left block commitment is n = (k + 1)tg.

• The block length of each of the `+ 1 bottom left block commitments is n̄ = (k + 1)2τ−tg.

• The block length of the top right block commitment is n′ = (k + 1)t̃g.

• The block length of each of the `+1 bottom right block commitments is n̄′ = (k+1)2τ−t̃g.

We first note that since there are at most ` messages in the second phase of the protocol and
in particular in the left execution of the protocol, and since there are `+ 1 block commitments
given for the bottom block on the right, it follows that in every execution of the protocol there
is always a free block commitment on the right (with respect to the second phase on the left).

We now consider several cases.

• tg > t̃g : We further divide this case into sub-cases.

– Top right block commitment ends after beginning of Phase 2 on the left:
It follows that all bottom right block commitments are non-interleaving with all of
the block commitments on the left. Now, since one of the bottom right block com-
mitments is always free, it follows that one of the bottom right block commitments
is ideally scheduled.

– Top right block commitment ends before beginning of Phase 2 on the left:
First, note that the top right block commitment is free (with respect to the second
phase on the left).

Second, the top right block commitment has kn′ messages, and accordingly inter-
leaves with at most kn′ extractable commitments on the left. Since tg > t̃g, the
number of shares n in the top block commitment and the number of shares n̄ in the
`+ 1 bottom block commitments satisfy

n̄ ≥ n > kn′ .
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This means that there exist shares ui, ūj on the left, such that the extractable com-
mitment to ui, and all ` + 1 extractable commitments to ūj , are free (with respect
to the top right block commitment).

It follows that the top right block commitment is ideally scheduled.

• tg < t̃g : We further divide this case into sub-cases.

– Top extractable commitment in top left block ends before beginning of
bottom right block commitments: In this case, all `+ 1 bottom right blocks do
not interleave with the first extractable commitment from the top left block. Recall
that it is always the case that one of the ` + 1 bottom right block commitments
is free with respect to Phase 2 on the left - let’s denote such right block with blk.
Furthermore, blk has kn̄′ messages, and since tg < t̃g, the number of shares n̄ on the
left satisfies

n̄ > kn̄′ .

By the same counting argument as in the second sub-case above, there exists a share
ūj on the bottom left such that all `+1 extractable commitments to ūj are free (with
respect to blk).

It follows that blk is ideally scheduled.

– Top extractable commitment in top left block ends after beginning of bot-
tom right block commitments: It follows that the top right block can interleave
with at most the top extractable commitment from the top left block. The second
extractable commitment on the left (note that n = (k + 1)tg ≥ 2), all subsequent
extractable commitments on the left, as well as Phase 2 messages on the left, do not
interleave with the top right block.

It follows that the top right block is ideally scheduled.

5.2 Adversaries with Predetermined Ideal Schedule

Before proving Proposition 5.1, we prove a lemma that basically says that we can restrict
attention to MIM adversaries that always announce ahead of time the structure of the ideal
schedule. This lemma will later simplify our proof of Proposition 5.1.

In what follows, let N be a bound on the size of n := (k + 1)tg, n̄ := (k + 1)2τ−tg, for every
possible tg. We consider configurations of the form

C = (i, c, c̄, w) ∈ [`+ 2]× [N ]× [N ]× {IP2, P2I} .

We say that a given MIM execution is consistent with such a configuration C if:

• The i-th block commitment on the right is the first ideally scheduled block.

• The commitment to uc (in the first block) on the left is free with respect to the ideally
scheduled block i.

• The commitment to ūc̄ in every one of the blocks 2, . . . , `+2 on the left is free with respect
to the ideally scheduled block i.
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• If the first ideally scheduled block i on the right ends before Phase 2 on the left begins,
w = IP2. Otherwise (Phase 2 on the left begins before the first ideally scheduled block i
has ended), w = P2I. Note that in case w = P2I, due to the fact that block i on the right
is ideally scheduled and in particular is continuous with respect to Phase 2 on the left, we
can also say that block i on the right begins after Phase 2 on the left has started (rather
than say that it only ends after the beginning of Phase 2 on the left).

Note that the number of possible configurations is bounded by ∆ := (` + 2) × N × N × 2 =
poly(λ) .

Definition 5.1 (MIM with predetermined ideal schedule). A MIM QPT adversary A = {Aλ, ρλ}λ
has a predetermined ideal schedule C = {Cλ}λ, if any execution in which Aλ participates is con-
sistent with configuration Cλ.

Lemma 5.1. If the protocol in Figure 6 is secure against MIM QPT adversaries with predeter-
mined ideal schedule, then it is also secure against arbitrary MIM QPT adversaries.

Proof. Given an arbitrary MIM QPT A and QPT distinguisher D that break non-malleability
for some values v, v′ with advantage δ, we construct an MIM QPT adversary with predetermined
schedule, which breaks the scheme with probability δ/∆.

Consider an adversary A′ that first samples uniformly at random a configuration C ←
[`+ 2]× [N ]× [N ]× {IP2, P2I}. It then emulates A, and if at any point the execution is about
to become inconsistent with C, A′ stops emulating A, completes the execution consistently
with C, and eventually outputs ⊥. If the emulation of A is completed consistently with C, A′
outputs the same as A.

Then, since every execution has an ideally scheduled block (Claim 5.1), A′ breaks non-
malleability with probability exactly δ/∆ (with respect to the same distinguisher D and v, v′).
Finally, by an averaging argument, we fix the choice of A′ for a configuration to be the config-
uration C that maximizes D’s distinguishing advantage. We obtain a corresponding MIM with
predetermined ideal schedule with the same advantage δ/∆.

5.3 Proof of Proposition 5.1

We prove the Proposition by a hybrid argument, specifically, we show that the MIM experiment
output distribution for any value v on the left is indistinguishable from an experiment indepen-
dent of v. Following Lemma 5.1, we restrict attention to a MIM adversary with a predetermined
ideal schedule C = (i, c, c̄, w).

H0 : The original MIM experiment output. This includes the output of the MIM adversary
in the experiment and the committed value on the right.

H1 : Inefficient extraction from ideally-scheduled block. In this hybrid, instead of the
committed value ṽ on the right, we consider the value ṽ1 reconstructed from the shares of the
ideally scheduled block i on the right. If the value of any of the commitments to these shares is
⊥, we set ṽ1 = ⊥.

Claim 5.2. H0 ≈s H1.

Proof. This indistinguishability follows from the soundness of the ZK argument that A gives
to the receiver on the right in Phase 2. Specifically, given the correctness of the proven state-
ment, the value ṽ1 reconstructed from the set of shares of the block commitments all yield the
same value, and thus ṽ1 = ṽ, where the latter is the value reconstructed from the first block
commitment.
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H2: Alternative description via oracle extraction. In this hybrid we consider an aug-
mented adversary AO∞2 , which is given access to the sequential committed-value oracle O∞ =
O∞[ExCom.Sen,ExCom.Rec] and acts as follows:

• A2 emulates A. On the left, A2 relays all messages between A and the sender. On the
right,

– During the ideally scheduled block i, A2 interacts with its oracle O∞, in every ex-
tractable commitment. Recall that O∞ acts as the honest receiver, and answers break
requests with the corresponding committed value. A2 submits such a break request
after each of the commitments and stores the received share value.

– In any other (than i) block in Phase 1, A2 internally emulates the the receiver on
the right.

– In Phase 2, A2 internally emulates the the zero knowledge verifier on the right.

• Eventually, A2 outputs the output of A as well as the value ṽ1 reconstructed from the
ideal block shares obtained from the oracle O∞.

The output of this hybrid is the output of A2.

Claim 5.3. H1 ≡H2.

Proof. This follows directly from the construction of AO∞2 and the definition of O∞.

H3 : Efficient extraction on the right when w = P2I. This hybrid, differs from the previous
hybrid only if w = P2I; namely, Phase 2 on the left begins before the ideally scheduled block
commitment i on the right had started. In such executions, for the ideally scheduled block
commitment i, we perform sequential extraction to obtain the corresponding shares.

In more detail, let ψ be the (quantum) state of A2 when it initiates the ideally scheduled
block i on the right, and let ĀO∞2 be the adversary that starting from ψ, emulates AO∞2 during
block i and outputs its state at the end (Note that since block i is ideally scheduled and also
starts after Phase 2 on the left, it follows that Ā2 does not perform any interaction on the left
during the right block i).

In H3, we consider another augmented adversary A3 that acts like A2, only that instead
of executing ĀO∞2 during block i, it invokes the sequentially-extracting simulator Sim∞(Ā2, ψ),
given by Lemma 3.2, which eliminates the use of the commitment oracle O∞.

Claim 5.4. H2 ≈c H3.

Proof. Computational indistinguishability of H2 and H3 follows directly from the sequential
extraction guarantee (Lemma 3.2).

H4 : Simulating the ZK argument on the left. In this hybrid, the ZK argument on the
left is generated by the zero knowledge simulator.

Specifically, let ψ be the state of A3 when the zero-knowledge argument is initiated on the
left. We consider the zero-knowledge verifier V∗ that starting from ψ emulates A3 in the rest
of the interaction while forwarding its messages on the left to the zero-knowledge prover, and
eventually outputs the same. In particular, if w = P2I then the code of V∗ includes the code of
the simulator Sim∞, which is applied to (Ā2, ψ) as part of the execution of A3. Note that in
both cases w = IP2 and w = P2I, once Phase 2 on the left starts, A3 no longer makes oracle
calls to O∞, so the code of V∗ is fully specified and executes in polynomial time.
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In H4, we consider an augmented adversary A4 that acts as A3, only that when Phase 2
starts on the left, instead of executing V∗ and interacting on the left with the zero knowledge
prover, A4 runs the zero knowledge simulator Sim(V∗, ψ), and outputs the same.

H3 ≈c H4. This is because by construction, the output of V∗ is identically distributed to
the output of H3. Computational indistinguishability of H3 and H4 now follows from the
zero knowledge simulation guarantee (we note that any use of the inefficient oracle O∞, in case
w = IP2, occurs before Phase 2 on the left, and can thus be non-uniformly fixed).

H5 and H6 : Interchangeably, changing left committed values and efficient extrac-
tion threshold. As a preliminary high-level explanation to the next step, at this point in
our hybrid distributions, we consider the 1 + (` + 1) block commitments given to the MIM
adversary on the left, and in each block, we’ll switch a commitment for a secret share (of v),
to a commitment for a string of zeros. For this, we will need to use the computational hiding
property of the extractable commitments. The point, however, is to be able to use the hiding of
the extractable commitments while still being able to efficiently extract the value ṽ1 from the
right interaction with the MIM adversary3.

Formally, we next define two sequences of hybrids H5,j and H6,j (for j ∈ [` + 3]) that
augment one another interchangeably:

H4 = H5,`+3 →H6,`+2 →H5,`+2 → · · · →H5,2 →H6,1 →H5,1 .

In what follows, recall that A4 in H4 is following a predetermined ideal schedule C = (i, c, c̄, w).

H5,j, for j = `+3, . . . , 1: Swapping one more free commitment to zeros. In this hybrid,
we simulate the most bottom free commitment on the left. Formally:

• H5,`+3 is defined as H4.

• For j ≤ `+2, H5,j is defined exactly as H6,j , except that the left extractable commitment
cj (to share uc or ūc̄) in the left block j is replaced with a commitment to 0|v|.

H6,j, for j = ` + 2, . . . , 1: Raising the threshold for efficient extraction. Recall A4 in
H4 interacts with the sender in Phase 1 on the left and in case w = IP2, namely, the ideally
scheduled block on the right ends before Phase 2 on the left begins, A4 interacts with the
sequential commitment oracle O∞ on the right during block i. For a left block index j ∈ [`+ 2],
we denote by cj the corresponding free extractable commitment; namely, cj = c if j = 1, and
cj = c̄ if j ≥ 2.

Informally, in hybrid H6,j , we move to simulating the oracle O∞ in any right extractable
commitment that starts after the free left commitment cj . Formally, H6,j is different from
H5,j+1 only if w = IP2. In this case, we consider an augmented adversary A6,j defined as
follows for j ∈ [`+ 2]:

• A6,j acts as AO∞6,j+1 until the first right extractable commitment (in the ideally scheduled
right block i) in which the first sender message is sent after the free left commitment cj .

• A6,j simulates the remaining calls to O∞ as follows:

– Let ψ be the state of AO∞6,j+1 at the abovementioned point, just before the right
extractable commitment begins.

3Recall that currently, if w = IP2, we extract ṽ1 inefficiently using the sequential committed-value oracle
O∞ = O∞[ExCom.Sen,ExCom.Rec]. If w = P2I we don’t have this problem, as the ideally scheduled right block
commitment i starts after the beginning of Phase 2 on the left.
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– Let ĀO∞6,j+1 be the adversary that starting from ψ emulates AO∞6,j+1 in the following
right extractable commitments, up to those that are already simulated, while inter-
nally emulating the sender in any left commitment.

– A6,j invokes the sequentially-extracting simulator Sim∞(Ā6,j+1, ψ) to remove the use
O∞.

• A6,j then completes the execution as A6,j+1 and outputs the same.

We prove the following claim, which concludes Proposition 5.1,

Claim 5.5. 1) The output of H5,1 is independent of the committed value v. 2) ∀j ∈ [` + 2] :
H5,j+1 ≈c H6,j. 3) ∀j ∈ [`+ 2] : H6,j ≈c H5,j.

Proof. We now prove each of the three parts of the claim.

Independence. In H5,1, every left block commitment j is independent of the share (uc or
ūc̄) in the free commitment cj . By the secret sharing guarantee, all blocks are information
theoretically independent of v.

H5,j+1 ≈c H6,j. This indistinguishability follows from the sequential extraction guarantee
(Lemma 3.2). Here too, we use the fact that the inefficient oracle O∞ is only ever invoked
before the simulator is applied, and thus it can be non-uniformly fixed. In case the extractable
commitment starts with a receiver message, and the left free commitment cj splits a right
commitment right after the first receiver message and before the first sender message, we also
rely on the fact that the sequential extractor Sim∞ simulates the first receiver message honestly
and independently of the sender circuit (Lemma 3.3).

H6,j ≈c H5,j. This indistinguishability follows from the hiding of the left free commitment cj
in block j. Here, we need to address two types of calls to the inefficient oracle O∞. First, are
calls that occur strictly before the commitment cj has started — these can be non-uniformly
fixed. The second type corresponds to a right extractable commitment that is split by the left
commitment cj . Here we rely on first-message binding (Definition 3.12), which says that the
value of the commitment is fixed by the first sender message. Since this first message, occurs
before the commitment cj has started, we can non-uniformly fix it, and thus also efficiently
simulate a corresponding call to oracle O∞.

This concludes our proof for Proposition 5.1.

5.4 Robustness

We show that the commitment is also r-robust.

Proposition 5.2. The commitment scheme from Protocol 6 is extractable with r-robustness.

Proof sketch. We describe an r-robust extractor Simr(A, ρ) that given a senderA, interacting
in a left r-message protocol B and with oracle access to O∞ = O∞[Sen,Rec] on the right,
removes the use of the oracle.

Simr(A, ρ) invokes the non-interleaving extractor Sim∞free(Ā, ρ) with augmented adversary Ā.
Adversary Ā interacts with B on the left and on the right has oracle access to the sequential or-
acle O∞free = O∞free[ExCom.Sen,ExCom.Rec] of the extractable commitment underlying 〈Sen,Rec〉.
Recall that the latter oracle only answers break requests in sessions that do not interleave with
the left protocol B. ĀO∞free emulates AO∞ and emulates interaction with O∞ using its own ora-
cle O∞free. Ā submits a break request after each free session on the right, and uses the obtained
shares to answer A’s break requests to O∞.
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Recall that in 〈Sen,Rec〉 there are `+ 2 block commitments to the shares of the committed
value ṽ. By the soundness of the zero knowledge argument in Phase 2 of 〈Sen,Rec〉, the value
ṽ can be extracted from any one of these blocks. Since the number of block commitments is
`+ 2 > r, every execution contains a block on the right, which is free of interaction with B on
the left. In that block, all the break requests by Ā will succeed, allowing it to recover the shares
of the committed value ṽ and to properly answer the break requests made by A. Thus ĀO∞free
statistically simulates AO

∞
. The validity of Simr now follows from that of the non-interleaving

simulator Sim∞free.

6 Tag Amplification

In this section, we present a tag amplification transformation that converts a non-malleable
commitment scheme 〈Sen,Rec〉 for t ∈ [3, O(log(λ))] bit tags into a non-malleable commitment

scheme 〈Ŝen, R̂ec〉 for T = 2t−1 bit tags. The transformation requires 〈Sen,Rec〉 to addition-
ally satisfy k-robustness, where k is the number of rounds of a witness-indistinguishable (WI)
argument. The transformation preserves the k-robustness and incurs an additive polynomial
overhead in the complexity and an additive negligible security loss. As such, the transformation
can be applied iteratively to amplify the number of tags from constant to exponential in the
security parameter λ,

The transformation uses the following ingredients:

• A post-quantum secure one-way function f .

• Naor’s 2-message statistically binding commitment [Nao91] instantiated with a post-
quantum secure pseudo-random generator, which in turn can be based on post-quantum
one-way functions. The receiver of Naor’s protocol is public coin and sends a random
string a as the first message, the sender then responds with c = Coma(m; d) depending
on a; the decommitment is simply sender’s private random coins. The receiver can reuse
a across many commitments sent to it, and we can effectively use the second message of
Naor’s commitments as a non-interactive commitment.

• A post-quantum secure extractable commitment scheme ECom. Let k1 be the number of
rounds in this commitment scheme.

• A post-quantum secure WI protocol which can be based on any post-quantum one-way
functions. Let k2 be the number of rounds of WI.

• A non-malleable commitment scheme 〈Sen,Rec〉 for t ≥ 3 bit tags that is also r-robust
(Definition 3.11)for r = k1 + k2. Let n be the length of messages the scheme can commit
to.

The transformed non-malleable commitment 〈Ŝen, R̂ec〉 for T = 2t−1 tags is presented in Fig-
ure 7.

We next show that 〈Ŝen, R̂ec〉 is statistically binding, r-robust and post-quantum non-
malleable.

6.1 Analysis of The Tag Amplification

We show the following properties of 〈Ŝen, R̂ec〉(Protocol 7).

Proposition 6.1. The protocol 〈Ŝen, R̂ec〉 is statistically binding.
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Protocol 7

Common Input: Security parameter λ ∈ N and a tag t̂g ∈ {0, 1}T for the sender, where
T = 2t−1.

Ŝen’s private input: A message m ∈ {0, 1}n to commit to.

1. Trapdoor Setup: R̂ec sends two random images y1 = f(u1) and y2 = f(u2) of the

one-way function f , where u1 ← {0, 1}λ, u2 ← {0, 1}λ. R̂ec proves using WI that
either y1 or y2 is in the image of f for λ-bit inputs. We refer to u1 and u2 as the
trapdoors.

2. Initial Commitment: R̂ec sends the first message a of Naor’s commitment. Ŝen
commits to m using Naor’s commitment c = Coma(m; d) w.r.t. receiver’s message a,
using random coins d.

3. 〈Sen,Rec〉 commitments: For every bit t̂gi in the T = 2t−1 bit tag t̂g, define tag
tgi = (i, t̂gi), which has exactly t bits.

For every i ∈ [T ], Ŝen commits to m using 〈Sen,Rec〉 and tag tgi; let ci denote
the produced commitment and di the decommitment. All commitments are sent in
parallel.

4. Proof of Consistency: Ŝen first commits to 0λ using the extractable commitment
scheme ECom. Let ce denote the produced commitment.

Ŝen proves using WI that either c, c1 · · · , cT are all valid commitments to m, or ce
commits to a preimage of y1 or y2. Formally, it proves that the statement X =
(a, c, c1, · · · , cT , ce, y1, y2) belongs to the language L defined by the following witness
relation:

RL(X,W = (m, d, d1, · · · , dT , de, u)) = 1 iff

Either c = Coma(m; d) ∧ ∀i ∈ [T ], open〈Sen,Rec〉(ci,m, di) = 1 ,

Or openECom(ce, u, de) = 1 and (y1 = f(u) or y2 = f(u))

5. Receiver’s Decision: R̂ec accepts the commitment iff the proof of consistency is
accepting.

6. Decommitment: Ŝen outputs decommitment d. The decommitment is accepted if
c = Coma(m; d).

Figure 7: Post-quantum tag amplification.

Proposition 6.2. The protocol 〈Ŝen, R̂ec〉 is k-robust.

Theorem 6.1. The protocol 〈Ŝen, R̂ec〉 is post-quantum non-malleable.

The statistical binding property of 〈Ŝen, R̂ec〉 follows immediately from that the fact that the
committed value is defined by the Naor’s commitments in the initial commitment step, which
is statistically binding. We prove that 〈Ŝen, R̂ec〉 is k-robust and non-malleable below.

Proof of r-Robustness, Proposition 6.2 We want to construct a PPT simulator Ŝimr, such
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that, for every quantum polynomial-size adversary Â =
{
Âλ, ρ̂λ

}
λ∈N

, and every every PPT

r-message PPT B, the output of Â with access to the committed value oracle O[〈Ŝen, R̂ec〉],
and in interaction with B, can be simulated by Ŝimr without access to O[〈Ŝen, R̂ec〉] and only
interacting with B. For simplicity of notation, we suppressed subscript λ below. Formally,

{
OUTÂ〈B(z, 1λ), ÂO[〈Ŝen,R̂ec〉](ρ̂)〉

}
λ∈N,z∈{0,1}∗

≈
{
OUT

Ŝimr
〈B(y), Ŝimr(Â, ρ̂)〉

}
λ∈N,z∈{0,1}∗

To show this, we will reduce to the r-robustness of the underlying non-malleable com-
mitments scheme 〈Sen,Rec〉. Let Simr be the simulator for 〈Sen,Rec〉, such that, for every
polynomial-sized adversary A = {A, ρ}λ∈N and every PPT r-round B, we have{

OUTA〈B(z, 1λ), AO[〈Sen,Rec〉](ρ)〉
}
λ∈N,z∈{0,1}∗

≈
{
OUTSimr〈B(z, 1λ),Simr(A, ρ)〉

}
λ∈N,z∈{0,1}∗

We construct Ŝimr for 〈Ŝen, R̂ec〉 using Simr for 〈Sen,Rec〉 and show its correctness via a sequence

of hybrids, H0 to Hx, where H3 defines the simulator Ŝimr.

H0 consists of an honest interaction 〈B(z, 1λ), ÂO[〈Ŝen,R̂ec〉](ρ̂)〉 and outputs the output of Â.

H1 proceeds identically to H0 except that the oracle O[〈Ŝen, R̂ec〉] is replaced with by the
following procedure:

Special Extraction Procedure: For every commitment ĉ of 〈Ŝen, R̂ec〉, emulate the

honest receiver R̂ec for Â, but forward the first commitment c1 of 〈Sen,Rec〉 in it (using
tag tg1) to the committed value oracle O[〈Sen,Rec〉] of 〈Sen,Rec〉. If Â is non-aborting
(which implies that the final proof of consistency is accepting and c1 is non-aborting) and
queries break, call the committed value oracle O to break c1 and obtain m1 ∈ {0, 1}n∪{⊥},
and return m1 to Â as the value committed in c.

H1 and H0 are statistically close since interaction with the special extraction procedure
and O[〈Ŝen, R̂ec〉] are statistically close. To see this, first observe that they both emulate

the honest receiver R̂ec perfectly. Second, we claim that O[〈Ŝen, R̂ec〉] and the special
extraction procedure return the same committed values with overwhelming probability.
The former returns the committed value m in Naor’s commitment c, while the latter
returns that m1 in c1, only if the proof of consistency is accepting. If m 6= m1, by
the soundness of WI we can efficiently extract from the ECom commitment a fake witness
which is a preimage r of one of the two random images y1, y2 of f sent in the trapdoor setup
step. It then follows from the one-wayness of f and the witness indistinguishability of WI
that the probability of successful inversion is negligible. Therefore, the special extraction
procedure returns the same value as O[〈Ŝen, R̂ec〉] with overwhelming probability.

H2 proceeds identically to H1 except that we view it as an interaction 〈B(z, 1λ), AO[〈Sen,Rec〉](ρ̂)〉
between B and a wrapper adversary A with access to O[〈Sen,Rec〉]. The wrapper adver-
sary A emulates an execution of H1 with Â(ρ̂) internally, by forwarding messages between
B and Â and running the special extraction procedure using its oracle O[〈Sen,Rec〉] as in
H1. By definition H2 and H1 are distributed identically.
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H3 consists of the simulation 〈B(z, 1λ),Simr(A, ρ̂)〉 using the simulator Simr of O. It follows
directly from the r-robustness of 〈Sen,Rec〉 that H2 and H3 are indistinguishable.

H3 defines the following simulator Ŝimr for 〈Ŝen, R̂ec〉: Ŝimr given (Â, ρ̂) simply constructs
the wrapper adversary A internally and runs Simr with the same common input and
private input (A, ρ̂).

Proof of Non-Malleability, Theorem 6.1 We want to show the following indistinguishability
that for every PPT man-in-the-middle adversary {Âλ, ρλ}λ (we’ll suppress the subscript λfor
simplicity of notation),

{
mim〈Ŝen,R̂ec〉(Â, ρ,m0)

}
λ∈N,m0∈{0,1}λ,m1∈{0,1}λ

≈
{
mim〈Ŝen,R̂ec〉(Â, ρ,m1)

}
λ∈N,m0∈{0,1}λ,m1∈{0,1}λ

We show this via a sequence of hybrids.

Hb
0 outputs mim〈Ŝen,R̂ec〉(Â, ρ,mb) – the output OUTÂ of Â in a man-in-the-middle experiment

receiving a left commitment to mb using tag tg, and and the value m̃ it commits to in the
right commitment (which is ⊥ if the the right commitment is aborting or the right tag t̃g
is the same as the left tag tg).

Hb
1 proceeds identically to Hb

0 except for that the right committed value m̃ is computed differ-
ently. In both Hb

0 and Hb
1, if the right commitment is not accepting or the left and right

tags are the same tg = t̃g, the right committed value m̃ is set to ⊥. Otherwise, consider
two cases:

Case 1 : If Step 3 of the right commitment starts before the first message y1, y2 in the
left commitment is sent, then in both Hb

0 and Hb
1, m̃ is set to the value committed

in the Naor’s commitment c̃ in Step 2.

Case 2 : Else if Step 3 of the right commitment starts after the first message y1, y2 in
the left commitment is sent, in Hb

0, m̃ is still set to the value committed in the
Naor’s commitment c̃ in Step 2, whereas in Hb

1, m̃ is set to m̃i committed in the i’th
〈Sen,Rec〉 commitment c̃i in Step 3 of the right commitment, for an i satisfying that
tgi 6= t̃gi.

By the same argument as in the proof of r-robustness (Proposition 6.2), by the soundness
and witness indistinguishabiilty of WI, the extractability of ECom, and the one-wayness
of f , with overwhelming probability, the value committed in Naor’s commitment in Step
2 and m̃i committed in the i’th 〈Sen,Rec〉 commitment in Step 3 are the same. Therefore,
Hb

0 and Hb
1 are statistically close.

Hb
2 proceeds identically to Hb

1 except that the Step 4 WI of consistency in the left commitment
is generated using a fake witness. More specifically, in Step 1 of the left commitment,
Â sends y1, y2 and gives a WI argument that one of them is in the image of f . If this
argument is accepting, with overwhelming probability, there is a fake witness u that is
the preimage of y1 or y2 (or else, the honest committer Ŝen of the left commitment would
abort). In this case, in Step 4, instead of sending an ECom commitment of 0λ and using
the honest witness, send an ECom commitment of u and generate the proof of consistency
using the fake witness u.
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We show that by the soundness and the witness indistinguishability of WI, the hiding of
ECom, and the r-robustness of the input non-malleable commitment scheme 〈Sen,Rec〉,
Hb

1 and Hb
2 are indistinguishable.

Claim 6.1. For every b ∈ {0, 1}, Hb
1 ≈Hb

2.

Proof. Suppose for contradiction that the view of Â and the right committed value m̃ in
Hb

1 and Hb
2 are distinguishable with advantage 1/p(λ) for some polynomial p. Observe

that Hb
1 and Hb

2 proceed identically before Step 4 in the left commitment starts, and thus
conditioned on the Step 1 WI from Â not convincing, these two hybrids are identically
distributed. Therefore, the contradiction hypothesis implies that conditioned on the WI
in Step 1 of the left commitment being accepting, the output of Â and the right committed
value m̃ in Hb

1 and Hb
2 are distinguishable with advantage 1/p(λ). In this case, by the

argument of knowledge property of WI in Step 1, with overwhelming probability there
exists a trapdoor u that is either the preimage of y2 or y2. Thus, there must exist a
prefix τ of execution of Hb

1/Hb
2 up to the point that y1, y2 are sent, such that, i) there

exists a fake witness u, and ii) conditioned on τ occurring, the output of Â and the right
committed value m̃ in Hb

1 and Hb
2 is distinguishable with advantage 1/p(λ). Furthermore,

if Case 1 occurs, that is, Step 3 of the right commitment starts inside τ , let m̃′ be the
value committed in Naor’s commitment in Step 2. Otherwise, m̃′ = ⊥.

Using τ, m̃′ and Â we construct a wrapper adversary A that distinguishes an ECom com-
mitment to 0λ and WI argument generated using an honest witness, from an ECom com-
mitment to u and WI argument generated using a fake witness, while having access to the
committed value oracle O[〈Sen,Rec〉] on the right. More specifically, A(τ, m̃′) internally

emulates Hb
1/Hb

2 with Â starting from τ , by emulating the honest committer Ŝen(mb) on

the left and receiver R̂ec on the right, except that, i) it forwards the ECom commitment
and WI argument it receives as the Step 4 argument in the left commitment, and ii) if
Case 2 occurs, that is, Step 3 of the right commitment starts outside τ , it forwards the
i’th 〈Sen,Rec〉 commitment c̃i in Step 3 for i s.t. tgi 6= t̃gi to O[〈Sen,Rec〉] and obtains
the value m̃i committed in c̃i. Finally, it outputs the output of Â in the emulation and
right committed value m̃ = m̃′ if Case 1, and m̃ = m̃i if Case 2. If the right commitment
is not accepting or tg = tgi m̃ is overwritten by ⊥. Observe that depending on the value
committed in the ECom commitment and the witness used in the WI that A receives, it
emulates Hb

1 or Hb
2 perfectly for Â, and A’s output is exactly the output of Â and the

right committed value output by Hb
1 or Hb

2.

Finally, by the r-robustness of 〈Sen,Rec〉, we can simulate the output of AO[〈Sen,Rec〉](τ, m̃′)
when receiving an ECom commitment and WI argument of total r messages, by the output
of the r-robust simulator Simr(τ, m̃

′) of 〈Sen,Rec〉 when receiving the same r-round WI
argument. Therefore, by the fact that the output of A is distinguishable with advantage
1/p(λ), we have that the output of Simr is also distinguishable, which contradicts either
the hiding of ECom or the witness indistinguishability of WI.

Hb
3 proceeds identically to Hb

2 except that in the initial commitment step, it commits to 0 using
Naor’s commitment scheme instead of committing to mb. By a similar argument as that
for Claim 6.1, it follows from the computational hiding property of Naor’s commitment
and the r-robustness of 〈Sen,Rec〉 that the output of Â and the right committed value m̃
in Hb

2 and Hb
2 are indistinguishable.

Hb
4:i for i ∈ {0, 1, · · · , T} proceeds identically to Hb

3 except that in the 〈Ŝen, R̂ec〉 commitments

step, the first i commitments of 〈Ŝen, R̂ec〉 commit to 0 instead of mb. It follows from

35



the non-malleability of 〈Sen,Rec〉 that if there exists i such that tgi 6= t̃gi, the output
of Â and the value m̃i committed in the i’th 〈Sen,Rec〉 commitment c̃i on the right is
indistinguishable in Hb

4:0 and Hb
3, as well as in Hb

4:i and Hb
4:i+1. As in Hb

2, the right
committed value m̃ is set to m̃i in Case 2. Otherwise, m̃ is set to the value committed
in the Naor’s commitment in Step 2 in Case 1, which occurs before the left commitment
starts, and hence are the same in neighboring hybrids. Therefore, we have that the output
of Â and m̃ is indistinguishable in Hb

4:0 and Hb
3, as well as in Hb

4:i and Hb
4:i+1.

Finally, observe that Hb
4:T is independent of b. Hence by a hybrid argument we have that H0

0

and H1
0, which shows that 〈Ŝen, R̂ec〉 is non-malleable.

Iteratively applying the Transformation – Complexity Growth and Security Loss
We now analyze the complexity growth and security loss when applying the transformation

iteratively to transform a non-malleable commitment for a constant number of tags into one for
exponential number of tags.

First observe that the transformation increases the round complexity additively by 2k +
O(1). We show below that if the complexity of the protocol 〈Ŝen1, R̂ec1〉 produced after l

iterations is Dl, the complexity of that 〈Ŝenl+1, R̂ecl+1〉 produced after l+1 iterations is D1Tl+1+

poly(λ), where Tl+1 is the length of tags of 〈Ŝenl+1, R̂ecl+1〉. Therefore, iteratively applying the
transformation for L = O(log∗ λ) times on a non-malleable commitment with constant-bit
tags produces one for polynomial-bit tags, while increasing the round complexity additively
by (log∗ λ)(2k + O(1)), and the computational complexity of the final scheme is poly(λ). To
see the latter note that all but the final transformation produces a scheme with logarithmic
length tags, Tl = O(log λ) for every l < L. Thus the complexity of the second last scheme

〈ŜenL−1, R̂ecL−1〉 is bounded by poly(λ)O(log λ)L = poly(λ). Then, the complexity of the last

scheme 〈ŜenL, R̂ecL〉 is also poly(λ) as TL = poly(λ).

It remains to argue that the complexity of 〈Ŝenl+1, R̂ecl+1〉 is D1Tl+1 + poly(λ). It is easy
to see that Step 1 and 2 has fixed poly(λ) complexity, and Step 3 has complexity Tl+1 times

the complexity Dl of 〈Ŝenl, R̂ecl〉. At a first glance, Step 4 would have complexity polynomial
in that of Step 2 and 3, since it proves using WI a statement involving the Naor’s commitment
in Step 2, the Tl+1 〈Sen,Rec〉 commitments in Step 3, and the ECom commitment in Step 4.
However, a more careful examination shows that the value committed by 〈Sen,Rec〉 (except for
the initial non-malleable commitment scheme in 5) is always defined by a Naor’s commitment, if

the 〈Sen,Rec〉 commitment is accepting. More precisely, for every l ≥ 1, 〈Ŝenl, R̂ecl〉 has form as
in Figure 7, whose committed value is defined by the Naor’s commitment in Step 2. Therefore,
the complexity of Step 4 is polynomial in the complexity of Tl+1 + 1 Naor’s commitments,

which is bounded by a fixed polynomial poly(λ). Therefore, the complexity of 〈Ŝenl+1, R̂ecl+1〉
is D1Tl+1 + poly(λ).

Finally, we analyze the security loss. First observe that the proofs of r-robustness and
non-malleability for each transformation go through hybrids, where the indistinguishability of
neighboring hybrids either reduces to the security properties of some basic primitives, includ-
ing Naor’s commitment, WI, ECom, and one-way function f , or reduces to the r-robustness
or non-malleability of the input non-malleable commitment. For all reductions, the size of the
reduction is larger than the size of the adversary by an additive polynomial factor. Therefore,
after O(log∗ λ) iterations, the security loss in the size of the adversary is bounded by an ad-
ditive polynomial factor. Next observe that the proof of r-robustness essentially reduces the
r-robustness of the output non-malleable commitment scheme to that of the input scheme, while
incurring an additive negligible increase in the advantage (of violating r-robustness). The proof
of non-malleability, on the other hand, reduces the non-malleability of the output scheme to that
of the input scheme, while incurring both an additive negligible increase and a multiplicative T

36



fold increase in the advantage, where T is the length of tags of the output scheme. Therefore,
by a similar analysis as above for complexity growth, after O(log∗ λ) iterations, the advantage
of the adversary in violating either r-robustness and non-malleability increases by at most a
multiplicative and an additive polynomial factor. Overall, the security loss is polynomial.
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