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Abstract

We study the round complexity of zero-knowledge for QMA (the quantum analogue of NP).
Assuming the quantum quasi-polynomial hardness of the learning with errors (LWE) problem,
we obtain the following results:

• 2-Round statistical witness indistinguishable (WI) arguments for QMA.

• 4-Round statistical zero-knowledge arguments for QMA in the plain model, addition-
ally assuming the existence of quantum fully homomorphic encryption. This is the first
protocol for constant-round statistical zero-knowledge arguments for QMA.

• 2-Round computational (statistical, resp.) zero-knowledge for QMA in the timing model,
additionally assuming the existence of post-quantum non-parallelizing functions (time-
lock puzzles, resp.).

All of these protocols match the best round complexity known for the corresponding protocols
for NP with post-quantum security. Along the way, we introduce and construct the notions of
sometimes-extractable oblivious transfer and sometimes-simulatable zero-knowledge, which
might be of independent interest.

*Work done while the author was an intern at the Max Planck Institute for Security and Privacy.



1 Introduction

Zero-knowledge (ZK) proofs allow one to prove the veracity of a statement while revealing noth-
ing beyond that. Since their introduction [GMR89], ZK proofs have had a profound impact on
cryptography and theoretical computer science at large. Due to their foundational importance
and large applicability, ZK proof systems have been the objective of a long series of work aim-
ing at understanding the necessary assumptions and their round complexity: Under standard
computational assumptions, any NP statement can be proven in as few as four rounds of interac-
tion [GMW86, GK96].

The situation is however drastically different when moving to the quantum settings: ZK proofs
for QMA (the quantum analogue of NP) have been introduced only recently [BJSW16] and the
best known result, in terms of round complexity, is from the very recent work of Bitansky and
Shmueli [BS20] where they presented a constant-round computational zero-knowledge argument
system (i.e. with computational soundness). Given the current state of affairs, one may wonder
whether proving QMA statements inherently introduces additional rounds of interaction. In this
work, we study this problem and we give strong evidence that this is not the case, presenting
protocols in a variety of settings that match the round complexity of their classical counterparts in
the same adversarial settings, i.e. with security against quantum attackers.

Our Results. We begin by considering a weak version of zero-knowledge, namely, witness in-
distinguishability (WI), which only guarantees that a distinguisher cannot tell whether the prover
used w0 or w1, where (w0, w1) are two valid witnesses for the given statement. While not immedi-
ately meaningful on its own, this notion and protocol will serve as the basis for our further results.
We construct a 2-round protocol with statistical WI, assuming the quasi-polynomial hardness of
the learning with errors (LWE) problem [Reg05]. This matches the round complexity of statistical
WI protocols for NP [KKS18, BFJ+20, GJJM20].

Theorem 1.1 (Informal). Assuming the quantum quasi-polynomial hardness of the LWE problem, there
exists a 2-round statistical WI argument for QMA.

Next, as our main result, we show how to compile the above WI protocols, into a fully-
fledged 4-round statistical ZK argument for QMA. The protocol is a round compressed version
of the [BS20] approach and, as such, also has a non-blackbox simulator.1 In contrast to [BS20]
our protocol achieves statistical ZK and relies on computational assumptions only to argue about
soundness. On the flip side, we rely on the (quantum) quasi-polynomial security of the LWE prob-
lem and of the quantum fully-homomorphic encryption (QFHE).

Instrumental to our result are the notions of sometimes-extractable 3-round oblivious transfer
and sometimes-simulatable 3-round ZK proofs, which we define and construct. Our protocol
matches the round complexity of the best known ZK proofs/arguments for NP against quantum
adversaries.

Theorem 1.2 (Informal). Assuming the quantum quasi-polynomial hardness of the LWE problem and a
quasi-polynomially secure QFHE scheme, there exists a 4-round statistical ZK argument for QMA.

1There is evidence [CCLY21] that non-blackbox simulation is necessary for constant-round ZK against quantum
adversaries.
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Interestingly, plugging in a 2-round WI protocol for NP we obtain a 4-round statistical ZK
argument for NP, secure under the same assumptions against quantum adversaries. Prior to our
work, post-quantum statistical ZK for NP was only known in polynomial rounds [Unr12, ACP20].

Theorem 1.3 (Informal). Assuming the quantum quasi-polynomial hardness of the LWE problem and a
quasi-polynomially secure QFHE scheme, there exists a 4-round post-quantum statistical ZK argument for
NP.

Finally we consider the question of 2-round ZK in the timing model: Since 2-round ZK is
known to be impossible [GO94] without additional assumptions, a common relaxation is to al-
low parties to reliably measure time during the execution of the protocol. In this context, we
revisit the Dwork-Stockmeyer [DS02] approach and lift it to the quantum settings. In addition
to quasi-polynomial LWE, we assume the existence of a post-quantum non-parallelizing function
(e.g. repeated hashing).

Theorem 1.4 (Informal). Assuming the quantum quasi-polynomial hardness of the LWE problem, an FHE
scheme, and an average-case non-parallelizing function, there exists a 2-round computational ZK argument
for QMA (for NP, resp.) with quantum (classical, resp.) communication in the timing model.

A shortcoming of the above approach is that it only achieves computational ZK. To overcome
this issue, we propose a different route to construct statistical ZK in the timing model, which relies
on slightly stronger assumptions (namely, post-quantum time-lock puzzles).

Theorem 1.5 (Informal). Assuming the quantum quasi-polynomial hardness of the LWE problem and a
quasi-polynomially sequential post-quantum time-lock puzzle, there exists a 2-round statistical ZK argu-
ment for QMA (for NP, resp.) with quantum (classical, resp.) communication in the timing model.

2 Technical Overview

Here we present an overview of the main technical ideas presented in the paper. For further
details, we refer the reader to the technical sections.

2.1 Witness-Indistinguishable Arguments

We begin by outlining the construction of a 2-round WI protocol, which will constitute the basis for
the following results. 2-round WI protocols for NP under the same assumptions are known [KKS18,
GJJM20, BFJ+20], so the main challenge here is to lift them to the QMA settings. Our construc-
tion is based on the template from [Shm20], which in turn relies on the sigma protocol for QMA
introduced in [BG20]. Such a protocol consists of the canonical three messages: A commitment
α, a challenge β, and a response γ. The important property (also used in [Shm20]) is that the
computation of β and γ is completely classical. In our protocol we actually use a new version of
the [BG20] protocol that achieves statistical ZK, which we construct from the parallel repetition
of [BG20] combined with an SBSH commitment (which is explained below). For the sake of this
overview though we can ignore this aspect and simply consider a three message sigma protocol.

The basic idea of the protocol is to use a maliciously circuit private (levelled) homomorphic
encryption to round-collapse the sigma protocol: The verifier sends to the prover an encrypted
challenge β, then the prover computes in plain a commitment α and evaluates homomorphically
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the response function to return an encrypted version of γ. The verifier, who knows the secret key
of the homomorphic encryption, can decrypt the incoming ciphertext and verify the validity of
the transcript (α, β, γ). While intuitively the soundness follows from the semantic security of the
homomorphic encryption scheme, turning this into a provably secure scheme requires us to tweak
it with some additional tools:

• We let the prover compute a commitment to the random coins used in the homomorphic
evaluation procedure. This allows the verifier (in the soundness proof) to check the validity
of the transcript without knowing the secret key of the homomorphic encryption scheme.
To achieve this while maintaining statistical WI, we use a special kind of sometimes-binding
statistically hiding (SBSH) commitment. This is a standard statistically hiding commitment
scheme, which has a certain (negligibly small) probability to be perfectly binding. When
such event happens, the verifier can extract the committed message. Soundness is then
argued by a standard complexity leveraging argument.

• We use a dual-track approach, where we repeat the above process twice and we let the
prover show that at least one of the two instances was computed correctly, via a statistical
WI (for NP). This is sufficient to prove the overall WI of the protocol since we can “switch”
the witness step-by-step for each branch.

All of the above building blocks can be instantiated assuming the quasi-polynomial hardness of
the LWE problem. Since this protocol constitutes the basis of the upcoming constructions, they
will also be based on the quantum quasi-polynomial hardness of LWE.

2.2 Zero Knowledge Arguments

To achieve ZK, we leverage the generic approach of [AL20, BS20], which introduces a non-black-
box quantum extraction technique that allows the simulator to emulate the honest prover without
knowing the witness. The extraction protocol consists of constant (> 4) number of rounds and
the resulting ZK scheme for QMA achieves only computational ZK, while our objective will be
achieving statistical ZK settings while at the same time squeezing the number of rounds down to
4. Throughout the rest of this overview (and for all of the upcoming protocols) the main technical
challenge will be to construct a simulator against a quantum verifier (i.e., achieving post-quantum
zero-knowledge), so our discussion will mostly concentrate on this aspect. The class of statements
that we can prove in zero-knowledge depends on the underlying WI: By plugging in a WI for NP
we obtain post-quantum ZK for NP and by plugging in a WI for QMA we obtain ZK for QMA.

Some Cryptographic Tools. Before presenting the construction we recall some necessary tools
that we use. The first is a quantum fully homomorphic encryption (QFHE) scheme. Similar to an
FHE scheme, this tool allows us to additionally perform homomorphic evaluations of quantum
circuits and inputs. We also use a compute-and-compare obfuscation. A compute-and-compare
program CC[f, s, z] where f is a function and s, z are strings, outputs z on every input x such
that f(x) = s and rejects the rest of the inputs. A compute-and-compare obfuscator compiles
a CC program to the obfuscated program C̃C and is computationally indistinguishable from a
simulated dummy program, that rejects on all inputs. Finally, we use a conditional disclosure of
secrets (CDS) protocol. This two-round protocol is parametrized by a statement z and a message
m from the sender: The receiver is able to recover m if the statement is correct, whereas m stays
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hidden if this is not the case. Simultaneously, the witness w (held by the receiver) for x should be
kept secret from the eyes of the sender.

The “Homomorphic Trapdoor” Technique. We now briefly recall the simulation technique from
[BS20, AL20]. For simplicity, we consider a verifier that never aborts and that is explainable, i.e.
it computes all its messages in the support of algorithms as dictated by the honest protocol. The
crux of their protocol consists of the following extractable commitment scheme (where the verifier
will later play the role of the sender, and the prover the role of the receiver):

• The sender samples two random strings s, td in addition to:

– A public and secret key (pk, sk) of a QFHE scheme and an encryption ctd = QFHE.Enc(pk, td)
of td.

– The obfuscated program C̃C← Obf(CC[f, s, (sk,m)], where f is the decryption circuit
of QFHE.

The sender sends pk, ctd, C̃C to the receiver.

• The receiver encodes a guess y via the CDS protocol.

• The sender responds with a message encrypted via the CDS protocol, such that, if the guess
y is equal to td, then the message decrypts to s. Otherwise it returns ⊥.

Intuitively, such a procedure is binding since the message in the obfuscated program is uniquely
determined, and hiding since no receiver guesses td correctly, except with negligible probability.
Furthermore, a simulator can extract the message (sk,m) and simulate the sender’s view: After the
simulator gets the first message, it homomorphically computes the sender’s last message using the
sender’s circuit with inputs the encryption of td and the inner state of the sender. The result of the
homomorphic computation is the message encrypted with the CDS, whose statement is satisfied
and hence it returns s encrypted under QFHE. This is exactly the input needed for C̃C in order to
obtain m. Note that the simulator is able to also produce a valid transcript T without rewinding
the adversary, since the CC program also returns sk, which can be used by the simulator to decrypt
the QFHE-encrypted messages.

From WI to ZK in 4 Rounds. Given the above extractable commitment, one can boost a 2-round
WI argument into a fully-fledged 4-round ZK protocol, as follows: The verifier in the first round
sends a commitment to zero with randomness r (which is the same randomness used in the QFHE
keys generation algorithm). Then, they perform the above quantum extraction technique with r
as the message m. After the interaction, the prover utilizes the WI argument introduced before
and sends a proof that either he knows the randomness r or that x ∈ L.

To rule out mauling attacks where the prover could maul a QFHE encryption of td into a valid
witness for the CDS protocol, we additionally include an SBSH commitment of y, which can be
extracted with low probability, thus enabling a reduction against the semantic security of the QFHE
scheme. Consistency is guaranteed by checking that the SBSH commitment is well-formed within
the CDS protocol (i.e. the prover includes also the randomness of the SBSH commitment as part
of the witness).
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Sometimes-Extractable SRP Oblivious Transfer. One immediate issue with the above protocol
is that existing 2-round CDS protocols only provide computational security for the receiver, which
would result in us achieving computational ZK. Since statistical receiver security is impossible in
2 rounds (as it would imply a non-interactive statistically hiding commitment), we turn our atten-
tion to a possible 3-round protocol. Towards achieving that goal, we consider the less ambitious
objective of constructing a 3-round statistically receiver private oblivious transfer (SRP-OT). For
3-round SRP-OT, even defining security is a non-trivial task since the choice bit of the receiver
is not determined in an information theoretic sense. For this reason, we introduce the notion of
sometimes-extractable SRP-OT, which provides us with the following guarantees:

• Statistical Receiver Privacy: The choice bit b of the receiver is statistically hidden.

• Sometimes Extractability: With exponentially small probability, the receiver message is in
“binding” mode and the choice bit b is uniquely determined and can be efficiently extracted.

• Computational Sender Privacy: Conditioned on the fact that the the above extraction hap-
pens, the message mb⊕1 is computationally hidden from the eyes of the receiver.

This notion seems to inherently require complexity leveraging in order to be fulfilled. On the
brighter side, this notion is sufficient for our purposes and are able to provide a construction as-
suming quasi-polynomial LWE. The scheme is an augmented version of the 3-round OT presented
in [GJJM20], where we additionally include an SBSH commitment to the choice bit b (which will
enable the above extraction procedure). To ensure that the choice bit is consistently set across the
OT and the SBSH commitment, we will also let the verifier compute a statistical WI proof that
certifies this.2

Equipped with sometimes-extractable SRP-OT we are then able to construct a post quantum
CDS protocol with statistical receiver privacy: The receiver sets the bit decomposition of its wit-
ness w to be the choice bits for the SRP-OT. Then the sender computes a garbled circuit that, on
input w, checks whether w ∈ RL(x) and returns the message m if this is the case. The SRP-OT is
then used to transmit the labels corresponding to w to the receiver, which can retrieve the message
by locally evaluating a garbled circuit.

Malicious Verifiers. The only remaining problem is that the ZK protocols are simulatable under
the assumption that the verifier is non-aborting and explainable. To deal with aborting verifiers,
we (as done in [BS20],) define two simulators, an aborting and a non-aborting one, and we let the
combined simulator guess which of the two he should use. Watrous’ rewinding lemma [Wat09]
allows the simulator to rewind until the guess was correct without disturbing the verifier’s state.
To ensure that the verifier is explainable, we augment the protocol with an additional ZK proof
(from the verifier to the prover) that the messages where computed honestly. Note that even in
our protocol for QMA the verifier is completely classical, so ZK for NP always suffices. In order to
achieve statistical soundness and maintain the statistical ZK property though, we need a delayed-
input ZK proof (with statistical soundness). This proof needs also to not exceed 3 rounds so as not
to increase the rounds of the original protocol. Unfortunately, we do not have a 3-round ZK proof,
let alone a post-quantum one.

2The astute reader may wonder why the WI guarantee is enough here. To prove receiver privacy we will add a
trapdoor statement where the witness can be computed in exponential time. Since the argument is anyway statistical,
this does not add any additional assumption.
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Sometimes-Simulatable Zero-Knowledge. We observe however, that for our case a weaker no-
tion suffices. In particular, we introduce the notion of sometimes simulatable zero-knowledge, where
simulation is possible with some (negligibly) small probability. In order to be meaningfully used,
one must set the security parameters of other primitives to account for this exponential loss, much
like with SBSH commitments. Sometimes-simulatable (SSim) ZK is reminiscent of ZK with super-
polynomial simulation (SPS) [Pas03a] but with a crucial difference: In SPS-ZK the simulator runs
in super-polynomial time, whereas in SSim-ZK the simulator runs in polynomial time but only has
an exponentially small success probability. This difference is important in our settings since (in
general) we cannot rewind the state of the verifier and it is therefore important that the simulation
is straight-line.

The construction utilizes the sometimes-extractable SRP-OT protocol constructed above in or-
der to “delay” the input of the Blum sigma protocol for Graph Hamiltonicity, similarly as it is done
in [JKKR17]. The verifier samples a challenge β ∈ {0, 1}n and sets the choice bits of the SRP-OT
to be the bit representation of β. Then the prover samples n independent commitment-response
tuples (α, γ0, γ1) for the sigma-protocol and sets the i-th pair (γ0, γ1) as the messages for the i-th
instance of the SRP-OT. The verifier can then verify the sigma protocol by decoding the SRP-OT
and checking the validity of the transcript. Note that the challenge β is statistically hidden and
therefore the resulting proof is statistically sound, by the statistical soundness of the sigma pro-
tocol. To argue about computational ZK, recall that with a certain low-probability the SRP-OT
is in extractable mode, which makes it possible for the simulator to recover β and simulate the
transcript. By setting the parameters appropriately, we can then reduce against the computational
ZK of the sigma protocol.

2.3 Zero Knowledge in the Timing Model

Finally, we investigate how to achieve ZK in two rounds, by moving the protocol to the timing
model. In other words, we assume that the parties can reliably measure the lapse of time during
the interaction. In order to achieve this, we assume the existence of a non-parallelizing function F .
A non-parallelizing function is a function that can be computed in time T , while the result of the
function with an input x cannot be predicted by an attacker with depth less than T (i.e it cannot
be run quicker in parallel time).

Computational Zero-Knowledge. For our first construction we revisit the [DS02] approach. The
protocol is parametrized by a time parameter T and and we assume a sub-exponentially non-
parallelizing function F , secure against algorithms with depth less than T . The prover first com-
putes an encryption α of a random string, and its homomorphic evaluation β with the function F .
Then, after the verifier sends a random value x∗, the prover sends a proof that either x ∈ L or that
he knows an encryption α of x∗. Eventually, the verifier accepts if the prover responds in time, the
proof is valid and the homomorphic evaluation of α with F is equal to β.

Intuitively, the protocol is secure because the prover doesn’t have the time to homomorphically
recompute β. Thus, soundness is proven by reducing to breaking the non-parallelizability of F .
The zero-knowledge property is easily proven, having in mind that the simulator is allowed to
”freeze time” (from the perspective of the verifier) while simulating the accepting transcript. Note
that the simulation is straight-line and does not copy nor rewinds the state of the verifier, which
makes it suitable for the quantum settings.
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Statistical Zero-Knowledge. Assuming slightly stronger assumptions, we propose a different
approach, achieving statistical ZK. In particular we assume the existence of a post-quantum time-
lock puzzle. A time-lock puzzle essentially provides an encryption that is breakable after time T ,
but where one cannot gain a significant speedup with parallel computation (similar to the non-
parallelizability). For the sake of this overview, we only consider explainable verifiers and the
conversion to malicious verifiers can be done with standard techniques [BKP19, CDM20].

In our construction, the verifier sends a commitment to 0 with randomness r, along with a
time-lock puzzle encrypting said randomness. Then the prover sends a WI proof proving that
either it knows a statement x ∈ L or that it knows the randomness r. The verifier accepts if the
prover responds in time and the proof is valid. Intuitively, a malicious prover cannot solve the
time-lock puzzle in the necessary time, whereas in order to prove ZK, the simulator can again
”freeze time” and solve the time-lock puzzle, acquiring the randomness and using it as a witness
in the WI proof.

2.4 Related Work

A series of recent works [BG20, CVZ20, ACGH20, CCY20, Shm20, BM21] considers the problem
of non-interactive ZK for QMA. All of these works require some notion of trusted setup, which is
unavoidable for 1-round protocols. We also mention another line of work [Unr12, HSS11, LN11,
ARU14, AL20] that studies the strong notion of arguments of knowledge in the quantum settings.
In the multi-prover settings, it is known that NEXP [CFGS18] and MIP∗ [GSY19] admit perfect ZK
interactive proofs (sound against entangled quantum provers). Finally, there exists a construction
of a 3-round statistical ZK argument for NP [BP19] based on the protocol from [BKP18] which
relies on keyless multi-collision resistant hash and (polynomial) LWE. However, to the best of
our knowledge, the protocol is analyzed only in the classical settings and it appears to be a chal-
lenging problem to apply the same simulation strategy against quantum verifiers. For a detailed
discussion on the challenges of post-quantum zero-knowledge we refer the reader to [BS20].

Comparison with [BG20]. In [BG20] the authors construct a sigma protocol for QMA which
satisfies computational honest-verifier zero-knowledge (HVZK) and statistical soundness, while
using statistically binding commitments and achieving 1 − 1/poly(λ) soundness error. They also
claim an extension to statistical HVZK, using a collapse-binding commitment instead of a statisti-
cally binding one (without a formal proof). An earlier version of this work used such a protocol
as a building block for our 2-round statistical WI argument. However, Fermi Ma pointed out to us
a gap in the analysis of [BG20] for their statistical HVZK variant.

In the revised version of this work, we include a new version of the [BG20] protocol that
achieves computational soundness and statistical HVZK. The protocol is a k-fold parallel repe-
tition of [BG20] combined with the use of an SBSH commitment (instead of a collapse-binding
one). In order to prove soundness (with negligible error), a standard complexity leveraging ar-
gument is used to condition on the SBSH commitment being in binding mode. For details, we
refer the reader to Section 4.2. We shall mention that, because of the SBSH commitment, the above
construction requires the quasi-polynomial hardness of LWE assumption.
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3 Preliminaries

We denote by λ the security parameter. A function f : N→ [0, 1] is negligible if for every constant
c ∈ N there exists N ∈ N such that for all n > N , f(n) < n−c. We recall some standard notation for
classical Turing machines and Boolean circuits:

• We say that a Turing machine (or algorithm) is PPT if it is probabilistic and runs in polyno-
mial time in λ.

• We sometimes think about PPT Turing machines as polynomial-size uniform families of cir-
cuits. A polynomial-size circuit family C is a sequence of circuits C = {Cλ}λ∈N, such that
each circuit Cλ is of polynomial size λO(1) and has λO(1) input and output bits. We say that
the family is uniform if there exists a polynomial-time deterministic Turing machine M that
on input 1λ outputs Cλ.

• For a PPT Turing machine (algorithm) M , we denote by M(x; r) the output of M on input x
and random coins r. For such an algorithm, and any input x, we write m ∈ M(x) to denote
that m is in the support of M(x; ·). Finally we write y←$M(x) to denote the computation of
M on input x with some uniformly sampled random coins.

3.1 Quantum Adversaries

We recall some notation for quantum computation and we define the notions of computational
and statistical indistinguishability for quantum adversaries. Various parts of what follows are
taken almost in verbatim from [BS20].

• We say that a Turing machine (or algorithm) is QPT if it is quantum and runs in polynomial
time.

• We sometimes think about QPT Turing machines as polynomial-size uniform families of
quantum circuits (as they are equivalent models). We call a polynomial-size quantum circuit
family C = {Cλ}λ∈N uniform if there exists a polynomial-time deterministic Turing machine
M that on input 1λ outputs Cλ.

• Classical communication channels in the quantum setting are identical to classical commu-
nication channels in the classical setting, except that when a set of qubits is sent through a
classical communication channel, then the qubits decohere and are automatically measured
in the standard basis.

• A quantum interactive algorithm (in the two-party setting) has input divided into two reg-
isters and output divided into two registers. For the input qubits, one register is for an input
message from the other party, and a second register is for a potential inner state the ma-
chine holds. For the output, one register is for the message to be sent to the other party, and
another register is for a potential inner state for the machine to keep for itself.

Throughout this work, we model efficient adversaries as quantum circuits with non-uniform
quantum advices. This is denoted byA∗ = {A∗λ, ρλ}λ∈N, where {A∗λ}λ∈N is a polynomial-size non-
uniform sequence of quantum circuits, and {ρλ}λ∈N is some polynomial-size sequence of mixed
quantum states. We now define the formal notion of computational indistinguishability in the
quantum settings.
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Definition 3.1 (Computational Indistinguishability). Two ensembles of quantum random variables
X = {Xλ}λ∈N and Y = {Yλ}λ∈N are said to be computationally indistinguishable (denoted by X ≈c Y)
if there exists a negligible function µ such that for all λ ∈ N and all non-uniform QPT distinguishers with
quantum advice A = {Aλ, ρλ}λ∈N, it holds that

|Pr[A(X; ρ) = 1]− Pr[A(Y ; ρ) = 1]| ≤ µ(λ)

where X←$Xλ and Y ←$Yλ.

The trace distance between two quantum distributions (Xλ, Yλ), denoted by TD(Xλ, Yλ), is a
generalization of statistical distance to the quantum setting and represents the maximal distin-
guishing advantage between two quantum distributions by an unbounded quantum algorithm.
We define below the notion of statistical indistinguishability.

Definition 3.2 (Statistical Indistinguishability). Two ensembles of quantum random variables X =
{Xλ}λ∈N and Y = {Yλ}λ∈N are said to be statistically indistinguishable (denoted by X ≈s Y) if there
exists a negligible function µ such that for all λ ∈ N, it holds that

TD(Xλ, Yλ) ≤ µ(λ).

The Class QMA. A language L = (Lyes,Lno) in QMA is defined by a tuple (V, p, α, β), where p
is a polynomial, V = {Vλ}λ∈N is a uniformly generated family of circuits such that for every λ, Vλ
takes as input a string x ∈ {0, 1}λ and a quantum state |ψ〉 on p(λ) qubits and returns a single bit,
and α, β : N→ [0, 1] are such that α(λ)− β(λ) ≥ 1/p(λ). The language is then defined as follows.

• For all x ∈ Lyes of length λ, there exists a quantum state |ψ〉 of size at most p(λ) such that
the probability that Vλ accepts (x, |ψ〉) is at least α(λ). We denote the (possibly infinite) set
of quantum witnesses that make Vλ accept x by RL(x).

• For all x ∈ Lno of length λ, and all quantum states |ψ〉 of size at most p(λ), it holds that Vλ
accepts on input (x, |ψ〉) with probability at most β(λ).

3.2 Learning with Errors

We recall the definition of the learning with errors (LWE) problem [Reg05].

Definition 3.3 (Learning with Errors). The LWE problem is parametrized by a modulus q = q(λ),
polynomials n = n(λ) and m = m(λ), and an error distribution χ. The LWE problem is hard if it holds
that

(A,A · s + e) ≈c (A,u)

where A←$Zm×nq , s←$Znq , u←$Zmq , and e←$χm.

As shown in [Reg05, PRS17], for any sufficiently large modulus q the LWE problem where χ is
a discrete Gaussian distribution with parameter σ = ξq ≥ 2

√
n (i.e. the distribution over Z where

the probability of x is proportional to e−π(|x|/σ)2), is at least as hard as approximating the shortest
independent vector problem (SIVP) to within a factor of γ = Õ(n/ξ) in worst case dimension n
lattices. In this work we rely on the quasi-polynomial hardness of LWE. This is a stronger assumption
than plain LWE, where the distinguisher for the two distributions is allowed to run on quasi-
polynomial time.
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3.3 Pseudorandom Functions

We recall the standard notion of pseudorandom function (PRF) [GGM86].

Definition 3.4 (Pseudorandom Function). A pseudorandom function (PRF.Gen,PRF.Eval) consists of
the following efficient algorithms.

• PRF.Gen(1λ): On input the security parameter, the key generation algorithm returns a key k.

• PRF.Eval(k, x): On input a key k and a string x ∈ {0, 1}λ, the evaluation algorithm returns a string
y ∈ {0, 1}e(λ).

The scheme must be pseudorandom in the following sense.

Definition 3.5 (Pseudorandomness). A pseudorandom function (PRF.Gen,PRF.Eval) is pseudorandom
if there exists a negligible function µ such that for all λ ∈ N and all non-uniform QPT distinguishers with
quantum advice A = {Aλ, ρλ}λ∈N, it holds that∣∣∣Pr

[
A(ρ)PRF.Eval(k,·) = 1

]
− Pr

[
A(ρ)f(·) = 1

]∣∣∣ ≤ µ(λ)

where k←$PRF.Gen(1λ) and f : {0, 1}λ → {0, 1}e(λ) is a uniformly sampled truly random function.

3.4 Garbled Circuits

We recall the definition of a garbling scheme for circuits [Yao86, AIK04, BHR12].

Definition 3.6 (Garbled Circuit). A garbling scheme for circuits is a tuple of PPT algorithms (Garble,GEval)
with the following syntax.

• Garble
(
1λ, C

)
: Garble takes as input a security parameter 1λ, a circuit C, and outputs a garbled

circuit C̃ along with labels {`i,b}i∈{1,...,n},b∈{0,1}, where n is the length of the input to C.

• GEval
(
C̃, {`i,xi}i∈{1,...,n}

)
: Given a garbled circuit C̃ and a sequence of input labels {`i,xi}i∈{1,...,n},

GEval outputs a string y.

We recall the notion of completeness.

Definition 3.7 (Completeness). A garbling scheme (Garble,GEval) is complete if for any circuit C and
input x ∈ {0, 1}n we have that:

Pr
[
C(x) = GEval

(
C̃, {`i,xi}i∈{1,...,n}

)]
= 1

where (C̃, {`i,b}i∈{1,...,n},b∈{0,1})← Garble
(
1λ, C

)
.

We define the notion of (statistical) simulation security, which is achievable for circuits in NC1.

Definition 3.8 (Security). A garbling scheme (Garble,GEval) is simulation secure if there exists a PPT
simulator GSim such that for any circuit C and input x ∈ {0, 1}n, we have that(

C̃, {`i,xi}i∈{1,...,n}
)
≈s GSim

(
1λ, 1|C|, 1n, C(x)

)
where (C̃, {`i,b}i∈{1,...,n},b∈{0,1})← Garble

(
1λ, C

)
.
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3.5 Interactive Proofs and Sigma Protocols

We present the definitions of interactive proof systems and sigma protocols. Much of the following
material is taken in verbatim from [Shm20]. We denote by (P,V) and interactive protocol between
a prover P and a verifier V. The output of the verifier is denoted by Out(P,V). For an honest
verifier, the output is a classical bit that denotes acceptance or rejection. If the verifier is corrupted,
the output can be an arbitrary quantum state. We define completeness in the following.

Definition 3.9 (Completeness). An interactive protocol (P,V) for a language L ∈ QMA with relation
RL is complete if there exists a polynomial p and a negligible function µ such that for all λ ∈ N, all x ∈ L,
and all |w〉 ∈ RL(x), it holds that

Pr
[
Out(P(|w〉⊗p(λ) , x),V(x)) = 1

]
≥ 1− µ(λ).

Next we define the notion of (non-adaptive) computational soundness.

Definition 3.10 (Computational Soundness). An interactive protocol (P,V) for a language L ∈ QMA
with relation RL is computationally sound if there exists a negligible function µ such that for all λ ∈ N, all
x /∈ L, and all non-uniform QPT provers with quantum advice A = {Aλ, ρλ}λ∈N, it holds that

Pr [Out(A(x; ρ),V(x)) = 1] ≤ µ(λ).

Sigma Protocols. We explicitly define sigma protocols (Σ), a special case of interactive protocols
for QMA, and we define a special honest-verifier zero knowledge guarantee that is satisfied by
some protocols of interest.

Definition 3.11 (Sigma Protocol). A sigma protocol (Σ.Com,Σ.Chal,Σ.Resp) consists of the following
efficient algorithms.

• Σ.Com(|w〉⊗p(λ) ; r): On input p(λ)-many copies of the witness and some (classical) random coins
r ∈ {0, 1}q(λ), the commitment algorithm returns a first commitment |α〉.

• Σ.Chal(x): On input the instance x, the challenge algorithm returns a uniformly sampled (classical)
string β ∈ {0, 1}b(λ).

• Σ.Resp(β, r): On input the challenge β and the classical random coins r, the response algorithm
returns a classical response γ.

We highlight the fact that both the challenge and the response algorithm are completely clas-
sical: The only quantum computation needed is for the Σ.Com algorithm and for verifying that
x ∈ L, given the protocol transcript. We now define the notion of computational special honest-
verifier zero-knowledge.

Definition 3.12 (Computational Special Honest-Verifier Zero-Knowledge). A sigma protocol (Σ.Com,Σ.Chal,Σ.Resp)
satisfies (computational) special honest-verifier zero-knowledge if there exists a QPT simulator Σ.Sim such
that for all λ ∈ N, all x ∈ L, and all |w〉 ∈ RL(x), it holds that

(Σ.Com(|w〉⊗p(λ) ; r),Σ.Resp(β, r)) ≈c Σ.Sim(x, β)

where r←$ {0, 1}q(λ) and β←$ {0, 1}b(λ).

12



The statistical notion is defined analogously, except that we require statistical indistinguisha-
bility between the two distributions. It was recently shown by Broadbent and Grilo [BG20] how to
obtain a sigma protocol for QMA satisfying statistical soundness and special honest-verifier zero-
knowledge, assuming a (classical) post-quantum non-interactive statistically binding bit commit-
ment scheme [LS19, HW18]. Here we restate the main theorem of such a work.

Lemma 3.13 ([BG20]). Assuming the post-quantum hardness of the LWE problem, there exists a sigma
protocol (Σ.Com,Σ.Chal,Σ.Resp) satisfying statistical soundness and computational special honest-verifier
zero-knowledge.

In this work we are also interested in the reverse guarantees, i.e. computational soundness and
stastistical zero-knowledge. Since (classical) statistically hiding commitments notoriously require
two rounds of interaction, we extend the syntax of the sigma protocol to have the verifier sampling
the commitment key ck←$ Σ.Gen(1λ), which is also given as an input to the Σ.Com algorithm. The
definition of special honest-verifier zero-knowledge and soundness are extended accordingly. In
Section 4.2 we show how to construct such protocol assuming the quasi-polynomial hardness of
LWE.

The Timing Model. In this work we also consider the timing model for some of our protocols.
In such a model, all parties in the interaction have access to local clocks. Similarly to [DS02], the
simulator controls the clock of all parties (and in particular the one of the verifier) and may decide
to stop the clock for an arbitrary amount of time and for and arbitrary number of times.

3.6 Statistical ZAPs for NP

A ZAP protocol is a two-round witness-indistinguishable argument where the first message is
instance-independent. We say that the protocol achieves multi-theorem security if the first round
can be fixed once and for all and can be reused for an unbounded amount of second rounds. In
the other hand, if the first round has to be re-initialized for each run of the protocol, we say that
the ZAP achieves only single-theorem security. Additionally, we say that the protocol is public coin
if the output of the protocol is publicly computable given the protocol transcript, and otherwise
we say that the protocol is private coin. We being by defining the syntax of (public coin) statistical
ZAPs for NP.

Definition 3.14 (ZAP Protocol for NP). A ZAP protocol (ZAP.Setup,ZAP.Prove,ZAP.Verify) for a
language L ∈ NP with relation RL consists of the following efficient algorithms.

• ZAP.Setup(1λ): On input the security parameter 1λ, the setup returns a common reference string
crs and a trapdoor td.

• ZAP.Prove(crs, w, x): On input a common reference string crs, a witness w, and a statement x, the
proving algorithm returns a proof π.

• ZAP.Verify(td, π, x): On input a trapdoor td, a proof π, and a statement x, the verification algorithm
returns a bit {0, 1}.

The definitions of completeness and computational soundness are identical to those given for
general interactive proof systems (Section 3.5). Note that all definitions that we present here are
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for the single-theorem case. This is without loss of generality, since single-theorem soundness
(witness indistinguishability, resp.) is equivalent to multi-theorem soundness (witness indistin-
guishability, resp.) for public coin protocols. In the following we present the notion of (statistical)
witness indistinguishability.

Definition 3.15 (Statistical Witness Indistinguishability). A ZAP protocol (ZAP.Setup,ZAP.Prove,
ZAP.Verify) for a language L ∈ NP with relation RL is witness indistinguishable if for all λ ∈ N, all
x ∈ L, all pairs of witnesses (w0, w1) ∈ RL, and all common reference strings crs it holds that

(crs,ZAP.Prove(crs, w0, x)) ≈s (crs,ZAP.Prove(crs, w1, x)).

It was recently shown in [BFJ+20, GJJM20] that statistical ZAPs for NP exist assuming the
quasi-polynomial (quantum) hardness of the LWE problem.

Lemma 3.16 ([BFJ+20, GJJM20]). Assuming the quantum quasi-polynomial hardness of the LWE prob-
lem, there exists a public coin ZAP for NP (ZAP.Setup,ZAP.Prove,ZAP.Verify).

3.7 Sometimes-Binding Statistically Hiding Commitments

We introduce the notion of sometimes-binding statistically hiding (SBSH) commitments, as de-
fined in [LVW20].

Definition 3.17 (SBSH Commitment). An SBSH commitment scheme (SBSH.Gen,SBSH.Key, SBSH.Com)
consists of the following efficient algorithms.

• SBSH.Gen(1λ): On input the security parameter 1λ, the generation algorithm returns a partial com-
mitment key ck0.

• SBSH.Key(ck0): On input a partial key ck0, the key agreement algorithm returns the complement of
the key ck1.

• SBSH.Com((ck0, ck1),m): On input a commitment key (ck0, ck1) and a messagem, the commitment
algorithm returns a commitment c.

The commitment must satisfy the notion of statistical hiding.

Definition 3.18 (Statistical Hiding). An SBSH commitment scheme (SBSH.Gen, SBSH.Key,SBSH.Com)
is statistically hiding if for all λ ∈ N, all partial keys ck0, and all pairs of messages (m0,m1), it holds that

(ck0, ck1, SBSH.Com((ck0, ck1),m0)) ≈s (ck0, ck1,SBSH.Com((ck0, ck1),m1))

where ck1←$SBSH.Key(ck0).

Next we define the notion of sometimes-binding for an SBSH commitment scheme. We define
the set Binding as the set of all commitment keys (ck0, ck1) such that any resulting commitment is
perfectly binding. We present the definition of the property in the following.

Definition 3.19 (Sometimes Binding). An SBSH commitment scheme (SBSH.Gen, SBSH.Key, SBSH.Com)
is (ε, δ)-sometimes binding if there exists a negligible function µ such that for all λ ∈ N and all (stateful)
QPT distinguishers A = {Aλ, ρλ}λ∈N, it holds that

Pr [A(st; ρ) = 1 ∧ (ck0, ck1) ∈ Binding] = ε(λ) · Pr [A(st; ρ) = 1] + δ(λ) · µ(λ)

where ck0←$SBSH.Gen(1λ) and (st, ck1) = A(ck0; ρ).
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We also require the existence of a polynomial-time extractor SBSH.Ext that, on input the ran-
dom coins r used in the SBSH.Gen algorithm, extracts the committed messagem from the protocol
transcript if (ck0, ck1) ∈ Binding. The works of [KS17, KKS18, BFJ+20, GJJM20] construct SBSH
commitment schemes (using a slightly different syntax) for quasi-polynomial (ε, δ) assuming the
quasi-polynomial hardness of two-round statistically sender private oblivious transfer. Thus we
can state the following lemma.

Lemma 3.20 ([KS17, KKS18, BFJ+20, GJJM20]). Assuming the quantum quasi-polynomial hardness of
the LWE problem and quasi-polynomial (ε, δ), there exists an (ε, δ)-sometimes binding SBSH commitment
scheme (SBSH.Gen, SBSH.Key, SBSH.Com).

3.8 Compute-and-Compare Obfuscation

Here we define compute-and-compare circuits (CC) and obfuscators for said circuits (Obf). The
definitions are taken in verbatim from [BS20].

Definition 3.21 (Compute-and-Compare Circuit). Let f : {0, 1}n → {0, 1}λ and let u ∈ {0, 1},
z ∈ {0, 1}∗ be strings. Then CC[f, u, z](x) is a circuit that returns z if f(x) = y, and ⊥ otherwise. CC
has a canonical description from which f, u and z can be read.

For the following definition, Obf is a PPT algorithm that takes as input a CC circuit and outputs
a new circuit C̃C.

Definition 3.22 (Correctness). A PPT algorithm Obf is a correct compute-and-compare obfuscator if for
any circuit f : {0, 1}n → {0, 1}λ, u ∈ {0, 1}, z ∈ {0, 1}∗

Pr
[
∀x ∈ {0, 1}n : C̃C(x) = CC[f, u, z](x) | C̃C← Obf(CC[f, u, z])

]
= 1

We define simulation security in the following.

Definition 3.23 (Simulation Security). A PPT algorithm Obf is a simulation secure compute-and-compare
obfuscator if there exists a PPT Simulator Sim such for every two polynomials `1(·), `2(·),{

C̃C | u← {0, 1}λ, C̃C← Obf(CC)
}
λ,f,z

≈c
{
Sim(1`1(λ), 1`2(λ), 1λ)

}
λ,f,z

where λ ∈ N, f : {0, 1}λ is a `1(λ)-size circuit and z ∈ {0, 1}`2(λ).

Constructions based on the quantum hardness of LWE can be found in [GKW17, WZ17, GKVW19].

3.9 Quantum One-Time Pad

We recall the quantum one-time pad (QOTP) construction [AMTDW00] for quantum states. We
explicitly consider the scheme that allows one to encrypt an n-qubit quantum state with uncondi-
tional security.

Definition 3.24 (Quantum One-Time Pad). A quantum one-time pad (QOTP.Gen,QOTP.Enc,QOTP.Dec)
consists of the following efficient algorithms.
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• QOTP.Gen(1n): For all i = 1 . . . n sample two classical bits (xi, zi)←$ {0, 1}2. Return the one-time
key otk = (x1, z1, . . . , xn, zn).

• QOTP.Enc(otk, |ψ〉): On input a one-time key otk and an n-qubit state |ψ〉, apply the Pauli trans-
formation XxiZzi to the i-th qubit, for all i = 1 . . . n. Return the resulting state |φ〉.

• QOTP.Dec(otk, |φ〉): On input a one-time key otk and an n-qubit state |φ〉, apply the reverse Pauli
transformation ZziXxi qubit-by-qubit to recover the original state.

More explicitly, the (single qubit) Pauli transformation XxiZzi is the following unitary:

(α0 |0〉+ α1 |1〉)→ (α0 |xi〉+ (−1)ziα1 |xi ⊕ 1〉).

As shown in [AMTDW00], the above scheme can be used to transform any n-qubit quantum state
into a totally mixed state (no matter if some of its initial qubits are in an entangled state).

3.10 Homomorphic Encryption

We recall the notion of homomorphic encryption [Gen09].

Definition 3.25 (Homomorphic Encryption). A homomorphic encryption scheme (FHE.Gen,FHE.Enc,
FHE.Eval,FHE.Dec) consists of the following efficient algorithms.

• FHE.Gen(1λ): On input the security parameter, the key generation algorithm returns secret/public
key pair (sk, pk).

• FHE.Enc(pk,m): On input the public key pk and a message m, the encryption algorithm returns a
ciphertext c.

• FHE.Eval(pk, C, c): On input the public key pk, a (classical) circuit C, and a ciphertext c, the evalu-
ation algorithm returns an evaluated ciphertext c̃.

• FHE.Dec(sk, c): On input the secret key sk and a ciphertext c, the decryption algorithm returns a
message m.

We say that a scheme is fully homomorphic (FHE) if the evaluation algorithm supports all
polynomial-size classical circuits (without posing an a-priori bound on the size of |C|). If the size
of C needs to be fixed at the time of key generation, then we say that the scheme is levelled homo-
morphic. It is well-known that levelled FHE schemes can be based on the hardness of the (plain)
LWE problem [BV11, BV14]. Throughout this work, we are mostly going to consider levelled FHE
schemes and we will simply refer to them as FHE schemes whenever it is clear from the context.
We recall the notion of (single-hop) evaluation correctness in the following.

Definition 3.26 (Evaluation Correctness). A homomorphic encryption scheme (FHE.Gen,FHE.Enc,
FHE.Eval,FHE.Dec) is correct if for all λ ∈ N, all (sk, pk) ∈ FHE.Gen(1λ), all messages m, and all
polynomial-size circuits C, it holds that

Pr [FHE.Dec(sk,FHE.Eval(pk, C,FHE.Enc(pk,m))) = C(m)] = 1

We recall the notion of semantic security for public-key encryption.
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Definition 3.27 (Semantic Security). A homomorphic encryption scheme (FHE.Gen,FHE.Enc,FHE.Eval,
FHE.Dec) is semantically secure if for all λ ∈ N and all pairs of messages (m0,m1), it holds that

FHE.Enc(pk,m0) ≈c FHE.Enc(pk,m1)

where (sk, pk)←$FHE.Gen(1λ).

Finally we define the notion of (malicious) statistical circuit privacy circuit privacy for FHE [OPP14].

Definition 3.28 (Statistical Circuit Privacy). A homomorphic encryption scheme (FHE.Gen,FHE.Enc,
FHE.Eval,FHE.Dec) is (malicious) statistically circuit private if there exists a pair of unbounded algorithms
FHE.Ext and FHE.Sim such that for all λ ∈ N, all public keys pk∗, all ciphertexts c∗, and all circuits C, it
holds that

FHE.Eval(pk∗, C, c∗) ≈s FHE.Sim(1λ, pk∗, c∗, C(x∗))

where x∗ = FHE.Ext(1λ, pk∗, c∗).

It is shown in [OPP14] that any FHE scheme with semi-honest circuit privacy can be converted
into one with malicious circuit privacy generically, by additionally assuming a two-round statis-
tically sender-private oblivious transfer. The latter can in turn be instantiated from LWE [BD18,
DGI+19, BDGM19]. Taken together, these give us the following result.

Lemma 3.29 ([BD18]). Assuming the post-quantum hardness of the LWE problem, there exists an FHE
scheme (FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec) with (malicious) statistical circuit privacy.

3.11 Non-Parallelizing Functions

We recall the definition of average-case non-parallelizing functions. Non-parallelizing functions
can be instantiated via repeated hashing or via the universal construction of [JMR20], additionally
assuming an FHE scheme.

Definition 3.30 (Average-Case Non-Parallelizing Functions [BGJ+16]). A function family {Fλ,T :
Xλ,T → Yλ,T }λ,T∈N is T -non-parallelizing with gap ζ < 1, if for all x ∈ X , Fλ,T (x) can be computed in
time T and there exists a negligible function µ such that for all λ ∈ N and all non-uniform QPT algorithm
with quantum advice A = {Aλ, ρλ}λ∈N of depth at most T ζ , it holds that

Pr [A(x; ρ) = Fλ,T (x) | x←$Xλ] = µ(λ).

In this work we are interested in an even stronger variant, where we assume that the above
holds also against sub-exponential size (but still depth bounded) adversaries, and we refer to this
variant as sub-exponential average-case non-parallelizing functions.

3.12 Time-Lock Puzzles

We recall the definition of time-lock puzzles [RSW96] in the following.

Definition 3.31 (Time-Lock Puzzles). A time-lock puzzle (TLP.Gen,TLP.Solve) consists of the follow-
ing efficient algorithms.

• TLP.Gen(1λ, T,m): On input the security parameter, a time parameter T , and a message m, the
puzzle generation algorithm returns a puzzle Z.
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• TLP.Solve(Z): On input a puzzle Z, the solving algorithm returns a message m.

In terms of efficiency, we only require that the algorithm TLP.Gen runs in time polynomial
in λ and at most logarithmic in T . Whereas for correctness, we require that for all λ ∈ N, all
polynomials T , all messages m it holds that

TLP.Solve(TLP.Gen(1λ, T,m)) = m

and the algorithm TLP.Solve runs in time linear in T . We recall the definition of security below.

Definition 3.32 (Sequentiality [BGJ+16]). A time-lock puzzle (TLP.Gen,TLP.Solve) is T -sequential
with gap ζ < 1 if there exists a negligible function µ such that for all λ ∈ N and all non-uniform QPT
algorithm with quantum advice A = {Aλ, ρλ}λ∈N of depth at most T ζ , it holds that

Pr
[
A(Z; ρ) = b

∣∣∣ b←$ {0, 1};Z←$TLP.Gen(1λ, T, b)
]

= 1/2 + µ(λ).

4 Witness-Indistinguishable Arguments for QMA

This section is devoted to the definition and description of our 2-round witness indistinguishable
(WI) argument for QMA.

4.1 Definition

We recall the definition of 2-round WI for QMA. We consider a variant where the first message is
instance-independent and we define directly this notion.

Definition 4.1 (2-Round WI for QMA). A WI protocol (WI.Setup,WI.Prove,WI.Verify) for a language
L ∈ QMA with relation RL consists of the following efficient algorithms.

• WI.Setup(1λ): On input the security parameter 1λ, the setup returns a classical common reference
string crs and a classical trapdoor td.

• WI.Prove(crs, |w〉⊗p(λ) , x): On input a common reference string crs, p(λ)-many copies of the witness
|w〉, and a statement x, the proving algorithm returns a quantum state |π〉.

• WI.Verify(td, |π〉 , x): On input a trapdoor td, a quantum state |π〉, and a statement x, the verification
algorithm returns a classical bit {0, 1}.

For the definition of completeness we refer the reader to Section 3.5. In the following we define
the notion of (non-adaptive) multi-theorem computational soundness for private-coin ZAPs.

Definition 4.2 (Computational Soundness). A WI protocol (WI.Setup,WI.Prove,WI.Verify) for a lan-
guage L ∈ QMA with relation RL is computationally sound if there exists a negligible function µ such that
for all λ ∈ N, all x /∈ L, and all non-uniform QPT provers with quantum advice A = {Aλ, ρλ}λ∈N, it
holds that

Pr [|π〉 = A(crs, x; ρ) ∧WI.Verify(td, |π〉 , x) = 1] ≤ µ(λ)

where (crs, td)←$WI.Setup(1λ).

We now define the notion of (statitical) witness indistinguishability.
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Definition 4.3 (Statistical Witness Indistinguishability). A WI protocol (WI.Setup,WI.Prove,WI.Verify)
for a language L ∈ QMA with relation RL is statistically witness indistinguishable if there exists a negligi-
ble function µ such that for all λ ∈ N and all (stateful) admissible distinguishers A, it holds that∣∣∣Pr

[
A(crs, st)WI.Prove0(crs,·,·,·) = 1

]
− Pr

[
A(crs, st)WI.Prove1(crs,·,·,·) = 1

]∣∣∣ ≤ µ(λ).

where (st, crs) = A(1λ) and the oracle WI.Proveb takes as input a statement x and p(λ)-many copies of
two witnesses |w0〉 and |w1〉 and returns WI.Prove(crs, |wb〉⊗p(λ) , x). We say that the distinguisher A is
admissible if it holds that (|w0〉⊗p(λ) , |w1〉⊗p(λ)) ∈ RL(x).

4.2 Statistically Zero-Knowledge Sigma Protocol

In the following we show a new variant of the sigma protocol from [BG20] that achieves statistical
zero-knowledge (and negligible soundness error).3 Before presenting the protocol we recall their
main information theoretic result.

Lemma 4.4 ([BG20]). Let L ∈ QMA be a language with relation RL, then there exist two polynomials m
and p such that for all x ∈ L there exists an efficient deterministic algorithm that computes m(λ) 5-qubits
POVMs {Π1, I − Π1} . . . {Πm(λ), I − Πm(λ)} that acts on a state of size p(λ) such that the following
properties are satisfied.

• (Completeness) For all λ ∈ N and all x ∈ L there exists a negligible function µ and an efficiently
computable p(λ)-qubits state ω such that for all c ∈ {1, . . .m(λ)} it holds that

Tr(Πcω) ≥ 1− µ(λ).

• (Simulatability) For all λ ∈ N and all x ∈ L there exists a set of 5-qubit density matrices ρ(x, S)
such that for every S ⊆ {1, . . . p(λ)} and |S| = 5 it holds that

TrS̄(ω) ≈s ρ(x, S)

where TrS̄(ω) denotes the state ω tracing out all qubits not in S.

• (Soundness) For all λ ∈ N and all x /∈ L there exists a polynomial q such that for all p(λ)-qubit
states ω it holds that

1

m(λ)

∑
c=1...m(λ)

Tr(Πcω) ≤ 1− 1

q(λ)
.

We are now ready to present our statistically zero-knowledge sigma protocol, which is es-
sentially a k-fold parallel repetition of [BG20] combined with an SBSH commitment. Specifi-
cally, we assume an SBSH commitment scheme (SBSH.Gen,SBSH.Key,SBSH.Com) that satisfies
(ε(λ), ε(λ)2)-sometimes binding, for some fixed negligible function ε(λ). The protocol is shown in
Figure 1.

3Although [BG20] also claimed a statistical zero-knowledge variant, the analysis had a gap. See Section 2.4 for a
more comprehensive discussion.
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Statistical ZK Sigma Protocol for QMA

• Setup: The setup algorithm (Σ.Gen) samples and returns an SBSH commitment key
ck0←$SBSH.Gen(1λ).

• Commitment: The commitment algorithm (Σ.Com) takes as input k copies of the witness
ω and samples a commitment key ck1←$SBSH.Key(ck0). Then, for i = 1 . . . k does the
following:

– Sample a one-time key otki←$QOTP.Gen(1λ).

– Compute ψi = QOTP.Enc(otki, ω).

– Parse otki = (xi,1, zi,1, . . . , xi,p(λ), zi,p(λ)). Then, for all j = 1 . . . p(λ), compute
di,j = SBSH.Com((ck0, ck1), (xi,j , zi,j); ri,j), where ri,j are uniformly sampled ran-
dom coins.

Return ck1 and {ψi, di,1, . . . , di,p(λ)}i=1...k.

• Challenge: The challenge algorithm (Σ.Chal) samples and returns ci←$ {1, . . . ,m(λ)}, for
all i = 1 . . . k.

• Response: The response algorithm (Σ.Resp) for all i = 1 . . . k does the following:

– Let Si be the set on which Πci acts non-trivially.

– Return (xi,j , zi,j , ri,j) for all j ∈ Si.

• Verify: The verifier accepts if for all i = 1 . . . k the following holds:

– For all j ∈ Si, ri,j is a valid opening for (xi,j , zi,j).

– Measure XxiZziψiZ
ziXxi , where (xi, zi) denote the set {xi,j , zi,j}i∈Si , with POVMs

{Πci , I −Πci} and accept if the outcome is Πci .

Figure 1: Statistical Zero Knowledge Sigma Protocol for QMA.

Computational Soundness. We show that the protocol is computationally sound.

Theorem 4.5 (Soundness). Assuming the quantum quasi-polynomial hardness of the LWE problem, the
protocol in Figure 1 is computationally sound.

Proof. Let x /∈ L be the challenge statement and let Cheat be the event where the prover causes the
verifier to accept x. Assume towards contradiction that

Pr [Cheat] ≥ ε(λ).

Then, by the (ε(λ), ε(λ)2)-sometimes binding property of the SBSH commitment scheme, we have
that

Pr [Cheat ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ)) (1)
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for some negligible function µ(λ). Running the extractor SBSH.Ext on the first message of the
prover, we obtain the committed keys {otki = (xi,1, zi,1, . . . , xi,p(λ), zi,p(λ))}i=1...k. Let ζ be the state
returned by the prover. Conditioned on the prover opening to the correct strings (as otherwise the
verifier would reject) the acceptance probability is∏

i=1...k

1

m(λ)

∑
ci=1...m(λ)

Tr (ΠciX
xiZziζiZ

ziXxi)

where ζ1 = ζ and ζi+1 = ΠciX
xiZziζiZ

ziXxi , for all i = 1 . . . k − 1. Also recall that (xi, zi) is
defined as {xi,j , zi,j}j∈Si . Equivalently, we can rewrite∏
i=1...k

1

m(λ)

∑
ci=1...m(λ)

Tr (ΠciX
xiZziζiZ

ziXxi) =
∏

i=1...k

1

m(λ)

∑
ci=1...m(λ)

Tr (ΠciQOTP.Dec(otki, ζi))

redefining ζi+1 = ΠciQOTP.Dec(otki, ζi). Finally, by Lemma 4.4 we can bound∏
i=1...k

1

m(λ)

∑
ci=1...m(λ)

Tr (ΠciQOTP.Dec(otki, ζi)) ≤
∏

i=1...k

maxφi
1

m(λ)

∑
ci=1...m(λ)

Tr (Πciφi)

≤
(

1− 1

q(λ)

)k
.

For a large enough k, this is a contradicts Equation (1) and concludes our proof.

Statistical Special Honest Verifier Zero-Knowledge. We show that our protocol satisfies statis-
tical special honest-verifier zero-knowledge. Note that this does not follow via a generic parallel
repetition argument, since the commitment key is reused across different executions.

Theorem 4.6 (Zero-Knowledge). The protocol in Figure 1 satisfies statistical special honest-verifier zero-
knowledge.

Proof. Before describing the simulator, observe that the view of the honest execution of the proto-
col (for a uniformly sampled (c1, . . . , ck)←$ {1, . . . ,m(λ)}k) consists of

ck1

⊗
i=1...k

ψi = QOTP.Enc(otki, ω)
⊗{SBSH.Com((ck0, ck1), (xi,j , zi,j); ri,j)}j=1...p(λ)

⊗ {(xi,j , zi,j , ri,j)}j∈Si

where Si is the set of 5 qubits on which Πci acts non-trivially. On the other hand, the simulator
encrypts a dummy state which contains the simulatable density matrices for the positions where
Πci acts non-trivially. Furthermore all of the commitments corresponding to the complement of
these positions are also computed for dummy values. More precisely, the output of the simulator
is defined to be

ck1

⊗
i=1...k

ψi = QOTP.Enc(otki, ρ(x, Si)⊗ |0〉〈0|S̄i)
⊗{SBSH.Com((ck0, ck1), (xi,j , zi,j); ri,j)}j∈Si

⊗{SBSH.Com((ck0, ck1), (0, 0); ri,j)}j /∈Si

⊗ {(xi,j , zi,j , ri,j)}j∈Si .
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We now argue that the two distributions are statistically close. This follows by observing that

ψi = QOTP.Enc(otki, ρ(x, Si)⊗ |0〉〈0|S̄i)

≈s QOTP.Enc(otki,TrS̄i
(ω)⊗ |0〉〈0|S̄i)

≡ QOTP.Enc(otki,TrS̄i
(ω))⊗ I S̄i

≡ QOTP.Enc(otki, ω)

where the first equality follows from Lemma 4.4 and the second and third follow from the security
of the QOTP (note that the view is formally independent of the keys for all j /∈ Si). Finally, by the
statistical hiding of the SBSH commitment we have that

SBSH.Com((ck0, ck1), (0, 0); ri,j) ≈s SBSH.Com((ck0, ck1), (xi,j , zi,j); ri,j)

for all i = 1 . . . k and j /∈ Si. Applying these two facts, we obtain that the output of the simulator
is statistically close to the real distribution.

4.3 2-Round Witness-Indistinguishable Arguments for QMA

In the following we describe our protocol for statistical WI for QMA. Let ε(λ) be a (fixed) negligible
function. We assume the existence of the following building blocks (all secure against quantum
adversaries):

• A sigma protocol (Σ.Gen,Σ.Com,Σ.Chal,Σ.Resp) for QMA satisfying statistical special honest-
verifier zero-knowledge and with ε(λ)2 · µ(λ) soundness error.

• A public coin ZAP (WI.Setup,WI.Prove,WI.Verify) for NP with statistical witness indistin-
guishability and ε(λ)2 · µ(λ) soundness error.

• A pseudorandom function (PRF.Gen,PRF.Eval) with distinguishing advantage ε(λ)2 · µ(λ).

• A maliciously circuit private classical (levelled) FHE scheme (FHE.Gen,FHE.Enc,FHE.Eval,
FHE.Dec) with distinguishing advantage ε(λ)2 · µ(λ).

• An SBSH commitment scheme (SBSH.Gen,SBSH.Key, SBSH.Com) that satisfies (ε(λ), ε(λ)2)-
sometimes binding.

Where µ(λ) is some negligible function and κ is the security parameter of the primitives with
super-polynomially bounded disitinguishing advantage. Our protocol is formally described in
Figure 2. Completeness of the protocol follows by a standard argument.

Soundness. We show that our protocol satisfies (non-adaptive) soundness. We also note that
the proof can be lifted to the adaptive setting (i.e. where the prover can choose the challenge
statement adaptively) using complexity leveraging, albeit at the cost of a stronger assumption for
the security of the underlying primitives.

Theorem 4.7 (Soundness). Assuming the quantum quasi-polynomial hardness of the LWE problem, the
WI argument described in Figure 2 satisfies computational soundness.
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Statistical WI Arguments for QMA

• Setup: The setup algorithm samples a PRF key k←$PRF.Gen(1κ) and an FHE key pair
(sk, pk)←$FHE.Gen(1κ). Additionally it samples a commitment key ck←$ Σ.Gen(1κ),
an SBSH commitment key ck0←$ SBSH.Gen(1λ), and a common reference string
crsZAP←$ZAP.Setup(1κ). The algorithm computes ck←$FHE.Enc(pk, k) and sets the com-
mon reference string and the trapdoor as

crs = (pk, ck, ck, ck0, crsZAP) and td = (sk, k).

• Prove: On input 2p(λ)-many copies of the witness |w〉2p(λ) and a statement x, the proving
algorithm does the following. First, it samples a commitment key ck1←$ SBSH.Key(ck0),
then for b ∈ {0, 1}, it samples a classical string rΣ,b←$ {0, 1}κ and computes the first
|αb〉 = Σ.Com(|w〉⊗p(λ) , ck; rΣ,b). Then it evaluates homomorphically the response func-
tion of the sigma protocol sampling the challenge from the PRF, i.e. it computes

cγ,b = FHE.Eval(pk,Σ.Resp(PRF.Eval(·, x‖b), rΣ,b), ck; rFHE,b).

where rFHE,b are some classical random coins. In addition, it computes an SBSH commit-
ment to rΣ,b as cr,b = SBSH.Com((ck0, ck1), rΣ,b; rSBSH,b), where rSBSH,b are also uniformly
sampled coins. Finally it computes a statistical ZAP π for the classical statement{
∃ (b, wΣ, wFHE, wSBSH) s.t.

cγ,b = FHE.Eval(pk,Σ.Resp(PRF.Eval(·, x‖b), wΣ), ck;wFHE)
∧ cr,b = SBSH.Com((ck0, ck1), wΣ;wSBSH)

}
using (0, rΣ,0, rFHE,0, rSBSH,0) as a witness. The output of the algorithm is defined as

|π〉 = (ck1, |α0〉 , |α1〉 , cγ,0, cγ,1, cr,0, cr,1, π).

• Verify: The verification algorithm checks that the ZAP π against the common reference
string crsZAP, then for b ∈ {0, 1} does the following. It recomputes the challenge for the
sigma protocol βb = PRF.Eval(k, x‖b) and it recovers the response γb = FHE.Dec(sk, cγ,b)
by decrypting the corresponding FHE ciphertext. Then it checks whether (|αb〉 , βb, γb) is
a valid transcript for the sigma protocol. If all of the above conditions are satisfied, the
algorithm returns 1, otherwise it returns 0.

Figure 2: Description of a statistical WI argument for QMA.

Proof. We are going to show that the prover success probability is bounded by a negligible function
ε(λ). Let x /∈ L be the challenge statement and let Cheat be the event where the prover causes the
verifier to accept x. Assume towards contradiction that

Pr [Cheat] ≥ ε(λ).

Then, by the (ε(λ), ε(λ)2)-sometimes binding property of the SBSH commitment scheme, we have
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that
Pr [Cheat ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ))

for some negligible function µ(λ). Let r∗0 = SBSH.Ext(r, ck0, ck1, cτ,0) and r∗1 = SBSH.Ext(r, ck0, ck1, cτ,1)
denote the outputs of the extractor on such a transcript, where r denote the random coins used in
the SBSH.Gen algorithm. We now gradually change the verification procedure and we argue that
the probability that the above event happens does not decrease significantly.

• The verifier no longer decrypts the FHE ciphertext, instead, for b ∈ {0, 1}, it computes γb =
Σ.Resp(PRF.Eval(k, x‖b), r∗b ) and checks whether the transcript (|αb〉 ,PRF.Eval(k, x‖b), γb) is
accepting. If at least one of the two transcripts is accepting and the ZAP π correctly verifies,
then the verifier returns 1, otherwise it returns 0. Let Cheat1 be the event that the prover
causes the modified verifier to accept on some x /∈ L. We want to argue that

Pr [Cheat1 ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ))

for some negligible function µ(λ). To show this, it suffices to consider the case where the
prover passes the original verification procedure but fails the modified one. This implies that
the prover has computed two inconsistent commitments (cτ,0, cτ,1) but the ZAP π correctly
verifies. Thus, if the inequality above does not hold, then we obtain a contradiction against
the ε(λ)2 · µ(λ)-soundness of the ZAP argument.

• The verifier computes ck as an encryption of 0 (padded to the appropriate length), i.e. it
computes ck←$FHE.Enc(pk, 0). Let Cheat2 be the event that the prover causes the modified
verifier to accept on some x /∈ L. Recall that the modified verifier no longer uses the FHE
secret key in its routine. Thus, by the ε(λ)2 · µ(λ)-semantic security of the FHE scheme we
have that

Pr [Cheat2 ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ)).

• Instead of computing βb = PRF.Eval(k, x‖b), the verifier samples (β0, β1) uniformly. By the
ε(λ)2 · µ(λ)-pseudorandomness of the pseudorandom function, we have that

Pr [Cheat3 ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ))

where Cheat3 denotes the event that the prover causes the modified verifier to accept on
some x /∈ L.

The last inequality implies that either of the sigma protocols (|α0〉 , β0, γ0), (|α1〉 , β1, γ1) is accept-
ing for some x /∈ L, where β0 and β1 are sampled uniformly and independently of |α0〉 and |α1〉,
with probability at least ε(λ)2 · (1 +µ(λ)). This contradicts the ε(λ)2 ·µ(λ)-soundness of the sigma
protocol and concludes our proof.

Witness Indistinguishability. We show that our protocol satisfies statistical witness indistin-
guishability.

Theorem 4.8 (Statistical Witness Indistinguishability). The WI argument described in Figure 2 satisfies
statistical witness indistinguishability.
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Proof. We begin by fixing the challenge bit b = 0 and we gradually modify the experiment through
a series of hybrids that we show to be statistically close.

• HybridH0: This is the original experiment with the challenge bit fixed to b = 0, i.e. the oracle
always uses the witness |w0〉.

• HybridH1: In this hybrid we modify the answers to all queries of the adversary to compute
cτ,1 as a commitment to 0, i.e. cτ,1←$SBSH.Com((ck0, ck1), 0). Note that the randomness of
the commitment is never used in the proof and thus, by the statistically hiding property of
the SBSH commitment we have that

SBSH.Com((ck0, ck1), rΣ,1) ≈s SBSH.Com((ck0, ck1), 0).

It follows that the two hybrids are statistically indistinguishable.

• Hybrid H2: In this hybrid we first run the (unbounded) extractor given by the malicious
circuit privacy of the FHE scheme k∗ = FHE.Ext(1κ, pk, ck), then we compute the evaluated
cirphertext as cγ,1←$FHE.Sim(1κ, pk, ck,Σ.Resp(PRF.Eval(k∗, x‖1), rΣ,1)). By the statistical
circuit privacy of the FHE scheme we have that

FHE.Eval(pk,Σ.Resp(PRF.Eval(·, x‖1), rΣ,1), ck)
≈s FHE.Sim(1κ, pk, ck,Σ.Resp(PRF.Eval(k∗, x‖1), rΣ,1))

and thus the two hybrids are statistically close.

• Hybrid H3: In this hybrid we compute β1 = PRF.Eval(k∗, x‖1) and we use the challenge
to simulate the response for the sigma protocol. I.e. we compute (|α1〉 , γ1)←$ Σ.Sim(x, β1)
and we set cγ,1←$FHE.Sim(1κ, pk, ck, γ1). Note that the only difference with respect to the
previous hybrid is that we do compute a simulated transcript of the sigma protocol instead
of an honest one. By the statistical special honest-verifier zero-knowledge property of the
sigma protocol we have that

(Σ.Com(|w0〉⊗p(λ) ; rΣ,1),Σ.Resp(β1, rΣ,1)) ≈s Σ.Sim(x, β1)

and therefore the two hybrids are statistically close.

• Hybrid H4: In this hybrid we switch the computation of |α1〉 and cγ,1 to use again an hon-
est witness, except that we use |w1〉 instead of |w0〉. Specifically we compute the commit-
ment of the sigma protocol as |α1〉 ←$ Σ.Com(|w1〉⊗p(λ) ; rΣ,1) and the simulated ciphertext
as cγ,1←$FHE.Sim(1κ, pk, ck,Σ.Resp(PRF.Eval(k∗, x‖1), rΣ,1)). The two hybrids are statisti-
cally indistinguishable by the statistical special honest-verifier zero-knowledge property of
the sigma protocol (same argument asH2 ≈s H3).

• Hybrid H5: In this hybrid we switch back to a correctly evaluated FHE ciphertext, i.e. we
compute cγ1 ←$FHE.Eval(pk,Σ.Resp(PRF.Eval(·, x‖1), rΣ,1), ck). By the (malicious) statistical
circuit privacy of the FHE scheme, the two hybrids are statistically close (same argument as
H1 ≈s H2).

• Hybrid H6: In this hybrid we revert the changes to the SBSH commitment, i.e. we com-
pute cτ,1←$ SBSH.Com((ck0, ck1), rΣ,1). By the statistical hiding of the SBSH commitment we
have that the two hybrids are statistically indistinguishable (same argument asH0 ≈s H1).
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• Hybrid H7: This hybrid is identical to the previous one, except that we compute the sta-
tistical ZAP argument using (1, rΣ,1, rFHE,1, rSBSH,1). Note that the the messages are indeed
well-formed and thus statistical indistinguishability follows by the statistical witness indis-
tinguishability of the ZAP argument system.

• Hybrids H8 . . .H13: In this series of hybrids we change how we compute (|α0〉 , cγ,0, cτ,0)
analogously as we did in hybrids H1 . . .H6, i.e. using |w1〉 instead of |w0〉. Note that the
underlying random coins are no longer used in the computation of the ZAP argument and
thus to indistinguishability follows along the same lines as what we discussed above.

Observe that hybrid H13 is identical to H0 except that the challenge bit is fixed to b = 1 and in
particular the oracle uses the witness |w1〉 to compute the ZAP argument. It follows that our
protocol satisfies statistical witness indistinguishability.

5 Zero-Knowledge for QMA

In the following we present a 4-Round statistical zero-knowlege protocol for QMA. Before delving
into the description of our protocol, we introduce a few cryptographic tools that are going to be
useful for our main protocol.

5.1 Sometimes-Extractable SRP Oblivious Transfer

Oblivious transfer allows one to condition the transfer of two messages (m0,m1) on some secret
choice bit b. In this work we are interested in 3-round statistically receiver private (SRP) protocols,
where the security of the choice bit is protected statistically [GJJM20]. We recall the syntax of OT
in the following. For simplicity we only define the single-bit variant and the multi-bit variant
follows as a natural extension.

Definition 5.1 (3-Round SRP-OT). An SRP-OT protocol (OT.Setup,OT.Rec,OT.Send,OT.Dec) con-
sists of the following efficient algorithms.

• OT.Setup(1λ): On input the security parameter 1λ, the setup returns a first message ot0 , as well as
a state stS to the sender.

• OT.Rec(ot0, b): On input a first message ct0 and a choice bit b, the receiver algorithm returns a
second message ot1 and a key k.

• OT.Send(ot1, stS , (m0,m1)): On input a second message ot1, the state stS and a pair of messages
(m0,m1), the sender algorithm returns a third message ot2.

• OT.Dec(ot0, ot2, k): On input a first message ot0, a third message ot2 and a key k, the decryption
algorithm returns a message m

We define completeness.

Definition 5.2 (Completeness). An SRP-OT protocol (OT.Setup,OT.Rec,OT.Send,OT.Dec) is com-
plete if for all λ ∈ N, all b ∈ {0, 1}, and all messages (m0,m1) it holds that

Pr [OT.Dec(ot0, ot2,OT.Send(ot1, stS , (m0,m1))) = mb] = 1.

where (ot0, stS)←$OT.Setup(1λ) and (ot1, k)←$OT.Rec(ot0, b).
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Statistical receiver privacy requires that the choice bit is hidden in a statistical sense, for any
choice of the first message.

Definition 5.3 (Statistical Receiver Privacy). An SRP-OT protocol (OT.Setup,OT.Rec,OT.Send,OT.Dec)
is statistically receiver private if for all λ ∈ N and all first messages ot0 the following distributions are sta-
tistically indistinguishable

(ot0, c0) ≈s (ot0, c1)

where (c0, k0)←$OT.Rec(ot0, 0) and (c1, k1)←$OT.Rec(ot0, 1).

We define the notion of computational sender privacy for SRP-OT as stated in [GJJM20, ACP20].

Definition 5.4 (Computational Sender Privacy). An SRP-OT protocol (OT.Setup,OT.Rec,OT.Send,OT.Dec)
is computationally sender private if there exists a negligible function µ such that for all λ ∈ N, and all non-
uniform QPT receivers with quantum advice A = {Aλ, ρλ}λ∈N, it holds that

E [min{p0, p1}] ≤ µ(λ)

where

p0 =

∣∣∣∣∣∣Pr

A(OT.Send(ot1, stS , (mb0 ,m1)), stR; ρ) = b0

∣∣∣∣∣∣
(ot0, stS)←$OT.Setup(1λ)
b0←$ {0, 1}
(stR, ot1) = A(ot0; ρ)

− 1

2

∣∣∣∣∣∣
and

p1 =

∣∣∣∣∣∣Pr

A(OT.Send(ot1, stS , (m0,mb1)), stR; ρ) = b1

∣∣∣∣∣∣
(ot0, stS)←$OT.Setup(1λ)
b1←$ {0, 1}
(stR, ot1) = A(ot0; ρ)

− 1

2

∣∣∣∣∣∣ .
Such a scheme can be constructed assuming the quantum hardness of the LWE problem.

Lemma 5.5 ([GJJM20]). Assuming the post-quantum hardness of the LWE problem, there exists an SRP-
OT scheme (OT.Setup,OT.Rec,OT.Send,OT.Dec).

PKE with Certifiable Keys. Before describing our scheme, we need to introduce an additional
building block: A public-key encryption (PKE) with certifiable keys. This is a standard PKE
scheme (PKE.Gen,PKE.Enc,PKE.Dec) that, in addition to the canonical notion of correctness and
semantic security, satisfies the following additional constraint: There exists an algorithm PKE.Verify
and a polynomial `(λ) such that:

(1) For all λ ∈ N and all (pk, sk) ∈ PKE.Gen(1λ) there does not exist any w ∈ {0, 1}`(λ) such that
PKE.Verify(1λ, pk, w) = 1.

(2) For all λ ∈ N and all (possibly malformed) pk, if there does not exist any w ∈ {0, 1}`(λ) such
that PKE.Verify(1λ, pk, w) = 1, then there exist an sk such that for all messagesm it holds that

Pr [PKE.Dec(sk,PKE.Enc(pk,m)) = m] = 1.

The work of [KNYY21] shows how to construct a post-quantum PKE with certifiable keys.

Lemma 5.6 ([KNYY21]). Assuming the post-quantum hardness of the LWE problem, there exists an PKE
(PKE.Gen,PKE.Enc,PKE.Dec) with cerifiable keys.

27



Sometimes-Extractable SRP-OT. Next we define and construct an enhanced version of the above
OT, namely sometimes-extractable (SE) SRP-OT. For convenience we define directly the multi-bit
variant, where the receiver has a set of choice bits (b1, . . . , bn). The OT is required to be statistically
receiver private, except with some small probability where (ot0, ot1) is a perfectly binding com-
mitment to (b1, . . . , bn). We define the set Binding as the set of all messages (ot0, ot1) that uniquely
determine the choice bits of the receiver.

Definition 5.7 (Sometimes Extractability). An SRP-OT (OT.Setup,OT.Rec,OT.Send,OT.Dec) is (ε, δ)-
sometimes extractable if there exists a negligible function µ such that for all λ ∈ N and all (stateful) QPT
distinguishers A = {Aλ, ρλ}λ∈N, it holds that

Pr [A(stR; ρ) = 1 ∧ (ot0, ot1) ∈ Binding] = ε(λ) · Pr [A(stR; ρ) = 1] + δ(λ) · µ(λ)

where (ot0, stS)←$OT.Setup(1λ) and (stR, ot1) = A(ot0; ρ). Furthermore, we require the existence of
a polynomial-time algorithm OT.Ext that, on input the random coins r used in the OT.Setup algorithm,
outputs a set of choice bits (b1, . . . , bn) from the protocol transcript if (ot0, ot1) ∈ Binding such that

OT.Send(ot1, stS , (m0,1,m1,1, . . . ,m0,n,m1,n)) ≈c OT.Send(ot1, stS , (mb1,1,mb1,1, . . . ,mbn,n,mbn,n)).

Our Protocol. Let ε(λ) be a (fixed) negligible function. We assume the existence of the following
building blocks (all secure against quantum adversaries):

• A 2-round WI argument (WI.Setup,WI.Prove,WI.Verify) for NP with statistical witness indis-
tinguishability and ε(λ)2 · µ(λ) soundness error.

• A 3-Round SRP-OT (OT.Setup,OT.Rec,OT.Send,OT.Dec) with computational sender pri-
vacy’s advantage bounded by ε(λ)2 · µ(λ).

• A PKE (PKE.Gen,PKE.Enc,PKE.Dec) with certifiable keys an ε(λ)2 · µ(λ) security.

• An SBSH commitment scheme (SBSH.Gen,SBSH.Key, SBSH.Com) that satisfies (ε(λ), ε(λ)2)-
sometimes binding.

Where µ(λ) is some negligible function and κ is the security parameter of the primitives with
super-polynomially bounded disitinguishing advantage. Our protocol is shown in Figure 3. In a
slight abuse of notation, we let the OT protocol handle n simultaneous choice bits.

Statistical Receiver Privacy. We now show that the protocol still satisfies statistical receiver pri-
vacy.

Theorem 5.8 (Statistical Receiver Privacy). The protocol described in Figure 3 satisfies statistical receiver
privacy.

Proof. We consider the following series of hybrid distributions.

• HybridH0: This is the original receiver message.

• Hybrid H1: Here we (inefficiently) extract a secret key sk or a non-membership witness w
for pk. Note that, by the certifiability of PKE, either of them must exist. We then compute
cmtsk←$ SBSH.Com((ck0, ck1), {sk, w}). Statistical indistinguishability follows from the sta-
tistical hiding of the SBSH commitment.
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Sometimes-Extractable SRP-OT

• OT Setup: The setup algorithm samples an SBSH commitment key ck0←$SBSH.Gen(1λ)
and n copies of the OT setup (ot0,1, stS,1, . . . , ot0,n, stS,n)←$OT.Setup(1κ). It addition-
ally samples a key pair (pk, sk)←$PKE.Gen(1κ) and the first message of a WI argument
(crs, td)←$WI.Setup(1κ). It returns (ck0, ot0,1, . . . , ot0,n, pk, crs) as the first message.

• OT Receive: Compute (ot1,1, k1, . . . , ot1,n, kn)←$OT.Rec((ot0,1, . . . , ot0,n), (b1, . . . , bn)).
Then sample ck1←$SBSH.Key(ck0) and compute

cmtk←$SBSH.Com((ck0, ck1), (b1, k1, . . . , bn, kn)) and cmtsk←$ SBSH.Com((ck0, ck1), 0).

Compute a WI proof π for the statement

stmt =


cmtk ∈ SBSH.Com((ck0, ck1), (b1, k1, . . . , bn, kn))
∧ (ot1,1, k1, . . . , ot1,n, kn) ∈ OT.Rec((ot0,1, . . . , ot0,n), (b1, . . . , bn))
∨ cmtsk ∈ SBSH.Com((ck0, ck1), sk) ∧ (pk, sk) ∈ PKE.Gen(1κ)
∨ cmtsk ∈ SBSH.Com((ck0, ck1), w) ∧ PKE.Verify(1κ, pk, w) = 1


using the witness of the first branch, then return (ot1,1, . . . , ot1,n, cmtk, cmtsk, π).

• OT Send: Check that WI.Verify(crs, stmt, π) = 1, then send

(ot2,1, . . . , ot2,n)←$OT.Send((ot1,1, stS,1, . . . , ot1,n, stS,n), (m0,1,m1,1, . . . ,m0,n,m1,n)).

• OT Decrypt: Return OT.Dec(((ot0,1, . . . , ot0,n)),(ot2,1, . . . , ot2,n), (k1, . . . , kn)).

Figure 3: Description of our SESRP-OT protocol

• Hybrid H2: We compute the proof π using the witness of the second or third branch, de-
pending on whether we extracted sk or w from pk. This distribution is statistically close to
the previous one, by the statistical witness indistinguishability of the WI argument.

• HybridH3: We compute cmtk←$SBSH.Com((ck0, ck1), 0). Statistical indistinguishability fol-
lows from the statistical hiding of the SBSH commitment.

• Hybrid H4: We compute (ot1,1, k1, . . . , ot1,n, kn) via OT.Rec((ot0,1, . . . , ot0,n), (0, . . . , 0)). Sta-
tistical indistinguishability follows by an invocation of the statistical receiver privacy of the
SRP-OT.

The proof is concluded by observing that in the last distribution no information about the choice
bits is present in the receiver’s message.

Sometimes Extractability. We show that the protocol is sometimes extractable.

Theorem 5.9 (Sometimes Extractability). Assuming the quantum quasi-polynomial hardness of the LWE
problem, the protocol described in Figure 8 is (ε(λ), ε(λ)2)-sometimes extractable.

29



Proof. It is easy to see that if (ck0, ck1) ∈ Binding then it also holds that (ot0, ot1) ∈ Binding and
therefore it holds that

Pr [A(stR; ρ) = 1 ∧ (ot0, ot1) ∈ Binding] = Pr [A(stR; ρ) = 1 ∧ (ck0, ck1) ∈ Binding] .

Thus all that is left to be shown is to define an extractor OT.Ext that outputs the correct set of
choice bits (b1, . . . , bn). The extractor runs SBSH.Ext on cmtk to obtain a set (b1, k1, . . . , bn, kn) and
returns (b1, . . . , bn). Conditioned on the SBSH-commitment being in Binding mode, we want to
bound the probability that the event Fail happens where

Pr[Fail | (ck0, ck1) ∈ Binding]

= Pr[(ot1,1, k1, . . . , ot1,n, kn) /∈ OT.Rec((ot0,1, . . . , ot0,n), (b1, . . . , bn))]

≤ ε(λ).

Assume towards contradiction that the opposite is true, then since the SBSH commitment is some-
times binding we have that

Pr[Fail ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ)).

for some negligible function µ(λ). Therefore it must be the cast that either

• cmtsk ∈ SBSH.Com((ck0, ck1), sk), where sk is a valid secret key for pk, or

• π is a proof for a false statement.

The former is a contradiction to the ε(λ)2 · µ(λ) security of PKE, whereas the latter contradicts the
ε(λ)2 · µ(λ) soundness of the WI argument. This establishes that, conditioned on the commitment
being in Binding mode, we have that

Pr[(ot1,1, k1, . . . , ot1,n, kn) ∈ OT.Rec((ot0,1, . . . , ot0,n), (b1, . . . , bn)) | (ck0, ck1) ∈ Binding] ≥ ε(λ).

By another invocation of the sometimes binding property of the SBSH commitment we obtain that

Pr[(ot1,1, k1, . . . , ot1,n, kn) ∈ OT.Rec((ot0,1, . . . , ot0,n), (b1, . . . , bn)) ∧ (ck0, ck1) ∈ Binding]

≥ ε(λ)2 · (1 + µ(λ)).

By the correctness of the SRP-OT we have that (k1, . . . , kn) allows anyone to recover (mb1,1, . . . ,
mbn,n), and in particular to win the experiment for computational sender privacy with probability
pbi = 1. Thus, for all i ∈ {1, . . . , n} it holds that

OT.Send(ot1, stS , (m0,i,m1,i)) ≈c OT.Send(ot1, stS , (mbi,i,mbi,i))

by the ε(λ)2 · µ(λ) sender privacy of the SRP-OT. The indistinguishability of the views follows by
a hybrid argument.

5.2 Post-Quantum Conditional Disclosure of Secrets

Conditional disclosure of secrets (CDS) [AIR01] for a language L in NP with relation RL is the
interactive analogue of witness encryption [GGSW13]: Given a statement x and a message m
from the sender, the receiver is able to recover m if x ∈ L, whereas m stays hidden if this is not the
case. Furthermore, the witness w for x should be kept secret from the eyes of the sender.
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Definition. We recall the definition of a CDS protocol. In this work we consider two variants:
A 3-round statistically-receiver private (SRP) CDS and a 2-round statistically sender private (SSP)
CDS. The syntax below is defined for the 3-round variant and the 2-round protocol can be defined
analogously by omitting the first algorithm.

Definition 5.10 (CDS Protocol for NP). A CDS protocol (Setup,R, S,D) for a language L ∈ NP with
relation RL consists of the following efficient algorithms.

• Setup(1λ): On input the security parameter 1λ, the setup returns a first message ct0 and a state stcds.

• R(ct0, w): On input a first message ct0 and a witness w, the receiver algorithm returns a second
message ct1 and a key k.

• S(ct1, stcds, x,m): On input a second message ct1, a state stcds, a statement x, and a message m, the
sender algorithm returns a third message ct2.

• D(ct2, k): On input a third message ct2 and a key k, the decryption algorithm returns a message m

We define completeness for a CDS protocol.

Definition 5.11 (Completeness). A CDS protocol (Setup,R, S,D) for a language L ∈ NP with relation
RL is complete if for all λ ∈ N, all x ∈ L, all x ∈ RL(x), and all messages m it holds that

Pr [D(S(ct1, stcds, x,m), k) = m] = 1.

where (ct0, stcds)←$Setup(1λ) and (ct1, k)←$R(ct0, w).

Next we define the notion of (computational and statistical) receiver privacy.

Definition 5.12 (Receiver Privacy). A CDS protocol (Setup,R, S,D) for a language L ∈ NP with rela-
tion RL is computationally (statistically, resp.) receiver private if for all λ ∈ N, all strings w, and all first
messages ct0 the following distributions are computationally (statistically, resp.) indistinguishable

(ct0, c0) ≈ (ct0, c1)

where (c0, k0)←$R(ct0, 0) and (c1, k1)←$R(ct0, 1).

Finally we define the notion of (computational and statistical) sender privacy.

Definition 5.13 (Sender Privacy). A CDS protocol (Setup,R, S,D) for a language L ∈ NP with relation
RL is computationally (statistically, resp.) sender private if there exists a negligible function µ such that
for all λ ∈ N, all x /∈ L, and all non-uniform QPT (unbounded, resp.) receivers with quantum advice
A = {Aλ, ρλ}λ∈N, it holds that

|Pr [A(S(ct1, stcds, x,m), st; ρ) = 1]− Pr [A(S(ct1, stcds, x, 0), st; ρ) = 1]| ≤ µ(λ).

where (ct0, stcds)←$Setup(1λ) and (st, ct1) = A(ct0; ρ).

It is well-known that a 2-round SSP-CDS can be built from any 2-round oblivious transfer and
information-theoretically secure randomized encodings [IK00]. Thus we have the following fact.

Lemma 5.14 ([BD18]). Assuming the post-quantum hardness of the LWE problem, there exists an SSP-
CDS scheme (R, S,D) with computational receiver privacy and statistical sender privacy.
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Post-Quantum SRP-CDS. We give a simple construction of post-quantum SRP-CDS for NP as-
suming an (ε(λ), ε(λ)2)-sometimes extractable SRP-OT and a simulation secure garbling scheme
(Garble,GEval) for NC1 circuits.4 The scheme is given in Figure 4 and next we prove that it satisfies
the definition of an SRP-CDS.

Statistically Receiver Private CDS

• CDS Setup: The setup algorithm samples the first message of an n-bit SESRP-OT
(ot0, stS)←$OT.Setup(1λ).

• CDS Receive: Compute (ot1, k)←$OT.Rec(ot0, (w1, . . . , wn)) where (w1, . . . , wn) is the
bit decomposition of the witness w.

• CDS Send: Let Φ be the circuit that, on input a witness w, checks whether w ∈ RL(x) and
returns the message m if that is the cases and 0 otherwise. Compute(

Φ̃, {`i,b}i∈{1,...,n},b∈{0,1}
)
←$Garble

(
1λ,Φ

)
and return Φ̃ and ot2←$OT.Send(ot1, stS , , {`i,b}i∈{1,...,n},b∈{0,1}).

• CDS Decrypt: Compute (`1, . . . , `n) = OT.Dec(ot0, ot2, k) and return
GEval(Φ̃, (`1, . . . , `n)).

Figure 4: Description of our SRP-CDS protocol

Theorem 5.15. Assuming the quantum quasi-polynomial hardness of the LWE problem, the protocol in
Figure 4 satisfies statistical receiver privacy and computational sender privacy.

Proof. Statistical receiver privacy follows immediately from the receiver privacy of the SESRP-OT.
For sender privacy, by the sometimes extractablility of SESRP-OT, there exist an extractor OT.Ext
that returns the choice bits (b1, . . . , bn) of the receiver. Note that (b1, . . . , bn) cannot encode a valid
witness since x /∈ L. We can then run the simulator (Φ̃, (`1, . . . , `n))←$GSim

(
1λ, 1|Φ|, 1n, 0

)
and re-

turn (Φ̃,OT.Send(ot1, stS , , (`1, `1, . . . , `n, `n))) to the attacker. Computational indistinguishability
follows from a reduction to the computational sender privacy of the SESRP-OT.

5.3 Sometimes-Simulatable Zero-Knowledge

We construct an interactive delayed input (3-round) ZK proof system for NP that satisfies statis-
tical soundness and the notion of sometimes simulatability (SSim-ZK). This can be thought as the
straight-line equivalent of super-polynomial simulation [Pas03b] and it is formally defined in the
following.

4Note that NC1 circuits suffice here, since it is well known that the validity of any NP statement can be verified by
an NC1 circuit.
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Definition 5.16 (Sometimes Simulatability). An interactive protocol (P,V) for a language L ∈ NP with
relation RL is (ε, δ)-sometimes simulatable if there exists a negligible function µ such that for all λ ∈ N and
all (stateful) QPT distinguishers A = {Aλ, ρλ}λ∈N, it holds that

Pr [A(st; ρ) = 1 ∧ (zk0, zk1) ∈ Simulation] = ε(λ) · Pr [A(st; ρ) = 1] + δ(λ) · µ(λ)

where (zk0, zk1) are the first two messages of the protocol and Simulation defines a set. Furthermore, we
require the existence of a polynomial-time algorithm Sim such that, conditioned on the event (zk0, zk1) ∈
Simulation, it holds that

Sim(1λ, r, x) ≈c zk2

where r are the random coins r used to compute zk0 and zk2 is the honestly computed third message.

Let ε(λ) be a (fixed) negligible function. We build our protocol assuming the existence of the
following primitives:

• A 3-Round (ε(λ), ε(λ)2)-sometimes extractable SRP-OT (OT.Setup,OT.Rec,OT.Send,OT.Dec).

• A 3-Round Sigma protocol (a, b, (c0, c1)) for NP with binary challenge, 1/2 soundness gap
against an unbounded prover, and that satisfies ε(λ)2 ·µ(λ)-computational zero-knowledge.
An example of such protocols is Blum’s protocol for Graph Hamiltonicity.

• A perfectly binding commitment Com that satisfies ε(λ)2 · µ(λ)-computational hiding.

Where µ(λ) is some negligible function and κ is the security parameter of the primitives with
super-polynomially bounded disitinguishing advantage. Our protocol is shown in Figure 5.

Sometimes-Simulatable ZK Proof

• First Message (P → V): Sample the first message of an n-bit SESRP-OT
(ot0, stS)←$OT.Setup(1λ).

• Second Message (V → P): Sample a set of n challenges (b1, . . . , bn)←$ {0, 1}n and com-
pute (ot1, k)←$OT.Rec(ot1, (b1, . . . , bn). Send ot1 to the prover.

• Third Message (P → V): Sample n independent commitment-response tuples for the
sigma protocol (a1, c0,1, c1,1, . . . , an, c0,n, c1,n). Then for all i ∈ {1, . . . , n} and all b ∈ {0, 1}
compute cmtb,i = Com(1κ, cb,i; rb,i), for some uniformly sampled ri,b, and define db,i =
(cb,i, rb,i). Return

(a1, . . . , an, cmt0,1, cmt1,1, . . . , cmt0,n, cmt1,n,OT.Send(ot1, stS , (d0,1, d1,1), . . . , (d0,n, d1,n))).

• Verify: Compute (d1, . . . , dn) = OT.Dec(ot0, ot2, k) then for all i ∈ {1, . . . , n} check
whether di = (ci, ri) is a valid opening for cmtbi,i and that (ai, bi, ci) is an accepting tran-
script for the sigma protocol.

Figure 5: Description of our sometimes-simulatable ZK protocol

33



Sometimes-Simulatability. We show that our protocol satisfies the notion of (ε(λ), ε(λ)2)-sometimes
simulatability.

Theorem 5.17. Assuming the quantum quasi-polynomial hardness of the LWE problem, the protocol in
Figure 5 satisfies (ε(λ), ε(λ)2)-sometimes simulatability.

Proof. We define the set Simulation to be the set of first and second messages (zk0, zk1) such that
(ot0, ot1) ∈ Binding. We then define the simulator to run the extractor OT.Ext and obtain the chal-
lenge bits (b1, . . . , bn). The simulator then computes a set of simulated transcripts (a1, b1, c1), . . . ,
(an, bn, cn) and sets cmtbi⊕1,i←$Com(1λ, 0) whereas cmtbi,i are computed honestly. It then com-
putes the ot2 message setting each message pair to (di, di) = ((ci, ri), (ci, ri)). Computational
indistinguishability can be shown by a standard hybrid argument against the ε(λ)2 · µ(λ)-hiding
of the commitment scheme and the ε(λ)2 · µ(λ)-computational zero-knowledge of the sigma pro-
tocol.

Soundness. We show that our protocol satisfies statistical soundness.

Theorem 5.18. The protocol in Figure 5 is statistically sound.

Proof. Consider a modified verifier that samples a uniform challenge (b1, . . . , bn) but computes
the SRP-OT receiver message to some fixed string 0λ. It then (inefficiently) extracts cbi from the
commitments and verifies the validity of all n transcripts. By the statistical receiver privacy of
the SRP-OT, the accepting probability of such verifier is statistically close to that of the original
one. Note that such a verifier does not reveal any information about the challenge (b1, . . . , bn) and
therefore the success probability of the (possibly unbounded) prover is negligibly close to 1/2n,
by the statistical soundness of the sigma protocol.

5.4 4-Round Zero-Knowledge for QMA

We assume the existence of the following building blocks (all secure against quantum adversaries):

• A circuit-private classical QFHE scheme (QFHE.Gen,QFHE.Enc,QFHE.Eval,QFHE.Dec) with
distinguishing advantage ε(λ)4 · µ(λ).

• A non-interactive perfectly binding commitment Com with hiding advantage ε(λ)4 · µ(λ).

• An SBSH commitment scheme (SBSH.Gen,SBSH.Key, SBSH.Com) that satisfies (ε(λ), ε(λ)2)-
sometimes binding.

• A 2-round WI argument (WI.Setup,WI.Prove,WI.Verify) for QMA, with statistical witness
indistinguishability and ε(λ)4 · µ(λ) soundness error.

• a 3-round statistically receiver private conditional disclosure of secrets scheme (SRP-CDS.Setup,
SRP-CDS.R, SRP-CDS.S, SRP-CDS.D) for NP, with ε(λ)4 ·µ(λ) computational sender privacy.

• A CC obfuscator Obf with ε(λ)4 · µ(λ) simulatability.

• A 3-round sometimes simulatable statistical ZK protocol (SSim-ZK.Setup,SSim-ZK.R, SSim-ZK.S)
that satisfies (ε(λ), ε(λ)2)-sometimes simulatability.

Our protocol is formally described in Figure 6.
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4-Round (Statistical) ZK Argument for QMA

• First Message (V→ P): The verifier samples (td, r, s)←$ {0, 1}κ and computes:

– (pk, sk)←$QFHE.Gen(1κ; r) and ctd = QFHE.Enc(pk, td).

– the obfuscated program C̃C← Obf(CC[QFHE.Dec(sk, ·), s, (r, sk)]).

– a commitment c = Com(0; r) and an SBSH commitment key ck0←$ SBSH.Gen(1λ).

– the first message of the 3-round CDS, (ct0, stcds)←$SRP-CDS.Setup(1κ).

– the first message of SSim-ZK, (zk0, stSSim-ZK)←$SSim-ZK.Gen(1λ).

It sends
(
pk, c, ctd, C̃C, ct0, ck0, zk0

)
to the prover.

• Second Message (P→ V): The prover samples y←$ 0κ and computes:

– a commitment key ck1←$SBSH.Key(ck0) and cmty ← SBSH.Com((ck0, ck1), y; rcmty)

– (zk1, tdSSim-ZK)← SSim-ZK.R(zk0).

– the second message of the SRP-CDS, (ctR, k)← SRP-CDS.R(ct0, (y, rcmty)).

It sends to the verifier (ck1, zk1, ctR).

• Third Message (V→ P): The verifier computes

– ctS ← SRP-CDS.S(ctR, stcds, z1, s), where the statement z1 attests to y = td and
cmty = SBSH.Com((ck0, ck1), y; rcmty).

– the first message of a WI argument, (crswi, tdwi)←$WI.Setup(1λ).

– zk2 ← SSim-ZK.S(zk1, stSSim-ZK,z2, rSSim-ZK), where z2 is the statement that all of the
verifier’s messages so far are explainable, with the random coins rSSim-ZK as witness.

It sends to the prover (ctS , crswi, γ, ck2).

• Fourth Message (P → V): The prover first verifies SSim-ZK.Verify(tdSSim-ZK, zk0, zk2). If
the verification is not successful it aborts. Else, on input p(λ)-many copies of the witness
|w〉⊗p(λ) and a statement x, it sends a WI proof |π〉:

{x ∈ L ∨ ∃ r : c = Com(0; r)} .

• Verify: The verifier accepts if WI.Verify(tdwi, |π〉 , x) = 1.

Figure 6: Description of a 4-round ZK argument for QMA (plain model)

Soundness. We show that the protocol satisfies computational soundness.

Theorem 5.19. [Soundness] Assuming the quantum quasi-polynomial hardness of the LWE problem and
the existence of a quantum quasi-polynomial semantically secure FHE, the protocol described in Figure 6
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satisfies computational soundness.

Proof. Let P ∗ be a malicious prover that produces an accepting state (ck3, cmtotk, |ψ〉 , ct′S , |π2〉)
for some statement x /∈ L. We define the aforementioned event as Cheat and assume towards
contradiction that the probability of P ∗ succeeding in cheating is

Pr [Cheat] ≥ ε(λ).

Then, by the (ε(λ), ε(λ)2)-sometimes binding property of the SBSH commitment scheme and the
(ε(λ), ε(λ)2)-sometimes simulatability of the SSim-ZK, we have that

Pr [Cheat ∧ (ck0, ck1) ∈ Binding ∧ (zk0, zk1) ∈ Simulation] ≥ ε(λ)4 · (1 + µ(λ))2

for some negligible function µ(λ). Let ỹ = SBSH.Ext(rGen, ck0, ck1, cmty) and ˜zk2 ← SSim-ZK.Sim(1λ,
rSetup, z2), where rGen and rSetup are the randomnesses used in the respective first messages. We
can now gradually change the procedure and we argue that the probability that the above defined
event happens does not decrease significantly.

• The verifier computes and sends a simulated ˜zk2 instead of zk2. If we define Cheat1 as the
event that this modified version accepts, we want to argue that

Pr [Cheat1 ∧ (ck0, ck1) ∈ Binding ∧ zk0, zk1) ∈ Simulation] ≥ ε(λ)4 · (1 + µ(λ))2.

Observe that the events Cheat and Cheat1 only differ in case ˜zk2 6= zk2. If we assume that
the inequality doesn’t hold we get a contradiction against the sometimes simulatability of
SSim-ZK.

• The verifier’s third message of the SRP-CDS, ctS , returns always zero. If we define Cheat2 as
the event that this modified version accepts, we want to prove that

Pr [Cheat2 ∧ (ck0, ck1) ∈ Binding ∧ zk0, zk1) ∈ Simulation] ≥ ε(λ)4 · (1 + µ(λ))2.

The proof is presented in Lemma 5.20.

• The verifier’s obfuscated program in the first message always returns 0. If we define Cheat3
as the event that this modified version accepts we want to prove that

Pr [Cheat3 ∧ (ck0, ck1) ∈ Binding ∧ zk0, zk1) ∈ Simulation] ≥ ε(λ)4 · (1 + µ(λ))2.

This is true due to the ε(λ)4 · µ(λ) compute and compare obfuscation security

• The verifier’s commitment c in the first message is changed to c = Com(1, r) instead of a
commitment to zero. If we define Cheat4 as the event that this modified version accepts we
want to prove that

Pr [Cheat4 ∧ (ck0, ck1) ∈ Binding ∧ zk0, zk1) ∈ Simulation] ≥ ε(λ)4 · (1 + µ(λ))2.

The inequality holds due to the ε(λ)4 · µ(λ) hiding of the commitment.

This last inequality implies that the WI proof is accepting with probability at least ε(λ)4·(1+µ(λ))2,
when neither of the clauses is satisfied. This contradicts the ε(λ)4 ·µ(λ) soundness of the WI proof
and concludes our proof.
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Lemma 5.20. Given the definition of the events Cheat1 and Cheat2 in Theorem 5.19 and assuming that

Pr [Cheat1 ∧ (ck0, ck1) ∈ Binding ∧ zk0, zk1) ∈ Simulation] ≥ ε(λ)4 · (1 + µ(λ))2,

then
Pr [Cheat2 ∧ (ck0, ck1) ∈ Binding ∧ zk0, zk1) ∈ Simulation] ≥ ε(λ)4 · (1 + µ(λ))2.

Proof. Consider the interaction where the verifier extracts ỹ using the SBSH.Ext algorithm, and if
ỹ = td the verifier aborts (denote this event by Abort); otherwise it continues with the interaction.
If the event does not happen, then the desired inequality follows by a reduction against the ε(λ)4 ·
µ(λ) computational sender privacy of the SRP-CDS.

We are now going to show that the probability that Abort happens is negligibly smaller than
Pr [Cheat2 ∧ (ck0, ck1) ∈ Binding ∧ zk0, zk1) ∈ Simulation]. In order to do that we consider the fol-
lowing hybrid distributions:

• HybridHa: This is the protocol we presented above.

• Hybrid Hb: This hybrid process is identical to the above except that the the CC obfuscated
program C̃C returns always 0. These processes are computationally indistinguishable given
the ε(λ)4 · µ(λ) security of C̃C.

• Hybrid Hc: This hybrid process is identical to the above except that the verifier, instead of
sending an encryption of td in the first message, it sends QFHE.Enc(pk, 0). Computational
indistinguishability follows from the ε(λ)4 · µ(λ) semantic security of QFHE.

In the last hybrid process, we have no information about td, and hence the probability to guess
y = td is negligible. This concludes our proof.

Quantum Rewinding Lemma Before we move on to zero-knowledge, recall the definition of the
Quantum Rewinding Lemma (Lemma 9 from [Wat09]), which constructs a quantum algorithm
for amplifying the success probability of quantum sampler circuits under certain conditions. The
below definition is taken directly from the modified version in [BS20].

Lemma 5.21. [Quantum Rewinding Lemma] There is a quantum algorithm R that gets as input:

• A general quantum circuit Q with n input qubits that outputs a classical bit b and an additional m
output qubits.

• An n-qubit state |ψ〉.

• A number t ∈ N.

R executes in time t · poly(|Q|) and outputs a distribution over m-qubit states Dψ := R(Q, |ψ〉 , t) with the
following guarantees.

For an n-qubit state |ψ〉, denote by Qψ the conditional distribution of the output distribution Q(|ψ〉),
conditioned on b = 0, and denote by p(ψ) the probability that b = 0. If there exists p0, q ∈ (0, 1), ε ∈ (0, 1

2)
such that:

• Amplification executes for enough time: t ≥ log(1/ε)
4·p0(1−p0) ,
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• There is some minimal probability that b = 0: For every n-qubit state |ψ〉, p0 ≤ p(ψ),

• p(ψ) is input independant, up to ε distance: For every n-qubit state, |ψ〉 , |p(ψ)− q| < ε, and

• q is closer to 1
2 : p0(1− p0) ≤ q(1− q),

then for every n-qubit state |ψ〉,

TD (Qψ, Dψ) ≤ 4
√
ε

log(1/ε)

p0(1− p0)

where TD denotes the trace distance.

Zero-Knowledge. Here we show that the scheme satisfies statistical zero-knowledge. In order
to prove ZK, we follow the technique presented in [BS20], so as to simulate aborting verifiers
as well. More specifically, we describe two simulators Sima and Simna, that on input (x, V ∗, ρ)
simulate different types of interactions. Sima tries to simulate an aborting interaction and Simna

a non-aborting interaction. Formally, an aborting interaction is an interaction where the verifier
aborts or fails to prove the SSim-ZK, whereas a non-aborting interaction is one where the verifier
doesn’t abort before the fourth message and also the SSim-ZK is succesful. Then, we describe a
combined Simulator Simcomb, which randomly chooses b←$ {a, na} and uses Simb to simulate the
interaction. We prove that the output of Simcomb is indistinguishable from the output of the real
interaction, as long as it doesn’t fail (i.e. picks the correct b), which happens with probability
negligibly close to 1

2 . Lastly, it is proven that Simcomb satisfies the required conditions for applying
Watrous’ quantum rewinding lemma, so that the success probability can be amplified negligibly
close to 1.

The simulator Sima(x, V
∗, ρ) proceeds as follows:

• In the second message, it computes cmty = SBSH.Com((ck0, ck1), 0λ; r0).

• If at some point before the fourth message the verifier aborts or fails to prove the SSimZK
proof, Sima outputs the verifier’s output. Otherwise it outputs Fail.

The simulator Simna(x, V
∗, ρ) proceeds as follows:

• It encrypts the the inner state of the verifier at that point ρ(1) under QFHE with public key
pk (ctρ(1) = QFHE.Enc(pk, ρ(1))) and proceeds to compute

ctcdsR ← QFHE.Eval(pk, SRP-CDS.R(ct0, (·, rcmty)), td) and

ctcmty ← QFHE.Eval(pk,SBSH.Com((ck0, ck1), · ; rcmty), td).

• Then, Simna continues to homomorphically evaluate the verifier’s response

(ctarg3, ctρ(2))← QFHE.Eval(pk, V ∗, ((ctcdsR , ctcmty), ctρ(1))),

where ctarg3 is the third message of the verifier V ∗ and ctρ(2) is the new inner state of V ∗,
both encrypted.

• From the encrypted result of the SRP-CDS.V, given that y was equal to td (under encryp-
tion), it gets QFHE.Enc(s) by running SRP-CDS.D homomorphically. Thus, it can compute
(r, sk′)← C̃C(QFHE.Enc(s)).
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• Subsequently, Simna checks the validity of (pk′, sk) = QFHE.Gen(1λ; r). If pk′ 6= pk or sk 6= sk′

then it halts the simulation. Otherwise it obtains the inner state of the verifier by decrypt-
ing, using the acquired secret key. The simulator also simulates the missing transcript in the
second message with the same values and randomnesses used in the homomorphic compu-
tations.

• Lastly, Simna continues with the protocol by computing and sending the WI proof. It uses as
witness the randomness r.

The simulator Simcomb(x, V
∗, ρ) proceed as follows:

• First, it samples b←$ {a, na}.

• Then it runs Simb(x, V
∗, ρ).

At last, Sim(x, V ∗, ρ) proceeds as follows:

• Generates the circuit Simcomb,x,V ∗ , which is the implementation of Simcomb with the inputs
x, V ∗ hardwired, so that ρ is the only input.

• The output of the simulation isR (Simcomb,x,V ∗ , ρ, λ), whereR is the algorithm from Lemma
5.21.

Proposition 5.22. [Similarity of Aborting Plan] Let V ∗ = V ∗ρ be an unbounded quantum verifier and let
OUTV ∗

a
be the verifier’s output at the end of the protocol such that if V ∗ does not abort the output is Fail.

We show that {
OUTV ∗

a

(
P (|w〉⊗p(λ) , x), V ∗(ρ, x)

)}
λ,x,w

≈s {Sima(x, V
∗, ρ))}x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ and |w〉 ∈ RL(x).

Proof. The two distributions are identical, since both Sima and the prover act exactly the same
up to the fourth message. In an aborting interaction the verifier would have aborted before this
message. In the case of a non-aborting interaction, both outputs would be Fail.

Proposition 5.23. [Similarity of Non-Aborting Plan] Let V ∗ be an unbounded quantum verifier and let
OUTV ∗

na
be the verifier’s output at the end of the protocol such that if V ∗ aborts the output is Fail. We show

that {
OUTV ∗

na

(
P (|w〉⊗p(λ) , x), V ∗(ρ, x)

)}
λ,x,w

≈s {Simna(x, V
∗, ρ))}x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ and |w〉 ∈ RL(x).

Proof. We consider the following hybrid distributions, which we prove that are statistically indis-
tinguishable:

• HybridH0: This is the output distribution of Simna

• Hybrid H1: This process is identical to the above except that in the WI proof the simu-
lator proves the first statement (x ∈ L). Indistinguishability follows from the witness-
indistinguishability property of the WI proofs.
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• Hybrid H2: This hybrid process is identical to the above except that if the verifier’s mes-
sages are not explainable and its SSim-ZK proof fails, then the process chooses to fail and
outputs Fail. Otherwise, after performing the homomorphic computations, instead of get-
ting the sk from the C̃C, it computes it inefficiently. It also computes s inefficiently and if
QFHE.Dec(QFHE.Enc(s)) 6= s (where QFHE.Enc(s) is part of ctarg3) it outputs Fail. Else, it
continues with the simulation.

Statistical indistinguishability will follow from the perfect correctness of the CC obfuscation,
the perfect correctness of the QFHE and from the soundness of the SSim-ZK that the verifier
sends. Assume that the two distributions are distinguishable and fix a partial transcript T’
and a verifier’s inner state ρ(1) that maximize the distinguishability.

– In case T’ is not expainable, the SSim-ZK will fail, and so will the hybrid process, result-
ing in a contradiction (since both outputs would be Fail).

– In case T’ is expainable, in both hybrids we can check if s is correct after obtaining the
sk, either inneficiently or through C̃C. Hence, the statistical distance between them is
bounded by the probability that the check in one hybrid process fails and succeeds in
the other, which in turn is bounded by the result of the SRP-CDS not being equal to s.
Given the statistical correctness of the QFHE scheme (under which the homomorphic
evaluations are performed), this leads to a contradiction.

• HybridH3: In this hybrid distribution we get rid of the homomorphic evaluation altogether.
If the verifier’s messages are explainable (and thus specifically QFHE.Enc(td)) then the sim-
ulator sends cmty and ctR in the clear (similar as in the original protocol, using td in place of
y = 0κ). If the verifier’s SRP-CDS decrypted is equal to the precomputed s then the process
continues. Otherwise, the process outputs Fail.

Statistical indistinguishability follows directly from the perfect correctness of the QFHE and
the soundness of the SSim-ZK. Assume that the two distributions are distinguishable and fix
a partial transcript T’ and a verifier’s inner state ρ(1) that maximize the distinguishability.

– In case T’ is not explainable, the SSim-ZK as well as the hybrid process would output
Fail, resulting in a contradiction.

– In case T’ is explainable, the difference in the distributions is that in one the verifier’s
response is computed homomorphically and in the other in the clear. By the QFHE
correctness, this leads to a contradiction.

• HybridH4: This process is identical to the previous except that the simulator does not check
the verifier’s SRP-CDS response and always continues with the process. Assume that the
two distributions are distinguishable and fix a partial transcript T’.

– If T’ is not explainable then both hybrids would output Fail and are thus identical.

– If T’ is explainable and the result of the SRP-CDS is equal to s then the hybrids are
identical. Alternatively, if the result of the SRP-CDS is not equal to s, then H3 would
output Fail, but, in the current hybrid, due to the correctness of the SRP-CDS, T’ should
not be explainable. Given the soundness of the SSim-ZK we reach a contradiction.
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• Hybrid H5: This hybrid process is identical to the previous except that the prover always
sends cmty ← SBSH.Com((ck0, ck1), 0λ; rcmty) in the second message. Statistical indistin-
guishability follows from the statistical hiding of the commitment and the SRP-CDS statisti-
cal privacy. Assume towards contradiction that the distributions are distinguishable and fix
a partial transcript T’.

– If T’ is not explainable then both hybrids would output Fail thanks to the soundness of
the SSim-ZK.

– In case T’ is explainable, we reach a contradiction due to the statistical security of the
SBSH commitment and the statistical privacy of SRP-CDS.

• Hybrid H6: This hybrid process is identical to the previous except that instead of getting s
and sk inefficiently and verifying V ∗’s messages (with the Gen algorithm), it always sends
ctR ← SRP-CDS.R(ct0, (0

λ, rcmty)) in the second message. Assume towards contradiction
that the distributions are distinguishable and fix partial transcript T’.

– If T’ is not explainable then both hybrids would output Fail thanks to the soundness of
the SSim-ZK.

– In case T’ is explainable we reach a contradiction due to the statistical privacy of SRP-CDS.

Note that this last process is exactly the output of the interaction with a prover.

Next we prove that the output of of a successful Simcomb is indistinguishable from a real in-
teraction. The Proposition is identical to Proposition 3.4 in [BS20], with the necessary changes in
order to argue statistical zero knowledge.

Proposition 5.24. [The output of of a successful Simcomb is Indistinguishable from Real Interaction] Let V ∗

be a verifier. For x ∈ L, let ˜Simcomb(x, V
∗
λ , ρλ) denote the conditional distribution of Simcomb(x, V

∗
λ , ρλ),

conditioned on the simulation being successful. Then,{
OUT

(
P (|w〉⊗p(λ) , x), V ∗(ρ, x)

)}
λ,x,w

≈s
{

˜Simcomb(x, V
∗, ρ))

}
x,w

,

where λ ∈ N, x ∈ L ∩ {0, 1}λ and |w〉 ∈ RL(x).

Proof. Denote the following conditional distributions.

• ASim: A conditional distribution of Sima(x, V
∗, ρ), conditioned on that the output is not Fail

(might be an empty distribution, if a(x, ρ) = 0).

• SSim: A conditional distribution of Simna(x, V
∗, ρ), conditioned on that the output is not Fail

(might be an empty distribution, if b(x, ρ) = 1).

• A〈P,V ∗〉 =
{
A〈P,V ∗〉λ

}
λ∈N: A conditional distribution of OUTV ∗

a
〈P, V ∗〉, conditioned on that

the output is not Fail (might be an empty distribution, if c(x, ρ, |w〉⊗p(λ)) = 0).

• S〈P,V ∗〉 =
{
S〈P,V ∗〉λ

}
λ∈N:A conditional distribution of OUTV ∗

na
〈P, V ∗〉, conditioned on that

the output is not Fail (might be an empty distribution, if c(x, ρ, |w〉⊗p(λ)) = 1).
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where the probabilities a, b, c are defined as follows:

• a(x, ρ): The probability that the simulation of Sima(x, V
∗, ρ) was aborting.

• b(x, ρ): The probability that the simulation of Simna(x, V
,ρ) was aborting.

• c(x, ρ, |w〉⊗p(λ)): The probability that the interaction
(
P (|w〉⊗p(λ)), V ∗(ρ)

)
(x) was aborting.

Proof.

The distribution ˜Simcomb(x, V
∗, ρ) is the distribution generated by outputting a sample from ASim

with probability a(x,ρ
1+a(x,ρ)−b(x,ρ) , and a sample from SSim with probability 1−b(x,ρ

1+a(x,ρ)−b(x,ρ) . In addi-
tion, the distribution OUTV ∗ (P, V ∗) (x) is the distribution generated by outputting a sample from
A(P,V ∗) with probability c(x, ρ, |w〉⊗p(λ)) and from S〈P,V ∗〉 with probability 1− c(x, ρ, |w〉⊗p(λ)). We
will show that the two distributions are statistically indistinguishable by a hybrid argument. Con-
sider the following distributions:

• Hyb0: This is the distribution ˜Simcomb(x, V
∗, ρ).

• Hyb1: This process is identical to the above with the exception that instead of sampling from
ASim with probability a(x,ρ

1+a(x,ρ)−b(x,ρ) and from SSim with probability 1−b(x,ρ
1+a(x,ρ)−b(x,ρ) , it samples

from ASim with probability a(x, ρ) and from SSim with probability 1− a(x, ρ).

• Hyb2: This process is identical to the above, but the probability a(x, ρ) is changed to c(x, ρ, |w〉⊗p(λ)).

• Hyb3: This process is identical to the above except that with probability c(x, ρ, |w〉⊗p(λ)) the
process outputs a sample from A〈P,V ∗〉 instead of ASim.

• Hyb4: This process is identical to the above except that with probability 1 − c(x, ρ, |w〉⊗p(λ))
the process outputs a sample from S〈P,V ∗〉 instead of SSim.

Following the proof from [BS20] while using propositions 5.22 and 5.23 we prove statistical indis-
tinguishability between the above hybrid distributions.

Theorem 5.25 (Zero Knowledge). Let V ∗ = V ∗ρ be an unbounded quantum verifier. The protocol de-
scribed in Figure 6 satisfies statistical zero-knowledge:{

OUT
(
P (|w〉⊗p(λ) , x), V ∗(ρ, x)

)}
λ,x,w

≈s {Sim(x, V ∗, ρ))}x,w ,

where λ ∈ N, x ∈ L ∩ {0, 1}λ and |w〉 ∈ RL(x).

Proof. The proof is identical with the proof of Proposision 3.5 in [BS20], where the authors use
Watrous’ Rewinding Lemma for Simcomb,x,V ∗ , which has probability success negligibly close to
1/2. If we denote the success probability for input ρ by p(ρ) and denote ε := negl(λ)+2−λ

3
4 , p0 := 1

4
and q := 1

2 , the conditions for the Quantum Rewinding Lemma [cite it] are satisfied.
Thus the trace distance between Simcomb(x, V

∗, ρ) and R (Simcomb,x,V ∗,ρ(x, V
∗, ρ)) = Sim(x, V ∗, ρ)

is bounded by a negligible function. Finally, observe that as proven in Proposition 5.24, Simcomb(x, V
∗, ρ))

is statistically indistinguishable from OUTV ∗

〈
P (|w〉⊗p(λ)), V ∗(ρ)

〉
(x), which concludes the proof.
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6 Zero-Knowledge for QMA in the Timing Model

In this section we present two zero-knowledge arguments for QMA languages in the timing
model: The first satisfies computational zero-knowledge, whereas the latter satisfies statistical
zero-knowledge but requires slightly stronger assumptions.

6.1 Computational Zero-Knowledge

Our Protocol. Here we describe our first 2-round ZK argument. We assume the existence of the
following building blocks (all secure against quantum adversaries):

• A circuit-private classical FHE scheme (FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec).

• A sub-exponentially secure average-case T -non-parallelizing function F : X → Y secure
against algorithms of size O(2λ) and depth less than T ζ .

• A 2-round WI argument (WI.Setup,WI.Prove,WI.Verify) for QMA.

Our protocol is parametrized by a time-parameter T and it is formally described in Figure 7.
Completeness follows immediately from the completeness of the 2-round WI argument.

2-Round (Computational) ZK Arguments for QMA

• Prover Precomputation: Sample an FHE key pair (sk, pk)←$FHE.Gen(1λ) and an input
x′←$X . Compute α←$FHE.Enc(pk, x′) and β = FHE.Eval(pk, F, α).

• First Message (V → P): Sample a uniform input x∗←$X and a first message
(crs, td)←$WI.Setup(1λ) and return (x∗, crs).

• Second Message (P→ V): On input p(λ)-many copies of the witness |w〉⊗p(λ) and a state-
ment z, compute a WI proof |π〉 for the statement

stmt =
{
x ∈ L ∨ pk ∈ FHE.Gen(1λ) ∧ α ∈ FHE.Enc(pk, x∗)

}
using |w〉⊗p(λ) as the witness. The prover sends (|π〉 , pk, α, β) to the verifier.

• Verify: The verifier accepts if the following conditions are satisfied.

1. The prover responds before time T ζ .

2. WI.Verify(td, |π〉 , stmt) = 1.

3. FHE.Eval(pk, F, α) = β.

Figure 7: Description of a 2-round (computational) ZK argument for QMA (timing model)
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Soundness. In the following we show that the protocol satisfies computational soundness.

Theorem 6.1 (Soundness). Assuming that F is sub-exponentially average-case non-parallelizable and
that (WI.Setup,WI.Prove,WI.Verify) is computationally sound, the protocol described in Figure 7 satisfies
single-theorem computational soundness.

Proof. Consider a prover (running in time less than T ζ) that produces an accepting state (|π〉 , pk, α, β)
for some statement x /∈ L. By the computational soundness of the WI proof, it must be the case
that

pk ∈ FHE.Gen(1λ) ∧ α ∈ FHE.Enc(pk, x∗) (2)

as otherwise it would produce a valid WI second message for a false statement. We can use
the prover to define an algorithm that breaks the (sub-exponential) non-parellelizability of F as
follows: The reduction sets x∗ to be the challenge input and proceeds with the protocol in the
same way as the verifier would. Once the prover returns (pk, α, β), the reduction recovers the sk
in time O(2λ), by e.g. testing all random strings of the FHE.Gen algorithm in parallel. Then it and
uses sk to decrypt β and returns whatever the decrypted message is.

Observe that, by Equation (1), α is indeed an encryption of x∗. By the evaluation correctness
of the FHE scheme, we have that

FHE.Dec(sk, β) = FHE.Dec(sk,FHE.Eval(pk, F, α)) = F (x∗).

Thus, the reduction returns the correct output. What is left to be shown is that the depth of the
reduction is asymptotically smaller than T ζ . Observe that the process of recovering sk can be
computed by a circuit of depth O(λ), by testing all random coins of the FHE.Gen in parallel and
then selecting the matching secret key with a binary tree. The depth of the decryption procedure
is bounded by a fixed polynomial in λ and is in particular independent of T . Thus, the depth of
the reduction is only an additive term poly(λ) higher than the depth of the prover. For a large
enough T , this contradicts the non-parallelizability of F .

Zero-Knowledge. Finally, we show that the scheme satisfies zero-knowledge in the timing model.
Recall that in the timing model [DS02] the simulator is allowed to “freeze time” while simulating
the accepting transcript.

Theorem 6.2 (Zero-Knowledge). Assuming that (FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec) is semanti-
cally secure, the protocol described in Figure 7 satisfies computational zero-knowledge in the timing model.

Proof. The simulator computes α as an encryption of x∗, then it computes β as FHE.Eval(pk, F, α)
and uses the corresponding random coins as a witness to compute the WI argument. Recall that
the simulator is allowed to perform computations without letting time elapsing, from the perspec-
tive of the verifier. To show that the simulation is computationally indistinguishable from the real
proof, we consider the following hybrid distributions.

• HybridH0: This is the honestly computed proof (|π〉 , pk, α, β).

• Hybrid H1: Here we change α to be the encryption of x∗, instead of x′. Computational
indistinguishability follows immediately from the semantic security of the FHE scheme.
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• Hybrid H2: Here we use the random coins used to sample pk and to encrypt α to compute
the WI proof, as opposed to the witness |w〉⊗p(λ). By the statistical indistinguishability of the
WI argument, the distributions are statistically close.

The proof is concluded by observing that the distribution induced by H2 is the same as the one
induced by the simulator.

6.2 Statistical Zero-Knowledge

We show a different protocol that achieves statistical zero-knowledge at the cost of requiring
slightly stronger assumptions, namely the existence of a post-quantum time-lock puzzle. At
present, we only know how to construct (presumably) post-quantum time-lock puzzles from suc-
cinct randomized encodings [BGJ+16].

Our Protocol. Let ε(λ) be a (fixed) negligible function. We assume the existence of the following
building blocks (all secure against quantum adversaries):

• A perfectly binding commitment Com which is hiding with ε(λ)2 · µ(λ) advantage.

• A 2-round WI argument (WI.Setup,WI.Prove,WI.Verify) for QMA with statistical witness in-
distinguishability and ε(λ)2 · µ(λ) soundness error.

• A two-round statistically sender private conditional disclosure of secrets scheme (SSP-CDS.R,
SSP-CDS.S, SSP-CDS.D) for NP with ε(λ)2 · µ(λ) receiver security.

• A time-lock puzzle (TLP.Gen,TLP.Solve) T -sequential with advantage bounded by ε(λ)2 ·
µ(λ).

• An SBSH commitment scheme (SBSH.Gen,SBSH.Key, SBSH.Com) that satisfies (ε(λ), ε(λ)2)-
sometimes binding.

Where µ(λ) is some negligible function. Note that, with the exception of the time-lock puzzles,
all other building blocks can be instantiated assuming the quantum hardness of quasi-polynomial
LWE. We define T to be the time parameter of the scheme and we describe our protocol in Figure 8.

Soundness. We show that our protocol satisfies (non-adaptive) soundness.

Theorem 6.3 (Soundness). Assuming the quantum quasi-polynomial hardness of the LWE problem and
quasi-polynomially T -sequential time-lock puzzles, the ZK argument described in Figure 8 satisfies compu-
tational soundness.

Proof. We show that the success probability of the prover is bounded by a negligible function ε(λ).
Let x /∈ L be the false statement and let Cheat be the event where the prover causes the verifier to
accept x. Assume towards contradiction that

Pr [Cheat] ≥ ε(λ).

Then, by the (ε(λ), ε(λ)2)-sometimes binding property of the SBSH commitment scheme, we have
that

Pr [Cheat ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ))
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2-Round (Statistical) ZK Arguments for QMA

• First Message (V→ P): Sample an SBSH commitment key ck0←$ SBSH.Gen(1λ) and the
first messages of two WI arguments (crs1, td1), (crs2, td2)←$WI.Setup(1λ). Sample a uni-
form c←$Com(1λ, 0; r) and computeZ←$TLP.Gen(1λ, T, r; r̃) and compute the first mes-
sage of a CDS ct←$SSP-CDS.R(1λ, (r, r̃)). Return (ck0, crs1, crs2, c, Z, ct).

• Second Message (P→ V): On input p(λ)-many copies of the witness |w〉⊗p(λ) and a state-
ment x, compute a WI proof |π1〉 (with respect to crs1) for the statement

stmt1 =
{
x ∈ L ∨ ∃ r : c = Com(1λ, 0 : r)

}
.

Sample otk←$QOTP.Gen(1λ) and calculate |ψ〉 = QOTP.Enc(otk, |π1〉). Then sample
ck1←$SBSH.Key(ck0) and compute cmt←$SBSH.Com((ck0, ck1), otk). Compute the CDS
message ct′ for otk, conditioned the statement

stmt0 =
{
∃ r : Z ∈ TLP.Gen(1λ, T, r) ∧ c = Com(1λ, 0; r)

}
.

Finally compute WI proof |π2〉 (with respect to crs2) for the statement

stmt2 =
{
x ∈ L ∨ cmt ∈ SBSH.Com((ck0, ck1), otk) ∧ ct′ ∈ SSP-CDS.S(ct, stmt0, otk)

}
using the witness for the second branch. Return (ck1, cmt, ct′, |ψ〉 , |π2〉).

• Verify: The verifier computes otk′ = SSP-CDS.D(ct′, (r, r̃)) and |π1〉 =
QOTP.Dec(otk′, |ψ〉). The verifier accepts if the following conditions are satisfied.

1. The prover responds before time T ζ .

2. WI.Verify(td1, |π1〉 , stmt1) = 1.

3. WI.Verify(td2, |π2〉 , stmt2) = 1.

Figure 8: Description of a 2-round (statistical) ZK argument for QMA (timing model)

for some negligible function µ(λ). Let õtk = SBSH.Ext(r, ck0, ck1, cmt) be the output of the extrac-
tor, where r denote the random coins used in the SBSH.Gen algorithm. We now gradually change
the verification procedure and we argue that the probability that the above defined event happens
does not decrease significantly.

• The verifier computes |π1〉 = QOTP.Dec( ˜otk, |ψ〉), instead of recovering otk′ from the CDS
protocol. Let us now define Cheat1 as the event where the modified verifier accepts. We
want to argue that

Pr [Cheat1 ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ))
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for some negligible function µ(λ). Note that the events Cheat and Cheat1 only differ in the
case where ˜otk 6= otk′. Thus if the inequality above does not hold, we obtain a contradiction
against the ε(λ)2 · µ(λ)-soundness of the WI argument.

• The verifier computes ct←$SSP-CDS.R(1λ, 0) and we define Cheat2 as the event where the
modified verifier accepts. We can show that

Pr [Cheat2 ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ))

by a reduction against the ε(λ)2 · µ(λ)-receiver hiding of the CDS scheme.

• The verifier computes Z←$TLP.Gen(1λ, T, 0) and we define Cheat3 as the event where the
modified verifier accepts. We can show that

Pr [Cheat3 ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ))

by a reduction against the T -sequentiality of the time-lock puzzle with advantage ε(λ)2·µ(λ).

• The verifier computes c←$Com(1λ, 1) and we define Cheat4 as the event where the modified
verifier accepts. We have that

Pr [Cheat4 ∧ (ck0, ck1) ∈ Binding] ≥ ε(λ)2 · (1 + µ(λ))

by the ε(λ)2 · µ(λ) hiding of the commitment scheme Com.

The last inequality implies that the prover produces a valid |π1〉 for a false statement with proba-
bility greater than ε(λ)2 · (1 + µ(λ)), which is a contradiction to the ε(λ)2 · (1 + µ(λ))-soundness of
the WI argument and concludes the proof.

Zero-Knowledge. We now argue that the protocol is zero-knowledge in the timing model.

Theorem 6.4 (Zero-Knowledge). The protocol described in Figure 8 satisfies statistical zero-knowledge
in the timing model.

Proof. The simulator recovers a randomness r fromZ (by computing TLP.Solve) and checks whether
c = Com(1λ, 0; r). If this is the case it uses it as the witness to compute |π1〉, otherwise it sets |π1〉
to be the all 0 state (padded to the appropriate length). The simulator then proceeds as in the real
protocol.

To show that the transcript produced by the simulator is statistically close to the one produced
by the real prover, we consider the following hybrid distributions.

• HybridH0: This is the simulated transcript.

• HybridH1: We change the simulation to compute |π1〉 using the real witness of the statement
z, but only in the case where c = Com(1λ, 0; r). By the statistical witness indistinguishability
of the WI argument, this change is statistically indistinguishable.

• Hybrid H2: Here we compute |π2〉 using the real witness of the statement z. This change
is statistically indistinguishable to the eyes of the verifier by the statistical witness indistin-
guishability of the WI argument.
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• Hybrid H3: If c 6= Com(1λ, 0; r) we compute the CDS second message ct′ with the message
fixed to 0 (padded to the appropriate length), instead of otk. Note that the condition c 6=
Com(1λ, 0; r) implies that stmt is false, and therefore the distribution induced by this hybrid
is statistically close to that of the previous one.

• Hybrid H4: If c 6= Com(1λ, 0; r) we compute cmt←$SBSH.Com((ck0, ck1), 0). This change is
statistically indistinguishable by the statistical hiding property of the SBSH commitment.

• Hybrid H5: If c 6= Com(1λ, 0; r) we compute |ψ〉 = QOTP(otk, |π1〉), where |π1〉 is computed
using the real witness for z. To the eyes of the distinguisher |ψ〉 is now maximally mixed
and therefore this distribution is identical to that of the previous hybrid.

• HybridH6: We revert the change done inH4.

• HybridH7: We revert the change done inH3.

• HybridH8: We revert the change done inH2.

The proof is concluded by observing thatH8 is identical to the output of the honest prover.
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