
Principal Component Analysis using CKKS
Homomorphic Scheme

Samanvaya Panda

International Institute of Information Technology, Hyderabad
samanvaya.panda@research.iiit.ac.in

Abstract. Principal component analysis(PCA) is one of the most pop-
ular linear dimensionality reduction techniques in machine learning. In
this paper, we try to present a method for performing PCA on en-
crypted data using a homomorphic encryption scheme. In a client-server
model where the server performs computations on the encrypted data,
it (server) does not require to perform any matrix operations like multi-
plication, inversion, etc. on the encrypted data. This reduces the num-
ber of computations significantly since matrix operations on encrypted
data are very computationally expensive. For our purpose, we used the
CKKS homomorphic encryption scheme since it is most suitable for ma-
chine learning tasks allowing approximate computations on real numbers.
We also present the experimental results of our proposed Homomorphic
PCA(HPCA) algorithm on a few datasets. We measure the R2 score on
the reconstructed data and use it as an evaluation metric for our HPCA
algorithm.

Keywords: Homomorphic Encryption · Principal Component Analy-
sis(PCA) · CKKS scheme · Goldschmidt’s Algorithm

1 Introduction

With the rise of outsourcing of computational tasks through cloud computing
and services, quintillion bytes of data are produced every day. Data analytics
performed on these data provide several insights to the clients at the same to
the cloud servers. This has raised several privacy issues and concerns among
individuals, organizations, and government officials. With ever-increasing privacy
issues, performing machine learning tasks on encrypted data has become the
need of the hour. Several privacy-preserving machine learning tasks have been
accomplished using fully homomorphic encryption(FHE) schemes and secure
multiparty computations(MPC) based schemes, demonstrating their potential.
Due to the interactive nature of MPC-based schemes, people started looking for
FHE-based schemes as an alternative.

Gentry in [12][13] provided the construction of a leveled-HE scheme. Then the
construction was converted to a FHE scheme using bootstrapping that allowed
an arbitrary number of computations on the ciphertext. However, the scheme
was not efficient to be used in practice. Various improvements have been made

2 Samanvaya Panda

since then, and FHE schemes have become efficient and practical. One such
scheme that was introduced recently is the CKKS[7] homomorphic encryption
scheme. CKKS scheme supports approximate arithmetic over encrypted data. It
supports computations on real and complex values, which makes it most suitable
for machine learning tasks. Application of CKKS scheme in various machine
learning techniques have been already demonstrated in [10], [2], [3], [14], [15],
[8], [16].

This paper focuses on using the CKKS homomorphic encryption scheme to
perform principal component analysis(PCA) - a popular linear dimensionality
reduction technique. Dimensionality reduction techniques transform higher di-
mensional data into a representation with a few intrinsic dimensions while re-
taining the original data’s properties. When used as input to a machine learning
model, such a low dimensional representation reduces the model’s complexity
and makes it simpler. For this reason, dimensionality reduction has numerous
applications in fields such as data visualization, data compression, noise removal,
pre-processing technique. Few attempts have been made in the past to perform
PCA on encrypted data. Lu et al. in [19] and Rathee et al. in [22] performed
PCA using the BGV scheme. However, both of them performed PCA on cat-
egorical datasets with relatively fewer attributes(≤ 20). Also, they provided
experimentation results for the first principal component only. In [19] and [22]
computing subsequent principal components requires communication between
the client and the server because the client computes the eigenvalue. This makes
their algorithm interactive.

Contributions

In this paper, we propose a technique to perform PCA using the CKKS homo-
morphic encryption scheme. Unlike in [19], [22] where they converted the real
dataset to an integer dataset through appropriate scaling, we take advantage of
using the CKKS scheme that can handle real numbers. We also propose a sub-
ciphertext packing technique in which every vector is packed as a sub-ciphertext
within a ciphertext. The length of the sub-ciphertext is almost equal to the size
of the vector. The primary advantage of using such a packing technique is that
most of the operations become polynomial in the sub-ciphertext length rather
than polynomial in ciphertext’s length. Since the sub-ciphertext length is almost
the same as that of the original vector, computations become polynomial in the
initial vector’s length.

We compute the norm of vectors homomorphically, which makes our algo-
rithm non-interactive for computing subsequent principal components. Our pro-
posed Homomorphic PCA(HPCA) algorithm does not require performing any
matrix operations like matrix-vector multiplication and matrix-matrix multipli-
cation on encrypted data, significantly reducing computations.

We provide an implementation of our HPCA algorithm in SEAL-Python[24](A
python binding for SEAL[23] library). Other than just categorical datasets with
a few dimensions, we provide experimentation results on higher-dimensional
datasets. Also, we perform computations to find more than just one principal

Principal Component Analysis using CKKS Homomorphic Scheme 3

component as opposed to in [19], [22] which only considered the computation of
the first principal component. We also measure the R2 score of the reconstructed
data as an evaluation metric for our HPCA algorithm. We do not use bootstrap-
ping in our HPCA algorithm implementation because it is not provided as an
API in the SEAL library. Instead, we re-encrypt some of the encrypted param-
eters to eliminate noise in them. The re-encryption procedure could be ideally
replaced by bootstrapping without making any changes in other parts. However,
the algorithm’s runtime may increase since bootstrapping in the CKKS scheme
is a costlier operation than re-encryption.

2 Preliminaries

2.1 CKKS Homomorphic Encryption Scheme

The CKKS(Cheon-Kim-Kim-Song) scheme[7] is a leveled homomorphic encryp-
tion scheme that relies on the hardness of RLWE(Ring Learning With Errors)
problem for its security. Unlike other HE schemes, CKKS supports approximate
arithmetic on real and complex numbers with predefined precision. The main
idea behind the CKKS scheme is that it treats noise generated upon decryption
as an error in computation for real numbers. This makes it an ideal candidate
for performing machine learning tasks where most of the computations are ap-
proximate. With the use of bootstrapping technique as mentioned in [6] and [5],
the CKKS scheme becomes a FHE(fully homomorphic encryption) scheme.

Let N = φ(M) be the degree of the M -th cyclotomic polynomial ΦM (X). If
N is chosen as a power of 2 then M = 2N and the M -th cyclotomic polynomial
ΦM (X) = XN + 1. Let R = Z[X]/ΦM (X) = Z[X]/(XN + 1) be the ring of
polynomials defined for the plaintext space. Let Rq = R/qR = Zq[X]/(XN + 1)
be the residue ring defined for the ciphertext space. Let H be a subspace of CN
which is isomorphic to CN/2. Let σ : R → σ(R) ⊆ H be a canonical embedding.
Let π : H → CN/2 be a map that projects a vector from a subspace of CN to
CN/2.

The CKKS scheme provides the following operations:-

KeyGen(N) Let s(X) ∈ Zq[X]/(XN+1) be the secret polynomial and p(X) =
(−a(X)·s(X)+e(X), a(X)) be the public polynomial where a(X) ∈ Zq[X]/(XN+
1) is a polynomial chosen uniformly random and e(X) ∈ Zq[X]/(XN + 1) is a
small noisy polynomial. Let r(x) = (−a(X) · s(X) + b · s(X)2 + e(X), a(X)) be
the relinearisation key where b ∈ Zq is a large integer.

Encode(z) To encode a message vector z ∈ CN/2 to a message polynomial
m(X) ∈ R, we first expand the message vector z from CN/2 to H by applying
π−1(z). Then we appropriately scale the vector by multiplying a scaling factor
∆ followed by random rounding to b∆ · π−1(z)e. Scaling is done to achieve pre-
defined precision since precision bits may be lost due to rounding. To obtain the
message polynomial we apply the inverse of canonical embedding σ−1 and get
m(X) = σ−1(b∆ · π−1(z)e) ∈ R.

4 Samanvaya Panda

Decode(m(X)) To decode a message polynomial m(X) ∈ R to a message vec-
tor z ∈ CN/2, we first apply the canonical embedding σ to get z = b∆ · π−1(z)e ∈
H. Then we divide it by the scaling factor ∆ to obtain ∆−1b∆ · π−1(z)e ≈
π−1(z). To obtain the message vector, we project the vector using π and get
π(π−1(z)) = z ∈ CN/2.

Encrypt(m(X), p(X)) To obtain the ciphertext polynomial c(X) correspond-
ing to the message polynomial m(X) ∈ R, we apply the RLWE encryption
and get c(X) = (c0(X), c1(X)) = (m(X), 0) + p(X) = (m(X) − a(X) · s(X) +
e(X), a(X)) ∈ (Zq[X]/(XN + 1))2.

Decrypt(c(X), s(X)) To obtain the message polynomial corresponding to the
ciphertext polynomial c(X) ∈ (Zq[X]/(XN+1)), we apply the RLWE decryption
using the secret polynomial s(X) and get m(X) ≈ c0(X) + c1(X) · s = m(X) +
e(X)

Apart from the above operations, it also provides specialised ciphertext op-
erations which include:-

Multiply(c(X), c′(X)) Multiplication of two ciphertexts c(X) and c′(X) gen-
erates a ciphertext cm(X) = (c0c

′
0, c
′
0c1 + c0c

′
1, c
′
0c
′
1) = (c0(X), c1(X), c2(X)).

Then ciphertext is relinearised and modulus is switched subsequently.

Relinearise(cm(X), r(X)) Relinearisation reduces the size of the ciphertext
after multiplication of two ciphertexts. Let cm(X) = (c0(X), c1(X), c2(X)) be
the resultant ciphertext after multiplication of two ciphertexts. After relinearisa-
tion, we obtain the ciphertext cr(X) = (c0(X), c1(X))+bb−1 · c2(X) · r(X)emod(q)

Modulus Switching(c(X)) Modulus switching is rescaling of the ciphertext
after multiplication in the RNS system. In addition to rescaling(dividing by
scale and rounding), we the take ciphertext modulus of the next prime in the
chain(lower level). The ciphertext obtained after modulus switching cs(X) =
b∆−1 · c(X)emod(ql−1) = b ql−1

ql
· c(X)emod(ql−1).

Some other operations that are also supported by CKKS scheme are:-

– add(c(X), c′(X)) - to add 2 ciphertext polynomials.
– rotateLeft(c(X), i) - to rotate the ciphertext polynomial by i positions left.
– rotateRight(c(X), i) - to rotate the ciphertext polynomial by i positions

right.

2.2 Principal Component Analysis(PCA)

Principal component analysis(PCA) is an unsupervised dimensionality linear re-
duction technique. The PCA method searches for dimensions along which vari-
ance is maximized and from which one can reconstruct the original data with

Principal Component Analysis using CKKS Homomorphic Scheme 5

minimal reconstruction error. Let u be the dimension that maximizes the vari-
ance of a vector x after projection in that direction. So, PCA could be formulated
as maximization of variance problem:-

max
u

1

n

n∑
i=1

(uTxi − uTµ)2

max
u

1

n
uTΣu

subject to ‖u‖ = 1

(1)

where Σ =
n∑
i=1

(xi − µ)(xi − µ)T is the covariance matrix and µ =
n∑
i=1

ui is the

mean vector.

From the above formulation, it is evident that the solution to the maxi-
mization problem would be the largest eigenvector of the covariance matrix Σ.
To find the largest eigenvector, we use an iterative technique called the Power
method. The power method finds the dominant eigenvector of a given matrix
A by repeatedly multiplying a random vector u. As the number of iterations i
increases, the product Aiu converges to the largest eigenvector.

Algorithm 1 First principal component(Power Method)

Input: X : Data Matrix of row vectors.
Output: λ,w: Largest eigenvalue and corresponding eigenvector of X.

w
$← Rd

for i = 1 to t do
s =

∑
x∈X

xT (x · w)

λ = ‖s‖
w = s

‖s‖
end for
return λ,w

In algorithm 1, instead of using covariance matrix Σ, we use the sum of the
outer product of xi’s. In this approach, we do not require to store the covariance
matrix Σ and only store a vector. Also, we are not required to perform any
matrix operations, which could be useful for us in the homomorphic setting.

If we desire to find subsequent(2nd, 3rd, · · · lthlargest) eigenvectors then we
need to use the Eigen shift procedure. The Eigen shift procedure would remove
the largest eigenvalue and corresponding eigenvector from A.

By combining the Eigen shift procedure with the power method, we would
be able to find out l largest eigenvectors of covariance matrix Σ, which would
be the top l principal components of the given data matrix X.

6 Samanvaya Panda

Algorithm 2 Eigen Shift Procedure

Input: Σ : Covariance Matrix, λ: Largest eigen value of Σ, w: Eigen vector corre-
sponding to λ.

Output: Σ′: Shifted covariance Matrix
Σ′ ← Σ − λ · wTw
return Σ′

2.3 Goldschmidt’s Algorithm

Goldschmidt’s algorithm[20][4] is an iterative algorithm that finds the value of a
fraction. To find the value of the fraction a0/b0, it multiplies a series of variables
r0, r1, · · · to both numerator(a0) and denominator(b0) such that the value of the
resultant denominator converges to 1 and the value of the resultant numerator
tends to the desired result.

a0
b0

=
a0
b0
· r0
r0
· r1
r2
· · · rα

rα
, b0 · r0 · r1 · · · rα → 1

An initial guess of value the r0 ≈ 1/b0 is required. An good approximation of r0
is considered to be when 3/4 ≤ r0b0 ≤ 3/2. The successive values of the fraction
after each iteration are estimated as:-

ai
bi

=
ai−1
bi−1

· ri−1
ri−1

, and ri = 2− bi ∀i = 1, 2, · · · , α

Algorithm 3 Top l principal component(Power Method)

Input: X : Data Matrix of row vectors.
Output: Λ,W : Largest l-eigenvalues and corresponding eigenvectors of X.
W ← {}
Λ← {}
for components = 1 to l do

r
$← Rd

for i = 1 to t do
s1 =

∑
x∈X

xT (x · r)

s2 =
∑

w∈W,λ∈Λ
λwT (w · r)

s = s1− s2
λ = ‖s‖
r = s

‖s‖
end for
W ←W ∪ r
Λ← Λ ∪ λ

end for
return Λ,W

Principal Component Analysis using CKKS Homomorphic Scheme 7

Using Goldschmidt’s algorithm, we can find the square root and its inverse
simultaneously. The fused multiply-add version of Goldschmidt’s algorithm[27]
is mentioned in algorithm 4.

Algorithm 4 Goldschmidt’s Algorithm

Input: val
Output: x: The square root of val, h: The inverse square root of val.
y ≈ 1/

√
val

x← val · y
h← y/2
for i = 1 to l do
r ← 0.5− xh
x← x+ xr
h← h+ hr

end for
return x, 2h

2.4 R2 Score

R2, also known as the coefficient of determination measures the goodness of
fit of a model. It computes the amount of variance captured by the dependent
variables in a model. Let yi be a true output value and y′i be the corresponding
output predicted by the model. Then the coefficient of determination(R2 score)
is defined as :-

R2 = 1− SSres
SStotal

(2)

where SSres =
∑
i

(yi − y′i)
2 is the sum of squares of residuals and SStotal =∑

i

(yi − ȳ)2 is the total variance.

3 Vector Operations

3.1 Norm and inversion by norm

Computing the norm of a vector requires a square root operation to be per-
formed. Since we can not perform square root directly on ciphertext, we use
Goldschmidt’s algorithm to find the square root of a number as mentioned in
[4]. The advantage of using Goldschmidt’s algorithm is that along with the square
root, it also finds the inverse of the square root, which is precisely what we need.
But the Goldschmidt’s algorithm requires a good initial approximation of 1√

x

for faster convergence.

8 Samanvaya Panda

We could use a good initial guess for 1√
x

using the fast inverse square root

algorithm [18] [26]. But such approximations are difficult to realize in the homo-
morphic setting because it requires conversion from IEEE representation(single
and double precision floating point) to integer and vice-versa. Instead, we use
a linear approximation of 1√

x
in a given interval and use it as an initial guess

for Newton’s method. Then we perform few iterations of Newton’s method to
improve our guess.

For computing Newton’s method on 1√
x

we have f(x) = x−2− b. The deriva-

tive would be f ′(x) = −2x−3. In each iteration, the update would be :-

xi+1 = xi −
f(xi)

f ′(xi)

=⇒ xi+1 =
xi
2

(−bx2i + 3) (3)

For linear approximation of 1√
x

, we use constrained linear regression which

is formulated as the following minimization problem :-

min
w

1

n

n∑
i=1

(yi − wTxi)2

subject to wTxi ≥ 0 ∀ i = {1, 2, · · ·n}
(4)

The additional constraints wTxi ≥ 0 ∀i are necessary because 1√
x

would have

a positive and a negative value. The constraint ensures that the initial guess is a
positive value and Newton’s method doesn’t diverge towards the negative value.
The minimization problem in equation 4 is solved using SLSQP(Sequential Least
Squares Quadratic Programming) solver.

3.2 Ciphertext Packing

We consider all vectors as row vectors and thus consider only row-wise packing
of vectors in a ciphertext. We partition the number of ciphertext slots equally
among all the vectors such that the number of zeros present in each partition is
the same. Let d be the dimension of each vector and N be the total number of
ciphertext slots. Then the number of partitions in the ciphertext would be N/k
where k is a factor of N larger than or equal to d. In this paper, we consider
N to be a power of 2. So finding k would be equivalent to calculating the closet
power of 2 greater than or equal to d. This can be done very efficiently using
binary search in O(log log(N)) steps.

Suppose u1, u2, · · ·uj are the vectors to be packed in a ciphertext where
j = N/k. Let z = k − d be the number of trailing zeros for each vector. Then
the vectors u1, u2, · · ·uj would packed in a ciphertext as :-

c = [u′1, u
′
2, · · · , u′j] (5)

where u′i = Ciphertext(ui|| 0, 0, · · · , 0︸ ︷︷ ︸
z times

), ∀ i = {1, 2, · · · , j}.

Principal Component Analysis using CKKS Homomorphic Scheme 9

Each vector, along with trailing zeros, could be thought of as a sub-ciphertext
of size k. Instead of partitioning the number of ciphertext slots into dN/de parti-
tions, we instead preferred N/k partitions because the former doesn’t guarantee
equipartition of ciphertext slots among all vectors. If there are many vectors,
then the last vector would spill over to the next ciphertext leaving behind trail-
ing zeros at the end of each ciphertext which is not ideal for our operations.
Hence, we distribute the zeros equally among all the vectors packed in a cipher-
text.

If a particular row vector needs to be packed in an entire ciphertext, then the
row vector is appended with z = k − d trailing zeros to form a sub-ciphertext.
This sub-ciphertext would be then be repeated in each partition. For example,
let v be a vector that has to be packed into an entire ciphertext. Then the
sub-ciphertext v′ = Ciphertext(v|| 0, 0, · · · , 0︸ ︷︷ ︸

z times

). Then the ciphertext would be:-

c = [v′, v′, · · · , v′]

In [19], each vector was packed into a separate ciphertext, whereas in [22] the
entire dataset was packed into a single ciphertext. Our sub-ciphertext packing
technique is somewhat in between those two packing techniques. Partitioning
the ciphertext into sub-ciphertext helps to achieve an overall reduction in op-
erations. The operations that were earlier polynomial in the length of cipher-
text(both in [19] and [22]) now would become polynomial in the length of sub-
ciphertext, which is almost equal to the vector’s length. Another advantage of
using sub-ciphertext packing is that it provides much parallelism as operations
are performed independently on each ciphertext.

3.3 Vector operations on ciphertext and sub-ciphertexts

Sum of elements Since we consider the size of ciphertext to be a power of 2,
to add all the elements in a ciphertext homomorphically, we need to rotate the
ciphertext by increasing power of 2 and add it to itself.

Algorithm 5 Sum(c)

Input: c : Ciphertext.
Output: c′: Sum of all the elements in ciphertext c.

temp ← Ciphertext()
c′ ← c
for i = 0 to log(N)− 1 do

temp ← rotateLeft(c′, 2i)
c′ ← c′+ temp

end for
return c′

10 Samanvaya Panda

Partial sum of ciphertext Partial sum of a ciphertext is the sum of all
the elements within a sub-ciphertext for every sub-ciphertext in any given ci-
phertext. Suppose c = [u′1, u

′
2, · · · , u′j] is a ciphertext and u′i = (ui||0, 0, · · · , 0)

be a sub-ciphertext . Then partial sum of c would result in a ciphertext c′ =

[Su1, Su2, · · · , Suj] where Sui =

(
k∑
q=1

uiq,
k∑
q=1

uiq, · · · ,
k∑
q=1

uiq

)
.

Algorithm 6 PartialSum(c)

Input: c : Ciphertext.
Output: c′: Co-ordinate wise sum of all sub-ciphertexts in c.

init ← Ciphertext(1, 1, · · · ||0, 0, · · ·) {1st half is all 1’s and 2nd half is all 0’s}
c′ ← Ciphertext(c)
for i = log (k)− 1 to 0 do

temp ← rotateRight(init, 2i)
s1 ← multiply(init, c′)
s2 ← multiply(temp, c′)
s2 ← rotateLeft(s2, 2i)
c′ ← add(s1, s2)
if i > 0 then

temp ← rotateLeft(temp, 2i + 2i−1)
init ← multiply(temp, init)

end if
end for
for i = 0 to log (k) do

temp ← rotateRight(c′, 2i)
c′ ← add(c′, temp)

end for
return c′

Let c = [(1, 2, 3, 4), (2, 3, 4, 5)] be a ciphertext with j = 2 sub-ciphertexts.
Then the partial sum of ciphertext would be c′ = [(10, 10, 10, 10), (14, 14, 14, 14)].

Lemma 1. Let k be the size of sub-ciphertext. Then the multiplicative depth
required by the algorithm 6 is log(k)

Sum of sub-ciphertexts Addition of all the sub-ciphertexts is the coordinate-
wise sum of all sub-ciphertexts in a ciphertext. Suppose c = [u′1, u

′
2, · · · , u′j]

is a ciphertext with j sub-ciphertexts. Then the sum of all sub-ciphertexts in

ciphertext c would result in a ciphertext c′ = [
j∑
i=1

u′i1,
k∑
i=1

u′i2, · · · ,
k∑
i=1

u′ij]

Let c = [(1, 2, 3, 4), (2, 3, 4, 5)] be a ciphertext with j = 2 sub-ciphertexts.
Then the sum of sub-ciphertexts would be c′ = [(1 + 2, 2 + 3, 3 + 4, 4 + 5), (1 +
2, 2 + 3, 3 + 4, 4 + 5)] = [(3, 5, 7, 9), (3, 5, 7, 9)].

Principal Component Analysis using CKKS Homomorphic Scheme 11

Algorithm 7 SubSum(c)

Input: c : Ciphertext.
Output: c′: Coordinate-wise sum of all sub-ciphertexts in c.

temp ← Ciphertext()
c′ ← c
for i = 0 to log(j)− 1 do

temp ← rotateLeft(c′, 2i · k)
c′ ← c′+ temp

end for
return c′

Inner Product Let v be ciphertext packed with a vector in all its sub-ciphertexts.
The inner product of v and a ciphertext c packed with j sub-ciphertexts can be
found by multiplying each element co-ordinate wise and then performing a par-
tial sum on the resultant ciphertext.

Algorithm 8 InnerProduct(c, v)

Input: c : Ciphertext, v : Vector packed in an entire Ciphertext.
Output: c′: Inner product of j vectors with v.
c′ ← multiply(c, v)
c′ ← PartialSum(c′)
return c′

Lemma 2. Let k be the size of each sub-ciphertext. Then the multiplicative depth
of algorithm 8 is log k + 1

4 Homomorphic Evaluations

After defining all the vector operations and ciphertext packing technique, we
will now move forward and describe the methods for performing PCA using
CKKS homomorphic scheme. This section would first define the homomorphic
version of Goldschmidt’s algorithm and the power iteration method essential for
performing PCA. Finally, we bundle together all the methods to produce a single
method for performing PCA homomorphically.

4.1 Homomorhpic Goldschmidt’s algorithm

Goldschmidt’s algorithm [27] is an iterative algorithm that computes the square
root and its inverse simultaneously. It converges faster than Newton’s method.
Similar to newton’s method, Goldschmidt’s algorithm also requires a good initial
approximation(of 1√

x
) for faster convergence. We use algorithm 9 to obtain a

good initial approximation of 1√
x

.

12 Samanvaya Panda

Approximation of 1√
x

Algorithm 9 provides us with an initial approximation

of 1√
x

. It is a homomorphic adaptation of the fast square root inverse algo-

rithm[18]. The approach is similar to the one in [18] where we first find a linear
approximation of 1√

x
and then use that as an initial guess for newton’s method

and improve upon our approximation in a few iterations.

Algorithm 9 InvNormApprox(norm)

Input: norm : Ciphertext with sum of squares.
Output: guess: Approximate inverse of norm of c.

neg half ← Ciphertext(-0.5) {A ciphertext with all its entries as -0.5}
three half ← Ciphertext(1.5) {A ciphertext with all its entries as 1.5}
guess ← linearApprox(norm)
for i = 1 to iterations do

sq ← multiply(sq, square(guess))
sq ← multiply(multiply(guess, neg half), sq)
temp ← multiply(three half, guess)
guess ← add(temp, sq)

end for
return guess

Lemma 3. Let l1 be the number of iterations in algorithm 9. Then the multi-
plicative depth of algorithm 9 is 3l1 + 1

Lemma 4. Let l1, l2 be the number of iterations in algorithms 9 and 10 respec-
tively. Let k be the size of the sub-ciphertext. Then the multiplicative depth of
algorithm 10 is log k + 3(l1 + l2) + 2

4.2 Homomorphic Power Method

The homomorphic power method computes the top l principal components of the
data matrix X homomorphically. It finds the largest eigenvector of the covariance
matrix and uses the Eigen shift procedure to find the subsequent eigenvectors.
It uses algorithm 10 to compute the norm and its inverse.

Lemma 5. Let l1, l2, l3 be the number of iterations in algorithms 9, 10, 11 re-
spectively. Let k be the size of the sub-ciphertext and l be the number principal
components. Then the multiplicative depth of the algorithm 11 is ll3(2 log(k) +
3(l1 + l2) + 7)

4.3 Homomorphic PCA

We perform PCA(principal component analysis) homomorphically using algo-
rithm 12. In algorithm 12, the client first computes the mean vector and sub-
tracts the mean vector from all other vectors to center the data matrix about

Principal Component Analysis using CKKS Homomorphic Scheme 13

Algorithm 10 Goldschmidt(c)

Input: c : Ciphertext,
Output: x: Norm of c, h: Inverse of norm of c

half ← Ciphertext(0.5) {A ciphertext with all its entries as 0.5}
neg one ← Ciphertext(-1.0) {A ciphertext with all its entries as -1.0}
norm ← ReEncrypt(PartialSum(square(c)))
y ← ReEncrypt(InvNormApprox(norm))
x← multiply(norm, y)
h← multiply(norm, half)
for i = 1 to iterations do

temp r ← multiply(multiply(x, h), neg one)
r ← add(temp r, half)
x← add(x, multiply(x, r))
h← add(h, multiply(h, r))
if depth(x) ≤ 2 then
x← ReEncrypt(x)
h← ReEncrypt(h)

end if
end for
two ← Ciphertext(2.0) {A ciphertext with all its entries as 2.0}
h ← multiply(h, two)
return x, h

Algorithm 11 PowerMethod(X)

Input: X: Ciphertext packing of the original data matrix
Output: W : Top l principal components of X
W ← {}
Λ← {}
neg one ← Ciphertext(-1.0) {A ciphertext with all its entries as -1.0}
for components = 1 to l do

r
$← Rd

for i = 1 to iterations do
s1←

∑
x∈X

multiply(x, InnerProduct(x, r))

s1← SubSum(s1)
s1← ReEncrypt(s1)
s2←

∑
λ∈Λ;w∈W

multiply(λ, multiply(w, InnerProduct(w, r))

s2← ReEncrypt(s2)
s2← multiply(s2, neg one)
s← add(s1, s2)
eig val, eig inv ← Goldschmidt(s)
r ← ReEncrypt(multiply(eig inv, s))

end for
W ←W ∪ r
Λ← Λ ∪ eig val

end for
return W

14 Samanvaya Panda

its mean. Then, the original data’s principal components are obtained from the
server using algorithm 11 by performing computations on encrypted data. Fi-
nally, the principal components are multiplied by the client to get the lower
dimensional representation of the original data.

Algorithm 12 HPCA(X)

Input: X : Data Matrix with row vectors
Output: X red: Reduced data matrix with k principal components of X

Server:
Recieve X ′ from Client.
W ← PowerMethod(X ′)
Send W to Client.
Client:
X tmp← X− mean(X)
X ′ ← Encrypt(X tmp)
Send X ′ to Server.
Receive W from Server.
W ← Decrypt(W)
X red← X tmp ·W
return X red

5 Implementation details and Results

We implemented all the procedures described in this paper using Python. We
used SEAL-Python[24](A python binding for Microsoft SEAL library[23]) for
the implementation of the CKKS scheme. All the experiments were run on a
machine with Intel® Core™ i5-7200U CPU @ 2.50GHz having 4 cores. The
machine ran on 64-bit Ubuntu 20.04.2 LTS with a memory of 7.6 GiB and a
disk capacity of 1TB. We conducted experiments on seven datasets. Four of
them were categorical datasets - air quality[11], Parkinsons telemonitoring[25],
winequailty-red[9] and winequality-white[9]. The other three were image datasets
- MNIST handwritten digits[17], Fashion-MNIST [28] and Yale face database[1].
We computed each dataset’s first few principal components and verified our
HPCA algorithm’s efficiency by computing the R2 score on the reconstructed
data. R2 score gives a measure of the variance captured in the reconstructed
data and provides the goodness of fit.

Datasets were scaled appropriately so that eigenvalues are small enough to
be handled properly. The Yale database was converted from three channels to
a single channel and then resized from 195 × 231 pixels to 16 × 16 pixels using
bicubic interpolation. Similarly, the MNIST handwritten and Fashion-MNIST
datasets were resized from 28 × 28 pixels to 16 × 16 by trimming the images’
outer boundaries as they contain 0’s only. We also conducted few experiments
by eliminating the last five features of the Parkinsons telemonitoring dataset

Principal Component Analysis using CKKS Homomorphic Scheme 15

to make the number of features exact power of 2(from 21 to 16). For linear
approximation of 1√

x
, we considered the interval [0.001, 750] and obtained the

coefficients for the line y = ax + b as a = −0.00019703 and b = 0.14777278
using SLSQP solver. The negative slope illustrates the decreasing trend of 1√

x

function. The values for number of iterations l1, l2 and l3 for algorithms 9, 10
and 11 were fixed to be 2, 4, 4 respectively.

5.1 Parameter selection

We did not use bootstrapping in our implementation as it is not provided as an
inbuilt API in the SEAL library. Instead, we re-encrypted some of the parameters
to get rid of the noise in them. Re-encryptions are used to be ideally replaced by
bootstrapping without making changes to any other part of the algorithm. We
ensured that we do not have to re-encrypt any ciphertext from the input, making
the number of re-encryptions independent of the dataset. For this, we observe
that the maximum depth required by each ciphertext is log(k) + 2 in algorithm
11. To further reduce the number of re-encryptions, we also restricted the re-
encryption of eigenvectors. For this, we require a maximum depth of log(k) + 3
in algorithm 11. So, the maximum depth used was log(k) + 3.

Re-encryption could be thought of as a server sending a ciphertext back to
the client in public-key setting. The client re-encrypts the ciphertext and sends
it back to the server. This would require some bytes of communication between
the server and the client. For N = 16384, we communicate about 128KB and for
N = 32768, we communicate about 256KB of information in a single round trip.
Using lemma 6, we compute the total communication cost between the client
and server as shown in table 1.

Lemma 6. Let l2, l3 be the number of iterations of algorithms 10, 11 respec-
tively. Let l be the number of principal components and z be the maximum depth
used. Then the number of re-encryptions required by algorithm 12 is l(l3(5 +
d 3l2z e))

N z l Re-encryptions Bits communicated(in MB)

16384 7 2 72 9.009

16384 8 2 56 7.007

32768 11 4 112 14.014

32768 11 5 140 17.517

32768 11 6 168 21.021

Table 1: Communication cost for re-encryption

In all of our experiments, we used the polynomial modulus degree(N) of
16384 and 32768. This gave us a total of 438, 881 bits respectively for coefficient
modulus to achieve 128-bit security. The scale was chosen to be 240 to achieve
20 bits of precision after the decimal point.

16 Samanvaya Panda

5.2 Results

We computed the first few principal components for each dataset. Then we
measured the R2 score of the reconstructed data to use it as an evaluation metric.
We also compared the results obtained by performing PCA on un-encrypted data
to verify the efficiency of our HPCA algorithm. An R2 score between 0.3 − 0.7
is considered a good fit for the original data. We also measured the total time
taken by all the procedures on different datasets. Table 2 summarizes all the
results obtained after experimentation on different datasets 1.

Dataset d k N j = N
2k

n l Depth R2 Score
(Encrypted)

R2 Score
(Un-encrypted)

Time Taken
(in mins)

MNIST
256 256 32768 64 100 4 11 0.15667 0.3320 9.2965
256 256 32768 64 200 4 11 0.1410 0.4124 12.9907

Fashion-MNIST
256 256 32768 64 100 4 11 0.4199 0.5013 9.2878
256 256 32768 64 200 4 11 0.4111 0.4762 12.9968

Yale
256 256 32768 64 165 4 11 0.5292 0.5191 11.0622
256 256 32768 64 165 5 11 0.5729 0.6012 15.3264
256 256 32768 64 165 6 11 0.5790 0.6758 19.8646

Winequailty-white
11 16 16384 512 4898 2 7 0.2517 0.25502 2.4066
11 16 32768 1024 4898 2 11 0.2544 0.25502 5.2634

Winequailty-red
11 16 16384 512 1599 2 7 0.1487 0.20001 1.4447
11 16 32768 1024 1599 2 11 0.1463 0.20001 2.8728

Air Quality
13 16 16384 512 9357 2 7 0.6012 0.6062 3.3823
13 16 32768 1024 9357 2 11 0.6054 0.6062 8.6394

Parkinsons
16 16 16384 512 9357 2 7 0.1509 0.1604 2.2068
21 32 16384 256 9357 2 8 0.14488 0.1604 5.4160
16 16 32768 1024 9357 2 11 0.1506 0.1604 5.8734

Table 2: Performance of HPCA(Homomorphic PCA) algorithm on different
datasets

From table 2 we observe that our HPCA algorithm can capture variance
to a considerable amount in different datasets. It does not perform well on
the MNIST dataset, with a significant difference between the R2 score on en-
crypted and unencrypted data. It performs moderately well on Fashion-MNIST
and winequality-red datasets. But it performs pretty well on the Yale face
database, air quality, winequality-white and Parkinson’s telemonitoring datasets.
The datasets on which our HPCA algorithm’s performance on encrypted data
are similar to that of PCA on un-encrypted data are the datasets that either
have a considerable difference between their successive eigenvalues of the vari-
ance is captured by the first few principal components. Figure 1 shows the first
4 eigenfaces obtained by the HPCA algorithm. Figure 2 shows how an image
looks after reconstruction using a few principal components.

1 Time taken mentioned in table 2 doesn’t take into account the communication time
required for re-encryption.

Principal Component Analysis using CKKS Homomorphic Scheme 17

Fig. 1: First four eigenfaces for Yale face Database obtained using HPCA algo-
rithm

Fig. 2: Reconstruction of a image from Yale face database using principal com-
ponents obtained from HPCA algorithm

6 Conclusion and Future work

This paper presents the HPCA algorithm that performs PCA on encrypted data
using CKKS homomorphic encryption scheme. Our HPCA algorithm does not
require any matrix operations and doesn’t require us to store the original data’s
covariance matrix. This reduces the memory and computational requirements
significantly. Calculation of the norm and its inverse are the most computa-
tionally heavy operations in the HPCA algorithm. Most of the previous works,
including [22] and [19] do not compute norm or its inverse homomorphically. In-
stead, the client is required to calculate the norm after decryption. This makes
their algorithm interactive in nature for computing subsequent principal com-
ponents. We tried to overcome this problem and tried to reduce the client’s
computational burden by evaluating the norm and its inverse homomorphically
on the client-side. With the use of bootstrapping, our algorithm would become
totally non-interactive.

Numerical stability of various algorithms could be studied as appropriate
scaling of data is required for obtaining the first few principal components. It-
erative algorithms like the power method accumulate noise after each iteration.
This seems to be the major drawback of our HPCA algorithm, which restricts us
from computing only the first few principal components. It would be interesting
to learn how noise grows for each component of the HPCA algorithm with each
iteration and how it affects the maximum number of principal components found
in a given setting. Other alternatives of power method like gradient descent could
also be used instead. Finally, we measure the R2 score of the reconstructed data

18 Samanvaya Panda

for different datasets to demonstrate our algorithm’s efficiency. The R2 score
obtained from our HPCA algorithm is almost comparable to the R2 score ob-
tained on most of the datasets without encryption. The implementation of all
the algorithms can be found in [21]. A parallelized version of HPCA could also
be developed to achieve faster runtime.

Acknowledgement

We would like to sincerely thank all the anonymous reviewers for their valuable
feedback and Dr.Kannan Srinathan for providing the necessary motivation.

References

1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisher-
faces: recognition using class specific linear projection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997).
https://doi.org/10.1109/34.598228

2. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining ring-lwe-
based fully homomorphic encryption schemes. Cryptology ePrint Archive, Report
2018/758 (2018), https://eprint.iacr.org/2018/758

3. Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Simulating homomorphic eval-
uation of deep learning predictions. Cryptology ePrint Archive, Report 2019/591
(2019), https://eprint.iacr.org/2019/591

4. Cetin, G.S., Doroz, Y., Sunar, B., Martin, W.J.: Arithmetic using word-wise
homomorphic encryption. Cryptology ePrint Archive, Report 2015/1195 (2015),
https://eprint.iacr.org/2015/1195

5. Chen, H., Chillotti, I., Song, Y.: Improved bootstrapping for approximate ho-
momorphic encryption. Cryptology ePrint Archive, Report 2018/1043 (2018),
https://eprint.iacr.org/2018/1043

6. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. Cryptology ePrint Archive, Report 2018/153 (2018),
https://eprint.iacr.org/2018/153

7. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. Cryptology ePrint Archive, Report 2016/421 (2016),
https://eprint.iacr.org/2016/421

8. Cheon, J.H., Kim, A., Yhee, D.: Multi-dimensional packing for heaan for approx-
imate matrix arithmetics. Cryptology ePrint Archive, Report 2018/1245 (2018),
https://eprint.iacr.org/2018/1245

9. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine prefer-
ences by data mining from physicochemical properties. Decision Support Systems
47(4), 547–553 (2009). https://doi.org/https://doi.org/10.1016/j.dss.2009.05.016,
https://www.sciencedirect.com/science/article/pii/S0167923609001377, smart
Business Networks: Concepts and Empirical Evidence

10. Crockett, E.: A low-depth homomorphic circuit for logistic regression
model training. Cryptology ePrint Archive, Report 2020/1483 (2020),
https://eprint.iacr.org/2020/1483

Principal Component Analysis using CKKS Homomorphic Scheme 19

11. De Vito, S., Massera, E., Piga, M., Martinotto, L., Di Francia, G.: On
field calibration of an electronic nose for benzene estimation in an urban
pollution monitoring scenario. Sensors and Actuators B: Chemical 129(2),
750–757 (2008). https://doi.org/https://doi.org/10.1016/j.snb.2007.09.060,
https://www.sciencedirect.com/science/article/pii/S0925400507007691

12. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009), https://crypto.stanford.edu/craig

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: In Proc. STOC.
pp. 169–178 (2009)

14. Han, K., Hong, S., Cheon, J.H., Park, D.: Efficient logistic regression on
large encrypted data. Cryptology ePrint Archive, Report 2018/662 (2018),
https://eprint.iacr.org/2018/662

15. Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model
training based on the approximate homomorphic encryption. Cryptology ePrint
Archive, Report 2018/254 (2018), https://eprint.iacr.org/2018/254

16. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based
on homomorphic encryption: Design and evaluation. Cryptology ePrint Archive,
Report 2018/074 (2018), https://eprint.iacr.org/2018/074

17. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010)

18. Lomont, C.: Fast inverse square root. Tech. rep., Purdue University (2003),
http://www.matrix67.com/data/InvSqrt.pdf

19. jie Lu, W., Kawasaki, S., Sakuma, J.: Using fully homomorphic encryption for
statistical analysis of categorical, ordinal and numerical data. Cryptology ePrint
Archive, Report 2016/1163 (2016), https://eprint.iacr.org/2016/1163

20. Markstein, P.: Software division and square root using goldschmidt’s algorithms
(01 2004)

21. Panda, S.: Homomorphic pca. https://github.com/pandasamanvaya/Homomorphic PCA
(2021)

22. Rathee, D., Mishra, P.K., Yasuda, M.: Faster pca and linear regression through
hypercubes in helib. Cryptology ePrint Archive, Report 2018/801 (2018),
https://eprint.iacr.org/2018/801

23. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL (Nov 2020),
microsoft Research, Redmond, WA.

24. Python binding for the Microsoft SEAL library. https://github.com/Huelse/SEAL-
Python

25. Tsanas, A., Little, M., Mcsharry, P., Ramig, L.: Accurate telemoni-
toring of parkinson’s disease progression by noninvasive speech tests.
IEEE transactions on bio-medical engineering 57, 884–93 (11 2009).
https://doi.org/10.1109/TBME.2009.2036000

26. Wikipedia contributors: Fast inverse square root (2021),
https://en.wikipedia.org/wiki/Fast inverse square root

27. Wikipedia contributors: Goldschmidt’s algorithm — Wikipedia, the free encyclo-
pedia (2021), https://en.wikipedia.org/wiki/Methods of computing square roots

28. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms (2017)

