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Abstract Several constructions of Mutually Unbiased Bases (MUBs) borrow tools
from combinatorial objects. In this paper we focus how one can construct Approx-
imate Real MUBs (ARMUBs) with improved parameters using results from the
domain of Resolvable Block Designs (RBDs). We first explain the generic idea of
our strategy in relating the RBDs with MUBs/ARMUBs, which are sparse (the
basis vectors have small number of non-zero co-ordinates). Then specific parame-
ters are presented, for which we can obtain new classes and improve the existing
results. To be specific, we present an infinite family of d

√
de many ARMUBs for

dimension d = q(q + 1), where q ≡ 3 mod 4 and it is a prime power, such that for
any two vectors v1, v2 belonging to different bases, | 〈v1|v2〉 | < 2√

d
. We also demon-

strate certain cases, such as d = sq2, where q is a prime power and sq ≡ 0 mod 4.
These findings subsume and improve our earlier results in [Cryptogr. Commun.
13, 321-329, January 2021]. This present construction idea provides several infinite
families of such objects, not known in the literature, which can find efficient appli-
cations in quantum information processing for the sparsity, apart from suggesting
that parallel classes of RBDs are intimately linked with MUBs/ARMUBs.
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1 Introduction

Mutually Unbiased Bases (MUBs) are unique mathematical structures on a com-
plex vector space linked with quantum mechanics and having fundamental ap-
plications in quantum information processing. The usefulness of the MUBs are
evident in different aspects of quantum cryptology and communications (one may
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see [1] and the references therein). In a d-dimensional complex vector space (Cd),
it is known that maximum number of MUBs can be d + 1. The known methods
to construct MUBs are based on Galois Field [23,7] or through construction of
maximal commuting unitary operators using generalized Pauli matrices [2]. Both
of them provide the complete set of MUBs only when dimension is in the form of
some power of a prime. The lower bound for number of MUBs in Cd, when the
dimension is a composite integer (say d = pn1

1 pn2
2 . . . pns

s ), is given by pnr
r +1 where

pnr
r is equal to min{pn1

1 , pn2
2 , . . . , pns

s }. There are known cases [21] where the lower
bound is better than this. In case of Rd, except for d = 4is2, s, i ∈ N, in all other
dimensions, mostly a pair of Real MUB exist. Related results in this direction are
available in [3].

Inspired by the fact that known methods to construct MUBs provide complete
set only when dimension is certain power of a prime, there are strong conjectures
relating existence of the complete set of MUBs and objects from combinatorial
design. Though it is to be noted that the MUBs are constructed on Hilbert spaces
which are continuum, whereas structures of combinatorial design like affine planes
are built on finite number of points and lines for any order. Hence, the conjectures
connecting existence of complete set of MUBs and certain combinatorial designs
are intriguing. For example, one can refer to the conjecture [16] that states “non
existence of a projective plane of the given order d implies that there are less than
d+ 1 MUBs in Cd.”

Zauner studied quantum designs [24], which are orthogonal projection matrices
on finite dimensional Hilbert space (Cd) with certain features, and emphasized its
parallel with combinatorial design theory. Noteworthy is the analogy with regular
affine quantum design, which are equivalent to MUBs for rank one projection ma-
trices, with combinatorial affine designs that consist of resolvable parallel classes.
In the thesis [24], he also provided the solution of maximal regular affine quan-
tum design, drawing parallels from combinatorial affine 2-design. The solution was
shown to exist for prime power dimensions as was the case for combinatorial affine
2-design. However, for composite dimensions, the method did not offer solution.

Wooters [22] drew parallel between the known numbers of Mutually Orthogonal
Latin Square (MOLS) of order q with the number of known MUBs in Cd, where
d = q2. Based on this parallel, the analogy between lines in finite geometry and
pure state in quantum mechanics can be understood. The study further argues
that the complete set of MUBs in d-dimensional Hilbert space are analogous to
combinatorial structure of affine plane of order d. In order to prove or disprove the
conjecture, attempts had been made to construct MUBs from MOLS(q) and vice
versa. One interesting work in this direction was by Wocjan [21] who used MOLS(q)
to construct MUBs in Cd, when d = q2. This also improves the lower bound of
MUBs for many different dimensions. Further, Paterek [13] devised a method to
generate complete set of MUBs in prime power dimension using augmented set
of MOLS(q) and Weyl-Schwinger unitary operators. However, in [14], the authors
analysed the idea deeply and concluded that the method cannot relate the MUBs
to MOLSs completely. They further concluded that the “problem of MUBs might
not be equivalent to the mathematical problem of MOLS”.

Our construction for ARMUBs (see Construction 1 later) is an independent
and generalized approach based on RBDs, but it should be noted that for special
cases related to exact MUBs, the MOLS based approach of [21] uses similar kind
of combinatorial objects. The main difference is corresponding to each block. The
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construction idea of [21, Theorem 3, Example 4] considered different components
of a vector in dimension d and a single Hadamard matrix of a specific order has
been used. In our case, same sub-components of a vector are used corresponding to
the elements of a block and those are disjoint for different blocks inside the same
parallel class. In a special case, while generating exact real MUBs, we obtain similar
results as in [21], but have the flexibility of exploiting different non-equivalent
Hadamard matrices of the same order. Further, we have the advantage of using
unitary matrices of the different orders to provide approximate MUBs, in case
of different block sizes in designs which are not regular or balanced. These are
not achievable for a large range of parameters by tweaking the construction idea
in [21].

It is now well known for decades that obtaining new classes of MUBs and
reaching the upper bounds are quite challenging problems. Some relaxation is
thus considered in literature and there are efforts towards the concept of Approxi-
mate Mutually Unbiased Bases (AMUBs), where the inner product of two vectors
drawn from two different bases is upper bounded by some value, rather than the
exact 1√

d
for dimension d. In this direction the works of [10,17] are pioneering,

particularly, the result [17, Theorem 2] remains the best known construction of
Approximate Mutually Unbiased Bases in Cd. The vectors in the bases due to this
construction are inherently complex in nature. Thus it is interesting to explore
some novel construction method when one considers only the real components. In
this direction we have studied certain results in [11] very recently.

However, further examination pointed out that the work [11] considered a very
restricted class and further generalization beyond that is possible given richer com-
binatorial structures in literature. In this direction, we propose a generic method to
construct Approximate MUBs (AMUBs) using Resolvable Block Designs (RBDs).
RBDs consist of parallel classes. We provide a method to convert each parallel
class into an orthonormal basis and show that these bases are intimately linked
with AMUBs. Certain kinds of parallel classes in RBDs, meeting appropriate exact
conditions can generate exact MUBs too. When these conditions are not met with,
the parallel classes will generate approximate ones. The number of such MUBs or
AMUBs depends on the number of parallel classes in RBDs. To convert parallel
classes of RBDs into orthonormal bases, our construction strategy exploits uni-
tary matrices, mostly in smaller dimension, depending on the parameters of the
resolvable design.

In this article our main focus is to construct RBDs with suitable parameters
where real Hadamard matrix (a subset of unitary matrices) can be used. The tech-
nique described here provides novel results in obtaining very sparse Approximate
Real MUBs (ARMUBs), that can find application in quantum information pro-
cessing. It is well known that sparsity can be exploited for efficient computations.
With this backdrop, let us present the organization and contribution of this paper.

1.1 Organization & Contribution

In Section 2 we begin with various terms and notations formally. We define param-
eters to characterize Approximate MUBs and its sparsity. Then, in Section 2.1, we
briefly explain the basics of Resolvable Block Design (RBD), Balanced Incomplete
Block Design (BIBD) and Affine Resolvable BIBD. We provide examples of such
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block designs and clarify the symbols used for different parameters. Further, we
highlight important relationships between the parameters of block designs and the
necessary conditions for their existence. Thereafter, we present the novel results
of this paper.

– In Section 3, we present the generic method to construct an orthonormal basis
using a parallel class of RBD. This is explained in Construction 1. We also
prove important bound on inner product between basis vectors from different
orthonormal bases constructed from different parallel classes in the RBD. These
are presented in Lemma 1 and Theorem 1.

– Then, in Section 4, we use different Resolvable Balanced Incomplete Block De-
signs (RBIBDs) to construct ARMUBs. The parameters of the BIBDs and the
existence of certain matrices, particularly Hadamard, are identified from litera-
ture and then we plug those into our construction. Our main result is presented
in Theorem 2. Several novel structures with new parameters are identified in
this process in Section 4.1 through Affine Resolvable BIBDs (ARBIBDs).
– Finally in Remark 1, we explain the construction of exact real MUBs as

a special case. We can attain the results of similar quality as it is men-
tioned in [21]. However, the focus of this paper is on ARMUBs, and it
will be evident that our proposal is much generalized and tuned towards
the approximate results, that cannot be achieved through [21] or any other
existing methods.

– In Section 5 we exploit the RBDs which are not balanced. We construct the
unbalanced designs mostly by assimilating or modifying the Affine Resolv-
able (q2, q, 1)-BIBDs, whose construction are known to exist for whenever q is
some power of prime. Clear improvements over presently known parameters
are described here. The treatment here provides significant generalization and
improvement over our earlier result in [11] in different aspects. In [11], it was

shown that
√
d
4 + 1 ARMUBs with maximum value of inner product as 4√

d
could be achieved.
– To show the breadth of this new approach, one special case under Theorem 3

provides ARMUBs with the same quality as in [11]. This happens when
d = sq2, where q is a prime power and sq ≡ 0 mod 4. The special case,
s = 16 as well as q a prime itself, takes care of the result in [11].

– The parameters are improved too in some other classes. Theorem 4 shows
that it is possible to construct d

√
demany ARMUBs with maximum value of

inner product, between the vectors of two different bases, upper bounded by
2√
d
. That is,we have more number of classes with improved counts of MUBs

and a better upper bound on the absolute values of the inner products. This
happens when d = q(q + 1), where q is a prime power and q ≡ 3 mod 4.

We conclude the paper in Section 6 with directions to future research. While
constructing the approximate MUBs, sometimes we also refer how exact MUBs
can be obtained from our strategy. Indeed, this is not the main focus of this
paper and those results are not better than the state-of-the-art ones, in terms of
number of MUBs constructed. However, large sparsity is a novel feature of our
construction, which is almost absent in the existing methods. However, we expect
to obtain certain improvements if these techniques can be explored further.

Before proceeding, let us now define various notations and parameters char-
acterizing the MUBs and the AMUBs, and highlight the relevant combinatorial
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objects and block designs. We will present certain examples to explain the ideas
whenever required.

2 Background and Preliminaries

As stated previously, Cd (respectively Rd) denotes the Complex (Real) vector
space over dimension d. Throughout this article, depending on the context, the
underlying vector space would be assumed to be Cd or Rd, without mentioning
explicitly.

In quantum information theory, two orthonormal bases in the d-dimensional
complex vector space Cd, given by {|e1〉 , . . . , |ed〉} and {|f1〉 , . . . , |fd〉} are called
Mutually Unbiased, if the inner product, between the vectors from different bases
satisfy

|〈ei|fj〉| =
1√
d
, ∀i, j ∈ {1, 2, . . . , d}.

Similarly, a set of orthonormal bases are called Mutually Unbiased Bases (MUBs)
if every pair of bases in the set is Mutually Unbiased. A set of MUBs are called
real, if the imaginary components of the vectors in all of the bases are zero. The
well known and age old problem is to maximize the number of MUBs for a di-
mension d and it is still open in composite dimensions. Further, the situation is
more complicated in Rd, where very few MUBs are known in general. Knowledge
of relatively large number of Approximate MUBs can be helpful in practical situ-
ations. To characterize the Approximate ones and quantitatively compare it with
the MUBs, let us formally define a few quantities and notations which we will be
using throughout this article.

By M = {M1,M2, . . . ,Mr}, we denote the set of r orthonormal bases in Cd
or Rd. We will denote the vectors of a basis Ml by {|ψli〉}, where 1 ≤ i ≤ d.
As explained, two orthonormal bases Ml,Mm ∈ M, l 6= m, such that Ml ={
|ψl1〉 , |ψl2〉 , . . . , |ψld〉

}
and Mm = {|ψm1 〉 , |ψm2 〉 , . . . , |ψmd 〉} will be called Mutu-

ally Unbiased if and only if
∣∣∣〈ψlj |ψmi 〉∣∣∣ =

1√
d

, ∀i, j ∈ {1, 2, . . . , d}. The set M =

{M1,M2, . . . ,Mr} consisting of such orthonormal bases will form an MUB of size
r provided Ml,Mm ∈M are mutually unbiased for ∀l 6= m.

Given a set of orthonormal bases M = {M1,M2, . . . ,Mr} (may not be MUBs) of
dimension d, we define ∆ to be the set of inner products between the vectors from

different orthonormal bases. That is, ∆ contains the distinct values of
∣∣∣〈ψli|ψmj 〉∣∣∣ for

all i, j ∈ {1, 2, . . . , d} and l 6= m ∈ {1, . . . , r}. In case M is an MUB, ∆ is a singleton
set with the only element 1√

d
. However, for the AMUBs, there will be more than

one values in the set and we will try to minimize the maximum absolute value.
In this regard, we like to define β-AMUB or β-ARMUB, for which the maximum
value in ∆ is bounded by β√

d
.

To characterize the closeness of orthonormal bases Ml and Mm to MUBs, we
define the variance of the inner products between the vectors of Ml and Mm from

1√
d

. For this we define σl,m = 1
d

√∑
i,j

(
1√
d
−
∣∣∣〈ψlj |ψmi 〉∣∣∣)2, as there are d2 different

elements in the calculation. For the set M of orthonormal bases, σ is accordingly
defined as σ = maxl 6=m{σl,m}.
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Another way to characterize the closeness of a pair of orthonormal bases to
MUBs is by the value of maximum difference of the inner product between any pair
of vectors, say from Ml and Mm, with the value of 1√

d
. For this we define, τ l,m =

max
{∣∣∣ 1√

d
− | 〈ψlj |ψ

m
i 〉 |

∣∣∣} ∀i, j. For a set M of orthonormal bases, τ is accordingly

defined as maximum of τ l,m, i.e., τ = maxl 6=m{τ l,m}.
Note that if Ml and Mm constitute a pair of MUBs, then β = 1, ∆ =

{
1√
d

}
,

σl,m = 0 and τ l,m = 0. Similarly, if M = {M1,M2, . . . ,Mr} is a set of MUBs, then

β = 1,∆ =
{

1√
d

}
, σ = 0 and τ = 0. In a certain sense, the vectors in two different

bases in an MUB set should make maximum and same angles with others. Thus,
the projective measurements associated with them are maximally uncorrelated.
This will be deviated for the approximate MUBs.

It is clear that a particular basis of MUBs or AMUBs in Cd (resp. ARMUBs
in Rd) can be thought of as a d×d unitary matrix (resp. orthogonal matrix in real
case) with their columns as orthonormal basis vectors. To characterize the sparsity
of such matrices, we define ε as the ratio of the number of zero elements in the
matrix to the total number of elements, i.e., d2. It is clear to see that, 0 ≤ ε ≤ 1.
Closer the value of ε to 1, more the number of zeros in the matrix and therefore
larger the sparsity. MUBs, which have been constructed for prime or prime power
dimensions using finite fields [23] or those constructed using maximal class of
commuting operators [2], are invariably having almost all nonzero entries in the
MUBs except for the standard basis. Thus, ε is close to 0 in these constructions.
Regarding sparsity, the situation is similar with real MUBs constructed in [4]. The
construction provided mutually unbiased Hadamard matrices, which by nature has
all the entries {1,−1}, thereby ε is 0, i.e., not sparse at all. The MUBs constructed
using MOLS [21,3] show relatively better sparsity. This is because the MOLS
related constructions are equivalent to the RBDs in certain cases [5, Part III.3]. We
like to reiterate that this is the first time the sparsity of the (approximate) MUBs
are being quantified in literature. In case of actual implementation or computation,
the sparsity might provide efficiency in practice.

2.1 Basics of Resolvable Block Design

Let us now explain the combinatorial object that we relate to construct (approx-
imate) MUBs. The notations for combinatorial designs are borrowed from [19,
Chapter 1].

Definition 1 A design can be expressed as a pair (X,A) such that the following
properties are satisfied.

1. X is a set of elements, called points, and
2. A is a collection of non-empty subsets of X, called blocks.

A design is called simple, if there is no repeated block in A. In this paper, we will
restrict our analysis to simple designs only.

Definition 2 A parallel class in design (X,A) is a subset of disjoint blocks in A

whose union is X. For a design (X,A), if A can be partitioned into r ≥ 1 parallel
classes, called resolution, then the design (X,A) is called Resolvable Block Design
(RBD).
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For example, consider the combinatorial design (X,A1) and (X,A2) with X =
{1, 2, 3, 4, 5, 6, 7, 8}, A1 = {(1, 2), (2, 3, 4), (5, 6, 7), (1, 8, 6), (2, 5), (6, 7), (2, 6, 8)} and
A2 = {(1, 2, 3), (2, 4, 6), (3, 5, 8), (6, 8), (1, 7), (4, 5, 7)}. Then (X,A2) is a resolv-
able design since A2 = P1 ∪ P2 where P1 = {(1, 2, 3), (6, 8), (4, 5, 7)} and P2 =
{(1, 7), (2, 4, 6), (3, 5, 8)} form two parallel classes consisting of disjoint sets whose
union is set X. We say P1 and P2 form resolutions of A2. On the other hand, the
design (X,A1) is not resolvable as such resolutions are not possible in this case.

Definition 3 A Balanced Incomplete Block Design (BIBD) is a design (X,A),
with parameters {v, k, λ} ∈ N and v > k ≥ 2 and λ ≥ 1 such that the following
properties are satisfied:

1. |X| = v,
2. each block contains exactly k points, and
3. every pair of distinct points is contained in exactly λ blocks.

The third property relates to balancedness. It can be shown that every point

occurs in exactly r = λ(v−1)
k−1 blocks and a BIBD has exactly b = vr

k = λ(v2−v)
k2−k

blocks. A (v, k, λ)-BIBD (X,A) is resolvable if A has at least one resolution. Note
that, the design (X,A2) has resolution and hence it is a RBD. However, it is not
a BIBD as properties 2, 3 are not satisfied.

The necessary condition for (v, k, λ)-BIBD to be resolvable is b ≥ v + r − 1
or equivalently r ≥ k + λ. A Resolvable (v, k, λ)-BIBD is called Affine Resolvable
(ARBIBD) if b = v+ r− 1 or equivalently r = k+λ. Further, any two blocks from

different parallel classes of ARBIBD have exactly k2

v points in common.
An Affine Plane of order q is an example of (q2, q, 1)-ARBIBD. The construction

of such Affine Planes are known only when q is some power of a prime. A finite
projective plane of order q is an example of (q2 + q + 1, q + 1, 1)-BIBD. Finite
projective planes are equivalent to finite affine planes and vice versa. Detailed
understanding on these structures are presented in [19, Chapters 2, 5].

3 Our Generic idea of Construction

Here we connect how one can design MUBs or approximate MUBs from the above
mentioned combinatorial objects, namely RBDs. We provide a generic construc-
tion of an orthonormal basis from a parallel class of any Resolvable Block Design
(RBD). If the parallel class contain s blocks then the construction would also re-
quire s many unitary matrices each of the order which would be equal to the the
size of blocks in the parallel class under consideration. If there are r many parallel
classes in (X,A), then each one of them can be used to construct an orthonormal
basis in Cd or Rd. Next we show that the inner product between two vectors, each
from different orthonormal basis, constructed using parallel classes from design
(X,A), are bounded if the Hadamard matrices are exploited as unitary matrices.
The set of Orthonormal Basis so constructed are β-AMUBs (see Theorem 1 later).
This β will depend on the parameters of the RBD and if the parameters are such
that β = 1 then the set of orthonormal bases, constructed using parallel classes,
will be MUBs.

Let us now describe the steps for construction of an orthonormal basis using a
parallel class from an RBD (X,A). Then we present a simple example to explain
the technique.
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Construction 1

1. In a design (X,A), choose the elements of X as some orthonormal basis vectors of

Cd. That is, if |X| = d then X = {|ψ1〉 , |ψ2〉 , . . . , |ψd〉}, such that 〈ψi|ψj〉 = δij .

Hence A, which contains blocks consisting of elements from X, would consist of

blocks consisting the elements from the set of chosen orthonormal basis vectors.

2. Let B = {b1, b2, . . . , bs} be one of the parallel class of the design (X,A), where

bi’s are disjoint blocks containing elements from X. Since B is a parallel class, this

implies X = b1 ∪ b2 ∪ . . . ∪ bs.

3. Consider one of the blocks br = {|ψr1〉 , |ψr2〉 , . . . , |ψrnr
〉} ∈ B and let |br| = nr.

Corresponding to this block, choose any nr×nr unitary matrix whose elements are

say urij , i, j = 1, 2, . . . , nr.

4. Next construct nr many vectors in the following manner, using br and urij .

|φri 〉 = uri1 |ψr1〉+ uri2 |ψr2〉+ . . .+ urinr
|ψrnr

〉 =

nr∑
k=1

urik |ψrk 〉 : i = 1, 2, . . . , nr.

5. In a similar fashion, corresponding to each block bj ∈ B, construct nj many vectors

where |bj | = nj , using any nj ×nj unitary matrix. Since
∑s
j=1 nj = d, we will get

exactly d many vectors.

Note that if all the blocks in a parallel class used in the above construction
consist of only single element, then it will result into vectors which will be some
permutation of X. Similarly if identity matrices are chosen corresponding to all
blocks bj of the parallel class, again the above construction will result into vectors
which will be some permutation of X. Hence, in order to get vectors different from
the initial chosen orthonormal vectors X, at least one of the blocks of the parallel
class should have more than one elements and at least one of the unitary matrices,
chosen corresponding to some block of the parallel class, should be different from
the identity matrix.

Lemma 1 Refer to Construction 1. The vectors, |φri 〉 for i = 1, 2, . . . , nr and r =
1, 2, . . . , s, such that

∑s
j=1 nj = d, form an orthonormal basis.

Proof Consider nr many vectors constructed from the block br of a parallel class
B. The inner product of any two vectors constructed from br would give

〈φrj |φ
r
i 〉 =

nr∑
k,l=1

urjl u
r
ik 〈ψrl |ψrk 〉 =

nr∑
k,l=1

urjl u
r
ik δkl =

nr∑
k=1

urjk u
r
ik = δij .

Hence nr many vectors constructed from the block br are orthogonal. Note that,
the vectors constructed from a block are linear combinations of vectors {|ψi〉} ∈ X
in the corresponding block. Since different blocks of the parallel class are disjoint
subsets of X, the vectors constructed from different blocks of the parallel class
would lie on the orthogonal subspace of Cd and hence will be orthogonal. Since∑s
j=1 nj = d, the construction will generate an orthonormal basis in Cd. ut

Note that in Construction 1, if X is chosen from some orthonormal basis vec-
tors of Rd along with the orthogonal matrix (i.e., all the entries real) corresponding
to each br in step 1 and 3 respectively, then the Construction 1 will result into real
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orthonormal basis vectors in Rd corresponding to the parallel class under consid-
eration. Similarly, as noted above, the construction will provide vectors different
from X in Rd, if at least one block of the parallel class consist of more than one
elements or at least one orthogonal matrix corresponding to some block is chosen
different from the identity matrix.

Let us illustrate above construction method by applying it on Resolvable Block
Design (X,A2) mentioned in Section 2.1. The two resolutions of A2 are P1 and
P2, where P1 = {(1, 2, 3), (6, 8), (4, 5, 7)} and P2 = {(1, 7), (2, 4, 6), (3, 5, 8)}. We
will show how to convert P1 into one orthonormal basis and on a similar manner
P2 can be converted to another orthonormal basis. Let X = {|1〉 , |2〉 , . . . , |8〉} be
the computational basis in C8. Using above notations, consider the parallel class
P1 = {b1, b2, b3}, where b1 = (1, 2, 3), b2 = (6, 8) and b3 = (4, 5, 7). Thus we see
that, |b1| = |b3| = 3 and |b2| = 2. Hence, we require at least two unitary matrices,
one of order 2 and another of order 3. We will choose the Hadamard matrices

in this direction. Let us choose U2 = 1√
2

(
1 1
1 −1

)
and U3 = 1√

3

1 1 1
1 ω ω2

1 ω2 ω

. For

simplicity, we will use the same U3 for both the blocks, b1 and b3. Following the
notations and methods given in Construction 1, we obtain total eight orthogonal
vectors of C8 from the parallel class P1. Two orthogonal vectors are constructed
from b2 and three each from b1 and b3 in the following manner.

|φ11〉 =
1√
3

(|1〉+ |2〉+ |3〉) =
1√
3

(1 1 1 0 0 0 0 0)T

|φ12〉 =
1√
3

(
|1〉+ ω |2〉+ ω2 |3〉

)
=

1√
3

(1 ω ω2 0 0 0 0 0)T

|φ13〉 =
1√
3

(
|1〉+ ω2 |2〉+ ω |3〉

)
=

1√
3

(1 ω2 ω 0 0 0 0 0)T

|φ21〉 =
1√
2

(|6〉+ |8〉) =
1√
2

(0 0 0 0 0 1 0 1)T

|φ21〉 =
1√
2

(|6〉 − |8〉) =
1√
2

(0 0 0 0 0 1 0 − 1)T

|φ31〉 =
1√
3

(|4〉+ |5〉+ |7〉) =
1√
3

(0 0 0 1 1 0 1 0)T

|φ32〉 =
1√
3

(
|4〉+ ω |5〉+ ω2 |7〉

)
=

1√
3

(0 0 0 1 ω 0 ω2 0)T

|φ33〉 =
1√
3

(
|4〉+ ω2 |5〉+ ω |7〉

)
=

1√
3

(0 0 0 1 ω2 0 ω 0)T .

Note that the first three vectors |φ11〉 , |φ12〉 , |φ13〉 corresponding to one block in
a parallel class works with |1〉 , |2〉 , |3〉 only, and the orthogonality among them-
selves is achieved by using U3. This is different from [21, Theorem 3, Example 4]
as there the vectors corresponding to each block may have other components of
the vector. The kind of separate grouping that we use here and use the unitary
matrices for orthogonality between the vectors is different from that of [21]. In
our case the between block orthogonality in the same parallel class is achieved as
the components of the vectors are different. This helps us to exactly calculate the
different inner product values (as we are considering approximate MUBs rather
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than exact MUBs) when blocks (and the vectors corresponding to that) from two
different parallel classes (different orthogonal bases) interact.

Now arranging the above 8 Orthogonal vectors as columns of 8 × 8 unitary
matrix we have have the following.

M1 =
1√
6



√
2
√

2
√

2 0 0 0 0 0√
2
√

2ω
√

2ω2 0 0 0 0 0√
2
√

2ω2
√

2ω 0 0 0 0 0
0 0 0 0 0

√
2
√

2
√

2
0 0 0 0 0

√
2
√

2ω
√

2ω2

0 0 0
√

3
√

3 0 0 0
0 0 0 0 0

√
2
√

2ω2
√

2ω
0 0 0

√
3 −
√

3 0 0 0


.

In a similar manner, the parallel class P2 can be converted into another orthonor-
mal basis of C8. Following the Construction 1 in a similar manner, and using the
unitary matrix U2 for block (1, 7) and U3 for both the blocks (2, 4, 6) and (3, 5, 8)
we obtain the following.

M2 =
1√
6



√
3
√

3 0 0 0 0 0 0
0 0

√
2
√

2
√

2 0 0 0
0 0 0 0 0

√
2
√

2
√

2
0 0

√
2
√

2ω
√

2ω2 0 0 0
0 0 0 0 0

√
2
√

2ω
√

2ω2

0 0
√

2
√

2ω2
√

2ω 0 0 0√
3 −
√

3 0 0 0 0 0 0
0 0 0 0 0

√
2
√

2ω2
√

2ω


.

Let us now denote {|ψ1
i 〉}, 1 ≤ i ≤ 8 for column vectors of M1 and {|ψ2

j 〉}, 1 ≤
j ≤ 8 for column vectors of M2. Through explicit calculations we get, ∆ ={
| 〈ψ1

i |ψ
2
j 〉 | where i, j = 1, . . . , 8

}
=
{

1
2 ,

1√
6
, 13

}
. In order to calculate σ1,2, note

that out of 64 many inner products formed between the vectors of M1 and M2, 36
of them have the value 1

3 , 24 of them have the value of 1√
6

and remaining 4 has

the value 1
2 , whereas MUBs in C8 would have inner product value of 1√

8
for all

the cases. Hence,

(
σ1,2

)2
=

1

64

(
36

(
1

3
− 1√

8

)2

+ 24

(
1√
6
− 1√

8

)2

+ 4

(
1

2
− 1√

8

)2
)
,

which evaluates to σ1,2 ≈ 0.052. Note that maxi,j
∣∣〈ψ1

i |ψ
2
j 〉
∣∣ = 1

2 . Hence τ1,2 =∣∣∣12 − 1√
8

∣∣∣ ≈ 0.12. We also obtain β1,2 =
√
8
2 =

√
2 and the sparsity ε = 42

64 ≈ 0.66

for both M1 and M2. From calculations it is evident that the maxi,j
∣∣〈ψ1

i |ψ
2
j 〉
∣∣ is

dependent on the block sizes and number of points common between the blocks
from which |ψ1

i 〉 , |ψ
2
j 〉 are constructed. The following proposition examines the

same, when Hadamard matrices are used as unitary matrices, and presents an
upper bound on this value. The Hadamard matrices are subset of unitary matrices,
and atleast one such (Fourier) matrix exists for every dimension. In the following
proposition, and the subsequent constructions, we will use Hadamard matrices of
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order dependent on the block size of parallel class under consideration. That is, in
this paper, we will use the real Hadamard matrices for unitarity/orthogonality.

Theorem 1 Let P1 and P2 be two parallel classes of Resolvable Block Design (X,A)
having constant block sizes k1 and k2 respectively, such that the maximum intersection

points between the blocks of parallel classes is µ. Then corresponding to the parallel

classes P1 and P2, orthonormal bases in Cd can be constructed which is β-AMUB with

β = µ
√

d
k1k2

where |X| = d.

Proof The proof follows from Construction 1, where the Hadamard matrices are
chosen as the unitary matrices in step 3. We show this as follows.

Let X = {|ψ1〉 , |ψ2〉 , . . . , |ψd〉} be some orthonormal basis vectors in Cd. Let
the blocks in the parallel classes are P1 = {b11, b12, . . . , b1p} and P2 = {b21, b22, . . . , b2q}.
We have |b11| = |b12| = . . . = |b1p| = k1 and |b21| = |b21| = . . . = |b2q | = k2 and
X = b11 ∪ b12 ∪ . . . ∪ b1p = b21 ∪ b22 ∪ . . . ∪ b2q .

Following the steps of the Construction 1, let M1 = {|ζ1〉 , |ζ2〉 , . . . , |ζd〉} and
M2 = {|φ1〉 , |φ2〉 , . . . , |φd〉} be the orthonormal matrices constructed from parallel
classes P1 and P2 respectively of the RBD (X,A). Consider the vectors constructed
from rth (r ≤ p) block of P1, say |ζri〉, and from sth (s ≤ q) block of P2, say |φsj 〉.
Let Hk1 be the Hadamard matrix of order k1 used for constructing |ζri〉 and Hk2
be the Hadamard matrix of order k2 used for constructing |φsj 〉. Then we have

|ζri〉 = h1i1 |ψr1〉+ h1i2 |ψr2〉+ . . .+ h1ik1 |ψrk1
〉 =

k1∑
u=1

h1iu |ψru〉 : b1r = {|ψru〉} ⊂ X,

|φsj 〉 = h2j1 |ψs1〉+ h2j2 |ψs2〉+ . . .+ h2jk2 |ψsk2
〉 =

k2∑
v=1

h2jv |ψsv 〉 : b2s = {|ψsv 〉} ⊂ X,

where (Hk1)i,j = h1i,j and (Hk2)i,j = h2i,j . Hence,

〈ζri |φsj 〉 =

k1,k2∑
u,v=1

h1iu h
2
jv 〈ψru |ψsv 〉 =

k1,k2∑
u,v=1

h1iu h
2
jv δru,sv .

Since {|ψru〉} and {|ψsv 〉} are subsets of X, which consist of orthonormal basis
vectors, therefore 〈ψru |ψsv 〉 = δru,sv . Let b1r ∩ b2s be the set of points common in
the two blocks, which has been used in the construction for |ζri〉 and |φsj 〉. It is
given that maxi,j

{∣∣b1i ∩ b2j ∣∣} = µ, where i = 1, 2, . . . , p and j = 1, 2, . . . , q. Hence∣∣b1r ∩ b2s∣∣ ≤ µ. Further, note that
∣∣h1ru ∣∣ = 1√

k1
and

∣∣h2sv ∣∣ = 1√
k2

. Hence

〈ζri |φsj 〉 =
∑
b1r∩b2s

h1iu h
2
jv ≤

∑
b1r∩b2s

|h1iu| |h
2
jv| =

∑
b1r∩b2s

1√
k1k2

≤ µ√
k1k2

=
µ
√

d
k1k2√
d

,

where β = µ
√

d
k1k2

. The vectors |ζri〉 and |φsj 〉 are constructed from any rth and

sth block of P1 and P2 respectively. Hence the above relationship will hold for any
two vectors constructed from different parallel classes. Hence | 〈ζi|φj〉 | ≤ µ√

k1k2
for

any 1 ≤ i, j ≤ d. Thereby, the orthonormal bases constructed corresponding to the
parallel classes P1 and P2 are β-AMUB. ut
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Suitable choices of Hadamard matrices, for specific situations may improve
the inequality. Particularly, whenever parametric form of Hadamard matrices are
available, they may be used and parameters may be optimized, which can result
into orthonormal bases closer to MUBs. Another method to improve this inequality
would be through reducing the µ, which is dependent on parameters of the Re-
solvable Block Design. In fact, if µ = 1 and d = k1 · k2 then β = 1, and the above
constructions will present MUBs. In our present work we will focus on making β

close to 1 (from the higher side) by altering the parameters of RBD.
In a similar manner, we can convert Resolvable Block Design consisting of r

resolutions into set of r orthonormal bases for Rd using real Hadamard matrices
in set 3 of Construction 1. A real Hadamard matrix exists for d = 2s, s ∈ N
(Sylvester Construction [9]) and for d = 2s(q + 1), where q is some power of odd
prime (Paley Construction [12]), apart from other known constructions [9]. In fact,
the Hadamard Conjecture [6] says that the real Hadamard matrix exists for all
dimensions d > 2 such that 4|d. This is longstanding unproven conjecture which
has been found to be true for all d < 668 [6].

The order of Hadamard matrix to be exploited in the step 3 of construction
1, is decided by the block size of the corresponding parallel class. Hence to obtain
real MUBs, we will ensure that the block size (denoted by k) is either 2 or divisible
by 4. Though our focus is on ARMUBs, the results hold equally well for complex
AMUBs. In fact to obtain complex AMUBs, there would be no restriction on the
parameters of the Resolvable Block Design (X,A), as there are Hadamard matrices
available for every order, namely the Fourier matrices.

For all our examples and constructions in following sections, the points (or
elements) in X would consist of computational basis vectors and would be sim-
ply denoted as {1, 2, . . . , d}. For example, |X| = 4 implies X = {1, 2, 3, 4} where
1 represents (1, 0, 0, 0)T , 2 represents (0, 1, 0, 0)T , 3 represent (0, 0, 1, 0)T and 4
represent (0, 0, 0, 1)T . Since a real Hadamard matrix consists of only {−1,+1} en-
tries, our construction for ARMUBs will have vectors whose entries will consist of
{−1, 0,+1} with some normalization factor for the corresponding vectors.

4 ARMUBs using Resolvable BIBDs

In this section, we will explore the designs which are resolvable and also (v, k, 1)-
BIBDs. Necessary condition for a (v, k, 1)-BIBD to be resolvable can be derived
by fact that k|v and (k− 1)|(v− 1) for b and r to be integers. It turns out that the
necessary condition for resolvable (v, k, 1)-BIBD is v = k(k − 1)t+ k for t ∈ N [8].
It has been shown that with finitely many exceptions, resolvable (v, k, 1)-BIBDs
exist whenever necessary condition is satisfied. More specifically, given k ≥ 2,
there exists a constant C(k) such that if v ≥ C(k) and v ≡ k mod [k(k − 1)], then
(v, k, 1)-resolvable BIBDs exist [15]. This implies that there exist infinite families
of resolvable (v, k, 1)-BIBDs for every k ∈ N. In all the following theorems and
constructions, the dimension d of the underlying vector space will be equal to v

i.e., d = v.

Theorem 2 Suppose, there exists a resolvable (v, k, 1)-BIBD. Let d = v = k(k −
1)t + k, where t ∈ N. If t > 1, then one can construct (kt+ 1) many Approximate

MUBs in Cd with ∆ =
{

0, 1k
}

, β =
√

(k−1)t+1
k , σ2 = 2

d

[
1− k√

d

]
, τ < 1

k and the
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sparsity ε = 1 − 1
(k−1)t+1 . If t = 1, then one can construct (k + 1) many MUBs in

Cd with ∆ =
{

1
k

}
, β = 1, σ = τ = 0 and the sparsity ε =

(
1− 1

k

)
. Further, if a real

Hadamard matrix of order k exists, then one can construct ARMUBs in Rd with the

same parameters.

Proof The necessary condition for the existence of a Resolvable (v, k, 1)-BIBD is
v = k(k−1)t+k for some t ∈ N [8]. Let us consider t > 1. Since λ = 1 in this BIBD,
every pair of points will occur in a single block. Thus, any two blocks will have
maximum one point in common. This implies that the blocks from different paral-
lel classes will have at most one point in common. Now we can use any Hadamard
matrix of order k to convert each parallel class having block size k into orthonor-
mal basis as per Construction 1. The ∆ would consist of

{
1
k , 0
}

corresponding to
whether there is one point in common or there is no point is common between
the blocks used to generate corresponding vectors of the orthonormal basis. Hence

β =
√
d
k =

√
k(k−1)t+k

k =
√

(k−1)t+1
k . Now to compute σ, note that each vector in

an orthonormal basis will have inner product value equal to 1
k with k2 vectors of

any other orthonormal basis and will have inner product equal to 0 with remaining
(d− k2) basis vectors. Hence,

σ2 =
1

d

[
k2
(

1√
d
− 1

k

)2

+
(
d− k2

)( 1√
d
− 0

)2
]

=
2

d

[
1− k√

d

]
.

In order to calculate τ , note that
∣∣∣ 1k − 1√

d

∣∣∣ ≥ 1√
d

for d ≥ 4k2 which implies t ≥
4k−1
k−1 ≈ 4 for sufficiently large k. Hence,

τ =

{
1√
d
, for 1 < t ≤ 4k−1

k−1

(
i.e., k2 < d ≤ 4k2

)
1
k −

1√
d
, for t > 4k−1

k−1

(
i.e., d > 4k2

) .

Hence τ ≤ 1
k for any d. Note that for for a fixed k, σ decreases as the dimension

d increases, whereas τ goes towards 1
k . In this construction ∆ is independent of

dimension but σ and τ are not.
To calculate sparsity, note that each vector in Cd (or Rd), constructed from

block of size k, will have exactly k many non-zero and d − k many zero entries.
Since the construction provides d orthonormal basis vectors, we get

ε =
d2 − dk
d2

= 1− k

d
= 1− 1

(k − 1)t+ 1
.

Now consider the case t = 1. Here d = v = k2 which implies combinatorial design
is (k2, k, 1)- ARBIBD. Hence blocks from different parallel classes have exactly one
point in common. Hence ∆ =

{
1
k

}
. But in this case 1

k = 1√
d
. Hence σ = τ = 0.

The expression for sparsity will remain unchanged i.e. ε = 1 − k
d = 1 − 1

k . This
completes the proof. ut

Hence the constructed orthonormal bases are very sparse even for moderate size k
and t. Let us consider two simple cases, for k = 2, 4. This will enable us to choose
real Hadamard matrices for converting the parallel classes of resolvable (v, k, 1)-
BIBD into orthonormal base. It has been shown in [15,8] that for these values of
k, necessary condition is also a sufficient condition for the existence of resolvable
(v, k, 1)-BIBD without any exception. Hence we obtain the following result.
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Corollary 1 For any even dimension d > 4, there exist d − 1 ARMUBs in Rd such

that ∆ =
{

1
2 , 0
}

, β =
√

d
4 , σ2 = 2

d

[
1− 2√

d

]
, τ < 1

2 and sparsity ε = 1− 2
d . Further,

for d = 4 we can construct 3 Real MUBs with sparsity ε = 1
2

Proof This directly follows from Theorem 2. Taking k = 2 gives d = 2t+ 2. Hence
for t > 1, we can construct 2t + 1 = d − 1 many Approximate MUBs in Rd

with ∆ =
{

0, 12
}

, β =
√

t+1
2 =

√
d
4 , σ2 = 2

d

[
1− 2√

d

]
, τ < 1

2 and the sparsity

ε =
(
1− 2

d

)
. If t = 1, then d = 2 + 2 = 4 and we can construct (2 + 1) = 3 many

MUBs in Rd with ∆ =
{

1
2

}
, β = 1, σ = τ = 0 and the sparsity ε = 1− 1

2 = 1
2 . This

completes the proof. ut

To explicitly demonstrate the construction of real MUBs in R4, using Resolvable
(4, 2, 1)-BIBD, let X = {1, 2, 3, 4} be the four standard basis vectors in R4 and let
A = {P1, P2, P3} be the three parallel classes of the resolvable design. Explicitly,
one such design would be:

P1 = {(1, 2), (3, 4)} P2 = {(1, 3), (2, 4)} P3 = {(1, 4), (2, 3)} .

Now using H2 = 1√
2

(
1 1
1 −1

)
for each block of parallel class, and exploiting Con-

struction 1, we obtain three set of orthonormal basis vectors corresponding to each
parallel class as follows.

M1 =
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 ,M2 =
1√
2


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

 ,M3 =
1√
2


1 1 0 0
0 0 1 1
0 0 1 −1
1 −1 0 0

 .

The columns of {M1,M2,M3} form the orthonormal basis vectors, and these or-
thonormal bases are MUBs in R4. Note that maximum number of real MUBs in
d = 4s, s ∈ N is equal to d

2 + 1 [3]. Hence for d = 4, the three MUBs constructed
are also maximal for R4.

To illustrate construction of ARMUBs with a specific example, let us consider
d = 6. Let X = {1, 2, 3, 4, 5, 6} be the six standard basis vectors in R6 and let
A = {P1, P2, P3, P4, P5} be the five parallel classes of the design. Explicitly, one
such design would be

P1 ={(1, 4), (2, 3), (5, 6)}
P2 ={(2, 6), (3, 4), (1, 5)}
P3 ={(5, 2), (3, 1), (4, 6)}
P4 ={(5, 3), (4, 2), (6, 1)}
P5 ={(5, 4), (6, 3), (1, 2)}.



Approximate Real MUBs 15

Now again using H2 = 1√
2

(
1 1
1 −1

)
for each block of parallel class, and following

Construction 1, we obtain five set of orthonormal basis vectors as follows.

M1 =
1√
2


1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
1 −1 0 0 0 0
0 0 0 0 1 1
0 0 0 0 1 −1

 ,M2 =
1√
2


0 0 0 0 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 1 −1 0 0
0 0 0 0 1 −1
1 −1 0 0 0 0

 ,

M3 =
1√
2


0 0 1 1 0 0
1 1 0 0 0 0
0 0 1 −1 0 0
0 0 0 0 1 1
1 −1 0 0 0 0
0 0 0 0 1 −1

 ,M4 =
1√
2


0 0 0 0 1 1
0 0 1 1 0 0
1 1 0 0 0 0
0 0 1 −1 0 0
1 −1 0 0 0 0
0 0 0 0 1 −1

 ,

M5 =
1√
2


0 0 0 0 1 1
0 0 0 0 1 −1
0 0 1 1 0 0
1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 −1 0 0

 .

Here again, the columns form the orthonormal basis vectors. Note that, for any
basis vector say from M1, there are four vectors in M2 which has inner prod-
uct value of 1

2 and the remaining two have the values 0 i.e., two of them are

orthogonal. Here ∆ =
{

0, 12
}
, β =

√
6
2 ≈ 1.22. Further, for this construction

σ =

√
2
6

(
1− 2√

6

)
≈ 0.247, τ = max

{
1√
6
, |12 −

1√
6
|
}

= 1√
6
≈ 0.408 and sparsity

ε = 1− 2
6 = 2

3 . Now let us consider the case for k = 4.

Corollary 2 For any dimension d > 16 where d = 4 mod (12), there exist d−1
3 many

ARMUBs in Rd such that ∆ =
{

0, 14
}

, β =

√
d

4
, σ2 = 2

d

(
1− 4√

d

)
, τ < 1

4 and the

sparsity ε = 1− 4
d . For d = 16, we can construct five real MUBs with sparsity ε = 3

4 .

Proof The result follows directly from Theorem 2 by taking k = 4. This gives
d = 4×3t+4 = 4 mod (12). Hence for t > 1, using Theorem 2, we get 4t+1 = d−1

3

many ARMUBs with ∆ =
{

0, 14
}

, β =
√

3t+1
4 =

√
d
4 , σ2 = 2

d

(
1− 4√

d

)
, τ < 1

4 and

the sparsity ε = 1− 4
d .

If t = 1, then in d = 4 × 3 + 4 = 16 and we can construct (4 + 1) = 5 many
MUBs in Rd with ∆ =

{
1
4

}
, β = 1, σ = τ = 0 and the sparsity ε = 1− 1

4 = 3
4 . This

completes the proof. ut

Note that in d = 42, the maximum number of Real MUBs are 42

2 + 1 = 9 [3].
However, from our construction, we only obtain five MUBs which is not maximal.
However, we like to point out here that these 5 MUBs are very sparse (ε = 0.75),
whereas 9 Real MUBs constructed using [4] would give MUBs in the form of
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mutually unbiased Hadamard matrices, where all the entries from {+1,−1} hence
no sparsity, except the standard basis.

Note that the construction using Theorem 2 gives very good Approximate
MUBs for a fixed k (d ≥ k2) in lower dimensions, with β close to 1. However, as
dimension increases β increases as

√
d hence approximation deteriorates. On the

other hand, as d increases the sparsity also increases. In this regard, let us present
two instances.

Example 1 The resolvable (28, 4, 1)-BIBD will provide 9 ARMUBs in R28 with

β =
√

7
4 ≈ 1.3 and ε = 6

7 . Similarly, the resolvable (40, 4, 1)-BIBD will generate

13 ARMUBs in R40 with β =
√

5
2 ≈ 1.6 and ε = 9

10 . Note that for both of the

dimension only a pair of Real MUBs can exist.

4.1 Constructions following ARBIBD

Among all the resolvable BIBDs, affine resolvable BIBDs (r = k + λ) provide
very interesting class of MUBs and AMUBs because of the fact that any two

blocks from different parallel classes intersect at exactly k2

v points. By using the
Hadamard matrices in Construction 1 at Step 3 provides approximate MUBs with
small values of σ and τ , as well as β close to 1.

The affine resolvable BIBD (v, k, λ) can be parameterised in terms of two pos-
itive integer variables n and µ. The other parameters of the design in terms of n

and µ are given as v = n2µ, k = nµ, λ = nµ−1
n−1 , b = n(n2µ−1)

n−1 , r = n2µ−1
n−1 , and

k2

v = µ. Hence one may consider it as (n2µ, nµ, nµ−1
n−1 )-ARBIBD. Conversely, any

resolvable BIBD having parameters of this form is affine resolvable. We will denote
such BIBD as an (n, µ)-ARBIBD [19, Chapter 5].

Lemma 2 If there exists an affine resolvable BIBD of the form (n2µ, nµ, nµ−1
n−1 ), then

for d = n2µ, we can construct n2µ−1
n−1 many approximate MUBs with β =

√
µ, σ ≤ 1

n ,

τ ≤ 1
n and sparsity ε = 1− 1

n . If real Hadamard matrix of order nµ exist, then we can

construct Approximate Real MUBs with the same parameters.

Proof Using Affine resolvable (n2µ, nµ, nµ−1
n−1 )-BIBD, we can convert r = n2µ−1

n−1

number of parallel classes using Hadamard matrix of order nµ into r many or-
thonormal Basis. Since exactly µ points are common between any two blocks from
different parallel classes, maximum inner product between vectors from different
orthonormal bases should be less than or equal to µ× 1

nµ = 1
n .

Now, max
{

1
n
√
µ ,
∣∣∣ 1n − 1

n
√
µ

∣∣∣} is equal to
√
µ−1√
d

for µ ≥ 4 and it is equal to

1√
d

for 1 < µ < 4. Therefore σ2 ≤
(

1
n −

1√
n2µ

)2

=
(
√
µ−1)2

d for µ ≥ 4 and

σ2 ≤
(

1
n
√
µ − 0

)2
= 1

d for 1 < µ < 4. Hence σ2 ≤ µ
d = 1

n2 ∀µ > 1. That is,

σ ≤ 1
n for µ > 1. Similarly τ = max

{
1

n
√
µ ,
∣∣∣ 1n − 1

n
√
µ

∣∣∣}, which implies τ ≤
√

µ
d =

1
n ∀µ > 1.
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Note that when µ = 1, both σ and τ = 0. This happens because, µ = 1 means,
between a pair of blocks from different parallel classes has exactly one point in
common, implying β = 1, and we will get exact MUBs.

The sparsity can be calculated as ε = 1− k
d = 1− 1

n . Moreover, if real Hadamard
matrix of order nµ exists, then we can choose them as the unitary matrix in step
3 of Construction 1 to construct ARMUBs, where the parameters will remain
unchanged. As noted, if µ = 1 then both σ and τ will be zero, hence we will get
exactly n+ 1 many MUBs. ut

However, there are not many known families of affine resolvable (n2µ, nµ, nµ−1
n−1 )-

BIBDs [18,19]. One well known family of ARBIBD can be constructed from affine
geometry of order d. However, this construction is known only if d is some power
of prime. In particular when d = q2, where q is some power of prime, affine re-
solvable (q2, q, 1)-BIBDs can be constructed. This immediately gives the following
corollary.

Corollary 3 When d = q2 where q is some power of prime, then we can construct

q + 1 MUBs in Cd with ε = 1− 1
q .

Proof For any prime power, an affine resolvable (q2, q, 1)-BIBD exists, such that
between any two blocks from different parallel classes there is only one point in
common. Thus, using any Hadamard matrix of order q in Step 3 of Construction
1, we we obtain q+ 1 many MUBs in Cd. If Fourier matrix of order q is used, then
resulting entries of MUBs will consist of only qth roots of unity and zeros. These
q + 1 MUBs so constructed have sparsity ε = 1− 1

q . ut

In such constructions of MUBs, any kind of Hadamard matrix can be used in
step 3 of Construction 1. This immediately suggests the ways to generate MUBs
in a dimension q2, where q is some power of a prime. Such constructions are not
possible using Galois Field [23,7] or through construction of maximal commuting
unitary operators using generalized Pauli matrices [2]. The caveat here is, using
Construction 1, the number of MUBs would be q+1, which is considerably less than
the upper bound of q2 + 1. For example, we can construct five MUBs in d = 42

using affine resolvable (42, 4, 1)-BIBD and using parametric form of Hadamard

matrix F
(1)(a)
4 [20, Example 1.2.1]. Similarly, using Buston Hadamard matrices like

BH(n2k, 6) [20, Corollary 1.4.42], which exist for every n, k ∈ N, we can construct

q2 + 1 many MUBs in Cq
4

where q is some power of prime. Here we need to use
affine resolvable (q4, q2, 1)-BIBD, whose non zero entries would consist of only
sixth roots of unity. Further, using Petrescu’s construction for parametric form
of Hadamard matrices, for primes p = 7, 13, 19, 31 [20, Theorem 3.1.2], one can
construct corresponding parametric MUBs in d = 72, 132, 192, 312, which would not
be equivalent to the MUBs from known methods, based on Galois Field [23,7] or
through construction of maximal commuting unitary operators using generalized
Pauli matrices [2]. Further knowledge of Hadamard matrices, whose orders are
some powers of prime, can be exploited to construct interesting sparse MUBs
using this method.

Since there always exist real Hadamard matrices of order 2s, s ∈ N [9], we have
the following corollary.

Corollary 4 For d = 4s, s ∈ N, there exist 2s + 1 many real MUBs with sparsity

ε = 1− 2−s.
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Note that these are very sparse real MUBs and hence can be used for efficient
computations. However, these do not improve the existing parameters in literature.
However, we present these for exposure as we expect that further analysis of our
techniques may improve the parameters.

It should also be noted that the existence of real Hadamard matrix of order 4m
implies the existence for Affine Resolvable (4m, 2m, 2m − 1)-BIBD [19,18]. Thus
we have the following result.

Proposition 1 Consider that a real Hadamard matrix of order 2m (m > 1) exists.

Then for d = 4m, we can construct 4m−1 many β-ARMUBs where β ≤
√
m. Further,

∆ = 1√
d
×
{

0, 2√
m
, 4√

m
, . . . , m√

m

}
, σ ≤ 1

2 , τ ≤ 1
2 and the sparsity ε = 1

2 .

Proof The case for m = 1, i.e., d = 4, is covered in Corollary 1. Hence we assume
m > 1 here. If there exists a Hadamard matrix of order 2m, then for m > 1,
m must be even. We can use this Hadamard matrix of order 2m to construct
Hadamard matrix of order 4m by taking its tensor product with the Hadamard
matrix of order 2 [9]. Then using Hadamard matrix of order 4m, we obtain Affine
Resolvable (4m, 2m, 2m− 1)-BIBD [19,18]. Now following the Construction 1 and
choosing the given real Hadamard matrix of order 2m in step 3, we obtain the
desired ARMUB.

Since the design is affine resolvable, there are exactly same number of points

are common between blocks from different resolution, which is k2

v = (2m)2

4m =
m implying β =

√
m. This also implies that the inner product between vectors

from different basis would be of the form 1
2m × w, where w will be the sum of

m many 1’s putting ± before each 1. Since m is even and d = 4m, this implies

∆ =
{

0, 2
2m ,

4
2m , . . . ,

m
2m

}
= 1√

d
×
{

0, 2√
m
, 4√

m
, . . . , m√

m

}
.

In order to estimate σ, note that the maximum inner product between the

vectors from different bases is m
2m = 1

2 which implies σ2 ≤
(

1√
4m
− 1

2

)2
= 1

4 +

1
4m −

1√
4m
≤ 1

4 . Similarly τ ≤
∣∣∣ 1√

4m
− 1

2

∣∣∣ ≤ 1
2 and the sparsity ε = 1 − k

d = 1
2 .

Refer to the definition that this k is the block size. ut

In a first look, it appears that ARMUBs with β =
√
m might not be very

interesting. However, using this construction we get d − 1 many ARMUBs and β

is not very large for certain moderate values of d. Let us take the example for
d = 64 = 4 · 16 and thus, β ≤ 4. Here we obtain 63 ARMUBs. However, for
the same dimension, our construction in the earlier work [11] provided only three
β-ARMUBs respectively with β ≤ 4. This is a significant improvement for this
specific d = 64. For larger dimensions, this construction will provide significantly
more number of ARMUBs than [11] but the value of β will be greater than 4.

Now we present the case for d = 2s, where the existence of Hadamard matrix
is guaranteed.

Corollary 5 For d = 2s, s ≥ 2 there exist 2s−1 many β-ARMUBs where β ≤
√

2s−2,

with σ ≤ 1
2 , τ ≤ 1

2 and with sparsity ε = 1
2 .

Proof There always exists a Hadamard matrix of the order 2n where n ∈ N
(Sylvester construction [9]). Then in the affine resolvable (4m, 2m, 2m− 1)-BIBD,
one can substitute m = 2s−2 with s > 2, and the result follows immediately. ut
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We conclude this section with the following remark that compares our construction
idea for exact real MUBs with [21].

Remark 1 Consider that w many MOLS(q) are available. Such a structure can
be used to construct an RBD (X,A), such that |X| = q2 having w + 2 parallel
classes, each having q blocks of constant size q and any two blocks from different
parallel classes will have exactly one point in common. This idea follows from [19,
Section 6.4.1, Theorem 6.32] in relating MOLS and Affine Plane. One may note
that such an RBD will provide w + 2 MUBs in Cd following our Construction 1.
Further, if real Hadamard matrix of order q exists, then the construction will
provide w + 2 Real MUBs in Rd. Our numerical results related to exact MUBs in
this direction will be the same as [21], but our construction is different and we
have more flexibility of using different suitable unitary matrices. Further, our main
focus in this paper is the relaxed model of approximate MUBs, rather that exact
ones, and their we have the opportunity of different avenues to explore through
Construction 1, which we could not see immediately through the work of [21].

In the next section we explore the designs which are not balanced, and that provide
us further results in this direction.

5 ARMUBs using Resolvable Block Designs that are not Balanced

Now we will focus on resolvable block designs which are not balanced. This implies
that either one or both the conditions given in 2 or 3 of BIBD (Definition 3) are not
satisfied. However, these kinds of customized designs, for the purpose of obtaining
ARMUBs provide generic and improved results. In the first construction, we use
multiple affine resolvable BIBDs which are identical, and in the next one we add
new elements in the design.

Theorem 3 Consider d = sq2, where q is a prime power and sq ≡ 0 mod 4. Assuming

a real Hadamard matrix of order sq exists, we can construct q + 1 many β-ARMUB,

where β ≤
√
s. Further, σ ≤

√
s
d , τ = 1√

d
for 1 ≤ s ≤ 4 and τ =

√
s−1√
d

for s > 4 and

the sparsity ε = 1− 1
q .

Proof We split d = sq2 orthonormal vectors in s sets of q2 vectors. Now for each
set of q2 vectors, one can construct affine resolvable (q2, q, 1)-BIBD, where each
one of them will have all blocks of size q and total q + 1 many parallel classes,
such that blocks from different parallel classes will have only one point in common.
Now, consider the union of s such ARBIBDs, each having an identical structure,
but different points. It will give resolvable design of sq2 points, with each block
of size of sq, consisting of q + 1 many parallel classes, such that blocks from two
different parallel classes will have exactly s points in common. If we assume that
Hadamard matrix of order sq exits, that can be used to convert each parallel
classes into orthonormal bases as in Construction 1. Thus we obtain q + 1 many
β-ARMUBs.

To explain the values in ∆, note that inner products between the vectors from
different parallel classes would be of the form 1

sq ×w, where w will be the sum of s

many 1’s putting ± before each 1. This implies ∆ =
{

0, 2
sq ,

4
sq , . . . ,

s
sq

}
if s is even

and ∆ =
{

1
sq ,

3
sq ,

5
sq , . . . ,

s
sq

}
if s is odd. Hence β =

√
d
q =

√
s.
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The largest inner product value between the vectors from different parallel

classes is equal to 1
q . Further, we have max

{
1√
d
,
∣∣∣ 1√

d
− 1
q

∣∣∣} is equal to 1√
d

for

1 ≤ s ≤ 4 and is equal to 1
q −

1√
d

for s ≥ 4. Hence σ2 ≤
(

1√
sq
− 0
)2

for 1 < s ≤ 4,

and σ2 ≤
(

1√
sq
− 1
q

)2
, for s ≥ 4 which we can conveniently state σ ≤

√
s
d . In order

to ascertain τ , we have max
{

1√
d
,
∣∣∣ 1√

d
− 1
q

∣∣∣} is equal to 1√
d

for 1 ≤ s ≤ 4 and is

equal to 1
q −

1√
d

for s ≥ 4. Hence τ =
√
s−1√
d

for s > 4, else τ = 1√
d

for s ≤ 4. The

sparsity ε = 1− k
d = 1− 1

q , where k is the block size. ut

This case subsumes the result in [11] for s = 16 and q prime, i.e., d = (4q)2.

That is, with the method of [11], one can obtain q+1 =
√
d
4 +1 ARMUBs such that

for two vectors from different orthogonal bases, the inner product will be upper
bounded by 4√

d
. This is the same quality result presented in [11, Corollary 1]. The

clear extension in our case is that, here u can be any power of prime, whereas
the construction given [11] was applicable only to d = (4q)2 for a prime q. For
example, using above corollary, we can construct β-ARMUBs with β ≤ 4, even
for dimensions 4 × 9, 4 × 25 etc., whereas one can not construct β-ARMUBs for
these dimensions using the construction given in [11]. Thus this result subsumes
the result of our previous work [11].

Now we present a result, where we can improve the number of MUBs as well
as upper bound the inner product value. This we explore for a case where real
Hadamard matrices exist. For this we have the following result.

Theorem 4 Consider d = q(q + 1) such that q is a prime power and q ≡ 3 mod 4.

Then we can construct (q+ 1) many ARMUBs with ∆ =
{

0, 1
q+1 ,

2
q+1

}
, β = 2

√
q
q+1

and σ2o

(
1− 1√

d

)
≤ σ2 ≤ σ2o

(
1 + 1√

d

)
, where σ2o = 2

d

(
1−

√
q
q+1

)
. Further, τ = 1√

d

and the sparsity is given by ε = 1− 1
q .

Proof Consider an affine resolvable (q2, q, 1)-BIBD. There will be r = q+1 parallel
classes, consisting of q blocks each having q elements. Any two blocks from different
parallel classes will have only one point in common. Add q more elements in the
set X, which implies |X| = q2 +q. Add these q elements, one in each block of every
parallel class. Now all the parallel classes will have blocks of size q + 1 and the
number of blocks will remain unchanged, which is q. In this situation, any block in
a parallel class will have one element in common with q−1 blocks and two elements
in common with the remaining block of any other parallel class. Hence we obtain
a set of q + 1 parallel classes each having q blocks and each block consisting of
q + 1 elements. This is the desired resolvable design.

Since q ≡ 3 mod 4, the Paley construction [12] will always provide real Hadamard
matrix of order q+ 1. Hence we use this for constructing ARMUBs following Con-
struction 1. Note that the blocks from different parallel classes have maximum two

points in common, implying ∆ =
{

0, 1
q+1 ,

2
q+1

}
. In order to calculate σ, note that

every block has only one point in common with q − 1 blocks of any other parallel
classes and two points in common with the remaining blocks of that parallel class.
Thus, any vector from one basis will have the inner product value of 1

q+1 with
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(q − 1)(q + 1) vectors and will have inner product either 0 or 2
q+1 with (q + 1)

vectors of any other orthogonal basis. Thus, we have(
1√

q(q + 1)
− 1

q + 1

)2

(q − 1)(q+ 1) +

(
1√

q(q + 1)
− 2

q + 1

)2

(q+ 1) ≤ d× σ2

≤

(
1√

q(q + 1)
− 1

q + 1

)2

(q − 1)(q + 1) +

(
1√

q(q + 1)
− 0

)2

(q + 1).

This simplifies to σ2o

(
1− 1√

d

)
≤ σ2 ≤ σ2o

(
1 + 1√

d

)
where σ2o = 2

d

(
1−

√
q
q+1

)
.

On the other hand, there will be vectors between two different orthonormal
bases which will also be orthogonal, corresponding to blocks having two points in
common such that one gives +1 and another provides −1 in the inner product
or vice versa, thereby, making the inner product between the vectors 0. Hence
τ = 1√

q(q+1)
= 1√

d
and the sparsity would be given by ε = 1− 1

q . ut

This result clearly shows that there are d
√
de real MUBs with β < 2 and it

substantially improves the result of [11] from both in number of MUBs as well
as in terms of upper bound of the inner products. As numerical examples, for
d = 12, 56, there would be respectively 4, 8 ARMUBs of above type.

For clarity, let us present the case for q = 3, i.e., d = 3(3 + 1) = 12. To begin
with, consider the design of Affine Resolvable (32, 3, 1)-BIBD. Below we represent
each parallel class as 3× 3 matrix, where the each row represent one block of the
parallel class. Hence there would be 4 such matrices. Writing them explicitly

P1 =

1 5 9
2 6 7
3 4 8

 , P2 =

1 6 8
2 4 9
3 5 7

 , P3 =

1 4 7
2 5 8
3 6 9

 , P4 =

1 2 3
4 5 6
7 8 9

 .

Now add three more point in the design, namely {10, 11, 12}, and as stated, one
point is added in each block of every parallel class. The resulting parallel classes
would be

P1 =

1 5 9 10
2 6 7 11
3 4 8 12

 , P2 =

1 6 8 10
2 4 9 11
3 5 7 12

 , P3 =

1 4 7 10
2 5 8 11
3 6 9 12

 , P4 =

1 2 3 10
4 5 6 11
7 8 9 12

 .

Above is the desired RBD, consisting of 4 many parallel class, each having 3 books
of constant size 4, such that between any two blocks from different parallel classes,
either one or two points will be in common. The existence of real Hadamard matrix
of order 4 will produce four ARMUBs here, with the inner product value bounded
by 2

q+1 = 2
4 = 1

2 <
2√
d

= 2√
12

= 1√
3
.

As a passing remark, in the above construction of RBD, we can add q elements
as one block in say, (q + 1)-th parallel class, and then one elements of this block,
into each block of all other parallel classes. This will make all the parallel classes
to have q blocks of size q + 1 except the (q + 1)-th parallel class which will have
q+ 1 blocks each having size q. Now the (q+ 1)-th parallel class has (q+ 1) blocks,
each having q elements. Each block of this parallel class will have only one element
in common with any block of other parallel classes. Since q is a prime power, and
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if it is odd, we need a complex Hadamard matrix to convert (q + 1)-th parallel
class into orthonormal basis. This complex orthonormal basis would be mutually
unbiased with all the other q sets of real orthonormal bases so constructed.

6 Conclusion

In this paper we have described a generic approach that connects an object of
combinatorial design, namely Resolvable Block Design (RBD) with Mutually Un-
biased Bases (MUBs) which are structures on Hilbert spaces. We have presented
a method which takes an RBD as input and use this to construct the orthonor-
mal bases. The parallel classes of RBD play the most important role here. Each
orthonormal basis is constructed out of a parallel class, and the parameters of the
approximate MUBs are dependent on that of the parallel classes. Our construction
method also exploits unitary matrices, dependent on the block sizes of a parallel
class to generate the Approximate Real MUBs (in some cases MUBs too, but those
are not main focus of this work). Throughout the paper, we mostly concentrate
on Hadamard construction while using the unitary matrices. To characterize the
approximate nature of the MUBs, we define certain parameters namely β, ∆, σ
and τ . It has been shown that in most of the cases variance goes to zero as dimen-
sion increases, hence making the approximation quite close to actual MUBs. In
certain cases, where the variance is zero, exact MUBs are obtained. The sparsity
ε has been characterized by simple ratio of the number of zero elements divided
by the total elements in the matrix that corresponds to a basis. In general, our
construction provides very high sparsity and we obtain ε = 1 − 1√

d
, in most of

the cases. In summary, we provide a generic approach for the first time to obtain
ARMUBs for a large class of parameters that were not known earlier. The kinds
of constructions we studied are different from the existing efforts in this domain
of research. Thus, it will be interesting if these ideas can be extended further to
obtain ARMUBs with improved inner product values or exact MUBs with more
numbers than what is available in the state of the art literature. We are working
in this direction as the combinatorial designs offer rich structures in such analysis.
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