
Low-Latency Hardware Masking of PRINCE

Nicolai Müller ID , Thorben Moos ID , and Amir Moradi ID

Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

Abstract. Efficient implementation of Boolean masking in terms of low
latency has evolved into a hot topic due to the necessity of embedding
a physically secure and at-the-same-time fast implementation of crypto-
graphic primitives in e.g., the memory encryption of pervasive devices.
Instead of fully minimizing the circuit’s area and randomness require-
ments at the cost of latency, the focus has changed into finding optimal
tradeoffs between the circuit area and the execution time. The main la-
tency bottleneck in hardware masking lies in the need for registers to
stop the propagation of glitches and maintain non-completeness. Usu-
ally, an exponentially growing number of shares (hence an extremely
large circuit), as well as a high demand for fresh randomness, are the re-
sult of avoiding registers in a securely masked hardware implementation
of a block cipher. In this paper, we present several first-order secure and
low-latency implementations of PRINCE. In particular, we show how to
realize the masked variant of round-based PRINCE with only a single
register stage per cipher round. We compare the resulting architectures,
based on the popular TI and GLM masking scheme based on the area,
latency, and randomness requirements and point out that both designs
are suited for specific use cases.

1 Introduction

Industry and academia are aware that the integration of cryptographic primitives
into embedded devices is inevitable to ensure the confidentiality of processed
data. From a mathematical point of view, cryptographic primitives must resist
analytical attacks, for instance, linear and differential cryptanalysis. Moreover,
from an economic perspective, the area overhead of the integrated cryptographic
circuits forms an additional cost factor without providing new features for the
user. Nevertheless, marked requirements or a security-aware target group make
it impossible to avoid cryptographic protection of sensitive data. Hence, the
research field of lightweight cryptography focuses on mathematically secure ci-
phers that result in a small circuit size when implemented in hardware. Besides
cryptanalytical attacks, embedded devices are prone to side-channel analysis
(SCA) attacks. The vulnerability results from the fact that embedded devices
are handed over to, potentially malicious, owners. Hence, the owner can measure
and manipulate the physical properties of his purchased device. In the past, at-
tackers could recover the secret key of several commercial devices with physical

https://orcid.org/0000-0002-3286-4722
https://orcid.org/0000-0003-3809-9803
https://orcid.org/0000-0002-4032-7433
mailto: nicolai.mueller@rub.de, thorben.moos@rub.de, amir.moradi@rub.de

2 N. Müller et al.

attacks [10,15].
To protect devices from SCA attacks, the integration of Boolean masking to
the cryptographic algorithm is a common and well-studied countermeasure. Un-
fortunately, the realization of a cryptographic algorithm protected with Boolean
masking requires significantly more area due to the processing of multiple shares.
Hence, researchers focus on the area-efficient integration of masking to algo-
rithms that potentially handle sensitive data. Usually, the generic approach for
reducing the area is to minimize the number of processed shares which makes
it necessary to integrate additional register stages into the circuit. As a result,
minimizing the circuit area comes at the cost of latency.
The steadily increasing demand for embedded real-time applications, especially
for fast memory encryption on smartcards and IoT microcontrollers 1 shifts the
focus from the reduction of the circuit size to the minimization of latencies. The
PRINCE block cipher [6] fills this gap since it is a lightweight cipher designed to
perform an encryption or decryption operation within a single cycle. However,
its low latency characteristic gets lost if Boolean masking is applied without con-
sidering the latency as shown in [20]. Several adaptions of the popular masking
schemes show that accepting a higher circuit size reduces the latency signifi-
cantly. The most prominent examples are given in [7, 12]. The protection with
this so-called ”low-latency masking” is a special challenge since the resulting cir-
cuit must ensure low latency and has to be small enough to be practical. Hence,
the main task is to find an acceptable tradeoff between latency on one side and
area and randomness requirements on the other side.

Our Contribution. In this work, we show the integration of low-latency masking
in PRINCE. In contrast to comparable publications [7,20], we focus on achieving
as small latencies as possible whereby we allow larger, but realistic, circuit sizes.
In particular, we reduce the number of register stages per round to one in order
to process one cipher round per clock cycle. Hence, we achieve an up to three
times lower number of clock cycles per encryption than competitive designs. We
focus on first-order SCA security due to the integration of the provably secure
GLM and TI masking schemes. We remark that other works also aim at SCA
resistance of unrolled PRINCE but with the integration of hiding and by taking
advantage of the high asynchronicity, glitch number, and parallelism of unrolled
circuits [18]. While these works may achieve practical resistance against DPA
and CPA, the provable security of hiding countermeasures is not given.

2 Preliminaries

2.1 PRINCE

PRINCE [6] is a 64-bit block cipher with a 128-bit secret key k and has been
designed for fully-unrolled implementation. The key is composed of two con-

1 The LPC55S series of IoT microcontrollers by NXP Semiconductors is one example
where PRINCE is employed for memory encryption and where SCA resistance is
relevant.

Low-Latency Hardware Masking of PRINCE 3

catenated 64-bit subkeys k0 and k1 and extended to 192 bits by applying the
following linear mapping:

(k0||k1)→ (k0||k′0||k1) := (k0||(k0 ≫ 1)⊕ (k0 � 63)||k1)

To be secure against an exhaustive key search, PRINCE follows the FX
construction [16] and applies k0 and k′0 as whitening keys. The remaining subkey
k1 is fed to the actual cipher named PRINCEcore.

m R1

RC1

k1

R2

RC2

k1

R3

RC3

k1

R4

RC4

k1

R5

RC5

k1

S M ′ S-1 R-1
6

RC6

k1

R-1
7

RC7

k1

R-1
8

RC8

k1

R-1
9

RC9

k1

R-1
10

RC10

k1

c

PRINCEcore

k0
k1 RC0 k′0

k1RC11

k1RCi

S M
k1 RCi

S-1M -1

Fig. 1. Schematic description of PRINCEcore including the structure of a regular round
Ri and an inverse round R−1

i .

Each round performs a substitution layer which applies a 4-bit S-Box to each
nibble of the state, followed by a linear M-layer and the XOR concatenation
of k1 and RCi (referred to as constant addition) to the state. The M-layer is
realized as a matrix multiplication of the state with a 64×64 matrix M followed
by the ShiftRows operation of the AES applied to 4-bit nibbles. Note that the
matrix multiplication without ShiftRows builds the M′-layer in the middle of
PRINCEcore. After the middle part, all rounds are inverted.
Since M ′ is an involution and the round constants satisfy RCi ⊕ RC11−i = α,
the whole PRINCEcore can be inverted by changing the underlying key k1 to
k1 ⊕ α. If the whitening keys are swapped, PRINCE satisfies :

D(k0||k′0||k1)(·) = E(k′0||k0||k1⊕α)(·)

which is named α-reflection property. This feature allows encryption and decryp-
tion with the same underlying circuit and consequently saves an independent
decryption routine overhead.

2.2 Probing Security

The d-probing model [14] is a widely used and accepted standard attacker model.
To specify an attacker’s capabilities, the model depends on the security order
d. An attacker can place up to d different probes on freely chosen spots of the
chip. Since a probe measures one spotted wire or gate’s power consumption, the
attacker can record intermediate signals of any chosen wire or gate. If a design

4 N. Müller et al.

is d-probing secure, the attacker can not recover any sensitive information by
probing d different intermediate values. Formally, this means that every possible
d-tuple of intermediate values is independent of every secret value [19]. While
this model allows an evaluation of a circuit, in theory, and with simulations, it
does not fit for security proofs under real-world conditions. Real hardware is
not idealized, so glitches can lead to the propagation of unexpected intermedi-
ate signals over a wire. Hence, an attacker can read the intermediate value of a
probed wire and receive additional information by propagated toggles from pre-
vious parts of the circuit. The d-probing model does not reflect the unexpected
additional information by propagating glitches, which cause leakage, despite the
circuit’s security in the d-probing model being proven.
To better match the conditions on real hardware, the d-probing model has been
extended to the glitch-extended d-probing model [11]. This model allows the at-
tacker to record up to d intermediate values and all possibly propagated values
on the probed wires. The attacker can record every intermediate value of the
connected combinatorial circuit back to the last register stage. While the glitch-
extended d-probing model can simulate an attacker’s information gain due to
glitches, it does not reflect all other physical properties of the target architec-
ture. Therefore, it is essential to measure each design on the real underlying
hardware, even if the security in the glitch-extended d-probing model is proven.

2.3 Threshold Implementation

The concept of threshold implementation (TI) [22] is the oldest provably secure
masking scheme which is also resistant to glitches. The core idea is to split any
non-linear transformation with algebraic degree t, e.g. the cubic PRINCE Sbox
S(a, b, c, d) = (w, x, y, z) with t = 3, into a set of at least t+ 1 component func-
tions Si∈0,...,t. The set of component functions must satisfy correctness. Hence, it
must hold that S(a, b, c, d) = S0⊕S1⊕S2⊕S3 to ensure the correct functionality
of the Sbox.
To ensure first-order security of the Sbox TI, each Sbox input, e.g. the MSB a,
is given as a set of four shares (ai∈0,...,t). Moreover, it holds that a = a0 ⊕ a1 ⊕
a2 ⊕ a3. Each Si can process a subset of shares that is independent of at least
one share per variable. We refer to this security-critical condition as first-order
non-completeness. Besides non-completeness, the security of the Sbox is only
given if uniformity holds for all input sharings. Since the Sbox output builds the
input of following Sboxes, the Sbox output sharing must also satisfy uniformity.
Hence, we must ensure that each valid sbox output sharing occurs equally likely
for all possible input sharings.
All linear functions, e.g. the PRINCE M-layer, are computed share-wise. Hence,
all component functions compute the M-layer on one share independently. The
area overhead of TI depends on the number of applied shares which is bounded
by the algebraic degree. Since the Sbox consists of cubic coordinate functions,
at least four shares are required to achieve non-completeness. To reduce t, one
approach is to decompose the cubic functions into multiple chained quadratic
functions (t = 2) and then separate them with register stages. While several

Low-Latency Hardware Masking of PRINCE 5

works show a significant improvement in the area due to quadratic decomposi-
tion, we avoid it because of two reasons:

1. It is shown in [20] that the decomposition of the cubic PRINCE Sbox into two
consecutive quadratic functions is not possible. Hence, the decomposition of
the PRINCE Sbox results in at least three quadratic functions.

2. The separation of the quadratic functions is necessary to stop the propaga-
tion of glitches. As a result, each subfunction requires an additional register
stage which increases the latency by one clock cycle per subfunction. For
the PRINCE Sbox, this means that the evaluation of a decomposed Sbox
requires three clock cycles. The increment of the cycle count violates our
goal of one clock cycle per round.

As a tradeoff, we accept the higher number of shares as long as the circuit
size does not explode.

2.4 d + 1-Masking

In contrast to TI, another scheme, first published in [23] achieves the same se-
curity level as TI but with a fixed number of d + 1 input shares. Hence, the
number of input shares no longer depends on the algebraic degree but only on
the security order. This is achieved since the non-completeness also holds if each
component function receives only d shares per variable. Hence, a set of compo-
nent functions that achieves correctness and non-completeness with (d+1) input
shares must contain at least (d+ 1)t component functions. Since the number of
output shares grows exponentially with the algebraic degree, only the d + 1-
masking of low degree functions is more efficient in area than TI. For the cubic
PRINCE Sbox, eight component functions per coordinate function are necessary
to achieve first-order security. The output sharing is usually not uniform. Hence,
fresh randomness is added to the output shares to make them uniform. Right
after that, registers store the remasked shares. As the last step, the eight shares
are compressed into two shares by XORing two quadruples of shares.
Similar to quadratic decomposition, the circuit size and the amount of fresh ran-
domness is decreased if the cubic Sbox is split into quadratic functions with a
register stage and share compression at the output. As for the TI, we omit the
decomposition to execute one round per clock cycle.
The concept of d + 1-masking builds the foundation for advanced masking
schemes such as domain oriented masking (DOM) [13]. In particular, the generic
low latency masking (GLM) [12] offers an interesting approach for low-latency
masking. For the GLM scheme, the authors implement no share compression.
Hence it allows the probing-secure evaluation of every Boolean function with
a combinatorial circuit. While GLM is provably secure, the evaluation of high-
degree functions is not practical due to the exponentially growing number of
output shares. Nevertheless, GLM allows the designer to adjust every function
in terms of area and latency.
We remark that skipping the share compression does not necessarily mean that

6 N. Müller et al.

the output shares can be fed to the following modules without caution. If the
shares are not compressed, the combination during the next modules can violate
the non-completeness, although the non-completeness holds for each module in-
dependently. This is the case if one variable is part of two inputs of a non-linear
gate. The authors of [12] refer to these flaws as collisions. To ensure that two
inputs are independent, we must design the circuit in a way that the same inter-
mediate value is not fed twice to a non-linear gate or that an intermediate value
gets a reshared copy before the intermediate and copy are fed to a non-linear
gate.

3 Low-Latency TI Architecture

The intended implementation strategy of PRINCE is an unrolled architecture.
Hence, it consists of combinatorial logic only. As a first thought experiment,
the whole combinatorial circuit can be shared with GLM without any register
stage. As PRINCE encompasses 12 consecutive and cubic substitution layers, the
overall algebraic degree for the whole encryption function is t = 312 = 531441.
Clearly, the number of sout = 2531441 output shares is not realizable. As a conse-
quence, it is not possible with currently known methods to achieve single-cycle
encryption and provable first-order security together.
Thus, we focus on the evaluation of one round per clock cycle. It is necessary to
transform the unrolled design into a round-based architecture with one register
stage per round. To the best of our knowledge, four round-based architectures
of PRINCE exist in literature [6, 7, 20, 24]. Following the arguments of [20], we
choose their design for the following TI experiments. We visualize the unpro-
tected circuit in Figure 2. The authors present a design requiring only a single
substitution layer and register stage if no decomposition is applied. Moreover,
the authors eliminate the inverse substitution layer, so either the S-Box or its in-
verse is part of the circuit. Since S and S−1 are affine equivalent, there is a tuple
of functions consisting of an affine input and output transformation. Applying
affine transformations to the input and the substitution layer’s output allows
computing the inverse substitution layer from the regular substitution layer. In
more detail, it holds that S−1 = A ◦ S ◦ A with A : 5764FDCE1320B98A so
input and output transformation are equal. In an unmasked fashion, one com-
plete encryption requires 12 clock cycles, e.g. one clock cycle per round.

3.1 TI Sharing of the Sbox

The Sbox of PRINCE, referred to as S ∈ F4
2 → F4

2, consists of four coordinate
functions f0, f1, f2, f3 ∈ F4

2 → F2 which are all cubic. As discussed before, a first-
order non-complete TI of S requires at least four shares per variable (for input
and output sharing). While finding a correct and non-complete set of component
functions is relatively easy, the uniformity is challenging. We apply the TI finder
tools of Nikova et al. [5] to find a uniform sharing of S algorithmically. We find

Low-Latency Hardware Masking of PRINCE 7

p/c

c/p

k0 k′0

s⊕ dec

SR-1

s

FF

SR

A

k1RC
RC11

...
RC0

ctr ⊕ dec

inv

S

A SR-1

inv

M’

Fig. 2. The optimized round-based architecture of PRINCE with only one substitution
layer and register stage.

a tuple of four-bit permutations (S′, A) with S = S′ ◦A that builds a first-order
secure TI of S if the sharing of all input and output variables encompass five
shares per variable. Hence, a TI of (S′, A) consists of five component functions.
The corresponding lookup-tables of S′ and A are given in the following:

S′ = BF32AC918067D4E5 A = 01234567AB89EFCD

Since A is an affine transformation on four-bit nibbles, its generated compo-
nent functions compute A on all shared nibbles separately. The unmasked affine
transformation A(a, b, c, d) = (w, x, y, z) ∈ F4

2 → F4
2 is computed as:

w = a x = b y = a⊕ c z = d

According to [5], it holds that S′ is uniform if we create a non-complete
sharing of S′ with the concept of direct sharing [4]. Since the correctness is
satisfied due to S = S′ ◦A, the resulting TI is first-order secure. The full circuit,
processing five shares, is given in Figure 3.

p/c

c/p

k0 k
′
0

s⊕ dec

SR-1
SR-1
SR-1
SR-1
SR-1

s

FFFFFFFFFF

SRSRSRSRSR

AAAAA inv

S

AAAAA
SR-1
SR-1
SR-1
SR-1
SR-1

inv

M’M’M’M’M’

k1RC
RC11

..

.RC0

ctr ⊕ dec

Fig. 3. Five-share uniform PRINCE TI architecture without any fresh randomness.

However a sharing with five input and output shares increases the circuit
size significantly compared to a non-complete sharing with four input and out-

8 N. Müller et al.

put shares. To keep the circuit size as small as possible, we decide to reduce the
number of input shares to four and generate a non-complete set of component
functions by following direct sharing. Compared to the five-share TI, we avoid
one additional component function and hence about 20% of area. We remark
that this change does not influence the number of required clock cycles. Regard-
ing the critical path, we observe that the reduction of shares leads to component
functions that combine fewer monomials, so the number of consecutive XOR
gates is reduced in all component functions. Moreover, we implement all compo-
nent functions in a way that they are almost balanced. Hence, the critical path
is almost equal-sized for all component functions resulting in a shorter critical
path and higher possible clock frequencies.
Obviously, the resulting component functions S0, S1, S2, S3 are first-order non-
complete but not uniform anymore. We satisfy the uniformity of the output
sharing manually by adding initial randomness according to the changing of the
guards method [9] (referred in the Figure 4 as R). This technique guarantees
uniformity at the price of a small overhead of 12 random initial bits per encryp-
tion. In particular, we require no fresh-randomness per clock cycle. This small
amount of initial randomness is acceptable to reduce the number of shares by
one as the five-share variant would require more area and a larger amount of
initial randomness (due to the initial sharing into five shares instead of four).
After the remasking, all shares and the guards are stored in registers. All follow-
ing operations, especially the M-layer, are linear and performed on each share
separately. We show the resulting architecture of the full PRINCE cipher in
Figure 4.

p/c

c/p

a, b, c

k0 k
′
0

s⊕ dec

SR-1
SR-1
SR-1
SR-1

s

s

FFFFFFFF

FFFFFF

SRSRSRSR

AAAA inv

S R

AAAA
SR-1
SR-1
SR-1
SR-1

inv

M’M’M’M’

k1RC
RC11

..

.RC0

ctr ⊕ dec

Fig. 4. Four-share uniform PRINCE TI architecture without fresh randomness.

4 Low-Latency GLM Architecture

In contrast to the TI scheme, the application of GLM is prone to the intro-
duction of collisions during the linear layers. Hence, the underlying architecture

Low-Latency Hardware Masking of PRINCE 9

must satisfy that the non-completeness is not violated on a path through multiple
layers. Unfortunately, the previous architecture contains a collision introduced
during the affine layer A and leaking during S. It holds that the outputs of
A(a, b, c, d) = (w, x, y, z) are not independent of each other (both w and y de-
pend on a). Therefore, a non-linear gate with the inputs w and y violates the
non-completeness.
The remaining linear layers, in particular M ′, are collision-free. Each output bit
of M ′ is a linear combination of three different input bits which are forwarded
from different Sboxes. Moreover, M ′ keeps the structure of all four-bit Sbox out-
puts. Each output bit of M ′ inside a four-bit nibble mi∈0,...,3 is a combination of
three different Sbox output bits s0i∈0,...,3, s

1
i∈0,...,3, s

2
i∈0,...,3 from the same position

inside its computing Sbox. The resulting four-bit output nibbles encompass four
bits which are all independent of each other. Hence, the output of M ′ can be fed
as an independent input to the following Sboxes. The shifting layers operate on
four-bit nibbles independently, so the structure of the M ′ is not changed.
The investigations above point out that we can not apply the same underly-
ing architecture as for the TI experiments. It is inevitable to remove the affine
transformations and to implement an additional circuit for S−1 instead. The
resulting architecture is mainly influenced by the architecture applied in [24].
We only remove the second register stage and we changed the position of the
SR−1 layer so that SR and SR-1 operate in parallel. Since SR−1 is only wiring,
the additional insertions of SR−1 on the output path and the key path do not
increase the circuit size. On the other hand, the parallel processing of SR and
SR−1 eliminates the additional data path that wires the unshifted state to the
Sboxes. This is helpful if we consider the propagation of glitches. Note that the
only register stage per round is placed right behind the substitution layer so that
it can synchronize the state after the remasking. We present the resulting design
in an unmasked form in Figure 5.

p/c

c/p

k0 k′0

s⊕ dec

SR-1

s

SR-1

FF

SR

SR

SR-1

k1RC
RC11

...
RC0

ctr ⊕ dec

inv

S

S-1

inv inv

M’

Fig. 5. The underlying target PRINCE architecture for the GLM experiments.

10 N. Müller et al.

4.1 GLM Sharing of the Sbox

According to d + 1 masking, we share the first-order secure Sbox input with
two shares (a0, b0, c0, d0), (a1, b1, c1, d1). Since all coordinate functions of S and
S-1 are cubic, eight component functions per coordinate function are required
to satisfy first-order non-completeness. We apply the sharing given in [24] to
minimize the extra circuit due to an additional S-1 module. Hence, all com-
ponent functions compute one share per coordinate function for S and S-1, in
total, eight output values per component function. Since we build all component
functions based on the algebraic normal form (ANF), no collisions occur within
the computations of the coordinate functions. To ensure the independence of
the Sbox output we add fresh randomness to the shared values and store them
in registers. The synchronized values are then compressed (in module C) from
eight shares back to two. As all shares are refreshed, no collisions occur during
the share compression. All linear components are instantiated twice to handle
two shares separately. We give the full design in Figure 6.

p/c

c/p

k0 k′0

s⊕ dec

SR-1
SR-1

s

SRSR

SR-1
SR-1

inv

S/S-1

inv

FFFFFFFF

r

R C

inv
SRSR

M ′
M ′

SR-1

k1

RCi
RC11

...
RC0

ctr ⊕ dec

Fig. 6. The masked PRINCE GLM achitecture.

Remasking and Share Compression To ensure the independence of the following
round’s Sbox input, we apply a remasking to all output shares of the substi-
tution layer. Since we integrate only one register stage, we must investigate
glitches propagated through the whole circuit. Naturally, the required amount
of randomness grows if the propagation of glitches stops only at a single point of
the round function. We add four fresh random bits ri∈0,...,3 to the shares si∈0,...,7
of each bit according to the following scheme:

g0 = s0 ⊕ r0 g1 = s1 ⊕ r1 g2 = s2 ⊕ r2 g3 = s3 ⊕ r3

g4 = s4 ⊕ r0 g5 = s5 ⊕ r1 g6 = s6 ⊕ r2 g7 = s7 ⊕ r3

The remasking ensures that an attacker gets no information if she probes
a combination of output shares computed during the share compression. Since
both compressed output shares are never combined, we can apply the same ran-
dom bits to both quadruples of output shares. After the remasking, all remasked

Low-Latency Hardware Masking of PRINCE 11

shares gi∈0,...,7 are synchronized in registers and the share compression XOR con-
catenates four shares with different randomness together. Hence, it compresses
eight input shares to two output shares. Formally, the share compression is given
as:

z0 = g0 ⊕ g1 ⊕ g2 ⊕ g3 z1 = g4 ⊕ g5 ⊕ g6 ⊕ g7
We remark that the remasking makes all shares independent of each other.

Hence, glitches introduced within the share compression do not leak any sensitive
information if we separate both additions into different modules.

Reduction of Online Randomness. As described before, we remask one shared
output bit with four fresh random bits. In total, the remasking of the whole
state leads to an amount of 64 · 4 = 256 random bits per clock cycle. To reduce
the amount of online randomness, we refer to the structural analysis of PRINCE
given in [7] and adapt it to a round circuit with a single register stage. In contrast
to the architecture specified in [7], we place SR and SR−1 in parallel and choose
the correct output via multiplexers. Moreover, we place no register stage in
front of the substitution layer. Hence, glitches introduced by the multiplexers are
propagated to the following substitution layer. According to the glitch-extended
d-probing model, an attacker who places a probe on one Sbox input bit receives
one output bit of SR and SR-1. To omit information leakage, we remask all
bits, wired to the same position, with different random bits. An example of such
a probe propagation due to glitches through the combinatorial round circuit is
visualized in Figure 7. In this example, the attacker places one probe on the LSB
of the substitution layers output which results in various glitch-extended probes
on single bits in the second and fourth 16-bit input block. It turns out that all
output bits of the substitution layer depend either on the first and the third or
on the second and the fourth 16-bit input block. As the values from the first
16-bit block are never combined with values from the second 16-bit block during
one round, we can use the same randomness to mask the first and the second
block. Analogously, we use the same randomness for blocks three and four. The
repeated application of the same randomness halves the number of random bits
per clock cycle from 256 to 128.

5 Synthesis Results

To give comparable circuit sizes and critical path lengths of our investigated
architectures, we synthesize all presented unprotected (cf. Table 1) and first-
order masked (cf. Table 2) designs against a real gate library. Moreover, we
implement comparable designs from literature and synthesize them against the
same gate library (cf. Table 3). We apply synopsis design compiler to synthesize
against Nangate 15 nm standard cell library. The synthesizer generates a gate-
level netlist and the corresponding area and timing reports. As our goal is to
optimize latency, we force the synthesizer to generate the fastest possible design
by setting the clock period to 0.1 picoseconds. Hence, the results can never

12 N. Müller et al.

S/S-1

FF

FF

S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1 S/S-1

Fig. 7. Probe propagation in the glitch-extended probing model through one round of
the unprotected PRINCE GLM architecture by probing the LSB of the round function
output. The probed 16-bit input blocks (second and fourth) are bordered by a dashed
rectangle.

fulfill the timing requirements and the synthesizer optimizes the design’s timing
as much as possible. For the area estimation, we only take the cipher core into
account. Hence we ignore additional area overheads of the FSM or additional
PRNGs. We give an overview of the specific requirements of each design in terms
of latency, area, and randomness requirements. Note that the timing estimations
are divided into the total number of clock cycles for one encryption and the
critical path length. To take all design requirements into account we also show
the randomness requirements, divided into initial and online randomness.

Table 1. Synthesis results of all investigated unprotected PRINCE designs.

Scheme
Area Latency Delay

GE cycles ps

KECCAK-PRNG [3] 4930 1 80

unrolled (Fig. 1) 16352 1 412

round-based (Fig. 2) 3997 12 118

round-based (Fig. 5) 5045 12 98

We conclude that the latency improvement sourced by the application of one
register stage per cipher round comes at the cost of area and randomness over-
heads. All investigated TI designs are at least 73% larger than the comparable
TI architecture from [20] with a three-stage decomposed Sbox especially since

Low-Latency Hardware Masking of PRINCE 13

Table 2. Synthesis results of all investigated first-order masked PRINCE designs.

Scheme #Shares
Area Initial Rand Online Rand Latency Delay

GE bits bits/cycle cycles ps

TI (Fig. 3) 5 42158 256 0 12 153

TI (Fig. 4) 4 26158 204 0 12 145

GLM (Fig. 6) 2 20046 64 128 12 97

Table 3. Synthesis results of comparable first-order masked PRINCE designs from
literature.

Scheme #Shares
Area Initial Rand Online Rand Latency Delay

GE bits bits/cycle cycles ps

TI [20] 3 15063 128 0 40 85

GLM [7] 2 16951 64 112 24 101

GLM [24] 2 14235 64 0 24 85

they operate on more than the minimum number of three shares. Since fewer
shares are processed and combined, the circuit size and the critical path delay
decrease if the number of shares is decreased. This is beneficial, for TIs with
fewer shares as the changing of the guards technique allows a remasking without
any online randomness. Due to these results, we recommend using the minimum
number of shares and the changing of the guards technique for a low latency TI
of PRINCE.
The further reduction to d+1 shares makes it necessary to use either online ran-
domness affecting the circuit size in case that additional PRNGs are required or
to place another register stage in the round circuit [24] which doubles the latency.
Nevertheless, we achieve the shortest critical path and the smallest cipher core
area for the GLM architecture. Compared to the similar design in [24] we half
the number of clock cycles at the cost of 128 bit online randomness per round
and an area overhead of 41%. We sum up, that the GLM architecture is the most
suited design regarding low-latency but with the restriction that a small and fast
PRNG is available. We apply a PRNG based on KECCAK-f [200] [3] with pa-
rameters r = 128 and c = 72 to generate 128 bits of randomness per clock cycle.
Otherwise, the TI architecture is usable in absence of a PRNG. The area require-
ment for the first-order masking itself grows by at least a factor of four for the
GLM architecture. Nevertheless, our smallest first-order secure low-latency ar-
chitecture is only 23% larger than the originally proposed unrolled architecture.
We, therefore, conclude that the area requirements are still acceptable.

6 Security Analysis

We evaluate our designs’ power-side-channel leakage based on physical measure-
ments on an FPGA. We place both architectures on a SAKURA-G board [1],

14 N. Müller et al.

specifically designed to evaluate power-analysis attacks. The board integrates
two Spartan-6 FPGAs. The smaller FPGA is a controller that communicates
with the target FPGA and the measurement script. Moreover, a PRNG based
on the AES in counter mode is placed on the control FPGA to generate masks
and additional online randomness. We measure the power consumption at a
shunt resistor inserted in the target FPGA’s Vdd path and record the traces
with a digital PicoScope oscilloscope of the 6000 series. The oscilloscope oper-
ates on a sampling rate of 625 MS/s while all target designs receive a 6 MHz
clock. The recorded power trace is quantized with an 8-bit resolution and stored
on the host PC. A sample trace of the five-share TI architecture (cf. Figure 8(a)),
the four-share TI architecture (cf. Figure 9(a)), and the GLM architecture (cf.
Figure 10(a)) is illustrated. We apply the non-specific t-test over 100 million
traces, measured either by encrypting a fixed or a random plaintext. The t-test
detects general information leakage by comparing the statistical properties of
two groups of traces. We say that an implementation has general information
leakage if an absolute t-value in a single sample point exceeds the 4.5 absolute
threshold. We compute the t-values for the first and second statistical moment.
The resulting plots are given in Figures 8, 9, and 10.

Figure 8(b) indicates that the evaluated PRINCE TI architecture with five
shares is first-order secure since no absolute t-value surpasses the 4.5 threshold.
Moreover, Figure 8(c) shows no growing progression of the maximum t-value.
As expected, we observe strong second-order leakage after hundred thousands of
traces (cf. Figures 8(d) and 8(e)).

The same holds for the evaluated TI architecture with four-shares and re-
masking. Figure 9(b) shows no first-order leakage indicating that the design is
first-order secure. Figure 9(c) shows no growing progression of the maximum
t-value and we observe strong second-order leakage after hundred thousands of
traces (cf. Figures 9(d) and 9(e)). Compared to the five-share TI, the maximum
second-order leakage is higher than for the four-share TI architecture and the
threshold is exceeded in a larger set of sample points.

For the GLM architecture, the t-test results do not indicate perfect first-
order security. Figure 10(c) shows that the maximum t-statistics value exceeds
the threshold after around 50 million traces. However, several previous works
have observed that the t-test may indicate the presence of detectable leakage in
the first order due to coupling effects, despite the implementation being glitch-
extended first-order probing secure [8]. This seems to be especially relevant for
d + 1-masked implementations with d = 1. In particular, the authors of [2] ob-
serve first-order leakage when evaluating a first-order secure DOM protected
implementation of the AES with the non-specific t-test. Since the GLM archi-
tecture utilizes a d + 1 masking scheme and is implemented using 2 shares, it
is not overly surprising that the non-specific t-test indicates small amounts of
detectable first-order leakage. However, to verify that the leakage stems from
coupling effects and not from an implementation flaw we have used SILVER [17]
to verify the implementation’s glitch-extended probing security.
Additionally, we decided to evaluate the design with a moments-correlating DPA

Low-Latency Hardware Masking of PRINCE 15

� ��� ���� ����

�������
�	�

�

��

���

�

�
��

(a) A sample trace of the five-share
PRINCE TI

� ��� ��� ��� ���� ���� ����
���������	
�����105

��

��

�

�

�

���
�	
�
�

�

(b) First-order t-test over points

� ��� ��� ��� ���
����������
�����105

��

��

�

�

�

�
��

���
	�

���
��
��
�
�

�

(c) First-order t-test over traces

� ��� ��� ��� ���� ���� ����

���������	
����105

���

���

�

��

���
��
���

��	

(d) Second-order t-test over points

� ��� ��� ��� ���
�����
���	������105

�

��

��

�
	�

��	

�

���
��
�	
���

���

(e) Second-order t-test over traces

Fig. 8. Non-specific t-test results over 100 million traces encompassing the whole en-
cryption with the PRINCE five-share TI architecture.

(MCDPA) [21]. Since the MCDPA is a collision-based attack we avoid restricting
our evaluation to a specific power model. During the profiling phase, we create
first and second-order models based on a set of 50 million traces for each Sbox.
Another set of 50 million traces is used to perform the actual attack on each
Sbox. As a result, the attack returns the correlation between the model and
attack traces for all possible input differences. Since we correlate the same Sbox
from the modeling set and the attack set, we expect the highest correlation for
the input difference zero.

The first-order MCDPA results for each nibble are shown in Figure 11. As
the correct difference (colored black) shows no higher correlation than all other
differences, we again confirm that our implementation is indeed secure against
first-order attacks. The second-order MCDPA results are given in Figure 12. As

16 N. Müller et al.

� ��� ���� ����

�������
�	�

����

���

�

�

�
��

(a) A sample trace of the four-share
PRINCE TI

� ��� ��� ��� ���� ���� ����
��
��
�������

��

��

�

�

�

���
��
���

��	

(b) First-order t-test over points

� ��� ��� ��� ���
����������
�����105

��

��

�

�

�

�
��

���
	�

���
��
��
�
�

�

(c) First-order t-test over traces

� ��� ��� ��� ���� ���� ����
�����	���

��

���

�

��

��

���
��
�
�

�
�

(d) Second-order t-test over points

� ��� ��� ��� ���
�����
���	������105

�

��

��

�
	�

��	

�

���
��
�	
���

���

(e) Second-order t-test over traces

Fig. 9. Non-specific t-test results over 100 million traces encompassing the whole en-
cryption with the PRINCE four-share TI architecture.

expected, we observe that the attack successfully recovered the key difference in
the second order. In particular, the correct key difference is distinguishable from
all other differences for all nibbles.

7 Conclusion

In this paper, we present several case studies on low-latency masked PRINCE
architectures with the TI and GLM masking scheme. The comparison of all pre-
sented designs in Table 2 points out that every scheme comes with its character-
istic requirements for area, latency, and randomness. The analyzed TI architec-
tures offer an acceptable circuit size and require no fresh randomness. Moreover,
we point out that the usage of remasking with changing of the guards is prefer-

Low-Latency Hardware Masking of PRINCE 17

� ��� ���� ����
��	�������
��

���

���

�

��

��

��
�
�

(a) A sample trace of PRINCE GLM

� ��� ��� ��� ���� ���� ����
��
��
�������

��

��

�

�

�

���
��
���

��	

(b) First-order t-test over points

� ��� ��� ��� ���
�����
���	������105

����

����

���

���

���

�
	�

��	

�

���
��
�	
���

���
(c) First-order t-test over traces

� ��� ��� ��� ���� ���� ����
�����	���

��

�

��

���
��
�
�

�
�

(d) Second-order t-test over points

� ��� ��� ��� 	��
���������
�
����105

�

��

��

��

�

�

��

��

���
��
�

���

���

(e) Second-order t-test over traces

Fig. 10. Non-specific t-test results over 100 million traces encompassing the whole
encryption with the PRINCE GLM architecture.

able compared to the usage of more shares. The reduction of shares to d + 1
improves the circuit size significantly at the cost of online randomness. We also
demonstrate all latency improvements result in at least an overhead in the area
due to the processing of more shares. Hence, the lightweight property of every
block cipher is decreased by applying low-latency masking to it. Nevertheless,
all overheads are acceptable and applicable in practical devices.

18 N. Müller et al.

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

�������

������

������

������

������

��
���
��
��

�

(a) nibble 1

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

�������

������

������

������

������

��
���
��
��

�

(b) nibble 2

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

�������

������

������

������

��
���
��
��

�

(c) nibble 3

� ��� ��� ��� ���� ���� ����
�	�������
���

�������

�������

������

������

������

�
���
�

��

��

(d) nibble 4

� ��� ��� ��� ���� ���� ����
�	�������
���

�������

�������

������

������

������

�
���
�

��

��

(e) nibble 5

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

�������

������

������

������

������

��
���
��
��

�

(f) nibble 6

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

�������

������

������

������

��
���
��
��

�

(g) nibble 7

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

������

������

������

������

��
���
��
��

�

(h) nibble 8

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

�������

������

������

������

��
���
��
��

�

(i) nibble 9

� ��� ��� 	�� ���� ���� ����
�
�����������

�������
�������
�������
������
������
������
������

��
���
��
��

�

(j) nibble 10

� ��� ��� 	�� ���� ���� ����
�
�����������

�������
�������
�������
������
������
������
������

��
���
��
��

�
(k) nibble 11

� ��� ��� 	�� ���� ���� ����
�
�����������

�������
�������
�������
������
������
������
������

��
���
��
��

�

(l) nibble 12

� ��� ��� 	�� ���� ���� ����
�
�����������

�������
�������
�������
������
������
������
������

��
���
��
��

�

(m) nibble 13

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

�������

������

������

������

������

��
���
��
��

�

(n) nibble 14

� ��� ��� 	�� ���� ���� ����
�
�����������

�������

�������

�������

������

������

������

��
���
��
��

�

(o) nibble 15

� ��� ��� 	�� ���� ���� ����
�
�����������

�������
�������
�������
������
������
������
������

��
���
��
��

�

(p) nibble 16

Fig. 11. 1st-order profiled MCDPA targeting the PRINCE GLM architecture using 50
million profiling traces and 50 million attack traces.

Acknowledgments

The work described in this paper has been supported in part by the German
Research Foundation (DFG) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972, and through the project 435264177 ‘phySicAlly secUre re-
configuraBlE platfoRm (SAUBER)‘.

Low-Latency Hardware Masking of PRINCE 19

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(a) nibble 1

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(b) nibble 2

� ��� ��� ��� ���� ���� ����
�	�������
���

������
������
�����
�����
�����
�����

�
���
�

��

��

(c) nibble 3

� ��� ��� ��� ���� ���� ����
�
�����������

������
������
�����
�����
�����
����	

��
���
��
��

�

(d) nibble 4

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(e) nibble 5

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(f) nibble 6

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(g) nibble 7

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(h) nibble 8

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(i) nibble 9

� ��� ��� 	�� ���� ���� ����
�����
�������

������
�����
�����
�����
�����
����

��
���

��
�

��

(j) nibble 10

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��
(k) nibble 11

� ��� ��� 	�� ���� ���� ����
�����
�������

������
�����
�����
�����
�����
����

��
���

��
�

��

(l) nibble 12

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(m) nibble 13

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(n) nibble 14

� ��� ��� 	�� ���� ���� ����
�����
�������

������
�����
�����
�����
�����
����

��
���

��
�

��

(o) nibble 15

� ��� ��� 	�� ���� ���� ����
�����
�������

������
������
�����
�����
�����
�����
����

��
���

��
�

��

(p) nibble 16

Fig. 12. 2nd-order profiled MCDPA targeting the PRINCE GLM architecture using
50 million profiling traces and 50 million attack traces.

References

1. Side-channel attack user reference architecture. http://satoh.cs.uec.ac.jp/

SAKURA/index.html

2. Bache, F., Plump, C., Güneysu, T.: Confident leakage assessment — a side-
channel evaluation framework based on confidence intervals. In: 2018 Design, Au-
tomation Test in Europe Conference Exhibition (DATE). pp. 1117–1122 (2018).
https://doi.org/10.23919/DATE.2018.8342178

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge-based pseudo-
random number generators. In: Mangard, S., Standaert, F.X. (eds.) Cryptographic
Hardware and Embedded Systems, CHES 2010. pp. 33–47. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2010)

4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Idrisova, V.: Threshold
implementations of small s-boxes. Cryptography and Communications 7 (03 2015).
https://doi.org/10.1007/s12095-014-0104-7

5. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stütz, G.: Threshold implementations
of all 3x3 and 4x4 s-boxes. In: Prouff, E., Schaumont, P. (eds.) Cryptographic Hard-
ware and Embedded Systems – CHES 2012. pp. 76–91. Springer Berlin Heidelberg,
Berlin, Heidelberg (2012)

6. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thom-

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
https://doi.org/10.23919/DATE.2018.8342178
https://doi.org/10.1007/s12095-014-0104-7

20 N. Müller et al.

sen, S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive comput-
ing applications - extended abstract. In: Wang, X., Sako, K. (eds.) Advances in
Cryptology - ASIACRYPT 2012 - 18th International Conference on the Theory
and Application of Cryptology and Information Security, Beijing, China, Decem-
ber 2-6, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7658, pp.
208–225. Springer (2012). https://doi.org/10.1007/978-3-642-34961-4 14, https:

//doi.org/10.1007/978-3-642-34961-4_14

7. Božilov, D., Knežević, M., Nikov, V.: Optimized threshold implementations: Min-
imizing the latency of secure cryptographic accelerators. In: Beläıd, S., Güneysu,
T. (eds.) Smart Card Research and Advanced Applications. pp. 20–39. Springer
International Publishing, Cham (2020)

8. Cnudde, T., Ender, M., Moradi, A.: Hardware masking, revisited. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2018, 123–148 (2018)

9. Daemen, J.: Changing of the guards: a simple and efficient method for achiev-
ing uniformity in threshold sharing. Cryptology ePrint Archive, Report 2016/1061
(2016), https://eprint.iacr.org/2016/1061

10. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: A complete break of
the keeloq code hopping scheme. In: Wagner, D. (ed.) Advances in Cryptology –
CRYPTO 2008. pp. 203–220. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

11. Faust, S., Grosso, V., Merino Del Pozo, S., Paglialonga, C., Standaert, F.X.: Com-
posable masking schemes in the presence of physical defaults &; the robust prob-
ing model. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems 2018(3), 89–120 (Aug 2018). https://doi.org/10.13154/tches.v2018.i3.89-120,
https://tches.iacr.org/index.php/TCHES/article/view/7270

12. Groß, H., Iusupov, R., Bloem, R.: Generic low-latency masking in hard-
ware. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 1–21 (2018).
https://doi.org/10.13154/tches.v2018.i2.1-21, https://doi.org/10.13154/

tches.v2018.i2.1-21

13. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact
masked hardware implementations with arbitrary protection order. In: Pro-
ceedings of the 2016 ACM Workshop on Theory of Implementation Se-
curity. p. 3. TIS ’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2996366.2996426, https://doi.org/

10.1145/2996366.2996426

14. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) Advances in Cryptology - CRYPTO 2003. pp.
463–481. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

15. Kasper, M., Kasper, T., Moradi, A., Paar, C.: Breaking keeloq in a flash: On
extracting keys at lightning speed. In: Preneel, B. (ed.) Progress in Cryptology –
AFRICACRYPT 2009. pp. 403–420. Springer Berlin Heidelberg, Berlin, Heidelberg
(2009)

16. Kilian, J., Rogaway, P.: How to protect des against exhaustive key search. In:
Koblitz, N. (ed.) Advances in Cryptology — CRYPTO ’96. pp. 252–267. Springer
Berlin Heidelberg, Berlin, Heidelberg (1996)

17. Knichel, D., Sasdrich, P., Moradi, A.: Silver – statistical independence and leakage
verification. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT
2020. pp. 787–816. Springer International Publishing, Cham (2020)

18. Moos, T.: Unrolled cryptography on silicon: A physical security analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2020(4), 416–

https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://doi.org/10.1007/978-3-642-34961-4_14
https://eprint.iacr.org/2016/1061
https://doi.org/10.13154/tches.v2018.i3.89-120
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://doi.org/10.13154/tches.v2018.i2.1-21
https://doi.org/10.13154/tches.v2018.i2.1-21
https://doi.org/10.13154/tches.v2018.i2.1-21
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1145/2996366.2996426
https://doi.org/10.1145/2996366.2996426

Low-Latency Hardware Masking of PRINCE 21

442 (Aug 2020). https://doi.org/10.13154/tches.v2020.i4.416-442, https://tches.
iacr.org/index.php/TCHES/article/view/8689

19. Moos, T., Moradi, A., Schneider, T., Standaert, F.X.: Glitch-resistant mask-
ing revisited: or why proofs in the robust probing model are needed. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2019(2), 256–
292 (Feb 2019). https://doi.org/10.13154/tches.v2019.i2.256-292, https://tches.
iacr.org/index.php/TCHES/article/view/7392

20. Moradi, A., Schneider, T.: Side-channel analysis protection and low-latency in ac-
tion - case study of prince and midori. Cryptology ePrint Archive, Report 2016/481
(2016), https://eprint.iacr.org/2016/481

21. Moradi, A., Standaert, F.X.: Moments-correlating dpa. In: Proceedings of
the 2016 ACM Workshop on Theory of Implementation Security. p. 5–15.
TIS ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2996366.2996369, https://doi.org/10.1145/2996366.

2996369

22. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) Information and
Communications Security. pp. 529–545. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2006)

23. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. IACR Cryptology ePrint Archive 2015, 719 (2015)

24. Shahmirzadi, A.R., Moradi, A.: Re-consolidating first-order masking schemes -
nullifying fresh randomness. Cryptology ePrint Archive, Report 2020/890 (2020),
https://eprint.iacr.org/2020/890

https://doi.org/10.13154/tches.v2020.i4.416-442
https://tches.iacr.org/index.php/TCHES/article/view/8689
https://tches.iacr.org/index.php/TCHES/article/view/8689
https://doi.org/10.13154/tches.v2019.i2.256-292
https://tches.iacr.org/index.php/TCHES/article/view/7392
https://tches.iacr.org/index.php/TCHES/article/view/7392
https://eprint.iacr.org/2016/481
https://doi.org/10.1145/2996366.2996369
https://doi.org/10.1145/2996366.2996369
https://doi.org/10.1145/2996366.2996369
https://eprint.iacr.org/2020/890

	Low-Latency Hardware Masking of PRINCE

