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Abstract

We build the first construction of a partially oblivious pseudorandom function (POPRF) that does
not rely on bilinear pairings. Our construction can be viewed as combining elements of the 2HashDH
OPRF of Jarecki, Kiayias, and Krawczyk with the Dodis-Yampolskiy PRF. We analyze our POPRF’s
security in the random oracle model via reduction to a new one-more gap strong Diffie-Hellman inversion
assumption. The most significant technical challenge is establishing confidence in the new assumption,
which requires new proof techniques that enable us to show that its hardness is implied by the q-DL
assumption in the algebraic group model.

Our new construction is as fast as the current, standards-track OPRF 2HashDH protocol, yet provides
a new degree of flexibility useful in a variety of applications. We show how POPRFs can be used to
prevent token hoarding attacks against Privacy Pass, reduce key management complexity in the OPAQUE
password authenticated key exchange protocol, and ensure stronger security for password breach alerting
services.
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1 Introduction

An oblivious pseudorandom function (OPRF) [FIPR05, JL09] allows a client holding a private input x and
a server holding a key sk for a PRF f to engage in a protocol to obliviously evaluate fsk on x. The client
learns (and optionally verifies) the evaluation fsk(x) while the server learns nothing. Partially-oblivious
PRFs (POPRF), first introduced by Everspaugh et al. in the context of the Pythia password hardening
system [ECS+15], extend this functionality to include a public input (or metadata tag) t for the PRF
evaluation. A client learns (and, optionally, verifies) fsk(t, x) where t is known by both server and client; the
private input x remains hidden.

OPRFs are increasingly becoming a critical cryptographic tool for privacy-preserving protocols. Examples
include one-time use anonymous credentials for spam prevention [DGS+18,HIJ+21], private set intersection
(PSI) for checking compromised credentials [LPA+19,TPY+19], de-identified authenticated logging [HIJ+21],
and password-authenticated key exchange [JKX18,JKK14]. In all these applications, we observe that there
is a need to “partition” the PRF in a productive manner, i.e., allowing computation of fsk(t, x) using domain
separation on some public value t. OPRF blinding protocols do not support this in a secure manner, because
the server cannot verify what t is used within a client’s oblivious request. Most OPRF applications therefore
use a separate key instance for each t, with an associated increase in key management complexity. POPRFs
directly provide this functionality, but the only known POPRF [ECS+15] relies on bilinear pairings, which
slows performance relative to the best known OPRF and also complicates deployment given the lack of
widespread implementation support for pairings.

In this work, we introduce a new POPRF that combines aspects of the 2HashDH OPRF of Jarecki et
al. [JKK14], that is the de facto standard used in practice, with the Dodis-Yampolskiy (DY) verifiable random
function [DY05]. Our POPRF is also closely related to a signature scheme suggested by Zhang, Safavi-
Naini, and Susilo (ZSS) [ZSS04,ZSS03]. Our new POPRF, called 3HashSDHI, is essentially as performant as
2HashDH and does not rely on pairings, thereby enabling support for a public input virtually for free. While
3HashSDHI’s protocol is simple, its analysis is not, requiring a new interactive discrete log (DL) assumption
whose security we reduce to q-DL in the algebraic group model [FKL18]. We also provide new formal security
notions for POPRFs and (as a special case) OPRFs, which we believe will be of independent interest.

Formal syntax and security notions for POPRFs. We start with the latter contribution. We provide
a new formalization for POPRFs, including syntax, semantics, and security definitions. Our formal syntax
builds off of [ECS+15] and previous OPRF formalizations [JL09, JKK14]. In terms of security, we propose
new property-based security definitions that cover pseudorandomness (in the face of malicious clients) as
well as request privacy and verifiability (in the face of malicious servers). Our property-based security games
avoid the ideal function based formulations inherited from 2PC and used in prior works on OPRFs; they
also avoid the non-standard “one-more” PRF security definition of [ECS+15].

Our pseudorandomness notion for POPRFs guarantees that the evaluation outputs look random to a
malicious client, even when the malicious client has access to a blinded evaluation oracle. It is formalized
with a simulation-based indistinguishability game that takes rough inspiration from the UC-style all-in-
one OPRF security definition of [JKK14] and prior notions for partially blind signatures [AF96]. Here an
adversary must distinguish between real evaluations of the PRF given access to a blind evaluation oracle,
and evaluations of a random function given access to a simulated blind evaluation oracle. The simulator can
receive random function evaluations on a limited number of points for any given public input t, where the
limit is determined by the number of times the adversary has queried the blind evaluation oracle for that t.
This restriction captures that only one random function evaluation is learned for each blind evaluation. Note
that our accounting is more granular than the general “ticketing” approaches of blind UC protocols [JKK14,
KZ08,Fis06]), due to the need of tying invocations to particular t values.

Our next notion is request privacy which captures that nothing about a client message x should leak to
a malicious server during an oblivious evaluation, and, moreover, the server should not be able to link an
output fsk(t, x) to particular oblivious request transcripts. The latter is often referred to as a linking attack,
and is problematic in various applications of POPRFs. Our request privacy notion comes in two flavors,
depending on whether the malicious server behaves passively or actively. The former allows us to analyze the
privacy of schemes that do not allow verification that a server legitimately computed the blinded evaluation
protocol; the latter requires schemes to allow client-side verification of the server’s response.

Finally we formalize a notion of uniqueness. It ensures that a malicious server cannot trick clients into
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accepting inconsistent evaluations, relative to a shareable public key associated to the secret key sk.

The 3HashSDHI construction. The main contribution of this work is a new construction of a POPRF,
which we call 3HashSDHI. The name refers to its use of three hashes and its reliance on the strong Diffie-
Hellman inversion assumption. Its starting point is the 2HashDH construction of Jarecki et al. [JKK14],
whose full PRF evaluation we define as 2HashDH.Ev(sk, x) = H2(x,H1(x)sk). The blinded evaluation protocol
has the client send B = H1(x)r for random r, and the server respond with B′ = Bsk . The client can unblind
to (B′)1/r = H1(x)sk in order to complete the evaluation of the function. Here operations are over a prime-
order group (written multiplicatively) such as an elliptic curve. Proof of evaluation consists of a simple
Chaum-Pedersen proof of discrete log equality [CP92] proving logg pk = logB B

′ where pk = gsk is the
server’s public key. As mentioned, 2HashDH is already in use in practice [DGS+18, TPY+19, HIJ+21] and
is on track to become a standard [DFHSW20].

We want a way to extend 2HashDH to allow public tags. To do so, we take inspiration from the Dodis-
Yampolskiy PRF, whose evaluation is defined as DY.Ev(sk, t) = g1/(sk+t). Put together, the 3HashSDHI
scheme gives a PRF evaluated as:

3H.Ev(sk, t, x) = H2

(
t, x,H1(x)1/(sk+H3(t))

)
.

It can therefore be interpreted as evaluating the Dodis-Yampolskiy PRF on the public input t over a random
generator determined by the private input x, followed by a final hashing step. The basic structure of
H1(x)1/(sk+H3(t)) was also described in an attempt to build secure partially blind signatures by ZSS [ZSS03].
Their analysis is incorrect, as we discuss further below and in Section 4.

To perform a blind evaluation, the client hashes and blinds their private input as B = H1(x)r using a
random scalar r and sends B to the server holding sk. The server computes and sends back to the client the
strong Diffie-Hellman inversion B′ = B1/(sk+H3(t)) of the blinded element using the secret key and public hash
of the public input t. The client can unblind by computing (B′)1/r = H1(x)1/(sk+H3(t)) and then complete
the evaluation by hashing appropriately. To provide verifiability, the server uses a Chaum-Pedersen zero-
knowledge proof (ZKP) of discrete log equality to prove logg pk′ = logB′ B where pk′ = pk · gH3(t) which can
be easily computed from public values by the client.

Our protocol incurs minimal overhead on top of the OPRF blind evaluation of 2HashDH, requiring only
an extra hash computation, group operation, and scalar inversion. It makes use of the same Chaum-Pedersen
proof for verifiability, which, as has been observed for 2HashDH, allows for evaluation of a batch of inputs
whilst only constructing one Chaum-Pedersen proof [DGS+18, DFHSW20] (provided the batch is for the
same public metadata tag t).

We formally show request privacy against passive adversaries (without ZKP) holds based just on the ran-
domness of the blinding, and that request privacy against malicious adversaries holds additionally assuming
the ZKP is sound. The key technical challenge is proving the new POPRF is pseudorandom.

As is seemingly requisite for schemes with blinded evaluation protocols, we prove the pseudorandomness
security of our scheme with respect to a one-more gap style assumption [BNPS03,Bol03]. In fact the algebraic
structure exposed to adversarial clients by the 3HashSDHI blinded evaluation protocol — raising an arbi-
trary group element Y to 1/(sk + H3(t)) for adversarial t — requires new proof techniques compared to prior
approaches. We start by introducing a new one-more gap strong Diffie-Hellman inversion (OM-Gap-SDHI)
assumption, based on the perceived hardness of computing Y 1/(x+c) for any base Y and (restricted) scalars
c. We show via a relatively straightforward proof that this assumption is sufficient to prove POPRF pseu-
dorandomness for 3HashSDHI, modeling the hash functions as random oracles. Additionally, the verifiable
version requires that the ZKP is zero-knowledge.

The main difficulty is analyzing the security of our new computational assumption. In particular, for given
distinct constants c1, . . . , cn, the assumption considers a setting with an oracle SDH returning B1/(x+ci) on
input (B, i). Given some additional random group elements Y1, . . . , Ym, it requires it to be hard to compute

` elements Y
1/(x+ci)
i1

, . . . , Y
1/(x+ci)
i`

, for any i ∈ [n] and for distinct i1, . . . , i` ∈ [m], using fewer than ` queries
SDH(·, i). The challenge is that we do not restrict the number of queries SDH(X, j) for j 6= i, and this
could be for group elements of X that depend on ci (e.g., X is a prior output of an SDH(·, i) query).
Ultimately, we show in the algebraic group model (AGM) [FKL18] that the assumption reduces to one of
the uber assumptions from Bauer, Fuchsbauer, and Loss [BFL20], and therefore, in turn, is implied by the
q-DL assumption, where q is a bound on the number of oracle queries. This AGM analysis implies hardness
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of the new assumption in the generic group model (GGM) [Sho97,Mau05].
In terms of concrete security, our analyses shows that, roughly speaking, 3HashSDHI is as hard as

breaking the q-DL problem. Actually our main AGM proof is loose by a factor that is the maximum number
of blind evaluation queries made by an adversary. Whether this AGM analysis can be tightened is an open
question, but we observe in the body that a slight alternative to our AGM analysis gives a tight reduction
in the GGM. We suggest using this tighter analysis to drive parameter selection: the best known attack
against q-DL is due to Cheon [Che06] and indicates that a 256-bit group suffices for 80-bit security and a
384-bit group for 128-bit security. Importantly this matches the situation for 2HashDH, and so moving to
3HashSDHI does not require changing group parameters to achieve the desired security levels.

Partially-blind signatures. Our techniques provide a new approach to building partially-blind signa-
tures [AF96]. Whereas an OPRF requires access to the private key to verify a given input, a blind signature
protocol only requires the public key. This property is useful for a number of applications and deployment
settings. For example, in settings where multiple instances of a verifier may check the output of the OPRF,
each instance would either (a) require access to the private key or (b) request verification from an entity
which holds the private key. The former may be problematic if instances that verify outputs do not mutually
trust one another or cannot otherwise share private key material, and the latter may be problematic because
it incurs a network performance penalty. Blind signatures avoid both problems by allowing each instance to
use the public key for verification.

Blind signatures are used in one-time use anonymous credentials, and are also being proposed as a tool
for private click measurement (PCM) in the W3C [WTKW20]. One limitation in these use cases is that the
protocols do not admit public metadata in the signature computation. PCM, for example, would benefit
from binding additional context to signature computations [WTKW20].

As previously mentioned, the 3HashSDHI construction is closely related to the ZSS partially blind signa-
ture scheme [ZSS03], which uses pairings. As we explain in Section 4, the original unforgeability proof is how-
ever incorrect. We provide the first (correct) formal analysis of the security of ZSS using our new techniques
in Appendices E and G. To the best of our knowledge, this result provides the most efficient partially-blind
signature supporting arbitrary public metadata; previous RSA-based constructions [AF96, AO00] require
the set of public metadata tags to be incorporated during parameter setup, previous Schnorr-based con-
structions [AO00, FPS20] are vulnerable in the concurrent signing setting [BLL+21], and other existing
constructions are more heavyweight as they are tailored for the anonymous credential setting [CL04].

Finally, we also show how any unique (partially) blind signature scheme can be used to generically
construct a POPRF by hashing the signature using a random oracle. This is apparently a folklore result
for OPRFs, and we are unaware of any formal treatment it. We provide one that also covers partial
obliviousness/blindness. See Appendix F.

Applications of our POPRF. Equipped with our new POPRF and the underlying design of 3HashSDHI,
we return to our motivating applications and show how swapping in a POPRF for the existing OPRF can
lead to various benefits for deployments.

One-time use anonymous credentials. Privacy Pass [DGS+18, CDFH21] is a protocol in which clients
may be issued one-time use tokens that can later be redeemed anonymously to authenticate themselves. It
has been proposed for use in the context of content distribution networks and web advertising, requiring
users to authenticate with a token, and thereby reducing malicious web requests, protecting against, e.g.,
denial-of-service attacks and fraudulent advertisement conversions. Tokens are issued to users that prove
trustworthiness, e.g., through a CAPTCHA challenge, The protocol is being considered for standardization
by both the IETF and the World Wide Web Consortium (W3C), and a prototype deployment is already in
production use by Cloudflare, hCaptcha, and others.

An OPRF is the core component of the protocol. Tokens are issued via an OPRF in which users
obtain evaluations at random points, storing the point x and evaluation y. Redeeming a token simply
involves showing the pair (x, y), which the server can check is valid, but cannot link x back to an issuance
due to the oblivious evaluation. The server stores a strikelist of used tokens to prevent double spending.
Additionally, all servers perform a global double-spend check to avoid clients from exploiting the possibility
of spending tokens more than once against distributed token checking systems. The use of an OPRF leads
to a more efficient issuance protocol than alternate approaches for keyed-verification anonymous credentials
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that support attributes and proofs over attributes [CMZ14,CPZ20].
An abuse of the protocol that has been observed in its early use is individual users (or groups of users)

gathering tokens over a long period of time and redeeming them all at once, e.g., in an attempt to overwhelm
a website. We refer to such behavior as a hoarding attack. A conceptually easy way to mitigate the damage
of a hoarding attack is to expire old unspent tokens after an amount of time: the way to do this with an
OPRF is by rotating the OPRF key. But key rotations are complex, limiting their frequency: establishing
trust in a frequently-rotating key is a challenging problem. Trustworthy keys are important in this context,
as a server that equivocates on their public key can link token issuances and redemptions, by, for example,
using a unique public key for each issuance. As we show, POPRFs address the issue of expiring tokens
without the need of rotating keys by using the public metadata input to encode an expiration epoch.

Bucketized PSI for checking compromised credentials. Password breach alerting protocols [TPY+19,
LPA+19] allow a user to query to determine if their username, password pair (u, pw) has appeared in a
dataset D of known breaches. If so, the user is vulnerable to credential stuffing attacks and should change
their password. Current services for breach alerting rely on an ad hoc 2HashDH-based private-set membership
protocol that achieves scalability via bucketization: the user sends a truncated hash H(u) of their username
to identify a subset B ⊆ D that have matching truncated username hash. A 2HashDH-based protocol is then
performed over B: the client obliviously evaluates 2HashDH.Ev(sk, u ‖ pw) with sk held by server, and also
obtains the OPRF outputs for all the values in the bucket B. Bucketization ensures scalability by limiting
|B| despite |D| being on the order of billions of username, password pairs.

One issue is that currently deployed protocols provide no cryptographic binding between the bucket
identifier H(u) and the blinded OPRF output: a malicious client can query for arbitrary usernames, not just
ones that match H(u). Whether this is a significant security problem in practice is not clear, but we note
that POPRFs easily rectify it by replacing 2HashDH above with 3HashSDHI and setting t = H(u).

Asymmetric password-authenticated key exchange. Password authenticated key exchange (PAKE) proto-
cols [BM93] allow a client and server to establish a shared session key authenticated by a short password.
Strong asymmetric PAKE (SaPAKE) protocols [JKX18] additionally ensure that the server can store (just)
what amount to salted hashes of user passwords, thereby making it so that PAKEs can achieve the same
level of security achieved by standard password-based authentication in the case of a server breach. The
OPAQUE [JKX18] SaPAKE protocol uses an OPRF as one of its core components; it is currently being
considered for standardization by the IETF [KLW21]. The OPRF suggested for use is 2HashDH.

In OPAQUE the server uses a separate OPRF key for each user. We show how we can instead use our
3HashSDHI POPRF to allow OPAQUE to work with a single master key pk; diversity across users can
then be provided using usernames as the public input t to 3HashSDHI. We believe that this will simplify
deployments and potentially improve their security, as discussed in the body.

2 Preliminaries

2.1 Algebraic Group Model

In some of our security proofs, we consider security against algebraic adversaries which we model using
the algebraic group model, following the treatment of [FKL18]. We call an algorithm A algebraic if for all
group elements Z that are output (either as final output or as input to oracles), A additionally provides the
representation of Z relative to all previously received group elements. The previous received group elements
include both original inputs to the algorithm and outputs received from calls to oracles. More specifically, if
[X]i is the list of group elements [X0, . . . , Xn] ∈ G that A has received so far, then, when producing group
element Z, A must also provide a list [z]i = [z0, . . . , zn] such that Z =

∏
iX

zi
i .

2.2 Random Oracle Model

We will prove security using ideal primitives, modeling hash functions as random oracles. Since our schemes
will make use of more than one hash function, it will be useful to have a general abstraction for the use
of ideal primitives, following the treatment of [JT20]. An ideal primitive P specifies algorithms P.Init and
P.Eval. The initialization algorithm has syntax stP←$ P.Init(1λ). The stateful evaluation algorithm has
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Game SoundANiZK,R,P(λ)

pp←$ NiZK.Setup(λ)

stP ←$ P.Init(λ)

(x, π)←$AP(pp)

Return∧ NiZK.VerP(x, π)

6 ∃w : (x,w) ∈ R



Game ZKA,bNiZK,R,S,P(λ)

pp←$ NiZK.Setup(λ)

stP ←$ P.Init(λ)

stS ←$ S.Init(pp)

b′←$APrim,Prove(pp)

Return b′

Oracle Prove(x,w)

Require (x,w) ∈ R
π1←$ NiZK.ProveP(x,w)

π0←$ S.Prove(x : stS)

Return πb

Oracle Prim(x)

y1←$ P.Eval(x : stP)

y0←$ S.Eval(x : stS)

Return yb

Figure 1: Soundness (left) and zero knowledge (right) security games for non-interactive zero knowledge proof systems.

syntax y←$ P.Eval(x : stP). We sometimes use AP as shorthand for giving algorithm A oracle access to
P.Eval(· : stP). While, the stateful formulation of the ideal primitive is used to allow for efficient instantiation
in our security proofs, e.g., by “lazy sampling”, ideal primitives should be essentially stateless [JT20] to
prevent contrived behavior. For example, a random oracle can be written to be stateless, but it would
inefficient to have to store a huge random table. We can combine access to multiple ideal primitives primitives
P = P1 × . . .× Pm as follows:

P.Init(1λ)

[stP,i]
m
i
←$

[
Pi.Init(1λ)

]m
i

Return [stP,i]
m
i

P.Eval(x : [stP,i]
m
i

)

(i, x)← x

y←$ Pi.Eval(x : stP,i)

Return y

To concretize the above, we focus on random oracles. We define a random oracle that takes arbitrary
input and produces random output from a sampling algorithm Samp. It is captured by the ideal primitive
RO[Samp] = (RO.Init,RO.H) defined as follows. When the range is clear from context, Samp may be omitted.

RO.Init(1λ)

T ← [·]
Return T

RO.Eval(x : T )

If x 6∈ T then T [x]←$ Samp()

Return T [x]

When clear from context and in an abuse of notation (since we will use Hi to denote a hash function as well),
we will write P = H1 × · · · × Hm as the ideal primitive that gives access to m random oracles, accessible by
querying directly an oracle labeled Hi.

Algebraic algorithms in the random oracle model. As in [FPS20], to support algebraic algorithms,
we will require the structure of the domain and range to be specified for any random oracle RO. We assume
an input can be efficiently checked to be a valid member of the domain and perform such checks implicitly
returning ⊥ if they fail. We will require that algebraic algorithms provide representations for any group
element input, specified as part of the domain of RO. And similarly, any group element output of RO is
included in the list of received group elements for the algebraic adversary.

2.3 Non-interactive Zero Knowledge Proofs

We define a non-interactive proof system NiZK over an efficiently computable relation R defined over pairs
(x,w) where x is called the statement and w is called the witness. It is made up of the following algo-
rithms. The setup algorithm produces the public parameters for execution, pp←$ NiZK.Setup(λ). The
proving algorithm takes a witness and statement and produces a proof, π←$ NiZK.ProveP

pp(w, x). The veri-

fication algorithm verifies the proof for a statement, b← NiZK.VerP
pp(x, π). We define the following security

properties.

Completeness. A proof system is complete if given a true statement, a prover with a witness can convince
the verifier. We will make use of a proof system with perfect completeness. A proof system has perfect
completeness if for all (x,w) ∈ R,

Pr
[
NiZK.VerP

pp(x,NiZK.ProveP
pp(w, x)) = 1

]
= 1 .

Knowledge soundness. A proof system is computationally knowledge sound if whenever a prover is able
to produce a valid proof for a statement x, it is a true statement, i.e., there exists some witness w such that
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ΣR.ProveH(α, (g, U, V,W ))

r←$ Zp
sU ← gr ; sW ← V r

c← H(g ‖ U ‖ V ‖ W ‖ sU ‖ sW )

z ← r − cα
π ← (z, c)

Return π

ΣR.VerH((g, U, V,W ), π)

(z, c)← π

sU ← gzUc ; sW ← V zW c

Return c = H(g ‖ U ‖ V ‖ W ‖ sU ‖ sW )

R = {(α), (g, U, V,W ) : U = gα ∧W = V α}

Figure 2: Description of Chaum-Pedersen discrete log equality Sigma protocol [CP92].

(x,w) ∈ R. Knowledge soundness is defined by the security game SoundANiZK,R,P(λ) (Figure 1) in which
an adversary is tasked with finding a verifying statement and proof where the statement is not in R. The
advantage of an adversary is defined as Advsound

NiZK,R,P,A(λ) = Pr[SoundANiZK,R,P(λ) = 1] with respect to ideal
primitive P.

Zero knowledge. A proof system is computationally zero-knowledge if a proof does not leak any information
besides the truth of a statement. Zero knowledge is defined by the security game ZKA,bNiZK,R,S,P(λ) (Figure 1)
in which an adversary is tasked with distinguishing between proofs generated from a valid witness and
simulated proofs generated without a witness. The advantage of an adversary is defined as

Advzk
NiZK,R,S,P,A(λ) =

∣∣∣Pr[ZKA,1NiZK,R,S,P(λ) = 1]− Pr[ZKA,0NiZK,R,S,P(λ) = 1]
∣∣∣ ,

with respect to simulator algorithm S and ideal primitive P.

Fiat-Shamir heuristic for Sigma protocols. Our protocol requires a non-interactive zero knowledge
proof for the relation including two pairs of group elements with equivalent discrete logs:

R = {(g, U, V,W ), (α) : U = gα ∧W = V α} .
This relation falls into a general family of relations of discrete log linear homomorphisms for which there exist
so-called “Sigma protocols” [Cam98] to construct interactive proofs of knowledge. These can be made non-
interactive using the Fiat-Shamir heuristic in the standard way. We denote ΣR[GGen] (shortened to ΣR for
simplicity) as the resulting non-interactive proof system forR known as the Chaum-Pedersen protocol [CP92]
(shown in Figure 2); it is perfectly complete, computationally sound, and perfectly zero-knowledge in the
random oracle model. We refer readers to [BS17, Figure 19.7] for construction of a simulator SΣ, which leads
to the following well-known result that we state for completeness:

Theorem 1 The simulator SΣ is such that for any RO-model adversary Azk against ZK of ΣR,

Advzk
ΣR,R,SΣ,RO,Azk

(λ) ≤ qP · (qP + qH)/2λ ,

where Azk makes at most qP and qH queries to Prove and the random oracle RO : G6 → Zp.

3 Partially Oblivious Pseudorandom Functions

We provide a new formalization for POPRFs, including syntax, semantics, and security. Our formalization
builds off that from [ECS+15], but we offer new security notions that cover simulation-based security as a
PRF (in the presence of a blinded evaluation oracle), client input privacy, and verifiability.

Syntax and semantics. A partially-oblivious pseudorandom function (POPRF) scheme, Fn, is a tuple of
algorithms

(Fn.Setup,Fn.KeyGen,Fn.Req,Fn.BlindEv,Fn.Finalize,Fn.Ev) .

The setup and key generation algorithm generate public parameters pp and a public key, secret key pair
(pk, sk), respectively. Oblivious evaluation is carried out as an interactive protocol run between client and
server. The protocols we consider in this work make use of only a single round of interaction, so we simplify
the syntax of the interactive oblivious evaluation protocol into algorithms (Fn.Req, Fn.BlindEv, Fn.Finalize)
that work as follows:
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(1) First, a client runs the algorithm Fn.ReqP
pp(pk, t, x), which takes input a public key pk, tag (or public

input) t, and private input x, and outputs a local state st and a request message req. The message req
is sent to a server.

(2) A server runs algorithm Fn.BlindEvP
pp(sk, t, req), using as input a secret key, a tag t, and the request

message. It produces a response message rep that should be sent back to the client.

(3) Finally, the client runs the algorithm Fn.Finalize(rep : st) and outputs a PRF evaluation or ⊥ if the
response message is rejected, for example, due to the verification check failing.

The unblinded evaluation algorithm Fn.Ev is deterministic, and takes as input a public key, secret key pair
(pk, sk), an input pair (t, x), and outputs a PRF evaluation y. We also define sets Fn.SK, Fn.PK, Fn.T, Fn.X,
and Fn.Out representing the secret key, public key, tag, private input, and output space, respectively. We
define the input space Fn.In = Fn.T × Fn.X. We assume efficient algorithms for sampling and membership
queries on these sets. When it is clear from context, we drop the prefix Fn and subscript pp from algorithm
names.

For correctness, we require that Ev is a function, and that the blinded and unblinded evaluations are
consistent. To formalize the latter: we require that for any pp output from Setup, any pk, sk output by
KeyGen, and any t, x, it holds that Pr[Ev(sk, t, x) = y] = 1 where the probability is taken over choice of y via
the following process:

(st, req)←$ ReqP(pk, t, x) ; rep←$ BlindEvP(sk, t, req) ; y←$ FinalizeP(rep : st) .

Security. We introduce three new security definitions for POPRFs. We use code-based games mostly
following the framework of Bellare and Rogaway [BR06].

Pseudorandomness. The first definition captures pseudorandomness, i.e., indistinguishability of the
POPRF from a random function, even for malicious clients that have access to a blinded evaluation or-
acle. We borrow some elements from the UC definition for standard OPRFs from [JKK14], but opt for what
we believe to be a simpler, standalone formulation. We also extend to handle partial obliviousness, which
has some subtleties.

A pseudocode game appears in Figure 3. The game is parameterized by a security parameter λ, an
adversary A, a challenge bit b, a POPRF Fn, a simulator S = (S.Init,S.BlindEv,S.Eval), and an ideal primitive
P. The last will be used for random oracles in our main result. A simulator is a triple of algorithms that share
state (explicitly denoted by stS in the game). Algorithm S.Init initializes the simulator state and outputs a
public key for the game. Algorithm S.BlindEv simulates blinded evaluation response messages while S.Eval
simulates random oracle queries. Importantly, S.BlindEv and S.Eval can obtain Ev outputs, but they can
only do so in a circumscribed way: the simulator has oracle access to LimEv which limits the number of
full evaluations it can obtain to be at most the number of queries so far made by the adversary to the
BlindEv. Importantly, this limit is per-metadata value t (indicated via the subscript): the LimEv query
on any particular t is bound by the total number of blinded evaluation queries on that particular t. This
follows from similar granular restrictions in the partially blind signatures literature [AF96].

A weaker version of the game would simply cap the total number of queries to LimEv by the total
number of queries to BlindEv. This notion is, however, too weak for applications because we would like to
ensure that querying, say, three times on public input t1 cannot somehow help an adversary complete the
evaluation for another public input t2 6= t1. We note that a recent preprint [SS21] contained this weaker
notion, couched in the context of Privacy Pass. (We discuss this paper further in Section 4.)

We let the advantage of a POPRF adversary A be defined by

Advpo-prf
Fn,S,P,A,(λ) =

∣∣∣Pr
[
POPRFA,1Fn,S,P(λ)⇒ 1

]
− Pr

[
POPRFA,0Fn,S,P(λ)⇒ 1

]∣∣∣
where the probability spaces are taken over the random choices made in the games and the events signify
that the game outputs the value one.

One could relax our definition in various ways. For example, by setting a parameter qt,max that upper
bounds the total number of BlindEv queries on tag t over the course of the game and letting the simulator
— at any point in the game — obtain qt,max full evaluations. This would seem to still provide qualitatively
the same level of security, but our schemes meet the stronger notion that restricts the simulator over the
course of the game. Another relaxation that does not preserve the same level of security would be to allow
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Game POPRFA,bFn,S,P(λ)

RandFn←$ FnGen(Fn.In, Fn.Out)

stP ←$ P.Init(λ)

pp←$ Fn.Setup(λ)

(sk, pk1)←$ Fn.KeyGenP
pp()

(stS, pk0)←$ S.Init(pp)

b′←$AEv,BlindEv,Prim(pp, pkb)

Return b′

Oracle Ev(t, x)

y1 ← Fn.EvP(sk, t, x)

y0 ← RandFn(t, x)

Return yb

Oracle LimEv(t, x)

qt,s ← qt,s + 1

If qt,s ≤ qt then

Return Ev(t, x)

Return ⊥

Oracle BlindEv(t, req)

qt ← qt + 1

rep1 ← Fn.BlindEvP(sk, t, req)

(rep0, stS)←$ S.BlindEvLimEv(t, req : stS)

Return repb

Oracle Prim(x)

y1←$ P.Eval(x : stP)

(y0, stS)←$ S.EvalLimEv(x : stS)

Return yb

Figure 3: Simulation-based security definition for pseudorandomness against malicious clients, with granular ac-
counting for metadata in queries. The LimEval oracle limits the number of evaluations the simulator can make on
a per-metadata tag basis.

Game POPRIV1A,bFn,P(λ)

pp←$ Fn.Setup(λ)

(pk, sk)←$ Fn.KeyGen(pp)

stP ←$ P.Init(λ)

b′←$ATrans,P(pp, pk, sk)

Return b′

Oracle Trans(t, x0, x1)

(st0, req0)←$ Fn.ReqP(pk, t, x0)

(st1, req1)←$ Fn.ReqP(pk, t, x1)

rep0←$ Fn.BlindEvP(sk, t, req0)

rep1←$ Fn.BlindEvP(sk, t, req1)

y0 ← Fn.FinalizeP(rep0; st0)

y1 ← Fn.FinalizeP(rep1; st1)

τ ← (reqb, repb, y0)

τ ′ ← (req1−b, rep1−b, y1)

Return (τ, τ ′)

Game POPRIV2A,bFn,P(λ)

pp←$ Fn.Setup(λ)

stP ←$ P.Init(λ)

i← 0

b′←$AReq,Fin,P(pp)

Return b′

Oracle Req(pk, t, x0, x1)

i← i+ 1

(sti,0, req0)←$ Fn.ReqP(pk, t, x0)

(sti,1, req1)←$ Fn.ReqP(pk, t, x1)

Return (reqb, req1−b)

Oracle Fin(j, rep, rep′)

If j > i then return ⊥
yb ← Fn.FinalizeP(stj,b, rep)

y1−b ← Fn.FinalizeP(stj,1−b, rep
′)

If y0 = ⊥ or y1 = ⊥ then

Return ⊥
Return (y0, y1)

Figure 4: Security definitions for honest-but-curious server unlinkability (left) and malicious server unlinkability
(right).

the simulator more queries than qt,max, for example, 2 · qt,max. But this degrades the security guarantee as it
means that in q queries to BlindEv on some t a malicious client can potentially compute up to 2q POPRF
outputs for that tag t.

Request privacy and unlinkability. Our second goal is to capture privacy for clients. This means not only
that requests should hide the private input portion x, but also that request/response transcripts and output
POPRF values should be unlinkable. We formalize two models for this goal, corresponding to the level of
maliciousness by a misbehaving server.

Game POPRIV1 (Figure 4, top game) captures an indistinguishability experiment in which the adver-
sary can query to obtain full transcripts (including output) resulting from honest blinded evaluation of a
POPRF. The transcripts are either returned properly (b = 0) or with the request, response pairs swapped
relative to the outputs (b = 1). Intuitively, if the adversary cannot distinguish between these two worlds,
then there is no way to link a POPRF output value to a particular blinded evaluation, despite the adver-
sary knowing the secret POPRF key. This captures also input privacy security: if a request reveals some
information about the input x this can be used to win the POPRIV1 game. We sometimes refer to this as
request privacy against passive adversaries, because the adversary cannot interfere with the server’s proper
execution.

The advantage of a POPRIV1 adversary A in the P-model is defined by

Advpo-priv1
Fn,P,A (λ) =

∣∣∣Pr
[
POPRIV1A,1Fn,P(λ)⇒ 1

]
− Pr

[
POPRIV1A,0Fn,P(λ)⇒ 1

]∣∣∣
where the probability spaces are taken over the random choices made in the games and the events signify
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that the game outputs the value one. We say a Fn scheme is perfectly private if Advpo-priv1
Fn,P,A (λ) = 0 for all

adversaries A.
POPRIV1 security does not capture malicious servers that deviate from the protocol. So, for example,

it doesn’t rule out attacks in which the server replies with garbage to a blinded evaluation request.
Our next game POPRIV2 allows the adversary to choose the public keys used for request generation and

leaves to the adversary how to reply to requests. The game therefore splits transcript generation across two
oracles, a request oracle (Req) and finalize oracle (Fin). The first oracle replies with a randomly ordered
pair of request messages based on the challenge bit, and the second oracle can be queried with adversarially
chosen response messages. The game requires that neither y0 nor y1 is equal to ⊥ — if either is then the
finalize oracle returns ⊥. This prevents the trivial attack of corrupting one reply but not the other.

The advantage of a POPRIV2 adversary A in the P-model is defined by

Advpo-priv2
Fn,P,A (λ) =

∣∣∣Pr
[
POPRIV2A,1Fn,P(λ)⇒ 1

]
− Pr

[
POPRIV2A,0Fn,P(λ)⇒ 1

]∣∣∣
where the probability spaces are taken over the random choices made in the games and the events signify
that the game outputs the value one.

POPRIV2 is strictly stronger than POPRIV1. Looking ahead our new POPRF meets POPRIV1 when
verification is omitted, and POPRIV2 when verification is required.

Uniqueness. Lastly, we discuss an additional property that is relevant in the verifiable setting when
clients want to ensure that servers honestly perform blind evaluations. This means that the output of the
blind evaluation protocol should be consistent relative to the public key pair, i.e., consistent with the output
of unblinded evaluation using the secret key. Our correctness definition requires this is the case for honest
execution of the algorithms. We formalize this correctness property for malicious servers as a uniqueness
definition POUNIQ, taking inspiration from definitions used previously for verifiable random functions
(c.f., [DY05]). In short, no malicious server should be able to convince a client into accepting two different
outputs for the same (pk, t, x). We show that uniqueness is implied by correctness and POPRIV2. The
complete definition for POUNIQ, theorem statement, and proof are deferred to Appendix H.

Relation to partially blind signatures. POPRFs are related to two-move partially blind signatures,
which were introduced by Abe and Fujisaki [AF96]. A partially blind signature is a tuple of algorithms

DS = (DS.Setup,DS.KeyGen,DS.Sign,DS.Ver,DS.Req,DS.BlindSign,DS.Finalize)

where the first four algorithms define a standard digital signature scheme for message space consisting of pairs
(t,m), called the public input (or tag) and private message, respectively. Signatures can also be generated via
an interactive protocol which, like we did for POPRFs, we formalize simply as a single round trip protocol
initiated by a client running DS.Req(pk, t,m) to generate a request message req and client state st, sending
the former to the server which runs DS.BlindSign(sk, req) to generate and send a response rep back to the
client, which then computes a signature via DS.Finalize(st, rep). This protocol should achieve blindness,
which can be defined similarly to our request privacy definition above for POPRFs.

The main security property targeted is one-more unforgeability, which, roughly speaking, states that
an adversarial client can’t generate q + 1 unique message-signature pairs (m1, σ1), . . . , (mq+1, σq+1) that all
verify under a public key pk and public tag t even when given the ability to query a blind signing oracle
with the only restriction being that only q queries can be made for the chosen public tag t. This intuitively
enforces that each query to the blind signing oracle only results in one learned signature, and queries for
a different public tag do not help in forging a signature for the target tag. We present a complete formal
treatment of partially blind signatures in Appendix E.

A partially blind signature is unique if DS.Sign is deterministic and its output on (pk, t,m) matches that
of the interactive protocol when initiated on the same triple. A blind signature is just a partially blind
signature with t omitted. JKK observed that one can transform unique blind signatures into OPRFs by
hashing the signature. A similar transform exists to build a POPRF from a unique partially blind signature.
We provide details and proof of this transform in Appendix F for both cases, with and without public input).
(As far as we are aware there has been no formal treatment of this observation.)

Most prior partially blind signature schemes are not unique, e.g., [AF96,AO00]. The only unique scheme
we are aware of is due to Zhang, Safavi-Naini, and Susilo (ZSS) [ZSS03], but it relies on bilinear pairings
and so this generic transformation will not achieve our goals for a POPRF. Moreover as mentioned in the
introduction, the security analysis in ZSS is wrong. That said, our construction shares much of the underlying
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structure from the ZSS one. Using our new proof techniques, we furthermore provide the first complete proof
of the ZSS partially blind signature scheme (see Appendix G).

4 The 3HashSDHI POPRF

We now turn to our main result: providing a new POPRF. Our construction combines elements of the
2HashDH construction with a technique used by Dodis and Yampolskiy for their verifiable PRF; it is also
related to a partially blind signature scheme suggested by Zhang, Safavi-Naini, and Susilo. We call our
construction 3HashSDHI, which we often abbreviate to 3H. The name refers to its use of three hashes and
reliance on the strong inverse Diffie-Hellman assumption.

Algorithms. Our protocol relies on a group G of prime order p and with generator g. As mentioned in
the introduction, the 3HashSDHI protocol computes a PRF output as

3H.Ev(sk, t, x) = H2

(
t, x,H1(x)1/(sk+H3(t))

)
where H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → {0, 1}γ2 , and H3 : {0, 1}∗ → {0, 1}γ3 are the titular hash functions.
Note that H1 has range the group G, whereas the second and third hashes output bit strings of length γ2 and
γ3. By default we set γ2 = λ and γ3 = 2λ. The third hash must be collision resistant for security to hold.
Looking ahead to the security analysis, we will model the hash functions as random oracles. The setup, key
generation, and full evaluation algorithms are shown in pseudocode below.

3H.Setup(λ)

(p, g,G)←$ GGen(λ)

pp ← (p, g,G)

Return pp

3H.KeyGenH1×H2×H3 (pp)

(p, g,G)← pp

sk←$ Zp ; pk ← gsk

Return (pk, sk)

3H.EvH1×H2×H3 (sk, t, x)

Y ← H1(x)1/(sk+H3(t))

Z ← H2(t, x, Y )

Return Z

Here, GGen denotes a group parameter generator outputting a triple (p, g,G) consisting of a prime p, (the
description of) a group G of order p, and a generator g of G.

The blind evaluation protocol has a client compute H1(x) and mask the resulting group element by raising
it to a random scalar r. The client can send the resulting blinded value B to the server, who can then raise
B to 1/(sk + H3(t)) and return the result. The client then finalizes by raising the returned value to 1/r in
order to remove the blinding, followed by the final step of computing the final hash H2. The blinding ensures
request privacy.

We optionally can extend this blinded evaluation protocol to include a proof that the server properly
exponentiated B. This is necessary to have the protocol enjoy POPRIV2 security, which is important in
some (but not all) applications. At first, it may not be obvious how to prove to the client that the server
is returning B′ = B1/(sk+H3(t)) relative to the public key gsk , because the sum appears in the denominator.
However, we can use the following trick: the server generates a standard DL proof that B = (B′)k for some
k. The client runs verification by explicitly reconstructing gk = pk · gH3(t) = gsk+H3(t). This means that the
verification procedure checks the special structure of the exponent k.

The full protocol, including the NIZK (which uses its own hash H4), is shown in Figure 5. Here we show
that t is sent from the client to server, though in some applications the server may receive t out-of-band.
Execution requires just one round trip. It requires just two group exponentiations on the client side (and,
when using the NIZK, those used for its verification). The server uses one exponentiation plus one for the
NIZK proof.

Relation to partially blind signatures. 3HashSDHI is closely related to a partially blind signature
suggested by Zhang, Safavi-Naini, and Susilo [ZSS03]. It uses groups G1,G2,GT each of order p, with
generators g1, g2, gT , and that come equipped with an efficient-to-compute pairing e : G1 × G2 → GT such
that for any α, β ∈ Zp it holds that e(gα1 , g

β
2 ) = gαβT . Their signature is defined as

ZSS1.Ev(sk, t, x) = HG2
(x)1/(sk+H3(t))

where HG2
: {0, 1}∗ → G2 hashes onto the group G2 and H3 is as defined above for 3HashSDHI. We use ZSS1

to differentiate from our suggested modifications, which we call ZSS2 and discuss in Appendix G. As can
be seen, 3HashSDHI uses essentially the same structure, combined with a final hash but we dispense with
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3H.ReqH1×H2×H3×H4 (pk, t, x)

r←$ Zp ; B ← H1(x)r

Return ((pk, r, t, x), B)

3H.FinalizeH1×H2×H3×H4 (B′, π; (pk, r, t, x))

Y ← (B′)1/r

Require ΣR.VerH4 ((g, gH3(t) · pk, B′, B), π)

Z ← H2(t, x, Y )

Return Z

B, t
−−−−−−−−−−−→

B
′
, π

←−−−−−−−−−−−

3H.BlindEvH1×H2×H3×H4 (sk, t, B)

k ← sk + H3(t)

B′ ← B1/k

π←$ ΣR.ProveH4 (k, (g, gk, B′, B))

Return (B′, π)

Figure 5: Blind evaluation for our 3H POPRF construction. All three algorithms have implicit input the parameters
pp = (p, g,G) that describe the group used. The NIZK uses relation R = {(g, U, V,W ), (α) : U = gα ∧W = V α}.

the use of bilinear pairings using instead NIZKs to provide verifiability. We also comment on two aspects of
the original security analysis of the partially blind signature scheme in [ZSS03]: (1) the analysis of one-more
unforgeability is incorrect; and (2) it contains an incorrect claim that so-called “exponential” blinding (see
below for discussion in the context of OPRFs) is insecure. More precisely, for (1), the claimed security proof
relies on a lemma (stated without a proof) which says that if the scheme is secure, in terms of one-more
unforgeability, for any fixed public input, then it is secure as a partially-blind signature – such lemma does
not appear to be provable; for (2), the claimed distinguishing test does not work, rather it identifies every
pair of signature and signing transcript as a match, regardless of whether they are associated. Our new
techniques, in particular a variant of the new gap assumption discussed in the next section, enable a new
proof of unforgeability for the ZSS partially blind signature, and we also provide a proof that exponential
blinding is secure. See Appendix G for the details.

Comparison to prior (O)PRFs. Recall that the 2HashDH OPRF is defined by 2HashDH.Ev(sk, x) =
H2(x,H1(x)sk). On the other hand, the DY PRF [DY05] is evaluated on a message t via DY.Ev(sk, t) =
h1/(sk+t) for generator h. Thus, our 3HashSDHI can be seen as blending of the two approaches, basically
defining, for each x, a separate instance of the DY PRF with generator h = H1(x) and input message t. The
way we combine them retains the simple blinding mechanism of 2HashDH to allow hiding x. Despite the
similarity to the prior constructions, analyzing security requires new techniques (see the next section).

2HashDH is often formulated using an alternative “multiplicative” blinding strategy as opposed to the
“exponential” blinding presented here. Multiplicative blinding enables client-side performance improvements
of fixed-base exponentiation with precomputation over variable-base exponentiation, but has been shown to
have some security drawbacks in the non-verified setting [JKX21]. 3HashSDHI is not compatible with the
multiplicative blinding protocol used by 2HashDH, however Appendix I presents an alternative multiplicative
blinding protocol [ZSS03] that enjoys the same performance benefits.

Miao et al. construct an oblivious evaluation protocol for the DY PRF [MPR+20]. Their approach
makes use of the additive-homomorphic Camenisch-Shoup encryption scheme [CS03] and related proofs of
discrete log representation. In contrast, 3HashSDHI uses the more efficient oblivious evaluation approach
of 2HashDH and uses the structure of DY to tie in the public metadata, meaning the more expensive DY
oblivious evaluation techniques are avoided.

Pythia [ECS+15] provided the first POPRF. It uses pairing-friendly groups G1,G2,GT each of order p,
with generators g1, g2, gT . Then, the Pythia POPRF is defined by

Pythia.Ev(sk, t, x) = e(HG1(t),HG2(x))sk

where HG2 and HG2 are hash functions that map to the groups G1,G2. This construction enables blinded
evaluation by sending B ← HG2

(x)r, and having the server respond with e(HG1
(t)sk , B). It also has some

other features that were desirable in the password hardening context for which Pythia was designed, specif-
ically, that one can have compact key rotation tokens of the form ∆ = sk′/sk. The token ∆ can be shared
with a client to help it update previously computed POPRF values for any t, x. Compared to Pythia’s
POPRF, 3HashSDHI avoids use of pairings. This makes it faster to compute and saves bandwidth.

That said, the 3HashSDHI construction does not support key rotations even if one omits the final H2
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evaluation. To expand, consider using a (non-compact) key rotation in a way analogous to Pythia, i.e.,
distributing to a client ∆t1 = (sk + H3(t1))/(sk′ + H3(t1)) and ∆t2 = (sk + H3(t2))/(sk′ + H3(t2)). This
would allow rotating (unhashed) POPRF outputs on public inputs t1 and t2 from an old key sk to a new
key sk′. But this also trivially reveals sk and sk′, given that H3(t1) and H3(t2) are publicly computable.
While in the applications we explore in Section 7 we do not need key rotation tokens, the question of finding
a POPRF that avoids pairings yet supports key rotations remains open.

We also compare to the recent attribute-based verifiable OPRF (AB-VOPRF) suggested by Huang et
al. of Facebook [HIJ+21] for use with Privacy Pass. An attribute-based VOPRF is a POPRF that separates
out an explicit algorithm for converting a secret key and attribute t (what we call a tag) into a tag-specific
public key, secret key pair. As with other VOPRFs, there is a verifiable, blinded evaluation protocol by which
a client can obtain an output on some (t, x) pair without revealing x. Any AB-VOPRF gives a POPRF, and
vice versa.

The Facebook construction of an AB-VOPRF combines the 2HashDH approach with the Naor-Reingold
PRF [NR97]. Evaluation is defined by

FB.Ev(sk, t, x) = H1(x)a0·
∏
i a
t[i]
i

where sk = a0, a1, . . . , a|t| and t[i] indicates the ith bit of t. To make this verifiable, the scheme must provide
a more complex NIZK involving |t| group elements, making it expensive to transmit and verify, particularly
in applications where a wide variety of tags t will be used. In comparison 3HashSDHI is as efficient as
2HashDH.

Finally, a concurrent, independent work by Silde and Strand [SS21] describe what we call the 3HashSDHI
protocol and how it could be useful for Privacy Pass and the Facebook de-identified logging application.
They formalize a notion of anonymous token security that is more tailored to Privacy Pass style applications
(compared to our general POPRF definitions), but this definition contains the aforementioned problem
(see Section 3) of not performing query accounting on a per public input basis, making it too weak of a
security notion for their applications. In addition, the security analysis relative to this notion is incomplete,
and so the paper does not yet provide a proof even of this weaker security notion. Nevertheless, their
work underscores the benefits of the 3HashSDHI protocol in the applications they explore and our proof
techniques (in particular, the new one-more gap SDHI assumption discussed in the next section) should
enable improvements to their analysis.

Extension to private metadata bit. Recall a primary application of OPRFs is in the construction of
anonymous tokens. We have thus far been concerned with adding support for public metadata, but there are
also settings that benefit from being able to associate private metadata to tokens that can only be identified
by the issuer. To prevent trivial linking attacks by a malicious server, it is necessary that the private metadata
space remain small. Kreuter et al. propose a variant of Privacy Pass (based on the 2HashDH OPRF) that
supports a single private metadata bit [KLOR20]. The high level approach is to simply maintain two keys
and prove in zero knowledge that the token is issued under one of the two keys. However, they observe that
a deterministic primitive (like a PRF) is insufficient to achieve indistinguishability between private metadata
bits. Therefore, the core of their construction is a new anonymous token protocol that can be considered as
a randomized variant of 2HashDH. It is likely similar techniques can be applied to construct a randomized
version of 3HashSDHI to support public metadata as well as a private metadata bit; we leave the details
of such a construction to future work. Silde and Strand propose a construction along these lines, but as
mentioned before, the security analysis is incomplete [SS21].

5 Security Analysis

We show formally that the 3HashSDHI PO-PRF enjoys pseudorandomness and request privacy. The former
is the more complex analysis; we start with it.

5.1 Pseudorandomness

The main technical challenge is showing that 3HashSDHI meets our pseudorandomness definition, captured
by game POPRF (Figure 3 in Section 3). We start with an overview of our proof strategy, and then state
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our main result.

Proof strategy. Our proof of pseudorandomness proceeds in several steps. First, we introduce a new
discrete log (DL) type cryptographic hardness assumption: the one-more gap strong Diffie-Hellman inversion
problem, denoted (m,n)-OM-Gap-SDHI for parameters m,n that we will explain. The new assumption
is a generalization of prior one-more DL assumptions, but extended with two oracles and a more involved
one-more winning condition which depends on the number of queries with a specific form to one of the
oracles. We show that we can build a POPRF simulator such that, in the ROM, distinguishing between the
real (b = 1) and ideal worlds (b = 0) reduces to breaking an instance of (m,n)-OM-Gap-SDHI where m is
the number of H3 queries made by A and n is the number of H1 queries.

We also analyze the security of our new assumption, showing that, in the Algebraic Group Model
(AGM) [FKL18] it reduces to one of the uber assumptions from Bauer, Fuchsbauer, and Loss (BFL) [BFL20].
In turn, we can use a result from BFL to finally show that our new assumption is implied (again, in the
AGM) by the q-DL assumption. This provides good evidence of the difficulty of the problem, and allows us
to derive precise concrete security bounds.

The one-more gap SDHI assumption. Game (m,n)-OM-Gap-SDHI is shown in Figure 7. The game
generates a group instance and a challenge secret sk. The adversary A = (A1,A2) runs in two stages. In
the first stage it receives the group description p,G and outputs a sequence of n scalar values c1, . . . , cn.
Importantly A1 does not receive g, forcing it to commit to the ci values in a way independently of the
generator g. We assume that g is randomly chosen; this will be important in our analysis. Then, the
second stage A2 is run on input the generator g, gsk , and a vector of m group elements gy1 , . . . , gyn . The
adversary is given access to two oracles. The SDH oracle returns B1/(sk+ci) for arbitrary B and one of the
previously specified ci values. The SDDH oracle is a decision oracle that helps the adversary determine
whether Z = Y 1/(sk+ci) for arbitrary Y,Z and one of the previously specified ci values.

The adversary outputs a distinguished index γ indicating a cγ value, as well as a set of ` pairs (Zi, αi) ∈
G × [0..m]. The adversary wins if ` > qγ and Zi = Y

1/(sk+cγ)
αi for all 1 ≤ i ≤ `. Here qγ is the number of

queries to the SDH with second input set to γ. Without the “one more” restriction of ` > qγ , it is trivial to
win. We define the (m,n)-OM-Gap-SDHI-advantage of an adversary A by

Adv
(m,n)-om-gap-sdhi
GGen,A (λ) = Pr

[
(m,n)-OM-Gap-SDHI

A
GGen(λ)⇒ true

]
.

An adversary A has query budget (~q, qSDDH) for ~q = [~q1, . . . , ~qn] if at the end of the game A has made at
most ~qi queries to SDH with index i and has made at most qSDDH queries to SDDH.

We note that a weakening of the assumption dispenses with the more granular per-c-value accounting,
instead just asking that the adversary can’t come up with ` > q solutions for any mixture of Yi and cj values.
This variant is much easier to analyze in the AGM, but is not sufficient for our analysis.

Game q-DLAGGen(λ)

(p, g,G)←$ GGen(λ)

x←$ Zp
x′←$A

(
p,G, g,

[
gx
i
]q
i=1

)
Return x = x′

Figure 6: The q-type discrete
log security game.

Reducing (m,n)-OM-Gap-SDHI to q-DL. In two steps, we show how to
reduce this assumption, in the AGM, to the difficulty of q-DL. The latter
involves a game q-DL (Figure 6) that generates a group instance p, g,G for

security parameter λ, and gives an adversary g, gx, gx
2

, . . . , gx
q

for a random
scalar x. The adversary must output x. We define the advantage of a q-DL-
adversary A to be Advq-dl

GGen,A(λ) = Pr
[
q-DLAGGen(λ)⇒ true

]
.

As a convenient middle layer, we rely on BFL’s “Uber-assumption”
[BFL20], formalized via the game m-Uber in Figure 8. It involves a game
where the adversary can obtain gρ(~x) by querying an arbitrarily chosen m-
variate polynomial ρ( ~X) to an oracle Ev, for a secret vector ~x←$ Zmp . The

adversary wins if it outputs successfully gµ(~x) for some polynomial µ( ~X) which is independent of the

polynomials ρ1( ~X), . . . , ρq( ~X) queried to Ev, i.e., µ( ~X) cannot be expressed as an affine combination

µ( ~X) = α1ρ1( ~X) + · · · + αqρq( ~X) + β. The adversary can also query an additional Decide oracle with

a polynomial ρ( ~X), as well as group elements gy1 , . . . , gym , and learn whether gρ(y1,...,ym) = 0 or not. We
denote the corresponding advantage as Advm-uber

GGen,A(λ) = Pr
[
m-UberAGGen(λ)⇒ true

]
.

We are going to prove the following theorem in Appendix A. Here and subsequently we use ‘≈’ to denote
that runtimes are equal up to small constant factors.
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Game (m,n)-OM-Gap-SDHIAGGen(λ)

(p, g,G)←$ GGen(λ)

sk←$ Zp ; [yi]
m
i ←$ [Zp]mi

(stA, [ci]
n
i )←$A1(p,G)

Require ∀ni6=jci 6= cj

(γ, [Zi, αi]
`
i)←$ASDH,SDDH

2

(
g, gsk , [gyi ]mi : stA

)
Require qγ < ` ∧ ∀`i6=jαi 6= αj

Return [Zi]
`
i =

[
gyαi/(sk+cγ )

]`
i

Oracle SDH(B, i)

Require i /∈ [1, n]

qi ← qi + 1

Z ← B1/(sk+ci)

Return Z

Oracle SDDH(Y, Z, i)

Return Z = Y 1/(sk+ci)

Figure 7: The one-more gap strong Diffie-Hellman inversion security game.

Game m-UberAGGen(λ)

(p, g,G)←$ GGen(λ)

Q← {}
~x = [xi]

m
i ←$ [Zp]mi

(U, µ( ~X))←$AEv,Decide(p,G, g)

Return
(
U = gµ(~x) ∧Q ⊥⊥ {µ( ~X)}

)

Oracle Ev(ρ( ~X))

Q← Q ∪ {ρ( ~X)}
Return gρ(~x)

Oracle Decide(ρ( ~X), [Yi]
n
i )

~y = [yi]
n
i ←

[
logg Yi

]n
i

Return ρ(~y) ≡p 0

Figure 8: The interactive, flexible-output, polynomial uber assumption with decision oracle. Here, ⊥⊥ denotes
algebraic independence.

Theorem 2 For any algebraic adversary Asdhi of (m,n)-OM-Gap-SDHI with query budget (~q = [q1, . . . , qn],
qSDDH), and any GGen outputting (p, g,G), where g is a uniformly chosen element of G, we give adversary
Auber such that

Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) ≤ (qmax + 1) · Adv
(m+1)-uber
GGen,Auber

(λ) +
q

p
,

where q =
∑n
i qi and qmax = max{qi}ni . Also, Auber makes at most q queries to its polynomial evaluation

oracle with maximum degree q + 1, and outputs a polynomial of degree at most q. Further, T (Asdhi) ≈
T (Auber).

It is important here to note that the theorem assumes that the query budgets qi corresponding to different
i’s are fixed a priori, rather than being chosen adaptively.

Combined with a basic reduction from [BFL20], this gives us the following immediate corollary.

Corollary 3 For any algebraic adversaryAsdhi of (m,n)-OM-Gap-SDHI, with query budget (~q = [q1, . . . , qn],
qSDDH), and any GGen outputting (p, g,G), where g is a uniformly chosen element of G, we give adversary
Adl such that

Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) ≤ (qmax + 1) · Adv
(q+1)-dl
GGen,Adl

(λ) +
q

p
,

where q =
∑n
i qi and qmax = max{qi}ni . Further, T (Asdhi) ≈ T (Adl).

The main difficulty of the proof of Theorem 2 in Appendix A stems from the one-more requirement ` > qγ
in the winning condition, which is defined in a way that depends on the specific number of queries qγ to
SDH(·, γ). To gain some intuition, it is convenient to think of the game in algebraic terms (and this point
of view is also accurate when casting our proof in the AGM).1 Specifically, let us describe exponents of the
elements provided to A2 as formal polynomials X0 (standing for the secret key) and X1, . . . , Xm (for the
values y1, . . . , ym). Initially, the adversary has these polynomials available, and now a call to SDH(P, i) can
also be thought of as dividing some polynomial P (or more generally, a rational function) by (X0 + ci). The
rational function P can be any affine combination of the functions obtained so far, and SDH(P, i) adds a
new rational function to this set of available rational functions. In other words, consecutive queries induce

1We ignore the SDDH oracle in this discussion, and it will be easy to handle in the actual proof via the Decide oracle.
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a transcript τ consisting of the initial functions X0, X1, . . . , Xm, and the functions returned by SDH. The
goal of the adversary is to ensure that, for some γ, the span2 of τ contains ` > qγ functions of the form

Xα1

X0 + cγ
, . . . ,

Xα`

X0 + cγ
.

An adversary cannot achieve this goal naively by querying SDH(Xαj , γ) for j ∈ [`] without violating the
query budget. Still, the key difficulty here is that the adversary could, after learning (say) X1/(X0 + cγ)
make a further query that would give X1/(X0 + cγ)(X0 + cγ′) for some γ′ 6= γ. This second query would not
count towards qγ , and could potentially be helpful, as it does involve cγ .

The bulk of our proof shows that arbitrary queries to SDH cannot, in fact, help the adversary. We do
so via a careful inductive analysis which shows that the transcript τ can be rewritten in an equivalent way,
call it τ ′, without affecting its span. In particular, τ ′ only involves rational functions whose denominators
have form (X0 + ci)

k for some i and k, but no products involving multiple ci’s appear in the denominators.
We leverage this structure to show that the span of such τ ′ can include at most qγ rational functions of the
form Xi

X0+cγ
.

Now, given the above algebraic game cannot be won, an adversary winning the game must necessarily
produce an output (γ, [Zi, αi]

`
i) where for at least one i ∈ [`], we have that the polynomial Xαi/(X0 + ci) is

not in the span of the queries to SDH. This lends itself naturally to a reduction to the Uber-assumption,
which we describe in full in the proof.

Reducing to (m,n)-OM-Gap-SDHI. We now turn to showing that we can reduce the pseudorandomness
security of 3HashSDHI to our new assumption. We focus on the verifiable version of 3HashSDHI; an analysis
for the non-verifiable version is easily derived from our analysis here. Our analysis is in the RO model; we
model all four hash functions as ROs.

We start by describing the simulator used in the proof. The simulator’s goal is to respond to blind
evaluation and RO queries so that the resulting transcript of values is indistinguishable from real responses.
Importantly, the simulator must do this without making too many calls to the full evaluate oracle for each
BlindEval-queried public input t. Intuitively, achieving this security enforces that a malicious client can
not exploit the blinded evaluation oracle to do more than help it compute a single POPRF output for the
particular requested t.

The simulator works as follows. It chooses its own secret key sk and answers the H1 and H3 queries
with random group elements and scalars, respectively. To answer a blinded evaluation query, it runs the
scheme’s blind evaluation algorithm Fn.BlindEv(sk, B), except that it uses the NIZK’s simulator to generate
the proof π (and to simulate any ideal primitive underlying the NIZK, i.e., H4). The key challenge is in
simulating H2 queries, that which enables the adversary to “complete” a blinded evaluation. The simulator
must arrange that the value it returns in response to H2 queries is consistent with the random value returned
by Ev. To do so, the simulator checks whether a queried point (t, x, Y ) is such that Y = H1(x)1/(sk+H3(t))

and, if so, it queries LimEv(t, x) and returns the output. Otherwise, it chooses a random point to return.
The simulator can perform this check because it chose sk. See Figure 10 in Appendix B for the full details
of the simulator.

The simulation can fail should the adversary be able to query it on a point Y = H1(x)1/(sk+H3(t)) when
the simulator cannot make another call to LimEv for that value t. This can only arise should the adversary
query H2 on more such values t, Y than queries it so far made to BlindEv on that t. We show that an
adversary, that can do so, can also win the (m,n)-OM-Gap-SDHI game where m,n are the total number of
queries involving a distinct x value and distinct t value, respectively. (We define this more precisely below.)
This step also relies on the collision resistance of H3, which holds in the ROM.

To formalize this, we state below a theorem using the ideal primitive model in which P = H1×H2×H3×H4

for random oracles over H1 : ∗ → G, H2 : ∗×∗×G→ {0, 1}λ, H3 : ∗ → Zp, H4 : G6 → Zp for (p,G) determined
by GGen(λ). Here ‘∗’ denotes the set of arbitrary inputs. We define the query budget for an adversary Aprf

in the P model to be a tuple (m,n, qE, ~q, qH1
, qH2

, qH3
, qH4

) where:

• m is the maximum number of distinct x values queried by Aprf to H1 or H2;

• n is the maximum number of distinct t values queried by Aprf to BlindEv, H2, or H3;

2By “span” we mean the set of rational functions that can be obtain by taking affine combinations of the functions in τ .

17



• ~q = [~q1, . . . , ~qn] is a vector where each ~qi is the maximum number of queries by Aprf to BlindEv(ti, req)
for any req and where we t1, . . . , tn are the (at most) n values ti queried in the course of the game in
the order of when they are queried. (That is, t1 is the first t value queried, t2 is the second, etc.) In
words, the adversary is limited to some number n of public inputs t that it can target, and makes a
limited number of blinded evaluation queries for each of those inputs t.

• qE, qH1
, qH2

, qH3
, and qH4

are the maximum number of queries made by Aprf to the Ev, H1, H2, H3, and
H4 oracles, respectively.

Note that our query budget requirement ~q does not restrict which values t the adversary can use; these can
be picked adaptively. But the number of times each t value is queried is restricted by the order in which they
are queried. The granular accounting of blinded evaluation queries via ~q will be important when combining
the following theorem with Theorem 2.

Theorem 4 Let Aprf be a P-model POPRF adversary against 3H with query budget (m,n, qE, ~q, qH1
, qH2

,
qH3

, qH4
). Then we give a H4-model adversary Azk and adversary Asdhi such that

Advpo-prf
3H,S[SΣ],P,Aprf

(λ) ≤ Advzk
ΣR,R,H4,SΣ,Azk

(λ) + Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) +
n2

p
,

where S is the simulator defined in Figure 10 that makes use of NIZK simulator SΣ. Adversary Azk makes qH4

queries to its random oracle and Asdhi has query budget (~q, qH2). Further, T (Aprf) ≈ T (Azk) ≈ T (Asdhi).

A detailed proof is given in Appendix B. It proceeds via a sequence of games, starting with the real world

POPRF
Apo-prf,1
3H,P,S (λ) and first transitioning to a game that replaces the NIZK π with one generated by the

NIZK simulator SΣ. Then we change how Ev queries are handled. Instead of computing the POPRF using sk,
we pick a random value and add it to a table R. We also modify the handling of H2 queries to check if R has
been set on a relevant value and, if so, patch up H2’s response so that it maintains consistency. This does not
change the distribution of responses to the adversary. Finally, we are in position to perform a reduction to

(qH1 , qH3)-OM-Gap-SDHI: the only difference between this game and the ideal world POPRF
Aprf,0

3H,P,S[SΣ](λ)

is when H2 needs to repair a R value more often than queries to BlindEv. This reduction step is made
relatively simple by our new assumption, which provides the values and oracles necessary to simulate Aprf’s
view in a straightforward way.

We can combine the two main theorems with a standard result about the NIZK that we use (restated in
Section 2) to give the following corollary.

Corollary 5 Let Aprf be a P-model POPRF adversary against 3H with query budget (m,n, qE, ~q, qH1 , qH2 ,
qH3 , qH4) and GGen any group parameter generator outputting (p, g,G), where p is a prime g is a uniformly
chosen element of G. Then, we give adversary Adl such that

Advpo-prf
3H,S[SΣ],P,Aprf

(λ) ≤ (qmax + 1) · Adv
(q+1)-dl
GGen,Adl

(λ) +
q + n2

p
+

3q2 + q(qH4
+ 4) + 2

2λ
,

where q =
∑n
i qi, qmax = max{qi}ni . Further, S is the simulator defined in Figure 10 that makes use of NIZK

simulator SΣ, and T (Aprf) ≈ T (Adl).

Concrete security and parameter selection. Corollary 5 is interpreted best in the generic-group model
(GGM) [Sho97, Mau05], as this yields an absolute bound in terms of Aprf’s resources. The advantage of a
generic algorithm Adl running in time T (or more precisely, making T queries to the generic-group oracle)

against (q + 1)-DL in a group of order p is Adv
(q+1)-dl
GGen,Adl

(λ) ≤ (T + q + 2)2(q + 1)/(p− 1) (see, e.g., [BFL20]
for a proof). This advantage is multiplied by qmax to obtain the dominating term in our final bound.
We conjecture however that the bound is somewhat pessimistic, and that the factor qmax is an artifact of
the proof. In fact, as we discuss below, a different interpretation of our proof flow, which is particularly
meaningful in the GGM, avoids this factor altogether. This improved bound omitting qmax is also essentially
tight, since Cheon’s attack [Che06] extracts3 the secret key from q BlindEval queries in time

√
p/q, as

long as q divides p− 1 or p+ 1.

3Define x = (sk + H3(t))−1 for some fixed t. Then, the attacker can just obtain, via consecutive iterative queries, the values

gx, gx
2
, . . . , gx

q
, and then recover x via Cheon’s attack. Finally, sk = x−1 − H3(t).
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Cheon’s attack can therefore guide parameter selection, as is also done for 2HashDH deployments. For
example, a 256-bit group may be sufficient to achieve security for up T = 280, as this would still accommodate
up to q ≈ 296 blind evaluations without violating our bounds. In contrast, to ensure security up to T = 2128,
moving to a 384-bit curve appears necessary. The conclusion being that our choice of parameters is consistent
with that for 2HashDH, meaning we achieve the same group operation performance while adding public
inputs.

We also note that our reduction to the uber assumption requires the generator to be uniformly chosen.
We cannot envision any security issues when the generator is instead fixed, and the need for uniformly chosen
generators is likely just an artifact of our proof technique.

Tighter GGM bound. We only sketch the main idea behind the tighter GGM proof, as it is the result
of a minor modification of our AGM proof flow. First, note that the (qmax + 1) factor in Corollary 5 is
inherited from Theorem 2 and is due to our inability to efficiently find, within the adversary Auber, a good
index j ∈ [`] that leads to a break of the uber-assumption. Therefore, we are left with guessing. However,

an alternative is to find such j by computing all ` possible polynomials µ( ~X), and outputting the one which
is independent from those input to Ev. Unfortunately, this is computationally expensive, and requires time
at least Ω(q2

max). In other words, we could make the proof tight with respect to advantage while losing
tightness with respect to time complexity. While in our proof flow this needs to be taken into account, in the
GGM only the number of group operations matters (i.e., the number of oracle calls), whereas “additional”
running time is for free. Thus, if Aprf makes T queries to its GGM oracles, our proof flow yields (with the
proposed modification) an adversary Adl with roughly the same number of GGM queries and advantage
against (q + 1)-DL.

5.2 Request Privacy

We now turn to request privacy, which is simpler to analyze. Intuitively, 3HashSDHI client requests leak
no information because the blinding makes them independent of other requests and finalized outputs. The
following theorem formalizes this for the case of POPRIV1 for the non-verifiable version of 3HashSDHI.

Theorem 6 For any POPRIV1 adversary Apo-priv1 against 3H (without client verification) we have that

Advpo-priv1
3H,Apo-priv1

(λ) = 0.

Note that the theorem makes no assumptions about the hash functions or group, instead privacy derives
directly from the information-theoretic blinding.

Proof: Let G be the same as game POPRIV1A,b3H,P(λ) except that we replace (reqd, repd) = (H1(xd)
rd ,

H1(xd)
rd·sk) with (reqd, repd) = (grd , grd·sk) for d ∈ {0, 1} and where r0, r1 are the random exponents chosen

in the two invocations of 3H.Req. Observe that in game G the values returned by Req are independent of
the challenge bit b. Then we have that

Pr
[
POPRIV1A,13H,P(λ)⇒ 1

]
= Pr [ G⇒ 1 ] = Pr

[
POPRIV1A,03H,P(λ)⇒ 1

]
.

�

Non-verifiable PO-PRFs, including the non-verifiable version of 3HashSDHI, cannot achieve our stronger
notion of malicious request privacy. The attack is straightforward since the adversary can simply replace
one of the two responses with garbage, and determine the challenge bit. In detail for the case of 3H,
adversary Apo-priv2 can pick sk ∈ G arbitrarily, let pk = gsk , and then query Req(pk, t, x0, x1) for some
arbitrary t, x0, x1. It obtains back from the oracle req, req′, and then parses req as a pair (B, t). It then
queries Fin(B1/(sk+H3(t)), g) to get back reply (y0, y1). It checks if y0 = H2(H3(x0)1/(sk+H3(t))) and returns 0
if so. Otherwise it returns one. This adversary wins with probability 1.

The verifiable version of 3HashSDHI achieves our stronger notion of malicious request privacy, due to the
ZKP forcing the malicious server to respond honestly to blinded requests (relative to the public key being
used). The following theorem formalizes this, where we model the hash used by the ZKP as a random oracle,
and all other hashes as standard model.
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Theorem 7 Let Apo-priv2 be a POPRIV2 adversary in the P-model against 3H that makes at most q queries

to Fin. We give in the proof below a SoundANiZK,R,H4
adversary Bsound such that

Advpo-priv2
3H,P,Apo-priv2

(λ) ≤ 4q · Advsound
NiZK,R,H4,Bsound

(λ)) .

Further, T (Bsound) ≈ T (Apo-priv2).

Proof: Consider game POPRIV2
Apo-priv2,1
3H,P (λ). We consider the event that, in the course of the game, a

Fin(j, (B′1, π1), (B′2, π2)) query is made such that either

1. B′1 6= B
1/(sk+H3(tj)
j,b but ΣR.VerH4((g, gH3(tj) · pkj , B

′
1, Bj,b), π1) = 1; or

2. B′2 6= B
1/(sk+H3(tj)
j,1−b but ΣR.VerH4((g, gH3(tj) · pkj , B

′
2, Bj,1−b), π2) = 1.

Here pkj , tj are the values queried to the jth call to Req and we let skj = dlogg pkj . Recall that here
R = {(g, U, V,W ), (α) : U = gα ∧W = V α}, and verification is therefore checking, in case (1), that

B′2 = B
H3(tj)+skj
j,b ⇔ (B′2)1/(skj+H3(tj)) = Bj,b

and a similar equality for case (2). So if this event occurs, this means the adversary has violated the soundness
of the ZKP: only a single value α = skj + H3(tj) can be the witness for R.

To formally reduce to ZKP soundness, first let game G0 be the same as POPRIV2
Apo-priv2

3H,P,b (λ) but the bit b
is chosen at random from {0, 1}. Let “G0⇒ b” be the event in game G0 that the game returns the value b.
(We use this event notation for subsequent games analogously.) Further we let G0bad be the same as G0
except that within each Fin it first computes skj = dlogg pkj and checks if conditions (1) and (2) hold.
If either does not, then it sets a flag bad. Clearly G0bad is not computationally efficient; our reduction
will avoid this computationally inefficient step. Finally we let G1 be the same as game G0 except that all

Fin(j, rep, rep′) queries are handled by first replacing rep and rep′ with the correct values, i.e., rep ← B
skj
j,b

and rep′ ← B
skj
j,1−b where skj ← dlogg(pkj). Notice that G0bad and G1 are identical until the first query, if

any, that sets the flag bad. We have that

Advpo-priv2
3H,P,Apo-priv2

(λ) = 2 · Pr [ G0⇒ b ]− 1 .

and that

Pr [ G0⇒ b ] = Pr [ G0bad ⇒ b ] ≤ Pr [ G1⇒ b ] + Pr [ G0bad sets bad ] ,

where the inequality comes from the fact that G0bad and G1 are identical-until-bad and application of the
fundamental lemma of game playing [BR06]. We now bound the probability that Pr[G0bad sets bad ] via
reduction to the soundness of the ZKP.

Adversary Bsound works as follows. First, it randomly chooses a number q∗ ∈ [1, 2q] to serve as its guess
for which ZKP π will be forged by the adversary. Here q is the maximum number of Fin queries made
by Apo-priv2; each such query includes two proofs. Then Bsound runs G0, stopping when Apo-priv2 has
made j = dq∗/2e queries to Fin. At this point, Bsound stops outputting ((g, gH3(tj)pkj , B

′
1, Bj,b), π1) if q∗ is

odd and ((g, gH3(tj)pkj , B
′
2, Bj,1−b), π2) otherwise. Adversary Bsound avoids computing skj ; it simply guesses

which of the proofs would have caused bad to be set to true, had skj been computed and the conditions (1)
and (2) been checked. A standard argument yields that

Pr [ G0bad sets bad ] ≤ 2q · Advsound
NiZK,R,P,Bsound

(λ) .

To finish the proof, we can observe that G1 always correctly computes responses, and a similar argument as
we used for POPRIV1 gives that the transcript observed by Apo-priv2 is independent of the challenge bit b,
and so Pr[G1⇒ b] = 1/2. Combining all the above yields the advantage statement in the theorem.

�
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Scheme L (B) T (B) KeyGen KeyVerify Req BlindEv Finalize Ev

2HashDH 16 1 0 0 73 222 392 77

2HashDH 16 8 0 0 75 229 404 79

2HashDH 16 64 0 0 84 256 447 89

3HashSDHI 16 1 0 0 85 369 527 125

3HashSDHI 16 8 0 0 76 334 477 112

3HashSDHI 16 64 0 0 75 328 471 110

Pythia 16 1 168 0 849 4068 6070 2871

Pythia 16 8 180 0 831 4099 6092 2881

Pythia 16 64 171 0 809 3922 5849 2768

ABVOPRF 16 1 294 292 74 517 684 370

ABVOPRF 16 8 1910 2386 76 2135 2789 1981

ABVOPRF 16 64 15053 19196 80 15305 19702 15163

Table 1: Average operation time for various POPRF protocols. All times are measured in µs, and a zero time
represents some value much less than a single microsecond.

6 Performance Evaluation

We implemented 3HashSDHI to measure the computational cost of the protocol in comparison to related
protocols, including the baseline 2HashDH VOPRF from [DFHSW20], Pythia [ECS+15], and the recent
attribute-based VOPRF (ABVOPRF) from Facebook [HIJ+21]. Each protocol was implemented in a minimal
fashion, e.g., by omitting domain separating hash function invocations, in order to emphasize the cost of core
public key operations. Our implementations use the ristretto255 group [dVGT+20] where prime-order groups
are required, and the bn256 curve for Pythia, where pairing-friendly curves are required. We implemented
each protocol in Go using the CIRCL experimental cryptographic library [FHK19] and bn256 package. These
benchmarks were evaluated on a machine with a 2.6 GHz 6-Core Intel Core i7 CPU and 32 GB RAM running
macOS 10.15.7. Below we report on the average time over 1000 measurements of each operation.

Our benchmarks profile the functions needed to configure a client for the protocol, including the KeyGen
and KeyVerify (for ABVOPRF), as well as the functions used to carry out the protocol, including Req,
BlindEv, and Finalize. We also profiled the FullEvaluation routine to compare the cost of the blinding and
proof verification operations in the protocol. For each protocol scheme, we keep the input size (L) fixed but
vary the metadata size (T ) in bytes. The results of our analysis are given in Table 1.

We comment on two key results in this data. First, the difference between the baseline VOPRF protocol
and POPRF protocol are minuscule (as a function of metadata size). In particular, the POPRF introduces
approximately a 25% overhead (in terms of µs to compute), though this is likely negligible at scale. Second,
there is nearly an order of magnitude difference between the POPRF and the ABVOPRF as a function of
metadata size. This is primarily due to the online KeyGen process and its resulting linear cost in proof
evaluation. This suggests that the POPRF construction scales better in the presence of arbitrary-size tag
values.

Some of the protocols included allow certain operations to be computed offline, thereby improving online
protocol performance. For example, if the tag value is known in advance, 3HashSDHI can pre-compute
the private key used in the BlindEv call. Likewise, in the ABVOPRF protocol, the key generation and
verification operations can be computed offline and clients can cache the results. Table 2 summarizes the
cost of operations, discounting precomputation costs. Note that although the performance of the ABVOPRF
construction improves, it still introduces substantially more overhead than the 3HashSDHI construction.

7 Applications

POPRFs provide a new degree of flexibility that we observe to be useful in a variety of applications. Essen-
tially anywhere an OPRF is used we see opportunity for POPRFs to provide potential benefits in terms of
increasing deployment flexibility, reducing key management challenges, and/or improving security. Here we
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Scheme T (B) Request Evaluate Finalize Ev

2HashDH 1 73 223 392 77

2HashDH 8 75 231 403 79

2HashDH 64 83 255 447 89

3HashDH 1 84 367 526 124

3HashDH 8 76 332 478 112

3HashDH 64 76 328 472 110

Pythia 1 847 3913 6074 2832

Pythia 8 824 3935 6085 2840

Pythia 64 806 3764 5843 2715

ABVOPRF 1 74 224 685 77

ABVOPRF 8 76 228 2790 79

ABVOPRF 64 75 230 19721 80

Table 2: Average times for performance, excluding precomputation cost. All times are measured in µs.

briefly discuss three previously mentioned motivating applications: anonymous one-time-use tokens, pass-
word breach alerting, and password-based authenticated key exchange.

7.1 Privacy Pass

Privacy Pass [DGS+18,CDFH21] is a protocol in which users are allowed to receive one-time-use anonymous
tokens, using an issuance protocol, that can later be used to anonymously authenticate themselves using a
redemption protocol. It is often used in the context of fraud prevention online: tokens are issued to users
that pass integrity challenges (e.g., CAPTCHA).

The primary component underlying Privacy Pass is a verifiable OPRF (VOPRF). Current implemen-
tations use 2HashDH [JKK14]. The issuance protocol has a client request VOPRF output for a random
input x under a Privacy Pass server held VOPRF secret key sk. The client must verify that the received
token y = 2HashDH.Ev(sk, x) is correct relative to the server’s public key pk. A token (x, y) can then be
redeemed by sending to the server (x,MACy(data)) where MAC is a message authentication code such as
HMAC and data is some application-specific bit string (called the binding data in [DGS+18]). The server
can recompute y and then use it to check the MAC value.

The core security properties achieved by Privacy Pass are unlinkability and unforgeability. Unlinkability
derives from the request privacy properties of the VOPRF, which ensures that a malicious server learns
nothing about a client’s input x nor can they link (x, y) to a particular issuance query. Unforgeability derives
from the pseudorandomness security of the VOPRF: given the ability to obtain q tokens, the adversary can
at most compute q outputs of the VOPRF.

However, one abuse of Privacy Pass not prevented by the current design is what we refer to as a hoarding
attack, also called a farming attack [DGS+18]. A malicious user (or group of users) can gather a large number
of tokens by running the token issuance protocol as many times as possible over some period of time. Later,
the malicious user can redeem all the gathered tokens at once in an effort to render the provided service
unavailable in a (D)DoS attack (by, for example, overwhelming a website with expensive requests).

One potential defense against hoarding attacks is to force periodic rotation of the VOPRF secret key,
such as once per week. But this is clumsy because it requires clients to verify that key rotations are made
legitimately: a server that rotates too often can violate unlinkability. In the limit, a malicious server could
pick a separate pk for each client issuance, thereby completely violating unlinkability. Forcing clients to use
gossip protocols (to verify that the same public keys are used) or using public ledgers to record public keys
for monitoring purposes require further complicating infrastructure. Furthermore, keys are often stored and
need to be deleted from secure storage locations (e.g., trusted hardware) and replaced with new ones. This
process is prone to failure and can lead to potential leaks.

Use of a verifiable POPRF provides a simpler, more elegant solution. Tokens can be bound to a public
input t that lets the server and client agree upon a scope for token issuance. In this case, one replaces
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the Privacy Pass’ 2HashDH.Ev(sk, x) with DY.Ev(sk, t, x) in both the issuance and redemption phases. One
could use as t a coarse timestamp, such as the current day or week at which an issuance occurred, and then
redemption could enforce a policy about the staleness of tokens, forcing them to be redeemed within some
time period. Alternatively, one could imagine using t to bind issuance and redemption to the client’s general
network location, e.g., it’s autonomous system number (ASN).

We note that all these hoarding mitigations reduce the anonymity set of a redemption to only the clients
issued tokens under t. This is true also for the key rotation approach, reducing the anonymity set to clients
that were issued tokens under the particular public key. Some loss of privacy is fundamental to restricted
token use, and choosing how to make use of t requires care and further work to identify best practices.
Nevertheless, POPRFs provide a degree of flexibility that easily allows a variety of choices.

7.2 Private Set Membership and Breach Alerting

One widely deployed use of OPRFs is for password breach alerting (also called compromised credential
checking) [TPY+19,Hun]. These use an OPRF-based bucketized private set membership protocol [TPY+19,
LPA+19] that works as follows. The server generates a long-lived 2HashDH secret key sk and computes
yu,pw = 2HashDH.Ev(sk, u, pw) for each username, password pair (u, pw) ∈ D. Here D is a breach database
of known-compromised pairs. Then, to perform a lookup for (u∗, pw∗), the client sends a truncated hash of
the username that forms a bucket identifier β = H(u∗), as well as a blind evaluation request for the client’s
username, password pair (u∗, pw∗) that they want to check. The server computes the OPRF response
and sends it back along with the bucket B = {yu,pw | H(u) = β} of values that have matching truncated
username hash. The client finishes computing y∗ = 2HashDH.Ev(sk, u∗, pw∗) and checks if y∗ ∈ B. If so,
their credential is known to be compromised; otherwise, it is not.

In the currently deployed protocols, there is no way to enforce that the client’s query indicates the correct
bucket identifier B. Instead, they could query for b′ = H(u′) for u′ 6= u∗ and complete the protocol execution
checking for values in some other bucket. Whether this opens up password breach alerting services to abuse
is not clear.

Nevertheless, we observe that replacing the OPRF with a POPRF provides a simple way to cryptograph-
ically bind the buckets to particular bucket identifiers, by setting t = β. One could similarly do so using
per-bucket secret keys skβ for a standard OPRF, but this would complicate key management.

7.3 OPAQUE

As mentioned in the introduction, OPAQUE [JKX18] is a strong aPAKE protocol (SaPAKE) that provides
password-based mutual authentication in a client-server setting without having to rely on Public Key Infras-
tructure (PKI). It provides security against pre-computation attacks upon server compromise, and increases
the protection against offline dictionary attacks, as an attacker will have to perform an exhaustive per-user
attack upon server’s data compromise. OPAQUE is a protocol also amenable to a multi-server distributed
implementation where an offline dictionary attack is only possible if a threshold of servers is compromised.

OPAQUE can be thought of as a protocol that works as a “compiler” by transforming a suitable AKE
protocol (resistant to key compromise impersonation attacks and forward secrecy) into a secure aPAKE
protocol using an OPRF. Current implementations use 2HashDH. It consists of two phases: an offline
registration phase and an online authenticated key exchange phase.

The purpose of the offline phase is to register a user’s account using their unique user identity and
their password. The user identity could be a username or email address. To do so, the user opaquely
registers its password without the server ever knowing it. The client and server obliviously compute rwd =
2HashDH.Ev(sku, x), where x is the user’s password and sku is a server’s random, per-user generated OPRF
secret key. The output of this functionality, rwd, is used to encrypt its AKE private key. The resulting
ciphertext is stored on the server-side alongside with other user’s credentials, such as its corresponding user
id. The server will store, as well, the per-user OPRF key sku used to generate rwd.

To perform online authentication, the client and server obliviously recompute rwd, enabling the client to
recover their AKE private key by decrypting the ciphertext (sent back to the client during the OPRF flows),
and complete a (now password-authenticated) AKE exchange.

23



A complexity for deployment of OPAQUE is that the server has to maintain and keep a consistent view
of the per-user OPRF keys and associated AKE private key ciphertexts. Implementation vulnerabilities may
arise should servers incorrectly use the same OPRF key across multiple users, allowing potentially for cross-
user attacks that allow logging in as the wrong user. Implementations are also likely to store the per-user
OPAQUE secret keys in the same user database alongside other per-user data, meaning that compromises
that allow exfiltrating the database (e.g., SQL injection) will reveal all information needed to brute-force
recover passwords.

One potential approach instead would be to, again, replace the per-user OPRF key sku with a POPRF
with global sk and use the user identity as t. This would allow protecting sk by storing it in a separate
hardened crypto service (similar to deployment models used in password hardening, see [ECS+15]) only once.
One potential complication is that performing periodic key rotations for sk would be more challenging, since
it would require somehow either resetting all users passwords (not reasonable in most contexts by asking
users to reset) or rolling clients to new keys as they login by maintaining old sk for some period of time. In
contrast, the per-user sku approach can selectively rotate OPRF keys for each user as needed.
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[CDFH21] Sofia Celi, Alex Davidson, and Armando Faz-Hernndez. Privacy Pass Protocol Specification.
Internet-Draft draft-ietf-privacypass-protocol-00, Internet Engineering Task Force, January
2021. Work in Progress.

[Che06] Jung Hee Cheon. Security analysis of the strong diffie-hellman problem. In EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science, pages 1–11. Springer, 2006.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from
bilinear maps. In CRYPTO, volume 3152 of Lecture Notes in Computer Science, pages 56–72.
Springer, 2004.

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic macs and keyed-verification
anonymous credentials. In CCS, pages 1205–1216. ACM, 2014.

[CP92] David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO, volume
740 of Lecture Notes in Computer Science, pages 89–105. Springer, 1992.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The signal private group system and
anonymous credentials supporting efficient verifiable encryption. In CCS, pages 1445–1459.
ACM, 2020.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption of discrete
logarithms. In CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 126–144.
Springer, 2003.

[DFHSW20] Alex Davidson, Armando Faz-Hernndez, Nick Sullivan, and Christopher A. Wood. Oblivious
Pseudorandom Functions (OPRFs) using Prime-Order Groups. Internet-Draft draft-irtf-cfrg-
voprf-05, Internet Engineering Task Force, November 2020. Work in Progress.

[DGS+18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy
pass: Bypassing internet challenges anonymously. Proc. Priv. Enhancing Technol., 2018(3):164–
180, 2018.

[dVGT+20] Henry de Valence, Jack Grigg, George Tankersley, Filippo Valsorda, Isis Lovecruft, and Mike
Hamburg. The ristretto255 and decaf448 Groups. Internet-Draft draft-irtf-cfrg-ristretto255-
decaf448-00, Internet Engineering Task Force, October 2020. Work in Progress.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and
keys. In Public Key Cryptography, volume 3386 of Lecture Notes in Computer Science, pages
416–431. Springer, 2005.

[ECS+15] Adam Everspaugh, Rahul Chatterjee, Samuel Scott, Ari Juels, and Thomas Ristenpart. The
pythia PRF service. In 24th USENIX Security Symposium (USENIX Security 15), pages 547–
562. USENIX Association, 2015.

[FHK19] Armando Faz-Hernndez and Kris Kwiatkowski. Introducing CIRCL: An Advanced Crypto-
graphic Library. Cloudflare, June 2019. https://github.com/cloudflare/circl.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and
oblivious pseudorandom functions. In TCC, volume 3378 of Lecture Notes in Computer Science,
pages 303–324. Springer, 2005.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string
model. In CRYPTO, volume 4117 of Lecture Notes in Computer Science, pages 60–77. Springer,
2006.

25

https://github.com/cloudflare/circl


[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In CRYPTO (2), volume 10992 of Lecture Notes in Computer Science, pages 33–62. Springer,
2018.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed
elgamal encryption in the algebraic group model. In EUROCRYPT (2), volume 12106 of Lecture
Notes in Computer Science, pages 63–95. Springer, 2020.

[HIJ+21] Sharon Huang, Subodh Iyengar, Sundar Jeyaraman, Shiv Kushwah, Chen-Kuei Lee, Zutian
Luo, Payman Mohassel, Ananth Raghunathan, Shaahid Shaikh, Yen-Chieh Sung, and Albert
Zhang. PrivateStats: De-Identified Authenticated Logging at Scale, January 2021.

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from
identification schemes. In EUROCRYPT (3), volume 11478 of Lecture Notes in Computer
Science, pages 345–375. Springer, 2019.

[Hun] Troy Hunt. Have i been pwned. https://haveibeenpwned.com/.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-protected
secret sharing and T-PAKE in the password-only model. In ASIACRYPT (2), volume 8874 of
Lecture Notes in Computer Science, pages 233–253. Springer, 2014.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: an asymmetric PAKE protocol
secure against pre-computation attacks. In EUROCRYPT (3), volume 10822 of Lecture Notes
in Computer Science, pages 456–486. Springer, 2018.

[JKX21] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. On the (in)security of the diffie-hellman
oblivious PRF with multiplicative blinding. In Public Key Cryptography (2), volume 12711 of
Lecture Notes in Computer Science, pages 380–409. Springer, 2021.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with applications
to adaptive OT and secure computation of set intersection. In TCC, volume 5444 of Lecture
Notes in Computer Science, pages 577–594. Springer, 2009.

[JT20] Joseph Jaeger and Nirvan Tyagi. Handling adaptive compromise for practical encryption
schemes. In CRYPTO (1), volume 12170 of Lecture Notes in Computer Science, pages 3–32.
Springer, 2020.
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A Security of (m,n)-OM-Gap-SDHI

Proof of Of Theorem 2: This proof proceeds in two parts. (1) First, we present Auber and argue that
it almost perfectly simulates the (m,n)-OM-Gap-SDHI game for Asdhi, up to a small statistical difference.
(2) Second, we argue that if Asdhi outputs a set of values that wins the (m,n)-OM-Gap-SDHI game, it must
be that at least one of those values has a non-trivial representation in the exponent that wins the m-Uber
game.

A.1 Simulation of (m,n)-OM-Gap-SDHI environment

We construct adversary Auber as shown in Figure 9. The adversary first constructs a polynomial G( ~X) ←∏n
i (X0 + ci)

qi from the chosen c values in the first stage of Asdhi. The adversary receives an evaluation
ĝ = gG(~x) from its Ev oracle that it will pass as the generator in its simulation to the second stage of Asdhi.
The public key ĝx0 is simulated by evaluating X0 ·G( ~X); and the m challenge points will each be simulated

with additional variables Xi for i ∈ [1,m] by evaluating polynomial Xi ·G( ~X).

To simulate the SDH oracle on input (Y, i), first assume that Auber knows the polynomial P ( ~X) such that

Y = gP (~x). We will show shortly how Auber can compute P ( ~X) from the algebraic representation of Y .

Given P ( ~X), Auber simulates by computing the polynomial P ( ~X)/(X0 + ci) and returning its evaluation.

Now to compute P ( ~X), Auber takes the algebraic representation of Y in terms of elements given to Asdhi.
The elements given to Asdhi are the initial elements plus the elements output from previous queries to SDH.
The polynomial exponents of all of these elements are known to Auber, so they can be combined via the linear
combination indicated by the algebraic representation to compute P ( ~X). Furthermore, P ( ~X)/(X0 + ci) will

always be computable due to the construction of G( ~X) including qi factors of (X0 + ci) where qi is the

maximum number of queries for ci to SDH. All initial elements have the polynomial G( ~X) as a factor of the
exponent, and while subsequent elements returned from SDH divide out different factors of (X0 + cj), they
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Adversary AEv,Decide
uber (p,G, g)

(stA, [ci]
n
i )←$A1(p,G)

G( ~X)←
∏n
i (X0 + ci)

qi

ĝ ← Ev(G( ~X)) ; X̂ ← Ev(X0 ·G( ~X))

[Â]mi=1 ← [Ev(Xi ·G( ~X))]mi=1

(γ, [Zi, αi]
`
i)←$ASDH,SDDH

2 (ĝ, X̂, [Â]mi : stA)

j←$ N` ; µ( ~X) = Xαj (X0 + cγ)qγ−1∏n
i6=γ(X0 + ci)

qi

Return (Zj , µ( ~X))

Oracle SDH(Y, i)

Compute P ( ~X) : Y = gP (~x) from representation of Y

Z ← Ev(P ( ~X)/(X0 + ci))

Return Z

Oracle SDDH(Y, Z, i)

P (A1, A2, A3)← (A1 + ci) · A3 − A2

Return Decide(P (A1, A2, A3), [X̂, Y, Z])

Figure 9: Adversary Auber in the security proof of (m,n)-OM-Gap-SDHI.

never exhaust a factor (X0 + cj) unless the maximum number of queries for that index has been reached.
Lastly, Auber simulates SDDH by passing the query on to its own Decide oracle.

As long as the maximum query counts that Auber uses to create G( ~X) are abided by, the environment for
Asdhi is almost perfectly simulated, as we argue below. Moreover, Auber selects an output of Asdhi at random
and returns it along with its polynomial representation.

Concretely, let π0 be the probability that at least one of the values in the output of Asdhi has a non-trivial
representation in the exponent that wins the m-Uber game in the original game (m,n)-OM-Gap-SDHI.
Let π1 be the probability that the same happens within the simulation of Auber. Then, we argue that

π0 − π1 ≤
q

p
.

This can be seen as follows: The only difference between the simulation and the original game is that the
former uses (ĝ, X̂), where ĝ = gG(x) and X̂ = gx·G(x) for a x←$ Zp and a polynomial G(X) of degree q,
instead of (g, gx) in the latter, where g is a random generator. In particular, π0 − π1 is upper bounded by
the statistical distance between (y ·G(x), y · x ·G(x)) and (y, y · x), where (x, y)←$ Z2

p. Now, let S ⊆ Z2
p be

the set pairs (x, y) such that G(x) 6= 0. For any (z1, z2) ∈ Z2
p, and (x, y)←$ S, we now have

Pr [ (y, y · x) = (z1, z2) ] = Pr [ (y, z1 · x) = (z1, z2) ]

= Pr [ (y ·G(x), z1 · x) = (z1, z2) ] = Pr [ (y ·G(x), y · x ·G(x)) = (z1, z2) ] .

Therefore, the statistical distance is upper bounded by the probability that (x, y)←$ Zp is in S, which in
turn is the probability that G(x) = 0. The latter is at most q/p by the Schwartz-Zippel Lemma.

In conclusion, the advantage of Auber is

Adv
(m+1)-uber
GGen,Auber

(λ) ≥ π1

`
≥ π1

qmax + 1
≥ π0

qmax + 1
− q

p(qmax + 1)
,

because, without loss of generality, we can assume that ` ≤ qmax + 1. Below, we are going to prove that

Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) = π0, which concludes the proof.

A.2 Linear independence of winning elements

Next, we argue that one of the strong Diffie-Hellman values output by a winning Asdhi corresponds to a
group element with a non-trivial polynomial in the exponent, i.e., a polynomial that is linearly independent
from all queried polynomials. Our ultimate goal will be to claim that if the adversary produces ` winning
group elements for a value cγ having only queried SDH qγ < ` times, then one of the winning elements
must have a non-trivial (linearly-independent) polynomial exponent from all group elements given to the
adversary during initialization and as output from SDH.

We will find that it is easy to argue the linear independence of the initial group elements and winning
elements. The main challenge we will face is reasoning about elements output from SDH. In previous
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formulations of one-more assumptions [Bol03], the number of winning elements was required to be greater
than the number of queries to the “one-more” oracle. In these cases, the typical proof strategy is show linear
independence of the set of winning elements and initial elements – since this set is strictly larger than the set
of query elements and initial elements, it must be that at least one winning element is linearly independent
of the set of query elements and initial elements. However, this strategy will not work for OM-Gap-SDHI,
which simply requires the number of winning elements to be greater than the number of queries for the
chosen winning cγ .

Intuitively, we would like to say that elements returned from SDH for other cj 6=γ will not be helpful in
constructing a winning element for cγ . If this is the case, then we can conclude by arguing that a set of
qγ < ` elements cannot construct a set of ` linearly-independent winning elements.

Unfortunately, it is not immediately clear this is the case, as elements that were previously output for queries
to cγ may be passed back in to SDH under a different cj . This leads to the possibility that many elements
returned from SDH (> qγ) may have a “dependence” on cγ . The main step in our proof shows that whenever
a query to SDH on ci is made, the output element can be refactored as an element that only depends on
the queried ci, regardless of whether the input element includes previous outputs from SDH dependent on
other cj 6=i.

Rewriting transcript to separate ci dependence in SDH queries. First, we consider the polynomial
exponent representation of group elements output from SDH given only queries to a single index ci. We will
notate the exponent in its quotient form (note that the simulation multiplies all polynomial exponents by a
least common multiple to remove quotients). We denote by τi the ith output from SDH in which the input
may be a linear combination of any previous τj<i and initial values X1, . . . , Xm, where we denote coefficients
with a. In the below we denote Yi as arbitrary linear combinations of the formal variables X0, X1, . . . , Xm

along with a constant. Without loss of generality, we will denote ci = c1.

τ1 =
Y1

X0 + c1
(binary string representation: 1)

τ2 =
Y2 + a2,1τ1
X0 + c1

=
a2,1Y1

(X0 + c1)2
+

Y2

X0 + c1
(11, 10)

τ3 =
Y3 + a3,2τ2 + a3,1τ1

X0 + c1

=
a3,2a2,1Y1

(X0 + c1)3
+

a3,2Y2

(X0 + c1)2
+

a3,1Y1

(X0 + c1)2
+

Y3

X0 + c1
(111, 110, 101, 100)

τ4 =
Y4 + a4,3τ3 + a4,2τ2 + a4,1τ1

X0 + c1

=
a4,3a3,2a2,1Y1

(X0 + c1)4
+
a4,3a3,2Y2

(X0 + c1)3
+
a4,3a3,1Y1

(X0 + c1)3
+

a4,3Y3

(X0 + c1)2
(1111, 1110, 1101, 1100)

+
a4,2a2,1Y1

(X0 + c1)3
+

a4,2Y2

(X0 + c1)2
+

a4,1Y1

(X0 + c1)2
+

Y4

X0 + c1
(1011, 1010, 1001, 1000)

We observe that each term in τi can be interpreted interpreted uniquely as mapping from a binary string.
This leads us to the following closed form expression. We define ω(s) to take a positive integer s and
return the list of indices at which the binary string representation of s has a 1. For example, 6 = 110 has
ω(6) = [3, 2] (we use 1-indexing and reverse the list to make the expression below easier to parse). We define
the mapping of positive integer s to term in τi as Ω(s) (defined below). The coefficients for the term are
determined by the locations of the 1-bits in the binary string and the power of the denominator is determined
by the number of 1-bits in the string. The Yj value is determined by the least significant 1-bit set in the
string. Intuitively, the locations of the 1-bits correspond to which queries to SDH the term has been passed
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(and repassed) into.

Ω(s) =


Ylg(s)+1

X0 + c1
if ∃ i s.t. s = 2i

Yω(s)|ω(s)| ·
∏|ω(s)|−1
k=1 aω(s)k,ω(s)k+1

(X0 + c1)|ω(s)| o.w.

(1)

Then, we observe that the terms included in τi correspond to the terms for binary strings 2i−1 to 2i− 1. We
get the following expression for τi based on the above interpretation:

τi =
Yi +

∑i−1
j=1 ai,jτj

X0 + c1

=
2i−1∑
s=2i−1

Ω(s) (2)

The above form follows from an induction argument on the form of all τj<i. Multiplying τj by ai,j/(X0 + c1)
corresponds exactly to transforming all Ω(s′) for s′ ∈ [2j−1, 2j−1] to Ω(s) for s ∈ [2i−1 +2j−1, 2i−1 +2j−1].
Summing up the terms performing this transformation on all τj<i corresponds to all s ∈ [2i−1 + 1, 2i − 1],
and the final term corresponding to s = 2i−1 is added separately.

Lastly, we rearrange the terms of τi grouping them by Yj which will be useful later on:

τi =
2i−1∑
s=2i−1

Ω(s)

= Ω(2i−1) +

i−1∑
j=1

2i−j−1∑
s=2i−j−1

Ω(2j ∗ s+ 2j−1)

=
Yi

X0 + c1
+

i−1∑
j=1

2i−j−1∑
s=2i−j−1

Yj ·
∏|ω(2j∗s+2j−1)|−1
k=1 aω(2j∗s+2j−1)k,ω(2j∗s+2j−1)k+1

(X0 + c1)|ω(2j∗s+2j−1)| (3)

Next, we consider a query made to a different cj 6=1, following a transcript of m queries τ = [τi]
m
i=1 made to

c1. Without loss of generality, we will denote cj = c2. This (m+ 1)th query output takes the following form:

τ̂m+1 =
Ym+1 +

∑m
i=1 am+1,iτi

X0 + c2

The above is the same as τm+1 (Equation 2) except the numerator is divided by (X0+c2) instead of (X0+c1).
Thus, we can rewrite using the same binary string notation (again, grouped by Yj):

τ̂m+1 =
Ym+1 +

∑m
i=1 am+1,iτi

X0 + c2
=
X0 + c1
X0 + c2

· τm+1

=
X0 + c1
X0 + c2

 2i−1∑
s=2i−1

Ω(s)


=
X0 + c1
X0 + c2

Ω(2i−1) +

i−1∑
j=1

2i−j−1∑
s=2i−j−1

Ω(2j ∗ s+ 2j−1)


=
Ym+1

X0 + c2
+

m∑
j=1

2m−j+1−1∑
s=2m−j

Yj ·
∏|ω(2j∗s+2j−1)|−1
k=1 aω(2j∗s+2j−1)k,ω(2j∗s+2j−1)k+1

(X0 + c1)|ω(2j∗s+2j−1)|−1(X0 + c2)

30



The query output τ̂m+1 is a sum of terms with mixed (X0 + c1) and (X0 + c2) factors in the denominator.
We will show that τ̂m+1 to τ ′m+1 of the form:

τ ′m+1 =
Ym+1 +

∑m
i=1 biYi

X0 + c2
, (4)

for some set of coefficients b1, . . . , bm, such that the span of the query outputs is preserved:

Claim 8 We provide [bi]
m
i=1 to construct τ ′m+1 (Equation 4) such that

Span([τ1, . . . , τm, τ̂m+1]) = Span([τ1, . . . , τm, τ
′
m+1]) .

Proof of Claim: We choose [bi]
m
i=1 such that τ̂m+1 ∈ Span([τ1, . . . , τm, τ

′
m+1]). This is sufficient to complete

the claim that the two spans are equivalent. We solve the following system of equations:

τ̂m+1 = αm+1τ
′
m+1 +

m∑
i=1

αiτi

=

m+1∑
i=1

βi
Yi

X0 + c2
+

m∑
i=1

αiτi (5)

for unknowns α1, . . . , αm+1, b1, . . . , bm, or equivalently, when reformulated, for unknowns α1, . . . , αm, β1,
. . . , βm+1, where βm+1 = αm+1 and βi 6=m+1 = αm+1bi. Now consider the expanded Equation 5:

Ym+1

X0 + c2
+

m∑
j=1

2m−j+1−1∑
s=2m−j

Yj ·
∏|ω(2j∗s+2j−1)|−1
k=1 aω(2j∗s+2j−1)k,ω(2j∗s+2j−1)k+1

(X0 + c1)|ω(2j∗s+2j−1)|−1(X0 + c2)

=
m+1∑
i=1

βi
Yi

X0 + c2
+

m∑
i=1

αi

 Yi
X0 + c1

+
i−1∑
j=1

2i−j−1∑
s=2i−j−1

Yj ·
∏|ω(2j∗s+2j−1)|−1
k=1 aω(2j∗s+2j−1)k,ω(2j∗s+2j−1)k+1

(X0 + c1)|ω(2j∗s+2j−1)|


One approach for solving this equation is by solving each of the partial equations, equating the coefficients
for a particular Yi. The partial equation for Ym+1 is trivial and is easily solvable by setting βm+1 = 1:

Ym+1

X0 + c2
= βm+1

Ym+1

X0 + c2
The other partial equations for 1 ≤ i ≤ m are more complex. We refer to the partial equation for Yi as PEi,
and it is defined as follows:

2m−i+1−1∑
s=2m−i

Yi ·
∏|ω(2i∗s+2i−1)|−1
k=1 aω(2i∗s+2i−1)k,ω(2i∗s+2i−1)k+1

(X0 + c1)|ω(2i∗s+2i−1)|−1(X0 + c2)

=
βiYi

X0 + c2
+

αiYi
X0 + c1

+
m∑

j=i+1

2j−i−1∑
s=2j−i−1

Yi · αj ·
∏|ω(2i∗s+2i−1)|−1
k=1 aω(2i∗s+2i−1)k,ω(2i∗s+2i−1)k+1

(X0 + c1)|ω(2i∗s+2i−1)|

Note that Yi can be canceled out in PEi. We next show that there exists (and that we can solve for) a
satisfying assignment of variables [αi]

m
i=1 and [βi]

m+1
i=1 for Equation 5 through a strong induction argument

on the satisfiability of the partial equations.

Induction hypothesis. H(i): There exists a satisfying assignment of variables [αj ]
m
j=i and [βj ]

m+1
j=i for the

system of equations PEm, PEm−1, . . . , PEi.

Note that H(1) implies that Equation 5 is satisfiable. We proceed by proving the base case, H(m), and then
proving the induction step showing that H(i+ 1)⇒ H(i).
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Base case. We prove H(m). Consider PEm:

βm
X0 + c2

+
αm

X0 + c1
=

am+1,m

(X0 + c1)(X0 + c2)

We solve PEm as follows:

βm(X0 + c1) + αm(X0 + c2) = am+1,m

βm + αm = 0

βmc1 + αmc2 = am+1,m

βm =
am+1,m

c1 − c2
αm =

am+1,m

c2 − c1

Induction step. We prove H(i + 1) ⇒ H(i). Consider the left hand side of PEi. It contains terms for
(m+ 1)-length binary strings, where * is a wildcard for either 0/1:

1 ‖ *m−i ‖ 1 ‖ 0i−1

Now consider the left hand side of PEj for j > i. It contains terms for the following binary strings:

1 ‖ *m−j ‖ 1 ‖ 0j−i ‖ 0i−1

We observe that if we flip the ith least significant bit of the binary strings from PEj , we obtain a subset of
binary strings from PEi. In fact, if we do this for all PEj for m ≥ j > i, we obtain all binary strings from
PEi except for 1 ‖ 0m−i ‖ 1 ‖ 0i−1.

A similar cancellation occurs on the right hand side of the equations. The right hand side of PEi contains
terms for the m-length binary strings:

*m−i ‖ 1 ‖ 0i−1

And the right hand side of PEj for m ≥ j > i contains terms for the m-length binary strings:

*m−j ‖ 1 ‖ 0j−i ‖ 0i−1

Again, we observe that if we flip the ith least significant bit of binary strings for all PEj , we obtain all binary
strings from PEi except for 0m−i ‖ 1 ‖ 0i−1.

This leads us to the following approach. We sum up all PEj for m ≥ j > i, transforming each one
appropriately to “flip the ith bit” of all represented binary strings. This sum can then be subtracted
from PEi to cancel out all terms on the left hand side of the equation except for the term corresponding to
1 ‖ 0m−i ‖ 1 ‖ 0i−1, and most terms on the right hand side of the equation except for the term corresponding
to 0m−i ‖ 1 ‖ 0i−1 and a set of terms βu(X0 + c1)m−i+1 in each PEu that does not correspond to a binary
string.

We create the summed equation:
m∑

j=i+1

aj,i
X0 + c1

· PEj (6)

The following equation is what remains after taking the difference of PEi and summed Equation 6:

am+1,i

(X0 + c1)(X0 + c2)
=

αi
X0 + c1

+
βi

X0 + c2
+

m∑
j=i+1

βjaj,i
(X0 + c1)(X0 + c2)
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By induction hypothesis H(i+ 1), we have that there exists a satisfying assignment for βj for j > i. We fix
those variables, then solve the above equation for αi and βi:

βi(X0 + c1) + αi(X0 + c2) = am+1,i −
m∑

j=i+1

βjaj,i

βi + αi = 0

βic1 + αic2 = am+1,i −
m∑

j=i+1

βjaj,i

βi =
am+1,i −

∑m
j=i+1 βjaj,i

c1 − c2

αi =
am+1,i −

∑m
j=i+1 βjaj,i

c2 − c1

This concludes proof of the induction hypothesis and of the claim.

Generalizing transcript rewrite to all ci. Next, we argue that the above claim, which holds for a
transcript of queries to c1 followed by one query to c2, generalizes to a transcript that makes queries to
arbitrary different ci values. We assume the transcript up until this point is made up of elements that are
“separated by cj”, i.e., each only have powers of a single (X0 + cj) in the denominator. Given this, we show
that a new query to any cv (taking in a linear combination of all previous elements of the transcript) can
be rewritten so that it too only depends on powers of (X0 + cv), such that the span of the full transcript is
preserved.

As such, we assume the transcript has elements of the following form, where a transcript element τi,j is the
ith query to cj (following from Equation 2 and 3). Element τi,j depends only on previous τ1,j , . . . , τi−1,j and
all only have powers of (X0 + cj) in the denominator:

τi,j =
Yi,j +

∑i−1
u=1 au,jτu,j

X0 + cj

=
Yi,j

X0 + cj
+

i−1∑
u=1

2i−u−1∑
s=2i−u−1

Yu,j ·
∏|ω(2u∗s+2u−1)|−1
k=1 aω(2u∗s+2u−1)k,ω(2u∗s+2u−1)k+1

(X0 + cj)|ω(2u∗s+2u−1)| (7)

A new query to cv will have the following output form, where qj denotes the number of queries that have
been made to cj :

τ ′qv+1,v =
Y ′qv+1,v +

∑n
j=1

∑qj
i=1 a

′
qv+1,v,i,jτi,j

X0 + cv

We show that we can replace this output with τqv+1,v of the following form which matches the form from
Equation 7:

τqv+1,v =

Y ′qv+1,v +
∑n

j=1
j 6=v

∑qj
i=1 bi,jYi,j +

∑qv
i=1 a

′
qv+1,v,i,vτi,v

X0 + cv

=
Yqv+1,v +

∑qv
i=1 ai,vτi,v

X0 + cv

where Yqv+1,v = Y ′qv+1,v +

n∑
j=1
j 6=v

qj∑
i=1

bi,jYi,j

ai,v = a′qv+1,v,i,v
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We want that the span of the new transcript is preserved by replacing the new output with the rewritten
output, and thus we prove the following:

Claim 9 We provide
[
[bi]

qj
i=1

]n
j=1

to construct τqv+1,v such that

Span
([[

[τi,j ]
qj
i=1

]n
j=1

, τ ′qv+1,v

])
= Span

([[
[τi,j ]

qj
i=1

]n
j=1

, τqv+1,v

])
Proof of Claim: We prove the claim by providing αi,j and bi,j values such that:

τ ′qv+1,v = αqv+1,vτqv+1,v +

n∑
j=1

qj∑
i=1

αi,jτi,j

This is implied by our previous claim which shows that for each j 6= v, we can find αi,j and bi,j such that:

qj∑
i=1

aqv+1,v,i,jτi,j
X0 + cv

= αqv+1,v

(
qj∑
i=1

bi,jYi,j
X0 + cv

)
+

qj∑
i=1

αi,jτi,j

This concludes the argument that any new query output can be rewritten to be in the form of Equation 7
in which it only has powers of the queried cv in the denominator, while preserving the span of the query
output transcript.

Using rewritten transcript to show non-trivial winning element. We will continue to use the
quotient notation, however, recall that in the simulation of the adversary’s environment (Section A.1), the
rational fractions are multiplied by a least common multiple,

∏n
i=1(X0 + ci)

qi . The notions of independence
we show for polynomial rational fractions hold true for the the polynomials once multiplied by the LCM as
well.

The adversary is given initial group elements which we represent as polynomial rational fractions as follows:
ĝ 7→ 1, X̂ 7→ X0, [Ai]

m
i=1 7→ [Xi]

m
i=1. It is evident that these polynomials are linearly-independent as they

each include a different formal variable (with exception of ĝ which is the only element with a constant).

The adversary will also receive group elements from the SDH oracle. We will denote the polynomial rational
fraction outputs of the q =

∑n
i=1 qi queries to SDH as [τ ′i ]

q
i=1.

Lastly, the adversary will output a set of ` winning group elements for a selected γ, [Zi, αi]
`
i , where ` > qγ .

These elements are represented by the following polynomial rational fractions:
[

Xαi
X0+cγ

]`
i=1

. These ` elements

are linearly-independent as they each include a different formal variable.

We argue that at least one element from [Xαi/(X0 + cγ)]
`
i=1 is linearly independent from the initial elements

and SDH elements given to the adversary. If so, then Auber wins if it guesses correctly and the proof is
complete. In other words, we want that:

∃ i ∈ [1, `] :
Xαi

X0 + cγ
6∈ Span(

[
1, [Xi]

m
i=0, [τ

′
i ]
q
i=1

]
)

We use Claim 9 to rewrite the transcript τ ′ into a new transcript τ that contains elements [[τi,j ]
qj
i=1]nj=1 of

form defined in Equation 7. The transcript τ is built element by element by repeatedly applying Claim 9 to
the next query in τ ′. Ultimately we have that:

Span([τ ′i ]
q
i=1) = Span(

[
[τi,j ]

qj
i=1

]n
j=1

)

Span(
[
1, [Xi]

m
i=0, [τ

′
i ]
q
i=1

]
) = Span(

[
1, [Xi]

m
i=0,

[
[τi,j ]

qj
i=1

]n
j=1

]
)

So instead we will show

∃ i ∈ [1, `] :
Xαi

X0 + cγ
6∈ Span(

[
1, [Xi]

m
i=0,

[
[τi,j ]

qj
i=1

]n
j=1

]
)
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Next, consider a linear combination of the above that results in a winning element Xα/(X0 + cγ) with linear
combination coefficients r, si, ti,j :

r · 1 +

m∑
i=0

siXi +

n∑
j=1

qj∑
i=1

ti,jτi,j =
Xα

X0 + cγ

r · 1 +

m∑
i=0

siXi +

n∑
j=1
j 6=γ

qj∑
i=1

ti,jτi,j =
Xα

X0 + cγ
−

qγ∑
i=1

ti,γτi,γ (8)

Now if we multiply both side of the above Equation 8 by the LCM expression
∏n
i=1(X0 + ci)

qi , the quotients
are removed and we have an equation of two polynomials. By the structure of τi,j from Equation 7, we have
that none of the τi,j for j 6= γ have a (X0 +cγ) term in the denominator. Thus, the left hand side polynomial
has a factor of (X0 + cγ)qγ .

On the right hand side, because every τi,γ term has (X0 + cγ) in the denominator, (X0 + cγ)qγ does not
divide the right hand side polynomial. This implies that the two polynomials cannot be equal unless they
are the zero polynomial, which is only possible if r, [si]

m
i=1 coefficients are equal to 0.

Thus, if Xα/(X0 + cγ) ∈ Span(
[
1, [Xi]

m
i=0,

[
[τi,j ]

qj
i=1

]n
j=1

]
), then it must be:

qγ∑
i=1

ti,γτi,γ =
Xα

X0 + cγ

However, since there are only qγ < ` [τi,γ ]
qγ
i=1 terms, they can at most generate a qγ-dimension space. Since

the ` winning elements are linearly-independent and generate a `-dimension space, it is not possible that
they can all be generated from a linear combination of [τi,γ ]

qγ
i=1. This concludes the proof.

B Security Proofs for 3H

For ease of reference, we restate the theorem here:

Theorem 4 Let Aprf be a P-model POPRF adversary against 3H with query budget (m,n, qE, ~q, qH1
, qH2

,
qH3

, qH4
). Then we give a H4-model adversary Azk and adversary Asdhi such that

Advpo-prf
3H,S[SΣ],P,Aprf

(λ) ≤ Advzk
ΣR,R,H4,SΣ,Azk

(λ) + Adv
(m,n)-om-gap-sdhi
GGen,Asdhi

(λ) +
n2

p
,

where S is the simulator defined in Figure 10 that makes use of NIZK simulator SΣ. Adversary Azk makes qH4

queries to its random oracle and Asdhi has query budget (~q, qH2). Further, T (Aprf) ≈ T (Azk) ≈ T (Asdhi).

Proof: We bound the advantage of Aprf by bounding the advantage of each of a series of game hops. We

define G0 = POPRF
Apo-prf,1
3H,P,S (λ) and intermediate games G1,G2,G3,G4,G5 to gradually transform the view

of the adversary until G5 = POPRF
Apo-prf,0
3H,P,S (λ). The most important games, G2−G4 are shown in Figure 11).

There we use tables R1, R2, R3, R4 for RO simulation, and we restrict collisions in R3 (as described below)
by sampling from Zp without replacement, which we do by defining Zp \ R3 to be the set of points in Zp
that do not appear in any entries of R3.

The advantage bound follows from the following claims which we will justify:

(1) |Pr[G0 = 1]− Pr[G1 = 1]| ≤ n(n−1)
2p

(2) |Pr[G1 = 1]− Pr[G2 = 1]| = Advzk
ΣR,R,RO4,Azk

(λ)

(3) |Pr[G2 = 1]− Pr[G3 = 1]| = 0

(4) |Pr[G3 = 1]− Pr[G4 = 1]| ≤ Adv
(qH1

,qH3
)-om-gap-sdhi

GGen,Asdhi
(λ)
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S.Init(λ, pp)

R1 ← [·] ; R2 ← [·] ; R3 ← [·]
sk←$ Zp
stΣ←$ SΣ.Init(pp)

stS ← (pp, sk, R1, R2, R3, stΣ)

Return (stS, g
sk)

S.BlindEvLimEv(t, req : (pp, sk, R1, R2, R3, stΣ))

h←$ S.HLimEv
3 (t : stS)

B ← req ; B′ ← B1/(sk+h)

π←$ SΣ.Prove((g, gsk+h, B′, B) : stΣ)

Return (B′, π)

S.HLimEv
1 (x : (pp, sk, R1, R2, R3, stΣ))

If x 6∈ R1 then R1[x]←$ G
Return R1[x]

S.HLimEv
2 (t, x, Y : (pp, sk, R1, R2, R3, stΣ))

If t 6∈ R3 then R3[x]←$ Zp
If x 6∈ R1 then R1[x]←$ G
If (t, x, Y ) 6∈ R2 then

If Y = R1[x]1/(sk+R3[t]) then R2[t, x, Y ]← LimEv(t, x)

Else R2[t, x, Y ]←$ {0, 1}λ

Return R2[t, x, Y ]

S.HLimEv
3 (x : (pp, sk, R1, R2, R3, stΣ))

If x 6∈ R3 then R3[x]←$ Zp
Return R3[x]

S.HLimEv
4 (x : (pp, sk, R1, R2, R3, stΣ))

Return SΣ.H(x : stΣ)

Figure 10: Simulator S[SΣ] for PRF security of 3H where SΣ is the zero knowledge simulator for ΣR.

(5) |Pr[G4 = 1]− Pr[G5 = 1]| ≤ n(n−1)
2p

Claim 1: We first transition to a game G1 in which we disallow collisions in the output of RO3, i.e., we
replace sampling from Zp for new range values with sampling without replacement from Zp. Recall that at
most n unique t values are queried by Aprf in the course of the game, and so a standard birthday analysis
establishes the claim’s upper bound of n(n− 1)/2p.

Claim 2: In G2, the proof generated in BlindEv is simulated along with the corresponding random oracle
RO4. Since this is the only change between G1 and G2, we can equate the distinguishing advantage between
the two games to that of the zero-knowledge security game of ΣR. We construct Azk that runs G1 and
generates proofs using its Prove oracle and responds to queries to RO4 using its own Prim oracle.

Claim 3: In G3, the Ev oracle generates outputs independently from the random oracles and stores its
choices in table R. For consistency, it must be that for t, x and Y = R1[x]1/(sk+R3[t]), the random output
stored in R is the same as the one stored in R2 for responding to RO2 queries of (t, x, Y ). G3 checks if this
is the case in RO2, and if (t, x, Y ) are of the above form, it repairs R and R2 to be consistent. Thus, from
the adversary’s perspective, there is no change between G2 and G3.

Claim 4: In G4, the repair between R and R2 in RO2 only occurs if there have been more calls to BlindEv
on t than calls of valid (t, x, Y ) tuples to RO2. Otherwise, a bad flag is set and the oracle returns ⊥ to

the adversary. This matches the functionality of S in POPRF
Apo-prf,0
3H,P,S (λ) since the simulator is restricted to

not run LimEv on t more than calls made to BlindEv on t. By an identical-until-bad argument via the
fundamental lemma of game playing [BR06],

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ Pr[bad = 1]

where bad = 1 is the event that bad is sent in game G4. We bound the probability of this event by the
advantage of an adversary Asdhi, i.e., if bad is set, Asdhi wins the (m,n)-OM-Gap-SDHI game.

Adversary Asdhi = (A1,A2) (shown in Figure 12) runs G4 with the help of the (m,n)-OM-Gap-SDHI game.
The [Yi]

m
i group elements are used for the values returned by RO1. (This is often called “programming”

RO1.) The n values [c]ni from Zp output by A1 for use in the strong Diffie-Hellman queries are used for
the return values from RO3. By assumption on the query budget for Aprf, the number of Yi values and the
number of ci values are sufficient for simulating the queries made by Aprf. And since both of these sets of
values are chosen at random, they have the same distribution as the random oracle responses in G4. Queries
to BlindEv are answered by computing the strong Diffie-Hellman evaluation with the appropriate ci value
using SDH. Note that Asdhi has query budget ~q because by assumption Aprf queries at most ~q1 times to
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Games G2 , G3 , G4

R1 ← [·] ; R2 ← [·] ; R3 ← [·]
R← [·]
i∗ ← 0 ; j∗ ← 0 ; bad← 0

pp←$ 3H.Setup(λ)

sk←$ Zp ; pk ← gsk

stΣ←$ SΣ.Init(pp)

b′←$AP,Ev,BlindEv
prf (pp, pk)

Return b′

Oracle Ev(t, x)

If t 6∈ R3 then R3[t]←$ Zp \ R3

If x 6∈ R1 then R1[x]←$ G
Y ← R1[x]1/(sk+R3[t])

If (t, x, Y ) 6∈ R2 then R2[t, x, Y ]←$ {0, 1}λ

Z ← R2[t, x, Y ]

If (t, x) 6∈ R then

R[t, x]←$ {0, 1}λ

Z ← R[t, x]

Return Z

Oracle BlindEv(t, req)

If t 6∈ R3 then R3[t]←$ Zp \ R3

B ← req ; B′ ← B1/(sk+R3[t])

jt ← jt + 1

π←$ SΣ.Prove((g, gsk+h, B′, B) : stΣ)

Return (B′, π)

Oracle H1(x)

If x 6∈ R1 then R1[x]←$ G
Return R1[x]

Oracle H2(t, x, Y )

If t 6∈ R3 then R3[t]←$ Zp \ R3

If x 6∈ R1 then R1[x]←$ G
If (t, x, Y ) 6∈ R2 then

R2[t, x, Y ]←$ {0, 1}λ

If Y = R1[x]1/(sk+R3[t]) then

it ← it + 1

If it > jt then bad← 1 ; Return ⊥
If (t, x) 6∈ R then R[t, x]←$ {0, 1}λ

R2[t, x, Y ]← R[t, x]

Else R2[t, x, Y ]←$ {0, 1}λ

Return R2[t, x, Y ]

Oracle H3(x)

If x 6∈ R3 then R3[x]←$ Zp \ R3

Return R3[x]

Oracle H4(x)

Return SΣ.H(x : stΣ)

Figure 11: The key game transitions used in pseudorandomness security for 3H. Greyed highlighted statements are
only included in G2, blue highlighted statements in G3 and G4, and boxed statements only in G4.

BlindEv on the first value t1 queried in the course of the game, at most ~q2 times for the second value t2
queried in the course of the game, and so on.

In RO2, the form of (t, x, Y ) is checked using SDDH to determine if a repair between R and R2 needs to
be performed. However, before the repair is done, if there have been more valid (t, x, Y ) tuples queried to
Prim2 than queries to BlindEv, Asdhi then halts execution of Aprf and concludes by outputting (γ, Ẑ[γ]).
In this case, the adversary has found “one more” valid strong Diffie-Hellman tuple (one corresponding to

each valid (t, x, Y ) tuple since Y = Y
1/(sk+cj)
i for some Yi, cj) than calls made to SDH. The adversary

therefore wins the (m,n)-OM-Gap-SDHI game.

Claim 5: The final game transition restores the possibility of collisions to RO3, and a birthday analysis gives
the upper bound on this transition.

�

C Security with Restricted Tag Space

Corollary 10 For any adversaryAprf against the partially-oblivious pseudorandomness of 3H with restricted
tag space of size |T|, we give adversaries Azk and Asdhi such that

Advpo-prf
3H,P,S[SΣ],Aprf

(λ) ≤ Advzk
ΣR,R,RO4,SΣ,Azk

(λ) + Adv
(qH1

,|T|)-om-gap-sdhi

GGen,Asdhi
(λ) ,

where S is the simulator defined in Figure 10, the ideal primitive P = RO1 × RO2 × RO3 × RO4 for random
oracles over RO1 : ∗ → G, RO2 : ∗ × ∗ × G → {0, 1}λ, RO3 : ∗ → Zp, RO4 : G6 → Zp for (p,G) determined
by GGen(λ). The running time T (Aprf) ≈ T (Azk) ≈ T (Asdhi) and Aprf makes at most qH1

queries to RO1.

Proof: The proof follows the same as above except only queries to Prim3 that fall within the tag space T
need to be programmed with a strong Diffie-Hellman constant c; otherwise, a random value can be sampled.
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A1(p,G)

C ← ∅
For i = 1 to n:

ci←$ Zp \ C ; C ← C ∪ {ci}
stA ← (p,G, [ci]ni )

Return (stA, [ci]
n
i )

ASDH,SDDH
2 (g, pk, [Yi]

m
i : (p,G, [ci]ni )

i← 1 ; j∗ ← 0 ; `← 1

K ← [·] ; Ẑ ← [·] ; γ ← ⊥
R1 ← [·] ; R2 ← [·] ; R3 ← [·] ; R← [·]
pp← (p, g,G)

stΣ←$ SΣ.Init(pp)

b′←$AP,Ev,BlindEv
prf (pp, pk)

Return (γ, Ẑ[γ])

Oracle Ev(t, x)

If (t, x) 6∈ R then R[t, x]←$ {0, 1}λ

Z ← R[t, x]

Return Z

Oracle BlindEv(t, req)

If t 6∈ R3 then R3[t]← ` ; `← `+ 1

jt ← jt + 1

B ← req

B′ ← SDH(B,R3[t])

π←$ SΣ.Prove((g,X · gcR3[t] , B′, B) : stΣ)

Return (B′, π)

Oracle H1(x)

If x 6∈ R1 then

R1[x]← Yi
K[x]← i ; i← i+ 1

Return R1[x]

Oracle H2(t, x, Y )

If t 6∈ R3 then

R3[t]← ` ; `← `+ 1

If x 6∈ R1 then

R1[x]← Yi
K[x]← i ; i← i+ 1

If (t, x, Y ) 6∈ R2 then

If SDDH(Y,R1[x], R3[t]) then

Ẑ[R3[t]]← Ẑ[R3[t]] ‖ (Y,K[x])

If |Ẑ[R3[t]]| > jt then

γ ← R3[t] ; abort Aprf

If x 6∈ R then R[x]←$ {0, 1}λ

R2[t, x, Y ]← R[x]

Else R2[t, x, Y ]←$ {0, 1}λ

Return R2[t, x, Y ]

Oracle H3(x)

If x 6∈ R3 then

R3[x]← ` ; `← `+ 1

Return cR3[x]

Oracle H4(x)

Return SΣ.H(x : stΣ)

Figure 12: Adversary Asdhi = (A1,A2) used in POPRF security proof of 3H.

D Security of 2HashDH OPRF

In this section, we demonstrate the extensibility of our security definitions by proving the security of the
2HashDH OPRF [JKK14]. The only previous proof of security for 2HashDH is with respect to the UC
definition provided by Jarecki et al. [JKK14]. The construction 2HashDH is given in Figure 13. The security
proofs for 2HashDH follow closely to the proofs of 3H. As such, we provide only proof sketches for 2HashDH
referring heavily to the detailed proofs in Appendix B and Section 5.

Pseudorandomness. First, we prove pseudorandomness of the 2HashDH OPRF with respect to a variant
of POPRF given in Figure 3 for the OPRF setting, which we name OPRF. The security game OPRF is
the same as POPRF except the public tag inputs to the oracles and algorithms are removed to fit the OPRF
setting and only a single query counter is maintained for tracking blind evaluation and limited evaluation
oracle queries, rather than a separate query counter for each public tag. We let the advantage of a OPRF
adversary A be defined by

Advoprf
Fn,S,P,A,(λ) =

∣∣∣Pr
[
OPRFA,1Fn,S,P(λ)⇒ 1

]
− Pr

[
OPRFA,0Fn,S,P(λ)⇒ 1

]∣∣∣ .
We will reduce the pseudorandomness security of 2HashDH to the security against the so-called one-more

gap computational Diffie-Hellman assumption [JKK14, Bol03] (with pseudocode given in Figure 14). Here,
an adversary receives m + 1 group elements, gx = X, [gyi = Yi]

m
i=1, and is tasked with computing q + 1

computational Diffie-Hellman values of the form Zi = gx·yi , where q is the number of queries the adversary
makes to a helper oracle CDH(·) that returns the CDH value of the input element with X. The adversary
also is given access to a gap oracle to answer the decisional Diffie-Hellman question on arbitrary inputs.
The non-gap version of this assumption was recently shown secure in the generic group model [BFP21],
however the same approach and bounds hold even when the gap oracle is included [BFL20]. We define the
m-OM-Gap-CDH-advantage of an adversary A by

Advm-om-gap-cdh
GGen,A (λ) = Pr

[
m-OM-Gap-CDHAGGen(λ)⇒ true

]
.

We state below a theorem using the ideal primitive model in which P = H1×H2×H3 for random oracles
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2HashDH.Setup(λ)

(p, g,G)←$ GGen(λ)

pp ← (p, g,G)

Return pp

2HashDH.KeyGenH1×H2×H3 (pp)

(p, g,G)← pp ; z←$ Zp
sk ← z ; pk ← gz

Return (sk, pk)

2HashDH.EvH1×H2×H3 (pp, sk, x)

Y ← H1(x)sk

Z ← H2(x, Y )

Return Z

2HashDH.ReqH1×H2×H3 (pk, x)

r←$ Zp ; B ← H1(x)r

Return ((pk, r, x), B)

2HashDH.FinalizeH1×H2×H3 (B′, π; (pk, r, x))

Y ← (B′)1/r

Require ΣR.VerH3 ((g, pk, B,B′), π)

Z ← H2(x, Y )

Return Z

B−−−−−−−→

B
′
, π

←−−−−−−−

2HashDH.BlindEvH1×H2×H3 (sk, B)

B′ ← Bsk

π←$ ΣR.ProveH3 (sk, (g, gsk , B,B′))

Return (B′, π)

Figure 13: The 2HashDH OPRF construction of [JKK14]. Algorithms have implicit input the parameters pp =
(p, g,G) that describe the group used. The NIZK uses relation R = {(g, U, V,W ), (α) : U = gα ∧W = V α}.

Game m-OM-Gap-CDHAGGen(λ)

(p, g,G)←$ GGen(λ)

q ← 0

x←$ Zp ; [yi]
m
i ←$ [Zp]mi

[Zi, αi]
`
i ←$ACDH,DDH

(
p,G, g, gx, [gyi ]mi

)
Require q < ` ∧ ∀`i6=j αi 6= αj
Return [Zi]

`
i = [gx·yi ]`i

Oracle CDH(Y )

q ← q + 1

Z ← Y x

Return Z

Oracle DDH(h,A,B,C)

a← logh(A)

b← logh(B)

c← logh(C)

Return c ≡p ab

Figure 14: The one-more gap computational Diffie-Hellman security game.

over H1 : ∗ → G, H2 : ∗ ×G→ {0, 1}λ, H3 : G6 → Zp for (p,G) determined by GGen(λ).

Theorem 11 Let Aprf be a P-model OPRF adversary against 2HashDH. Then we give a H3-model adversary
Azk and adversary Acdh such that

Advoprf
2HashDH,S[SΣ],P,Aprf

(λ) ≤ Advzk
ΣR,R,H3,SΣ,Azk

(λ) + Adv
(qH1

+qH2
)-om-gap-cdh

GGen,Acdh
(λ) ,

where S is the simulator defined in Figure 15 that makes use of NIZK simulator SΣ, and qH1
, qH2

, qH3
are

the number of queries Aprf makes to its respective ideal primitives. Adversary Azk makes qH3 queries to its
random oracle and Acdh makes qB queries to its CDH oracle. Further, T (Aprf) ≈ T (Azk) ≈ T (Acdh).

Proof: The follows closely to the proof of pseudorandomness for 3H in Appendix B. We skip game hops
G0 → G1 and G4 → G5 that deal with disallowing and restoring collisions in the random oracle used for
public tags. The 2HashDH construction does not use that random oracle, and thus the birthday bound terms
from the 3H analysis do not appear.

The first game hop is instead G1 → G2 (of Appendix B) which transitions to a game that replaces the NIZK
generated in BlindEv with one generated by the NIZK simulator SΣ.

The second game hop follows G2 → G3 (of Appendix B) in which we modify the handling of H2 queries to
check if the table R from Ev has been set on a relevant value and, if so, patch up H2’s response to maintain
consistency. This does not change the distribution of responses to the adversary so there is no distinguishing
advantage.

Lastly, the final game hop follows G3 → G4 (of Appendix B) by only repairing H2’s response if there has been
more queries to BlindEv than repairs required. The only difference between this game and the ideal world
is when more repairs occur than queries to BlindEv. We show an adversary against the OM-Gap-CDH
assumption with advantage greater than or equal to the distinguishing advantage between these two games.
The views of the games are simulated using the initial values to program H1, the CDH oracle in BlindEv,
and the DDH oracle to check for repairs in H2.
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S.InitEv(λ, pp)

R1 ← [·] ; R2 ← [·]
stΣ←$ SΣ.Init(λ, pp)

stS ← (pp,⊥, R1, R2, stΣ)

Return stS

S.KeyGenEv(: (pp, sk, R1, R2, stΣ))

(g, p,G)← pp ; sk←$ Zp
Return gsk

S.BlindEvEv(req : (pp, sk, R1, R2, stΣ))

B ← req ; B′ ← Bsk

π←$ SΣ.Prove((g, gsk , B,B′) : stΣ)

Return (B′, π)

S.EvalEv(x : (pp, sk, R1, R2, stΣ))

(i, x)← x

y←$ S.Evali(x : stS)

Return y

S.EvalEv1 (x : (pp, sk, R1, R2, stΣ))

(g, p,G)← pp

If x 6∈ R1 then R1[x]←$ G
Return R1[x]

S.EvalEv2 (x, Y : (pp, sk, R1, R2, stΣ))

If x 6∈ R1 then R1[x]←$ G
If (x, Y ) 6∈ R2 then

If Y = R1[x]sk then R2[x, Y ]← Ev(x)

Else R2[x, Y ]←$ {0, 1}λ

Return R2[x, Y ]

S.EvalEv3 (x : (pp, sk, R1, R2, stΣ))

Return SΣ.Eval(x : stΣ)

Figure 15: Simulator S[SΣ] for OPRF security of 2HashDH where SΣ is the zero knowledge simulator for ΣR.

Request Privacy. Next, we provide theorems for the two notions of request privacy (with and without
proofs of correct blind evaluation) for 2HashDH. We again define analogues of POPRIV1 and POPRIV2
(see Figure 4) for the OPRF setting, which we refer to as OPRIV1 and OPRIV2. The games are identical
except the public metadata tag is removed as input to oracles and algorithms. The advantage of a OPRIV1
adversary A in the P-model is defined by

Advopriv1
Fn,P,A(λ) =

∣∣∣Pr
[
POPRIV1A,1Fn,P(λ)⇒ 1

]
− Pr

[
POPRIV1A,0Fn,P(λ)⇒ 1

]∣∣∣ ,
and the advantage of a OPRIV2 adversary A defined by

Advopriv2
Fn,P,A(λ) =

∣∣∣Pr
[
POPRIV2A,1Fn,P(λ)⇒ 1

]
− Pr

[
POPRIV2A,0Fn,P(λ)⇒ 1

]∣∣∣ .
We provide the following theorems without proof as they follow directly from the proofs given in Section 5.

Theorem 12 For any OPRIV1 adversary Aopriv1 against 2HashDH (without client verification) we have

that Advopriv1
2HashDH,Apo-priv1

(λ) = 0.

Theorem 13 Let Aopriv2 be a OPRIV2 adversary in the P-model against 2HashDH that makes at most q
queries to Fin. We give an adversary Bsound such that

Advopriv2
2HashDH,P,Aopriv2

(λ) ≤ 4q · Advsound
NiZK,R,H3,Bsound

(λ)) .

Further, T (Bsound) ≈ T (Aopriv2).

E (Partially) Blind Signatures Preliminaries

In this section, we define the syntax, semantics, and security properties of partially blind digital signatures.
As in our definitions for POPRFs, the formalism we present here supports the public metadata input of
“partially” blind digital signatures, but can be easily adapted for the simpler blind digital signature setting
without public metadata. Also as in our treatment of POPRFs, we simplify our handling of the interactive
blind signing protocol by restricting our attention to a single round of interaction. This approach differs
from related definitions [HKL19] for “three-move” blind signatures capturing Schnorr-type schemes; the
constructions we consider in this work are only “two-move” and hence we benefit from shedding the extra
definitional complexity.
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E.1 Syntax and Semantics

A partially blind digital signature scheme, DS, is a tuple of algorithms

(DS.Setup,DS.KeyGen,DS.Sign,DS.Ver,DS.Req,DS.BlindSign,DS.Finalize)

The setup and key generation algorithm generate public parameters pp and a public key, secret key pair
(pk, sk), respectively. Blind signing is carried out as an interactive protocol run between client and server:

(1) First, a client runs the algorithm DS.ReqP
pp(pk, t,m), which takes input a public key pk, tag (or public

input) t, and message m, and outputs a local state st and a request message req. The message req is
sent to a server.

(2) A server runs algorithm DS.BlindSignP
pp(sk, t, req), using as input a secret key, a tag t, and the request

message. It produces a response message rep that should be sent back to the client.

(3) Finally, the client runs the algorithm DS.Finalize(rep : st) and outputs an unblinded signature σ on the
message-tag pair (t,m) or ⊥ if the response message is rejected, for example, due to the verification
check failing.

The unblinded signing algorithm DS.Sign is randomized, and takes as input a secret key sk, an input pair
(t,m), and outputs a signature σ. The verification algorithm DS.Ver takes as input a public key pk, an input
pair (t,m), and a signature σ, and outputs 1 if the signature is valid and 0 otherwise. We also define sets
DS.SK, DS.PK, DS.T, DS.M, and DS.Σ representing the secret key, public key, tag, message, and signature
space, respectively. DS is called unique if there exists only a single valid signature σ for input (t, x).

For correctness, we require that both the unblinded signing algorithm and interactive blind signing
protocol produce valid signatures. To formalize the latter: we require that for pp output from Setup, any
pk, sk output by KeyGen, and any t,m, it holds that Pr[Ver(pk, t,m, σ) = 1] = 1 where the probability is
taken over choice of σ via the following process:

(st, req)←$ ReqP(pk, t,m) ; rep←$ BlindSignP(sk, t, req) ; σ←$ FinalizeP(rep : st) .

E.2 Security

We introduce two new definitions of security for partially blind digital signatures, tailored for the case of
one round blind signing. Our definitions match closely to those introduced for the POPRF setting. We use
code-based games mostly following the framework of Bellare and Rogaway [BR06].

One-more unforgeability. The first definition captures unforgeability, ensuring that it is not possible
for malicious clients to forge signatures even when given access to a blinded signing oracle. We give a
pseudocode game in Figure 16. The adversary is tasked with producing q + 1 distinct message-signature
tuples [(mi, σi)]

q+1
i=1 that all verify under a given public key pk and adversary-chosen public tag t′. The

adversary is given access to a blinded signing oracles for pk but wins only if they query the oracle q times or
less on the chosen tag t′. This intuitively enforces that each query to the blind signing oracle only results in
one learned signature, and queries for a different public tag do not help in forging a signature for the target
tag. We let the advantage of a OM-Unf adversary A be defined by

Advom-unf
DS,P,A(λ) = Pr

[
OM-UnfADS,P(λ)⇒ true

]
.

Blindness. The second definition captures message privacy of a client in the face of a malicious server.
We give a pseudocode game in Figure 17. The game is the exact analogue of the request privacy against
malicious adversary game POPRIV2 (see Section 3) for POPRFs adapted for blind signature syntax. The
adversary is given access to a request oracle and finalize oracle representing client behavior. The request
oracle takes an adversary-chosen public key, public tag, and pair of messages, and outputs a randomly
ordered pair of client request messages (for the input messages) based on a challenge bit. The finalize oracle
takes an adversary-chosen pair of response messages, and outputs the produced signatures (in the original
order). To prevent trivial attacks of corrupting one response, the oracle requires that both signatures finalize
without error, i.e. do not equal ⊥.
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Game OM-UnfADS,P(λ)

stP ←$ P.Init(λ)

pp←$ DS.Setup(λ)

(sk, pk)←$ DS.KeyGenP
pp()

(t′, [mi, σi]
`
i)←$ABlindSign,P(pp, pk)

Require qt′ < ` ∧ ∀`i6=j (mi, σi) 6= (mj , σj)

Return
∧`
i DS.Ver(pk, t′,mi, σi)

Oracle BlindSign(t, req)

qt ← qt + 1

rep ← DS.BlindSignP(sk, t, req)

Return rep

Figure 16: One-more unforgeability security game for partially blind signatures. The query counters qt are initialized
to 0 for all t ∈ DS.T.

Game BlindA,bFn,P(λ)

i← 0

stP ←$ P.Init(λ)

pp←$ DS.Setup(λ)

b′←$AReq,Fin,P(pp)

Return b′

Oracle Req(pk, t,m0,m1)

i← i+ 1

(sti,0, req0)←$ DS.ReqP(pk, t,m0)

(sti,1, req1)←$ DS.ReqP(pk, t,m1)

Return (reqb, req1−b)

Oracle Fin(j, rep, rep′)

If j > i then return ⊥
σb←$ DS.FinalizeP(stj,b, rep)

σ1−b←$ Fn.FinalizeP(stj,1−b, rep
′)

If σ0 = ⊥ or σ1 = ⊥ then

Return ⊥
Return (σ0, σ1)

Figure 17: Security definition for blindness of message in partially blind signatures.

The advantage of a Blind adversary A is defined by

Advblind
DS,P,A(λ) =

∣∣∣Pr
[
BlindA,1DS,P(λ)⇒ 1

]
− Pr

[
BlindA,0DS,P(λ)⇒ 1

]∣∣∣ .
F (P)OPRFs from Unique (Partially) Blind Signatures

In this section, we provide proof for the folklore transform of a unique partially blind signature (resp. blind
signature) to a POPRF (resp. OPRF) in the random oracle model. The transform, observed by Jarecki
et al. [JKK14], simply consists of hashing the signature to create the PRF output. We call this transform
HSig[DS] where if DS uses ideal primitive P, HSig uses ideal primitive P×H where H is a random oracle over
H : DS.T× DS.M× DS.Σ→ {0, 1}λ. The pseudocode is given in Figure 18.

Pseudorandomness. We prove the following theorem:

Theorem 14 Let Aprf be a (P × H)-model POPRF adversary against HSig[DS]. Then we give a P-model
adversary Aom-unf such that

Advpo-prf
HSig[DS],S[DS],P×H,Aprf

(λ) ≤ Advom-unf
DS,P,Aom-unf

(λ) ,

where S is the simulator defined in Figure 19. If qB,t is the number of queries Aprf makes to its blind
evaluation oracle for tag t, adversary Aom-unf makes qB,t queries to its blind signing oracle for tag t. Further,
T (Aprf) ≈ T (Aom-unf).

Proof: We bound the advantage of Aprf by bounding the advantage of a series of game hops. We define

G0 = POPRF
Aprf,1
HSig,P×H,S(λ). In the first game hop to G1, we replace the proper evaluation and call to H

in Ev with a separate random table. In H, we check if the inputs form a valid signature, and if so ensure
that the hash table R is consistent with the random table from Ev. Because of this repair, the view of the
adversary remains the same, and there is no distinguishing advantage between G0 and G1. This is the case
because the partially blind signature is unique – there is only ever one repair for a (t, x) input pair.

In G2, we track the number of calls to BlindEv for each tag and the number of repairs for each tag that
occur in H. If the number of repairs for a tag ever exceeds the number of BlindEv calls, then a bad flag is
set. In G2, the game is aborted if the flag is set, while G1 repairs and continues. By an identical-until-bad
argument via the fundamental lemma of game playing [BR06], the distinguishing advantage between G1 and
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HSig.Setup(λ)

Return DS.Setup(λ)

HSig.ReqP×H(pk, t, x)

(req, stDS)←$ DS.ReqP(pk, t, x)

st← (t, x, stDS)

Return (req, st)

HSig.KeyGenP×H(pp)

Return DS.KeyGenP(pp)

HSig.FinalizeP×H(rep; st)

(t, x, stDS)← st

σ←$ DS.FinalizeP(rep; stDS)

Return H(t, x, σ)

HSig.BlindEvP×H(sk, t, req)

Return

DS.BlindSignP(sk, t, req)

HSig.EvP×H(sk, t, x)

σ←$ DS.SignP(sk, t, x)

Return H(t, x, σ)

Figure 18: The generic HSig[DS] transform to construct a POPRF from any partially blind signature scheme DS.

S.Init(λ, pp)

R← [·]
stP ←$ P.Init(λ)

(sk, pk)←$ DS.KeyGen(pp)

stS ← (pp, pk, sk, R, stP)

Return (stS, pk)

S.BlindEvLimEv(t, req : (pp, pk, sk, R, stP))

Return DS.BlindSignP(sk, t, req)

S.PLimEv(x : (pp, pk, sk, R, stP))

Return P.Eval(x : stP)

S.HLimEv(t, x, σ : (pp, pk, sk, R, stP))

If (t, x, σ) 6∈ R then

If DS.Ver(pk, t, x, σ) then R[t, x, σ]← LimEv(t, x)

Else R[t, x, Y ]←$ {0, 1}λ

Return R[t, x, Y ]

Figure 19: Simulator S[DS] for PRF security of HSig[DS].

G2 is bounded by the probability the bad flag is set. Furthermore, G2 = POPRF
Aprf,0
HSig,P×H,S(λ), since its

abort in H corresponds to the simulator calling LimEv without any budget. Thus, we conclude the proof by
constructing an adversary for the one-more unforgeability game that wins whenever the bad flag is set.

The unforgeability adversary Aom-unf simulates the BlindEv oracle using its own BlindSign oracle. Aom-unf

stores the sets of all (t, x, σ) valid triples that are passed in to H keyed by the public tag t. If the number of
valid triples for a tag exceeds the number of calls to BlindEv for a tag, i.e., the case where the bad flag is
set, Aom-unf returns the valid (x, σ) message-signature pairs along with the given tag to win the game.

Request privacy. We prove the following theorem:

Theorem 15 Let Apo-priv2 be a (P × H)-model POPRIV2 adversary against HSig[DS]. Then we give a
P-model adversary Ablind such that

Advpo-priv2
HSig[DS],P×H,Apo-priv2

(λ) ≤ Advblind
DS,P,Ablind

(λ) ,

where Ablind makes the same number of queries to its respective request and finalize oracles as Apo-priv2 and
T (Apo-priv2) ≈ T (Ablind).

Proof: Ablind is a wrapper adversary around the blindness security game that simulates Apo-priv2’s envi-
ronment perfectly. Ablind simply forwards Apo-priv2’s oracle queries to Req and Fin to its own respective
queries, and in the case of Fin performs the final hash, before forwarding the response back to Apo-priv2.

G Security of ZSS Partially Blind Signature

In this section, we provide the first complete security proof for the ZSS partially blind signature scheme [ZSS03].
Our 3HashSDHI POPRF construction follows closely the ZSS partially blind signature scheme, but differs
in one significant way. 3HashSDHI uses a NIZK to prove correctness of the blind evaluation, while ZSS
uses a pairing verification check (which also gives it its public verifiability property). We show the one-more
unforgeability of ZSS is implied by our new one-more gap SDHI assumption, however, we must amend the
(m,n)-OM-Gap-SDHI assumption for the bilinear pairing group setting including the extra group elements
needed for verification. To be complete, we show that the amended assumption is secure with respect to a
similarly generalized uber assumption for the bilinear pairing setting [BFL20].

There are two other small changes we make to original ZSS construction. For clarity, we refer to the
original construction by ZSS1 and our modified version as ZSS2. First, we replace the multiplicative blinding
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ZSS2.Setup(λ)

(p,G1,G2,GT , g1, g2, e, φ, ψ)← BGGen(λ)

pp ← (p,G1,G2,GT , g1, g2, e, φ, ψ)

Return pp

ZSS2.SignH1×H2
pp (sk, t,m)

σ ← H1(m)1/(sk+H2(t))

Return σ

ZSS2.KeyGenH1×H2
pp ()

z←$ Zp
sk ← z ; pk ← gz1
Return (sk, pk)

ZSS2.VerH1×H2
pp (pk, t,m, σ)

Return
(
e
(
g

H2(t)
1 pk, σ

)
= e(g1,H1(m))

)

ZSS2.ReqH1×H2
pp (pk, t,m)

r←$ Zp ; B ← H1(m)r

Return ((pk, r, t,m), B)

ZSS2.FinalizeH1×H2
pp (B′, π; (pk, r, t,m))

σ ← (B′)1/r

If not ZSS2.VerH1×H2 (pk, t,m, σ) return ⊥
Return σ

B−−−−−−−−−→

B
′

←−−−−−−−−−

ZSS2.BlindSignH1×H2
pp (sk, t, B)

k ← sk + H2(t)

B′ ← B1/k

Return B′

Figure 20: The ZSS2 partially blind signature construction, a minor modification to the construction from [ZSS03].
Algorithms have implicit input the parameters pp = (p,G1,G2,GT , g1, g2, e) that describe the groups used. Hash
function H1 has range G2 and H2 has range Zp.

Game (m,n)-OM-Gap-SDHIABGGen(λ)

(p,G1,G2,GT , g1, g2, e, φ, ψ)← BGGen(λ)

sk←$ Zp ; [yi]
m
i ←$ [Zp]mi

(stA, [ci]
n
i )←$A1(p,G)

Require ∀ni6=jci 6= cj

(γ, [Zi, αi, βi]
`
i)←$ASDH,SDDH

2

(
g1, g2, g

sk
1 , g

sk
2 ,
[
g
yi
1 , g

yi
2

]m
i

: stA
)

Require qγ < ` ∧ ∀`i6=jαi 6= αj ∧ ∀`i βi ∈ [1, 2]

Return [Zi]
`
i =

[
g
yαi

/(sk+cγ )

βi

]`
i

Oracle SDH(B, i, j)

Require i ∈ [1, n]

Require B ∈ Gj
qi ← qi + 1

Z ← B1/(sk+ci)

Return Z

Oracle SDDH(Y, Z, i, j)

Require Y, Z ∈ Gj
Return Z = Y 1/(sk+ci)

Figure 21: The one-more gap strong Diffie-Hellman inversion security game adapted for bilinear groups.

approach with exponential blinding (consistent with 3HashSDHI) which is both simpler and has security
benefits in the non-verification case [JKX21]. ZSS incorrectly claim that the blindness property is not
satisfied under the exponential blinding approach, as we explain below where we discuss blindness.

Nevertheless, the multiplicative blinding approach of ZSS is still interesting as it enables a client-side
performance improvements of fixed-base exponentiation with precomputation over variable-base exponenti-
ation [JKX21]. We present this alternate blinding approach that can be applied to both 3HashSDHI and
ZSS in Appendix I. The second difference is that we change the signature structure to not include the public
tag in the first hash input. This change doesn’t affect the security of the signature and allows for the blind
signing process to be initiated by the client before the public tag is known (allowing for server-chosen public
tags). The construction is given in pseudocode as ZSS2 in Figure 20.

Bilinear pairing groups. We follow the notation of [BFL20]. (1) Groups G1,G2,GT are cyclic groups
of prime order p. (2) Group element g1 is a generator of G1, g2 is a generator of G2. (3) Pairing function
e : G1 × G2 → GT is a computable map with the following properties: Bilinearity : ∀ u ∈ G1, v ∈ G2, and
a, b ∈ Z, e(ua, vb) = e(u, v)ab, and Non-degeneracy : e(g1, g2) 6= 1. (4) φ is an isomorphism φ : G1 → G2,
and ψ is an isomorphism ψ : G2 → G1. We assume an efficient setup algorithm that on input security
parameter λ, generates a bilinear group, (p,G1,G2,GT , g1, g2, e, φ, ψ)← BGGen(1λ), where |p| = λ. If there
exist efficiently computable isomorphisms φ : G1 → G2 and ψ : G2 → G1, the bilinear group is called Type
1 ; it is called Type 2 if there is no efficiently computable isomorphism φ, and called Type 3 if there is neither
φ nor ψ. In the AGM, group element representations including elements computed from isomorphisms are
explicitly indicated along with the representation of the element passed into the isomorphism.

We also extend the (m,n)-OM-Gap-SDHI assumption for bilinear pairing groups in the game given
in Figure 21. The game is identical as before except the adversary is given group elements in both G1
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Game m-UberABGGen(λ)

(p,G1,G2,GT , g1, g2, e, φ, ψ)← BGGen(λ)

Q1 ← {} ; Q2 ← {}
~x = [xi]

m
i ←$ [Zp]mi

(j, U, µ( ~X))←$AEv,Decide(p,G1,G2,GT , g1, g2, e, φ, ψ)

Return
(
U = g

µ(~x)
j ∧ (Q1 ∪Q2) ⊥⊥ {µ( ~X)}

)

Oracle Ev(j, ρ( ~X))

Require i ∈ [1, 2]

Qj ← Qj ∪ {ρ( ~X)}
Return g

ρ(~x)
j

Oracle Decide(j, ρ( ~X), [Yi]
n
i )

~y = [yi]
n
i ←

[
loggj Yi

]n
i

Return ρ(~y) ≡p 0

Figure 22: The interactive, flexible-output, polynomial uber assumption with decision oracle adapted for bilinear
groups.

and G2 for sk and yi. The SDH and SDDH oracles are also parameterized by an input j ∈ [1, 2] to
determine which group the oracle query takes place over. We provide a corollary that the bilinear-version
(m,n)-OM-Gap-SDHI is implied by a bilinear-version m-Uber assumption [BFL20], which in turn has
been shown to be implied by a bilinear-version q-DL assumption (both reductions make use of the AGM).
The pseudocode games describing these assumptions are given in Figure 22 and Figure 23, respectively.
The uber assumption allows the adversary to specify a group in which to receive an evaluation and tracks
the polynomial queries made to each group. The winning condition is stated in the most general way
(for Type 1 bilinear groups), in which the winning polynomial must be independent from queries made
to both groups; relaxed winning conditions can be formulated for Type 2 and 3 bilinear groups in which
depending on the group of the winning element, the winning polynomial must be independent from only
one query set (see [BFL20] for details). However, the general formulation is sufficient for proving security of
(m,n)-OM-Gap-SDHI regardless of the underlying bilinear group type.

Game q-DLABGGen(λ)

(p,G1,G2,GT , g1, g2, e, φ, ψ)← BGGen(λ)

x←$ Zp
x′←$A

(
p,G1,G2,GT , g1, g2, e, φ, ψ,

[
gx
i

1 , gx
i

2

]q
i=1

)
Return x = x′

Figure 23: The q-type discrete log security game.

We provide the following corollaries for the security of
the bilinear version of (m,n)-OM-Gap-SDHI. We reuse the
query budget notation from Section 5.

Corollary 16 For any algebraic adversary Asdhi of
(m,n)-OM-Gap-SDHI with query budget (~q = [q1, . . . , qn],
qSDDH), and any BGGen outputting (p, g1, g2,G1,G2), where
g1 and g2 are uniformly chosen elements of G1 and G2, we
give adversary Auber such that

Adv
(m,n)-om-gap-sdhi
BGGen,Asdhi

(λ) ≤ (qmax + 1) · Adv
(m+1)-uber
BGGen,Auber

(λ) +
q

p
,

where q =
∑n
i qi and qmax = max{qi}ni . Also, Auber makes at most q queries to its polynomial evaluation

oracle with maximum degree q + 1, and outputs a polynomial of degree at most q. Further, T (Asdhi) ≈
T (Auber).

Again, when combined with a basic reduction from [BFL20], this gives us the following immediate corol-
lary.

Corollary 17 For any algebraic adversaryAsdhi of (m,n)-OM-Gap-SDHI, with query budget (~q = [q1, . . . , qn],
qSDDH), and any BGGen outputting (p, g1, g2,G1,G2), where g1 and g2 are uniformly chosen elements of G1

and G2, we give adversary Adl such that

Adv
(m,n)-om-gap-sdhi
BGGen,Asdhi

(λ) ≤ (qmax + 1) · Adv
(q+1)-dl
BGGen,Adl

(λ) +
q

p
,

where q =
∑n
i qi and qmax = max{qi}ni . Further, T (Asdhi) ≈ T (Adl).

These corollaries mirror exactly the results from Section 5. The proof of Corollary 16 follows the same
approach as the proof in Appendix A; the polynomial independence argument is not affected by the which
group the evaluations are given in (and for Type 1 bilinear groups, it is irrelevant).

One-more unforgeability. We provide the following theorem for the one-more unforgeability of ZSS2.
A similar result can be stated for ZSS1, and its proof would be almost identical. Here, the ideal model
P = H1 × H2 consists of random oracles H1 : ∗ → G2 and H2 : ∗ → Zp for (p,G2) determined by BGGen(λ).
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Game G

i← 0 ; R′1 ← [·]
R1 ← [·] ; R2 ← [·]
pp←$ ZSS2.Setup(λ)

b′←$AReq,Fin,P(pp)

Return b′

Oracle Req(pk, t,m0,m1)

i← i+ 1

ti ← t ; pki ← pk

mi,0 ← m0 ; mi,1 ← m1

ri,0←$ Zp ; req0 ← g
ri,0
2

ri,1←$ Zp ; req1 ← g
ri,1
2

Return (reqb, req1−b)

Oracle Fin(j, rep, rep′)

If j > i then return ⊥
If not e

(
g

H2(ti)
1 pki, (rep)1/ri,b

)
= e(g1, g2) then

Return ⊥
If not e

(
g

H2(ti)
1 pki, (rep

′)1/ri,1−b
)

= e(g1, g2) then

Return ⊥
σb ← (rep)R

′
1[mi,b]/ri,b

σ1−b ← (rep′)R
′
1[mi,1−b]/ri,1−b

Return (σ0, σ1)

Oracle H1(m)

If m 6∈ R1 then

h←$ Zp
R1[m]← gh2
R′1[m]← h

Return R1[m]

Oracle H2(t)

If t 6∈ R2 then

R2[t]←$ Zp
Return R2[t]

Figure 24: Game transition used in blindness security proof of ZSS2 in Theorem 19. Algorithms have implicit input
pp = (p,G1,G2,GT , g1, g2, e).

Theorem 18 Let Aom-unf be a P-model one-more unforgeability adversary against ZSS1. Then we give an
adversary Asdhi such that

Advom-unf
ZSS2,P,Aom-unf

(λ) ≤ Adv
(qH1

,qt)-om-gap-sdhi

BGGen,Asdhi
(λ) +

q2
t

p
,

where qH1
is the maximum distinct queries Aom-unf makes to H1 and qt is the maximum distinct t queries

Aom-unf makes to H2 and BlindSign. Further, T (Aom-unf) ≈ T (Asdhi).

Proof: We define G0 = OM-UnfAom-unf

ZSS2,P (λ). We first transition to a game G1 in which we disallow collisions
in the output of H2, i.e., we replace sampling from Zp for new range values with sampling without replacement
from Zp. Recall that at most qt unique t values are queried by Aom-unf in the course of the game, and so a
standard birthday analysis establishes an upper bound of qt(qt − 1)/2p.

We build adversary Asdhi to simulate exactly Aom-unf’s environment in G1. Adversary Asdhi simulates the
ideal primitives by using its input values gyi2 as random outputs of H1 and randomly chosen unique cj values
as outputs of H2. Adversary Asdhi simulates BlindSign by looking up (or programming) the appropriate cj
and forwarding a query to its SDH oracle, returning the result. When Aom-unf returns, Asdhi matches the
returned messages to its programmed outputs in H1, and returns the signatures along with appropriate gyi2

index, specifying group j = 2. Whenever Aom-unf wins G1, then Asdhi also wins (qH1 , qt)-OM-Gap-SDHI
because if the signatures are valid, then so will be the SDHI checks.

Blindness. ZSS describe a possible linking attack against exponential blinding [ZSS03, Footnote 1]. Adapted
to our version of the scheme and notation, their claimed attack checks if e(σ,B) = e(B′,H1(m)), and if
so concludes that B,B′ is the partially blinded protocol transcript used to generate σ. (Note, that this
computation is only possible for type 1 pairings, or type 2 pairings if one uses the map ψ.) However, this
check always passes for any B,B′ (with B′ = B1/(sk+H2(t))), regardless of whether the transcript B,B′ is
associated with the signature σ.

Instead, we provide the following theorem for the blindness of ZSS2, which uses exponential blinding.

Theorem 19 For any Blind adversary Ablind in the P-model against ZSS2, we have that

Advblind
ZSS2,P,Ablind

(λ) = 0 .

Proof:

We transition to a game G shown in Figure 24 in which the requests output from Req are swapped from
reqd = H1(md)

rd to reqd = grd2 for d ∈ {0, 1}. Observe that the outputs of Req are now independent of
challenge bit b. Fin is also changed. In the original game, Fin outputs valid signatures if the responses
given by the adversary are equal to rep = req1/(sk+H2(t)) where pk = gsk1 ; this is confirmed by the pairing
verification equation. Otherwise the output is ⊥. In G, the same pairing check is made to see if the adversary
responded in the correct manner. If pairing check succeeds, then a valid signature is created and returned
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Game POUNIQAFn,P(λ)

q ← 0 ; R← [·]
pp←$ Fn.Setup(λ)

stP ←$ P.Init(λ)

(i, j, repi, repj)←$AReq,P(pp)

Require 1 ≤ i ≤ j ≤ q
(sti, pki, ti, xi)← R[i]

(stj , pkj , tj , xj)← R[j]

yi ← Fn.FinalizeP(repi : sti)

yj ← Fn.FinalizeP(repj : stj)

If yi = ⊥ or yj = ⊥ then

Return 0

Return ((pki, ti, xi) = (pkj , tj , xj)) ∧ (yi 6= yj)

Oracle Req(pk, sk, t, x)

Require Fn.Wellformed(pk, sk)

(st, req)← Fn.ReqP(pk, t, x)

q ← q + 1

R[q]← (st, pk, t, x)

Return req

Figure 25: Security definition for uniqueness of PO-PRF outputs despite a malicious server. The highlighted code is
included for simplicity to address rogue key attacks using the knowledge of secret key model [Bol03].

by simulating H1 and using the discrete log of the programmed hash outputs. Importantly, the output valid
signatures, do not include the blinding factor rd and are thus, independent of the challenge bit and the
outputs from Req. Therefore, the outputs of G are distributed identically to the blind security game, and
since they do not depend on the challenge bit, the adversary can have no advantage.

H Uniqueness from Request Privacy

We formalize uniqueness via game POUNIQ shown in Figure 25. It is parameterized by a security parameter
λ, a PO-PRF scheme Fn, an adversary A, and an ideal primitive P. The adversary can query a request oracle
Req to generate honest requests for adversary-chosen public key, public input t and private input x. The
adversary finishes by outputting a pair of numbers indicating one or two queries to Req, as well as two
response messages repi, repj . The adversary wins if the triple pk, t, x are the same for both queries but the
client can be tricked into outputting distinct y values. We let the advantage of a POUNIQ adversary A be
defined by

Advpo-uniq
Fn,A,P (λ) = Pr

[
POUNIQAFn,P(λ)⇒ 1

]
where the probability space is taken over the random choices made in the game.

Looking ahead, our proof of uniqueness will depend on our correctness property. However, our correctness
property is stated to hold for wellformed public key pairs, while uniqueness captures a malicious adversary
that may use a rogue public key. To bridge this gap, we require the adversary to prove knowledge of secret
keys. For simplicity, we model this by asking the adversary to provide the secret key as input to the request
oracle, shown highlighted in Figure 25, following the knowledge of secret key model [Bol03]. This model can
be instantiated by including extractable proofs of knowledge of secret keys, from which the secret key can
be extracted and the proof may proceed in the KOSK model. In the game pseudocode, we use a wellformed
predicate to capture this check, i.e., for a discrete log public key X and secret key x, checks X = gx.

The next theorem captures that POUNIQ security is implied by POPRIV2 security.

Theorem 20 Let A be a POUNIQ adversary against a PO-PRF scheme Fn. Then we give a POPRIV2
adversary B such that

Advpo-uniq
Fn,A,P (λ) ≤ Advpo-priv2

Fn,B,P (λ) ,

where B makes the same number of queries to its respective request oracle as A, makes at most 2 queries to
its finalize oracle, and T (A) ≈ T (B).

Proof: The reduction works as follows given a POUNIQ adversary A. Adversary B (given in pseudocode
in Figure 26) on input pp runs A on input pp. Upon receiving a request query Req(pk, t, x), adversary B
makes oracle call Req(pk, t, x, x) to its own request oracle. Adversary B receives back two request messages
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Adversary BReq,Fin,P(pp)

q ← 0 ; R← [·]
stP ←$ P.Init(λ)

(i, j, repi,0, repj,0)←$ASimReq,P(pp)

Require 1 ≤ i ≤ j ≤ q
(pki, ski, ti, xi, reqi,1)← R[i]

(pkj , skj , tj , xj , reqj,1)← R[j]

repi,1←$ Fn.BlindEvP(ski, ti, reqi,1)

repj,1←$ Fn.BlindEvP(skj , tj , reqj,1)

(yi,0, yi,1)← Fin(i, repi,0, repi,1)

(yj,0, yj,1)← Fin(j, repj,0, repj,1)

y ← Fn.EvP(ski, ti, xi)

If yi,0 6= yi,1 then return yi,0 == y

Return yj,0 == y

Oracle SimReq(pk, sk, t, x)

Require Fn.Wellformed(pk, sk)

(req0, req1)←$ Req(pk, t, x, x)

q ← q + 1

R[q]← (pk, sk, t, x, req1)

Return req0

Figure 26: Adversary B against POPRIV2 used in uniqueness security proof.

3H.ReqH1×H2×H3×H4 (pk, t, x)

r←$ Zp ; B ← H1(x) ·
(
gH3(t)pk

)r
Return ((pk, r, t, x), B)

3H.FinalizeH1×H2×H3×H4 (B′, π; (pk, r, t, x))

Y ← B′/gr

Require ΣR.VerH4 ((g, gH3(t)·pk, B′, B), π)

Z ← H2(t, x, Y )

Return Z

B−−−−−−−−−→

B
′

←−−−−−−−−−

3H.BlindEvH1×H2×H3×H4 (sk, t, B)

k ← sk + H3(t)

B′ ← B1/k

π←$ ΣR.ProveH4 (k, (g, gk, B′, B))

Return (B′, π)

Figure 27: An alternative multiplicative blinding protocol [ZSS03] that provides client-side performance bene-
fits [JKX21].

req0, req1 and returns req0 to A. B also stores the pk, sk, t, x, req1 associated with the query. Recall the sk
is known due to the knowledge of secret key model. This perfectly simulates A’s request oracle.

When A returns (i, j, repi,0, repj,0), B retrieves pki, ski, ti, xi, reqi,1 and pkj , skj , tj , xj , reqj,1. We
consider the case where A wins uniqueness game. In this case, (pki, ski, ti, xi) = (pkj , skj , tj , xj) so we drop
the subscripts.

B calls Fin by responding to reqi,0 with the A-provided repi,0 and responding to reqi,1 with a repi,1 generated
honestly. By the correctness property, we know that the value returned from the honest flow with repi,1
is equal to y = Fn.Ev(sk, t, x). If Fin returns two different values, then by matching which position y is
returned reveals the challenge bit and allows B to win the game.

If Fin returns two identical values, then we repeat the above for the j query. If A wins the uniqueness game,
then we know that Fin will not return identical values for the j query, so the challenge bit will be revealed,
and B wins the game. Thus, B outputs the correct challenge bit in the POPRIV2 game whenever A wins
POUNIQ.

I Multiplicative Blinding

In this section we present an alternate client-side blinding approach applying a blinding factor using group
multiplication rather than group exponentiation. This approach was originally proposed by ZSS [ZSS03].
We show that it is a secure blinding alternative for both the 3HashSDHI POPRF and for the ZSS partially
blind signature. The multiplicative blind evaluation protocol is given for 3HashSDHI in Figure 27. It can
be adapted for ZSS by including pk2 = gsk2 as a second component of the public key to be used for blinding.

The multiplicative blinding proofs for 3H and ZSS1 follow symmetrically as those for Theorem 7 and
Theorem 19. To create a request for multiplicative blinding that is independent of challenge bit b, we
construct the request as B ← g ·

(
gH3(t)pk

)r
. This gives the following corollaries:
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Corollary 21 Let Apo-priv2 be a POPRIV2 adversary in the P-model against 3H with multiplicative blind-

ing that makes at most q queries to Fin. We give in the proof below a SoundANiZK,R,H4
adversary Bsound

such that

Advpo-priv2
3H,P,Apo-priv2

(λ) ≤ 4q · Advsound
NiZK,R,H4,Bsound

(λ)) .

Further, T (Bsound) ≈ T (Apo-priv2).

Corollary 22 For any Blind adversary Ablind in the P-model against ZSS1 with multiplicative blinding,
we have that Advblind

ZSS1,P,Ablind
(λ) = 0.
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