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Abstract. We introduce a novel method for reducing an arbitrary δ-
noisy leakage function to a collection of ϵ-random probing leakages.
These reductions combined with linear algebra tools are utilized to study
the security of linear Boolean masked circuits in a practical and concrete
setting. The secret recovery probability (SRP) that measures an adver-
sary’s ability to obtain secrets of a masked circuit is used to quantify the
security. Leakage data and the parity-check relations imposed by the
algorithm’s structure are employed to estimate the SRP
Both the reduction method and the SRP metric were used in the pre-
vious works. Here, as our main contribution, the SRP evaluation task
is decomposed from the given Fq field to q − 1 different binary systems
indexed with i. Where for the ith system, the equivalent δi-noisy leak-
age is reduced optimally to a ϵi-random probing leakage with ϵi = 2δi.
Each binary system is targeting a particular bit-composition of the se-
cret. The q− 1 derived δi ≤ δ values are shown to be a good measure for
the informativeness of the given δ-noisy leakage function.
Our works here can be considered as an extension of the work of TCC
2016. There, only δ-noisy leakage from the shares of a secret was consid-
ered. Here, we also incorporate the leakages that are introduced by the
computations over the shares.

Keywords: Boolean masking · Noisy leakage · Random probing ·
Security assessment.

1 Introduction

Side-channel attacks are a significant concern for the security of physically im-
plemented cryptographic algorithms. Their successful application to various re-
alizations of primitives, especially block ciphers, has triggered intense research
to understand and prevent these threats. See [25, 24, 15] for pioneering works on
the side-channel analysis, and [34, 21, 33, 12] for more recent works.

The first step in developing a mitigation plan for a type of side-channel attack
is to find an appropriate mathematical model, known as the leakage model, for
expressing what an adversary can gain by conducting these attacks. A leakage
model is a probabilistic function or a condition that formulates side-information
of the adversary. A good survey on the leakage models is provided by [22]. In this
work, we will use the noisy leakage model to study the security of well-known
Boolean masking countermeasures in arbitrary-order software implementations
of masked linear circuits.



Noisy leakage model. The leakage from power consumption, or electromag-
netic emanations, can be modeled by supplying the adversary with a noisy ver-
sion of each variable of the running cryptographic algorithm A. The collection
of the obtained noisy information is called the leakage vector and is denoted
by L. The adversary is also aware of public inputs/outputs of A. Her ultimate
goal is to use the public information and the acquired vector L to recover some
non-trivial knowledge about the private inputs/outputs of A. The noisy-leakage
model is introduced in [29] and matches well with the experimental outcomes.
For a practical use case of this model, see [3].

For a variable V ∈ Fq=2k valued during each execution of A, the noisy in-
formation that the side-channel adversary will gather in the V ’s computation
interval is modeled by an m-length vector sampled from some probability distri-
bution ν(v) ∈ Rm. The input argument v is the actual value taken by V in the
current run of A, and m ≥ 1 is proportional to the sampling frequency. Based
on the collected raw leakage data, ν(v) is an m-dimensional probability distri-
bution, depending on the hardware used in the implementation. The process of
characterizing this probability distribution is called profiling. Profiling requires
access to the cryptographic device with complete control over its inputs and
internal randomness [8, 31].

The observed m values are jointly dependent on V . So, by processing these m
quantities with some dimension reduction techniques, the adversary can obtain a
more refined leakage described with a univariate probability distribution ν(v) ∈
R. This leakage compression shall not dismiss a noticeable amount of useful data.
For dimension reduction methods, see [5].

In the noisy leakage model, for each variable V of A, the adversary knows
the probabilistic observation function ν(.), and receives a single value ν(v) as
part of the leakage vector L.

Software implementation. The noisy leakage model is suitable for software
implementation. In software, we assume that a single instruction is being per-
formed at each instance of time, and leakage related to each variable is indepen-
dent of the leakage corresponding to any other variable.

In a software implementation, the code script of A is known to the adversary.
We assume that this script is only composed of Fq’s basic operations such as
AND, XOR, COPY, and RAND. Where RAND is for randomness generation, it
has no input and outputs a single uniformly distributed random element of Fq in
each invocation. More precisely, we assume that A is a circuit with no feedback
loop [19]. If the compiler performs no processor optimization and multi-threading,
the list of A’s variables is unambiguously defined by the given script. As in [20],
we denote this list by ΣA.

The adversary is allowed to collect leakage vector L on each run of A. For
unprotected implementations, eventually, L may leak all the private information
of A. To make A resistant against this leakage, a masking countermeasure is
usually adopted.
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Boolean masking. In the Boolean masking, a stand-alone variable V ∈ Fq,
by using fresh randomness, is encoded to an n-element vector −→V = (V1, . . . , Vn).
Where Vis are random members of Fq such that ⊕n

i=1Vi = V is satisfied. Based
on the similarities with secret sharing schemes, Vis are called shares of V , and
V is referred to as secret. parameter n ∈ N is the masking order. Vector −→V is
also referred to as an n-sharing for the secret V .

Intuitively, by increasing n, the adversary has to combine more noisy observa-
tions to obtain V , making V less accessible to her. In [7], for binary secret with
Gaussian distributed noisy observations of its shares, this intuition is proved.
However, in general, it may not hold for any noise function ν(.) [11].

For each variable V ∈ ΣA, by Boolean masking of A, there will be a cor-
responding n-sharing −→V . This vector replaces V , and all the operations in the
masked circuit are equivalently carried out with −→V , without directly invoking
the secret V . In the masked circuit, all the variables in ΣA are considered to be
secret.

The theory of Boolean masking (at least for block ciphers) is well devolved.
There are clear steps defined for masking a given input circuit A at an arbitrary
order n. We denote the masked counterpart of A with A′. For each value of order
n, A′

n is a separate circuit. The collection of {A′
2,A′

3, . . .} forms a non-uniform
circuit family. A′ -when parameter n is not mentioned- is a representative for
this family.

Building blocks of Boolean masking. A′
n is composed of shared gadgets.

These gadgets are masked equivalents of basic AND and XOR operations. The
shared gadgets operate on n-sharing vectors and produce an n-sharing vector of
the output.

The shared gadget for AND is denoted by SAND, and for XOR is denoted by
SXOR. A′

n may also incorporate another shared gadget denoted by SR, which is
used to refresh the shares of a secret.

The shared gadgets themselves are made up of basic AND, XOR, COPY,
and RAND instructions. In the literature, various constructions for the shared
gadgets are introduced. In [30, 2, 1], candidates for SR are given, and examples
of SAND structures are provided in [19, 3, 13]. For Fq affine operations, devising
a shared gadget is straightforward. See [30] for a more elaborate discussion.

Linear circuits. We define a circuit composed of only F2-linear basic opera-
tions, namely XOR, RAND, and COPY, as a linear circuit. Fq-linear operations
such as field squaring and scalar multiplication are not allowed. Most of the
practically used SR gadgets are linear circuits.

In [20], it was demonstrated that a linear algorithm can be equivalently
described by a linear system of equations. For an SR gadget, at any order n, we
represent the secret with V and ΣSRn

with ΣSRn
= {X1, X2, . . . , XT (n)}. Where

T (n) = |ΣSRn
| is the number of variables of this shared gadget, including input,

output, randomness, and the remaining intermediate variables. Xis and V are

3



all in Fq. During each execution of the SR gadget, members of ΣSRn
are valued

exactly once.
At each order n, a linear SR gadget is equivalently described by a linear

system of equations defined as Pn(V,X1, X2, . . . , XT (n)) = 0. Equivalence for the
two representations means that the empirical distribution induced on {V,ΣSRn

}
are identical for the two cases. In the rest of this paper, we concentrate on this
system of equations. Pn can be described by a matrix relation as

Pn × [V,X1, X2, . . . , XT (n)]
† = 0. (1)

Where † denotes matrix transpose, and Pn is a (T (n) + 1)×D(n) matrix with
all the entries in F2. Without loose of generality, we assume that Pn is full rank
and since D(n) < (T (n) + 1), we have Rank(Pn) = D(n).

According to coding theory, Pn is the parity-check matrix over {V,ΣSRn},
and D(n) is the number of independent linear relations between these variables.
The adversary will try to solve (1) using side knowledge L to find the secret
variable V . For more in-depth argument, see [20].

Noise amplification. Parity-check relations in Pn help the adversary recover
secret V . Increasing the order n introduces more of these relations. On the other
hand, by increasing n, the secret V will be split into more shares, and this puts
the adversary in trouble since she needs to combine more noisy observations to
get something about V . In combining noisy observations, the chances are that
noises will amplify, and V will be more blurred. In this regard, considering rela-
tion (1), the main question is that in what circumstances increasing n amplifies
the noise of observations and so conceals secret V more. In this paper, we will
answer to this dilemma.

MAP adversary. The adversary that makes her decisions with maximum a
posteriori probability (MAP) rule is called the MAP adversary. Assume that
secret V is in ΣA, given leakage vector L corresponding to linear masked circuit
A′

n with describing parity equations Pn, the adversary tries to find the best
estimate for the realized value of V . Let v be that value. The MAP adversary
outputs Ṽ for her estimate of v based on the following rule.

Ṽ = argmax
α∈Fq

Pr(V = α|L,Pn) (2)

By this choice for Ṽ , it is shown that the probability of the correct guess, i.e.,
Pr(Ṽ = v), is maximized [18].

Since the MAP adversary is not computationally bounded, the considerable
burden of direct computation required by relation (2) is not a challenge. From
this viewpoint, the main contribution of this paper is giving a computationally
feasible way for bounding Pr(Ṽ = v) at any masking order n.
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Security of SR gadgets. The security of shared gadgets is crucial for the
security of their composition in A′. In this paper, we construct a framework
for evaluating the security of linear shared gadgets under arbitrary probabilistic
leakage observation function ν : Fq → R. Thanks to the reduction to linear
systems developed in [20], the proposed framework in this paper can be used to
study the security of SAND construction given in [3].

In line with [20], we define secret recovery probability (SRP) as a measure
for quantifying the security of linear masked algorithms (including linear SR
gadgets) that have a single uniform secret V ∈ Fq. For a fixed noisy observation
function ν(.), SRPV (n) for an A′ circuit family is defined as the advantage of
the MAP adversary by the following relation.

SRPV (n) , Pr(Ṽ = v|L,A′
n)−

1

|Fq|
(3)

Where v is the realized value of V , and Ṽ is the estimation of the MAP adversary
for V based on leakage L and equations in Pn.

A smaller value for SRPA′

V (n) implies that the adversary has a lower chance
of recovering secret V . If SRPA′

V (n) decreases by increasing masking order n,
then more security will be achieved; at the price of increased complexity.

The circuit familyA′ is marked secure against leakage function ν(.) if SRPA′

V (n)
is a monotonically decreasing function of n limiting toward zero.

1.1 Problem definition

Given an F2-linear system of equations Pn(V,X1, X2, . . . , XT (n) = 0, with noisy
observation vector L that is randomly sampled based on the distributions in
{ν1(x1), ν2(x2), . . . , νT (n)(xT (n))}, what is the probability that an adversary can
obtain secret V = v better than simply guessing it? Where lower-case letters are
denoting realized values of their respective random variables.

The framework developed in this paper can be used to study this general
case. However, for ease of notations, we assume that the leakage functions ν1 to
νT (n) are all equal and are represented by ν. The observation function depends
mainly on the structure of the hardware used in the implementation and the
ambient noise. So, it seems that sticking to a single function is more relevant
to practical use cases of the problem. Note that according to the noisy leakage
model, the function ν is completely known to the adversary.

By matrix description of the F2-linear Pn, the problem we want to answer
can be restated as follows.

For an equation set defined with Pn ∈ {0, 1}(T (n)+1)×D(n), given a random
instance of noisy observation L as{

Pn × (V,X1, X2, . . . , XT (n))
† = 0

L← {ν(x1), ν(x2), . . . , ν(xT (n))}
, (4)
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characterize the behavior of the security measuring function SRPV (n) at various
masking orders n.

SRPV (n) , Pr(Ṽ = v|L,Pn)−
1

|Fq|
(5)

Where Ṽ is the estimation of the adversary for the value of the initially random
secret V . More specifically, at a fixed leakage function ν(.), for a given family
of matrices {P2,P3, . . .}, we want to know that whether increasing n helps to
protect V better or not. Practical values for masking order are usually in range
of 2 to 5, and in some works even up to 50. Therefore, concrete security analysis
(for n ≤ 50) is more demanded than purely asymptotic statements.

To make the problem’s relevance to actual scenarios explicit, we give realiza-
tions for leakage functions and linear SR algorithms in the squeal.

Instances of leakage functions. The first candidate for ν(.) is the noise-less
hamming weight leakage function. For a k-bit value X ∈ {0, 1}k, the hamming
weight is defined by counting non-zero bits of X by relation HW(X) = Σk

i=1X
i,

where the Xis are bits of X as X = [X1, X2, . . . , Xk]. Hamming distance leakage
for X, assuming a constant known reference state RX , is defined as HD(X,RX) =
HW(X ⊕RX). See [4] for a justification.

Hamming weight leakage is very informative; the adversary receiving HW(X)
can unambiguously determine ⊕k

i=1X
i with the following simple identity, where

mod(., 2) means reminder of division with 2.

⊕k
i=1X

i = mod(HW(X), 2) (6)

So, even for an isolated n-sharing −→V = {V1, V2, . . . , Vn}, with leakage observa-
tion L = {HW(V1),HW(V2), . . . ,HW(Vn)}, nothing prevents the adversary from
obtaining XOR of bits of the k-bit secret V as

⊕k
i=1V

i = ⊕n
i=1mod(HW(Vi), 2). (7)

In reality, leakage measurements are always buried in noise and interference.
Hence, a more realistic nomination for leakage function is scaled hamming weight
leakage perturbed by an additive random value. Such as, ν(V ) = aHW(V ) + b.
With a ≤ 1, and b sampled from a normal distribution with known mean and
variance.

Some processors leak a much-restricted amount of usable data. The following
probabilistic function is an example [26].

ZV(v) =

{
a← N (µA, σA) if v = 0

b← N (µB , σB) otherwize
(8)

Where N (µ, σ) is a normal distribution with the specified parameters. This
leakage function assumes that power consumption for zero value is different
from other values . This difference is exploited as the leakage source.
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Device specific observation function. Generic leakage functions are utilized
when the adversary has not complete access to the targeted hardware. Never-
theless, if a copy of targeted hardware is at her disposal, she can estimate the
relevant observation function by profiling, then dimension reduction, and finally,
PDF approximation techniques.

Instances of linear circuits. The SRP(n) estimation method developed in
this paper is applicable to any linear circuit. However, our numeric examples are
only calculated for a particular refreshing algorithm proposed in [1]. This SR
that we will refer to as SR-SNI has very suitable properties for composing with
other shared gadgets [1, 20].

We denote the input n-sharing of SR-SNI with the vector −→V 0 and the out-
put n-sharing with −→V 1. Both vectors are n-sharing for the same secret V , So,
⊕n

i=1Vi,0 = ⊕n
i=1Vi,1. Where Vi,j represents the ith share of vector −→V j .

The pseudocode for SR-SNI is given in algorithm 1.

Algorithm 1 SR-SNI
Input The n-sharing −→V 0 = (V1,0, V2,0, . . . , Vn,0)

Output An n-sharing −→V 1 = (V1,1, V2,1, . . . , Vn,1) for the same secret V

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: r ←$ Fq

4: Vi,0 = Vi,0 ⊕ r
5: Vj,0 = Vj,0 ⊕ r

6: for i = 1 to n do
7: Vi,1 = Vi,0

8: return −→V 1

SR-SNI is a linear circuit. For input size n, it uses (n2 − n)/2 randomness
variables and n2−n times XOR operations. By direct counting, we obtain T (n) =
n + 3(n2 − n)/2 + n; the first and last terms are for the input and output
variables. Since only randomness and input variables are independent, we will
have d(n) = T (n) − (n2 − n)/2 − n + 1; the reason for addition with 1 is that
the secret is also a linearly dependent variable. Parity-check relations in Pn are
derived with the Gaussian-elimination technique. See [20] for their automated
tool of obtaining Pn.

Of course, Pn’s order of variables is not a matter, but their set and count
are influential. For example, in algorithm 1, by some obvious optimization, one
may omit the last for loop, which is for copying the results and hence decrease
the number of internal variables. In this way, a new Pn will result. Therefore,
exact results are dependent on the details of code implementations. Nevertheless,
subtle changes like a single variable-copy-loop do not affect the final calculations
for SRP(n) in a detrimental way.
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1.2 Our contributions

We initiate a framework for assessing the security of Boolean masked circuits at
arbitrary noisy leakage distributions. For instance, we provide an answer for the
mentioned problem in 1.1.

A formerly known reduction from noisy leakage to random probing leakage
(introduced in [9]) has been used to answer this problem in [20], by invoking
simple linear-algebra tools. Unfortunately, the reduction is not tight at Fq. As
a result, for most of the leakage functions, security evaluation is not directly
possible. We close the gap for linear circuits by giving a new F2-based equivalent
analysis. In this path, we use the fact that reduction from noisy leakage to
random probing leakage in F2 is optimal.

We also extend the results of [11]. For noisy observation of shares of Vi,
in [11], a minimum requirement on the output distribution of ν(.) for noise
amplification was derived. In this paper, we tackle the same question, but this
time noisy observations are not limited to only isolated shares; as detailed in
1.1, a complete set of variables appearing in a linear circuit are targeted. Quite
surprisingly, we obtain a similar requirement on the structure of ν(.).

Finally, it is to note that the method we have applied to answer the problem
in 1.1 is just a proof technique, which is based on reduction and simulation.
Hence it can not be used to recover the value of V in actual attack scenarios.

1.3 Preliminaries

Notations. A k-bit extended field, with q = 2k members, is denoted by Fq.
Random variables (RVs) are shown by capital letters as V , and their realizations
are shown by corresponding lower-case letters as v. A random variable with a
vector over it, is used for indication of an n-sharing. Such as −→V = {V1, . . . , Vn},
where subscript-indexed RVs are shares. For a k-bit variable V , the corresponding
bits are shown by V = [V 1, . . . , V k], where V is are binary and superscript-
indexed, with V 1 being MSB.

For two RVs X and Y , their joint probability distribution at (X = x, Y = y)
is denoted by PX,Y (x, y), and their marginal distribution are denoted by PX(x)
and PY (y), respectively. Conditional distribution of Y at Y = y conditioned on
X = x is written as PY |X=x(y). Support of a random value X is denoted by
Ω(X) and is collection of all values x in the domain of X that PX(x) ̸= 0.

Cardinality of a set like Fq is shown by |Fq|. For uniform assignment of a
random variable V from a set as Fq, we write v ←$ Fq, and for assignment
of value of V based on a distribution as (µ,σ)-normal distribution, we write
v ← N (µ, σ).

Boldface letters are used for arrays and matrices, calligraphic font is used
for algorithms, and known probability distributions. A prim over an algorithm
name is used for identifying the masked counterpart of that algorithm. Field
operations and some functions are written by sans-serif font family, for more
clarity.
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Other notations used in this paper are described at first place that they
appear.

1.4 Metrics for quantifying the noise

For any value α ∈ Fq, ν(α) is a known probability distribution over R. To mea-
sure how much usable data the random variable ζ = ν(V ) can deliver about an
initially-uniform random variable V , mutual information and statistical distance
are commonly used metrics. The mutual information is mainly used by applied
side-channel investigators and is defined as

γ = MI(V ; ζ) ,
∑
α∈Fq

∫
β∈Ω(ζ)

PV,ζ(α, β) log
PV,ζ(α, β)

PV (α)Pζ(β)
dβ (9)

Value of γ when the base of log is 2, lies in [0, k]. A smaller γ implies a less
amount of valuable data is given by this leakage function.

Conditional statistical distance is used mainly in theoretical studies and is
defined as

δ = SD(V ;V |ζ) , 1

2

∑
α∈Fq

∫
β∈Ω(ζ)

|PV,ζ(α, β)− PV (α)Pζ(β)| dβ (10)

Value of δ, for initially-uniform V , resides in [0, 1/2]. A smaller δ implies a
less informative leakage function. A leakage function with conditional statistical
distance δ is referred to as a δ-noisy leakage function.

Parameters δ and γ are related through several inequalities. For low values
of δ, the (generalized) Pinsker’s inequality, as in relation (11), can tightly link
these two metrics [14].

2δ2 +
4

9
δ4 +O(δ6) ≤ γ (11)

In section 3.2, we will introduce a new approach for quantifying informative-
ness of ν(.). There, instead of directly targeting V , we will consider information
that learning ν(V ) can deliver about h(V ). Where h : Fq → {0, 1} can be any of
Boolean combinations of bits of V .

1.5 Random probing model

Another leakage model that is considered in the side-channel analysis is the ran-
dom probing model. This model is mainly of theoretical interest; it is essentially
the same as the noisy leakage model with the observation function ν(V ) = ϕ(V ).
Where ϕ : Fq → {Fq,⊥} is a memory-less probabilistic erasure function, with
parameter ϵ ∈ [0, 1]. Where 1-ϵ is the erasure probability, and the special sym-
bol ⊥ /∈ Fq represents the erasure event. This model is also known as ϵ-random
probing model.
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For every value v ∈ Fq, ϕ(v) = v with probability ϵ, and ϕ(v) = ⊥ with
probability 1− ϵ [9]. For the random probing model, we can write

∀v ∈ Fq; Pr(ϕ(v) = v) = ϵ. (12)

Where Pr is only taken on the ϕ’s internal randomness. With this leakage model,
the problem mentioned in 1.1 can be readily answered by standard linear-algebra
techniques [20].

A closely related model is the average probing model introduced in [10]. In
this new model, the erasure probability is averaged over the entire input alpha-
bet, and the probability of the erasure event depends on the value of the input
variable. Therefore, receiving ⊥ may leak some data about V . This makes diffi-
culties in the usage of linear-algebra tools for solving our main problem. In the
rest of this paper, we will use only the results developed for the random probing
model.

2 Known results

2.1 Relations with coding theory

In coding theory, for linear codes, symbols of code-words have known linear de-
pendencies, usually referred to as parity-check relations. The channel through
which code-words are transmitted determines the observation function ν. A de-
coder algorithm receiving a noisy code-word uses parity-check relations to recover
some code-word elements. Motivated with these similarities, we briefly review
the general decoder algorithms that apply to our problem in the follow-up.

Belief Propagation. The common practice for solving a set of equations given
an initial noisy side-information about its engaged unknowns, the same as our
problem in 1.1, is the well-known belief propagation method.

Belief propagation, also known as sum-product, is a sub-optimal recursive
algorithm for characterizing a solution for a (linear or some non-linear) system
of equations. Its convergence to the correct solution (if there is any) depends
on the structure of the composing equations. For spars parity relations, as in
low-density parity-check (LDPC) codes, belief propagation performs well in the
presence of enough side information [28, 27].

Belief propagation ideas are used in some side-channel attack scenarios [17,
32, 3]. However, due to its sub-optimal performance, we cannot use it to certify a
Boolean masking’s security. More concretely, the adversary may find an approach
with a success rate higher than what is inferred by a belief prorogation.

Gaussian elimination. For the particular case of random probing leakage
that corresponds to the erasure channel in coding theory, Gaussian elimination
techniques are adopted to characterize linear systems’ solutions. For random
probing, we will use this tool here, same as [20]. For application in coding theory,
such as LDPC codes, see [6].
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Exhaustive search. The ML rule in coding theory is similar to the MAP rule
described here. Both need an exhaustive search on the variables space to find all
possible solutions. They achieve the theoretically optimum decision outcomes for
solving any system of equations with any sort of prior distribution knowledge.

2.2 Minimum requirement for noise amplification

Considering an isolated n-sharing −→V = {V1, V2, . . . , Vn} in Fq=2k , with leakage
random variable L = {ν(V1), ν(V2), . . . , ν(Vn)} distributed according to some
noise function ν, does increasing n decreases SRP (secret recovery probability)
for any noise function ν, or there should be some restrictions on the output
distribution of ν? In [11] this was answered by expressing the required noise
constraint.

For instance, if only MSB of each variable is leaking, i.e., ν(V ) = V 1, it
is easy to see that, since the rest k − 1 bits are independently and uniformly
distributed, SRPV (n) is calculated as

SRPV (n) =
1

2k−1
− 1

2k
. (13)

Therefore, SRPV (n) is independent of n, which means that increasing masking
order does not decrease SRP value. For this example, value of metric δ, computed
by relation (10), is obtained 1/2.

In [11], it is proved that if leakage function is δ-noisy for δ < 1/2, then
SRPV (n) will be a monotonically decreasing function of n, with

lim
n→∞

SRPV (n)→ 0. (14)

2.3 From noisy leakage to random probing leakage

In the remarkable work of [9], it was observed that for any value v, ν(v) is
simulatable from ϕ(v), for some constant (independent of v) parameter ϵ, without
any other access to the value v. More concretely, there is a probabilistic function
f with domain {Fq,⊥} that for random variables ξ = f(ϕ(V )) and ζ = ν(V ),
we can write

∀ α ∈ Fq, β ∈ Ω(ζ); PV,ξ(α, β) = PV,ζ(α, β). (15)

Therefore, the leakage vector sampled by function ν is indistinguishable from
a leakage vector first sample by the erasure function ϕ and then processed by
f . This result shows that noisy leakage is reducible to random probing leakage.
This one-directional reduction helps to evaluate security in the random probing
model and then interpret the obtained results for the noisy leakage model.

In [9], The minimum value for the parameter ϵ is obtained as

ϵmin = 1−
∫
β∈Ω(ζ)

min
α∈Fq

PV |ζ=β(α) dβ. (16)

11



For any ϵ ≥ ϵmin, one can devise a function f . For two random variables V
and ζ, parameter 1− ϵmin is independently defined in communication theory as
Doeblin’s coefficient [16]. In [9], the relation between δ and ϵmin was shown to
be ϵmin ≤ δq.

This reduction is not tight. Unfortunately, there is a considerable gap be-
tween the noisy leakage model and the reduced to random probing model at
fields with q > 2. In a sense that, for some noise functions, the reduction re-
quires high values of ϵ. For higher values of ϵ, either the masked circuit will be
insecure, or its security proof will be difficult. In both cases, the reduction will
be useless.

For example, considering ν(v) = HW(v), the value of ϵmin is obtained 1,
which means that ϕ(v) should always give v with probability 1. In this way, the
reduction does not distinguish the noise-less identity observation ν(v) = v and
HW(v). One may think that this is because the hamming weight function is very
informative. See the discussion around relation (6). However, for ν(V ), defined
as

ZVo(v) =

{
µA if v = 0

µB otherwize
(17)

with µA ̸= µB , ϵmin is again obtained 1. This time, ν(V ) is just distinguishing
only one number of its q possible input values. This observation function is the
deterministic version of ZV(v), defined by function (8).

In this paper, we will show that for binary variables, i.e., for q = 2, the
reduction from noisy leakage to random probing is tight. For this case, we will
prove that ϵmin = 2δ.

Application to our problem. For computing Pr(Ṽ = v|L,Pn), discussed in
relation (5), we can use the proposed reduction as follows.

Pr(Ṽ = v|L,Pn) =a Pr(Ṽ = v|{ν(x1), . . . , ν(xT (n))},Pn)

=b Pr(Ṽ = v|{f [ϕ(x1)], . . . , f [ϕ(xT (n))]},Pn)

≤c Pr(Ṽ = v|{f [ϕ(x1)], ϕ(x1), . . . , f [ϕ(xT (n))], ϕ(xT (n))},Pn)

=d Pr(Ṽ = v|{ϕ(x1), . . . , ϕ(xT (n))},Pn)

=e Pr(Ṽ = v|Lr,Pn)

(18)

Where (a) is by direct substitution for the leakage vector. (b) follows from the fact
that for each entry of L as ν(xi), f [ϕ(xi)] has an indistinguishable distribution.
(c) follows by the fact that extra information increases the probability of correct
guess, i.e., the event Ṽ = v. (d) follows from the fact that knowledge of t = ϕ(xi)
is sufficient and f(t) is a dependent variable and is unnecessary. In (e), the new
leakage vector in the random probing model is represented by Lr.
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To distinguish the evaluation of SRP based on the random leakage Lr, we
use a new notation as SRP(n, ϵ). For any ϵ ≥ ϵmin, based on the relation (18),
we can write SRP(n) ≤ SRP(n, ϵ)

In this setting, a linear masked algorithm (with describing matrix family P),
is declared secure, if there exists an ϵ0, such that for any ϵ < ϵ0, SRP(n, ϵ) is a
decreasing function of n, with limiting toward zero at sufficiently big values of
n [20].

2.4 Security in the random probing model

Evaluation of SRP(n, ϵ) requires the computation of Pr(Ṽ = v|Lr,Pn), which
can be simplified by directly substituting the information given by Lr into the
equations in Pn. We show the resultant new matrix by Pr

n. So, we can write

Pr(Ṽ = v|Lr,Pn) = Pr(Ṽ = v|Pr
n). (19)

For each element of Lr that we have ϕ(xi) = xi, by substitution in Pn, the
corresponding column in Pn will be known. For removing a revealed column, we
can replace it with an all-zero column.

As comprehensively discussed in [20], the rest of the work is straightforward.
First, the row reduced echelon form of Pr

n, with standard row-based Gaussian
elimination approach is obtained. We denote the resultant matrix by G, and the
Gaussian elimination function with Gaussian-Elim, that is

G = Gaussian-Elim(Pr
n). (20)

For a detailed description of Gaussian-Elim, refer to [20], or check the wiki page
of the row reduced echelon form.
Matrix G has the same size as Pr

n and will identify how much information Pr
n can

give about V . If G has no free variables in the first row, i.e., if G(1, 2 to T (n)+
1) = 0, then Pr

n can determine V uniquely. So, we will have

Pr[Ṽ = v|G(1, 2 to T (n) + 1) = 0] = 1 (21)

However, if there be a free variable in the first row, which is the row containing
V as its pivot, then Pr

n reveals no information about V . So, only the guessing
option remains, which means

Pr[Ṽ = v|G(1, 2 to T (n) + 1) ̸= 0] =
1

q
. (22)

Finally, by expanding the conditional probability, we can write

Pr(Ṽ = v|Pr
n) =

Pr[G(1, 2 to T (n) + 1] = 0) +
1

q
Pr[G(1, 2 to T (n) + 1) ̸= 0]

= (1− 1

q
) Pr[G(1, 2 to T (n) + 1) = 0] +

1

q

(23)
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Since Pn is Boolean, G will also be binary, and as a result, the probability of the
event G(1, 2 to T (n) + 1) = 0 will be independent of the size of the underlying
field.

For a fixed pair of (n, ϵ), by the Monte Carlo approach, with sufficient number
of random trials, SRP(n, ϵ) can be estimated.

2.5 Security of linear masked algorithms

For various masked algorithms, including the SR-SNI refreshing gadget, SRP(n, ϵ)
is evaluated in [20]. For the SR-SNI, that is described with the pseudocode in
algorithm 1, SRP(n, ϵ), for ϵ ≤ 0.15, is bounded as

SRP(n, ϵ) ≤ (1− 1

q
)ϵ0.6n. (24)

This bound is obtained by curve-fitting the results for orders n ≤ 30.

3 Security evaluation under general noise distribution

The security evaluation approach described so far is only applicable for observa-
tion functions that their corresponding ϵmin is adequately small. Nevertheless,
for leakage functions such as HW and ZVo, since ϵmin is high, this approach fails.
Then, it remains unclear how to bound SRP(n) for these leakages. In this section,
we will answer this question. Our approach is based on an optimal reduction and
can be used to assess any leakage function.

3.1 Overview of our approach

Instead of evaluating the informativeness of the pair (Pn, L) regarding the secret
V , we will consider XOR of bits of V as a new target. For a k-bit variable V ,
there are 2k − 1 such XOR combinations. We will demonstrate that for each of
these binary combinations, parity relations are governed by Pn. However, the
leakage vector L should be tailored. It turns out that there is an equivalent noise
description for each XOR combination.

On the other hand, we prove that in F2, the reduction from noisy leakage to
random probing leakage is optimal. So, we can give an optimal estimation for
the probability of recovering each composition of bits of V . We also illustrate
how these probabilities of XOR combinations collectively determine the overall
security of V .

Practitioners not interested in the technical details can jump directly to
part 3.3, where we review the step-by-step procedures required for assessing the
security of a linear masked algorithm at arbitrary noisy observation function.
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3.2 Technical details

Binary projections of the secret. In [20], it is proved that if for a k-bit
random variable V , SRPV (n) is a decreasing function of n, then for any binary
function h : {0, 1}k → {0, 1}, SRPh(V )(n) is also a decreasing function of n. Here,
we will prove that the reverse side of this statement is also valid.

First, we define a family of binary functions H = {h1, h2, . . . , h2k−1}, with
hI(V ), for I ∈ [1, 2k − 1], computed as

hI(V ) = ⟨I, V ⟩ = ⊕k
i=1I

iV i. (25)

Where Ij is the jth bit of I in a k-bit representation, with I1 being the MSB.
For two same-length arrays (here bit-arrays) I and V , ⟨I, V ⟩ is known as their
inner product. For the practically interesting case of 8-bit variables, H has 255
members.

Lemma 1. If for any hI ∈ H, SRPhI(V )(n) is decreasing function of n and
limiting to zero, then SRPV (n) is also a decreasing function of n with limiting
to zero.

Proof. See appendix A.

Remark 1. The idea of investigating bit-combinations of V is inspired by the
Goldreich–Levin theorem from the hard-core predicates theory, which is of to-
tally independent interest. There, it is proved that if it is computationally hard
to obtain V given a side-information, then there is a combination of bits of V
that is distributed evenly, from the perspective of any computationally bounded
observer, and the bias of distribution decreases as the security parameter in-
creases. See chapter 8 of [23] if interested in this outlined resemblance. Note
that the proof method we have used for this lemma does not depend on the
hard-core predicates’ arguments.

Let’s turn back to the study of the inner product of I and V . Given leakage
vector L and the describing Boolean matrix Pn, SRPhI(V )(n), for a fixed I,
assuming initially-uniform V , is computed as the following.

SRPhI(V )(n) = |Pr(h̃I(V ) = hI(v)|L,Pn)−
1

2
| (26)

Where h̃I(V ) is the random variable representing the outcome of the MAP
decision for value of hI(v) given side-information L and Pn, and v is the realized
value of V .

h̃I(V ) = arg max
α∈{0,1}

Pr(hI(V ) = α|L,Pn) (27)
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From Fq to F2. Our main challenge is the conversion of the MAP task from
Fq to F2. First, we prove a beneficial property for the Boolean Pn matrix. We
show that in an F2-linear system as

Pn × [V,X1, . . . , XT (n)]
† = 0 (28)

the value of ⟨I, V ⟩ can be obtained directly, i.e., without first solving for V .

Lemma 2. Since entries of Pn are binary, for any I ∈ [1, 2k − 1], the system
Pn × [V,X1, . . . , XT (n)]

† = 0 implies that

Pn × [⟨I, V ⟩, ⟨I,X1⟩, . . . , ⟨I,XT (n)⟩]† = 0 (29)

Proof. See appendix B.

Lemma 2 paves the way for mapping the maximization problem in relation
(27) from a q-ary field to a binary one.

To grasp-deeply what condition Pn means, assume set Sn is the collec-
tion of all possible solutions of the system Pn. At least, the realized values
for {V,X1, . . . , XT (n)} are in Sn. However, there may be other solutions in Sn,
as well. Each member of Sn is a (T (n) + 1)-element vector that is orthogonal to
Pn, i.e., it satisfies relation (28). We show the ith member of Sn with si and the
jth entry of si with scalar sj,i. By this notation, the value corresponding to the
secret will be s1,i.

We can replace the condition Pn in the maximization of relation (27) with
the set Sn, since both have the same meaning, i.e., they both impose the same
constraints on the possible values of the variables. By expanding the conditional
probability, we can write

arg max
α∈{0,1}

Pr(hI(V ) = α|L,Sn) = arg max
α∈{0,1}

1

|Sn|
∑
s∈Sn

Pr(hI(V ) = α|L, s)

(30)
Likewise, for a fixed I ∈ [1, 2k − 1], assume set SIn be the collection of all

binary (T (n) + 1)-tuples satisfying (29). With these definitions, we are ready to
tackle with the burden of obtaining h̃I(V ).

Lemma 3. For the task of computation of h̃I(V ) we can write

arg max
α∈{0,1}

Pr(hI(V ) = α|L,Sn) = arg max
α∈{0,1}

Pr(hI(V ) = α|L,SIn). (31)

This lemma expresses that for computing some statics on ⟨I, V ⟩, knowledge
of SIn is sufficient. This lemma confines the parity-check relations into a binary
field. The next step is to find an equivalent expression for the leakage vec-
tor L ← {ν(x1), ν(x2), . . . , ν(xT (n))} based on the mapped realized values in
{⟨I, x1⟩, ⟨I, x2⟩, . . . , ⟨I, xT (n)⟩}.
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Let’s define a new bi-variate probability distribution PA,ζI (α, β), with Ω(A) =
{0, 1} and Ω(ζI) = Ω(ζ), as

PA,ζI (α, β) =
∑

v∈{0,1}k,⟨I,v⟩=α

PV,ζ(v, β) (32)

In this definition, we explicitly used the fact that for each element of Fq there is
a unique k-bit equivalent representation. With this definition, it is easy to verify
that, for any I, we have

PA(0) = PA(1) =
1

2
PζI (β) = Pζ(β)

(33)

We also define a new probabilistic function λI(b) for sampling values based
on the conditional probability PζI |A=α. For b ∈ {0, 1}, we have

Pr(λI(b) = β) = PζI |A=b(β). (34)

Note that the random variables A and ζI are also related as ζI = λI(A).
Accordingly, we define the marginal leakage vector, for a given fixed I, as

LI ← {λI [⟨I, x1⟩], λI [⟨I, x2⟩], . . . , λI [⟨I, xT (n)⟩]}. (35)

In the following lemma, it is proved that LI is sufficient for our maximization
problem.

Lemma 4. Computation of h̃I(V ) can be further simplified with LI as

arg max
α∈{0,1}

Pr(hI(V ) = α|L,SIn) = arg max
α∈{0,1}

Pr(hI(V ) = α|LI ,SIn). (36)

Proof. This and lemma 3 are proved in appendix C.

By this lemma, the job of bringing the computation of h̃I(V ) from Fq to F2 is
completed. The rest of the work is mainly around applying the reduction from
noisy leakage in LI to a matching random probing leakage vector.

Reduction from binary noisy leakage. Recall that SIn is the collection of
the solutions of Pn in (29). We can switch between SIn and its matrix format Pn

in the foregoing MAP problem freely. However, to avoid ambiguity, we show the
describing matrix corresponding to SIn with PI

n. This is somewhat an abuse of
notations since both matrix Pn and PI

n are equal. The difference is that Pn is
over Fq variables {V,X1, . . .}, and PI

n is over F2 variables {⟨I, V ⟩, ⟨I,X1⟩, . . .}.
With this explanation, we can write

arg max
α∈{0,1}

Pr(hI(V ) = α|LI ,SIn) = arg max
α∈{0,1}

Pr(hI(V ) = α|LI ,P
I
n). (37)
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What remains is to use the reduction from noisy leakage to random probing
leakage in a similar way as was done in eq. (18). To ease tracking of the logic,
we repeat the steps here. Let’s define

Lr
I = {ϕb[⟨I, x1⟩], ϕb[⟨I, x2⟩], . . . , ϕb[⟨I, xT (n)⟩]}

for the random probing peer of the leakage vector LI . For a fixed I, the binary-
input probabilistic function ϕb : {0, 1} → {0, 1,⊥} is a memory-less erasure
function, associated with some parameter ϵI ∈ [0, 1]. The subscript b in ϕb

stands for binary and is used for more clarity. For the MAP problem, we can
write

Pr(h̃I(V ) = hI(v)|L,Pn) =a Pr(h̃I(V ) = hI(v)|LI ,P
I
n)

≤b Pr(h̃I(V ) = hI(v)|Lr
I ,P

I
n)

=c Pr(h̃I(V ) = hI(v)|PI,r
n )

=d
1

2
Pr[GI(1, 2 to T (n) + 1) = 0] +

1

2

(38)

Where (a) is by lemma 3 and 4. (b) follows by the reduction from the noisy
leakage given by λI to a random probing leakage given by ϕb. In (c), the leakage
given by Lr

I is substituted in the system of equations described by PI
n. The

resultant matrix is denoted by PI,r
n . Finally, (d) is resulted by application of

relation (23), with q = 2 and GI = Gaussian-Elim(PI,r
n ).

By direct replacement, SRPhI(V )(n) will be

SRPhI(V )(n) ≤
1

2
Pr[GI(1, 2 to T (n) + 1) = 0]. (39)

It is seen that SRPhI(V )(n) is a function of ϵI . According to our notations, for
any ϵI that the reduction is possible, we have

SRPhI(V )(n) ≤ SRPhI(V )(n, ϵI).

The parameter ϵI for function ϕb, at given fixed I, is bounded by ϵI,min as
ϵI,min ≤ ϵI . By invoking relation (16), ϵI,min is calculated as

ϵI,min = 1−
∫
β∈Ω(ζI)

min
α∈{0,1}

PA|ζI=β(α) dβ (40)

Since ϵI,min is the lowest possible value that the reduction still holds, we can
write

SRPhI(V )(n) ≤ SRPhI(V )(n, ϵI,min).

Lemma 5. For a given I, let δI = SD(A;A|λI(A)), with A being a uniform
binary random variable, then we will have ϵI,min = 2δI
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Proof. In appendix D.

Back to the estimation of SRPhI(V )(n), an exciting observation remains; since
we have PI

n = Pn, matrix PI,r
n is distributed identically to Pr

n, provided their
corresponding ϵ parameters are equal. As a result, the row reduced echelon form
matrices G and GI are distributed identically. Therefore, for I ∈ [1, 2k − 1], we
can write

SRPhI(V )(n, ϵI,min) =
1

2
Pr[GI(1, 2 to T (n) + 1) = 0]

=
1

2
Pr[G(1, 2 to T (n) + 1) = 0] =

q

2(q − 1)
SRPV (n, ϵI,min)

(41)

Corollary 1. For a linear masked algorithm A′, with secret variable V , if
SRPV (n, ϵ) is a descending function of n, for ϵ ≤ ϵ0, then A′ is secure with
observation function ν, provided that ϵI,min ≤ ϵ0 for every I ∈ [1, 2k − 1].

Note that to prove the security of A′ against a noisy observation function
ν, the reduction in Fq require SRPV (n, ϵmin) to be a decreasing function of n.
However, the new approach proposed here requires that SRPV (n,maxI{ϵI,min})
to be a decreasing function of n. It is easy to show that maxI{ϵI,min} and
ϵmin are related via maxI{ϵI,min} ≤ ϵmin. In lemma 6, we will prove something
similar.

The following examples will help to convey the concept better. For ν(V ) =
HW(V ), at I = 2k − 1, we obtain ϵI,min = 1. This means that with the ham-
ming weight leakage, no linear masked circuit will be secure. The parameter
ϵ2k−1,min = 1 implies that a complete knowledge of XOR of bits of the secret
is required in the reduction. Refer to the discussion around equation (6) to see
that indeed this knowledge is divulged with the hamming weight leakage.

As another example, with ν(V ) = ZVo(V ), for every I ∈ [1, 2k−1], we obtain
ϵI,min = 1/2k−1, which is relatively a very small value, as we were intuitively
expecting. Recall that for this leakage, we had ϵmin = 1. Therefore, with our
new approach, at sufficiently big fields, chances are that a masked circuit to
be secure against the ZVo leakage. Note that this leakage discriminates only a
single element of Fq. In a bigger field, more elements are present. So, the relative
amount of information that the adversary obtains with this observation function
decreases.

Relation of δI and δ. Until here, we have shown that ϵI,min = 2δI . Now, we
want to focus on the relation of δ = SD(V ;V |ν(V )) and δI .

Lemma 6. For a constant I, let δI = SD(A;A|λI(A)), with A being a uniform
binary random variable, then we will have δI ≤ δ.

Proof. In appendix E.

It seems that the collection of δI values, specially maxI{δI} is a good metrics
for assessment of the noise of observation function ν than compared to δ and γ.
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Remark 2. In section 2.2, we reviewed the work of [11]. As discussed there, their
work is a particular case of our problem. For a single encoding, with no other
computations on the shares, we have only one relation as V = V1 ⊕ V2 ⊕ . . . ⊕
Vn. Since in the random probing leakage all the shares are required to recover
secret value V , it is not difficult to prove that SRPV (n, ϵ) = ϵn. This SRP is
a monotonically decreasing function of n, provided that ϵ < 1. Therefore, for a
noise function ν, if we have δ < 1/2, we can write

∀I ∈ [1, 2k − 1] ϵI,min = 2δI ≤ 2δ < 1 ⇒ max
I
{ϵI,min} < 1

This is in agreement with the result of [11].

Remark 3. In section 2.5, we uttered that the SR-SNI refreshing algorithm, in
[20], is shown to be secure for ϵ ≤ 0.15. Therefore, this refreshing is secure for
ν = ZVo, at k ≥ 4. However, it is not secure with ν = HW.

3.3 Procedure for checking the security

Here, we briefly restate the required steps for assessing the security of a given
linear masked algorithm A′.

First, with tools described in section 2, obtain SRPV (n, ϵ). Next, for the
given observation function ν, compute the ϵmin value, which is given by relation
(16). If SRPV (n, ϵ) is a decreasing function of n for this ϵmin, then the job is
over. If not, or if a more refined assessment is necessary, then ϵI,min values for
I ∈ [1, 2k − 1] should be calculated.

Algorithm 2 Compution of ϵI,min values

Input Field order q = 2k and the observation function ν(.)
Output The maximum of the ϵI,min values

1: for v = 0 to 2k − 1 do
2: PV,ζ(v, β ∈ R) = 0 ◃ Initialize to zero
3: for i = 1 to N do ◃ For a sufficiently big N
4: Evaluate ν as β ← ν(v) ◃ ν might be probabilistic
5: PV,ζ(v, β) = PV,ζ(v, β) +

1
N2k

◃ A Monte-Carlo approach
6: for I = 1 to 2k − 1 do
7: Evaluate PA,ζI as PA,ζI (α, β) =

∑
v∈{0,1}k,⟨I,v⟩=α PV,ζ(v, β)

8: Compute ϵI,min = 1−
∫
β∈Ω(ζI )

minα∈{0,1} PA|ζI=β(α) dβ

9: return maxI{ϵI,min}

In algorithm 2, we have put forward a systematic approach for calculating
maxI{ϵI,min}. In this algorithm, for a given observation function ν, we have also
proposed a simple Monte-Carlo-based method for approximation PV,ζ .

The security of A′ is dominated by SRPV (n,maxI{ϵI,min}). For instance, if
SRPV (n,maxI{ϵI,min}) is a decreasing function of n, then A′ is dubbed secure.
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4 Conclusion

In this paper, we founded a systematic approach for evaluating the security of
Boolean masked algorithms when an adversary is allowed to probe the inter-
nal variables of the algorithm through a noisy leakage function. In contrast to
previous works, our approach gives concrete and optimum results for linear al-
gorithms. Moreover, the proposed procedures can be utilized for assessment of
arbitrary observation functions.

We also give a new metric for assessing the noise of leakage functions. As
demonstrated here, this new metric is a good measure for the informativeness of
the raw leakage data that an adversary can gather.

It would be an exciting challenge for future works to expand the developed
methods to assess the security of a broader family of algorithms than the linear
algorithms considered here.
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Appendix A Proof of Lemma 1

At a fixed n, assume SRPhI(V )(n) = µI for I ∈ [1, 2k − 1]. Given values of
{µ1, µ2, . . . , µ2k−1}, we want to study the behavior of µ = SRPV (n). In fact, we
will show that although the knowledge of {µ1, µ2, . . . , µ2k−1} cannot uniquely
determine the value of µ, it is enough for bounding the maximum value that µ
can take.

Let 2k values {p0, p1, . . . , p2k−1} be the probability distribution of V given
side information Pn and a random instance of leakage L.
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For the computation SRPhI(V )(n) of We have

SRPhI(V ) = max
α∈{0,1}

Pr(hI(V ) = α|L,Pn)−
1

2

= max
α∈{0,1}

Pr(⟨I, V ⟩ = α|L,Pn)−
1

2

= max
α∈{0,1}

∑
⟨I,v⟩=α

Pr(V = v|L,Pn)−
1

2

= max
α∈{0,1}

∑
⟨I,v⟩=α

pv −
1

2

= µI

(42)

We have omitted the fixed v ∈ {0, 1}k statement beneath the
∑

expressions
throughout this proof for simplicity.
Note that we can write

∑
⟨I,v⟩=0

pv +
∑

⟨I,v⟩=1

pv = 1 ⇒
∑

⟨I,v⟩=0

pv −
1

2
= −(

∑
⟨I,v⟩=1

pv −
1

2
)

Therefore, we will have

∑
⟨I,v⟩=0

pv −
1

2
= ±µI ⇒

∑
⟨I,v⟩=0

pv =
1

2
± µI

By collecting these relations for all values of I ∈ [1, 2k − 1], we will have the
following system of equations.



∑
⟨0,v⟩=0 pv = 1∑
⟨1,v⟩=0 pv = 1

2 ± µ1∑
⟨2,v⟩=0 pv = 1

2 ± µ2

...∑
⟨2k−1,v⟩=0 pv = 1

2 ± µ2k−1

(43)

The first equation in the system above is obtained differently. This equation is
simply sum of all pi values, which should be 1.

We multiply equations two to the end by 2 and subtract the first equation
from them. The reason for this operation will be apparent soon. With matrix
representation for the resultant system, we will have
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
⟨0, 0⟩! ⟨0, 1⟩! . . . ⟨0, 2k − 1⟩!
⟨1, 0⟩! ⟨1, 1⟩! . . . ⟨1, 2k − 1⟩!
⟨2, 0⟩! ⟨2, 1⟩! . . . ⟨2, 2k − 1⟩!

...
... . . . ...

⟨2k − 1, 0⟩! ⟨2k − 1, 1⟩! . . . ⟨2k − 1, 2k − 1⟩!

 .


p0
p1
p2
...

p2k−1

 =


1
0
0
...
0

+


0
±2µ1

±2µ2

...
±2µ2k−1



(44)

Where the symbol (!) is used to mean a simple function as ⟨i, j⟩! = 2⟨i, j⟩ − 1.
For ease of notations, we represent the matrices participating in (44) with M,
P, C1, and C2, respectively. So, we can write

M.P = C1 +C2.

With closer inspection of M, it turns out that it is Hadamard matrix.

M = H2k =

[
H2k−1 H2k−1

H2k−1 1−H2k−1

]
(45)

With H1 = [1]. The determinant of Hadamard matrix is non-zero. Moreover, we
have

M−1 =
1

2k
M†.

For more results about the Hadamard matrix, please refer to its wiki page.
Since det(M) ̸= 0, we will have a unique solution for P corresponding to C1.

M.P = C1

We show this solution with P1. Finding P1 is not difficult. It can be readily
verified that P1 is the uniform distribution. i.e., all the entries of P1 are 1/2k.
It remains to study the structure of answers corresponding to C2, i.e., solutions
to

M.P = C2

We show these solutions with P2. Note that C2 is not a single constant matrix.
For characterizing P2, we can write

M.P2 = C2 ⇒ P2 =
1

2k
M†C2. (46)

Since M’s elements are only 1 and −1, each entry of P2 will be bounded to

1

2k

2k−1∑
i=1

±2µi =
1

2k−1

2k−1∑
i=1

±µi (47)
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The worst-case condition will be

1

2k−1

2k−1∑
i=1

±µi ≤
1

2k−1

2k−1∑
i=1

µi ≤ 2max
i

µi (48)

By merging these solutions for C1 and C2, we can write

∀i ∈ [0, 2k − 1]; pi ≤
1

2k
+ 2max

i
µi

Therefore, we will have

SRPV = max
v∈{0,1}k

Pr(V = v|L,Pn)−
1

2k
= max

i
pi −

1

2k
≤ 2max

i
µi (49)

Based on our hypothesis, all µi values are decreasing by increasing n, So SRPV

will also be a decreasing function of n. Moreover, if they limit to zero, so will do
SRPV , and this completes our proof for this lemma.

Appendix B Proof of Lemma 2

For the inner product of k-bit integers I, X1, and X2, we can write

⟨I, (X1 ⊕X2)⟩ = ⟨I,X1⟩ ⊕ ⟨I,X2⟩. (50)
For a binary value P1, by just testing the two possible values of P1, we can show

⟨I, (P1X1)⟩ = P1⟨I,X1⟩. (51)
By iterative application of these rules, for binary vector {P1, P2, . . . , Pt} and
k-bit variables {X1, X2, ..., Xt}, we can show that

⟨I, (P1X1⊕P2X2⊕ . . .⊕PtXt)⟩ = P1⟨I,X1⟩⊕P2⟨I,X2⟩⊕ . . .⊕Pt⟨I,Xt⟩. (52)

Matrix Pn is composed of d(n) equations, each one with binary coefficients as in
equation (52). Let Pn(1, 1 to T (n) + 1) be the coefficients of the first equation
in Pn. For this equation, we can write

⟨I,Pn(1, 1 to T (n) + 1)× [V,X1, X2, ..., XT (n)]
†⟩ =

Pn(1, 1)⟨I,X1⟩ ⊕Pn(1, 2)⟨I,X2⟩ ⊕ . . .⊕Pn(1, T (n) + 1)⟨I,XT (n)⟩ = 0.

(53)

Putting together all the d(n) equations, we have

⟨I,Pn × [V,X1, X2, ..., XT (n)]
†⟩ = Pn × [⟨I,X1⟩, ⟨I,X2⟩, . . . , ⟨I,XT (n)⟩] = 0.

(54)
This is what we wanted to show.
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Appendix C Proof of Lemma 3 and 4

Assume X is a k-bit variable, with bits as [X1, . . . , Xk]. For a fixed I, there is
at least one set of k − 1 bits of X that collectively with ⟨I,X⟩ determines X
uniquely. For each I, we fix a such k − 1 bits and show it by IX.

So, we decompose each k-bit variable X as [⟨I,X⟩, IX]. Next, with lemma 2,
we can show that the parity-check relations over {⟨I,X1⟩, ⟨I,X2⟩, . . . , ⟨I,XT (n)⟩}
is independent of constraints over {IX1, IX2, . . . , IXT (n)}. In fact, the two fol-
lowing systems are separate.

Pn×[⟨I,X1⟩, ⟨I,X2⟩, . . . , ⟨I,XT (n)]
† = 0

Pn×[IX1, IX2, . . . , IXT (n)]
† = 0

(55)

Members of Sn are the Cartesian product of solution sets of the above two
systems. We have already named the solution set of the first set by SIn. Here,
for ease of referencing, we denote the solution set of the second system with SIn.
So, we have

Sn = SIn × S
I

n (56)

With the following interpretation. Each (T (n) + 1)-length vector in Sn is com-
posed of one (T (n)+1)-length vector from SIn merged with one (T (n)+1)-length
vector from SIn.

Before starting the main proof we need to mention another point. Assume
variable V is randomly selected from Fq, such that it satisfies the constrain
⟨I, V ⟩ = α for some fixed I. The bit α is the value of a uniform binary random
variable A. Also, assume L← ν(V ). We can write

Pr(L = β) = Pr(ζ = β|⟨I, V ⟩ = α) =

∑
v∈{0,1}k,⟨I,v⟩=α PV,ζ(v, β)∑

v∈{0,1}k,⟨I,v⟩=α PV (v)
= PζI |A=α(β)

(57)
Where the last equality follows from the definition given by relation (34). Now,
if LI is sampled based on the probability distribution PζI |A=a, we can write

Pr(L = β) = Pr(LI = β).

As defined in the text, the function λI(α) at each invocation outputs a random
value based on distribution PζI |A=a.

With these preambles, we are ready to turn back to the MAP problem.
Starting with lemma 3, we can write
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arg max
α∈{0,1}

Pr(⟨I, V ⟩ = α|L,Sn)

=a arg max
α∈{0,1}

Pr(L|⟨I, V ⟩ = α,Sn) Pr(⟨I, V ⟩ = α,Sn)

=b arg max
α∈{0,1}

p(α) Pr(L|⟨I, V ⟩ = α,Sn)

=c arg max
α∈{0,1}

p(α) Pr(L|⟨I, V ⟩ = α,SIn × S
I

n)

=d arg max
α∈{0,1}

p(α)
∑

sI∈SI
n,s

I
1=α

∑
sI∈SI

n

Pr(L|[sI , sI ])

=e arg max
α∈{0,1}

p(α)
∑

sI∈SI
n,s

I
1=α

Pr(L|sI)

=f arg max
α∈{0,1}

p(α)
∑

sI∈SI
n,s

I
1=α

T (n)+1∏
i=1

Pr(Li|sIi )

=g arg max
α∈{0,1}

p(α)
∑

sIn∈SI
n,s

I
1=α

T (n)+1∏
i=1

Pr(LI,i|sIi )

=h arg max
α∈{0,1}

p(α)
∑

sIn∈SI
n,s

I
1=α

Pr(LI |sI)

=i arg max
α∈{0,1}

p(α) Pr(LI |⟨I, V ⟩ = α,SIn)

=j arg max
α∈{0,1}

Pr(⟨I, V ⟩ = α|LI ,SIn)

(58)

Where (a) is by the Bayesian relation and ignoring the probabilities that are
independent of α.
(b) is by noting that

Pr(⟨I, V ⟩ = α,Sn) = Pr(⟨I, V ⟩ = α,SIn × S
I

n) = Pr(⟨I, V ⟩ = α,SIn) , p(α)

Which follows by independence of set SIn and values that ⟨I, V ⟩ can take.
(c) is by replacing the solution set Sn with its decomposed format as in (56).
(d) is by expanding the conditional probability and omitting the size constants.
(e) also follows by the rule of conditional probability. Note that all possible cases
of SIn are summed up. At this point, proof suffices for what is conjectured in
lemma 3.
(f) is by independent leakage assumption. i.e., each variable leaks independently.
In this equation, the ith member of leakage vector is represented by Li.
In (g), random value of Li is replaced by a new variable that has the same
probability distribution. See discussion around relation (57) and note that how
LI,i is sampled based on the realized value. Refer to (35) for the definition of
the sampling function.
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(h) is by converting back the decomposed probability expression.
(i) is by definition of set SIn.
Finally, (j) is by the Bayesian rule. This completes the proof of lemma 4.

Appendix D Proof of Lemma 5

With a binary uniform random variable A, at a fixed I, given probabilistic
function λI , the random variable ζI is defined as ζI = λI(A). For the evaluation
of δI , we can write

δI =SD(A;A|λI(A)) =a
1

2

∫
β∈Ω(ζI)

|PA,ζI (0, β)−
1

2
PζI (β)|dβ +

1

2

∫
β∈Ω(ζI)

|PA,ζI (1, β)−
1

2
PζI (β)|dβ

=b
1

2

∫
β∈Ω(ζI)

|PA,ζI (1, β)− PA,ζI (0, β)|dβ

=c
1

2

∫
β∈Ω(ζI)

[ max
α∈{0,1}

PA,ζI (α, β)− min
α∈{0,1}

PA,ζI (α, β)]dβ

=d

∫
β∈Ω(ζI)

[
1

2
− min

α∈{0,1}
PA,ζI (α, β)]dβ

=e
1

2
− 1

2

∫
β∈Ω(ζI)

min
α∈{0,1}

[PζI |A=α(β)]dβ =f
1

2
ϵI,min

(59)

Where (a) is by definition given in (10), and the fact that PA(0) = PA(1) = 1/2.
(b) is by substitution of the value of PζI (β) as PζI (β) = PA,ζI (1, β)+PA,ζI (0, β).
(c) is by definition of the absolute value.
(d) is obtained by following identity.∫

β∈Ω(ζI)

[ max
α∈{0,1}

PA,ζI (α, β) + min
α∈{0,1}

PA,ζI (α, β)]dβ = 1

(e) is by conditional probability as

min
α∈{0,1}

PA,ζI (α, β) = min
α∈{0,1}

[PA(α)PζI |A=α(β)] =
1

2
min

α∈{0,1}
PζI |A=α(β).

Finally, (f) is by definition of ϵI,min.

Appendix E Proof of Lemma 6

Let random variables V ∈ Fq and ζ = ν(V ) be as in the text. Starting with the
definition of δ, for a fixed I ∈ [1, 2k − 1], we can write
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δ = SD(V ;V |ζ) = 1

2

∑
v∈Fq

∫
β∈Ω(ζ)

|PV,ζ(v, β)− PV (v)Pζ(β)| dβ

=a
1

2

∫
β∈Ω(ζ)

∑
v∈{0,1}k,⟨I,v⟩=0

|PV,ζ(v, β)− PV (v)Pζ(β)| dβ

+
1

2

∫
β∈Ω(ζ)

∑
v∈{0,1}k,⟨I,v⟩=1

|PV,ζ(v, β)− PV (v)Pζ(β)| dβ

≥b
1

2

∫
β∈Ω(ζ)

|
∑

v∈{0,1}k,⟨I,v⟩=0

[PV,ζ(v, β)− PV (v)Pζ(β)]| dβ

+
1

2

∫
β∈Ω(ζ)

|
∑

v∈{0,1}k,⟨I,v⟩=1

[PV,ζ(v, β)− PV (v)Pζ(β)]| dβ

=c
1

2

∫
β∈Ω(ζI)

|PA,ζI (0, β)− PA(0)PζI (β)| dβ

+
1

2

∫
β∈Ω(ζI)

|PA,ζI (1, β)− PA(1)PζI (β)| dβ

=d
1

2

∑
α∈{0,1}

∫
β∈Ω(ζI)

|PA,ζ(α, β)− PA(α)PζI (β)| dβ =e δI

(60)

Where in (a) order of the integration and the summation are exchanged. Also,
the summation over v ∈ {0, 1}k is partitioned into two parts, namely [v ∈
{0, 1}k, ⟨I, v⟩ = 0] and [v ∈ {0, 1}k, ⟨I, v⟩ = 1]. Note that, each variable v ∈ Fq

has a unique k-bit representation.
For (b), we have changed order of summation and the absolute value calculation
and used the so-called triangle inequality.
(c) is by definition given in (32) and relations proposed in (33).
(d) is by merging the two integrals by an auxiliary variable α ∈ {0, 1}.
(e) is by definition of δI in the lemma. At this point, the proof is completed.
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