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Abstract

We introduce the problem of private signaling. In this problem, a sender posts a message on a
certain location of a public bulletin board, and then posts a signal that allows only the intended
recipient (and no one else) to learn that it is the recipient of the message posted at that location.
Besides privacy, two efficiency requirements must be met. First, the sender and recipient do not
participate in any out-of-band communication. Second, the overhead of the recipient must be
(much) better than scanning the entire board.

Existing techniques, such as server-aided fuzzy message detection (Beck et al., CCS’21), could
be employed to solve the private signaling problem. However, this solution leads to a trade-off
between privacy and efficiency, where the complexity of the recipient grows with the required
privacy. Specifically, this would require a scan of the entire board to obtain full privacy for the
recipient.

In this work, we present a server-aided solution to the private signaling problem that guarantees
full privacy for all recipients while requiring only constant amount of work for both the recipient
and the sender.

Specifically, we provide three contributions: First, we provide a formal definition of private
signaling in the Universal Composability (UC) framework and show that it captures several real-
world settings where recipient anonymity is desired. Second, we present two server-aided protocols
that UC-realize our definitions: one using a single server equipped with a trusted execution
environment, and one based on two servers that employ garbled circuits. Third, we provide an
open-source implementation of both of our protocols, evaluate their performance, and identify for
which sets of parameters they can be practical.

1 Introduction

Problem Statement. We focus on the problem of recipient anonymity. In its abstraction, there are M
recipients R1, . . . , RM publicly identified by their public keys pk1, . . . , pkM . There is a public venue
such as a bulletin board that collects messages (m1,m2,m3, . . .) from senders and are intended for
recipients. The sender who posted message mj on the board, will also post an auxiliary information
c that signals the intended recipient, say Ri, that there is a message for them at a location j of the
board. The problem is: how can this sender craft a signal c so that by looking at c, no one, except Ri,
can detect who the intended recipient is for mj , with the sender having no communication or prior
shared state with Ri?
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This abstraction captures various concrete problems such as anonymous messaging [CGBM15] and
stealth payments[CM17]. We describe these specific applications in greater length in Sec 2.1. For the
remainder of the introduction, we will focus on the general abstraction above.

Private Signaling: the Naive Inefficient Approach. A straightforward (though inefficient) solution
for the private signaling problem would be as follows. The sender who intends to communicate that
a message is located at loc to Ri can simply encrypt loc with the public key pki using a key-private
CPA-secure encryption scheme 1 and then only post the ciphertext c on the board. In this case, the
signal is the ciphertext itself. Then, each recipient can periodically download all ciphertexts posted
on the board, attempt to decrypt each ciphertext to detect where the messages for the recipient are.
Thanks to the key-privacy property of the encryption scheme, this solution gives full privacy to each
recipient, since by looking at the ciphertext, every public key is equally likely to unlock it. Here
full means that the anonymity set constitutes the entire set of (honest) recipients. Furthermore, this
solution has no overhead on the sender, who simply performs one encryption per signal. However, full
privacy comes with a high cost for each recipient since it needs to scan the entire board to detect the
signal. In this work, we are interested in reducing the communication and computational complexity
of the recipient.

Efficient Private Signaling: the Need for a Server. Can we do better than a linear scan of the
board? First, note that without any external help, such as a server dedicated to filtering messages for
each recipient, a recipient must read the entire list of, say N , signals to “see” which one is intended
for them. Note that this is true regardless of the anonymity guarantees. Hence, a serverless solution
would lead to complexity O(N) for each recipient. Alternatively, one can trade the search time with
the signal size. Namely, search complexity can be lowered to O(logN) per message for the recipient
if the size of the signal grows with the total number of possible recipients, that is, O(M), which can
be still very inefficient for even moderate M (we describe this in Appendix D).

Thus, for any non-trivial improvement of the complexity cost for the recipient, we need to use an
external server to help with the filtering. In a very recent work [BLMG21] Beck et al. introduced
the concept of Fuzzy Message Detection (FMD), a new cryptographic primitive that allows a third
party to perform coarse filtering of messages for each recipient. Coarse means that, for each recipient
Ri, the server will detect ciphertexts and maintain a list of ciphertexts that could be intended for
Ri. This list includes a certain fraction pi of false positive— hence fuzzy detection. The higher the
rate pi of false positive for Ri, the longer the list of ciphertexts detected for Ri, and the higher the
anonymity set for Ri. This approach, however, presents major drawbacks for the recipient. First, the
work done by the recipient grows proportionally to the amount of anonymity it desires. Specifically,
the work done by recipient Ri is O(pi ·N), which translates into O(1 ·N) work if the highest privacy
is required. Second, even if a recipient Ri chooses the highest false positive rate pi = 1, this would
still not guarantee Ri to have full privacy (recall, full privacy means that a signal can be associated
to every (honest) recipient with the same probability) if other honest recipients have chosen smaller
error rates.

A natural question arises: is there a solution for the private signaling problem that achieves full
anonymity in the presence of untrusted servers and has only constant complexity for the recipient?

1.1 Our contribution

We answer affirmatively to the question above. We provide three contributions:
1. Formalization of the Private Signaling Problem. We introduce the private signaling problem

and provide a formal definition in the Universal Composability Framework [Can01]. Thus, we
define an ideal functionality FprivSignal that captures the correctness and privacy guarantees that
we expect from a private signaling system. Previous work on related problems either did not
provide any formal definition [MWS+19, WMS+19, LHA+20], or provide much weaker security

1Key-private means that by looking at the ciphertext, no one can distinguish which public key was used for encrypting
the message [BBDP01].
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guarantees[BLMG21]. We elaborate in Sec 5.
2. Protocols for private signaling with constant recipient overhead and provable UC-

security. The focus of this work is to minimize the costs for the recipients and senders. We
provide two protocols that UC-realize the ideal functionality FprivSignal where a sender only needs
to perform one (or two ) encryptions to compute a signal, and a recipient does not need to perform
any scan, and will just perform a number of decryptions that matches the number of received
signals. We provide two protocols: one based on garbled circuits that requires two servers, and
one leveraging on a Trusted Execution Environment (TEE) which requires a single server only (our
approach is explained in Sec. 3).

3. Open-source Implementations. We implement both our protocols and measure their efficiency.
We compare our performances with related work (we elaborate in Sec. 9).

2 Background for Private Signaling

2.1 Applications of Private Signaling

Private signaling is a powerful abstraction since many real-world applications can be seen as a special
case of it. In the following, we highlight two prominent and timely problems that can be cast as
private signaling problems and consequently solved with our proposed solutions.
Stealth addresses and payments. In cryptocurrencies (especially account-based ones [W+14]) it
is common to use static, public identities or addresses. However, sending recurrent payments (e.g.,
salaries, donations, other regular purchases) to a static address that is publicly linked to an entity is
harmful to both sender and recipient anonymity. To avert this issue, senders can generate so-called
stealth addresses for their recipients [CM17]. More specifically, given a recipient’s public address,
the sender can non-interactively generate new “stealth” addresses for the intended recipient that is
unlinkable to the recipient’s static, public address [Ran]. Stealth addresses can only be redeemed by the
true recipients. However, the difficulty is that recipients lack an efficient way to detect which stealth
address belongs to them and are redeemable by them. Current implementations of stealth address
payment systems apply the simple linear scan of the board as described earlier.2 Private signaling can
be seen as a solution to alleviate the computation complexity of the recipient. More specifically, with
private signaling, a sender first creates a transaction with a stealth address of recipient Ri and posts
it to the board. Once the transaction is confirmed and the location of the transaction is known on the
board, the sender sends a private signal to the server, who obliviously stores it. Now a recipient only
needs to ask the server for its list of signals so it can identify its stealth address transactions directly.
Anonymous messaging. Modern private messaging applications are mostly focused on providing
and improving sender anonymity [MKA+21, CGBM15], e.g., Signal’s sealed sender functionality. In
anonymous messaging applications, senders post their messages to one (or more) untrusted store-and-
forward server(s) [WCGFJ12] or to a shared public bulletin board, as in Riposte [CGBM15], where
the servers need to maintain the board. Private signaling easily captures this problem in the following
way: A sender first posts encrypted messages on a public board. The sender then sends the locations of
these messages to the server in a privacy-preserving way, such that only the recipient can retrieve the
locations from the servers at a later point in time. Once the recipient has these locations it can simply
decrypt the corresponding messages from the board to get their messages. Thus anonymous messaging
can be seen as special case of private signaling. Moreover, using our techniques, it is guaranteed that
a recipient can retrieve its messages quickly and one can have arbitrary sized messages that can be
stored on the public board.

2See: Umbra Cash (https://app.umbra.cash)
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Privacy Security Recipient Server #Servers

Näıve scan full – O(N) ∅ 0
FMD [BLMG21] k-anon G,SH O(pN) O(pM) 1

OMR2[LT21] full G, SH O(N + log2(k̂) log(ϵ−1
n ) + k̂3) O(N(log2(k̂) + log ϵ−1

p )) 1

OMR3[LT21] full G, SH O(k̂ log(k̂) log(ϵ−1
n ) log4(N) + k̂3) O(N(log(k̂) log(ϵ−1

n ) log4(N) + log ϵ−1
p )) 1

ΠTEE full UC, M O(ℓ̄) O(ℓM) 1
ΠGC full UC, SH O(ℓ̄) O(ℓM) 2

Table 1: Comparing privacy-preserving message detection schemes in terms of the achieved privacy
guarantees and the computational complexity of the participants. SH and M denotes semi-honest and
malicious security, respectively. N denotes the total number of messages in the system and p denotes
the false positive rate (0 ≤ p ≤ 1) set individually by recipients in the Fuzzy Message Detection scheme
(FMD) [BLMG21]. For simplicity, we assume that each recipient has the same false positive rate p. ℓ
denotes the maximum number of detectable incoming messages per each recipient and ℓ̄ denotes the
actual number of messages that are sent to a recipient. From OMR[LT21] we have k̂ = Õ(ℓ̄ + ϵpN).
Moreover, ϵp is a false positive rate and ϵn is a false negative rate. Finally the server computation is
based on a single message received by the server(s).

2.2 Related and Concurrent Work

The closest work to ours is Fuzzy Message Detection by Beck et al[BLMG21]. Subsequently to our
work, the definition of Oblivious Message Retrieval was introduced by Liu et al[LT21]. In this section
we describe these works. A comparison in terms of asymptotic efficiency in provided in Table 1 and
concrete efficiency in Table 4.

Fuzzy Message Detection (FMD) [BLMG21] Fuzzy message detection is a primitive that allows
a server to do outsourced message detection. The recipient of a message provides the server with a
“fuzzy” detection key that identifies the relevant ciphertexts as well non-matching flag ciphertexts
with some false positive rate. This false positive rate is set by the recipient of the messages. The
untrusted server that performs the fuzzy detection, must be unable to distinguish between a correct
detection result and a false-positive.
Privacy. The privacy guaranteed by FMD is k-anonymity, which suffers of known attacks ( [Lew] [SPB21]
show how the untrusted server can break recipient unlinkability and relationship anonymity). In this
work, we aim at the strongest privacy guarantee, where each recipient has an anonymity set that is as
large as the total number of honest recipients and senders (see Sec 5 to for details on our definition).
Efficiency. In FMD, the senders need to compute γ (a constant of the order 10) number of encryptions
and send them to the server. If N is the total number of messages that were sent to the server, each
recipient will receive ρN messages where ρ is a false positive rate. The recipient then would need to
do γ decryptions on each of these messages to test if the message is actually for them or if it’s a false
positive. Note that recipients determine ρ in FMD and can therefore trade-off privacy for efficiency.
By setting ρ to be a small value, the number of decryptions done by the recipient will also reduce. In
this work instead we aim to minimize the work of the sender and the receiver. As we shall see in Sec 6
and 7 and as depicted in Table 1, in our protocol the sender only sends one (or two) encryptions, and
the recipient needs to decrypt exactly the number of signals it receives.
Assumptions and Threat-model. FMD relies on a single untrusted server only. Instead, in this work
we rely either on two non-colluding servers, or on the trusted execution environment (TEE) [PST17,
CD16]. In FMD, security is provided via game-based proofs in presence of a semi-honest server.
In contrast, in this work we define an ideal functionality for private signaling in the UC-model and
consider either two semi-honest server or a malicious server equipped with TEE.

Oblivious Message Retrieval (OMR)[LT21] OMR is a recent work by Liu et al. that appeared
subsequently to our work. OMR is another primitive that allows the recipient to provide a detection
key to an untrusted server so that they can receive pertinent private messages that are posted to

4



a public board. Their aim is to not only detect messages but also to retrieve the messages from
the server. They present two protocols OMR2 and OMR3, based on fully homomorphic encryption
(FHE). In their protocols, a sender encrypts the message under the receiver’s public key and post it
to a board. A recipient requests its messages from a server by sending a detection (FHE key) along
with a bound on the number of messages it may receive. The server then rencrypts each ciphertext on
the board under this new FHE key such that it either decrypts to the message if it corresponds to the
recipient or to zero otherwise. Finally, the encryptions are cleverly compacted so that the recipient
does not have to do decryptions linear in the number of total messages on the board.
Efficiency. OMR2 requires the receiver to do O(N) decryptions, where N is the total number of
messages on the board. OMR3 on the other hand, is optimized with compact detection but still
requires O(poly log(N)) computation for the recipient. In contrast, in our protocol recipients will only
need to perform decryptions equal to the number of messages they receive on the board. In both
OMR2 and OMR3, the detection cost for the servers grows with N , whereas in our protocols, the
detection cost grows with M , which is the number of recipients that are served by that server.
Assumptions and Threat-model. As in the case of FMD[BLMG21], both OMR2 and OMR3 rely only
on a single untrusted server, whereas we make stronger assumptions as described above. In OMR, the
authors present game-based proofs against a semi-honest adversary, whereas we present UC proofs.
Other properties. OMR achieves DoS resistance, where DoS attacks are defined as signals being
pertinent for more than one receiver. Moreover, their protocols allow the receiver to determine the
value ℓ which is the number of messages they expect to receive, and the recipients also get an explicit
overflow message in the case the specified ℓ is less than the number of messages they actually receive.

Metadata-private messaging systems Previous works [VDHLZZ15] and [LZ16] describe dialing
and add-friend protocols. These protocols enable one party to add another party as a friend and
establish a connection with this friend such that an adversary cannot learn the friend’s identity. This
can be seen as a special case of the signaling problem, but these works do not consider the efficiency
of the two parties that are involved. They require that all parties continuously send messages over
the network (either cover traffic or actual protocol messages).

3 Our Approach to Build Private Signalling

We present two instantiations of the ideal functionality FprivSignal that achieve constant communication
and computation complexity for the recipient. Both instantiations are based on the same high-level
approach of obliviously updating the list for the recipient. We explain the general approach first, and
then the two techniques for implementing it.

Our approach is based on the following natural idea. Assume for a moment that privacy was not
a concern, but only performance is, i.e., we want the overhead of the recipient to be minimal and
depend only on the number of messages it receives. The recipients hire a Srv and register themselves
with the server. (See Fig 1) The sender after posting a message to the board, sends a signal which
is the encryption (under the pk of the server) of the the recipient’s identity and the location of the
message to the Srv through the board. The Srv maintains a table T, with one row for each recipient.
It decrypts the signal using its own secret key and adds the signal to the row of recipient. When a
recipient Ri sends RECEIVE to the server, it simply responds with the corresponding row. Now, to
achieve privacy, we “just” need to require the server to update this table obliviously. In other words,
we need to devise a mechanism by which, on input an encrypted signal for a certain recipient Ri, the
server can blindly and correctly update the i-th row without learning anything about the recipient
who got the signal.

Finally, note that each recipient might receives a different number of signals over time. To prevent
leaking of this information, in our protocol, we fix the size of each recipients’ row to be an upper
bound ℓ, reflecting the signals recipients are expected to receive in a certain interval of time (e.g., per
day, per-month, depending on the application).
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R1 E(pk1,6) - -

R2 E(pk2,1) E(pk2,3) -

R3 E(pk3,2) - -

... ... ... m ... ... ...

5 6 87

➌(SEND,ct = E(epk, [R3,7]))

Ri

➊(Setup, pki)

➎(RECEIVE, R3) R3

➏

➋(WRITE, m)

➍

R1 E(pk1,6) - -

R2 E(pk2,1) E(pk2,3) -

R3 E(pk3,2) E(pk3,7) -

SERVER

R3 E(pk3,2) E(pk3,7)

Figure 1: The no-privacy solution: 1 Each recipient Ri registers with the Srv and sends its pki. 2

A sender writes a message m for recipient R3 on position 7 of the board. 3 Sender sends a signal
to the Srv for the posted message. The signal is an encryption of R3, 7 under the public key of the
server. 4 The server decrypts the signal using its secret key. The Srv then adds the encryption to

the next available location in R3’s row. 5 R3 requests its row from the Srv in an authenticated way,

and 6 , the Srv responds with the encryptions in that row.

TEE-based Solution To update the table of signals T obliviously by employing a single untrusted
server, we leverage a trusted execution environment (TEE). Recall that a TEE allows a client to
perform a private computation on a secret input, embedded in the TEE, through an untrusted server,
called the host. TEEs are used to build virtual enclaves. A client can register with the enclave within
the server and is guaranteed that all computations inside the enclave are hidden from the server. With
this tool in hand, the idea is that the recipients will first register with the server by providing their
public key.

After this setup phase where recipients register with the enclave, the enclave maintains a vector
of zeros for each user i. This is equivalent to initializing the table T.

Each enclave will implement the following program: on input a signal ciphertext ctSignal and the
table T, first decrypt ctSignal with its secret key. If the decryption results in a valid plaintext location
loc and recipient index i, then the enclave will update the row i of the table T with the loc in the next
available position, and just re-write the other indexes. As in the solution with no privacy, a sender can
communicate a signal for location loc to Ri, by simply encrypting the location and the recipient index
under the enclave’s public key pk, that is, ctSignal = Enc(pk, Ri∥loc) and send ctSignal to the server. The
server will then run the enclave on input ctSignal,T to run the above-described program.

The actual protocol is slightly more complex as it requires a mechanism to prevent replay attacks
from the untrusted server against the enclave. For the UC-security proof to go through, we need a
mechanism to enforce that even if server and recipient are corrupt and collude, any attack is still
simulatable in the ideal world. This requires a mechanism by which, to retrieve its signals, a recipient
must first obtain a token from the TEE in every access. The details of the protocol are provided in
Sec 6, and the protocol is described in Fig 7. We formally prove that our protocol UC-realizes the ideal
private signal functionality. For the formal proof, we use the UC-formalization of TEE introduced
by Pass et al. in [PST17] as the ideal functionality Gatt. Our proof is provided in Appendix B
and withstands malicious adversaries (for privacy). We present an illustration of this single-server
approach in Fig 2. In the above approach we assumed that the enclave can store the table T in its
internal memory. We note that this need not always be possible since the total space that is available
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R1 6 0 0

R2 2 3 0

R3 2 0 0

... ... ... m ... ... ...

5 6 87

➌
(S

END,ct
 = 

E(ep
k, 

[R 3
,7]

))

Ri

➎(RECEIVE, R3)
R3

➏

➋
(W

RITE
, m

)

➍

➊(Setup, pki)

R1 6 0 0

R2 1 3 0

R3 2 7 0

R3 E(pk3,2) E(pk3,7) E(pk3,0)

SERVER

Figure 2: Single-server protocol. 1 Ri securely communicates its pki with the enclave. 2 3 The
sender writes a message m for recipient R3 on position 7 of the board and sends a signal (encryption
of 7 under TEE’s public key epk) to the Srv for the posted message. 4 The enclave takes as input

the encryption of the signal, decrypts it and updates column 2 in R3’s row with 7. 5 R3 requests

for its row via the server to the enclave. 6 If valid, the TEE releases R3’s row encrypted under the
public key of R3 via the server.

in an enclave’s (Intel SGX) internal memory is only 128MB. In Appendix E we present a modification
of the protocol where the T is stored by the server.
Limitations of Intel SGX: TEEs need to rely on a trusted authority (Intel in the case of Intel SGX),
they are known to be prone to some side channel attacks [BMD+17][GESM17] and finally there are
memory limitations [CD16]

Two-server Solution To accomplish the goal of obliviously updating the table of signals T, we can
use two servers Srv1 and Srv2 and have the table secret-shared among them. Srv1 (resp., Srv2) holds
a table T1 (resp., T2) of strings that look random to Srv1(resp., Srv2), but such that T1 ⊕ T2 = T.

Say a sender S posted a message m intended for R on the board that appears in location loc. To
prepare a signal for R concerning location loc the sender will perform a simple operation. It will secret-
share the input R, loc into random two shares R(1), R(2) and loc(1), loc(2) such that R = R(1) ⊕ R(2)

and loc = loc(1) ⊕ loc(2).
Next, servers Srv1,Srv2 will update their tables by running a secure computation protocol (e.g.,

Yao’s garbled circuits [Yao86, BHR12]), participating with their own secret input R(1), loc(1),T1 (resp.,
R(2), loc(2),T2). The function being computed performs the following three elementary operations.
(1) Reconstruct R and loc by xoring the shares. (2) Update the R-th row of the table to add loc
to the first available index. (3) Re-randomize every other row. Note that, at the end of the secure
computation of this function, each server receives a fresh share of the updated table, thus leaking no
information about which row and column was actually updated.

When a recipient Ri wishes to retrieve their signals, it will send i (in an authenticating manner)
to both servers and receive T1[i],T2[i] from which it can recover the locations by just performing xor.
Upon each retrieve, the recipient’s row is flushed.

Our protocol provides full privacy due to the following features: at any point, each server only
owns only one share of the signals and the table of signals, and upon each update, the server obtains
a re-randomization of the entire table, performed with fresh randomness that is sampled by both
servers, which leaks no information about the row that was actually updated. We provide formal
proofs of security in Appendix C In our proof, servers can collude with recipients and sender but (of
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R1 4 7 9

R2 3 2 8

R3 4 3 5

... ... ... m ... ... ...

5 6 87

➌(SEND, E(pk1, R
1 = 2, loc1 =3)

Ri

➊(Setup, Σ.vki)

➎(RECEIVE, R3) R3

➏

➋(WRITE, m)

➍

R1 2 7 9

R2 2 1 8

R3 6 3 5

R1 3 2 3

R2 7 4 8

R3 5 2 5

R1 5 2 3

R2 6 7 8

R3 7 5 5

Compute
7⨁5 = 2
5⨁2 = 7
5⨁5 = 0

E(pk2, R
2 =1, loc2 =4))

R3 5 2 5

R3 7 5 5

SERVER1 SERVER2

Figure 3: Two-server. 1 Ri registers with the two servers. 2 Sender writes message m for R3 on

position 7 of the board. 3 Create shares of 3 e.g. (2, 1) and 7 = (3, 4), send (2, 3) to Srv1 and (1, 4)

to Srv2. 4 Srv1 and Srv2 run a 2PC with inputs (T1, 2, 3) and (T2, 1, 4) and some fresh randomness
and output new tables T1 and T2 such that in the next available position of R3’s row (column 2), is
updated with fresh shares of 7, e.g. (5 and 2) and re-randomize all other indices while maintaining
the invariant that T1[i][j]⊕T2[i][j] remains the same. 5 R3 requests its row. 6 If valid, Srv1 sends
[7,5,5] and Srv2 sends [5,2,5]. R3 reconstructs locations by computing [7⊕ 5, 5⊕ 2, 5⊕ 5] = [2, 7, 0].

course) cannot collude with each other. For this protocol, our proofs are in the semi-honest setting.
Finally, we note that we can extend this idea to a multi-server setting, where say n servers participate
in an MPC to process a signal and update the shares of the table of signals.

The tradeoff here would be that sender will need to share the location and recipient index among
n servers, and the recipient would need to recombine the shares received from n servers, but on the
positive side, one can have weaker assumptions on the trust and non-collusion between the servers.

4 Preliminaries

Notation Let λ be the security parameter, poly(·) be a polynomial function and let negl(λ) be a
negligible function. M denotes the total number of recipients.

Public Board: Gledger. We assume that all parties have read and write access to a public board,
which we abstract via a public ledger ideal functionality Gledger functionality introduced in [BMTZ17].
Gledger maintains a global variable called state and parties can read from and write to this global state
through the commands READ and SUBMIT. An abridged version of Gledger is presented in the App A.8,
Fig. 18.

In this section we present the crucial definitions and security guarantees of the primitives used in
our protocols. We present the rest of the primitives more formally in App A.

Trusted Execution Environment: Gatt. The TEE is modeled as a single, globally-shared ideal
functionality that is denoted as Gatt following the definition of [PST17]. The Gatt functionality is
depicted in Fig. 4 There are two types of invocations to the trusted hardware - installation, that
allows to install a software and a stateful resume, that allows to execute it on an input. More details
are provided in App A.3.

Garbled Circuits A garbling scheme G (described in App. A.2) consists of five polynomial time
algorithms (Garble,Encode,Eval,Decode, evaluate). Garble takes as input a function f and returns a
garbled circuit F , encoding information e, and decoding information d. Encode takes e and an input
x, and returns a garbled input X. Eval takes in the garbled circuit F and X, and returns a garbled
output Y . Decode takes in the decoding information d and Y , and returns the plaintext output
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Gatt[Σ, reg]

//initialization
On initialize: (mpk,msk) := Σ.KeyGen(1λ), (epk, esk) := Enc.KeyGen(1λ), T = ∅
// public query interface:
On receive* getpk() respond with (mpk, epk)

Enclave operations

//local interface – install an enclave:
On receive* install(idx,Prog) from some P ∈ reg:
• if P is honest, assert idx = sid
• generate nonce eid ∈ {0, 1}λ, store T [eid,P] := (idx,Prog, 0⃗), send eid to P.
//local interface – resume an enclave:
On receive* resume(eid, inp) from some P ∈ reg:
• let (idx,Prog,mem) := T (eid,P), abort if not found
• let (outp,mem) := Prog(inp,mem), update T [eid,P] := (idx,Prog,mem)
• let σ := Σ.Sigmsk(idx, eid,Prog, outp) and send (outp, σ) to P.

Figure 4: Global functionality modeling SGX-like secure processor [PST17]

y = f(x).

Oblivious Transfer In the oblivious transfer functionality (formally defined in App A.1, Fig 16),
sender S has a pair of input strings s0 and s1 and a receiver R has a choice bit b. R learns only sb
while S learns nothing.

5 UC-Definition of Private Signaling

We define the problem of private signaling in the UC-framework [Can01]. In this framework, the
security properties expected by a system are defined through the description of an ideal functionality.
The ideal functionality is an ideal trusted party that performs the task expected by the system in a
trustworthy manner. When devising an ideal functionality, one describes the ideal properties that the
system should achieve, as well as the information that the system will inherently leak.

For the task of private signaling, we want to capture two properties: correctness and privacy.
Correctness means that a recipient Ri should be able to learn all signals that are intended for them.
Privacy means that by looking at the messages exchanged in the protocol no one except Ri (and the
senders of the signals) should distinguish which signals are directed to Ri. Furthermore, we want to
capture the following inherent leakage. First, an observer of the system can always learn that a signal
was posted for “someone” (for instance, just by observing the board). Second, a protocol participant
can learn that a certain recipient is trying to retrieve their own signals (for instance, in the serverless
case, this can be detected by observing that a node is downloading a big chunk of the board, or in
the server-aided case, it is just possible to observe that Ri connected to the server).

Private Signaling Ideal Functionality The functionality FprivSignal provides the following interface -
SEND and RECEIVE. The ideal functionality allows parties to send signals to a receiver, that informs that
there exists a message at a particular location of the board maintained by an ideal ledger functionality
Gledger . To add a signal for a recipient Rj , a sender sends SEND command with the pair (Rj , loc) to
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Functionality FprivSignal

The functionality maintains a table denoted T indexed by recipient Rj , that contains informa-
tion on the locations of signals for the corresponding recipient.
Sending a signal (SEND): Upon receiving (SEND, Rj , loc) from a sender Si, send (SEND, Si) to
the adversary. Upon receiving (SEND, ok) from the adversary, append loc to T[Rj ].
Retrieving signals (RECEIVE): Upon receiving (RECEIVE) from some Rj , send (RECEIVE, Rj)
to the adversary. Upon receiving (RECEIVE, ok) from the adversary, send (RECEIVE,T[Rj ]) to
the recipient Rj and update T[Rj ] = []

Figure 5: Private Signaling functionality

the ideal functionality. The latter will store this information for Ri in a table denoted T, and will
send to the adversary this information that a signal has been posted. This leakage captures the fact
that in real life it is easy for an observer to detect that some sender is trying to send a message to
some recipient. However this is the only information that anyone (except the sender, of course) will
ever learn.

A recipient Rj can later query the ideal functionality to retrieve the signals that were sent to them.
This is done using the RECEIVE command. This command also instructs the functionality to flush the
row T[Rj ]. The ideal functionality will return the list to Rj and will inform the adversary that Rj

has downloaded its private list of signals. Again, this captures the fact that in a real-world system
a global observer can detect the fact that a certain device is trying to retrieve their signals (e.g., by
observing the traffic). Since the only information leaked to the adversary is that a sender has posted
a signal and that a recipient has retrieved its signals we capture the privacy requirement of private
signaling.

Corruption model We consider two settings. In protocol ΠTEE(Section 6) we consider a single-server
with a TEE. Here we assume that the server can be malicious but the TEE is trusted. In protocol
ΠGC (Section 7) we consider two-servers that do not collude. Furthermore, we allow any collusion
between recipients and servers and prove that we achieve only privacy against malicious adversaries.

Communication model In our protocols we do not allow any out-of-band communication between
the senders and the recipients. All entities have access to a global ledger functionality - Gledger. We
assume that recipients have direct channels with the Srv(s). We show in Section 8 that our protocols
can be extended such that there are multiple instances of these servers that serve different recipients.

6 Private Signaling Protocol with TEE (ΠTEE)

The protocol ΠTEE assumes as hybrids a TEE functionality - Gatt (defined in Sec 4). This TEE runs
a program Prog that is defined in Fig 6. We only present Prog here. Gatt attests (see Figure 4) to
any computation that is done inside the processor and outputs a signed message to the server. As
described in Figure 4 the Gatt functionality generates a signing key and an encryption key, and any
entity can securely query the functionality to get the signing verification key and the encryption public
key.

The TEE maintains a vector L⃗ for each recipient. Each recipient Ri registers with the Gatt
functionality by sending it a “setup” command through the server where it communicates its public
key and verification key to the Gatt functionality. The program then initializes a vector L⃗i with all
zeros corresponding to this recipient.

To send a signal to a recipient Ri, the sender encrypts the public key of the recipient along with
the location of the message - (pki, loc), under the public key of the processor epkand submits this as a
transaction to the Gledger functionality. The Srv sends a READ command to the Gledger functionality and
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Gatt Secure processor functionality Figure 4

L⃗i Encrypted locations for Ri

ctkeys Encryption of encryption key and
verification key

indexi Next available index in L⃗i

ctri Counter to prevent replayability of signatures
ctSignal Encryption of loc
ctloc Encrypted locations returned on RECEIVE

mpk,msk Attestation keys of Gatt functionality
epk, esk Encryption keys of Gatt

Table 2: Notations for ΠTEE

retrieves the signals. To process these signals, the Srv inputs (“send”, ctSignal) to the TEE. The TEE

decrypts ctSignal to get the public key pki of the recipient and location loc. The vector L⃗i for recipient

Ri is updated with the loc and all other indices of L⃗i and all other L⃗j for j ̸= i are rewritten so that
a malicious server that may observe memory access patterns cannot trivially learn the recipient of
the signal. To receive its list of signals, a recipient Ri sends a signature along with a counter value
denoted ctr. The TEE authenticates the recipient and checks that the counter value matches with the
internally stored counter value of the recipient.

If valid, the TEE returns encrypts the vector L⃗i under the public key of the recipient Ri and resets
the vector L⃗ to a vector of all zeros and returns the list of encryptions. The recipient decrypts each
ciphertext until it decrypts to a zero which indicates that the recipient has received all the messages.
The server does the checks to ensure that every request to the TEE is fresh and prevents a replay
attack where a malicious server can simply send a previously received signature. This prevents the
TEE from resetting the vector L⃗ that corresponds to an honest user.

Theorem 1. Assume that the signature scheme Σ is existentially unforgeable under chosen message
attacks, the encryption scheme Enc is CPA secure. Then the protocol ΠTEE in the (Gatt, Gledger)-hybrid
world UC-realizes the FprivSignal functionality.

Proof. (Sketch) To prove UC-security, we need to show that there exists a PPT simulator interacting
with FprivSignal that generates a transcript that is indistinguishable from the transcript generated in
the real world where the adversary interacts with (Gatt, Gledger) ideal functionalities. The simulator
internally simulates the Gatt and the Gledger functionalities to the adversary. We consider two cases of
corruption here and in both cases we need to show that the simulator can simulate without learning
the locations of honest recipients. We briefly describe the main idea in the simulation of the above
mentioned corruption cases:
• Sender and server are corrupt: The simulator receives a (“send”, ctSignal) command via the Gatt
interface from the adversary. The simulator decrypts ctSignal using the secret key of the simulated
TEE functionality esk and learns the recipient (Ri) and the location (loc). The simulator sends
(SEND, Ri, loc) to the FprivSignal ideal functionality on behalf of the adversary.

• Receiver and server are corrupt: The simulator receives a (“receive”, ctr, σ) command via the Gatt
interface from the adversary. The simulator verifies the signature σ and sends RECEIVE to the
FprivSignal functionality on behalf of the adversary. The simulator receives a vector of locations that
correspond to the adversary. The simulator encrypts these locations under the public key of the
receiver and returns the vector of encryptions.
Full proofs can be found at Appendix B

11



On input* (“setup”, ctkeys)

Compute (pk,Σ.vk) = Dec(esk, ctkeys).

Compute L⃗ = {0}ℓj=0

Set index = 0 and ctr = 0
Initialize T [pk] = (L⃗,Σ.vk, index, ctr)
return pk

On input* (“send”, ctSignal)

[msg[0],msg[1]]← Dec(esk, ctSignal) and msg[0] = pk

Read T [pk] = (L⃗,Σ.vk, index, ctr)
Update index = (index+ 1) mod ℓ,

Update L⃗[index] = msg[1]

Rewrite L⃗[j] for j ̸= index
Rewrite T [i] for all i ̸= pk

On input* (“receive”, (ctr′, σ))

Read T [pk] = (L⃗,Σ.vk, index, ctr)
if Σ.Ver(Σ.vk, ctr′, σ) = 1 and ctr = ctr′ then

Let (loc1 . . . locℓ) = L⃗
Compute c⃗tloc = Encpk(loc1), . . . , Encpk(locℓ)

Update ctr = ctr + 1, index = 0 and L⃗ = {0}ℓj=0

return (c⃗tloc)
else

return ⊥

Figure 6: Program Prog[ℓ] run by Gatt
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Enclave setup
1. Srv: Run Gatt.install(Prog[ℓ]) to get eid.
Registration
Recipient Ri:
1. Let (mpk, epk) := Gatt.getpk()
2. Compute (pki, ski)← Enc.KeyGen(1λ), (Σ.ski,Σ.vki)← Σ.KeyGen(1λ).
3. Set ctkeys,i = Enc(epk, (pki,Σ.vki)) and send (“setup”, ctkeys,i) to Srv.
4. Await ((eid, pki), σT ) from Srv.
5. Assert Σ.Vermpk((eid, pki), σT ) = 1 and publish pki. Initialize ctri = 0.
Srv:
1. Upon receiving (“setup”, ctkeys,i) from Ri, let ((pki), σT ) =
Gatt.resume(eid, (“setup”, ctkeys,i). Send ((eid, pki), σT ) to Ri.

Procedure (SEND, Ri, loc)
1. Sender S gets (mpk, epk) := Gatt.getpk() and computes ctSignal = Enc(epk, [pki, loc]) and

sends (SUBMIT, (SEND, ctSignal)) to Gledger.
2. Srv: Send READ to Gledger and upon receiving (SEND, ctSignal): Call
Gatt.resume(eid, (“send”, ctSignal)).

Procedure RECEIVE

Recipient Ri:
1. Compute σi = Sig(Σ.ski, ctri) and send (RECEIVE, ctri, σi) to Srv. Await ((eid, c⃗tloc,i), σT )

from Srv
2. Assert Σ.Vermpk((eid, c⃗tloc,i), σT ) = 1
3. Initialize locns = [], j = 0

while (locj = Dec(ski, c⃗tloc[j])) ̸= 0 do
locns.add(locj)
j = j + 1

ctri = ctri + 1
return locns.

Srv:
1. Upon receiving (RECEIVE, ctri, σi) from Ri, let ((eid, c⃗tloc,i), σT ) =
Gatt.resume(eid, (“receive”, ctri, σi)).

2. Send ((eid, c⃗tloc,i), σT ) to Ri

Figure 7: The protocol for private signaling in the Gatt hybrid world
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7 Private Signaling with Two Servers ΠGC

ΠGC is run among two servers Srv1,Srv2. Each Srvi for i = 1, 2 maintains a table (denoted by T(i))
that stores information on the signals. The tables are M × ℓ matrices where each row is associated
with a recipient and ℓ is the maximum number of signals that can be received by each recipient. The

vector
[
(T(1)[R][1]⊕T(2)[R][1]), . . . , (T(1)[R][ℓ]⊕T(2)[R][ℓ])

]
represents a vector of locations that have

been signaled by senders to recipient R. The servers also maintain another table denoted L(i), such
that L(1)[R] ⊕ L(2)[R] stores the next available index for recipient R. Our protocol uses: the ideal
oblivious transfer functionality Fot, garbled circuits and EUF-CMA signatures (defined in Section 4
and Appendix A).

T(i) Table (M × ℓ) of locations
maintained by Srvi

L(i) Table of available indices denoted index

R(i) Share of R received by Srvi
loc(i) Share of loc received by Srvi

r1(i,j), r
2
(i,j) Randomness used for both T(1)[i][j]

and T(2)[i][j]

r1(i), r
2
(i) Randomness used for both L(1)[i]

and L(2)[i]

Table 3: Notations for ΠGC

Registering with the servers: Each recipient Ri registers with the two servers by sending shares of
vector of ℓ+ 1 zeros. This is achieved by sending r0 . . . rℓ to both the servers. The servers add a row
to T(a) and L(a) - T(a)[R] = [r1 . . . rℓ] and L(a)[R] = r0. The recipient Ri also sets a counter denoted
ctri. The ctri is updated each time, the recipient invokes a RECEIVE command. The ctri along with
the vectors are signed by the recipient and sent to the servers. We will describe the use of ctri later.
Sending a signal: The sender (denoted S) sending a signal to recipient R that a message exists for

them at location loc does the following: Create shares of pkR = pk
(1)
R ⊕ pk

(2)
R and loc = loc(1) ⊕ loc(2)

and compute ctSignal,a = Enc(pka, (pk
(1)
R , loc(a))) where pka is the public key of Srva. The sender then

submits these encryptions as transactions to the Gledger functionality. The servers periodically send

READ commands to Gledger to learn the signals. They then decrypt the ctSignal,a to receive (pk
(1)
R , loc(a)).

Since we assume that the servers do not collude, they do not learn any information about the recipient
and the location. The two servers now run a 2PC Protocol processSignal that updates the tables
according to the UpdateTable function. This function updates the tables maintained by the two
servers in the following way: for the next available index (retrieved from the shares stored in tables
L(1) and L(2)) for receiver R store re-randomizations of the received shares and for every other index
re-randomize the original shares. Since every index is updated, at the end of the protocol the two
servers do not know which index was updated with the location, therefore hiding both the recipient’s
identity and the location of the signal. The UpdateTable also updates the tables L(1) and L(2) such
that for receiver R, the tables store shares of an incremented index and for all other parties the shares
are simply rerandomized.
Receiving a signal: To receive their vector of signals, the recipient sends a RECEIVE request to the
two servers. This request includes a signature on freshly sampled random values that serve as new
shares for the corresponding row on the table. Upon successful authentication, the servers send the
corresponding table row to the receiver, who simply recombines the shares to receive their signals.

Theorem 2. The protocol ΠGC UC-realizes the FprivSignal functionality in the Fot-hybrid model assum-
ing secure garbled circuits (Definition 1) and existential-unforgeable signature schemes.
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Setup
Srva, for a ∈ {1, 2}:
1. Generate encryption keys (pka, ska)← KeyGen(1λ) and publish pka
Recipient Ri:
1. (Σ.ski,Σ.vki)← Σ.KeyGen(1λ) and publish Σ.vki.
2. Sample ri ←$ {0, 1}λ for i ∈ [0, ℓ].
3. Initialize ctri = 0.
4. Compute σi = Σ.Sig(Σ.ski, ((r0 . . . , rℓ), ctri))
5. Send (Setup, (r0 . . . , rℓ), ctri), σi) to Srvi.
Srva, for a ∈ {1, 2}:
Upon receiving (Setup, ((r0 . . . , rℓ), ctri), σi) from Ri:
1. If Σ.Ver(Σ.vki, (r0 . . . , rℓ), ctri), σi) ̸= 1, ignore.
2. Else store ctri and set T(a)[Ri] = (r1, . . . , rℓ) and L(a)[Ri] = r0.
Procedure (SEND, R, loc)
Sender S:
1. Compute R(1) and R(2) s.t. R = R(1) ⊕R(2).
2. Compute loc(1) and loc(2) s.t. loc = loc(1) ⊕ loc(2)

3. Compute ctSignal,a = Enc(pka,Signala), where Signala = (R(a), loc(a)) for a ∈ {1, 2}
4. Send (SUBMIT, (SEND, ctSignal,1, ctSignal,2) to Gledger.
Srva for a ∈ {1, 2}:
1. Participate in protocol processSignal and update (T(1),L(1)) and (T(2) L(2)) respectively.
Procedure RECEIVE

Recipient Ri:
1. Sample ri ←$ {0, 1}λ for i ∈ [0, ℓ].
2. Compute σi = Σ.Sig(Σ.ski, (r0, . . . , rℓ, a, ctri)) for a ∈ {1, 2}.
3. Send (vki, (r0, . . . , rℓ, a, ctri), σi) to Srva
4. Receive T(a)[Ri] from Srva
5. Compute T(1)[R][j]⊕ T(2)[R][j] until T(1)[R][j]⊕ T(2)[R][j] = 0.
6. Update ctri = ctri + 1
Srva:
1. Check if Σ.Ver(Σ.vki, (ctr

′, (r0, . . . , rℓ)), σi) = 1 and ctr′ = ctri. Ignore if false.
2. Else send T(a)[R] to R.
3. Update ctri = ctri + 1

Figure 8: Private signaling protocol with 2 servers

Proof. (Sketch) To prove UC-security (full proofs in Appendix C) we need to show that there exists a
PPT simulator interacting with FprivSignal that generates a transcript that is indistinguishable from the
real world where the adversary interacts with the Fot ideal functionality that is internally simulated
by the simulator. We consider two cases of corruption:
• Sender and Srv1 are corrupt: The simulator simulates Srv2 and will receive shares R(2) and loc(2)

from the corrupt sender. It learns exact bits of loc(1) and R(1) via the Fot functionality. The
simulator computes R = R(1) ⊕R2 and loc = loc(1) ⊕ loc(2) and sends (SEND, R, loc) to FprivSignal on
behalf of the corrupt sender.

• Receiver and Srv1 are corrupt: When a corrupt Ri request its row, it must request both Srv1 and
Srv2. The simulator then sends the RECEIVE command to the FprivSignal ideal functionality on behalf
of the corrupt Ri and then learns the locations that Ri would receive. Since the two servers maintain
shares of 0, simply ⊕-ing R’s row in T(2) with the locations it received from the functionality gives
the corrupt recipient its locations.
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Protocol processSignal
Srva (where a ∈ {1, 2}) upon sending READ to Gledger and receiving ctSignal,a. Decrypt to get
Signala.
1. Parse Signala = (R(a), loc(a))

2. Sample r
(a)
(i) ← {0, 1}

λ for i ∈ [1,M ], j ∈ [1, ℓ].

3. (As garbler of GC) Compute Garble(1λ(UpdateTable)) → (F, e, d), where F is the garbled

circuit, and e encodes both possible bits of |T(·)|, |loc(·)|, |R(1)|, |R(2)|, |L(1)| , |L(2)|, |r(a)(i,j)|
for i ∈ [1,M ], j ∈ [1, ℓ], a ∈ {1, 2} and |r(a)(i) | for i ∈ [1,M ], a ∈ {1, 2}

4. Send (OT-SEND, (s0, s1)) to Fot, for each pair of encoded keys of bits in
|T(·)|, |loc(·)|, |R(·)|, |L(·)|, |r(i,j)| for i ∈ [1,M ], j ∈ [1, ℓ], |r(i)| for i ∈ [1,M ]

5. Send (F, d) to the other server , where F includes the keys for its own inputs, i.e. r(i,j) for

i ∈ [1,M ], j ∈ [1, ℓ], loc(a), R(a).
Srva, upon receiving (F, d) from the other server:
1. (As evaluator of GC) Upon receiving OT-SEND from Fot, send (OT-RECEIVE, b) to Fot for each

bit b in T(a), loc(a), R(a),L(a), r
(a)
(i) for i ∈ [1,M ], j ∈ [1, ℓ] and denote these strings as Xa

2. Compute Eval(F, (Xa)) to get Y
3. Compute Decode(d, Y ) to get a new T(a) and L(a)

Figure 9: GC protocol to update two tables
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The UpdateTable function

Input: T(1), L(1), loc(1), R(1), R(2), {r1(i,j)}[i∈[1,M ],j∈[1,ℓ]], {r
(2)
(i,j)}[i∈[1,M ],j∈[1,ℓ]], {r

(1)
(i) }i∈[1,M ]

and {r(2)(i) }i∈[1,M ]

Output: Updated T(1),L(1)

Algorithm

1: Compute R = R(1) ⊕R(2)

2: Compute index = (L(1)[R]⊕ L(2)[R]) mod ℓ
3: Update T(1)[R][index] = loc(1)

4: Update L(1)[R] = (index+ 1)
5: for i in [1,M ] do

6: L(1)[i] = L(1)[i]⊕ r
(1)
(i) ⊕ r

(2)
(i)

7: for j in [1, ℓ] do

8: T(1)[i][j] = T(1)[i][j]⊕ r
(1)
(i,j) ⊕ r

(2)
(i,j)

9: return T(1),L(1)

Figure 10: The function to update the tables T(1) and L(1). The same algorithm updates the tables
for Srv2, except in step 4: the circuit updates L(2)[R] = 0

8 Extensions

Privately Fetching the Message from Gledger. In this work we only focus on having the recipients
privately learning the location on the ledger where a message was written for them. The problem of
privately reading a block of interest from the board, is not the scope of this work. Luckily, however,
there exist techniques from the literature that can be used to solve this problem. Furthermore, our
protocols can be easily modified to privately fetch the message (instead of the location).

Privately Fetching using Existing Techniques: If a client could download the entire blockchain
(ledger), privately reading is easily accomplished. The client will just use the secret location to read
the relevant portions of the blockchain. However, this is not suitable for clients with small storage
space, that are referred to as light clients. There is an extensive literature for privacy-preserving
reads for light clients [QHGR19, WMS+19, LHA+20, MWS+19] motivated by the problem of private
cryptocurrency. In all of these works, the light client asks one (or more) powerful server(s) to learn its
balance and other relevant information. To preserve the privacy of the light client, Qin et al. apply
private information retrieval [QHGR19], Wüst et al.[WMS+19] employ TEEs, while Le et al. [LHA+20]
use Oblivious RAM techniques. Crucially, the underlying assumptions of all such works is that the
light clients (the recipient in our setting) already know the location of the blockchain that they wish
to fetch. Privately communicating this location (without out-of-band communication, without the
recipient being aware of the existence of the server) is what our protocols offers. Hence, our problem
and techniques are complementary to the problem of light clients, and can be used in addition to
the systems proposed in [WMS+19, MWS+19, LHA+20] so that a recipient privately learns these
addresses (without having to communicate with the sender).

Modifying Private Signaling into Private Signaling & Fetching : Our current ΠTEE and ΠGC pro-
tocols can be modified to achieve a private READ functionality. The idea is to have the signal directly
carry the message. Assuming that the messages are of fixed size, we modify the signal as follow. In
ΠTEE the sender encrypts the message under the public key of the TEE and in ΠGC the sender creates
two shares of the message and encrypts one share under the public key of one server, for both servers.

Supporting Multiple Servers As presented, our protocols assume that there is only one server (or a
pair of servers) serving all the parties. In practice, there could exist several servers that offer the same
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service. To this end, we describe how our protocols can be extended so that they support multiple
servers. First, we note that any entity (including the servers) must not map an encrypted signal to
the corresponding server. This is necessary, otherwise we reduce the anonymity set of each signal to
be the set of recipients served by that server. To this end, we use key-private encryptions[BBDP01].
Second, we note that if the server processes a signal for a recipient that it does not serve, the tables are
simply re-randomized in the GC-based protocol (in the TEE-based protocol, the TEE does nothing)
and this is oblivious to a server by design. Thus the sender just computes an encryption of the signal
as before using a key-private encryption scheme and posts it on the board. All servers will attempt
to process the signal and update their tables. By design, the table that stores signals for the recipient
will be updated with the signal and all other tables will just be re-randomized.

9 Implementation and Evaluation

ImplementationWe used Intel SGX [MAB+13] to instantiate the Gatt functionality. RSA-OAEP[FOPS01]
was used as the public key encryption scheme since it can be modified to make it key-private as was
noted by Bellare et al. [BBDP01]. We benchmarked our schemes on an AWS t3.medium instance. It
had 4 GB RAM and 1 core Intel(R) Xeon(R) Platinum 8259CL CPU at 2.50GHz and it was running
on the Amazon Linux 2 operating system. For the garbled circuit protocol (processSignal) we use the
compiler of Ball et al. [BMR16].3. We used AES for the symmetric key encryption and SHA-256 for
the hash functions (which is used in the OT protocol[ALSZ17] that realizes the Fot functionality). All
protocols are implemented in Rust.

Figure 11: Comparing the average time taken to process a signal for the single-server protocols:
ΠTEE(solid lines) and ΠTEE-ext(dashed lines) by varying M from 100 to 1000 and ℓ between 25, 50 and
75.

Parameters. There are two parameters in our protocols - the number of recipients M and an
upper bound ℓ on the number of signals that a recipient is expected to receive in a certain interval
of time. For instance, in a private-cryptocurrency application, recipients might expect to receive at
most ℓ = 25 private payments a week, and they will connect to the server(s) once a week to download
their vector of signals.

In our measurements (see Figures 11 and 12) we choose to test for ℓ varying 25, 50 and 75. This
choice of parameters was inspired by applications of stealth payments in cryptocurrencies, and was

3https://github.com/GaloisInc/fancy-garbling

18



Figure 12: Evaluating the time taken to process signal when the value of ℓ ∈ {25, 50, 75} for Protocol
ΠGC and varying M from 100 to 1000.

Baseline ΠTEE ΠGC OMR[LT21] FMD[BLMG21]
Server computation NA 0.114s 146s 0.405s 0.001s

Recipient computation 0.012s 0.012s 0.001s 0.02s 2.1s
Total latency (N = 500, 000) 100 min 0.012s 210 days 2.45 days 32s / 9.1hrs

Signal size NA 64 bytes 128 bytes 68 bytes 956 bytes

Table 4: Computation cost and signal size comparisons of FMD [BLMG21], OMR[LT21] and protocols
ΠTEE and ΠGC, assuming a recipient connect once a day. For ΠTEE, ΠGC and OMR the measurements
are taken for ℓ = 50. The total number of messages N is set as 500, 000 (approximate number of
transactions in a day in Bitcoin) and for ΠTEE and ΠGC, M = 500. These numbers are take from
OMR [LT21] and FMD [BLMG21] directly (FMD assumes a false positive rate ρ and we present
latency for ρ = 2−15 and 2−5.

informed by the following data we have at time of writing. The number of stealth payments [eth]
via Umbra[Sco] on the Ethereum blockchain was 416 transactions over a period of 5 months, which
roughly amounts to a total (for all the recipients) of 20 private transactions per week. On the Zcash
blockchain, the number of shielded (private) transactions between Oct 2016 to Jan 2018 was 6934
[KYMM18], which amounts to roughly total 140 transactions per week. In a system like Umbra,
setting up ℓ = 20 and having the recipients retrieve once a week is suitable. In a more active system
such as Zcash, setting ℓ = 75 (or ℓ = 25 checking every day) might be more suitable.

We vary the number M of recipients from 100 to 1000. The computation complexity of the servers
increases linearly with M (although in the TEE-based construction there are slight differences). Thus,
one can simply extrapolate for any M . Furthermore, as we explained in Section 8, our protocols can
support multiple servers that split the workload, while not splitting the anonymity set. Hence, if
multiple servers are employed, the total number M can be split into smaller Mj - the set supported
by server Sj , while the anonymity set is still M (the number of total recipients).

Evaluation
Server’s Running Time. Fig. 11 and Fig. 12 show the time it takes for the server(s) to process one

signal. This time is a function of M and ℓ, and for both protocols this time increases asymptotically
linearly with M (for fixed values of ℓ). Concretely, for TEE-based protocols ΠTEE and ΠTEE-ext, the
graphs show that even for M = 1000 (with ℓ = 50) it takes less than a second to process a signal.
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Figure 13: Evaluating the communication between the two servers when running the 2PC protocol in
ΠGC. We vary M from 100 to 1000 and ℓ between 25, 50 and 75.

For our two-server protocol - ΠGC (Fig. 12), the running time to process a signal is in the order of
minutes. Though this protocol is not very useful for applications such as anonymous messaging where
there are a lot of private messages, it may still practical be in systems like stealth payments assuming
that the stealth transactions are distinguishable from the non-private ones (hence the servers do not
need to process every transaction on the blockchain).

Latency for the recipients. For our protocols, we envision a setting where the servers process signals
as soon as they are confirmed on the blockchain (in other words, our servers work in the background
constantly rather than starting to work only after the recipients has asked to fetch its signals). This
assumption is very natural for a server-client model. When the receiver connects to the server(s) it
receives immediately every signal fetched by the server so far, up to the latest block of the blockchain
that was processed by the servers. If the latest block processed by the servers is indeed the latest
block that was posted to the blockchain, the recipients latency is 0. Our measurements of TEE-based
protocols ΠTEE and ΠTEE-ext in Fig 11 shows how the running times vary as a function of M and ℓ
and this information, in combination with information about frequency of the signals posted on the
blockchain, can be used to evaluate the latency. These values depend on the specific application and
the blockchain used. For concreteness (and following the analysis of OMR[LT21]), if we consider a
blockchain such as Bitcoin, there are approximately 4000 transactions per block4 (500K per day),
and a block is confirmed, roughly, every 10 minutes. Not all 4000 transactions will be private (or
signals), however, combining these value with the running times shown in Fig. 11, we see that for a
number of recipients M up to 700 (and for ℓ = 50), the latency for a recipient is 0. This is because,
the time to process a signal is 156.7ms, and hence will take about 10.44min to process all signals
(assuming 4000) in block, which is approximately the time for a new block to be confirmed. Similarly
for protocol ΠTEE-ext (where the encryptions are not stored in the TEE, but in the memory of the
server) the overall computation time to process a signal for M = 100 and ℓ = 50 is about 115.5ms,
and hence will take 7.7 min to process all signals which is less than the time taken to confirm a block.
Our two-server protocol - ΠGC, the average time taken to process a signal is in the order of minutes.
Therefore this protocol would provide an acceptable latency in all the applications where the number
of private signals in each block is limited.

Communication complexity. All signals are communicated to the servers via a blockchain (which
we model in the paper as Gledger). For ΠTEE the size of the signal is 64 bytes and for ΠGC it is 128

4https://www.blockchain.com/charts/n-payments-per-block
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bytes. There is no communication overhead in ΠTEE at the server since the server simply forwards
the signal to the TEE, whereas in ΠGC the two servers need to run a 2PC protocol and scales with
both M and ℓ. As can be seen from Fig 13 Finally, for a RECEIVE command, the communication
is an authentication from the recipient and the corresponding row from the servers. In ΠTEE this
authentication is 512 bytes and the server returns ℓ encryptions, each of size 512 bytes. In ΠGC the
recipient sends an authenticating message of size 512 bytes and receives two vectors of size ℓ from
each server.

Optimizations. To improve the performance of ΠGC we modify the UpdateTable function to process
K signals in the same GC protocol. We observe that after a point K = 20 (see Figure 15), there is
no significant improvement in the normalized time taken to process a signal. In Figure 14 we observe
that for K = 5 and K = 10 the overall computation improved by 2.33× and 3.95× respectively. This
gain in overall processing time can be attributed to lesser number of garbled tables that need to be
computed and communicated.

Figure 14: Evaluating the improvement in computation time to protocol ΠGC when signals are batched
in groups of 5 and 10. We vary the number of recipients from 1 to 100 here.

Availability. The source code of our implementations of our protocols can be found at https://

github.com/anon-submission-1100/pps.

Comparison with related work and baseline. We compare our protocols with the most related
work FMD [BLMG21] and OMR [LT21] (discussed in Sec. 2.2) and with the baseline “naive” solution 5

in Table 4. Recall that in our approach the running time per signal depends on parameters M and
ℓ, and recall that we assume that the servers continuously process signals (regardless of whether the
recipients is retrieving or not) as they appear on the ledger. In contrast, in OMR [LT21], the running
time per signal depends on N (the total number of signals posted ever) and the upper bound ℓ of
actual signals the receiver expects to receive (in their construction ℓ might change for each recipient).
Furthermore, in OMR, the computation is done on demand, per-recipient, namely, when recipient
asks to retrieve. Hence, even assuming that all requests are served in parallel, a recipient querying the
server at time δ, will need to wait until the server process all the signals posted since the beginning
of time until time δ.

In FMD, the server processes signals continuously, like ours, and the receiver obtains a list of
signals. However, depending on the privacy parameter chosen by the receiver, this list can be as large

5The baseline naive protocol is the one where a recipient simply attempts to decrypt every transaction on the board,
after having downloaded it (for instance, once a day).
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Figure 15: Effect of batching fixing ℓ = 25 and M = 10

as N . Indeed the privacy parameter ρ corresponds to a false positive rate. The higher the false positive
rate, the higher is the computation expected for the recipient (and hence the latency). For instance
for ρ = 2−15, the error rate is very small and the overhead for the recipient is minimal, however, the
anonymity achieved is ρ×N , which is only 15 for N = 500, 000. On the other hand for ρ = 2−5 the
recipient gets an anonymity set of 15625 but takes up to 9 hours to detect its signals.

Due to these crucial differences, comparing with these approaches (and especially with OMR) is
somewhat application dependent, since the choice of M , ℓ, N , and whether the servers process signals
continuously or whether they start to compute upon request, generates significant differences in the
performances.

For the comparison, in Table 4 we considered settings and parameters used in OMR and FMD,
and compared with the baseline solution. We considered a scenario where a recipient connects once
a day; the number of total signals is N = 500, 000 and the number of expected signals per recipient
is ℓ = 50. We set M = 500 for our protocols, and for FMD we considered error/privacy rate at both
side of the spectrum (i.e., ρ− 2−5 and ρ− 2−15).

We found that our TEE-based solutions is the fastest. Our GC-based solution, on the other hand,
takes a long time to process 500, 000 signals. However, we stress that the processing time of the servers
does not impact the running time of the recipient that is still constant (regardless of M, ℓ,N). This
running time impacts the latency, and suggest that GC-based solution should be used for applications
with a lower volume of private signal per-day, and we are interested in saving computation and on-line
time for the recipients.

Cross-over point with baseline solution. Comparison with baseline is relevant when the recipient
connects at fixed interval to download and process the messages in bulk 6. In this case, given an
instantiation of the ledger, one can analyse the cross-over point where our solutions provide less
latency than the baseline solution. For our TEE-based solution, assuming the ledger is implemented
with bitcoin the cross-over point is 10 blocks. This is because it takes 480s to decrypt 10 blocks
(assuming 0.012s to decrypt a signal, 4000 signals per block we have 10*4000*0.012). In our TEE-
based solution, the server takes 7.5 min per block (paramters M = 500, ℓ = 50) and is continuously
working. At the 10th block as well, the server take 7.5 min to process the block. But a receiver coming
online then will take 8 min and this is the crossover point.

6If the recipients were always on-line and decrypting each signal, then no server-aided solution could beat this rate.
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10 Conclusion and Open Problems

We have introduced the problem of private signaling that abstracts several real-world recipient-
anonymous applications. We provide a formal definition in the UC-framework, two server-aided
protocols that achieve this definition (in the semi-honest and malicious setting), and open-source im-
plementations. Our protocols achieve the best efficiency for the sender and recipients, requiring only
minimal overhead.

The workload of the servers, however, is proportional to O(Mℓ) per signal, which limits the choice
of the parameters of M and ℓ. We leave it as future work to explore techniques such as ORAM to
improve the workload of the servers.
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A Preliminaries (contd.)

A.1 Oblivious transfer

Oblivious transfer (OT) is a two-party protocol in which a sender S has two input strings s0, s1 ∈
{0, 1}λ, and a receiver R has a choice bit b ∈ {0, 1}. An OT protocol is called non-trivial if for any
pair of strings s0, s1 ∈ {0, 1}λ, and for any b ∈ {0, 1}, after participating in the interactive protocol,
S outputs nothing and R learns sb. We capture this definition formally as an ideal functionality Fot

in Figure 16.

Ideal Functionality Fot:
• Upon receiving message (OT-SEND, s0, s1, S,R) from S, where s0, s1 ∈ {0, 1}λ, store s0, s1
and answer SEND to R and S.

• Upon receiving message (OT-RECEIVE, b) from R, where b ∈ {0, 1}, send sb to R and
OT-RECEIVE to S and S, and halt. If no message (OT-SEND, ·) was previously sent, do nothing.

Figure 16: Ideal functionality for oblivious transfer

A.2 Garbled circuits

We present a formal definition for garbled circuits. We present the definitions of [BHR12].

Definition 1. A garbling scheme G consists of five polynomial time algorithms (Garble,Encode,Eval,Decode, evaluate).
1. Garble(1λ, f) → (F, e, d). The garbling algorithm Garble takes in the security parameter λ and a

circuit f , and returns a garbled circuit F , encoding information e, and decoding information d.
2. Encode(e, x) → X. The encoding algorithm Encode takes in the encoding information e and an

input x, and returns a garbled input X.
3. Eval(F,X)→ Y . The evaluation algorithm Eval takes in the garbled circuit F and the garbled input

X, and returns a garbled output Y .
4. Decode(d, Y ) → y. The decoding algorithm Decode takes in the decoding information d and the

garbled output Y , and returns the plaintext output y.
5. evaluate(f, x) → y. The algorithms takes as input the description of the original function f and

the initial input x and outputs the final output y.

Correctness if f ∈ {0, 1}∗, k ∈ N, x ∈ {0, 1}f.n and (F, e, d) ∈ [Garble(1k, f)], then

Decode(d,Eval(F,Encode(e, x))) = evaluate(f, x)

Privacy Let G = (Garble,Encode,Decode,Eval, evaluate) be a garbling scheme, k ∈ N a security
parameter and ϕ a side-information function. We present below the simulation-based notion of privacy
via game PrvSimG,ϕ,S , see the definition of the game in Figure 17.

The adversary wins the game if it guesses b correctly. The advantage of the adversary is defined
as

Advprv.sim,ϕ,S
G (A, k) = 2Pr[PrvSimA

G,ϕ,S(λ)]− 1
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procedure Initialize
Pick b← {0, 1}

procedure Garble((f, x))
if x /∈ {0, 1}f.n then

return ⊥
if b = 1 then

(F, e, d)← Garble(1k, f)
X ← Encode(e, x)

else
y ← evaluate(f, x)
(F,X, d)← S(1k, y, ϕ(f))

procedure Finalize
return b = b′

Figure 17: The PrvSimG,ϕ,S game

and protocol G is prv.sim secure over ϕ if for every polynomial time adversary A there is a
polynomial time algorithm S such that Advprv.sim,ϕ,S

G (A, k) is negligible.
Projective scheme In our schemes we consider a projective garbling scheme. Thus e consists of 2n
wire labels, where n is the number of input bits. We denote these wire labels as (X0

i , X
1
i )i∈indices.

Encode(e, x = (vi)i∈indices) returns X = (Xvi
i )i∈indices.

A.3 Attested Execution Processers

In this section we present more details on the formalization of attested execution processers as de-
scribed in [PST17]

Initialization Upon initialization, a manufacturer chooses a public verification key and signing key
pair denoted (mpk,msk), for the signature scheme Σ. All attestations later will be done using msk.

The registry Gatt is parameterized by a signature scheme Σ and a global registry reg which contains
the list of all parties that are equipped with an attested execution processor. In our setting, only the
Srv is in the registry reg.

Public interface Gatt provides a public interface such that any party is allowed to query and obtain
the public key mpk.

Local interface When a machine P calls an install instruction to Gatt, it asserts that P is in reg.
This models the fact that for a remote party to interact with P’s trusted processor, all commands
have to be passed through the intermediary P. They formalize two types of invocations to the trusted
hardware.
• Installation Enclave installation establishes a software enclave with program Prog, linked to some
identifier idx . The functionality enforces that honest hosts provide the session identifier of the
current protocol instance as idx. Gatt further generates a random identifier (or nonce) eid for each
installed enclave, which can later be used to identify the enclave upon resume. Finally, Gatt returns
the generated enclave identifier eid to the caller.

• Stateful resume An installed enclave can be resumed multiple times carrying state across these
invocations. Each invocation identifies the enclave to be resumed by its unique eid. The enclave
program Prog is then run over the given input, to produce some output (together with an updated
memory mem). The enclave then signs an attestation, attesting to the fact that the enclave with
session identifier idx and enclave identifier eid was installed with a program Prog, which was then
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executed on some input to produce outp.

A.4 Indistinguishability under chosen plaintext attacks

We present a definition for CPA security for private key encryption in Def 2 and for public key
encryption in Def 3.

Definition 2. Let E = (KeyGen,Enc,Dec) be an encryption scheme. Let b ∈ {0, 1} and λ ∈ N. Let A
be an adversary and consider the following experiment.

Experiment Exppriv−cpa−b
E,A (λ):

k ← KeyGen(λ)
m0,m1 ← AOEnck(·)(λ)
c← Enc(k,mb)
b′ ← AOEnck(·)(λ)
return b′

The advantage of the adversary is given as

Advpriv−cpa
E,A = Pr[Exppriv−cpa−1

E,A (λ) = 1]− Pr[Exppriv−cpa−0
E,A (λ) = 1]

The scheme E is said to be CPA secure if the function Advpriv−cpa
E,A (·) is negligble for any adversay

A whose time complexity is polynomial in λ.

Definition 3. Let E = (KeyGen,Enc,Dec) be an encryption scheme. Let b ∈ {0, 1} and λ ∈ N. Let A
be an adversary and consider the following experiment.

Experiment Exppub−cpa−b
E,A (λ):

(pk, sk)← KeyGen(λ)

m0,m1 ← AOEncpk(·)(λ)
c← Enc(pk,mb)

b′ ← AOEncpk(·)(λ)
return b′

The advantage of the adversary is given as

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

The scheme E is said to be CPA secure if the function Advpub−cpa
E,A (·) is negligble for any adversay

A whose time complexity is polynomial in λ.

Lemma 1. Any public-key encryption scheme that has indistinguishable encryptions under a chosen-
plaintext attack also has indistinguishable multiple encryptions under a chosen-plaintext attack.

A.5 Existential Unforgeability under Chosen Message Attacks

Definition 4. A digital signature scheme consists of three algorithms (Σ.KeyGen.Σ.Sig,Σ.Ver). Let
A be the adversary and consider the following experiment: Experiment Expeuf−cma

Σ,A (λ):

(Σ.vk,Σ.sk)← Σ.KeyGen(λ)
(m,σ)← AOSigΣ.sk(·)(λ)
Let Q be the set of oracle queries to SigΣ.sk(·).
If m /∈ Q and Σ.Ver(Σ.vk,m, σ) = 1, return 1.

The advantage of the adversary is given as

Adveuf−cma
Σ,A = Pr[Expeuf−cma

Σ,A (λ) = 1]
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A.6 Key privacy under chosen plaintext attacks

We present a notion of key-privacy under chosen plaintext attacks as defined in [BBDP01]. The
adversary runs in two stages: in the find stage it takes two public keys pk0 and pk1 and outputs a
message x with some state information s. In the guess stage the adversary gets a challenge ciphertext
y, which is encrypted under one of the two keys at random. The adversary then tries to guess which
key was used to compute the ciphertext y.

Definition 5. Let E = (KeyGen,Enc,Dec) be an encryption scheme. Let b ∈ {0, 1} and λ ∈ N. Let A
be an adversary. Consider the following experiment:

Experiment Expik−cpa−b
E,A (λ):

(pk0, sk0)← KeyGen(1k) and (pk1, sk1)← KeyGen(1λ).
(x, s)← A(find, pk0, pk1)
y ← Enc(pkb, x)
d← A(guess, y, s)
return d

The advantage of the adversary is given as

Advik−cpa
E,A = Pr[Expik−cpa−1

E,A (λ) = 1]− Pr[Expik−cpa−0
E,A (λ) = 1]

.
The scheme E is said to be IK − CPA secure, if the function Advik−cpa

E,A (·) is negligible for any
adversary A whose time complexity is polynomial in k.

A.7 Universal Composability

In UC security we consider the execution of the protocol in a special setting involving an environment
machine Z, in addition to the honest parties and adversary. In UC, ideal and real models are considered
where a trusted party carries out the computation in the ideal model while the actual protocol runs
in the real model. The trusted party is also called the ideal functionality. For example the ideal
functionality FprivSignal is a trusted party that provides the functionality of private signaling. In the
UC setting, there is a global environment (the distinguisher) that chooses the inputs for the honest
parties, and interacts with an adversary who is the party that participates in the protocol on behalf
of dishonest parties. At the end of the protocol execution, the environment receives the output of
the honest parties as well as the output of the adversary which one can assume to contain the entire
transcript of the protocol. When the environment activates the honest parties and the adversary, it
does not know whether the parties and the adversary are running the real protocol –they are in the real
world, or they are simply interacting with the trusted ideal functionality, in which case the adversary
is not interacting with any honest party, but is simply “simulating” to engage in the protocol. In the
ideal world the adversary is therefore called simulator, that we denote by S.

In the UC-setting, we say that a protocol securely realizes an ideal functionality, if there exist no
environment that can distinguish whether the output he received comes from a real execution of the
protocol between the honest parties and a real adversary A, or from a simulated execution of the
protocol produced by the simulator, where the honest parties only forward date to and from the ideal
functionality.

The transcript of the ideal world execution is denoted IDEALF,S,Z(λ, z) and the transcript of the
real world execution is denoted Π,A,Z(λ, z). A protocol is secure if the ideal world transcript and the
real world transcripts are indistinguishable. That is, {IDEALF,S,Z(λ, z}λ∈N,z∈{0,1}∗ ≡ {Π,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

A.8 Ledger functionality

In our protocols we model the public board for reads and writes in the form of a Gledger ideal func-
tionality presented here. We present an abridged version of the functionality where we present the
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• Upon receiving (SUBMIT, tx) from a party Pi:
1. Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Pi)
2. If Validate(BTX, state, buffer) = 1 then buffer := buffer ∪ BTX
3. Send (SUBMIT, BTX) to A.

• Upon receiving READ from a party Pi, send statePi to Pi. If received from A, send
(state, buffer) to A.

Figure 18: Abridged Gledger functionality

READ and SUBMIT commands. For the complete description of the functionality, we refer the reader to
Pages 339-340 of [BMTZ17].

30



B Proof of Security of Theorem 1

Proof. To prove that ΠTEE UC-realizes FprivSignal we show that there exists a simulator S that interacts
with FprivSignal and the adversary A to generate a transcript that is indistinguishable from the real
world protocol. We consider the following cases of corruption:
• Simulator SN for the case when only the server is corrupt.
• Simulator Ss for the case when a subset of the senders and the server are corrupt.
• Simulator Sr for the case when a subset of the recipients and the server are corrupt/
• Simulator Srs for the case when a subset of the recipients, a subset of the senders and the server is
corrupt.
We discuss these simulators in more detail in the next subsections.

B.1 Case 1: Neither S nor R is corrupt

Simulator overview When neither the sender nor the recipients are corrupt, then the only corrupt
entity is the server. In this case, the simulator interacts with the Srv and the FprivSignal to simulate a
transcript that is indistinguishable from the real world. Note that the simulator also simulates Gatt
and Gledger towards A.
Proof by hybrids We prove security via a sequence of hybrids where we start from the real world
and move to the ideal world.
• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced with
an encryption to 0 instead of the actual location. By the CPA security (Def 3) of the underlying
encryption scheme we prove in Lemma 2 that the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that in the RECEIVE command, the simulator returns encryptions
of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security (Def 3) of the underlying encryption
scheme, we prove in Lemma 3 that the two hybrids are indistinguishable.

• Hyb3 is the same asHyb2 except that in the Setup procedure, the simulator aborts with sigFailure1.
We prove in Lemma 4 that this occurs with negligible probability.

• Hyb4 is the same as Hyb3 except that in the RECEIVE command, the simulator may abort with
sigFailure2. We prove in Lemma 5 that this occurs with negligible probability.

Lemma 2. Assuming CPA secure encryption scheme (Def 3), Hyb1 and Hyb0 are indistinguishable
against a PPT adversary.

Proof. Note that the difference between Hyb1 and Hyb0 is that in Hyb1 the encryption ctSignal is
replaced by an encryption to 0, under epk.

Assume a distinguisher D can distinguish between Hyb1 and Hyb0, i,e. Pr[D(Hyb1) = 1] −
Pr[D(Hyb0) = 1] > negl(λ)

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.
1. Activate the distinguisher D
2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk.
3. Upon receiving a (SEND, R, loc) command from the environment, set m0 = loc and m1 = 0λ.
4. Send m0,m1 to the challenger and receive back c.
5. Set ctSignal = c and send the transcript to the distinguisher D
6. Output whatever D outputs.

Note that in the case ctSignal was the encryption of m0 the distinguisher sees the hybrid world -
Hyb0 and on the other hand when encryption of m1 is returned the distinguisher sees the hybrid
world Hyb1.

Thus
Pr[D(Hyb1) = 1] = Pr[Exppub−cpa−1

E,A (λ) = 1
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The simulator S internally simulates Gatt and Gledger towards the adversary A
Setup For each recipient Ri:
1. Compute (pki, ski)← Enc.KeyGen(1λ), (Σ.ski,Σ.vki)← Σ.KeyGen(1λ).
2. Set ctkeys,i = Enc(epki, (pki,Σ.vki)) and send (“setup”, ctkeys,i) to Srv.
3. Upon receiving ((eid, pki), σ) abort with sigFailure1 if σ would be validated but the following

communication was not recorded: ((pki), σ) = Gatt.resume(eid, (“setup”, ctkeys,i).

4. Else publish pki and set indexi = 0, ctri = 0 and L⃗ = {0}ℓj=0.

SEND: Upon receiving (SEND, Si) from FprivSignal

1. Compute ctSignal = Enc(epk, 0) and send (SUBMIT, (SEND, ctSignal)) to Gledger.
2. Upon receiving (“send”, ctSignal) on behalf of Gatt from A, rewrite each L⃗i.
3. Send (SEND, ok) to FprivSignal.

RECEIVE: Upon receiving (RECEIVE, Ri) from FprivSignal

1. Compute σi = Sig(Σ.ski, ctri) and send (RECEIVE, ctri, σi) to A.
2. Upon receiving Gatt.resume(eid, (“receive”, ctri, σi, L⃗i)) on behalf of Gatt:

(a) Compute c⃗tloc,i = Enc(pki, 0) . . .Enc(pki, 0)
(b) Update ctri = ctri + 1
(c) Compute σT = Sig(msk, (eid, c⃗tloc,i))
(d) Return (c⃗tloc,i, σT ) to A

3. Receive (eid, c⃗tloc,i, σT ) from A. If this was received without the communication with Gatt,
abort with sigFailure2.

4. Else send (RECEIVE, ok) to FprivSignal.

READ: Upon receiving (READ) from A, forward (READ) to Gledger and return whatever is returned.

Figure 19: Simulator SN for the case of only one corrupt server
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and
Pr[D(Hyb0) = 1] = Pr[Exppub−cpa−0

E,A (λ) = 1
This implies

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb1) = 1]− Pr[D(Hyb0) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and thereforeAdvpub−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb1) = 1]−Pr[D(Hyb0) = 1] < negl(λ) making the two hybrids indistinguishable.

Lemma 3. Assuming CPA secure encryption scheme (Def 3) and by Lemma 1, Hyb2 and Hyb1 are
indistinguishable against a PPT adversary.

Proof. Note that the difference between Hyb2 and Hyb1 is that in Hyb2 the encryption ctloc is
replaced by encryptions to 0, under the same pk.

Assume a distinguisher D can distinguish between Hyb2 and Hyb1, i,e. Pr[D(Hyb2) = 1] −
Pr[D(Hyb1) = 1] > negl(λ)

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.
1. Activate the distinguisher D
2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk.
3. Upon receiving a RECEIVE command, simulate the protocol such that ⃗locns = {loc1 . . . locℓ} and set

m⃗0 = ⃗locns and m⃗1 = 0λ.
4. Send m⃗0, m⃗1 to the challenger and receive back c⃗.
5. Set c⃗tloc = c⃗ and send the transcript to the distinguisher D
6. Output whatever D outputs.

Note that in the case c⃗tloc was the encryption of m⃗0 the distinguisher sees the hybrid world -
Hyb1 and on the other hand when encryption of m⃗1 is returned the distinguisher sees the hybrid
world Hyb2.

Thus
Pr[D(Hyb2) = 1] = Pr[Exppub−cpa−1

E,A (λ) = 1
and
Pr[D(Hyb1) = 1] = Pr[Exppub−cpa−0

E,A (λ) = 1
This implies

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb2) = 1]− Pr[D(Hyb1) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and thereforeAdvpub−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb2) = 1]−Pr[D(Hyb1) = 1] < negl(λ) making the two hybrids indistinguishable.

Lemma 4. Assuming EUF-CMA signatures, Hyb3 and Hyb2 are indistinguishable.

Proof. Note that the difference between Hyb3 and Hyb2 is that in Hyb3 the event sigFailure1 can
occur. We prove in this section that the probability of this event occurring is negligible.

First we observe that sigFailure1 occurs when the simulator receives a signature from the adversary
that was not created by the simulator on behalf of the Gatt.

Assume a distinguisher D can distinguish between Hyb3 and Hyb2, i,e. Pr[D(Hyb3) = 1] −
Pr[D(Hyb2) = 1] > negl(λ)

This implies that Pr[sigFailure1] > negl(λ).
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The simulator S internally simulates Gatt towards the adversary A
Setup For each recipient Ri: Same as in Fig 19

SEND: Upon receiving (SEND, Si) from FprivSignal, same as in Fig 19. //(Honest send)

Upon receiving Gatt.resume(eidj , (“send”, ctSignal)) on behalf of Gatt for a ctSignal that was not
created by the simulator. //(Malicious send)

Let msg = Dec(esk, ctSignal).
if msg[0] = pk and pk corresponds to some Rj then

Let loc = msg[1]
Send (SEND, Rj , loc) to FprivSignal on behalf of A and receive (SEND,A) and send back

(SEND, ok).

Rewrite each index of each L⃗.

RECEIVE Same as in Fig 19

SUBMIT : Upon receiving a SUBMIT request from A, forward to Gledger. //(Malicious write

to Gledger)
READ Same as in Fig 19

Figure 20: Simulator Ss for the case corrupt server and sender

Which implies that Pr[A(·) = ((eid, pki), σ) ∧ Σ.Ver(mpk, (eid, pk), σ) = 1] > negl(λ)
Using this adversary we present a reduction B that breaks the EUF-CMA property (Def 4) of

signature schemes.
1. Simulate the world as in Hyb2, and receive Σ.vk from the challenger. Set mpk of Gatt as Σ.vk.
2. When simulating Gatt and (eid, pk) needs to be signed, use OSigΣ.sk

(·) and send back the signature
to the adversary.

3. Upon receiving ((eid, (eid, pk)), σ′)) from A for which there was no communication with Gatt, check
that
Σ.Ver(mpk, (eid, (eid, pk)), σ′) = 1.

4. If yes, output m = (eid, (eid, pk)) and σ = σ′

Observe that

Adveuf−cma
Σ,A = Pr[Expeuf−cma

Σ,A (λ) = 1]

= Pr[Σ.Ver(mpk, (eid, pk), σ) = 1] > negl(λ)

But this is a contradiction since we assume EUF-CMA signatures and therefore Adveuf−cma
Σ,A <

negl(λ)
Hence Pr[sigFailure1] < negl(λ) and therefore Pr[D(Hyb3) = 1]−Pr[D(Hyb2) = 1] < negl(λ)

Lemma 5. Assuming EUF-CMA signatures, Hyb4 and Hyb3 are indistinguishable.

Proof. Similar to the proof for Lemma 4

B.2 Case 2: S and Srv are corrupt

Simulator Overview In this case a subset of the senders are corrupt along with the server. To
prove security we need to construct a simulator that interacts with the adversary and the FprivSignal

functionality that is indistinguishable from the real world.
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Proof by hybrids Through hybrid arguments we move from the real world to the ideal world and
prove that each pair of intermediate hybrids are indistinguishable.
• Hyb0 is the real world.
• Hyb1 is the same as Hyb0 except that for an honest sender, encryptions of 0 are sent instead of the
actual locations in the SEND command. By the CPA security of the underlying encryption scheme,
Hyb1 and Hyb0 are indistinguishable.

• Hyb2 is the same as Hyb1 except that for RECEIVE command, the simulator returns encryptions of
0 to the server as Gatt. By the CPA security of the underlying encryption scheme, the two hybrids
are indistinguishable.

• Hyb3 is the same as Hyb2 except that the “setup” of Setup procedure is done as in the simulation
and the simulator might abort with sigFailure1. By the EUF-CMA property of the signature scheme,
the two hybrids are indistinguishable.

• Hyb4 is the same as Hyb3 except that the RECEIVE is done as in the simulation and the simulator
might abort with sigFailure2. By the EUF-CMA property of the signature scheme, the two hybrids
are indistinguishable.
Since the reductions are similar to the previous case, we omit them here.

B.3 Case 3: Srv and R are corrupt

Simulator overview In this case, the simulator needs to simulate a view towards a malicious recipient
that is indistinguishable from the real world interaction. For malicious recipients, the simulator is
notified of their RECEIVE request since the Srv must invoke the Gatt functionality to get . Next the
simulator needs to to send the correct locations to the recipient, even though the simulated L⃗ are just
an encryption of 0s. To this end, the simulator simply sends the RECEIVE command to the FprivSignal

functionality and learns the locations that correspond to the malicious recipient. It then simulates
the Gatt functionality to compute an encryption of the locations and sends it back to the Srv.

Proof by hybrids
• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced with
an encryption to 0 instead of the actual location. By the CPA security (Def 3) of the underlying
encryption scheme the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that in the RECEIVE command for an honest recipient, the
simulator returns encryptions of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security
(Def 3) of the underlying encryption scheme, the two hybrids are indistinguishable.

• Hyb3 is the same as Hyb2, except that for malicious recipients, the simulator may abort with
sigFailure. Since we assume EUF-CMA signatures these two hybrids are indistinguishable.

• Hyb4 is the same asHyb3 except that in the Setup procedure, the simulator aborts with sigFailure1.
Because of EUF-CMA signatures this occurs with negl probability.

• Hyb5 is the same as Hyb4 except that in the RECEIVE command, the simulator may abort with
sigFailure2. Because of EUF-CMA signatures this occurs with negl probability.

B.4 Case 4: Corrupt Srv, S and R

Simulator overview This simulator is a combination of the previous simulators, where the simulator
simulates the SEND command as in the case when the Srv and the sender S are corrupt, for the Setup
and RECEIVE commands the simulator simulates as in the case when the Srv and the recipient R are
corrupt.

Proof by hybrids
• Hyb0 is the real world.

35



The simulator S internally simulates Gatt towards the adversary A
Setup For each honest recipient Ri: Same as in Fig 19
//(Malicious receiver):
Upon receiving Gatt.resume(eid, (“setup”, ctkeys,i) from Srv on behalf of Gatt:
1. Compute (pki,Σ.vki) = Dec(esk, ctkeys,i) and compute pki from ski.

2. Set L⃗ = {0}ℓj=0

3. Set index = 0 and ctr = 0
4. Compute σ = Σ.Sig(msk, (eid, (pk))) and send (pk, σ) to A and store (pki,Σ.vki, indexi, ctri).

SEND: Same as in Fig 19

RECEIVE For honest recipients, same as in Fig 19.
// (For malicious recipients)

1. Receive Gatt.resume(eid, (“receive”, ctri, σi)) from Srv on behalf of Gatt. If
Sig.Ver(Σ.vki, ctri, σi) = 0, return ⊥. Else if i corresponds to that of an honest
recipient, abort with sigFailure. Else:

2. Send (RECEIVE, Ri) to FprivSignal on behalf of Ri and get back (RECEIVE, Ri) from FprivSignal.
Send (RECEIVE, ok) to FprivSignal and get back [loc1 . . . locℓ]. If less than ℓ locations received,
pad with 0.

3. Compute ctloc,i = (Enc(pki, loc1) . . .Enc(pki, locℓ))
4. Compute σT = Σ.Sig(msk, (ctloc,i)) and send (ctloc,i, σT ) to A.
READ Same as in Fig 19

Figure 21: Simulator Sr for the case corrupt server and recipients

The simulator S maintains a public board and internally simulates Gatt towards the adversary
A
Setup
For each recipient Ri: Same as in Fig 21

SUBMIT : Same as in Fig 20

SEND: Same as in Fig 20

RECEIVE Same as in Fig 21

READ Same as in Fig 19

Figure 22: Simulator Ssr for the case corrupt server, server and recipients
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• Hyb1 is the same as Hyb0 except that for an honest sender, encryptions of 0 are sent instead of the
actual locations in the SEND command. By the CPA security of the underlying encryption scheme,
Hyb1 and Hyb0 are indistinguishable.

• Hyb3 is the same as Hyb2 except that for RECEIVE command, the simulator returns encryptions of
0 to the server as Gatt. By the CPA security of the underlying encryption scheme, the two hybrids
are indistinguishable.

• Hyb4 is the same as Hyb3, except that for malicious recipients, the simulator may abort with
sigFailure. Since we assume EUF-CMA signatures these two hybrids are indistinguishable.

• Hyb5 is the same as Hyb4 except that the “setup” of Setup procedure is done as in the simulation
and the simulator might abort with sigFailure1. By the EUF-CMA property of the signature scheme,
the two hybrids are indistinguishable.

• Hyb6 is the same as Hyb5 except that the RECEIVE is done as in the simulation and the simulator
might abort with sigFailure2. By the EUF-CMA property of the signature scheme, the two hybrids
are indistinguishable.

C Proof of security for theorem 2

C.1 Correctness

We require the following correctness guarantees from our protocol.
1. If a sender S sends a signal to recipient R using SEND for location loc, then processSignal ensures

that upon RECEIVE from from R, it learns of loc.
2. Upon receiving a RECEIVE request from the R the rows for R maintained by the servers must be

updated to shares of 0.
To check that the first guarantee is satisfied, let there be only one recipient R and the T(i)

maintained by the servers have one column each with the value r. Let L(i) also be initialized with
idx. This implies both tables maintain shares of 0.

That is the last updated index for R is idx⊕ idx = 0 and the value at this index is r ⊕ r = 0
Now Srv1 upon receiving (R(1), loc(1)) and Srv2 upon receiving (R(2), loc(2)) from the sender S, run

the processSignal procedure.
Srvi samples ri and idxi and creates a garbled circuit using Garble, which includes key labels for

the r, idx, maintained by the other Srv and the randomly sampled ri and idxi by both Srv. These key
labels are sent to the Fot functionality and the keys for R(i), loc(i) and ri, idxi that are known only to
Srvi are directly sent to the other Srv. Moreover to evaluate its own circuit, the Srvi must receive same
labels from Fot and directly from the other Srv. By the correctness of the GC protocol, the circuit
evaluates the function UpdateTable and UpdIndex we have that T(i)[R] is updated as loc(i)⊕r1⊕r2⊕(r)
and L(1)[R] is updated as 1⊕ idx⊕ idx1 ⊕ idx2 and L(2)[R] is updated as idx⊕ index1 ⊕ idx2.

Now note that the two L(1) ⊕ L(2) maintains the invariant of the last updated index for R which
is now 1 ⊕ idx ⊕ idx1 ⊕ idx2 ⊕ idx ⊕ idx1 ⊕ idx2 = 1 and the value at this index is T(1) ⊕ T(2) =
loc(1) ⊕ r1 ⊕ r2 ⊕ (r) ⊕loc(2) ⊕ r1 ⊕ r2 ⊕ (r) = loc(1) ⊕ loc(2) = loc.

C.2 Protocol ΠprivSignal2 realizes the FprivSignal functionality

Proof. To prove that ΠprivSignal UC-realizes FprivSignal we show that there exists a simulator S interacting
with FprivSignal that generates a transcript that is indistinguishable from the transcript generated by
the real-world adversary running protocol ΠprivSignal. We consider the following different cases of
corruption and define a simulator for each case:
• Simulator SN for the case when neither a sender nor a recipient is malicious and only one of the
two servers (w.l.o.g. Srv1) is corrupt.

• Simulator Ss for the case when a sender S is corrupt and colludes with one of the servers.
• Simulator Sr for the case when a recipient R is corrupt and colludes with one of the servers.
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The simulator S is initialized with SGarble which is the simulator for garbled circuits.

Setup For each recipient Ri:
1. (Σ.ski,Σ.vki)← Σ.KeyGen(1λ) and publish Σ.vki.
2. Randomly sample (r0, . . . , rℓ)← Zℓ+1

q , and initialize ctri = 0.
3. Compute σi = Σ.Sig(Σ.ski, ((r0 . . . , rℓ), ctri)) and send (Setup, (r0 . . . , rℓ), ctri)) to A.
READ: Upon receiving (READ) from A, send (READ) to Gledger and forward the reply received.

SEND: Upon receiving (SEND, Si) from FprivSignal

1. Sample r1, r2 ← {0, 1}λ and set R(1) = R(2) = r1 and loc(1) = loc(2) = r2 and send
(SUBMIT, (SEND, (c1, c2))) to Gledger where c1 = Enc(pk1, R

(1), loc(1)) and c2 = Enc(pk2, 0).
2. (Simulating Fot): Receive from A (OT-SEND, (s0, s1)) for bits in |T(2)|, |loc(2)|, |R(2)|, L(2)

and |r(i,j)|. Store these strings and send OT-SEND to A.
3. Upon receiving (OT-RECEIVE, b) for bits in |T(1)|, |loc(1)|, |R(1)|, L(1) and |r(i,j)|, compute

(F,X, d) ← SGarble(1k, y, (UpdateTable,UpdIndex)), where y = T(∗),L(∗) and T(∗) ←$

{0, 1}M×ℓ and L(∗) ←$ {0, 1}M . Send corresponding bits of X via Fot to A and send
(F, d) to A. Send (SEND, ok) to FprivSignal

RECEIVE : Upon receiving (RECEIVE, Ri) from FprivSignal,
1. Randomly sample (r0, . . . , rℓ)← Zℓ+1

q .

2. Send σi = Σ.Sig(Σ.ski, (ctri(r0, . . . , rℓ)← Zℓ+1
q )) to A

3. Update ctri = ctri + 1
4. Send ok to FprivSignal.

Figure 23: Simulator SN for the case of only one corrupt server

• Simulator Srs for the case when both R and S are corrupt. Here we consider the case when the
recipient and sender colludes with one of the two servers (Srv1).
We discuss these simulators in more detail below.

C.3 Case 1: Neither S nor R is corrupt

Simulator overview. When neither S nor R are corrupt, then the only corrupt party is Srv1. Thus
the simulator must interact with Srv1 (the adversary) and the functionality FprivSignal to simulate a
view that is indistinguishable from the real world protocol. The simulator simulates Gledger towards
the adversary and forwards any request (SUBMIT, READ) from the adversary to the functionality. The
simulator SN simulates the following commands it receives from FprivSignal:
• SEND: The simulator does not know the recipient or the location of the signal, since it only receives
the sender identity from FprivSignal. SN thus sets R = 0 and loc = 0 and creates shares of the same.
A share of each is sent to Srv1. Then using the simulator of the garbled circuit SGarble, it simulates
a GC such that the output of the T(1) and L(1) are completely random. Note that in the real world
as well each index is ⊕-ed with a random value from Srv2, thus intuitively this simulation should
be indistinguishable from the real world.

• RECEIVE: The simulator requests Srv1 for the row corresponding to Rj , where Rj is the recipient
for which FprivSignal received a RECEIVE command.
We present the simulator more precisely in Fig 23

Proof by hybrids. We prove security via a sequence of hybrids where we start from the real world
and move to the ideal world.
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• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except for the SEND command the garbled circuit computation is done by
SGarble. We prove in Lemma 6 that Hyb0 and Hyb1 are indistinguishable by the privacy property
(Def 1) of garbled circuits.

• Hyb2 is the same as Hyb1 except for the SEND command, the encrypted signals posted on the
board is replaced by encryptions of shares of 0. Since we use XOR, information theoretically Hyb2

and Hyb1 are indistinguishable to a computationally unbounded adversary. And this is equivalent
to the ideal world.

• Hyb3 is the same as Hyb2 except in the SEND command, the encrypted signal for Srv2 is now
replaced with an encryption of 0. Since we use a CPA secure encryption scheme, the two hybrids
are indistinguishable.

Lemma 6. If secure garbled circuits with privacy (Def 1) are used then Hyb0 and Hyb1 are indis-
tinguishable to a PPT adversary.

Proof. Assume towards a contradiction that an adversary A01 can distinguish between Hyb0 and
Hyb1. Using this A01 we construct an adversary AGarble that breaks the privacy of the garbled
circuits (def 1).
AGarble

1. Activate A01.
2. Simulate requests for Gledger. For a SEND command, as the garbler of the GC create the encodings as

in the protocol, and receive (F,X, d) from the challenger, where X is received from an OT oracle.
3. Forward (F,X, d) to A01.
4. Output whatever A01 outputs.

Analysis
Since A01 can distinguish between Hyb0 and Hyb1 we have:

Pr[A01(Hyb0) = 1]− Pr[A01(Hyb1) = 1] > negl(λ)

Observe that when b = 1 in the PrvSim game, the transcript seen by A01 is exactly as in the Hyb0

since the garbled circuit is created honestly. Similarly, when b = 0, the transcript seen by A01 is
exactly as in Hyb1 since the simulator SGarble is used to compute (F,X, d).

Thus we have Pr[AGarble(PrvSim) = 1|b = 1] = Pr[A01(Hyb0) = 0] and Pr[AGarble(PrvSim) =
0|b = 0] = Pr[A01(Hyb1) = 1]

Thus Pr[PrvSimA
G,ϕ,S(k)] which is 1/2Pr[AGarble(PrvSim) = 1|b = 1] + 1/2Pr[AGarble(PrvSim) =

0|b = 0]
And this is equal to

1/2|Pr[A01(Hyb0) = 0] + 1/2Pr[A01(Hyb1) = 1]|

= |1/2− 1/2Pr[A01(Hyb0) = 1] + 1/2Pr[A01(Hyb1) = 1]|

> 1/2 + negl(λ)

which is non-negligible and this implies

Advprv.sim,ϕ,S
G (A, k) > 2(1/2 + negl(λ))− 1 > negl(λ)

which is a contradiction and that concludes our proof.
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The simulator S has access to SGarble
Setup As in Fig 23

SEND:
1. Upon receiving (SEND, Si) from FprivSignal, simulate SEND as in Fig 23 // (Honest senders)

2. Upon receiving (R(2), loc(2)) from A after decrypting ctSignal,2 (that was received as a
(SUBMIT, (SEND, ctSignal,1, ctSignal,2)) call) // (Malicious senders)

• (As Fot): Send OT-SEND to A and receive (OT-RECEIVE, b) from A for each bit in
T(1),L(1), loc(1) and R(1).

• Compute loc(1) and R(1) from the received bits and compute loc = loc(1) ⊕ loc(2) and
R = R(1) ⊕R(2).

• Send (SEND, R, loc) to FprivSignal on behalf of A and upon receiving (SEND,A) from
FprivSignal use SGarble to compute (F,X, d)← SGarble(1k, y, (UpdateTable,UpdIndex)), where
y = T(∗),L(∗) and T(∗) ←$ {0, 1}M×ℓ and L(∗) ←$ {0, 1}M . Send keys for corresponding
bits of X via Fot to A and send (F, d) to A.

• Upon receiving (OT-SEND, (s0, s1)) from A for bits in |T(2)|, |loc(2)|, |R(2)|, L(2) and |r(i,j)|.
Store these strings and send OT-SEND to A.

• Send (SEND, ok) to FprivSignal

RECEIVE: Simulate RECEIVE as in Fig 23

READ: Same as Fig 23.

SUBMIT: Upon receiving (SUBMIT,m), forward the command to Gledger and return whatever is
returned.

Figure 24: Case when a sender and Srv1 are corrupt

C.4 S and Srv1 are corrupt

Simulator Overview In this setting, the simulator is similar to the previous case, except that the
simulator cannot directly compute the recipient and the location. It cannot do so because it receives
only one share of the recipient’s index (R(2)) and the location (loc(2)). But note that the simulator
internally simulates Fot towards the A. And the A must send bits of R(1) and loc(1) to get the
corresponding keys to evaluate its GC. At this point the simulator can learn the bits of loc(1) and
R(1). The simulator then proceeds as in the previous case and sends a SEND, R, loc message to the
functionality. To simulate the rest of the interaction with Srv1, the simulator simply calls SGarble as in
Case C.3.

Proof by hybrids
• Hyb0: The real world
• Hyb1 is the same as Hyb0 except that SGarble is used to create the garbled circuit and the encodings
for Srv1. Hyb1 and Hyb0 are indistinguishable by the privacy property of garbled circuits and the
proof follows from Lemma 6.

• Hyb2 is the same as Hyb1 except that if A is calls a SEND procedure, the simulator now extracts
loc(1) and R(1) from Fot, computes R and loc and sends the SEND command to FprivSignal. Since we
use ideal Fot and assume that loc(1) ⊕ loc(2) will give some loc and R(1) ⊕ R(2) gives some valid
recipient, the two hybrids are indistinguishable.

• Hyb3 is the same as Hyb2 except in the SEND command, the encrypted signal for Srv2 is now
replaced with an encryption of 0. Since we use CPA secure encryption scheme, the two hybrids are
indistinguishable. And Hyb3 is equal to the ideal world.
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The simulator S has access to SGarble
SEND: Upon receiving (SEND, Si) from FprivSignal, simulate as in Fig 23.

RECEIVE :
• Upon receiving (RECEIVE, Rj) from FprivSignal, simulate as in Fig 23.
• Upon receiving σj = Σ.Sig(Σ.skj , (ctr

′, r0, . . . , rℓ), 2) from A (on behalf of party Rj), check
that the signatures verify and ctr = ctr′. Else ignore.

• If the signatures correspond to that of an honest party abort with error UnforgeError1, else
send RECEIVE to FprivSignal on behalf of Rj and receive loc1 . . . locℓ from FprivSignal. Send[
loc1 ⊕ T(2)[Rj ], . . . , locℓ ⊕ T(2)[Rj ]

]
to A and send ok to FprivSignal

Figure 25: Simulator for the case when a recipient and Srv1 are corrupt

C.5 R and Srv1 are corrupt

Overview of the simulator The simulator for the SEND procedure will work similar to the one in
Sec C.3. This is so because we have one server corrupt and the sender is not corrupt. Thus instead of
the actual R and loc we use shares of 0. Moreover SGarble will be used to simulate the garbled circuit
towards the corrupted server. But then for the RECEIVE command, the simulator does not have the
loc for the corresponding recipient. To this end, the simulator just sends the RECEIVE command to
the FprivSignal functionality on behalf of the adversary A. Upon receiving loc1 . . . locℓ, the simulator
updates T(2)[R] by ⊕ing each T(2)[R][i] with loci. This ensures that simulation is correct since, the A
now receives this updated T(2)[R] which when ⊕-ed with T(1)[R] will give the locations of signals for
the adversary. We present the simulator formally in Fig 25

Proof by hybrids
• Hyb0 is the real world.
• Hyb1 is the same as Hyb0 except that for each SEND the simulator now uses a simulated GC instead
of the real world GC and responses to RECEIVE are done as in the simulation. . Hyb1 and Hyb0

are indistinguishable by the privacy property of GC and this follows the same proof as in Lemma 6.
Note that the two tables maintain shares of 0. That is T(1)[Ri][j] ⊕ T(2)[Ri][j] = 0 for all i and j.
Since in the simulation, the simulator sends locj ⊕ T(2)[Ri][j] to the A (who already has T(1)[Ri])
the A can get the correct locations as locj ⊕ T(2)[Ri][j]⊕ T(1)[Ri] = locj ⊕ 0 = locj .

• Hyb2 is the same as Hyb1 except that the simulator may abort with UnforgeError1. We prove
in Lemma 7 that UF-CMA property of the underlying signature scheme Hyb2 and Hyb1 are
indistinguishable.

• Hyb3 is the same as Hyb2 except in the SEND command, the encrypted signal for Srv2 is now
replaced with an encryption of 0. Since we use CPA secure encryption scheme, the two hybrids are
indistinguishable. And Hyb3 is equal to the ideal world.

Lemma 7. Assuming existential unforgeable signatures that are secure against chosen message at-
tacks, Hyb2 and Hyb1 are indistinguishable.

Proof. Note that the difference between Hyb2 and Hyb1 is that in Hyb2 the event UnforgeError1
can occur. We prove in this section that the probability of this event occurring is negligible.

First we observe that UnforgeError1 occurs when the simulator receives a signature from the ad-
versary that is valid and corresponds to that of an honest party.

Assume a distinguisher D can distinguish between Hyb2 and Hyb1, i,e. Pr[D(Hyb2) = 1] −
Pr[D(Hyb1) = 1] > negl(λ)

This implies that Pr[UnforgeError1] > negl(λ).
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The simulator S maintains a public board and also has access to SGarble
SUBMIT : Similar to simulation in Fig 23

READ : Similar to simulation in Fig 23

SEND: Similar to simulation in Fig 24

RECEIVE: Similar to simulation in Fig 25

Figure 26: Simulator for the case when a recipient, sender and Srv1 are corrupt

Which implies that A sends a Pr[Σ.Ver(Σ.vkj , (ctr
′, (r0, . . . rℓ), 2), σ) = 1 ∧ Rj is honest ∧ ctr′j =

ctrj ] > negl(λ)
Using this adversary we present a reduction B that breaks the EUF-CMA property (Def 4) of

signature schemes.
1. Simulate the world as in Hyb1, and receive Σ.vk from the challenger. Set an honest recipient Rj ’s

verification key to be Σ.vk and publish it.
2. Upon receiving (ctr′, (r0, . . . , rℓ, 2, σ), check if ctr = ctr′ and Σ.Ver(Σ.vkj , (ctr

′, (r0, . . . rℓ), 2), σ) = 1.
3. If yes, output (ctr′, (r0, . . . , rℓ, 2), σ) to the challenger

Observe that

Adveuf−cma
Σ,B = Pr[Expeuf−cma

Σ,B (λ) = 1]

= Pr[Σ.Ver(Σ.vkj , (ctr
′, (r0, . . . rℓ), 2), σ) = 1] > negl(λ)

But this is a contradiction since we assume EUF-CMA signatures and therefore Adveuf−cma
Σ,A <

negl(λ)
Hence Pr[UnforgeError1] < negl(λ) and therefore Pr[D(Hyb2) = 1]−Pr[D(Hyb1) = 1] < negl(λ).

C.6 S,R and Srv1 are corrupt

Overview of simulator In this case the simulator needs to simulate a view on behalf of Srv2 only.
To this end, when a SEND command is received, the simulation is done exactly as in Case C.4 and
when for RECEIVE, the simulation is done as in Case C.5

Proof by hybrids
• Hyb0 is the real world hybrid.
• Hyb1 is the same as Hyb0 except that the GC is now simulated and response to RECEIVE is
returned as in the simulation. By a proof following Lemma 6 we have that Hyb1 and Hyb0 are
indistinguishable.

• Hyb2 is the same Hyb1 except that the SEND is now replaced by shares of 0. Since Srv1 can only
receive one share, information theoretically the Srv cannot distinguish if its a share of 0 or the actual
location. Thus Hyb2 and Hyb1 are indistinguisihable.

• Hyb3 is the same as Hyb2 except that the simulator may abort if UnforgeError1 in a RECEIVE

command occurs. By a proof following Lemma 7, Hyb2 and Hyb2 are indistinguishable. And this
is the same as in the ideal world.

• Hyb4 is the same as Hyb3 except in the SEND command, the encrypted signal for Srv2 is now
replaced with an encryption of 0. Since we use CPA secure encryption scheme, the two hybrids are
indistinguishable. And Hyb3 is equal to the ideal world.

42



D Inefficient solutions with no servers

As described in the introduction a naive scan for messages on the board by the recipient would require
O(N) computation from the recipient, where N is the total number of messages on the board.

An idea to improve the recipient’s complexity in a setting without any servers is the following:
Each recipient Ri initializes a counter that is encrypted under its public key using an additively
homomorphic encryption scheme: ctictr = Enc(pki, 0). Now when a sender wishes to signal that
a message is for recipient Ri, the sender does the following computation: for Ri update ctictr =
ctictr + Enc(pki, 1) and for all other Rj update ctjctr = ctjctr + Enc(pkj , 0) and post {ctictr}Mi=1 to the

board along with the message. At a later point of time, the recipient Ri retrieves the latest ctictr and
decrypts it to learn the value of ctri. If ctri > 0 then there exists a message for Ri. The recipient can
then perform a binary search on the board to find in which locations the counter was incremented and
thus learn the messages for itself. If the total number of messages on the board is N and the number
of messages for the recipient is ℓ, then the recipient will have to perform O(ℓ logN) computation. But
the sender computation and the signal size blows up to O(M).

E Protocol ΠTEE-ext

Protocol Overview The protocol ΠTEE-ext is the same as ΠTEE, except that the TEE does not store
the encryptions inside its internal memory but stores it on the server and requires the server to send
the table to the TEE to process the signals.

E.1 Proof of Security

Theorem 3. The protocol ΠTEE-ext (Fig ??) UC-realizes the FprivSignal functionality assuming CPA
secure encryption (Def 3) and existentially unforgeable signature schemes (Def 4).

Proof. To prove that ΠTEE-ext UC-realizes FprivSignal we show that there exists a simulator S that
interacts with FprivSignal and the adversary A to generate a transcript that is indistinguishable from
the real world protocol. We consider the following cases of corruption:
• Simulator SN for the case when only the server is corrupt.
• Simulator Ss for the case when a subset of the senders and the server are corrupt.
• Simulator Sr for the case when a subset of the recipients and the server are corrupt.
• Simulator Srs for the case when a subset of the recipients, a subset of the senders and the server is
corrupt.
We discuss these simulators in more detail in the next subsections.

E.2 Case 1: Neither S nor R is corrupt

Simulator overview When neither the sender nor the recipients are corrupt, then the only corrupt
entity is the server. In this case, the simulator interacts with the Srv and the FprivSignal to simulate a
transcript that is indistinguishable from the real world. Note that the simulator also simulates Gatt
towards A.
Proof by hybrids We prove security via a sequence of hybrids where we start from the real world
and move to the ideal world.
• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced with
an encryption to 0 instead of the actual location. By the CPA security (Def 3) of the underlying
encryption scheme we prove in Lemma 8 that the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that in the SEND command, the simulator returns encryptions of
pk∥0 instead of pk∥loc. By the CPA security of the underlying encryption scheme the hybrids are
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On input (“setup”, ctkeys)

Compute (pk,Σ.vk) = Dec(esk, ctkeys).

Compute L⃗ = {Enc(epk, pk∥0)}ℓj=0

Set index = 0 and ctr = 0
return pk, store L⃗ in external memory and (pk,Σ.vk, index, ctr) in internal memory.

On input* (“send”, i, L⃗i, ctSignal)

Read indexi, pki from internal memory corresponding to i.
Let msg = Dec(esk, ctSignal).
if msg[0] = pki then

Update index = (index+ 1) mod ℓ
for j in [1, ℓ] do

Let curr = Dec(esk, L⃗[j])
if j = index then

L⃗[j] = Enc(epk,msg[0]∥msg[1])
else

L⃗[j] = Enc(epk, curr)

else
for j in [1, ℓ] do

L⃗[j] = Enc(epk,Dec(esk, L⃗[j]))

return L⃗

On input* (“receive”, ctr, σ, L⃗, j)

if Σ.Ver(Σ.vkj , ctr
′, σ) = 1 and ctr = ctr′ and ∀i,Dec(esk, L⃗[i][0 : λ] = pkj) then

Compute loci = Dec(esk, L⃗[i]) for i ∈ [1, ℓ]
Compute c⃗tloc = Encpkj (loc1), . . . , Encpk(locℓ)
Update ctr = ctr + 1 and index = 0
Update L⃗ = {Enc(epk, pkj∥0)}ℓk=0

return (L⃗, c⃗tloc)
else

return ⊥

Figure 27: Program Prog run by Gatt

indistinguishable. By the CPA security (Def 3) of the underlying encryption scheme, we prove in
Lemma 9 that the two hybrids are indistinguishable.

• Hyb3 is the same as Hyb2 except that in the RECEIVE command, the simulator returns encryptions
of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security (Def 3) of the underlying encryption
scheme, we prove in Lemma 10 that the two hybrids are indistinguishable.

• Hyb4 is the same asHyb3 except that in the Setup procedure, the simulator aborts with sigFailure2.
We prove in Lemma 11 that this occurs with negligible probability.

• Hyb5 is the same as Hyb4 except that in the RECEIVE command, the simulator may abort with
sigFailure2. We prove in Lemma 12 that this occurs with negligible probability.

Lemma 8. Assuming CPA secure encryption scheme (Def 3), Hyb1 and Hyb0 are indistinguishable
against a PPT adversary.

Proof. Note that the difference between Hyb1 and Hyb0 is that in Hyb1 the encryption ctSignal is
replaced by an encryption to 0, under epk.

Assume a distinguisher D can distinguish between Hyb1 and Hyb0, i,e. Pr[D(Hyb1) = 1] −
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Enclave setup
1. Run Gatt.install(Prog) to get eid.
Setup
Recipient Ri:
1. Compute (pki, ski) ← Enc.KeyGen(1λ), (Σ.ski,Σ.vki) ← Σ.KeyGen(1λ). Set ctkeys,i =

Enc(epk, (pki,Σ.vki)) and send (“setup”, ctkeys,i) to Srv, and await ((eid, pki), σ) from Srv.
Assert Σ.Vermpk((eid, pki), σ) = 1 and publish pki. Initialize ctri = 0.

Srv:
1. Upon receiving (“setup”, ctkeys,i) from Ri, let ((pki, L⃗i), σ) =

Gatt.resume(eid, (“setup”, ctkeys,i). Send ((eid, pki, L⃗i), σ) to Ri.
Procedure (SEND, Ri, loc)
1. Sender S gets (mpk, epk) := Gatt.getpk() and computes ctSignal = Enc(epk, [pki, loc]) and

sends (SUBMIT, (SEND, ctSignal)) to Gledger.
2. Srv: Upon receiving (SEND, ctSignal) from Gledger after sending READ: For j ∈ [1,M ], call

Gatt.resume(eid, (“send”, i, L⃗j , ctSignal)) and receive an updated L⃗j .
Procedure RECEIVE

Recipient Ri:
1. Compute σi = Sig(Σ.ski, ctri) and send (RECEIVE, ctri, σi) to Srv. Await ((eid, L⃗i, c⃗tloc,i), σT )

from Srv
2. Assert Σ.Vermpk((eid, L⃗i, c⃗tloc,i), σT ) = 1
3. Initialize locns = [], j = 0

while (locj = Dec(ski, c⃗tloc[j])) ̸= pk∥0 do
locns.add(locj)
j = j + 1

return locns.
Srv:
1. Upon receiving (RECEIVE, ctri, σi) from Ri, let ((eid, L⃗i, c⃗tloc,i), σT ) =

Gatt.resume(eid, (“receive”, ctri, σi, L⃗i)).

2. Send ((eid, L⃗i, c⃗tloc,i), σT ) to Ri and update L⃗i

Procedure (READ) Send READ to Gledger and receive state.

Figure 28: The protocol for private signaling in the Gatt hybrid world
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The simulator S internally simulates Gatt towards the adversary A
Setup For each recipient Ri:
1. Compute (pki, ski) ← Enc.KeyGen(1λ), (Σ.ski,Σ.vki) ← Σ.KeyGen(1λ). Set ctkeys,i =

Enc(epki, (pki,Σ.vki)) and send (“setup”, ctkeys,i) to Srv. Upon receiving ((eid, pki), σ) abort
with sigFailure1 if σ would be validated but the following communication was not recorded:
((pki), σ) = Gatt.resume(eid, (“setup”, ctkeys,i). Else publish pki and set indexi = 0, ctri = 0

and L⃗ = {Enc(epk, pki∥0)}ℓj=0.

SEND: Upon receiving (SEND, Si) from FprivSignal

1. Compute ctSignal = Enc(epk, 0) and send (SUBMIT, (SEND, ctSignal)) to Gledger.
2. Upon receiving (“send”, i, L⃗i, ctSignal) on behalf of Gatt from A: Update L⃗i = Enc(epk, pki∥0)

and return L⃗i and send ok to FprivSignal.

RECEIVE : Upon receiving (RECEIVE, Ri) from FprivSignal

1. Compute σi = Sig(Σ.ski, ctri) and send (RECEIVE, ctri, σi) to A.
2. Upon receiving Gatt.resume(eid, (“receive”, ctri, σi, L⃗i)) on behalf of Gatt, if ∃j ∈ [1, ℓ] s.t.

L⃗i[j][0 : λ] ̸= pki, return ⊥, else:
(a) Send ok to FprivSignal

(b) Compute c⃗tloc,i = Enc(pki, 0) . . .Enc(pki, 0)
(c) Update ctri = ctri + 1
(d) Compute σT = Sig(msk, (eid, c⃗tloc,i))
(e) Return (c⃗tloc,i, σT ) to A

3. Receive (eid, , c⃗tloc,i, σT ) from A. If this was received without the communication with Gatt,
abort with sigFailure2.

READ: Upon receiving READ from A, send READ to Gledger and return whatever is returned.

Figure 29: Simulator SN for the case of only one corrupt server
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Pr[D(Hyb0) = 1] > negl(λ)
Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-

tion scheme.
1. Activate the distinguisher D
2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk.
3. Upon receiving a (SEND, R, loc) command from the environment, set m0 = loc and m1 = 0λ.
4. Send m0,m1 to the challenger and receive back c.
5. Set ctSignal = c and send the transcript to the distinguisher D
6. Output whatever D outputs.

Note that in the case ctSignal was the encryption of m0 the distinguisher sees the hybrid world -
Hyb0 and on the other hand when encryption of m1 is returned the distinguisher sees the hybrid
world Hyb1.

Thus
Pr[D(Hyb1) = 1] = Pr[Exppub−cpa−1

E,A (λ) = 1
and
Pr[D(Hyb0) = 1] = Pr[Exppub−cpa−0

E,A (λ) = 1
This implies

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb1) = 1]− Pr[D(Hyb0) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and thereforeAdvpub−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb1) = 1]−Pr[D(Hyb0) = 1] < negl(λ) making the two hybrids indistinguishable.

Lemma 9. Assuming CPA secure encryption scheme (Def 3), Hyb1 and Hyb0 are indistinguishable
against a PPT adversary.

Proof. Note that the difference between Hyb2 and Hyb1 is that in Hyb2 the encryptions L⃗i are
replaced by an encryption to pki∥0, under epk.

Our proof strategy is as follows: we consider an intermediate hybrid where the L⃗i are encryptions
of 0. Let us call this Hyb1.1. We then prove that there is no distinguisher that can distinguish
between Hyb1.1 and Hyb1 and no distinguisher that distinguishes Hyb1.1 and Hyb2, and therefore
prove that there exists no distinguisher that can distinguish Hyb1 and Hyb2

Assume a distinguisher D1 can distinguish between Hyb1 and Hyb1.1, i,e. Pr[D(Hyb1) =
1]− Pr[D(Hyb1.1) = 1] > negl(λ)

Using this distinguisher D1 we construct a reduction B that can break the CPA security of en-
cryption scheme.
1. Activate the distinguisher D1

2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk.
3. Upon receiving a (SEND, R, loc) command from the environment, set m⃗0 = [pk∥loc1, . . . , pk∥locℓ]

and m⃗1 = [0, . . . , 0].
4. Send m⃗0, m⃗1 to the challenger and receive back c⃗.
5. Set L⃗ = c and send the transcript to the distinguisher D1

6. Output whatever D1 outputs.
Note that in the case L⃗ was the encryption of m⃗0 the distinguisher sees the hybrid world - Hyb1

and on the other hand when encryption of m⃗1 is returned the distinguisher sees the hybrid world
Hyb1.1.

Thus
Pr[D(Hyb1.1) = 1] = Pr[Exppub−cpa−1

E,A (λ) = 1
and
Pr[D(Hyb1) = 1] = Pr[Exppub−cpa−0

E,A (λ) = 1
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This implies

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb1.1) = 1]− Pr[D(Hyb1) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and thereforeAdvpub−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb1.1) = 1] − Pr[D(Hyb1) = 1] < negl(λ) making the two hybrids indistinguish-

able.
Similarly, assume a distinguisherD2 can distinguish betweenHyb2 andHyb1.1, i,e. Pr[D(Hyb2) =

1]− Pr[D(Hyb1.1) = 1] > negl(λ)
Using this distinguisher D2 we construct a reduction B that can break the CPA security of en-

cryption scheme.
1. Activate the distinguisher D2

2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk.
3. Upon receiving a (SEND, R, loc) command from the environment, set m⃗0 = [pk∥0, . . . , pk∥0] and

m⃗1 = [0, . . . , 0].
4. Send m⃗0, m⃗1 to the challenger and receive back c⃗.
5. Set L⃗ = c and send the transcript to the distinguisher D1

6. Output whatever D1 outputs.
Note that in the case L⃗ was the encryption of m⃗0 the distinguisher sees the hybrid world - Hyb1

and on the other hand when encryption of m⃗1 is returned the distinguisher sees the hybrid world
Hyb1.1.

Thus
Pr[D2(Hyb2) = 1] = Pr[Exppub−cpa−1

E,A (λ) = 1
and
Pr[D2(Hyb1.1) = 1] = Pr[Exppub−cpa−0

E,A (λ) = 1
This implies

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

= Pr[D2(Hyb2) = 1]− Pr[D(Hyb1.1) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and thereforeAdvpub−cpa
E,A <

negl(λ).
Hence Pr[D2(Hyb2) = 1]− Pr[D(Hyb1.1) = 1] < negl(λ) making the two hybrids indistinguish-

able.
Thus combining the two results we can claim that Pr[D2(Hyb2) = 1] − Pr[D(Hyb1) = 1] <

negl(λ).

Lemma 10. Assuming CPA secure encryption scheme (Def 3) and by Lemma 1, Hyb3 and Hyb2

are indistinguishable against a PPT adversary.

Proof. Note that the difference between Hyb3 and Hyb2 is that in Hyb3 the encryption ctloc is
replaced by encryptions to 0, under the same pk.

Assume a distinguisher D can distinguish between Hyb3 and Hyb2, i,e. Pr[D(Hyb3) = 1] −
Pr[D(Hyb2) = 1] > negl(λ)

Using this distinguisher D we construct a reduction B that can break the CPA security of encryp-
tion scheme.
1. Activate the distinguisher D
2. Run the Setup procedure for an honest recipient R, and let the encryption public key be pk.
3. Upon receiving a RECEIVE command, simulate the protocol such that ⃗locns = {loc1 . . . locℓ} and set

m⃗0 = ⃗locns and m⃗1 = 0λ.
4. Send m⃗0, m⃗1 to the challenger and receive back c⃗.
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5. Set c⃗tloc = c⃗ and send the transcript to the distinguisher D
6. Output whatever D outputs.

Note that in the case c⃗tloc was the encryption of m⃗0 the distinguisher sees the hybrid world -
Hyb2 and on the other hand when encryption of m⃗1 is returned the distinguisher sees the hybrid
world Hyb3.

Thus
Pr[D(Hyb3) = 1] = Pr[Exppub−cpa−1

E,A (λ) = 1
and
Pr[D(Hyb2) = 1] = Pr[Exppub−cpa−0

E,A (λ) = 1
This implies

Advpub−cpa
E,A = Pr[Exppub−cpa−1

E,A (λ) = 1]− Pr[Exppub−cpa−0
E,A (λ) = 1]

= Pr[D(Hyb3) = 1]− Pr[D(Hyb2) = 1] > negl(λ)

But this is a contradiction, since we assume CPA secure encryption schemes and thereforeAdvpub−cpa
E,A <

negl(λ).
Hence Pr[D(Hyb3) = 1]−Pr[D(Hyb2) = 1] < negl(λ) making the two hybrids indistinguishable.

Lemma 11. Assuming EUF-CMA signatures, Hyb4 and Hyb3 are indistinguishable.

Proof. Similar to the proof for Lemma 4

Lemma 12. Assuming EUF-CMA signatures, Hyb5 and Hyb4 are indistinguishable.

Proof. Similar to the proof for Lemma 5

E.3 Case 2: S and Srv are corrupt

Simulator Overview In this case a subset of the senders are corrupt along with the server. To
prove security we need to construct a simulator that interacts with the adversary and the FprivSignal

functionality that is indistinguishable from the real world.

Proof by hybrids Through hybrid arguments we move from the real world to the ideal world and
prove that each pair of intermediate hybrids are indistinguishable.
• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced with
an encryption to 0 instead of the actual location. By the CPA security (Def 3) of the underlying
encryption scheme that the two hybrids are indistinguishable. The proof is similar to the proof of
Lemma 8

• Hyb2 is the same as Hyb1 except that in the SEND command for an honest sender, the simulator
returns encryptions of pk∥0 instead of pk∥loc. By the CPA security of the underlying encryption
scheme the hybrids are indistinguishable. The proof is similar to the proof of Lemma 9

• Hyb3 is the same as Hyb2 except that the SEND command is done as in the simulation for malicious
senders. By the CPA security of the encryption scheme the two hybrids are indistinguishable. The
proof is similar to the proof of Lemma 9

• Hyb4 is the same as Hyb3 except that in the RECEIVE command, the simulator returns encryptions
of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security (Def 3) of the underlying encryption
scheme, we prove in Lemma 10 that the two hybrids are indistinguishable.

• Hyb5 is the same asHyb4 except that in the Setup procedure, the simulator aborts with sigFailure2.
Similar to the proof of Lemma 4 we prove that this occurs with negligible probability.

• Hyb6 is the same as Hyb5 except that in the RECEIVE command, the simulator may abort with
sigFailure2. Similar to the proof of Lemma 5 we prove that this occurs with negligible probability.
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The simulator S internally simulates Gatt towards the adversary A
Setup For each recipient Ri: Same as in Fig 29

SEND: Upon receiving (SEND, Si) from FprivSignal, same as in Fig 29.

Upon receiving Gatt.resume(eid, (“send”, i, L⃗ictSignal)) on behalf of Gatt for a ctSignal that was
not created by the simulator.

Let msg = Dec(esk, ctSignal).
if msg[0] = pk and pk corresponds to Ri then

Let loc = msg[1]
Send (SEND, Rj , loc) to FprivSignal on behalf of A and receive back (SEND,A). Send ok to

FprivSignal.

for j in [1, ℓ] do

L⃗i[j] = Enc(epk, pk∥0)
return L⃗i

RECEIVE Same as in Fig 29

READ for Gledger Same as in Fig 29

SUBMIT for Gledger: Upon receiving (SUBMIT,m) forward to Gledger and return what is returned.

Figure 30: Simulator Ss for the case corrupt server and sender

E.4 Case 3: Srv and R are corrupt

Simulator overview In this case, the simulator needs to simulate a view towards a malicious recipient
that is indistinguishable from the real world interaction. The challenge in this simulation is that the
simulator needs to know when a malicious recipient requests from the Srv for its row. But since we
design the protocol such that the Srv must request the Gatt functionality for the signals, the simulator
is notified of this RECEIVE request. Next the simulator needs to send the correct locations to the
recipient, even though the simulated L⃗ are just an encryption of 0s. To this end, the simulator simply
sends the RECEIVE command to the FprivSignal functionality and learns the locations that correspond
to the malicious recipient. It then simulates the Gatt functionality to compute an encryption of the
locations and sends it back to the Srv.

Proof by hybrids
• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced with
an encryption to 0 instead of the actual location. By the CPA security (Def 3) of the underlying
encryption scheme we prove in Lemma 8 that the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that in the SEND command, the simulator returns encryptions of
pk∥0 instead of pk∥loc. By the CPA security of the underlying encryption scheme the hybrids are
indistinguishable. The proof is the same as in lemma 9

• Hyb3 is the same as Hyb2 except that in the RECEIVE command for an honest receiver, the
simulator returns encryptions of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security
(Def 3) of the underlying encryption scheme, the two hybrids are indistinguishable. The proof is
the same as in lemma 10

• Hyb4 is the same as Hyb3 except that for a malicious receiver, the RECEIVE command is done
as in the simulation. Since the simulation is the same as the real world, the two hybrids are
indistinguishable.

• Hyb5 is the same asHyb4 except that in the Setup procedure, the simulator aborts with sigFailure2.
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The simulator S internally simulates Gatt towards the adversary A
Setup For each honest recipient Ri: Same as in Fig 29
// For malicious recipients
Upon receiving Gatt.resume(eid, (“setup”, ctkeys,i) from Srv on behalf of Gatt:
1. Compute (pki,Σ.vki) = Dec(esk, ctkeys,i)

2. Set L⃗ = {Enc(epk, pk∥0)}ℓj=0

3. Set index = 0 and ctr = 0
4. Compute σ = Σ.Sig(msk, (eid, (pk))) and send (pk, L⃗, σ) to A and store

(pki,Σ.vki, indexi, ctri).

SEND: Same as in Fig 29

RECEIVE For honest recipients, same as in Fig 29.
// For malicious recipients

1. Receive Gatt.resume(eid, (“receive”, ctri, σi, L⃗i)) from Srv on behalf of Gatt. If

Sig.Ver(Σ.vki, ctri, σi) = 0 or ∃j ∈ [1, ℓ] s.t. L⃗i[j][0 : λ] ̸= pki, return ⊥. Else if i cor-
responds to that of an honest recipient, abort with sigFailure. Else:

2. Send (RECEIVE, Ri) to FprivSignal on behalf of Ri and receive (RECEIVE, Ri) from FprivSignal.
Send ok to FprivSignal and get back [loc1 . . . locℓ]. If less than ℓ locations received, pad with
0.

3. Compute ctloc,i = (Enc(pki, loc1) . . .Enc(pki, locℓ))

4. Compute σT = Σ.Sig(msk, (ctloc,i)), L⃗i = {Enc(epk, 0)}ℓi=0 and send (ctloc,i, σT ) to A.
READ Same as in Fig 29

Figure 31: Simulator Sr for the case corrupt server and recipients
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The simulator S maintains a public board and internally simulates Gatt towards the adversary
A
Setup Same as in Fig 31

WRITE : Same as in Fig 29

SEND: Same as in Fig 30

RECEIVE Same as in Fig 31

READ Same as in Fig 29

Figure 32: Simulator Ssr for the case corrupt server, server and recipients

We prove in Lemma 4 that this occurs with negligible probability.
• Hyb6 is the same as Hyb5 except that in the RECEIVE command, the simulator may abort with
sigFailure2. We prove in Lemma 5 that this occurs with negligible probability.

E.5 Case 4: Corrupt Srv, S and R

Simulator overview This simulator is a combination of the previous simulators, where the simulator
simulates the SEND command as in the case when the Srv and the sender S are corrupt, for the Setup
and RECEIVE commands the simulator simulates as in the case when the Srv and the recipient R are
corrupt.

Proof by hybrids
• Hyb0 The real world protocol.
• Hyb1 is the same as Hyb0 except that upon receiving a SEND command, the ctSignal is replaced with
an encryption to 0 instead of the actual location. By the CPA security (Def 3) of the underlying
encryption scheme we prove in Lemma 8 that the two hybrids are indistinguishable.

• Hyb2 is the same as Hyb1 except that in the SEND command, the simulator returns encryptions of
pk∥0 instead of pk∥loc. By the CPA security of the underlying encryption scheme the hybrids are
indistinguishable. The proof is the same as in Lem 9

• Hyb3 is the same as Hyb2 except that the SEND command is done as in the simulation for malicious
senders. By the CPA security of the encryption scheme the two hybrids are indistinguishable. The
proof is the same as in Lem 9

• Hyb4 is the same asHyb3 except that in the RECEIVE command for an honest receiver, the simulator
returns encryptions of 0 as ctloc,i to the server on behalf of Gatt. By the CPA security (Def 3) of the
underlying encryption scheme, we prove in Lemma 10 that the two hybrids are indistinguishable.

• Hyb5 is the same as Hyb4 except that for a malicious receiver, the RECEIVE command is done
as in the simulation. Since the simulation is the same as the real world, the two hybrids are
indistinguishable.

• Hyb6 is the same asHyb5 except that in the Setup procedure, the simulator aborts with sigFailure2.
We prove in Lemma 4 that this occurs with negligible probability.

• Hyb7 is the same as Hyb6 except that in the RECEIVE command, the simulator may abort with
sigFailure2. We prove in Lemma 5 that this occurs with negligible probability.
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