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Abstract

Functional Encryption is a powerful notion of encryption in which each decryption key
is associated with a function f such that decryption recovers the function evaluation f(m).
Informally, security states that a user with access to function keys sk, , sk, ,... (and so on) can
only learn f1(m), fa(m), ... (and so on) but nothing more about the message. The system is said
to be g-bounded collusion resistant if the security holds as long as an adversary gets access to
at most ¢ = ¢(\) function keys. A major drawback of such statically bounded collusion systems
is that the collusion bound ¢ must be declared at setup time and is fixed for the entire lifetime
of the system.

We initiate the study of dynamically bounded collusion resistant functional encryption sys-
tems which provide more flexibility in terms of selecting the collusion bound, while reaping the
benefits of statically bounded collusion FE systems (such as quantum resistance, simulation
security, and general assumptions). Briefly, the virtues of a dynamically bounded scheme can
be summarized as:

Fine-grained individualized selection. It lets each encryptor select the collusion bound by
weighing the trade-off between performance overhead and the amount of collusion re-
silience.

Evolving encryption strategies. Since the system is no longer tied to a single collusion
bound, thus it allows to dynamically adjust the desired collusion resilience based on any
number of evolving factors such as the age of the system, or a number of active users, etc.

Ease and simplicity of updatability. None of the system parameters have to be updated
when adjusting the collusion bound. That is, the same key sk; can be used to decrypt
ciphertexts for collusion bound ¢ = 2 as well as ¢ = 2*.

We construct such a dynamically bounded functional encryption scheme for the class of all
polynomial-size circuits under the general assumption of Identity-Based Encryption.
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1 Introduction

Public-key encryption [DH76] is one of the most fundamental concepts in cryptography. Tradi-
tionally, public-key encryption was defined to provide an “all-or-nothing” type functionality and
security, where given a decryption key sk, a user can either recover the entire plaintext m from a
ciphertext ct or nothing at all. In the recent years, an extremely powerful notion of encryption
called Functional Encryption (FE) [SW05, BSW11] has emerged.

FE provides a fine-grained access control mechanism over encrypted data where a decryption
key is now associated with a function f and the decryptor recovers the function evaluation f(m)
from the ciphertext. Moreover, a user with access to function keys sk, ,...,sky, can only learn
fi(m),..., fn(m) but nothing more about the message. This security requirement is commonly
captured in a game based indistinguishability definition, where the adversary submits two messages,
mo and m, as a challenge and must be unable to distinguish between encryptions of mg and m; with
non-negligible probability given that f;(mg) = f;(mq) hold for all keys in adversary’s possession.

Over the last several years, FE has been studied extensively. Significant progress has been made
towards building various expressive forms of FE under such indistinguishability-based definitions.
Starting with initial works [BW07, KSW08] that built specific forms of predicate encryption over
bilinear maps, the search for FE for general circuits under standard cryptographic assumptions
culminated in the recent breakthrough work of Jain, Lin, and Sahai [JLS21]. They proposed an
FE scheme for general circuits from a combination of PRGs in NC°, Symmetric eXternal Diffie-
Hellman (SXDH), Learning with Errors (LWE), and Learning Parity with Noise (LPN) over large
fields assumptions. While this is tremendous progress, an unfortunate limitation of this FE scheme
is that it is susceptible to quantum attacks due to the post-quantum insecurity of the SXDH
assumption. But even more broadly, pursuing the direction of indistinguishability-based security
for FE suffers from the drawback that it is unclear how it captures the intuition that an attacker
learns at most the function evaluation but nothing more.

For these reasons, FE has also been investigated in the bounded collusion model under simulation-
based definitions. In the bounded collusion model, the FE system declares a bound ¢ at the setup
time, such that all the system parameters are allowed to grow polynomially with ¢ (in addition
to the security parameter \). Additionally, the security requirement is captured via a simulation-
based game, which says that as long as the attacker does not make more than g key queries,
the adversary’s view - which includes the ciphertext ct,, and function keys sky,,...,sky, - can
be “simulated” given only the function evaluations fi(m),..., f;(m) and nothing more about m.
Although this more closely captures the intuition behind FE, if the attacker corrupts more than
q keys, then no security is provided. Despite its limitations, the bounded collusion model for
FE has been very useful in various contexts such as proving negative results in differential pri-
vacy [KMUW18], applications to tracing [GKW18, CVWT18], etc. In some cases, it is the only
currently known pathway to certain applications in the post-quantum regime. A notable feature
of the bounded collusion model is that under them, FE can be built from the minimal assump-
tion of public-key encryption (and OWFs in case of private-key FE) as studied in a long line of
works [SS10, GVW12, AR17, Agr17, GKW18, CVWT18, AV19].

The question. A major drawback of such bounded collusion FE systems is that the setup au-
thority needs to declare the collusion bound ¢ at the very beginning, and the bound ¢ is fixed, once
and for all, for the entire lifetime of the system. This puts the authority in a difficult situation, as it



requires an incredible amount of foresight at the setup time. In particular, if the authority sets the

bound ¢ lower than the eventual number of compromised keys, then the system will be insecure;

whereas overestimating the bound ¢ would result in significant performance overhead. Now when

the collusion bound is breached, the only option to would to do a fresh setup and redistribute

the keys which is at best inefficient, and possibly infeasible in certain scenarios. Switching to the

state-of-the-art fully collusion resistant FE schemes would suffer from drawbacks discussed above.
With the aforementioned limitations of existing FE systems, we ask the following —

Can we build an FE system for general circuits that reaps the benefits of bounded collu-
sion FE systems — post-quantum security, simulation security, and general assumptions
— while at the same time provide more flexibility to the authority in terms of selecting
the collusion bound? And, would such an FE system lead to results in the domain of
full collusion resistance?

In this work, we study the above question. We answer the first part in affirmative by intro-
ducing a new flexible corruption model that we call the “dynamic collusion” model, and building
a simulation secure FE system in the dynamic collusion model from the general assumption of
Identity-Based Encryption (IBE) [Sha85, Coc01, BF01] (for which we have quantum-safe instanti-
ations [GPV08, CHKP10, ABB10]). Since it is widely believed that the FE for general circuits is
significantly more expressive than plain IBE, this seems to answer the latter part negatively. Next,
we define our dynamic collusion model and provide a high level overview of our techniques.

Defining Dynamically Bounded Collusion Resistance

In this work, we refer to the traditional notion of bounded collusion resistance for FE as statically
bounded collusion resistance. Recall that, syntactically, a statically bounded FE is defined exactly
as fully collusion resistant FE, that is using four polynomial time algorithms — Setup, KeyGen, Enc,
and Dec — except the Setup algorithm now additionally takes the target collusion bound ¢ as an
input. As mentioned previously, declaring the collusion bound ¢ upfront lets the setup authority
set up the system parameters with enough redundancy, and this typically leads to the running time
and sizes of all system parameters (i.e., the keys and ciphertexts) to grow polynomially with g.

In the dynamic collusion model, the Setup algorithm no longer takes the collusion bound as
input, but instead the Enc algorithm selects the collusion bound per ciphertext. That is, the setup
and key generation algorithms no longer depend on the collusion bound ¢, but only the encryptor
needs to specify the collusion bound.! Basically, this lets the encryptor dynamically decide the
size of set of colluding users against which it wants to hide its message. As a consequence, in the
dynamic collusion model, only the size of the ciphertexts potentially grows with the collusion bound
g, but the running times of the Setup and KeyGen algorithms (therefore the public and secret keys)
are independent of g. The security requirement is again captured via a simulation-based game but
where the admissibility constraints on the attacker are lifted such that the number of key queries
the attacker is permitted can be adaptively specified at the time of committing the challenge m
instead of beginning of the game as in the static model.

Our dynamic collusion model and its comparison with the static model is discussed in detail
in Section 3. Below we briefly highlight the virtues of the dynamic collusion model.

"However, note that it is essential that the master public-secret keys and every function key is resuable for all
values of the collusion bound.



Fine-grained individualized selection. A dynamically bounded collusion FE scheme allows
each user to select the collusion bound by weighing the trade-off between the performance
overhead and amount of collusion resilience at encryption time. For example, depending
upon the factors such as available computing resources, or the bandwidth on the communica-
tion channel, or the sensitivity of data etc, an encryptor might want to increase/decrease the
amount of collusion resilience to better fit the computing/communication/privacy constraints.

Evolving encryption strategies. Since the system is no longer statically tied to a single collusion
bound at setup time, thus it allows to dynamically adjust the desired collusion resilience based
on any number of evolving factors such as the age of the system, or number of active users
etc. Thus, the authority does not need to have any foresight about the attackers at setup
time in contrast to statically bounded collusion FE systems.

(Of course the ciphertexts in which the collusion bound was exceeded will not secure, but
future attacks can be prevented by adapting to a larger collusion bound.)

Ease and simplicity of updatability. While the above features are already highly desirable, a
noteworthy property of these systems is that none of the parameters have to be updated when
adjusting the collusion bound. That is, the same function key sky can be used to decrypt
ciphertexts for collusion bound ¢ = 2 as well as ¢ = 2* without requiring any updates. Also,
the storage space for the parameters is bounded by a fixed polynomial in .

Next, we provide an overview of our approach and describe the technical ideas. Later on, we
discuss some related works and open questions.

1.1 Technical Overview

In this section, we provide a high level overview of our new collusion framework and the corre-
sponding FE construction. The overview is split into five parts which roughly correspond to the
proceeding sections of the paper. First, we informally introduce the notion of dynamically bounded
collusion resistant FE. Second, we define an efficiency property that we refer to as weak optimality
for statically bounded collusion FE systems, and show that any weakly optimal FE construction
could be generically lifted to a dynamically bounded collusion FE scheme. Next, we build such
a weakly optimal FE scheme via the framework of tagged functional encryption scheme, where a
tagged FE scheme is same as a regular FE scheme except each ciphertext and secret key is addition-
ally embedded with a tag such that only ciphertexts and keys with the sam tag can be combined
together. Finally, we build a tagged FE scheme for statically bounded collusions in two steps —
first, reduce the problem of constructing tagged FE with static collusions to the simpler setting of
at most one key corruption (also referred to as 1-bounded collusion); and second, design a tagged
FE system in the simpler setting directly from IBE.

Dynamic vs. Static Bounded Collusion Model

Let us start by recalling the syntax of functional encryption in the static collusion model. An FE
scheme in the static collusion model consists of four algorithms with the following semantics:

— Setup takes as input the collusion bound ¢ and samples the master public-secret key pair (mpk, msk).

— KeyGen generates a function key sk given function f and master key msk.
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— Enc encrypts a message m to a ciphertext ct.
— Dec recovers f(m) from the ciphertext and decryption key.

In the dynamic collusion model, the collusion bound ¢ is not fixed at the system setup, but instead
the encryptor chooses the amount of collusion resilience it wants every time a fresh ciphertext is
created. This is reflected with the following changes:

— Setup no longer takes the collusion bound ¢ as an input.

— Enc takes the desired collusion bound ¢ as an additional input for sampling the ciphertext.

Note that since the collusion bound ¢ is not specified during setup or key generation at all, thus
the efficiency condition for a dynamically bounded collusion FE scheme requires the running time
of Setup and KeyGen to be fixed polynomials in A, whereas in static setting they are allowed to
grow polynomially with g.

Static to Dynamic via Weak Optimality

As we mentioned before, our first observation is that a dynamically bounded collusion FE scheme
can be constructed from any statically bounded scheme if it satisfies a ‘weak optimality’ property.
Intuitively, the weak optimality property says that the running time of the setup and key generation
algorithms grows only poly-logarithmically in the collusion bound gq.

Now looking closely at the notion of weakly-optimal statically bounded collusion FE, we observe
that the major difference between this and a dynamic system is that the Setup algorithm requires
q as an explicit input in the static setting, but not in the dynamic setting. Our idea to get around
this is to exploit the efficiency property of the static scheme, where the dynamic collusion FE
scheme essentially runs A independent instances of the static collusion FE scheme in parallel with
geometrically increasing collusion bounds. That is, i-th subsystem (running a single instance of
the static scheme) is set up with collusion bound ¢; = 2!. And, now the master public-secret key
pair as well as each function key in the dynamic system contains A independently sampled keys
where the i-th sub-key is sampled using the i-th static FE system. Since the encryption algorithm
receives the target collusion bound ¢ as input, thus the encryptor uniquely selects a static FE
sub-system under which it encrypts the message. The target collusion bound to subsystem index
mapping can simply be defined i := [logq] (i.e., nearest power of two). Note that setting up the
system this way ensures the dynamic system achieves the desired efficiency. This is because the
setup and key generation will be efficient (by weak optimality of the static FE scheme), and since
2t = 2Mogdl < 24 thus the running time of encryption and decryption is a polynomial in g.

Since the above transformation is very natural, one would expect the simulation security of the
resulting dynamic FE system to also follow directly from the simulation security of the underlying
static FE schemes. However, this is not the case. To better understand the technical barrier, let us
first consider the most natural simulation strategy described next. The simulator for the dynamic
system simply runs the simulator for each of the underlying static systems in parallel, where the
ciphertext simulator is only run for the static system corresponding to the adversarially selected
challenge target collusion bound ¢*. While this seems to compile, there are two subtle issues that
need to be carefully handled.

First, the running time of each static FE simulator grows with the underlying collusion bound
which grows as large as exponential in A\. For avoiding the problem of inefficient simulation, we



additionally require the underlying static FE scheme to have weakly-optimal simulators as well
which means that all but the ciphertext simulation phase of the static FE could be performed
optimally (i.e., the simulator running time grows only poly-logarithmically in ¢). However, this is
still not enough for proving simulation security. The reason is that typically the simulation security
states that the distribution of secret keys and ciphertext are simulatable as long as the adversary
does not make more key queries than what is specified by the static collusion bound. That is, if the
adversary makes more key queries then no guarantee is provided. Now our dynamic FE simulator
must invoke the underlying static FE simulator even for collusion bounds smaller than ¢*, thus the
standard simulation guarantee is insufficient. To get around this issue, we define a notion called
strong simulation security for static-bounded-collusion FE schemes under which we require that the
real and ideal worlds are also indistinguishable even when the adversary makes more key queries
than that specified by the collusion bound as long as the adversary does not make any challenge
message queries. More details are provided in Section 3.2.

From Tagged FE to Weak Optimality

Next, our next idea is to embed auxiliary tagging information inside each individual ciphertext
and decryption key such that the auxiliary information is useful for achieving weak optimality
generically by embedding information about the collusion bound inside the auxiliary information.
Formally, in a tagged FE system, the semantics of encryption and key generation are changed as:

— KeyGen, Enc, both also take in a tag string tg as an input.

And, now the decryption algorithm recovers f(m) from the ciphertext and decryption key corre-
sponding to tags tg;,tg, (respectively) iff tg; = tg,. Basically, the intuition behind a tagged FE
scheme is to efficiently implement many parallel instances of a statically bounded collusion FE
scheme such that the master public-secret keys do not grow with number of underlying (untagged)
FE instances.

In other words, the idea behind tagged FE is to serve as an extension to regular (untagged)
FE in the same way as IBE is to PKE, that is to capture the same master public-secret key
compression properties. That is, a tagged FE enables compressing exponentially many parallel
instances of untagged FE into a succinct system where all the system parameters are efficient, and
the ciphertexts and decryption keys corresponding to each underlying untagged FE system can be
efficiently computed given those parameters. In terms of simulation security for tagged FE, the
property is a natural extension of statically bounded-collusion security model for FE to the tagged
setting, where now the adversary is allowed to query keys and ciphertexts for an unbounded number
of tags, and the simulation security must hold for all challenge ciphertexts (queried under separate
tags) as long as the number of key queries does not exceed the collusion bound on any tag for which
a challenge ciphertext is also requested.

Looking ahead, the benefit of a tagged FE scheme will be that we can distribute the final desired
collusion bound over to the auxiliary tag space as well, and not just the collusion bound ingrained
in the tagged FE system. And, since tagged FE can encode the tag space more efficiently than the
collusion bound, thus this is useful for obtaining the desired weak optimality.

At a high level, to transform any tagged FE scheme into an FE scheme that satisfies the desired
weak optimality property, we rely on the linearization trick by Ananth and Vaikuntanathan [AV19]
where they suggested a generic compiler to improve efficiency of a statically bounded-collusion FE



scheme from an arbitrary polynomial dependence on the collusion bound, ¢, to only a linear depen-
dence. Our observation is that if we substitute all the underlying FE scheme in the linearization
transformation from [AV19] with a single tagged FE scheme, then that would result in a statically
bounded-collusion FE scheme with weak optimality.

Briefly, collusion bound linearization transformation simply consists of running ¢ many parallel
instances of the inefficient (untagged) FE scheme each, but with collusion bound set to be the
security parameter \. While for encrypting the message m, the ciphertext is computed as an
encryption of m under each of the underlying FE schemes; the key generator only generated a
decryption key for a random instance out of the ¢ inefficient FE systems. By a standard balls and
bins concentration argument, it was shown that, with all but negligible probability, the collusion
bound of A was never crossed for any of the underlying FE system as long as only ¢ many total key
queries were made. We rely on the same idea for our weak optimality transformation wherein we
simply replace the ¢ many parallled untagged FE systems with a single tagged FE system, where
now the i-th FE sub-scheme in the [AV19] transformation is set to be the sub-scheme corresponding
to tag value i. The full transformation is provided later in Section 5.

Intuitively, we use the linearization trick to absorb the blow-up due to the collusion bound in
the tag space of the FE scheme instead. This decouples the desired collusion bound, ¢, from the
resulting FE scheme with the collusion bound fixed inside the underlying tagged FE system thereby
allowing us to set the collusion bound for the tagged system to be simply A. Thus, we can reason
from the efficiency of the tagged FE scheme that the resulting scheme only has polylogarithmic
dependence in the A for Setup and KeyGen, making it weakly optimal.

Amplifying Collusion Bound in Tagged FE

The next component in our sequence of transformations is a generic collusion bound amplification
procedure for tagged FE, in turn reducing the problem to constructing tagged FE for 1-bounded
collusion instead. Our approach follows the general bootstrapping blueprint developed for upgrad-
ing collusion bound in untagged FE literature [GVW12, AV19] which runs a specific multiparty
computation protocol in the head.

In such MPC protocols, there are N servers/parties and a single client with an input « with the
computation proceeding in two phases — offline and online. In the offline phase, the client encodes its
input  into N individual encodings — {#!, ... ,§7N} — one for each server. While in the online phase,
a function f is encoded into N individual encodings — { f Lo, f N} — such that i-th server learns
the i-th function encoding, and any subset S of servers of size p can locally decode their individual
encodings to obtain partial evaluations, g’ for i € S, such that all these p partial evaluations can be
publicly combined to compute the function evaluation f(x). And importantly, the security of the
MPC protocol assures that, even if at most t servers get corrupted, no information other than actual
value f(x) can be adversarially learned given the public partial evaluations. Now for applications
to collusion bound amplification in FE, it is important to have MPC protocols in which the client
can delegate the computation for multiple functions w.r.t. a single offline phase.

The high level idea is that each ciphertext encodes the message m into various different pieces
where each piece corresponds to an individual offline encoding for a particular server, and now
the key generator selects a random subset of servers for which it gives the appropriate function
encodings for each selected server. In more detail, the bootstrapping procedure works as follows,
where 1KeyFE is any 1-bounded collusion untagged FE scheme:



— Setup samples N independent master public-secret key pair (mpk;, msk;) for the 1KeyFE scheme.
These N key pairs are set as the master public-secret key pairs for this scheme respectively.

— Enc encodes the message m using the offline phase to compute encodings {Z!,..., 2N}, and en-
crypts the i-th encoding under the i-th master public key, that is ct; +— 1KeyFE.Enc(mpk;, £*)
for i € [N], and outputs (cty, ..., cty) as the full ciphertext.

— KeyGen selects a random subset S C [N] of size p, and performs the online phase to compute
{ f Lo, f N1. Now enable decryption, it creates a FE decryption key for each server i € S
enabling the local circuit computation, that is sky; <— 1KeyFE.KeyGen(msk;, Local(fi, -)), and
sets the final decryption key as these individual decryption keys sky; for i € S.

— Dec first recovers the partial evaluations ¢’ = Local(fi,ii) for ¢ € S by running the 1KeyFE
decryption, and then combines them to compute f(m).

It turns out that the above compiler amplifies the collusion bound from 1 to ¢ if a simple
combinatorial property, regarding the random sets (Si,...,S5,;) sampled for each key, is satisfied.
Here S; C [N] be the set sampled while anwering the j-th key query. Observe that whenever two
sets Sj, 5j intersect at an index 4, we learn two keys for the underlying 1KeyFE scheme thereby
breaking its security, and an adversary can completely learn the underlying encoding #°. And, if
the security is broken for enough 1KeyFE systems (i.e., > t), then our MPC guarantee fails. Thus,
to prove security it is sufficient to show that the total number of pairwise intersections is not larger
than t. With this combinatorial guarantee, we can rely on the security of 1KeyFE and the MPC
protocol to ensure no information other than f(m) is revealed.

Our observation here is that the same blueprint can also be used for tagged FE schemes where
for amplifying 1-bounded collusion to g-bounded collusion, we start with a slightly larger tag space
for the underlying 1-bounded tagged FE scheme. Basically, to build a ¢-bounded collusion tagged
FE scheme with tag space T, we start with a 1-bounded scheme with tag space [N] x 7", and replace
i-th instantiation of the 1KeyFE scheme with 1-bounded tagged FE scheme and the tag is set as
(i,tg) where tg is the tag to be embedded (during encryption and key generation, respectively).
Now the correctness and security of the resulting compiler closely follows the analysis for untagged
FE schemes from [AV19], with some subtleties in the analysis that arise due to the fact that in
tagged FE simulation security we need to be able to jointly simulate multiple ciphertexts (though
for distinct tags) at that the same time. More details follow later in Section 6.

Adding Tags to 1-Bounded-Collusion FE via IBE

Lastly, to instantiate our above transformations to build a dynamically bounded collusion FE
scheme, we need a tagged FE scheme that achieves 1-bounded collusion simulation security. To
that end, we look back at the 1-bounded collusion untagged FE construction by Sahai and Seyali-
oglu [SS10] which works by combining garbled circuits with plain public-key encryption. In a few
words, our idea is to imitate the same ideology for instantiating our tagged FE scheme, but re-
place the plain public-key encryption scheme with an identity-based encryption scheme to introduce
additional space for efficiently embedding tags in the identity space of the IBE scheme.

Recall that in the well-known 1-bounded collusion untagged FE construction, an encryptor
garbles the universal circuit U with message m hardwired such that, on an input a description
of a circuit C, the hardwired circuit computes C(m). Now the encryptor hides the wire keys for



the garbled circuit under the corresponding PKE public keys chosen during setup time, where two
PKE key pairs are sampled per bit of the description length of the circuit C'. And, the decryption
key for a circuit C' simply corresponds to half of the PKE secret keys selected on the basis of bit
description of C, that C[i]-th PKE secret key for each i. Basically, a decryptor first uncovers the
wire labels corresponding to circuit C using PKE decryption, and then simply evaluates the garbled
circuit to learn the circuit evaluation C(m).

We observe that the same construction can be upgraded to a tagged FE scheme if we simply
replace each PKE system in the above transformation with an IBE system?, where the identity
space of the IBE system will be used to encode the “designated tag”. Thus, the encryptor simply
sets the IBE identity corresponding to which encryption is performed to be the input tag tg, and the
decryption key consists of appropriate IBE keys where the identity for each underlying IBE system
is the tag tg to be embedded. Clearly, this gives the desired efficiency if the underlying IBE scheme
is efficient, and the security follows by a similar argument as to before where a more careful analysis
is needed to argue simulation security in presence of multiple tags. While the above transformation
is sufficient to prove security in the non-adaptive setting as the original [SS10] construction, we
rely on the delayed/non-committing encryption strategies [CFGN96] as in [GVW12, GSW21] to
upgrade to adaptive security. Our tagged FE scheme with 1-bounded collusion security is described
in Section 7.

1.2 Related Work and Future Directions

Prior work on bounded collusion resistance. The intial works on bounded collusion re-
sistance for FE were for the specific class of IBE systems. Dodis et al. [DKXY02] and Gold-
wasser, Lewko, and Wilson [GLW12] constructed bounded collusion secure IBE with varying pa-
rametere size from regular public-key encryption and special types of linearly key homomorphic
public-key encryption, respectively. For more expressive classes of FE, Sahai and Seyalioglu [SS10]
proposed general functional encryption schemes resilient against a single function-key query us-
ing garbled circuits [Yao86]. Following [SS10], GVW [GVW12] build a statically bounded col-
lusion resistant FE scheme for NC! circuits from any public-key encryption scheme, and also
provided a generic compiler to improve to the class of all polynomial time computable func-
tions by additionally relying on PRFs computable in NC!. Afterwards, a number of follow-
up works [AR17, Agrl7, GKW18, CVWT18] improved the concrete efficiency of the statically
bounded collusion resistant FE scheme wherein they improved the dependence of the FE scheme
parameters on the collusion bound ¢ by relying on more structured algebraic assumptions. Most
recently, Ananth and Vaikuntanathan [AV19] achieved optimally efficient statically secure FE
scheme from the minimal assumption of public-key encryption. The optimal efficiency states
that the system parameters grow only linearly with the collusion bound ¢, since any further im-
provement would lead to a fully collusion resistant FE scheme via the bootstrapping theorems
from [GGH™13, SW14, AJ15, BV15, AJS15].

Comparison with bundling functionalities and encrypt ahead FE. Goyal, Koppula, and
Waters (GKW) [GKW16] proposed the concept of bundling functionalities in FE systems, where
bundling functionalities in an FE scheme meant having the property that a single set of public

2Technically, we compress the keys even further as we replace all the PKE key pairs with a single IBE key pair
instead of a sequence of IBE key pairs. However, for the purpose of this overview, we present this simpler version.



parameters can support the union of all message/function spaces supported by the underlying
FE system. They provided a generic transformation that started with IBE (and other implied
primitives) and was able to upgrade any FE scheme to its bundled counterpart. One might ask
that whether applying the [GKW16] transformation to the family of bounded collusion FE, where
the the collusion bound ¢ is treated as part of the functionality index that is bundled, already leads
to a dynamically bounded collusion FE system. It turns out this is not the case because such a
generic transformation suffers from the limitation that a function key for a given collusion bound is
not reusable for other collusion bounds. In particular, this necessitates each user to make additional
queries to the authority for obtaining function keys for desired collusion bound, and this only solves
the problem of removing the problem of removing the collusion bound dependence for the setup
algorithm. Additionally, GKW proposed a novel variant of FE called encrypt ahead FE. One could
ask the same question about relationship between encrypt ahead FE and dynamically bounded
collusion resistant FE, and the answer is the same as for the case of bundling functionalities which
is they are insufficient.

Open questions. Our work introduces a new interesting avenue for exploring dynamic collusion
resilience in FE systems. It is a interesting question whether public-key encryption is sufficient
for building dynamically bounded collusion resistant FE systems, or whether IBE is necessary.?
Another interesting research direction is studying similar concepts of dynamic “query” resilience
in other cryptographic contexts. For example, one could ask the same question for the concept of
CCA-secure encryption where we know that CPA-secure public-key encryption implies (statically-
Jbounded-query-CCA security for public-key encryption [CHHT07]. We believe answering the
question of dynamically bounded-query-CCA security might provide more insight in resolving the
longstanding open problem of constructing a (general) CCA-secure encryption scheme from a CPA-
secure one.

1.3 Concurrent Work

In a concurrent and independent work, Agrawal et al. [AMVY21] also achieved similar results as
this work with some differences in the presentation and abstractions. They introduced the concept
of dynamic collusion bounded functional encryption as we do to provide more flexibility for selecting
the collusion bound. And, similar to us, they construct such functional encryption schemes for all
polynomial-sized circuits from identity-based encryption. In addition, they also extend their results
to uniform computation models while relying on specific algebraic assumptions.

2 Preliminaries

Notations. Let PPT denote probabilistic polynomial-time. For any integer ¢ > 2, we let
Z4 denote the ring of integers modulo q. We denote the set of all positive integers upto n as
[n] :== {1,...,n}. For any finite set S, x < S denotes a uniformly random element = from the
set S. Similarly, for any distribution D, z <— D denotes an element x drawn from distribution D.
The distribution D™ is used to represent a distribution over vectors of n components, where each

3 Agrawal et al. [AMVY21] showed that IBE is necessary for dynamically bounded collusion resistant FE, thereby
answering our question.
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component is drawn independently from the distribution D. Two distributions D; and D, param-
eterized by security parameter A, are said to be computationally indistinguishable, represented by
D1 =~ Do, if for all PPT adversaries A, | Pr[A(z) = 1: z « D1]—Pr[A(z) =1 : z + Ds]| < negl(\).

2.1 Garbled Circuits

Our definition of garbled circuits [Yao86] is based upon the work of Bellare et al. [BHR12]. Let
{Cy.}n, be a family of circuits where each circuit in C,, takes n bit inputs. A garbling scheme GC
for circuit family {C,}, consists of polynomial-time algorithms Garble and Eval with the following
syntax.

e Garble(1*,C € C,): The garbling algorithm takes as input the security parameter A and a
circuit C' € Cy,. It outputs a garbled circuit C, together with 2n wire keys {w;p}i<n pefo,1}-

e Eval(C, {w;}i<n): The evaluation algorithm takes as input a garbled circuit C and n wire
keys {w; }i<n and outputs y € {0,1}.

Correctness. A garbling scheme GC for circuit family {Cy}, is said to be correct if for all A, n,
z € {0,1}" and C € Cy, Eval(C, {wi z, }i<n) = C(x), where (C,{w;p}i<npefo}) < Garble(1*,C).

Security. Informally, a garbling scheme is said to be secure if for every circuit C' and input x,
the garbled circuit C together with input wires {w; 4, }i<n corresponding to some input x reveals
only the output of the circuit C'(z), and nothing else about the circuit C or input x.

Definition 2.1. A garbling scheme GC = (Garble, Eval) for a class of circuits C = {Cy,},, is said
to be a secure garbling scheme if there exists a polynomial-time simulator Sim such that for all n,
C €C, and z € {0,1}", the following distributions are computationally indistinguishable:

{Sim (1& 1, 1\C|,C(gg))}A ~ {(6 {wi,xi}ign) : (5,{wi,b}i§n,b€{0,1}) “ Garble(l)‘,C)}/\

While this definition is not as general as the definition in [BHR12], it suffices for our construction.

2.2 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme IBE for set of identity spaces Z = {Z, },en and message
spaces M consists of four polynomial time algorithms (Setup, KeyGen, Enc, Dec) with the following
syntax:

Setup(1*,1™) — (mpk, msk). The setup algorithm takes as input the security parameter A and iden-
tity space index n. It outputs the public parameters mpk and the master secret key msk.

KeyGen(msk, id) — skijq. The key generation algorithm takes as input the master secret key msk
and an identity id € Z,,. It outputs a secret key skiq.

Enc(mpk, id, m) — ct. The encryption algorithm takes as input the public parameters mpk, a mes-
sage m € M, and an identity id € Z,,. It outputs a ciphertext ct.

Dec(skig,ct) — m/L. The decryption algorithm takes as input a secret key skijq and a ciphertext
ct. It outputs either a message m € M or a special symbol L.

11



Correctness. We say an IBE scheme IBE = (Setup, KeyGen, Enc,Dec) satisfies correctness if
for all A\,n € N, (mpk,msk) < Setup(1*,1"), id € Z,, m € M, skyq + KeyGen(msk,id), and
ct < Enc(mpk,id, m), we have that Dec(skiq,ct) = m.

Definition 2.2. We say an IBE scheme IBE = (Setup, KeyGen, Enc, Dec) is secure if for any stateful
PPT adversary A there exists a negligible function negl(-), such that for all A\,n € N, the following
holds

(mpk, msk) < Setup(1*,1™); b« {0,1}
Pr [ ARG (64 ct) — b1 (g, my, id") « ARYGen(mSk) (1A 10 mpk) | <
ct < Enc(mpk, id*, my)

+negl()),

| =

where all identities id queried by A satisfy id # id*.

3 Functional Encryption: Dynamic Bounded Collusion

In this section, we define the notion of functional encryption (FE) where we start by recalling the
regime of (statically) bounded collusion secure FE systems as studied in prior works [SS10, GVW12].
We follow that by extending the notion to dynamic collusion bounded secure FE systems. And,
along the way we also introduce a special compactness property for statically bounded collusion
secure FE schemes. This will serve as an appropriate intermediate abstraction to build a fully
dynamic collusion bounded FE schemes.

Syntax. Let M = {My}nen, R = {Ru}nen be families of sets, and F = {F,} a family of
functions, where for all n € N and f € F,, f: M, — R,. We will also assume that for all n € N,
the set F,, contains an empty function €, : M,, — R,. As in [BSW11], the empty function is used
to capture information that intentionally leaks from the ciphertext.

A functional encryption scheme FE for a family of function classes {F,, },cn and message spaces
{ M, }nen consists of four polynomial-time algorithms (Setup, Enc, KeyGen, Dec) with the following
semantics.

Setup(1*,1™) — (mpk, msk). The setup algorithm takes as input the security parameter A and the
functionality index n* (in unary), and outputs the master public-secret key pair (mpk, msk).

Enc(mpk, m € M,,) — ct. The encryption algorithm takes as input the master public key mpk and
a message m € M, and outputs a ciphertext ct.

KeyGen(msk, f € F,,) = sky. The key generation algorithm takes as input the master secret key
msk and a function f € F,, and outputs a function key sk;.

Dec(sky,ct) = Ry,. The decryption algorithm takes as input a ciphertext ct and a secret key sk
and outputs a value y € R,,.

40One coud additionally consider the setup algorithm to take as input a sequence of functionality indices where the
function class and message space are characterized by all such indices (e.g., having input length and circuit depth as
functionality indices). For ease of notation, we keep a single functionality index in the above definition.
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Correctness and Efficiency. A functional encryption scheme FE = (Setup, Enc, KeyGen, Dec)
is said to be correct if for all \,n € N, functions f € F,,, messages m € M,, and (mpk, msk) <«
Setup(1*,17™), we have that

Pr [Dec(KeyGen(msk, f), Enc(mpk,m)) = f(m)] =1,

where the probability is taken over the coins of key generation and encryption algorithms. And, it
is said to be efficient if the running time of the algorithms is a fixed polynomial in the parameters
A and n.

3.1 Bounded Collusion FE: Static and Dynamic

Informally, a functional encryption scheme is said to be secure if an adversary having secret keys
for functions {f;}i<, and a ciphertext ct for message m learns only { fj(m)}i<q, €(m) and nothing
else about the underlying message m. Here € is the empty function associated with the message
space.

The Static Setting. Now in the “static” bounded collusion setting, the scheme is said to guarantee
security so long as ¢ is a polynomial in the security parameter \ and fixzed a-priori at the setup
time. Thus, the syntax of the setup algorithm changes as follows:

Setup(1*,17™, q) — (mpk, msk). The setup algorithm takes as input the security parameter A and the
functionality index n (in unary), and also takes as input the ‘collusion bound’ ¢ (in binary).?
It outputs the master public-secret key pair (mpk, msk).

Efficiency. Although the collusion bound ¢ is given in binary to the setup algorithm, the efficiency
condition for a statically bounded collusion FE scheme only requires that the running time of the
all the algorithms is a fixed polynomial in A, n and ¢. That is, the running time of Setup, KeyGen,
Enc, and Dec is allowed to polynomially grow with the collusion bound g¢.

Static bounded collusion security. This is formally captured via the following ‘simulation based’
security definition as follows. We first provide the adaptive definition, and later provide the non-
adaptive definition.

Definition 3.1 (static-bounded-collusion simulation-security). A functional encryption scheme
FE = (Setup, Enc, KeyGen, Dec) is said to be statically-bounded-collusion simulation-secure if there
exists a stateful PPT simulator Sim = (Sg, S1,S2,S3) such that for every stateful PPT adversary

5 Although most prior works on bounded collusion security consider the collusion bound ¢ to either be a global
parameter, or given in unary to the setup algorithm. Here we instead pass it in binary for technical reasons as will
become clear in the sequel. See Remark 3.1 for more details.
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A, the following distributions are computationally indistinguishable:

(17,19) e A(1%)
(mpk, msk) < Setup(1*, 17, q)
m<_AKeyGen(msk,~)(mpk)
ct < Enc(mpk,m)

AKeyGen(msk,-) (Ct) .

AeN
%C
(1",19) 4= A(1%)
SUm () (st . (mpk;sto) < So(1%,1", q)
ASs™(st2) () m 4 A1) (mpk)
(ct,sta) « Sa(sty, II™) AeN

whenever the following admissibility constraints and properties are satisfied:

— S; and S3 are stateful in that after each invocation, they updates their states st; and stg
(respectively) which is carried over to its next invocation.

— II"™ contains a list of functions f; queried by A in the pre-challenge phase along with the
their output on the challenge message m. That is, if f; is the i-th function queried by A
to oracle S; and gpre be the number of queries A makes before outputting m, then II" =

((fl’ Ji(m)), o, (fapes prre(m)))'G

— A makes at most ¢ queries combined to the key generation oracles in the corresponding games.

— S3 for each queried function f;, in the post-challenge phase, makes a single query to its
message oracle U, on the same f; itself.

Remark 3.1 (unary vs binary). Note that in the above security games, we require the adversary to
specify the collusion bound ¢ in unary at the beginning. This is in contrast to the setup algorithm
which gets ¢ in binary as an input. The reason for this distinction is that in the security game
for bounded collusion security we do not want to allow the attacker to specify super-polynomial
collusion bounds, whereas (as we point out later) allowing the setup algorithm to be run on super-
polynomial values of the collusion bound is important for our dynamic collusion bounded FE
schemes.

Weak optimality. Additionally, we also introduce the notion of a “weakly optimal” statically-
bounded-collusion secure FE scheme where this system provides better efficiency properties. That
is, in a weakly optimal static bounded collusion system, the running time of the setup and key
generation algorithms grows only poly-logarithmically in the collusion bound ¢. Concretely, we
define it below.

Definition 3.2 (weakly optimal statically-bounded-collusion). A functional encryption scheme
FE = (Setup, Enc,KeyGen,Dec) is said to be ‘weakly optimal’ statically-bounded-collusion FE
scheme if the running time of the Setup and KeyGen algorithm is additionally upper bounded
by a fixed polynomial in A, n and logq.

5To be more precise, II™ should also contain the empty function and the evaluation of empty function on challenge
message (en, €n(m)). However, for ease of notation, throughout the paper we assume that to be implicitly added to
the list of function-value pairs.
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Strengthening the simulation guarantee. In this work, we consider a strengthening of the above
simulation-secure properties (for the class of weakly optimal static-bounded-collusion FE schemes)
which will be be crucial towards building a dynamic-bounded-collusion functional encryption scheme.
Note that typically the simulation security states that the distribution of secret keys and ciphertext
are simulatable as long as the adversary does not make more key queries than what is specified
by the static collusion bound. That is, if the adversary makes more key queries then no guarantee
is provided. However, we consider a stronger simulation guarantee below wherein the real world
is still simulatable even when the adversary makes more key queries than that specified by the
collusion bound as long as the adversary does not make any challenge message queries. That is,
either the collusion bound is not crossed, or no challenge ciphertext is queried. In addition to
this, we require the running time of the simulator algorithms Sp,S; and S3 (that is, all except the
ciphertext simulator Sg) grow only poly-logarithmically in the static collusion bound ¢. Formally,
we define it below.

Definition 3.3 (strong simulation-security). A functional encryption scheme FE = (Setup, Enc,
KeyGen, Dec) is said to be statically-bounded-collusion strong simulation-secure if, in the security
game defined in Definition 3.1, the following additional conditions hold:

1. the number of key queries made by adversary is allowed to exceed the static collusion bound
q as long as the adversary does not submit any challenge message, and

2. the running time of the simulator algorithms Sg,S; and S3 is upper bounded by a fixed
polynomial in A, n and log q.

Lastly, we also define the non-adaptive variant of the simulation security.

Definition 3.4 (non-adaptive simulation-security). A functional encryption scheme FE = (Setup,
Enc, KeyGen, Dec) is said to be statically-bounded-collusion non-adaptive (regular/strong) simulation-
secure if the adversary is prohibited from making any key queries in the post-challenge phase (that
is, after receiving the challenge ciphertext) in its respective security game.

The Dynamic Setting. Now in the “dynamic” bounded collusion setting, the scheme is no longer
tied to a single collusion bound ¢ fixed a-priori at the system setup, but instead the encryptor could
choose the amount of collusion resilience it wants. Thus, this changes the syntax of the setup and
encryption algorithm when compared to the static setting from above:

Setup(1*,1™) — (mpk, msk). The setup algorithm takes as input the security parameter A and the
functionality index n (in unary). It outputs the master public-secret key pair (mpk, msk).

(Note that thus syntactically the setup of a dynamic bounded collusion scheme is same as
that of a fully collusion resistant scheme.)

Enc(mpk, m € M,,,19) — ct. The encryption algorithm takes as input the master public key mpk,
a message m € M,, and it takes the desired collusion bound ¢ (in unary) as an input. It
outputs a ciphertext ct.

Efficiency. Since the collusion bound g is not specified during setup or key generation at all, thus
the efficiency condition for a dynamically bounded collusion FE scheme requires the running time
of Setup and KeyGen to be fixed polynomials in A and n. While since the encryptor takes ¢ as input
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in unary, thus the running time of the Enc algorithm could grow polynomially with collusion bound
g. Similarly, the running time of Dec is also allowed to grow polynomially with collusion bound gq.

Dynamic bounded collusion security. This is formally captured via a ‘simulation based’ security
definition as in the static setting. The game is similar to that provided in Definition 3.1, except
now the attacker specifies the collusion bound ¢ while making the challenge ciphertext query and
the simulator also only receives the collusion bound as input at that point. For completeness, we
describe it formally below (both the adaptive and non-adaptive variants).

Definition 3.5 (dynamic-bounded-collusion simulation-security). A functional encryption scheme
FE = (Setup, Enc, KeyGen, Dec) is said to be dynamically-bounded-collusion simulation-secure if
there exists a stateful PPT simulator Sim = (Sg, S1, S2, S3) such that for every stateful PPT adver-
sary A, the following distributions are computationally indistinguishable:

1"« A(1Y)
(mpk, msk) < Setup(1*,17)
(m7 1q) <_'AKeyGen(msk,-)(rnpk)
ct <+ Enc(mpk, m, 19)

AKeyGen(msk,-) (Ct) .

AEN

~
~c

1"+ A(1Y)
mpk  So(1*,17)
(m, 19) + A1) (mpk)
ct < SQ(Hm, 1q)

A5 O ety -

AeN

whenever the admissibility constraints and properties, as defined in Definition 3.1, are satisfied.

Definition 3.6 (non-adaptive simulation-security). A functional encryption scheme FE = (Setup,
Enc, KeyGen, Dec) is said to be dynamically-bounded-collusion non-adaptive simulation-secure if,
in the security game defined in Definition 3.5, the adversary is prohibited from making any key
queries in the post-challenge phase (that is, after receiving the challenge ciphertext).

3.2 Upgrading Static to Dynamic Bounded Collusion FE via Weak Optimal
Efficiency

In this section, we provide a generic construction of a dynamic-bounded-collusion FE scheme
from any static-bounded-collusion FE scheme that satisfies the strong simulation property (Defi-
nition 3.3) and the weak optimality property (Definition 3.2). Below we provide our construction
followed by correctness and security proofs.

3.2.1 Construction

Let Static-FE = (S-FE.Setup, S-FE.Enc, S-FE.KeyGen, S-FE.Dec) be a weakly-optimal static-bounded-
collusion FE scheme for a family of function classes {F, }nen and message spaces { M, },en. We
use Static-FE to build a dynamic-bounded-collusion FE scheme FE = (Setup, Enc, KeyGen, Dec) as
follows.
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Setup(1*,1™) — (mpk, msk). The setup algorithm runs the Static-FE setup algorithm \ times with
increasing values of the static collusion bound ¢ as follows:

Vie [\, (mpk;, msk;) < S-FE.Setup(1*,1",q = 2%).

It then sets the master secret and public keys as an A-tuple of all these keys, i.e. msk =
(mski);cpy and mpk = (mpk;);c(y-

KeyGen(msk, f) — sky. Let msk = (mski)iem. The key generation algorithm runs the Static-FE
key generation algorithm with all \ keys independently as sk; ; < S-FE.KeyGen(msk;, f) for
i € [A]. It outputs the secret key sk as sk = (Ski’f)ie[/\]‘

Enc(mpk,m,19) — ct. Let mpk = (mpki)iem. The encryption algorithm simply encrypts the mes-
sage m under [log @Q]-th master public key as ct <= S-FE.Enc(mpkog g7, m). (It also includes
@ as part of the ciphertext.)

Dec(sky,ct) — z. Let sky = (skif);cy-
using the [log Q]-th function key as z <— S-FE.Dec(ski,g 01,75 Ct)-

The decryption algorithm runs the Static-FE decryption

3.2.2 Correctness, Efficiency, and Security

The correctness of the above scheme follows directly from the correctness of the underlying static-
bounded-collusion FE system, while for the desired efficiency consider the following arguments.
First, note that by weak optimality of Static-FE we have that the running time of S-FE.Setup and
S-FE.KeyGen grows as poly(\, n,log q). Since the Setup and S-FE.KeyGen algorithms run S-FE.Setup
and S-FE.KeyGen (respectively) A many times for logq € {1,..., A}, thus we get that running time
of Setup and KeyGen is poly(\,n) as desired. Lastly, the encryption and decryption algorithm run
in time at most poly(\,n, 228 @1) = poly(\, n, Q) since the [log Q]-th static-bounded-collusion FE
system uses 2/1°8Q1 < 2. as the static collusion bound. Thus, the resulting FE scheme satisfies
the required efficiency properties.

To conclude, we prove the following.

Theorem 3.1. If Static-FE = (S-FE.Setup, S-FE.Enc, S-FE.KeyGen, S-FE.Dec) is a weakly-optimal
static-bounded-collusion simulation-secure FE scheme (as per Definitions 3.2 and 3.3), then the
above scheme FE = (Setup, Enc, KeyGen, Dec) is a dynamic-bounded-collusion simulation-secure FE
scheme (as per Definition 3.5).

The proof follows from a composition of the static-bounded-collusion simulation-security prop-
erty of Static-FE. Recall that in the static setting, we require the scheme to provide a stronger form
of real world vs. ideal world indistinguishability. Where typically the simulation security states
that the distribution of secret keys and ciphertext are simulatable as long as the adversary does
not make more key queries than what is specified by the static collusion bound. That is, if the
adversary makes more key queries then no guarantee is provided. However, in our formalization
of simulation security for static-bounded-collusion FE schemes, we require that the real and ideal
worlds are also indistinguishable even when the adversary makes more key queries than that speci-
fied by the collusion bound as long as the adversary does not make any challenge message queries.
That is, either the collusion bound is not crossed, or no challenge ciphertext is queried. Also, the
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running time of the simulator algorithms Sg, S and S3 (all except the ciphertext simulator Sg) grow
only poly-logarithmically in the collusion bound.

Thus, the simulator for the dynamic-bounded-collusion FE scheme simply runs the Sg algorithms
for all collusion bounds ¢ = 1,...,2* to simulate the individual master public keys. It then also
runs the S; algorithms for simulating the individual function keys for each of these static-bounded-
collusion FE systems for answering each adversarial key query. Note that since the running time
of Sp and S; is also poly(\, n,logq) where ¢ = 1,...,2*, thus this is efficient.

Now when the adversary makes the challenge query for message m, it also specifies the target
collusion bound @Q*. The dynamic-bounded-collusion simulator then runs only the ciphertext simu-
lator algorithm Sq for the static FE system corresponding to collusion bound log ¢ = [log Q*]. Note
that the simulator does not run Sy for the underlying FE schemes with lower (and even higher)
collusion bounds. This is important for two reasons: (1) we want to invoke the simulation security
of the i-th static FE scheme for i < [log Q*| but we can only do this if the ciphertext simulator S,
is not run for these static FE schemes, (2) the running time of Sy could grow polynomially with
the collusion bound ¢, thus we should not invoke simulator algorithm Sy for i > [log Q@] as well
(since for say i = A, the running time would be exponential in A which would make the dynamic
simulator inefficient). Thus, even the ciphertext simulation is efficient and the dynamic simulator is
an admissible adversary with respect to static FE challenger, therefore our dynamic FE simulator
is both efficient and can rely on simulation security of the underlying static FE schemes. The last
phase of simulation (i.e., post-challenge key generation phase) works the same as the second phase
simulator (i.e., pre-challenge key generation phase) which is by running Sg for all collusion bounds.

This completes a high level sketch. A complete proof is provided later in Appendix B.

Remark 3.2 (non-adaptive simulation-security). If the underlying static-bounded-collusion FE
scheme only provides security against non-adaptive attackers (as per Definition 3.4), then the
resulting dynamic-bounded-collusion FE scheme is also secure only against non-adaptive attackers
(as per Definition 3.6).

4 Tagged Functional Encryption

In this work, we introduce the concept of tagged functional encryption where the basic difference
when compared to regular functional encryption systems is that ciphertexts and secret keys are
embedded with a tag value such that only the ciphertexts and keys with the same tags can be
combined during decryption.

Formally, a tagged FE scheme in the static collusion model for a set of tag spaces Z = {Z, }.en
consists of the same four algorithms with following modification to the syntax:

Setup(1*,17™,1%,19) — (mpk, msk). In addition to the normal inputs taken by a static-bounded FE
scheme, the setup also takes in a tag space index z, which fixes a tag space Z,.

Enc(mpk,tg € Z,,m € M,,) — ct. The encryption also takes in a tag tg € Z, to bind to the cipher-
text.

KeyGen(msk,tg € Z., f € F,,) — skeg r. The key generation also binds the secret keys to a fixed tag
tg e Z,.

Dec(skig, f,ct) = Ry. The decryption algorithm has syntax identical to a non-tagged scheme.
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Correctness and Efficiency. A tagged FE scheme tgfe is said to be correct if for all \,n, z,q € N,
every function f € F,, message m € M, tag tg € Z., and (mpk, msk) < Setup(1*,17,1%,19), we
have that

Pr [Dec(KeyGen(msk, tg, f), Enc(mpk, tg,m)) = f(m)] = 1,

where the probability is taken over the coins of key generation and encryption algorithms. And, it
is said to be efficient if the running time of the algorithms is a fixed polynomial in the parameters
A, n,q and z.

Security. The security definition is modelled in a similar fashion to the ordinary static bounded
collusion FE game with the difference that the adversary plays it on multiple tg simultaneously
and the simulator must simulate the ciphertexts for every tag. In addition, the adversary is also
allowed to make arbitrary many secret key queries for all other tags. The formal definition follows.

Definition 4.1 (tagged-static-bounded-collusion simulation-security). For any choice of param-
eters \,n,q,z € N, consider the following list of stateful oracles Sg,Si,S2 where these oracles
simulate the FE setup, key generation, and encryption algorithms respectively, and all three algo-
rithms share and update the same global state of the simulator. Here the attacker interacts with the
execution environment £, and the environment makes queries to the simulator oracles. Formally,
the simulator oracles and the environment are defined below:

So(1*,17,1%,19) generates the simulated master public key mpk of the system, and initializes the
global state st of the simulator which is used by the next two oracles.

Si(+,+,+), upon a call to generate secret key on a function-tag-value tuple (f;,tg;, p;), where the
function value is either p; = L (signalling that the adversary has not yet made any encryption
query on tag tg;), or (m'i tg,) has already been queried for encryption (for some message
m'®), and p; = fi(m'i), the oracle outputs a simulated key sky, ¢ .

So(-,-), upon a call to generate ciphertext on a tag-list tuple (tg;, II"™*"), where the list ITI™*® is
a possibly empty list of the form IT™* = (( BB (me), L (feE o (mtgi))) (that is,
contains the list of function-value pairs for which the adversary has already received a secret
key for), the oracle outputs a simulated ciphertext cteg,.

E51:52(., ), receives two types of queries — secret key query and encryption query. Upon a secret key
query on a function-tag pair (f;,tg;), if (m'®i, tg;) has already been queried for encryption (for
some message m'i) then £ queries key oracle S; on tuple (f;,tg;, ui = fi(m':)), otherwise it
adds (f;,tg;) to the its local state, and queries S on tuple (f;,tg;, ;i = L). And, it simply
forwards oracle’s simulated key sky, t. to the adversary.

Upon a ciphertext query on a message-tag pair (m;, tg;), if the adversary made an encryption
query on the same tag tg; previously, then the query is disallowed (that is, at most one
message query per every unique tag is permitted). Otherwise, it computes a (possibly empty)

list of function-value pairs of the form II" = (( & B (mE), L ( ;ﬁi, ;fri (mtgi))) where

( f]t-g",tgi) are stored in &’s local state, and removes all such pairs ( f;gi,tgi) from its local
state. € then queries ciphertext oracle So on tuple (tg;,II"™¢), and simply forwards oracle’s
simulated ciphertext ctyg, to the adversary.
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A tagged functional encryption scheme FE = (Setup, Enc, KeyGen, Dec) is said to be tagged-
statically-bounded-collusion simulation-secure if there exists a stateful PPT simulator Sim = (Sg, S1, S2)
such that for every stateful admissible PPT adversary A, the following distributions are computa-
tionally indistinguishable:

KeyGen(msk,-,-),Enc(mpk,:,- . (171’ 1q’ 12) — “4(1)\)
{A eyGen(msk,-,-),Enc(mp )(mpk). (mpk, msk) < Setup(1*, 17, 17, 19) e

~
~e

£515(... S (1M19,17) + A(1Y)
{A ( )(mpk) " mpk 50(1)\, 1,17, 1q) N

where A is an admissible adversary if:

— A makes at most one encryption query per unique tag (that is, if the adversary made an
encryption query on some tag tg; previously, then making another encryption query for the
same tag is disallowed)

— A makes at most g queries combined to the key generation oracles in the above experiments
for all tags tg; such that it also submitted an encryption query for tag tg;.

Definition 4.2 (tagged-static-bounded-collusion non-adaptive simulation-security). A tagged func-
tional encryption scheme FE = (Setup, Enc, KeyGen, Dec) is said to be tagged-statically-bounded-
collusion non-adaptive simulation-secure if, in the security game defined in Definition 4.1, the
adversary is prohibited from making any key queries on any particular tag in the post-challenge
phase (that is, if the adversary makes an encryption query w.r.t. tag tg, then it must not make any
more key queries on the same tag tg but can make key queries for other tags).

5 Tagged to Weakly Optimal Static Collusion FE

In this section we show how to convert the our construction of Q-bounded tagged FE to a weakly
optimal statically secure functional encryption scheme with collusion bound Q. The transformation
is very similar to the transformation in [AV19] that achieves linear complexity for any bounded-key
FE scheme.

Let @ be the desired collusion bound for the static scheme. The transformation in [AV19]
starts with @) instances of g-bounded statically secure FE, where ¢ is set to some polynomial in the
security parameter. The setup parameters are thus linearly bounded in Q. Encryption simply calls
the base encrypt algorithm (for the g-bounded collusion scheme) on each instance. Since the base
encryption scheme is for collusion bound ¢ = poly(\), one instance of encrypt takes time polynomial
in the security parameter and thus encrypt is linearly bounded in Q). Key generation for a circuit C
simply selects one of the instances at random and outputs the key generated by the base scheme on
this instance. Correctness holds as the encrytor has encrypted for all possible instances. Security
fails only if, after giving out @ secret keys, the load on a particular instance exceeds ¢ = poly(\)
(which happens with only negligible probability via a simple Chernoff argument).

The transformation has the drawback that the setup outputs () instances and thus all the
algorithms depend linearly on ). Our observation is thar if we start with a tagged FE scheme
instead, then we can compress the public and secret parameters using the tag space by setting it
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proportional to the desired collusion bound @. Similarly the key generation algorithm takes in a
single master public key and master secret key and outputs one instance of the secret key. This
helps us satisfy the weakly optimal property. More formal details follow below.

5.1 Construction

Let tgfe = (TgFE.Setup, TgFE.Enc, TgFE.KeyGen, TgFE.Dec) be a bounded-collusion tagged FE
scheme for a family of circuit classes {F,},en, message spaces { M, }nen, and tag space {Z, =
{0,1}*},en. We use TgFE to build Static-FE a weakly-optimal static-bounded-collusion FE scheme
for the same function classes and message spaces.

Setup(1*,1™, Q) — (mpk, msk). The setup algorithm runs the TgFE setup algorithm with the tag
space of Z, = [2 [log Q]] and collusion bound ¢ = A and sets the master public-secret keys as

(mpk, msk) < TgFE.Setup(1*,17,1% = 1Mee@1 19 — 1%).

Notation. Here and throughout the paper, we represent [log Q]-bit tags as elements over a larger
alphabet [2M°¢@1], and when we write u < [Q] then that denotes sampling u as a random
integer between 1 and @ which can be uniquely encoded as an [log Q]-bit tag.

KeyGen(msk, C') — sk¢. It samples a tag u < [Q], key skc,, < TgFE.KeyGen(msk,u,C'), and out-
puts skc = (skou, u).

Enc(mpk,m, 19) — ct. It encrypts the message m for all possible tags, and outputs the ciphertext
ct = (cty,...,cty) where each sub-ciphertext is computed as:

Yu € [Q], cty < TgFE.Enc(mpk,u,m).

Dec(skc,ct) = y. Let sk¢ = (skcu,u) and ct = (cty,...,ctg). The algorithm outputs y <
TgFE.Dec(skc,y, cty,).

5.2 Correctness, Efficiency, and Security

The correctness of the above scheme follows directly from the correctness of the underlying TgFE
scheme. For the efficiency, recall the requirements (Definition 3.2) which state that the Setup and
KeyGen algorithms should be bound by a polynomial in A,n and log (). Both Setup and KeyGen
run TgFE.Setup and TgFE.KeyGen once respectively. From the efficiency of these algorithms, we
know that the running time is poly(\, n, [log Q]).

Formally, we prove the following.

Theorem 5.1. If tgfe = (TgFE.Setup, TgFE.Enc, TgFE.KeyGen, TgFE.Dec) is a tagged-statically-
bounded-collusion simulation-secure FE scheme (as per Definition 4.1), then the above scheme is a
weakly-optimal static-bounded-collusion strong simulation-secure FE scheme (as per Definition 3.3).

Proof. Let TgFE.Sim = (TgFE.Sy, TgFE.S1, TgFE.S2) be the simulators satisfying Definition 4.1.
Let these simulators share a global state TgFE.st. We will construct simulators Sim = (Sq, S1, S2, S3)
that satisfy Definition 3.3 as follows.
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SO(]-A7 177,’ Q)
Sample mpk < TgFE.So(1*,17,1M1°8Q1 1), Let stq < TgFE.st.

S1 (Sto, C)
Sample u + [Q]. It simulates secret key as skc,, <= TFE.S1((f,tg, 1) = (C,u, L)) and keeps
TgFE.st updated. It also adds (C,u) as the key query to its state st; and ensures TgFE.st is
included in st;. It outputs (ske,y, u).

SQ(Stl, Hm)

L. Let [II"™| = Qpre and II"™ = ((C1,C1(m)), ..., (CQues CQue(m))). For all u € [Q], let
gset,, = 0 and uset,, = 0. For every u € [Q], let II* be the sequence of those (C,C(m))
that get (sko,u) as query response by Sj.

2. For all j € [Qpre], let (skg;u,u) be the reply to query Cj to Si. Let gset; = u and
uset,, = uset, + 1, i.e. note down the statistics about each u.

3. For every u € [Q], it simulates the ciphertext as ct, + TgFE.So(u,II") and keeps
TgFE.st updated.

4. For j € [Qpre + 1,Q)], sample u «+ [Q] and set qset; = u, uset, = uset, + 1. For every
u € [Q], if uset,, > A, then output L. Add all the local state (such as gset, Qpre etc) and
TgFE.st to the simulator state’s sto for post-challenge key generation simulation.

590 (sty, €)

1. The state sty contains gset, Qpre, and state stored by tagged FE simulator TgFE.st. On
the jth key query made by A to Sg, it sets u = asetq,..+j (as j-th post-challenge query
is (Qpre + j)-th overall key query).

2. It queries Uy, (+) to learn C'(m). It simulates secret key as sk, <= TgFE.S1((f,tg, 1) =
(C,u,C(m))) and keeps TgFE.st updated. It outputs (skc,y, ).

Note that we can verify that this satisfies the efficiency requirement of strong simulation security.
So only runs TgFE with polynomial dependence on A, n and @), where the only dependence on () is
in the size of the tag space. By efficiency of TgFE, this has logarithmic in @ efficiency. Similarly,
in S; and Ss, the dependence on @ is only in the tag space, for which we only have to randomly
sample elements (from [Q] in one case and gsety . ; in the other) or invoke the TgFE simulator
once.

Next, we will show through a sequence of experiments that the real and simulated games are
computationally indistinguishable.

Experiment 0. This is the experiment with adversary A and weakly-optimal static-bounded-
collusion FE scheme. The experiment is parameterized by A € N.

(1%,19) « A1)
(mpk, msk) « Setup(1*,1™, Q)
m AKeyGen(msk,-)(mpk)
ct < Enc(mpk, m)

AKeyGen(msk7~) (Ct) .
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Setup: (1",19) «+ A(1%). (mpk, msk) « TgFE.Setup(1*,17, 1/1°8Q1 11). Send mpk to A.

Pre Challenge Key Queries: .4 makes a key query for a circuit C.

1. Sample u + [Q]. Generate skc, < TgFE.KeyGen(msk, u, C). It outputs (skc,, u) to A.

Ciphertext Queries: A outputs a message m.

1. Yu € [Q], cty, < TgFE.Enc(mpk, u, m). Output ct < (cty,...,ctg) to A.

Post Challenge Key Queries: A makes a key query for a circuit C.

1. Sample u + [Q)]. Generate skc,, < TgFE.KeyGen(msk, u, C). It outputs (skc,, u) to A.

A outputs a bit b.

Experiment 1. In this experiment we just make syntactical changes by pre-sampling some of
adversaries responses and keeping count of the amount of key generation queries we output on a
particular tag.

e Ciphertext Queries: A outputs a message m.
1. For all u € [Q)], let gset,, = 0 and uset,, = 0. Let Qpre be the number of queries made by
A in the previous phase.

2. For all j € [Qprel, let (skg; ,,u) be the reply to query C; made by A to KeyGen in the
previous phase. Let gset; < u and uset, <+ uset, + 1.

3. Yu € [Q], ct, « TgFE.Enc(mpk,u, m). Output ct < (cty,...,ctg) to A.
4. For j € [Qpre + 1,Q], sample u < [Q] and set qgset; < u, uset, < uset, + 1.

e Post Challenge Key Queries: A makes a key query for a circuit C.
1. Let this be the j** query made by A to KeyGen in this phase. Let u < asetq,,. 1 ;-

2. Generate skc,, < TgFE.KeyGen(msk, u, C). It outputs (skc,, u) to A.

Experiment 2. In this experiment we output L if the random tags sampled for each query are
disproportionately sampled. That is, if more than )\ keys are sampled for a tag, then abort the
experiment and output L.

e Ciphertext Queries: These are answered as in previous experiment, except for every u €
(@], if uset, > ¢, then output L.

Experiment 3. In this experiment, we use TgFE.Sim to answer KeyGen queries and simulate
the ciphertext. The experiment keeps track of states TgFE.st when calling TgFE.Sim. Let states
stg, st1, sts be empty states initialized by the challenger to keep track of different phases.

e Setup: (1",19) «+ A(1*). Let mpk « TgFE.So(1*, 17, 111°2@1 1) "and sty < TgFE.st. Send
mpk to A.
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e Pre Challenge Key Queries: A makes a key query for a circuit C.

1. Sample u < [Q]. It simulates secret key as skc,, < TgFE.Si((f,tg, ) = (C,u, L)) and
keeps TgFE.st updated. It also adds (C,u) as the key query to its state st; and ensures
TgFE.st is included in st;. It outputs (skc, u) to A.

e Ciphertext Queries: A outputs a message m.

1-2. Perform steps 1,2 as in previous experiment.

3. Let |II"] = Qpre and II"™ = ((C1,C1(m)), ..., (CQpe» CQpe(m))). For every u € [Q],
let II" be the sequence of those (C,C(m)) that get (skc,u) as query response by S;.
For every u € [Q], (sti,cty) < TgFE.Sa(st1,u,II]") and keep TgFE.st updated. Add
all the local state (such as gset, Qpre etc) and TgFE.st to the simulator state’s sty for
post-challenge key generation simulation. Output ct < (cty,...,ctg) to A.

4. Perform step 4 as previously.
e Post Challenge Key Queries: A makes a key query for a circuit C.

1. The state sty contains gset, Qpre, and state stored by tagged FE simulator TgFE.st. Let
this be the j* query made by A to KeyGen in this phase. Let u < asetg . 4j-

2. It computes C'(m). It simulates secret key as skc,, < TgFE.Si((f,tg, 1) = (C,u,C(m)))
and keeps TgFE.st updated. It outputs (skc,,,u) to A.

e A outputs a bit b.

Analysis. Let P%4(\) be the probability that adversary A outputs 1 in Experiment ¢ run on
security parameter \.

Lemma 5.1. For every adversary A, parameter A, PY(\) = P4 ().

Proof. The only changes in the two experiments are syntactical, where query responses are recorded
in gset and uset. Additionally, in the post challenge query phase, the recorded queries are pre-
sampled in the challenge phase in exactly the same way. O

Lemma 5.2. For every adversary A, there exists a negligible function negl(-) such that for all
A €N, [PL(A) = PL(N)] = negl(N).

Proof. The experiments are different if there exists a u € [@)], such that uset, > ¢. Recall that ¢
was set to A in the construction. For every u € [Q] and j € [Q)], let X, be a random variable that
is 1 if u was sampled during the j** query response. For any u € [Q], let X, = Z?Zl Xju- It’s easy
to see that £[X,] = % and by linearity of expectation, £[X,] = 1. By a Chernoff bound, we have
that,

(—1)2

PriX,>1+(A=-1)]<e O

2
This is < 67% < e M8 for A > 2. The probability that there exists such a u, is bounded by the
union bound to be < Q- e 8 = negl(A). The latter holds since @ is polynomially bounded in the
security parameter \. O
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Lemma 5.3. Assuming tgfe = (TgFE.Setup, TgFE.Enc, TgFE.KeyGen, TgFE.Dec) is a simulation-
secure tagged FE scheme (as per Definition 4.1), for every PPT adversary A, there exists a negligible
function negl(-) such that for all A € N, [P4(X) — P%(N)] = negl()).

Proof. The difference in these two experiments is that we use the true TgFE scheme in experiment
2 and we simulate using TgFE.Sim in experiment 3. This is exactly the TgFE security game and
we can construct a reduction B that proceeds as follows.

e Setup: It gets (17,19) from A. B outputs (17, 1%, 1M1°28@1) to the setup oracle. It sets mpk
from the experiment and sends it to A.

e Pre Challenge Key Queries: A asks KeyGen queries and B simulates them by generating
a random tag u and querying its TgFE.KeyGen oracle on circuit C' and identity u for sk. It
returns (sk,u) to A.

e Ciphertext Queries: A outputs a message m. For every u € [Q], query the TgFE.Enc
oracle on message m and identity v to recieve ct,. Return (cty,...ctg) to A.

e Post Challenge Key Queries: A asks KeyGen queries and B simulates them by generating
a random tag u and querying its TgFE.KeyGen oracle on circuit C' and identity u for sk. It
returns (sk,u) to A.

e B3 gets a bit from A and outputs it.

Note that the reduction B works with the execution environment £ that coordinates the infor-
mation between TgFE.S1, TgFE.S, for responses. We don’t explicitly repeat the transcript of the
exchange as the coordination of information is straightforward and described in Definition 4.1. It
is easy to see that if the TgFE oracles utilize the real scheme, then we are in experiment 2, but if
they are simulated, we are in experiment 3. We can observe that B is admissible in the tagged FE
game whenever A is admissible in the weakly optimal game, each call to the Enc or KeyGen oracle
corresponds to a single call on the same TgFE.Enc (we call TgFE.Enc multiple times, each time on
a different tag) and TgFE.KeyGen. We can see that B makes at most ¢ calls to any particular tag
in [@] by the conditional from Experiment 2. From the security of TgFE by Definition 4.1, we have
that the distributions are computationally indistinguisable. O

Note that at the end of Experiment 3, A is interacting exactly with Sim defined above. Thus
the output of this experiment is computationally indistinguishable from the output of Experiment
0. O

6 Upgrading Collusion Bound for Tagged FE

Now we show that a bounded-collusion tagged FE scheme where the collusion bound can be any
arbitrary polynomial can be generically built from a tagged FE scheme that allows corrupting
at most one key per unique tag (i.e., 1-bounded collusion secure) by relying on the client server
framework from [AV19]. The ideas behind this transformation are based on the 1-bounded non-
tagged FE to @-bounded non-tagged FE transformation from [AV19].

The client server framework is formally defined later in Appendix A for completeness. Intu-
itively, in the client server framework, there is a single client and N servers. The computation
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proceeds in two phases, an offline phase, where the client encrypts an input x of the protocol for N
servers where u-th server gets 2%. This is followed by an online phase which runs in @) sessions for
computation on circuits C1,...,Cq. In each session j € [Q)], client delegates the computation of
C; by computing C’]“ for u € [N] and sending C’;‘ to u-th server. Now S C [N] where |S| = p servers
come online and for u € S, u-th server computes g} < LocaI(CA';L,:E“). Finally the S server send
information back to client who computes y <+ Decode({g);‘}ues,S) for each j € [Q], to compute
Cj(z).

The transformation in [AV19] invokes N (polynomial in @), \) many instantiations of the one
bounded FE scheme. These N instances act like a separate server in the client server framework.
Encryption simply computes the encryption of each one bounded instance on the offline computation
on the inputs, i.e. encrypt under z* for w € [N] under the one bounded FE algorithm. Key
generation computes the online encryption of the circuits, C for u € [N] and picks a random
subset S of size p and generates the secret keys on the 1 bounded instance for circuit LocaI(C’“, )
for u € S. In our transformation, instead of having N independent instances, we instead blowup the
tag space for the one tagged FE scheme and perform the key generation and encryption procedures
very similarly. The analysis of the correctness and security are very similar to [AV19], except that in
the 1TgFE security game (Definition 4.1), we allow the adversary to request for multiple challenge
ciphertexts (each on a different tag) and thus the security proof is tweaked adequately.

6.1 Construction

Let 1tgfe = (1TgFE.Setup, 1TgFE.Enc, 1TgFE.KeyGen, 1TgFE.Dec) be a 1-collusion-bounded tagged
FE scheme for a family of circuit classes {F), }nen, message spaces { M, }nen, and tag space {Z, =
{0,1}*},en. Let Protocol = (CktEnc, Local, InpEnc, Decode) be the client server framework (see
Appendix A for the complete description) for the circuit class {F,}nen. We use 1TgFE to build
a tagged FE scheme with arbitrary (but polynomial) collusion bounded for the same circuit class,
message space, and slightly shorter tag space.

Let the maximum size of the circuit be denoted by x(n) (denoted by & for brevity). Let the
construction parameters be t = O(Q\), N = O(Q?*t?), p = O(t).

Setup(1*,1™,1%,19) — (mpk, msk). It samples the master key pair as
(mpk, msk) < 1TgFE.Setup(1*,1", 17+ [logN], 1).
KeyGen(msk, tg, C') — skctg. It samples a set S < [N] of cardinality p, and computes the N-server

encoding of circuit C' as (C’l, .. .,C’N) < CktEnc(1*,19,1%,C).

Let E“(-) = Local(C"%,-). Tt generates a key for circuit E* under 1TgFE, i.e. Yu € S, skgu
1TgFE.KeyGen(msk, (u, tg), E*). Output ({(u,skgu)}ues,S).

Notation. Here and throughout the paper, we use (u,tg) to denote the (z+ [log N|)-bit tag, where
u encodes the first [log N|)-bits and tg is encoded in the remaining bits.

Enc(mpk, tg, m) — ct. The encryptor first computes the input encoding (&', ..., 2V) < InpEnc(1*,19, 1%, m),
and then for every u € [N], it computes ct,, - 1TgFE.Enc(mpk, (u, tg),z*). Output (cty,...,cty).

Dec(skig,c,ct) = y. Let skigc = ({(u,skgv)}ues, S), and ct = (cty,...,ctn). For every u € S,
compute §* < 1TgFE.Dec(skgu, ct,). Output y < Decode({g"}ues, S).
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6.2 Correctness, Efficiency, and Security

The correctness of the above scheme follows from the correctness of 1TgFE scheme and algo-
rithms CktEnc, InpEnc, Local, Decode. By the correctness of 1TgFE, we know that for every u € S,
1TgFE.Dec(skgu, ct,) = Local(C*, 2*) (the keygen and the encryption are both on tag (u,tg) . By
the correctness of Protocol, we know that,

Decode({Local(C*, %) }4es, S) = C(m).

For the efficiency, as Protocol consists of polynomial algorithms, it’s easy to see that the runtime
is polynomial in A, n, Q, z.
To conclude, we prove the following.

Theorem 6.1. If 1TgFE = (1TgFE.Setup,1TgFE.Enc, 1TgFE.KeyGen, 1TgFE.Dec) is a tagged-
statically-bounded-collusion simulation-secure FE scheme for collusion bound 1 (as per Defini-
tion 4.1), and Protocol is secure according to Definition A.1, then the above construction is a
simulation-secure tagged FE scheme for collusion bound @ (as per Definition 4.1).

Proof. Let 1TgFE.Sim = (1TgFE.Sp, 1TgFE.S1, 1TgFE.Sy) be the simulators satisfying Definition 4.1
for a 1-query collusion bound . Let Protocol.Sim be the simulator satisfying Definition A.1 for the
MPC framework. We will construct simulators Sim = (S, S1,S2) that satisfy Definition 4.1 for a
Q-query collusion bound. Both sets of simulators implicitly share a global state between them for
coordination.

So(1*,17,1%,19)
Let mpk « 1TgFE.So(1*, 17,12+ MoeN] 1),

Sl (tg’ Cv :u)
1. Let this be the j-th query to Sy and the input query be denoted by tg;, Cj, u1;. Let this
be the i-th query to tag tg;.
2. If i = 1, initialize the simulator ProtocoI.Simtgj on input (1*,19,1%).
3. Pre Challenge Key Queries: If ;1; = L,
(a) Compute (C’Jl, . 7CA']N) < Protocol.Simyg (Cj). Let E¥()) = Local(éj“, ).
(b) Sample a set S;gj < [N] of cardinality p.
(c) Generate a key for circuit E; under the one tagged scheme, Vu € S;gj , skEg —
tg.;
1TgFE.S1((u, tg;), EY, L). Output ({(U’SkE?)}ueS:gf’Si 7).
4. Post Challenge Key Queries: Else,
(a) Compute the simulated circuit, (C']l, e CA’JN) and {y)}}uesfgj by running Protocol.Simyg,
on (i,C;,Cj(m'i)). Note that u; = Cj(m'i). Let Ei() = Local(CA’}-‘, -) for u € [N].
(b) Generate a key for circuit E; under the one tagged scheme, ie. Vu € S,
i fue S, sker — 1TgFE.S((u,tg;), EY, 1)

) ]7

ii. Else, skgu = 1TgFE.S1((u, tg;), EY, 4;").-

"Note that on these tags, no ciphertext query is made.
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(2

Output ({(u, skE;)}uengj , Sng),

So(tg*, II™* )

1. Let Qf,gr; be the number of key generation queries made to tag tg*. Let the set 1GO
denote the set of all (C},C;(m'®")) where for j € [Q], (tg*, C;) was the key generation
query.

2. For every i € | f,gr; + 1, @], sample a set Sl-tg* of size p uniformly at random from [N].

3. Construct a corrupted set SE%L that includes all tags that are corruped as follows,

S& ={ue|N] : 3i,je[Qli#janduecSE USE}.

corr

If |SH, | > t, output L.

4. If Qf,gr; = 0, initialize the simulator Protocol.Sim¢g+. Compute Protocol.Simyg= (1‘mtg |,S§§:r, e )

8 to obtain {2"} e and evalutations {g;'}, CIQE ues" Additionally we have that
corr pre |» i

g = LocaI(CA']”, ") for u € Sz-tg* msé%ﬁ} where 7 € [Qégr;] and j is the global query number
(recall i is the query number on tg*).

5. For every u € [N],

(a) Ifue Sf;%:,, run the normal encryption procedure, i.e.
cty < 1TgFE.Enc(mpk, (u,tg"), 2").

(b) Else, query 1TgFE.Ss for the ciphertexts. Let the shares we’ve previously output be

noted down in IT}, = {(E¥, 7}’ j is the total query number to S; where

Wicigg e (
this is the i-th query on tgj) and compute,

ct, < 1TgFE.So((u,tg"), II,).

The security proof proceeds in a sequence of hybrids, where we move from the real experiment to
the simulated experiment. First, we switch the order of sampling sets S'® on a post challenge query,
i.e. on a challenge tag, tg*, we sample the post challenge sets S*® identically and use these for post
challenge queries. Then, we set the experiment to fail if the size of the corrupted set Ség:r exceeds
a threshold t. This guarantees that enough servers are not corrupted for the security of the MPC
protocol to hold. This failure happens with a negligible probability using an information theoretic
lemma. Now, we can rely on the ltgfe simulator to remove some information about the message.
Note that for the corrupted set for each challenge tag tg*, we don’t request a challenge query and
crucially rely on the security of the non-corrupted set. Finally, the remaining information about the
message (except the circuit evaluations) is removed by relying on the security of the MPC protocol,
which works at a high level by relying on only the message length |m| in the offline phase and the
circuit evaluations during the online phase. Thus we end up we in the simulated experiment. The
detailed proof with complete hybrid experiments is described later in Appendix C.

O

8We can assume simulator knows the message length as we have the empty function description, see Footnote 6.
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7 Building 1-Bounded Collusion Tagged FE from IBE

Here we construct a tagged FE scheme that achieves security in the 1-bounded collusion model
and, as we discussed in the previous section, this is sufficient to build a general bounded-collusion
tagged FE scheme. Our construction is itself split into two components where first we provide a
simple construction using garbled circuits and IBE but it only achieves non-adaptive security, and
later we show how to generically upgrade it to full adaptive security by relying on non-committing
encryption techiques.

7.1 Non-Adaptive 1-Bounded Tagged FE from Garbled Circuits and IBE

The non-adaptive construction is a close adaptation of the traditional construction of 1-bounded
FE from public key encryption and garbled circuits found in [SS10, GVW12]. The idea is to simply
encrypt all the wire labels of a garbling of a universal circuit using IBE and only give out select
IBE secret keys of the wires corresponding to the circuit. For simplicity, we assume that the
functionality class F,, includes all circuits of size n (the circuit description is n bits long).

Setup(1*,1™,1%) — (mpk, msk). Sample an IBE master key pair as (ibe.pk, ibe.msk) < IBE.Setup(1*,
12+ Mogn]+1) "and output mpk = ibe.pk, msk = ibe.msk.
Notation. Here and throughout the paper, we use (b,i,tg) to denote the (z + [logn| + 1)-bit
identity, where b is a single bit, ¢ encodes [logn|)-bits, and tg is encoded in the remaining z
bits. Basically, each bit-index-tag tuple is uniquely and efficiently mapped into the identity
space.

Enc(mpk, tg,m € M,,) — ct. Let U be the universal circuit for the family of size n circuits on inputs
in M,, (i.e., U(C,m) = C(m)). Now in the following garble U(-,m) as (U, {w;p }i<nbefo,1}) <
GC.Garble(1*,U), and encrypt the labels as

Vien,be{0,1}, ct;p < IBE.Enc(ibe.pk, (b,7,tg), wip)

It finally outputs ct = (Z], {Cti,b}ign,be{o,l})-

KeyGen(msk,tg,C' € {0,1}") — skeg . Let C[1],C[2],...C[n] denote the bit representation of cir-
cuit C. Tt samples n IBE secret keys as sk; = IBE.KeyGen(msk, (C[i],i,tg)) for i € [n], and
outputs skig.c = {ski}ic[n)-

Dec(skig,c, ct) — y. It parses the secret key and ciphertext as above. It first decrypts the wire keys
as w; cp;) < IBE.Dec(sk;, ct; ;) for i € [n], and then outputs y = GC.Eval(, {wi oy Yiem))-

Theorem 7.1. If ibe is a secure IBE scheme per Definition 2.2 and GC is a secure garbled circuit
Definition 2.1, then the above is a non-adaptively secure tagged 1-bounded FE scheme.

Proof. Consider the following simulator for the above construction.
So(1*,1™,1%) - Setup is not changed in simulation, we simply run Setup, outputting the Setup

public key (which is an IBE public key) as the public key and storing the IBE master secret
key as internal state.
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Si(tg,C, L) - Simulation of key generation also remains the same, simply running the KeyGen
algorithm using the stored msk state and handing out a subset of IBE secret keys.

So(tg*, II"™ = (C,C(m))) - Here, given the output to the single functional key queried, we can
simulate the garbled circuit, and encrypt the simulated labels under the IBE keys. Since this
only generates half the labels a normal garbling scheme would, the other half of the labels
are replaced with garblings of 0.

The security proof proceeds in a sequence of hybrids, where we move from the real experiment to
the simulated experiment. In our real experiment encrypt outputs encryptions of label for each
possible circuit bit. Since this is a non-adaptive experiment, we switch the encryption to output
encryptions of zero, wherever the tags don’t match the circuit bit (circuit to be queried is known
while making the ciphertext). This step uses the IBE security as observe that IBE secret keys
for these tags will never be requested. Finally, to remove information about the message and by
relying on garbled circuit security with the evaluation C'(m) we can simulate the remaining labels.
At this point there is no information remaining about m, except the evaluation C'(m) and we are in
the simulated experiment. The detailed proof with complete hybrid experiments is described later

in Appendix D.
O

7.2 Upgrading to Adaptive Security

We can transform any non-adaptive 1-bounded tagged FE scheme to an adaptive one using IBE.
This is an analogue of the traditional method of using weak non-committing encryption (which
is constructable from plain public key encryption) to make 1-bounded FE adaptive. Here, the
encryption has two modes — a ‘normal mode’, where the scheme functions like a normal public
key/IBE scheme, and a non-committing mode, where the encryptor can produce secret keys which
equivocate to any value. This enables us to delay simulating the ciphertext of a adaptive key queries
until the secret key is requested.

Setup(1*,1™,1%) — (mpk, msk). The setup algorithm runs the underlying tagged FE and IBE setup
algorithms as (natgfe.pk, natgfe.msk) < NATgFE.Setup(1*,1™,1%), and (ibe.pk,ibe.msk) <«
IBE.Setup(1?, 1Z+ﬂog”/1+1) where n/ denotes the length of natgfe ciphertexts with the above
parameters.

It outputs the master keys as (mpk, msk) = ((natgfe.pk, ibe.pk), (natgfe.msk, ibe.msk)).

Notation. Here and throughout the paper, we use (b,,tg) to denote the (z + [logn] + 1)-bit
identity, where b is a single bit, i encodes [logn’])-bits, and tg is encoded in the remaining z
bits. Basically, each bit-index-tag tuple is uniquely and efficiently mapped into the identity
space.

Enc(mpk, tg,m) — ct. Let mpk = (natgfe.pk,ibe.pk). It encrypts m using tagged FE as ct’ +
NATgFE.Enc(natgfe.pk, tg,m), and it encrypts ct’ bit-by-bit under IBE as ¢, j = IBE.Enc(ibe.pk,
(b, j,tg),ct'[j]) for b € {0,1},5 € [n/]. It then outputs ct = {eb,j}oeq0,1},jem-
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KeyGen(msk, tg, C' € {0,1}") — skig,c. Let msk = (natgfe.msk, ibe.msk). It samples n’ random bits
bi,ba, ..., by < {0,1}, and computes secret keys for the underlying systems as:

natgfe.skig ¢ <— NATgFE.KeyGen(natgfe.msk, tg, C'),
Vj € [n'], ibesky, ; + IBE.KeyGen(ibe.msk, (b}, ], tg)).

And it outputs skig ¢ = (natgfe.skig ¢, { (b, ibe-sk;p. ) }iepm)-

Dec(skig,c, ct) — y. It parses the secret key and ciphertext as above. It first decrypts the IBE ci-
phertexts as ct’[j] as IBE.Dec(ibe.sky, j, cty ;) for j € [n/], and then computes y = NATgFE.Dec(
natgfe.skeg ¢, ct’) where ct’[i] is the i-th bit of ct’.

Theorem 7.2. If ibe is a secure IBE scheme and natgfe is a non-adaptively secure 1-bounded
tagged FE scheme, then the above is an adaptively secure 1-bounded tagged FE scheme.

Proof. Consider the following simulator for the above construction. The simulators jointly maintain
an internal state st. Since this simulator calls the natgfe.Sim which is also stateful, consider this
simulator to implicitly track the internal state of natgfe.Sim in addition to the explicit state values.
Since the simulators shares an internal state, it can track whether, on each tag the adversary queried
the keygen oracle first or the ciphertext oracle, and classify queries on said tag as non-adaptive or
adaptive respectively.

So(1*,1",1%) : Run natgfe.Sy and and ibe.Setup with identity space input as 1* and 1#t[legn’l+1
respectively, outputting the public keys to both as the public key of the scheme. Retain both
secret keys in the internal state.

Non-adaptive Queries: The execution of the simulators S; and Ss here exactly follows the honest
execution of KeyGen and Enc. Simply replacing the underlying calls to natgfe.KeyGen and
natgfe.Enc with calls to natgfe.S; and natgfe.So suffices.

Adaptive Queries: When the adversary first requests an oracle call to Enc, instead of calling
natgfe.Enc, the simulator Sy randomly encrypts one of {0, 1} to each of ct; o and ct; ; for each
position. Now, S; is called, it not only runs the natgfe.S; call to simulate the natgfe.KeyGen,
but also makes the delayed call to natgfe.So with the aid of the up = C(m) information,
and gives out IBE keys only to the corresponding ct;; which match the bit of the simulated
ciphertext.

The security proof proceeds in a sequence of hybrids, where we move from the real experiment
to the simulated experiment. For a high level intuition we assume that the adversary only makes
adaptive secret key queries as we already have a non-adaptively secure primitive with us. First we
switch the order of sampling {b1,...,b, } on a post challenge query, i.e. on a challenge tag, tg, we
sample {by,...,b, } identically for post challenge and store it in the global st. Then, we change
how the secret keys are generated in the adaptive case. Instead of using b; as the random bit, we
instead use b; & ct’[j] as the random bit. We argue that the distributions remain same information
theortecally as b; is random and ct’[j] is independent. We can now use IBE security to switch the
IBE encryption on the encryption where we do not request a key. Thus on tag b; @ ct’[j] we instead

output encryption of the complement bit ct/[j]. Our end goal is to remove information about the
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message and now we can set the ciphertext without the knowledge of the message by outputting
encryptions of 0 and 1 (appropriately). To coordinate with the adaptive keygen query, we still have
to generate ct’ in the post challenge phase using the message m so that the decryption can compute
ct’ and thus C'(m). This trick where we set the ciphertext to an encryption of both 0 and 1 and
then set key query according to the value of ct’ generated during the post challenge query is why
we are adaptively secure. The technique in this sub-hybrid change is very similar to that of weak
non-commiting encryption [CFGN96, DN00, KO04] which is built from public-key encryption. The
final step is to remove the message information by relying on non-adaptive security. Observe that
we never make an adaptive query to the non-adaptive primitive as both operations of generating
the key and the ciphertext happen in the post challenge phase. Thus we end up we in the simulated
experiment. The detailed proof with complete hybrid experiments is described later in Appendix E.

O
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A Client Server framework

This section is copied almost verbatim from [AV19], barring small notational changes. We include
the framework definition and security requirements for completeness.

Let Protocol be a multi party protocol for a family of circuit classes {Fj}rcn, message spaces
{M}ren. It consists of a single client and N(A, Q) servers where X is the security parameter and
@ is the number of sessions. Additionally the construction admits parameters p(\, @) and t(A, Q).
Let the maximumm size of the circuit |Fy| be denoted by x(A). The framework is described in two
phases.

Offline Phase In this phase, the client takes as input the number of sessions @, size of the circuit
delegated k, input = and executes a PPT algorithm InpEnc that outputs correlated input
encodings (#',...,2N). It sends the encoding #* to the u* server.

(21, ...,2N) < InpEnc(1*,19, 1%, 2)

Online Phase This phase is executed for () sessions. In each session, the client delegates the
computation of a circuit C on x to the servers in the following steps.

— Client Delegation: This is performed by the client computing a PPT algorithm
CktEnc(1*,19,1%,C) to obtain (C*,...,CN). It sends the circuit encoding C* to the

Uth server.

(C,...,CNY « CktEnc(1*,19,1%,0).

— Local Computation by the Servers: Upon receiving the circuit encodings from
the client, a subset S of servers come online and the u!® server in the set S computes
Local(C, ") to obtain the u'® output encoding 7.

Vu e S, 9" <« Local(C* z").
— Decoding: Finally, the output is recovered by computing a PPT algorithm Decode on

({9" bues, ).
y < Decode({y"}ues, S).

Correctness. The protocol Protocol is said to be correct if for all A\, € N, circuits C' € F) with
circuit size bounded by &, messages x € M we have that, for (C1,...,CN) < CktEnc(1*,19,1%,C)

and (z!,...,2N) « InpEnc(1*,19, 1%, 2),

Pr [Decode({LocaI(éu,ﬁ:“)}ues, S)=C(x)] = 1.

35



Security. The security allows an adversary to be able to corrupt a subset of the servers. Once a
server is compromised, the entire state of the server is leaked to the adversary. Formally the notion
is defined below in terms of two experiments Expt, and Expt; defined below.

Expt64’Ch(1>‘)

e A outputs a query bound @), maximum circuit size k, total number of parties N, number
of parties p participating in any session, threshold t.

e Circuit Queries: A is allowed to make circuit queries. First it makes Qpre circuit
queries C1,...,Cq,.. For the it" circuit query Cj, it sends the set S; C [N], such that
|Si| = p andCh computes,

(CL,...,CN) « CktEnc(1},19,1%,C;)

and sends this to A.

e Challenge Input Query: A can choose to output a corruption set Scorr € [N] and
input z.
If Qpre > Q or |Scorr| > t, then experiment aborts.
It outputs sets Sg,.+1,-..,S5¢ C [N] such that [S;| = p for all i € [Qpre +1,Q]. S; is the
set of parties participating in the i"
Ch generates (z',...,2N) < InpEnc(1*,19, 1%, z).
Ch sends

session.

({i.u}uescorr? {Local(é’tu7 j;;‘t) }iE[Qpre} ,UESi)

to A i.e. the inputs with the corrupted servers and the share of the honest servers due
to the circuit queries made so far.

~

e Circuit queries: A then makes adaptive queries Qpre+1, . .., Q. Ch computes (CA’}, o, ONY
CktEnc(1*,1%,1%, C;) and sends,

A1 AN Ay AU
{((CZ y...,Cy), Local(C}, & )) }iG[Qpre+1’Q]7u€Si

to A.
e A outputs a bit b.

H A
Expt,lél,Slm(l )

e A outputs a query bound ), maximum circuit size k, total number of parties N, number
of parties p participating in any session, threshold t.

e Ch initializes the simulator Sim on input (1*,19,1%).

e Circuit Queries: A is allowed to make circuit queries. First it makes Qpre circuit
queries C1,...,Cq,,. For the i" circuit query Cj, it sends the set S; C [N], such that
|S;| = p and Ch computes,

(C,...,CN) < Sim(Cy)

and sends this to A.
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e Challenge Input Query: A can choose to output a corruption set Scorr € [N] and
input z.
If Qpre > Q or |Scorr| > t, then experiment aborts.
It outputs sets Sq,.4+1,...,5¢ C [N] such that [S;| = p for all i € [Qpre +1,Q]. S; is the
set of parties participating in the ith session.
Construct a set V = {C;, Ci(x) : i € [Qpre)}. Ch runs the simulator to get the challenge
output.

({j;u }Uescorr ’ {QZ‘L }ie [Qpre] JUES; )

such that g} = Local(éf, ") for every u € S; N Scorr. 1t sends this to A.

e Circuit queries: A then makes adaptive queries Qpre+1,...,Q. Ch computes for every
(RS [Qpre“‘laQL . R
(CL,...,CM), 9) « Sim(i, Cy, Ci(x).
It sends,
Gl CN), g }
{(( ’ ! ) yz) 1€[Qpre+1,Q],u€S;
to A.

e A outputs a bit b.

Definition A.1 (Security). A protocol Protocol is secure if for every PPT adversary A, there exists
a PPT simulator Sim such that for some negligible function negl, for all A € N,

Pr[l « Expt;"<"(1")] — Pr[1 + Expt]>™(1Y)]] < negl()).

Remark A.1. Note that the definition above differs from the security definition of the framework
in [AV19] in the following two ways -

e The servers participating in the i** session S; can be output by the adversary on the i** query
rather than the start. Additionally, the corrupted set Scory is output during the challenge
query by the adversary.

Note that in the security proof for the client server framework in Section 5.2.2 of [AV19], the
simulator uses S; first during the it session and Seopr during the challenge query and not
before this. Thus the same security proof holds.

e The experiment allows more than @ circuit queries and can choose to output a challenge
input query or not. If no challenge input query is made then Qp. can be greater than @ in
the real and ideal setting.

This change doesn’t effect the simulator as the simulator can run the real procedure during
the pre-challenge phase, and since there is no challenge input query, there is no need for
embedding the challenge in the different query responses.

We port the following theorem directly from [AV19].

Theorem A.1 ([AV19]). Let Q € N. Let N > O(A- Q?) and t < | %] and p < N. Assuming the
existence of pseudorandom generators, there exists a secure protocol Protocol with parameters t, p, N
for the circuit class P/poly. Moreover, the construction makes black box use of the pseudorandom

generators.
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B Full Proof of Theorem 3.1

Proof. Consider the following simulator for construction of Section 3.2.1. The simulators jointly
maintain an internal state. Since this simulator calls a couple instances of, Static-FE.Sim which
is also stateful, consider this simulators to implicitly track the internal state of Static-FE.Sim in
addition to the explicit state values.

So(1*,1™) - The simulator initializes A independent instances of the {Static—FE.Simi}ie[A] and runs
all the Static-FE.S) simulators with increasing values of the static collusion bound g as follows:

Vi € [\, mpk; < Static-FE.S}(1*,1", ¢ = 27).
It then outputs the public keys as an A-tuple of all these keys, i.e. mpk = (mpki)iem.

S1(f) - The simulator runs all A independent instances of the Static-FE.S! key generation simulator
as sk; s < Static-FE.S{(f) for i € [A]. It outputs the secret key sk as sk = (Skivf)ie[)\]'

So(II™,19) - The encryption algorithm simply simulates the ciphertext using the [log@]-th

Static-FE simulator as ct < Static—FE.SQogm (IT"™). (It also includes @ as part of the ci-
phertext, and tracks it in it’s internal state.)

ng(')(f) - For all i € [A]\{[log Q]}, the simulator proceeds excatly as in S;, generating sk; s

Static-FE.S! (f). For sk[log @1,f> this key component is generated as the output of Static-FE.Sg10g @l (f)-

The secret key is output as sk = (Ski»f)iem'
We can show that the adversary cannot distinguish between interacting with the above simulator
and the real scheme through a series of experiments.

Experiment j for j € [0, \].

e Setup Phase: Adversary sends (17). Fori € [j+1, \], generate mpk; < S-FE.Setup(1*, 1",q=
2%). For i € [j], initializes an instance of the weakly optimal simulator Static-FE.Sim’ and
generate mpk; < Static-FE.S{ (1%, 1", ¢ = 2%). Return {mpk; }ic|) to the adversary.

e Pre-Challenge Key Queries: Adversary sends Keygen queries of a function f. For
i € [j+ 1,)\], generate sk; ; < S-FE.KeyGen(msk;, f). For i € [j], instead run the cor-
responding weakly optimal simulator Static-FE.Sim’ and generate mpk; < Static-FE.S¥(f).
Return {sk; f };c|q) to the adversary.

e Challenge Ciphertext: Adversary sends message m and collusion bound 19. If [log Q] >
J, generate ct as S-FE.Enc(mpkfiog1,m). Otherwise, set ct as Static—FE.SQOgQ] (1™, 19).
Return (ct, Q) to adversary.

e Post-Challenge Key Queries: Adversary sends Keygen queries of a function f. For i €
[j + 1,QJ, generate sk; y < S-FE.KeyGen(msk;, f). For i € [j], instead run the corresponding
weakly optimal simulator Static-FE.Sim’. If i = [log Q], generate mpk; < Static-FE.S}(f) .
Otherwise, generate mpk; < Static-FE.S}(f). Return {sk; s};c[q] to the adversary.
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e Output: Adversary outputs a bit € {0,1}

Lemma B.1. Assuming Static-FE is a weakly-optimal static-bounded-collusion simulation-secure
FE scheme, for every PPT adversary A, every j € [)], there exists a negligible function negl(-) such
that for all A € N, [P/ (A) — P% (V)] = negl()).

Proof. Observe that the only difference between experiments j — 1 and j is how mpk; (and corre-
sponding secret keys and ciphertexts) are replaced with their simulated counterparts. Suppose A is
a distinguisher between experiments 7 — 1 and j which succeeds with noticeable probability. Then
the following A’ is a reduction which breaks strong simulation-security of Static-FE with noticeable
probability.

A'(1M)

e Setup: Run A(1*) and receive 1. Forward (17, 12j) to your challenger and receive challenge
public key mpk*. Generate mpk via experiment j — 1, except set mpk; = mpk*, and return to

A

e Pre-Challenge Key Queries: A sends Keygen queries of a function f. Query your chal-
lenger’s KeyGen oracle on f and receive secret key sk}. Generate sk; via experiment j — 1,
but set sk; y = sk} and return to A.

e Ciphertext Queries: Adversary sends message m and collusion bound 1%. If j # [log Q],
generate ct as in experiment j — 1. Otherwise, query for a challenge ciphertext on message
m nad collusion bound @, receiving ct*, setting ct = (ct*, ) and returning to .A.

e Post-Challenge Key Queries: Same as pre-challenge queries.
e A returns bit b, Output b.

Observe that when the challenge keys/ciphertexts are generated by the real scheme, this is
exactly experiment j — 1, and when they are generated by the simulated scheme, this is experiment
j. Thus, all that remains to be checked is that the queries A’ sends satisfy the admissibility
constraints of strong simulation security.

First, we can see if j # [log @], the challenge ciphertext is never requested, so by Definition 3.3,
the number of key queries can be unbounded. Alternatively, if j = [log @], recall we set the static
collusion bound to 2/ = 2M1°2@1 > Q. Since the A’ makes at most Q queries to the key generation

oracle, this case is admissible as well.
O

Note that experiment 0 is identical to the experiment played against the real scheme, while ex-
periment A is exactly the simulated experiment. Thus, we can conclude the two are computationally

indistinguishable.
O

C Full proof of Theorem 6.1

We show this through a sequence of experiments, we first show that the scheme is simulation-secure.
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Experiment 0. This is the experiment with adversary A and simulation secure tagged FE
scheme. The experiment is parameterized by A € N.

» » 17,19, 1%) «+ A(1*
{AKeyGen(msk, ,-),Enc(mpk,-, )(mpk) . (mpk rE]Sk) . Sezup(l)\(ln) 12 1q) }
) ) ) b )\eN

e Setup: (1%,19,1%) «+ A(1*). (mpk, msk) < 1TgFE.Setup(1*,17, 15*[1°8NT 1) Send mpk to
A. A is given access to two oracles, KeyGen and Enc.

e Key Queries: Let A query KeyGen on tag tg € Z, and circuit C.

1. Let this be the j-th query to the oracle and the input query be denoted by tg; € Z, C;.
Let this be the i-th query to tag tg;.

2. Sample a set Sz-tgj < [N] of cardinality p.

3. Compute (C’Jl, . ,C']'\') + CktEnc(1*,19,1%,C}). Let E}() = LocaI(CA'J”, ).

4. Generate a key for circuit E} under the one tagged scheme, ie. Vu € S;gj ) skE; +—
1TgFE.KeyGen(msk, (u, tg;), E¥). Output ({(u,skE;)}ueszgj,S;gj).

e Ciphertext Queries: Let A query Enc on tag tg* € 7, and message m'® € M,,.

1. Let Q,t,gr; be the number of key generation queries made to tag tg*. Let the set e
denote the set of all (Cj, Cj(m'")) where for j € [Q], (tg*,C}) was the key generation
query.

2. Compute (2',...,2N) + InpEnc(1*,19, 1%, mte").

3. For every u € [N], compute ct,, < 1TgFE.Enc(mpk, (u,tg*),z"). Output (cty,...,cty).
e A outputs a bit b.

We’ve included additional notational indexing to help with our hybrids.

Experiment 1. In this experiment, we pre sample the post challenge sets S;g* for queries that
come after the challenge tag tg*. The sampled sets are then used to answer post challenge key
generation queries.

e Key Queries: Let A query KeyGen on tag tg; € Z, and circuit Cj.

1. Pre Challenge Key Queries: If tg; was not queried by A to Sy, perform computation
exactly as in previous experiment.

2. Post Challenge Key Queries: Else, use S:gj as sampled in the challenge phase.
e Ciphertext Queries: Let A query Enc on tag tg* € Z, and message m'€ € M,,.

1. For every i € [Qf)gr; + 1, Q], sample a set S;g* of size p uniformly at random from [N].

2. Compute ct exactly as same as previous experiment.
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Experiment 2. In this experiment, we output L if the number of queries on a challenge tag tg*,
we have that the number of corrupted servers or the set Ségrr which denotes pairwise intersection
of {S® }iejq) exceeds some threshold t.

e Ciphertext Queries: Let A query Enc on tag tg* € Z, and message m'® € M,,.

1. For every i € | f)gr; + 1, Q], sample a set S;g* of size p uniformly at random from [N].

2. Construct a corrupted set 525;} that includes all tags that are corruped as follows,
" . . ) . t * t *
S, ={ue|N] : 3i,j€[Q],i#janduecS* USjg }.

If \825;}\ > t, output L.

3. Compute ct exactly as same as previous experiment.

e A outputs a bit b.

Experiment 3. We rely on 1TgFE security to simulate 1TgFE.

e Setup: (17,19,1%) < A(1*). Let mpk « 1TgFE.So(1*, 17, 17+[1°eNT 1) Send mpk to A.
e Key Queries: Let A query KeyGen on tag tg; € Z, and circuit Cj.

1. Pre Challenge Key Queries:

(a) Compute (C},...,CN) « CktEnc(1*,19,1%,C;). Let E¥(-) = Local(C¥, ).

(b) Sample a set Sitgj < [N] of cardinality p.

¢) Generate a key for circuit E¥ under the one tagged scheme, Yu € S8 , Skgpu <+

J v J
tg.
1TgFE.S1((u,tg;),EY, L). Output ({(u,skE?)}ueszg].,Si 7.

2. Post Challenge Key Queries:

(a) [(E\Hmpute (C’},,C’;“) « CktEnc(1*,19,1%,C). Let Ei() = Local(é}‘,-) for u €

(b) Generate a key for circuit E; under the one tagged scheme, i.e. Vu € S5,
i Ifu € Scahr,  skew < 1TgFE.Sy((u, tg;), EY, 1).9

ii. Else, skex < 1TgFE.Si((u,tg;), EY, §}') where §} = Local(Cy,&") (" is known
from the challenge message to Sa).

Output ({(u, skE;)}uesth_ ’ S:gj).

i

e Ciphertext Queries:

1. Perform the following change while computing ct. For every u € [N],

(a) Ifu € Ste. compute ct,, < 1TgFE.Enc(mpk, (u, tg), *).

9Note that on these tags, no ciphertext query is made.
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(b) Ifu ¢ SE&,. let the shares previously computed be IT, = {(EY, g} where

77 )}iG[Qf:gr:LuG[N] (
j is the query number to S; and it is the i-th query on tg;) and compute, ct,
1TgFE.So((u, tg),11,,)).

Output (cty,...,ctyn).

e A outputs a bit b.

Experiment 4;. Let each tg that is queried by adversary to both KeyGen and Enc oracle be
recorded in the set tgset. Let |tgset| = TotalQtg be the total number of unique tags queried to the
oracles. Let tgset have a well defined ordering on the tags that is defined by the time the query
was received by Sy or Sa. Let tgset; denote the k-th tag in this set. Thus tgset; > tgset, if tgset;
was received later than tgsetq.

In this experiment, for k£ € [TotalQtg + 1], we will switch tgsety, ..., tgset,_; to simulate on the
client server framework. In the end, we remove all information about m'®" for every challenge tag.

e A is given access to two oracles, KeyGen and Enc. Let tgset be a set that keeps track of the
unique tags that it sees.

¢ Key Queries:
1. Let this be the j-th query to the oracle and the input query be denoted by tg; € Z, C;.

Let this be the i-th query to tag tg;.

2. If tg; has not been queried before, add it to tgset. . If tg; > tgset; (statement is false
if |tgset| < k), then proceed exactly as in the previous experiment. Otherwise continue
below.

3. If ¢ = 1, initialize the simulator ProtocoI.Simtgj on input (1*,19,1%).

4. Pre Challenge Key Queries:
(a) Compute (C},...,CN) « Protocol.Simg (C;). . Let E¥() = Local(C¥, ).
(b) Sample a set Sl-tgj < [N] of cardinality p.

¢) Generate a key for circuit E¥ under the one tagged scheme, Yu € S8 , Skgu
Yy i ge % 5

tg.
1TgFE.S1((u, tg;), EY, L). Output ({(U’SkE?)}ueSEgj’Si 7).
5. Post Challenge Key Queries:
(a) Compute the simulated circuit, (C‘jl e ,C’jN) and {g}f}ue & Dy running Protocol.Simg;

on (i,C;,Cj(m"i)). Note we can are allowed to compute Cj(m'8). . Let EY(-) =
Local(C%, ) for u € [N].
(b) Generate a key for circuit EY under the one tagged scheme, i.e. Vu € S8,

i fue S, sker + 1TgFES)((u,tg;), EY, 1).10

ii. Else, skE}L — 1TgFE.Sl((u,tgj),E}%,g);‘) S
tg .
Output ({(u, SkE?)}uest_gj S,

7

10Note that on these tags, no ciphertext query is made.
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e Ciphertext Queries: Let A query Enc on tag tg* € Z, and message m'® € M,,.
1. Let the variables and computation on S&%ﬁ} be defined similarly as in the previous exper-
iment.
2. If tg* has not been queried before, add it to tgset.

3. If tg* > tgset;, (statement is false if |tgset| < k), then do exactly as the previous experi-
ment. Otherwise proceed below.

. tg™ * tg™* . ~
4. Compute ProtocoI.Slmtg*(l‘mg |, SE,, I™* ) 11 to obtain {;L’“}uestg*

{Qf}ie[Q;gr:]‘uesﬁg*. Additionally we have that ;' = Local(éf,:ﬁ“) for u € S;g* N SE,

and evalutations

where i € [Qf)gr;} and j is the global query number (recall i is the query number on tg*).
Note that we have completely removed the dependence on &% for u ¢ S,

5. Proceed similarly to the previous experiment i.e. for every u € [N],

(a) If u € St&, compute

cty < 1TgFE.Enc(mpk, (u,tg), z").

] Y

(b) Ifu ¢ S, let the shares we’ve previously output be noted down in I/, = {(E% Qf)}ie[Q;gr: welN]

(7 is the total query number to S where this is the i-th query on tg;) and compute,
cty < 1TgFE.Sy((u, tg), IT,).
6. Output (cty,...,cty).

e A outputs a bit b.

Analysis. Let Pj;\()\) be the probability that adversary A outputs 1 on Experiment ¢ run on
security parameter .

Lemma C.1. For every adversary A, A € N, PY(A) = PL(}).

Proof. The only changes in the two experiments are syntactical, where post challenge key genera-
tion sets S;gﬁr are sampled during the challenge phase. Since the distribution is identical in both
experiments, the probability of A outputting 1 is identical. O

Lemma C.2. For every adversary A, there exists a negligible function negl(-) such that for all
A EN, [PL(N) — PA(N)| = negl(N).

Proof. The statistical distance between the two experiments is negligible in security parameter \.
We use the following lemma proven in [GVW12].

Lemma C.3 (Small Pairwise Intersection Lemma [GVW12, AV19]). Let Q € N, set t = O(Q?)\),N =
O(Q?t?) and p = O(t). Then for some negligible function \,

Pr |:} Uiy £ig (S“ N Szz)| > t:| < negl()\).

1YWe can assume simulator knows the message length as we have the empty function description, see Footnote 6.
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In Experiment 2, we denote this set by Sé%ﬁ} for challenge tag tg* and output L for every
challenge tag. Since the number of encryption challenge queries are polynomial in A, @), from union
bounding the probability of outputting bot is still negl(\). O

Lemma C.4. If 1TgFE = (1TgFE.Setup, 1TgFE.Enc, 1TgFE.KeyGen, 1TgFE.Dec) is a simulation-
secure tagged FE scheme for collusion bound 1 (as per Definition 4.1), then for every PPT adversary
A, there exists a negligible function negl(-) such that for all A € N, [P4(X) — P ()| = negl(\).

Proof. The difference in these two experiments is that we use 1TgFE.Sim during Setup, KeyGen
and Enc to simulate. Note that the tag space for 1TgFE is 1#+11°8N] and for a challenge identity
tg* € 7., we only simulate on u ¢ 55%3, thus we are not restricted to making only one query to
1TgFE.S; for u € 82%?,. Thus this is exactly the 1TgFE security experiment and we can construct
a reduction B that proceeds as follows. The reduction B coordinates with an environment & as
defined in Definition 4.1. The environment simply ensures that relevant state information exists so
the simulator can run. We don’t explicitly show the environment transcript below for simplicity.

e Setup: It gets (17,19, Z,) from A. B outputs (17,1, 1*+°&N1) Tt sets mpk from the experi-
ment and sends it to A.

e Key Queries: Let A query KeyGen on tag tg; € Z, and circuit C;. Run as in Experiment 2,
but instead replace calls to 1TgFE.KeyGen are replaced with calls to challenge KeyGen oracle.

e Ciphertext Queries: Let A query Enc on tag tg* € Z, and message m'® € M,,. Run as
in Experiment 2, but replace calls to 1 TgFE.Enc with calls to the Enc oracle when the index
u ¢ Scttgrr-
We make the following observations on a tag tg* that was queried to Sy by A.
e For u € SE%:,, we never query 1TgFE.Sy on tag (u,tg*).
e For u ¢ Ség:r, we only query 1TgFE.S, on tag (u,tg*) on message Z* once.

e We make at most 1 query to 1TgFE.S; for all u & Si&,.

e Since the 1TgFE experiment does not place restrictions on the number of queries B can make
on non-challenge tags, for u € S&, B is allowed to make more than one query on tag (u,tg*).

e Note that §;' = E}(2") where 2* was the challenge message on tag (u,tg") output by the
simulator. Thus these are valid settings for calling 1TgFE simulator.

If A distinguishes between Experiments 2 and 3 with non-negligible probability, then B is a valid
algorithm that distinguishes between Experiments in Definition 4.1 with non-negligible probability.
Hence the advantage of A is negligible. O

Lemma C.5. If Protocol is a secure client server framework according to Definition A.1 then
for every PPT adversary A, there exists a negligible function negl(-) such that for all A € N,

PAE(N) — P (V)] = negl(N).
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Proof. The difference in these two experiments is that in the latter experiment we use Protocol.Simygget,
during KeyGen and Enc to simulate. On every query to the KeyGen, Enc oracles on tgset,,, instead
o using algorithms CktEnc, InpEnc, we simulate the circuit queries and the challenge input query.

This is exactly the Protocol security experiment on servers denoted by S;gset’“, ey Szggset’“, corrupted

tgset;

set Scarr © and input query mtset,

We construct a reduction By that proceeds as follows.

e Setup: It gets (17,19, 7,) from A(1*). By outputs a query bound @Q, maximum circuit size
x 12, total number of parties N, number of parties p participating in any session, threshold t.
Let mpk « 1TgFE.So(1*,17,1#*M°eN1 1) Send mpk to .A.

e Key Queries: Let A query KeyGen on tag tg; € 7, and circuit C;. Run as in Experiment 4*

but on tg; = tgset;, generate (C’}, e ,CA’ZN) from the Protocol challenger rather than CktEnc.
Additionally, for the post challenge phase, the Protocol simulator outputs {gy}ue 5% which

will be used to simulate 1TgFE simulator.

e Ciphertext Queries: Let A query Enc on tag tg* € Z, and message m'® € M,,. Run as
. . k _ . A . ~
in Experiment 4", but on tg* = tgset;,, obtain {xu}ueséﬁfr and evalutations {y?}iG[Qfﬁ:LuESEg*
from Protocol experiment.

e B, gets bit b from A and outputs it.

We make the following observations on a tag tgset.

e If there are no So queries on tgset,, then the experiment can make Q;%Zet’“ queries which may
be more than Q.

e If there are queries on Sy, then we ensure from the security experiment that A does not make
more than () queries on tgsety,.

If A distinguishes between Experiments 4; and 4;y; with non-negligible probability, then By is
a valid algorithm that distinguishes between Experiments in Definition A.1 with non-negligible
probability. Hence the advantage of A is negligible. Since TotalQtg is polynomial in A, we have
that the advantage between Experiments 4; and Experiments 41ota1Qtg+1 is negligible.

O

It is easy to see that Experiment 4; is exactly the same as Experiment 3 and Experiment
4TotalQtg+1 18 exactly the same as interacting with simulators Sg,S1,S2 (barring some syntactical
changes of keeping the appropriate state recorded). Thus the experiments in Definition 4.1 for
collusion bound @) are computationally indistinguishable experiments.

D Full proof of Theorem 7.1

We will show through a sequence of experiments that the real scheme and simulated scheme are
computationally indistinguishable.

2The maximum size of family of circuits F,.
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Experiment 0. This is the real non-adaptive security Experiment played between adversary A
and challenger C.

e Setup: Adversary generates (17, 19,1?). Compute (ibe.pk, ibe.msk) < IBE.Setup(1*, 1#*+logn’I+1)
giving ibe.pk to adversary and retaining ibe.msk in state.

e Key Queries: Adversary sends Keygen queries of the form (tg,C'). For i € [n], set sk; =
IBE.KeyGen(msk, (Cli], 4,tg)), and return {sk;};c[, to adversary

e Ciphertext Queries: Adversary sends message m and tag tg*. Compute a garbled
circuit. (U, {w;p}i<npefo,1}) < GC.Garble(1*,U)'®. For all (i,b) € [n] x {0,1}, set ct;p «
IBE.Enc(ibe.pk, (b,,tg"), w;p). Return ct = ", {ctipti<nbeqo,1}) to adversary.

e Output: Adversary outputs a bit € {0,1}

Experiment 1. In this experiment, we use the security of IBE to replace ciphertexts for keys
which are not given. b is used to indicate the flip bit of b.

e Ciphertext Queries: The ciphertext components ct;; are generated differently:
Let (tg*,C*) be the pre-challenge query made on tag tg*. For all i € [n], set ct, 7 <

IBE.Enc(ibe.pk, (CF, i, tg*), 0lwil), an encryption of zero (all other encryptions are computed
as before).

Experiment 2. In this experiment, we simulate the garbled circuit rather than using it directly.
By this point, the ciphertext queries are generated from (C,C(m)) and can be simulated.

e Ciphertext Queries: Compute a garbled circuit (4, {w; ¢, }i<n) ¢ GC.Sim(1*,U,C(m))

Analysis. Let 73f4()\) be the probability an adversary A returns 1 on experiment i.

Lemma D.1. Assuming ibe is a secure IBE scheme for every PPT adversary A, there exists a
negligible function negl(-) such that for all A € N, |PY(\) — PL(N)| = negl()).

Proof. We will proceed through a sequence of subhybrids where we incrementally replace portions
of the challenge ciphertexts with encryptions of 0. Let ({(tg},C")}jen) be a list of queries made

by A to Enc. Define Experiment 0°' 7" to be the following:

e Setup, Key Queries: Are played as Experiment 0

e Ciphertext Queries: Adversary sends message m; and tag tg; - For all ciphertext com-
ponents where j > j* or j = j* A4 > i*, the components cti are generated as Experiment

cH

)

0. Otherwise, said ciphertext components are replaced with an encryption of 0.

e Output: Played as Experiment 0

Claim D.1. For every adversary A, for all A € N, [P%()) — 77%1’1()\)| =0

13The structure of this universal circuit U is the same as defined in algorithm description.
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Proof. Since i and j are at least 1, the conditional never occurs, and this is Experiment 0. O

Claim D.2. Assuming ibe is a secure IBE scheme, _fqr every PPT _adversary A, there exists a
negligible function negl(-) such that for all A € N, |PY 7 (A) — PY )] = negl(A)

Proof. Notice that Experiments 0° 7" and 07 *17" only differ in how ct o7 is generated. Suppose A
1,0

is a distinguisher between Experiments 0° 7" and 0° *17" which succeeds with noticeable probability.
Then we can break IBE security with the same probability as follows:

A'(1Y)
e Setup: Receive ibe.mpk from IBE challenger and send to A

o Key Queries: Answer the key queries of A by querying the IBE challenger for secret keys
whenever needed

e Ciphertext Queries: For all ciphertexts except for ct. —, run as experiment 0*7". On this
1,C;

ciphertext, request an IBE challenge on identity (C-*j i,tg") with mg = w, and my = 0lwil.

*J
g

i
e A returns bit b, Output b.

Observe that this is exactly Experiment 0° " when the message my, is mg in the IBE game and
Experiment 0° 717" when mp = m,. In addition, recall that by 1-bounded static security, since A
queries Enc on tag tg*/, A can only make a single key query on tg*/ before the challenge. Since

A queries on C*/, we can verify that no key requests are made to identity (CF J ,i,tg*7), and all
other queries are on different tg’s, which will similarly result in different key queries. Thus, we can
see that this is an admissible IBE game and A’ distinguishes mg and m; with the same success A
distinguishes Experiment 0° /" and Experiment 0% T1J"

O
Claim D.3. For every adversary A, for all A € N, |772(L+1'j* (A — %’j*+1()\)| =0.
Proof. Since ¢ is bounded above by n, these are the same Experiment. O

Claim D.4. For every adversary PPT A, for all A € N, 3N € poly(\) : P%O’N (N) =PL(N).
Proof. Since adversary A is polynomially bounded in A, it can only make polynomially many queries
to Enc. If N exceeds said number of queries, then the Experiments are identical. ]

Taken together, the above four claims give us a polynomial sequence of experiments with negli-
gible difference between Experiments 0 and 1, and so Experiments 0 and 1 must be negligibly close
as well.

O

Lemma D.2. Assuming GC is a secure garbled circuit scheme, for every PPT adversary A, there
exists a negligible function negl(-) such that for all A € N, [P4(X) — P4 (A)| = negl(\).
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Proof. We will replace the garbled circuits requested in each challenge ciphertext with its simula-
tion. Let ({(tg], C*7)},en) be alist of queries made by A to Enc. Define Experiment 19" to be the
following:

e Setup, Key Queries: Are played as Experiment 1

e Ciphertext Queries: Adversary simulates the first j* garbled circuit queries as GC.Sim(1*,U, C*(m)).
All others garbled circuits are generated normally.

e Output: Played as Experiment 1

Claim D.5. For every adversary A, for all A € N, [P (\) — 73}41()\)| =0
Proof. Since j is at least 1, the conditional never occurs, and this is Experiment 1. O

Claim D.6. Assuming GC is a secure garbled circuit scheme for every PPT adversary A, there
exists a negligible function negl(-) such that for all A € N, [Py (\) — PY H(A)] = negl(A)

Proof. Note the only difference between these Experiments are whether the j'h garbled circuit is
simulated or not. Suppose A is a distinguisher between Experiments 17~ and 17"+ which succeeds
with noticeable probability. Then the following A’ is a reduction which breaks garbled circuit
security with the same probability.

A'(1Y)
e Setup:, Key Queries: Run as in Experiment 1
e Ciphertext Queries: Simulate the first j* — 1 garbled circuits via GC.Sim. For the j*
garbled circuit, request a sample from either GC.Garble or GC.Sim as per the garbled circuit

security Experiment. Generate all other garbled circuits using GC.Garble and proceed with
the rest of ciphertext generation as per Experiment 1.

e A returns bit b, Output b.

It’s easy to see that this is Experiment 17" when the circuit on j* comes from GC.Garble, and is
Experiment 17" ! when j*’s garbled circuit comes from GC.Sim
O

Claim D.7. For every PPT adversary A, for all A € N, 3N € poly(A) : P}L\N(/\) =PA(N).

Proof. Since adversary A is polynomially bounded in J, it can only make polynomially many queries
to Enc. If N exceeds said number of queries, then the experiments are identical. O

Taken together, the above three claims give us a polynomial sequence of experiments with
negligible difference between Experiments 1 and 2, and so Experiments 1 and 2 must be negligibly
close as well.

O

By the two lemmas above, Experiments 0 and 2 are indistinguishable, which exactly correspond
to the real and simulated experiments.
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E Full proof of Theorem 7.2

We will show through a sequence of Experiments that the real Experiment and simulated Experi-
ment are computationally indistinguishable.

Experiment 0. This is the real adaptive security Experiment played between adversary A and
challenger C.

e Setup: Adversary sends (17,19, 1%)
1. (natgfe.pk, natgfe.msk) «— NATgFE.Setup(1*,17, 17)
2. (ibe.pk, ibe.msk) « IBE.Setup(1*, 17+ logn’+1)14
3. Return (mpk = (natgfe.pk, ibe.pk)) to adversary.

e Key Queries: Adversary sends Keygen queries of the form (tg, C)

1. Let natgfe.skeg o <~ NATgFE.KeyGen(natgfe.msk, tg, C)

2. Sample by,bo, ..., by < {0,1}

3. For j € [n'], compute ibe.sk;;, < IBE.KeyGen(ibe.msk, (b, j,tg))
4

. Return skig ¢ = (natgfe.skig ¢, {bj, ibe.sk;p }je(n)) to the adversary.

e Ciphertext Queries: Adversary sends message m and tag tg.

1. Run ct’ + NATgFE.Enc(natgfe.pk, tg, m)
2. For all b € {0,1},7 € [n/], set ¢, ; = IBE.Enc(ibe.pk, (b, j, tg), ct'[5])

3. Return ct = {¢p; }pef0,1},je[n) to the adversary.

e Output: Adversary outputs a bit € {0,1}

Experiment 1. This experiment simply introduces some syntactic changes. Let st be the global
state across the different phases.

¢ Key Queries:

3. Adaptive Case: If (tg, {b1,b2,...,b,}, Adaptive,ct’) € st
(a) For j € [n'], compute ibe.sk; < IBE.KeyGen(ibe.msk, (b;, j, tg))
4. Non-Adaptive Case: If (tg, {b1,b2,..., by}, Adaptive) ¢ st
(a) For j € [n'], compute ibe.sk; < IBE.KeyGen(ibe.msk, (b;, j, tg))
(b) Add (tg,{b1,bo,..., bn }, Non-Adaptive) to st

’ )

5. Return skig o = (natgfe.skg ¢, {b;, ibe.sk;} jef)) to the adversary.

e Ciphertext Queries:

1. Adaptive Case: If (tg, {b1, b2, ..., by}, Non-Adaptive) ¢ st

1Recall n’ is the length of the natgfe ciphertext.
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a) Sample by, b, ..., b,y < {0,1}
b) Run ct’ < NATgFE.Enc(natgfe.pk, tg, m)
(c) Add (tg, {b1,b2,...,by}, Adaptive, ct’) to st
(d) For all b € {0,1},j € [n'], set ¢ ; = IBE.Enc(ibe.pk, (b, j, tg), ct'[4])
2. Non-Adaptive Case: If (tg, {b1,b2,...,by}, Non-Adaptive) € st
(a) Run ct’ + NATgFE.Enc(natgfe.pk,tg, m)
(b) For all b € {0,1},j € [n/], set ¢ ; = IBE.Enc(ibe.pk, (b, j, tg), ct'[j])

3. Return ct = {cpj }pef0,1},je[n] to the adversary.

(
(

Experiment 2. This experiment changes how the secret keys are sampled.

¢ Key Queries:

3. Adaptive Case: If (tg,{b1,b2,...,b,}, Adaptive,ct’) € st
(a) For j € [n'], compute ibe.sk;;. < IBE.KeyGen(ibe.msk, (b; @ ct'[4], j, tg))

Experiment 3. This experiment changes the way the ciphertext is sampled.

e Ciphertext Queries:

1. Adaptive Case: If (tg, {b1,bo,..., b, }, Non-Adaptive) ¢ st

(d) For all j € [n/]
— Set ¢, @erfj),; = IBE.Enc(ibe.pk, (b; @ ct'[4], 4, tg), ct'[j])

— Set ¢ zeopy,; = |BE-Enc(ibe.pk, (b; © ct'[j], j, tg, ct'[j]))

Experiment 4. This experiment reorders the way the underlying non-adaptive FE is sampled

when handling adaptive queries.

e Key Queries:

3. Adaptive Case: If (tg, {b1,bs,..., by}, Adaptive,m) € st
(a) Run ct’ «+ NATgFE.Enc(natgfe.pk, tg, m)
(b) For j € [n], compute ibe.sk;;. < IBE.KeyGen(ibe.msk, (b; © ct'[j], j, tg))

e Ciphertext Queries:
1. Adaptive Case: If (tg, {b1,b2,..., by}, Non-Adaptive) ¢ st

(b) Run-etl <« NATFE. Enc(natgfe-pkte. )
(c) Add (tg, {b1,b2,...,by}, Adaptive, m) to st
(d) For all j € [n/]

— Set ¢y, ; = IBE.Enc(ibe.pk, (b, j,tg), 0)

— Set i = IBE.Enc(ibe.pk, (b, j, tg), 1)
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Experiment 5. This experiment simulates the non-adaptive FE.

e Setup:
1. (natgfe.pk, natgfe.msk) < natgfe.So(1*, 17, 17)
¢ Key Queries:

1. Let natgfe.skig o < natgfe.Sq(tg, C, 1)
3. Adaptive Case: If (tg, {b1,bo,...,by}, Adaptive) € st
(a) Run ct’ + natgfe.Sqo(natgfe.pk, tg, (C,C'(m)))

e Ciphertext Queries:
2. Non-Adaptive Case: If (tg, {b1,b2,...,by}, Non-Adaptive) € st
(a) Run ct’ + natgfe.So(natgfe.pk, tg, [T")

e Output: Adversary outputs a bit € {0,1}

Lemma E.1. For every adversary A, for all A € N, [P{(\) — PL(\)| = 0.

Proof. The changes in Experiment 1 are entirely syntactic and do not affect the execution of the
Experiment. [

Lemma E.2. For every adversary A, for all A € N,|PL(X) — P%(\)| = 0.

Proof. In this Experiment, rather than sampling a random bit b; to give out IBE key under iden-
tity (bj,7,tg), we instead use (b; & ct'[j], j,tg). However, since b; is still a uniformly random bit
independent of ct’[j], the distribution of b; & ct’[j] is still uniform and independently random. [

Lemma E.3. If ibe is a secure IBE scheme, for every PPT adversary A, there exists a negligible
function negl(-) such that for all A € N, [P%4(X) — P3(N)] = negl()).

Proof. We will proceed through a sequence of subhybrids where we incrementally flip the bit under
portions of the challenge ciphertexts for IBE keys we do not give out. Let tgy,...,tgy be the list
of tags for which A makes a Key query proceeded by a ciphertext query.

Define Experiment 27" to be the following:

Experiment 27", This experiment changes the way the ciphertext is sampled

1. Setup: Key Queries: Play as Experiment 2.

2. Ciphertext Queries: Adversary sends message m; and tag tg, which produces ciphertext

ct’ - For all ciphertext components where j > j* or j = 7*Ai > i*, the components ctmj
. J )
are encryptions of ct”[j] (as in Experiment 2). Otherwise, said ciphertext components are
replaced with an encryption of ct’[j] (as in Experiment 3).

3. Output: Played as Experiment 2

Claim E.1. For every adversary A, for all A € N,|P%()) — il’l()\)| =0

o1



Proof. Since ¢ and j are at least 1, the conditional never occurs, and the Experiments are identical.
O

Claim E.2. If ibe is a secure IBE scheme, for every PPT adversary A, there exists a negligible
function negl(+) such that for all A € N, [P% 7 () —P% TN = negl(N)

Proof. Notice that Experiments 27" and 277 ! only differ in how ct is generated.

byx@et/i* [5%],5*
Suppose A is a distinguisher between Experiments 277" and 2¢ 7"+ which succeeds with notice-
able probability. Then the following A’ is a reduction which breaks IBE security with the same
probability.

A'(17)
e Setup: Receive ibe.mpk from IBE challenger and send to A

e Key Queries: Answer the key queries of A by querying the IBE challenger for secret keys
whenever needed

e Ciphertext Queries: For all ciphertexts except for ct run as experiment 2°7"

On this ciphertext, request an IBE challenge on identity (b; ® ct’’[j], 7, tg;-) with mg = ct’"" [j*]

and my = ct/i" [j*].
e A returns bit b, Output b.

Observe that this is exactly Experiment 27" when the message my, is mg in the IBE game and
Experiment 2¢ 7"+ when my, = m;. Note that since the ciphertext query adds (tg, {b1, b2, ..., bu, 1,ct'})
to st, any future calls to the keygen query will follow the first branch of the conditional, so keygen
will only request IBE keys on (bj« @ct}., j*, tg;«) in that component, and not on (bj+ ®ct)., j*, tg;-).
Since (tg, {b1, b2, ...b, },0) & st, we know there were no previous keygen queries on tg;., and hence
no IBE keygen queries to any identities of the form (-, -, tg;«). Thus, we can see that this is an admis-
sible IBE game and A’ distinguishes mg and m; with the same success A distinguishes Experiment
217" and Experiment 2¢ 7" +1,

O
Claim E.3. For every adversary A, for all A € N, |Pz*’n,+l()\) - E\m’l()\ﬂ =0
Proof. Since j is bounded above by n’, these are the same experiment. O

20,N

Claim E.4. For every adversary PPT A, for all A € N, 3N € poly()) : P37 (A) = P4 (N).

Proof. Since adversary A is polynomially bounded in J, it can only make polynomially many queries
to Enc. If NV exceeds said number of queries, then the experiments are identical. O

Taken together, the above four claims give us a polynomial sequence of experiments with negli-
gible difference between Experiments 2 and 3, and so Experiments 2 and 3 must be negligibly close
as well.

O]

Lemma E.4. For every adversary A, for all A € N, [P3(\) — P4(\)] = 0.
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Proof. The changes in Experiment 4 are entirely syntactic. Observe that setting

® ¢yqcrfj),; = IBE.Enc(ibe.pk, (b; & ct'[], 4, tg), ct’[4])

L4 chEBC—t’[]L] = IBEEnC(Ibepk7 (bj S Ct/[j]7j7 tg)7Ct/[J])

is equivalent to setting

e ¢y, ; = IBE.Enc(ibe.pk, (b;, j,tg), 0)

e ¢ ; = IBE.Enc(ibe.pk, (5, j, tg), 1)

for either bit value of ct;. This allows us to delay the generation of ct’ to KeyGen, (note that the
ct’ is still generated in the same way however).
O

Lemma E.5. If natgfe is a non-adaptively secure 1-bounded tagged FE scheme, for every PPT
adversary A, there exists a negligible function negl(-) such that for all A € N, [P4(X) — P53 (V)| =

negl(\).

Proof. Observe that in Experiment 5, we simply replace the calls of natgfe.Setup, natgfe.Enc and
natgfe.KeyGen with natgfe.Sy, natgfe.S1, and natgfe.So. To see that these Experiments are indis-
tinguishable, we simply need to check that the calls to satisfy the admissibility constraints of the
non-adaptive simulator.

We break our analysis into two cases for each tag - the adaptive and non-adaptive.

1. If tg is a tag where A asks for a key query before a ciphertext query.
Observe in this case, the key query sets a (tg,{b1,b2,...b,y }, Non-adaptive) into st, so the
non-adaptive key query and non-adaptive ciphertext query each happen in the corresponding
adaptive key and ciphertext query.

2. If tg is a tag where A asks for a key query after a ciphertext query.
Observe in this case, the ciphertext query sets a (tg, {b1, bo, ... b, }, Adaptive) into st, so the
non-adaptive key and ciphertext oracles are called exactly once in that order in the adaptive
ciphertext query (and not at all in the adaptive key query).

Thus, the we can argue the challenger of the above security Experiment is an admissible ad-
versary in the non-adaptive 1-bounded tagged FE Experiment, and so they must be negligibly
close.

O

Note that by Experiment 5, the key and ciphertext queries are generated exactly as in the
simulators described, where ciphertext queries are generated using only II"*. By the lemmas above,
Experiments 0 and 5 are indistinguishable, which exactly correspond to the real and simulated
Experiments.
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