
An Intermediate Secret-Guessing Attack on
Hash-Based Signatures

Roland Booth1, Yanhong Xu1, Sabyasachi Karati2, and Reihaneh Safavi-Naini1

1 Department of Computer Science, University of Calgary, Canada
2 Cryptology and Security Research Unit, Indian Statistical Institute, Kolkata, India

Abstract. Digital signature schemes form the basis of trust in Inter-
net communication. Shor (FOCS 1994) proposed quantum algorithms
that can be used by a quantum computer to break the security of to-
day’s widely used digital signature schemes, and this has fuelled inten-
sive research on the design and implementation of post-quantum digital
signatures. Hash-based digital signatures base their security on one-way
functions that in practice are instantiated by hash functions. Hash-based
signatures are widely studied and are part of NIST’s post-quantum stan-
dardization effort.
In this paper we present a multi-target attack that we call Interme-
diate Secret-Guessing attack on two hash-based signatures: XMSSMT

(Draft SP 800-208 that was considered by NIST for standardization), and
K2SN-MSS (AsiaCCS 2019). The attack allows an adversary to forge a
signature on an arbitrary message. We describe the intuition behind the
attack and give details of its application on the attacked schemes together
with corresponding theoretical analysis. The attack implies that the ef-
fective security levels of XMSS (a special case of XMSSMT), XMSSMT,
and K2SN-MSS are 10, 39 and 12 bits lower than their designed security
levels given access to 220, 260, and 220 signatures, respectively.
We implement the attack for each scheme, and give our results for re-
duced security parameters that validate our theoretical analysis. We also
show that the attack can be avoided by modifying the application of a
pseudorandom function for key generation. Our work shows the subtleties
of replacing randomness with pseudo-randomness in the key generation
of hash-based signatures, and the need for careful analysis of such de-
signs.

Keywords: Post-quantum cryptography, hash-based signatures, multi-
target attacks, XMSSMT, K2SN-MSS, implementation

1 Introduction

Hash-Based Signatures. Digital signature schemes [21] are used to authen-
ticate the origin of a message and form the basis of trust establishment for
interactions on the Internet. The security of today’s digital signature schemes
relies on the hardness of mathematical problems that have efficient solutions if
a quantum computer exists [41] and so post-quantum digital signatures must

2 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

use new computational problems that stay hard when a quantum computer of
sufficient scale is built.

The idea of hash-based signatures (HBS) dates back to the pioneering work of
Lamport [32]. A number of improvements have been proposed by Diffie, Merkle,
and Winternitz [38,37]. All these schemes are one-time, and become insecure if
two messages are signed. To use the signature scheme many-times (2h), a direct
approach is to generate 2h one-time signature (OTS) schemes. However, this
would require 2h public key and secret key pairs, which will be highly impractical
for large h. To construct a many-time signature scheme with short public key,
Merkle [37] proposed what we know as Merkle signature scheme (MSS). The MSS
uses 2h instances of OTS, each with a public and secret key pair (opki, oski), and
builds a Merkle (binary) tree whose leaves are the hashes of the public keys of the
OTS instances, and each internal node is computed as the hash of its two child
nodes. The public key consists of the root of the Merkle tree, and the secret key
contains the secret keys of all the 2h OTS instances. The signature of a message
M consists of an index i that specifies an OTS instance (opki, oski), the one-time
signature σots on M under the key opki, the key opki, and an authentication
path Authi that is used to verify the validity of opki. Since the pioneering work
of Merkle [37,38], a large number of works, e.g. [13,11,12,19,17,10], have been
proposed to improve various aspects of MSS.

In 2011, Buchmann et al. [10] proposed an extended MSS (XMSS) together
with a forward-secure [2,6] variant. To reduce the size of the secret key that
consists of the secret keys of 2h OTS instances, a pseudorandom function (PRF)
is used with an n-bit master seed to generate an n-bit OTS seed for each OTS
instance, which is in turn used to generate the secret key of that instance. There
have been a number of variants of XMSS [24,7,26,36,23,16,25,30,8] that pro-
vide higher security and efficiency. Prominently, Hülsing et al. [24] proposed a
multi-tree variant of XMSS, known as XMSSMT, which greatly improves the key
generation time and can sign virtually unlimited number of messages. This vari-
ant was later selected by NIST as the standard algorithm for stateful HBS [16].
Karati and Safavi-Naini [30] proposed K2SN-MSS scheme, that extends KSN-
OTS [28] to sign multiple messages, and proved its security in the same security
model used by XMSS. The authors gave an implementation of the scheme that
has comparable, and in some cases superior, performance compared to XMSSMT.
KSN-OTS and K2SN-MSS both use SWIFFT [34] as the hash function.

The security of modern digital signature schemes is proved against Existential
Unforgeability against Chosen Message Attack (EU-CMA) where the attacker
must generate a valid signature on some message of their choice, after querying
a signing oracle to obtain q message-signature pairs. The security proof of HBS
assumes truly random keys for OTS, and then shows that replacing truly random
keys with pseudorandom keys, which are obtained by using a PRF with a random
seed, will only reduce the security by a negligible amount. The actual generation
of the pseudorandom keys, however, is considered an implementation detail and
is not part of the security model and proof. The goal of this paper is to show that

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 3

an improper application of PRF can significantly reduce the designed security
of the scheme.

Our Contributions and Techniques. We propose an Intermediate Secret-
Guessing (ISG) attack, which is a multi-target attack, on two many-time sig-
nature schemes: an earlier version of XMSSMT and K2SN-MSS. The attack on
XMSSMT applies to SP 800-208 draft [23,15] but not the final version [16].

The attack breaks the EU-CMA security of the two schemes by outputting
a forgery on an arbitrary message. It exploits a weakness in the way the secret
key of an OTS is generated from its associated seed, without using any other
information unique to this instance such as its index. Concretely, the OTS secret
keys in [23,15,30] are generated as follows. Let seed be a master seed and F
be a secure PRF. The key generation algorithm first generates seeds for OTS
instances as seedots,i = F(seed, i) for i ∈ [0, 2h − 1], and then generates OTS
secret keys as oski = (F(seedots,i, 1), . . . ,F(seedots,i, `)). Note that both seed
and seedots,i are n bits, with n being the designed security level of the scheme.
For concreteness, we outline the attack below.

Attack in a nutshell. The attack has two phases. In the first Query Phase, the
attacker collects q ∈ [1, 2h] signatures by querying the 2h-time XMSSMT/K2SN-
MSS as a signing oracle3. Next, in the Secret-Guessing Phase, the attacker re-
peatedly guesses the value of an n-bit OTS seed.

For each guess the attacker evaluates the PRF and detects if the guessed
value is the seed used for generating one of the OTS signatures. If, for example,
the guess is the seed of the i-th OTS signature, then the secret key of the i-th
OTS instance is revealed. The seed, together with the i-th queried signature,
enables a forgery on an arbitrary message of the attacker’s choice. Since there
are in total q OTS signatures and the probability that the guess will match one
of the q targets is q/(2n), we expect to recover one of the OTS seeds after 2n/q
guesses.

How a guessed seed is matched for XMSSMT. A crucial detail missing
from the aforementioned outline is how to match a guessed seed and the seed
used in the i-th OTS signature. We note that evaluating the PRF on an OTS
seed produces the OTS secret key, which consists of ` n-bit strings. In addition,
a signature of the Winternitiz OTS scheme (WOTS+) [22] that is employed in
the XMSSMT reveals some of these ` strings directly. A straightforward method
is then to compare the j-th n-bit string generated from the guessed seed, with
the one generated from the authentic one. If they are equal, then one considers
the guess to be correct. This seed guess-verification strategy was also proposed
by ETSI CyberSupport4 in the public comment [1] on SP 800-208 draft. They
further estimated that on average there are q/w WOTS+ signatures that will
reveal the j-th n-bit string. Here, w is the Winternitz parameter. Therefore,

3 Note that XMSSMT is slightly more complicated since we have more than q OTS
signatures from q queried signatures. See Section 3 for more detail.

4 ETSI CyberSupport only outlined the idea of matching a guessed seed with the real
seed but did not develop the idea into a full attack.

4 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

the attack can only have q/w targets to compare with, and will be expected to
succeed after (2nw)/q guesses.

Our attack, that is independently discovered, starts with the same guessing
strategy. However we observe that when the j-th strings derived from the two
seeds match, with a probability around 1/2, the seed may not be the real seed.
This reduces the success chance of the attack by a factor of 1/2. To improve
the success probability of guessing the correct seed, we compare two strings
computed from the guessed seed (instead of one) with those computed from the
real one. We then show that with this tweak, that is when two strings match, the
guess is correct with overwhelming probability. We further show that at least
91% WOTS+ signatures will reveal at least two strings of its secret key. This
improves the expected number of guesses to 2n/(0.91q) by increasing the number
of targets to 0.91q.

How a guessed seed is matched for K2SN-MSS. Verifying a guessed seed
in K2SN-MSS is not as straightforward as in XMSSMT. This is because a KSN-
OTS signature does not directly reveal the strings of the secret key. Rather, the
signature is the sum of a subset of strings in the secret key that is determined by
the message. We therefore go a step further and evaluate the PRF on a guessed
seed, compute a KSN-OTS signature and then compare the computed signature
with q extracted KSN-OTS signatures. If the q messages are distinct, then one
computed KSN-OTS signature can be matched against only 1 target, rendering
the success probability of the ISG attack almost the same as that of a brute-
force attack. However, the success probability increases significantly if the same
message is used for all queries.

Analysis, implementation and experiments. We analyze our attack the-
oretically. We derive the success probability and estimate the runtime of the
attack when the number of queries and guesses are q and g, respectively, and
then provide an estimation of the effective security levels5 of the two attacked
schemes. The analysis shows that the ISG attack implies the effective security
levels of XMSS, XMSSMT, and K2SN-MSS are 10, 39, and 12 bits lower than
their designed security levels given access to q = 220, q = 260, and q = 220

signatures, respectively.

To verify our analytical results, we implement the ISG attack on XMSSMTand
K2SN-MSS, that have bit security of 256 and 512 bits, respectively. Even though
the attack diminishes their security levels, the experiment is still infeasible in
practice. We thus perform our experiments on reduced security parameter of 16
bits for both schemes that result in feasible computation, allowing us to verify
our theoretical results.

Discussion. The security implications of bad randomness in cryptosystems is
widely recognized. Numerous cryptographic algorithms that use the output of a
PRF that expands a truly random seed have been broken by adversarial control
of the random seed [43,33,42]. There have also been reported weaknesses in the
design of PRF algorithms that have led to predictable outputs [20,40]. Our work

5 Security level is calculated as log2(τ/ε), where τ is the runtime and ε is the success
probability of ISG attack.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 5

indicates that bad application of a PRF for generating structured randomness
can compromise the security of schemes with proven properties. Modeling and
proving the full security of hash based signatures, including generating random-
ness using a PRF, is an interesting direction for future research.
Related work. Shor’s algorithm [41] and the prospect of building quantum
computers at scale have fueled research on cryptographic schemes with post-
quantum security. HBS is an attractive approach to construct digital signature
schemes with post-quantum security because OWFs can be instantiated with
hash functions that have been intensively studied in recent years, and avoid
using new and less studied hardness assumptions. The security of HBS schemes
was initially reduced to the collision resistance of the hash functions, and later
to the second preimage resistance using a Merkle-like tree structure that used
random bitmasks for intermediate tree nodes. The schemes, however, become
vulnerable to a new type of attack called a multi-target attack that has been
more recently proposed by Hülsing et al. [26]. To protect against this attack,
Hülsing et al. proposed a new HBS scheme, called XMSS-T (XMSS with tight
security), in which each hash function call is keyed with a different key and uses
a different bitmask.

Leighton-Micali signature (LMS) and its hierarchical system (HSS) for mul-
tiple messages [36] use WOTS [37,38,32] as the underlying OTS scheme. Both
LMS and HSS were also selected as the standard algorithms for stateful HBS [16].
Katz [31] showed that earlier versions [35] of LMS and HSS can be subjected to
a multi-target attack. To strengthen the security of the schemes, any hash com-
putation within LMS and HSS prepends a different prefix to the value that will
be hashed. These prefixes can be seen to have the same role as using different
keys and bitmasks in [26].

All above schemes are stateful and require the signer to maintain a state
and update it after each signature. The security of stateful schemes critically
depends on the correctness of the state update. Bernstein et al. proposed the
first practical stateless HBS scheme SPHINCS [7], which was later improved in
followup works [25,3,8,5,4]. All versions submitted to the NIST post-quantum
competition6 employ the same addressing scheme as in [26] and are immune to
multi-target attacks.

Stateless signatures have also been constructed based on symmetric key prim-
itives. Picnic [14] is an example of such a scheme and uses efficient zero-knowledge
protocols based on the “MPC-in-the-head” paradigm [27]. Picnic 1.0 was shown
[18] to be vulnerable to multi-target attacks. The more recent version of Picnic,
however, is secure against these attacks.

Organization. The rest of the paper is organized as follows. In Section 2 we
briefly describe XMSSMT and K2SN-MSS. Section 3 presents our ISG attack
on XMSSMT and shows its impact on the security level of XMSSMT and Sec-
tion 4 outlines the attack and its impact on K2SN-MSS. We then present our
implementation results in Section 5. Finally, we propose countermeasures for the
attack and conclude the paper in Section 6 and Section 7, respectively.

6 https://csrc.nist.gov/projects/post-quantum-cryptography

6 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

2 Preliminaries

In this section, we briefly describe XMSSMTand K2SN-MSS.

2.1 Description of XMSSMT

XMSSMT uses a variant of WOTS+ [22] as the underlying OTS scheme. Let
w be the Winternitz parameter, n be the security parameter. The secret key is
osk = (x1, . . . ,x`) that contains ` strings of bit size n. The public key is opk =
(y1, . . . ,y`) where each yi is computed from xi by applying a PRF w− 1 times.
To sign a message M ∈ {0, 1}n, one first computes its base-w representation
BM = (b1, . . . , b`) and output a signature σ = (z1, . . . , z`) where zi is computed
from xi by applying the PRF bi times. Specifically, if bi = 0, then zi = xi. The
signature is considered valid if one is able to obtain opk by applying the PRF
w− 1− bi times on zi for all i ∈ [1, `]. More details can be found in Appendix A
or [26,23].

Fig. 1: A schematic representation of an XMSSMT instance with d = 3 layers
(Left) and the authentication path (yellow nodes) for the leaf 4 in a Merkle Tree
of height 3 (Right).

An XMSS instance is a Merkle tree whose leaves are the WOTS+ instances.
An XMSSMT instance is essentially a tree of XMSS instances, called a hyper
tree, where the XMSS trees on the lowest layer sign the actual messages, and the

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 7

XMSS trees on the upper layers sign the roots of the XMSS trees below them.
In Figure 1, we give a representation of an XMSSMT instance with 3 layers.
Consider an XMSSMT tree of the total height h that has d layers of XMSS trees
of height h′ = h/d. Let the root value of the sole XMSS tree on layer d − 1
be Root. The public key consists of Root and some other public information,
while the secret key contains seedRand and a master seed ∈ {0, 1}n. The former
is used to compute a randomness R whenever we need to sign a message while
the latter is to compute all the secret keys of the WOTS+ instances. Concretely,
to compute the secret key of an OTS instance, the algorithm first generates seeds
of all XMSS trees as seedxmss = F(seed, s‖t), where s is the layer of the XMSS
tree and t is the index of the tree within that layer. Next, it generates seeds for
all OTS instances within a specific XMSS tree as seedots,i = F(seedxmss, i) for

i ∈ [0, 2h
′ − 1]. Finally, the secret strings of the i-th OTS instance computed as

xi,j = F(seedots,i, j) for j ∈ [1, `]. We note that the input to the generation of
xi,j does not depend on the index i and this fact is exploited in our ISG attack.

An XMSSMT signature of a message M is of the form

Σ = (i, R, σ0,Auth0, . . . , σd−1,Authd−1),

where i ∈ [0, 2h − 1] is the index that specifies the ij-th WOTS+ instance
within the i′j-th XMSS tree on the layer j for all j ∈ [0, d − 1] (see Figure 1),
R = F(seedRand, i), σ0 is the one-time signature on the message digest D =
Hmsg(R‖Root‖i,M) ∈ {0, 1}n with Hmsg being a hash function, and σj is the
one-time signature on the root value Ri′j

for j ∈ [1, d− 1]. To verify a signature
Σ on M , one first computes D as described above, and proceeds as follows. It
computes the i0-th WOTS+ public key opki0 from the message-signature pair
(D,σ0). Then root Ri′0

of the i′0-th XMSS tree on the layer 0 is computed from
opki0 and Auth0. This procedure is then repeated for layers 1 to d−1 until root
Ri′d−1

of the i′d−1-th XMSS tree on the layer d− 1 is obtained. The signature Σ
is valid if Ri′d−1

= Root.

2.2 Description of K2SN-MSS

We now give a very brief overview of the K2SN-MSS protocol [30]. It is a single-
tree MSS where the underlying OTS is the KSN-OTS scheme [28]. The latter
is an OTS scheme that employs an additive homomorphic hash function family
SWIFFT [34]. The secret key is osk = (x1, . . . ,xt) that consists of t binary strings
of size n̂m̂ while the public key is opk = (y1, . . . ,yt) where yi = SWIFFTk(xi)
for some key k specifying the SWIFFT function. To sign a message M ∈ {0, 1}m,
one first derives a subset BM of {1, 2, . . . , t} from M and then computes the
signature as σ =

∑
j∈BM

(xj). Here |BM | = t/2. The signature is considered
valid if SWIFFTk(σ) =

∑
j∈BM

(yj) mod p and σ has small entries. More details
can be found in [28].

In order to sign 2h messages, K2SN-MSS builds a Merkle tree on top of 2h

KSN-OTS instances. The public key consists of the root of the tree and some
other public information while secret key is a master seed ∈ {0, 1}n. The seed

8 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

is used to generate secret keys of those 2h KSN-OTS instances as in XMSSMT.
Specifically, it first generates seeds for all OTS instances as seedots,i = F(seed, i)
for all i ∈ [0, 2h−1]. Next, it computes the secret strings of the i-th OTS instance
as xi,j = F(seedots,i, j) for all j ∈ [1, t]. The fact that xi,j does not depend on
the index i is exploited in our ISG attack.

A K2SN-MSS signature of a messageM is of the formΣ = (i, σi, opki,Authi),
where i is the index of the used OTS instance, σi is the one-time signature on
M under the public key opki of the i-th OTS instance, and Authi is the au-
thentication path. The signature is valid if σi is a valid signature on M and that
opki is authenticated against Authi. We observe that the signing algorithm
here is not randomized as in XMSSMT, which makes forging a signature quite
straightforward once we guess correctly the seed of a KSN-OTS instance.

3 ISG Attack on XMSSMT

We first give an overview of our ISG attack on XMSSMT. We assume that the
attacker has access to q ∈ [1, 2h] signatures on the same message MQ

7 and
repeatedly guess WOTS+ seeds for at most g ∈ [1, 2n] times. The goal of the
attack is to output a forgery ΣF on a message MF of the attacker’s choice
with the condition that MF 6= MQ. Note that in Step 1, q′ > q since there are
WOTS+ instances on higher layers other than layer 0. In Step 2, we only store
pairs that reveal at least two strings (out of `) of their secret keys. In Step 3, we
simply guess the seed as an n-bit representation of 0 up to g − 1.

1. From the q queried signatures, extract q′ WOTS+ message-signature pairs.
2. Out of q′ pairs, filter out those that contain less data (about their underlying

secret keys) than some threshold. For the remaining pairs, store the data in
some tables for efficient match in the next step.

3. For each guess seed′ ∈ [0, g − 1], derive a corresponding PRF output and
compare with the stored data.

4. If a match is found for seed′, output a forgery ΣF on MF using seed′.

In the following, we show in Section 3.1 how to verify the legitimacy of a guessed
seed. Section 3.2 describes how to forge a signature if the guessed seed is legit-
imate and Section 3.3 gives the detailed description of the attack. Lastly, we
analyze the runtime and success probability of the attack in Section 3.4.

3.1 Verifying a WOTS+ Seed Guess for XMSSMT

Consider an XMSS tree within an XMSSMT hyper tree. Let seedots,i and oski be
the seed and the secret key of the i-th WOTS+ instance in this XMSS tree, and
let σi be a signature on a message M computed from oski. Given only the pair
(M,σi), we want to determine if a guessed seed′ is equal to the legitimate seed

7 This is not compulsory in our attack on XMSSMT, which randomizes the message
before signing it.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 9

seedots,i. Recall that the secret key of the i-th WOTS+ instance is computed
as

oski = (xi,1, . . . ,xi,`) = (F(seedots,i, 1), . . . ,F(seedots,i, `)),

To sign a message M , one first computes BM = (b1, . . . , b`) and outputs the
signature σi = (z1, . . . , z`) such that zj = xi,j if bj = 0 for some j ∈ [1, `].
Verifying a guess against one WOTS+ signature. Given a signature σi =
(z1, . . . , z`) and its corresponding message M , find two indices k1 and k2 such
that bk1

and bk2
are zero. Then zk1

and zk2
are the k1-th and the k2-th elements

of oski. If there are no such indices, then this test is inconclusive. Next, we
compute osk′ = (x′1, . . . ,x

′
`) from seed′ by evaluating PRF F , and check if

x′k1
= zk1

and x′k2
= zk2

. If they are equal, we claim that seed′ = seedots,i

with all but negligible probability. Fix a WOTS+ signature as above and let
seedots,i be the real seed. Then

Pr[seed′ = seedots,i|(x′k1
= xk1) ∧ (x′k2

= xk2)]

=
Pr[(seed′ = seedots,i) ∧ (x′k1

= xk1) ∧ (x′k2
= xk2)]

Pr[(x′k1
= xk1) ∧ (x′k2

= xk2)]

=
E1

E1 + E2
,

where E1 = Pr[(seed′ = seedots,i) ∧ (x′k1
= xk1) ∧ (x′k2

= xk2)] = 1
2n ,

E2 = Pr[(seed′ 6= seedots,i) ∧ (x′k1
= xk1

) ∧ (x′k2
= xk2

)] = (1 − 1
2n) 1

22n ,
and the probability is taken over seed′ ∈ {0, 1}n. Note that conditioned on
seed′ 6= seedots,i, distributions of x′k1

,x′k2
are indistinguishable from ran-

dom distribution over {0, 1}n due to the security of F . One then sees that
E1/(E1 + E2) is all but negligible.

The reason to compare two elements instead of just one is because a similar
argument shows that Pr[seed′ = seedots,i|x′k1

= xk1
] ≈ 1

2 . In other words,
seed′ is not seedots,i with probability around 1/2 if the k1-th strings derived
from the guessed seed and the real seed match only.
Verifying a guess against multiple WOTS+ signatures. Given q message-
signature pairs (M0, σ0), . . . , (Mq−1, σq−1) from q WOTS+ instances, the goal
is to determine efficiently if a guess seed′ is the seed of one of these instances.
For each pair (Mi, σi), we discard those whose signatures do not reveal at least
two strings of their secret keys. For the remaining ones, we extract exactly two
strings and then construct a tuple that contains these strings and the index i so
we know which pair these strings are extracted from. The tuples will be sorted
into tables that can be efficiently searched.

To this end, we build `−1 tables T1, . . . ,T`−1. For k1 ∈ [1, `−1], Tk1
contains

tuples of the form (xk1 , k2,xk2 , i) indexed by xk1 . Here xk1 ,xk2 are two strings
of the secret key revealed in σi.

Next, compute osk′ = (x′1, . . . , x′`) from a guessed seed′ as before. Then
for every k1 ∈ [1, ` − 1], use a binary search algorithm to search Tk1

, checking
whether it contains a tuple indexed by x′k1

. Suppose that, for some index k1, we
find a tuple (x′k1

, k2, xk2
, i) in Tk1

. Using the index k2, we further compare x′k2

10 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

with xk2
. If equal, we conclude that seed′ is the underlying seed for computing

σi, as shown in Section 3.1.
Note that to uniquely identify the location of a WOTS+ signature σ in an

XMSSMT tree, one must know the index i of the XMSSMT signature that σ is
extracted from and the hyper tree layer j that σ belongs to. To this end, we
store tuples of the form (xk1

, k2, xk2
, i, j) instead.

3.2 Using a WOTS+ Seed to Forge a Signature

Let us now describe how to forge an XMSSMT signature once we guess cor-
rectly the underlying seed of a WOTS+ instance. Let an XMSSMT signature on
message Mi be

Σi = (i, R, σ0,Auth0, . . . , σd−1,Authd−1).

Suppose we have guessed the seed seed′ of σj from Σi, and now want to forge an
XMSSMT signature on an arbitrary message MF . We proceed as follows. Recall
that the index i specifies that σj is from the ij-th WOTS+ instance in the i′j-th
XMSS tree on layer j of the hyper tree.
Case 1: j = 0. It implies that seed′ is the seed of the i0-th WOTS+ instance
which is used to sign Di = Hmsg(R‖Root‖i,Mi). To compute a forged signature
ΣF on MF , we first compute a WOTS+ signature on the digest of MF and
then replace σ0 in Σi with the new signature. (Recall that σ0 is a signature on

Di.) Concretely, compute D̂i = Hmsg(R‖Root‖i,MF) and a WOTS+ signature

σ0,F of D̂i using the seed′. Let ΣF = (i, R, σ0,F ,Auth0, . . . , σd−1,Authd−1) be
obtained by substituting σ0 with σ0,F . It is straightforward to verify the validity
of ΣF .
Case 2: 0 < j ≤ d−1. It implies that seed′ is the seed of the ij-th WOTS+ in-
stance that is used to sign the root Ri′j−1

of the i′j−1-th XMSS tree on layer j−1.

Recall that during the verification process of the pair (Mi, Σi), one computes
WOTS+ public keys and XMSS roots opki0 , Ri′0

, opki1 , Ri′1
, . . . , opkid−1

, Ri′d−1
se-

quentially and then compares Ri′d−1
with Root. Since Mi is legitimately signed,

the computed values are the real ones and in particular Ri′d−1
= Root.

To compute a forged signature ΣF , our strategy is to run the verification
algorithm on (MF , Σi) up to the point that the (fake) root value of i′j−1-th
XMSS tree is computed. Then we compute a WOTS+ signature on this (fake)
root value using the seed′, and replace σj in Σi with the new signature. Since
the new WOTS+ signature is legitimately signed, one is able to compute the
real WOTS+ public key opkij . In fact, from this point on, all the computed
WOTS+ public keys and XMSS roots are the real ones and thus the signature
is considered valid. Concretely, we perform the following steps.

To begin with, compute D̂i = Hmsg(R‖Root‖i,MF). Next, compute a fake

i0-th WOTS+ public key ôpki0 from the pair (D̂i, σ0), and a fake root R̂i′0

from ôpki0 and Auth0 as in the verification process of XMSSMT described in
Section 2.1. This procedure is repeated for layers 1 to j − 1 until a fake root

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 11

R̂i′j−1
is obtained. Then compute the signature σj,F of the root R̂i′j−1

using

seed′. Finally, replace σj in Σi with σj,F , we obtain

ΣF = (i, R, σ0,Auth0, . . . , σj,F ,Authj , . . . , σd−1,Authd−1).

3.3 ISG Attack on XMSSMT

Putting everything together, we are ready to describe our ISG attack on XMSSMT.
The inputs of the attack are the number of signature queries q ∈ [1, 2h] and the
number of seed guesses g ∈ [1, 2n], and the output is a forgery (MF , ΣF) if
successful, or empty otherwise.

The attack initializes a set Smss to store the response from the signing ora-
cle, and ` − 1 tables T1, . . . ,T`−1 as described in Section 3.1 to store the data
extracted from WOTS+ signatures. It operates in two phases.

In the Query Phase, the attacker queries the signing oracle with an ar-
bitrarily chosen MQ for q times. On the i-th query, an XMSSMT signature
Σi = (i, R, σ0,Auth0, . . . , σd−1,Authd−1) is obtained and then stored in Smss.
From Σi, d WOTS+ message-signature pairs

(Di, σ0), (Ri′0
, σ1), . . . , (Ri′d−2

, σd−1)

are computed. This can be done by running the XMSSMT verification algorithm.
For each σj = (zj,1, . . . , zj,`) with j ∈ [0, d− 1], let zj,k1 , zj,k2 be two strings of
secret key revealed and then insert (zj,k1

, k2, zj,k2
, i, j) to table Tk1

. If no two
such strings exists, discard σj . Note that the WOTS+ signatures on layers 1 to
d− 1 may be repeated and thus are ignored once they appear again.

In the Secret-Guessing Phase, the attacker repeatedly guesses WOTS+ seeds
until it succeeds, or runs out of the g guesses. Let seed′ be the j-th guess. It first
computes osk′ = (x′1, . . . ,x

′
`) from seed′ and then searches tables T1, . . . ,T`−1.

If there exists a tuple (zk1
, k2, zk2

, i, j) such that zk1
= x′k1

, zk2
= x′k2

, we know
that seed′ is the underlying seed of the j-th WOTS+ instance from the i-th
queried signature with all but negligible probability. Thus, a forged signature
ΣF on the message MF of the attacker’s choice can be computed (as long as
MF 6= MQ) as described in Section 3.2. Otherwise, we move to the next guess.
If no forgery is computed after g guesses, return ⊥.

3.4 Analysis of ISG Attack on XMSSMT

Number of targets. To calculate the success probability of our attack, it is
crucial to find out the number of targets NTargets. Recall that we have q′ WOTS+
message-signature pairs. However, not all of them are valid targets to be matched
against. Let P be the probability that a WOTS+ signature on a random message
reveals at least two strings of its secret key. Then NTargets = q′ · P . It is not
hard to verify that q′ =

∑d−1
i=0 d

q

2h′·i
e, where h′ = h

d . Furthermore, P is lower

bounded by 1− (1− 1
w)`1 − `1

w (1− 1
w)`1−1. (See Appendix B for details.) Given

parameters w = 16, n = 256, `1 = 64 for WOTS+, P ≥ 0.9153.

12 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

Success probability of the ISG attack. The success probability of the ISG
attack on XMSSMT and inputs q ∈ [1, 2h], g ∈ [1, 2n] is:

SuccEU-CMA
XMSSMT,A(q, g)

(1n) = 1−
(2n − g

2n

)NTargets

.

The attack outputs a forgery if and only if a guessed seed′ equals one of the
NTargets seeds, or equivalently, at least one of the NTargets seeds is in the set
[0, g−1]. Note that these seeds are the outputs of a pseudorandom function whose
output distribution over {0, 1}n is indistinguishable from random. Therefore, the
probability that none of these seeds is in the set [0, g − 1] can be approximated

as (2n−g
2n)NTargets , and the success probability is thus 1− (2n−g

2n)NTargets .
How the runtime is measured. We measure the algorithmic time as the
number of hash function evaluations, PRF evaluations, and the comparisons of
O(n)-bit strings. Denote these atomic operations as cHash,cPRF and cComp.
Runtime of the ISG attack. The runtime of the ISG attack on an instance
of XMSSMT with the inputs q ∈ [1, 2h] and g ∈ [1, 2n] is

τXMSSMT(q, g) ≤ q · τMsgDigest + (q′ − q) · τXMSSRootAvg (1)

+ NTargets · log
(NTargets

`− 1

)
· cComp (2)

+ g ·

(
` · cPRF + (`− 1) · log

(NTargets

`− 1

)
· cComp

)
(3)

+ τComputeForgeryIS. (4)

The time complexity of the attack is dominated by, (1) the time to compute the
q′ WOTS+ message-signature pairs, (2) the time to sort NTargets targets, (3)
the time to search against the ` − 1 tables, and (4) the time to compute the
forgery. Details are in the Appendix B.
Effective security level of XMSSMT. Following [17], the bit security of a dig-
ital signature scheme (DSS) is estimated as log2

(
τDSS(q, g)/SuccEU-CMA

DSS,A(q, g)(1
n)
)
.

Using the above formulas, we evaluate the effective security levels of XMSS and
XMSSMT in Table 1. In the calculations, we assume cHash = cPRF = cComp = 1.

Table 1: Effective security level of XMSS and XMSSMT on concrete parameter
sets.

Scheme Designed
security
level

Scheme parameters Attack param-
eters

Effective
security
level

XMSS n = 256 w = 16, ` = 67, h = 20 q = 220, g = 2205 246.06

XMSSMT n = 256 w = 16, ` = 67, h = 60
d = 12

q = 260, g = 2205 216.84

From the table, we see that the effective security levels of XMSS and XMSSMT

are 10 and 39 bits lower than their designed security levels. These results demon-

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 13

strate the significant effect of our attack. It is worth noting that our attack is
more effective on XMSSMTdue to significantly more target values.

4 ISG Attack on K2SN-MSS

We now give an outline of the ISG attack on K2SN-MSS. Assume that the
attacker has access to q ∈ [1, 2h] signatures on the same message MQ, and
guesses KSN-OTS seeds for at most g ∈ [1, 2n] times. The aim of the attack is
to output a forged signature ΣF on an arbitrary message MF where MF 6= MQ.
It is crucial that all queries use the same message MQ. This is because, unlike
WOTS+, a KSN-OTS signature does not reveal strings of the secret key directly.
Instead, a KSN-OTS signature reveals a sum of t/2 strings of its secret keys where
the choice of the strings used for the sum depends on the message being signed.

1. From the q queried signatures, simply extract q KSN-OTS signatures.
2. Sort the q KSN-OTS signatures by interpreting the signatures as bit strings.
3. For each guess seed′ ∈ [0, g−1], evaluate the PRF on t/2 inputs determined

by BMQ
and sums the t/2 outputs. (This is equivalent to signing MQ us-

ing the secret key derived from seed′.) Compare the sum with the stored
signatures using a binary search algorithm.

4. If a match is found for seed′, output a forgery ΣF on MF using seed′.

We show how to verify the correctness of a guessed seed in Section 4.1, and how
to forge a signature if we guess the seed correctly in Section 4.2. Section 4.3
describes our attack on K2SN-MSS and its runtime and success probability.

4.1 Verifying a KSN-OTS Seed Guess for K2SN-MSS

Let σi be a signature of the messageMQ derived from seedots,i for some i. To test
if seed′ is seedots,i, it is tempting to simply evaluate PRF on two inputs using
seed′ and then compare with the extracted data as the attack on XMSSMT. As
we observe, however, this is impossible since KSN-OTS signature does not reveal
strings of its secret key directly. To solve this issue, we compute a KSN-OTS
signature on MQ as σ′ =

∑
j∈BMQ

F(seed′, j) and then compare it with σi. If

σ′ = σi, we claim that seed′ = seedots,i with overwhelming probability. Let

Pr[seed′ = seedots,i|σ′ = σi] =
Pr[(seed′ = seedots,i) ∧ (σ′ = σi)]

Pr[σ′ = σi]

=
E1

E1 + E2
,

where E1 = Pr[(σ′ = σi) ∧ (seed′ = seedots,i)] = 1
2n , E2 = Pr[(σ′ = σi) ∧

(seed′ 6= seedots,i)] ≤ (1 − 1
2n) 1

2n̂m̂ , and the probability is taken over seed′ ∈
{0, 1}n. Note that conditioned on seed′ 6= seedots,i, σ

′ is the addition of t/2
pseudorandom elements over {0, 1}n. Therefore, Pr[σ′ = σi|seed′ 6= seedots,i] ≤(

maxj

(
t/2
j

)
1

2t/2

)n̂m̂ ≤ 1
2n̂m̂ . Since t = 262, n̂m̂ = 2n in [30], the probability

E1/(E1 + E2) = 1− E2/(E1 + E2) is all but negligible. This proves our claim.

14 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

4.2 Using a KSN-OTS seed to forge a signature

It is quite easy to forge a signature on MF once we guess seedots,i. Let the i-th
queried signature beΣi = (i, σi, opki,Authi). We simply compute the KSN-OTS
signature σF on MF using seedots,i, and output ΣF = (i, σF , opki,Authi). It
is straightforward to verify the validity of ΣF on MF .

4.3 ISG Attack on K2SN-MSS and Its Analysis

ISG attack on K2SN-MSS. The inputs of the attack are q ∈ [1, 2h] and
g ∈ [1, 2n] as in Section 3.3, and the goal is to output a forgery (MF , ΣF). The
attack initializes a set Smss to store the received signatures from the signing
oracle, and a table Tots to store the extracted KSN-OTS signatures. It operates
in two phases.

In the Query Phase, the attacker queries the signing oracle with an arbitrary
message MQ for q times. On the i-th query, a signature Σi = (i, σi, opki,Authi)
is received and stored in Smss. From Σi, we extract σi and insert (σi, i) in Tots

that is indexed by σi. Note that for all i, σi is a signature on MQ.
In the Secret-Guessing Phase, the attacker guesses the KSN-OTS seeds until

it succeeds, or runs out of the g guesses. Let seed′ be the j-th guess. The
attacker first computes σ′ =

∑
j∈BMQ

F(seed′, j), and then searches in Tots. If

there is a tuple (σi, i) such that σi = σ′, then the attacker knows seed′ is the
underlying seed with overwhelming probability as shown in Section 4.1. Thus, a
forged signature ΣF on MF can be computed as described in Section 4.2. If it
did not return any forgery after g guesses, abort.
Success probability of the ISG attack. Note that unlike XMSSMT, the
attack on K2SN-MSS has exactly q valid targets from the q queried signatures.
Thus, following Section 3.4, the success probability of the ISG attack on K2SN-
MSS using the inputs q ∈ [1, 2h], g ∈ [1, 2n] is:

SuccEU-CMA
K2SN-MSS,A(q, g)(1

n) = 1−
(2n − g

2n

)q
.

Runtime of the ISG attack. The runtime of the ISG attack on an instance
of K2SN-MSS with the inputs q ∈ [1, 2h] and g ∈ [1, 2n] is given as:

τK2SN(q, g) ≤ q · log q · cComp + g · (t
2
· cPRF + log q · cComp) +

t

2
· cPRF.

The runtime is dominated by (1) the time to sort the q KSN-OTS signatures,
(2) the time to compute a KSN-OTS signature from a guessed seed and compare
it with the sorted signatures, and (3) the time to compute a forgery if the attack
succeeds. In the worst case, we have to run the guesses g times.
Effective security level of K2SN-MSS. We estimate the new security level of
K2SN-MSS as log2

(
τK2SN-MSS(q, g)/SuccEU-CMA

K2SN-MSS,A(q, g)(1
n)
)
. As in Section 3.4,

we choose cHash = cPRF = cComp = 1. For parameters n = 512, n̂ = 64, m̂ = 16,
t = 262, h = 20, the effective security level of K2SN-MSS is 500.15 for q = 220

and g = 2250. This is 12 bits lower than the designed security level 512.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 15

5 Implementation and Experiments

We implemented the ISG attacks on XMSSMT and K2SN-MSS utilizing imple-
mentations from [39]8 and [29] as the signing oracles. Our implementation can
be found in [9]. In order to make the attack feasible and obtain a meaningful
performance estimate, we reduce the search space of the attack by fixing all but
the least significant n′ = 16 bits of OTS seeds. No other changes are made to
the attacked schemes.
Description of the experiments. Our two experiments are performed on
Skylake Intel R©CoreTMi7-6700 4-core CPU @ 3.40GHz running. The system
has 8GB RAM and the timing experiments are performed on a single core. The
OS is 64-bit Ubuntu-18.04 LTS and C codes are compiled by GCC version 7.5.0.
During the experiments, the turbo boost and hyper-threading are turned off.

For each experiment, we performed 1000 trials on each of the possible input
pairs (q, g) where q ∈ {1, 22, 24, 26, 28} and g ∈ {1, 22, 24, . . . , 214, 216}. From
these trials we obtain an average runtime and success probability of the attack.
Results of the experiments. Figure 2 and Figure 3 show some of our experi-
mental results. Figure 2 shows that the theoretical and actual success probabil-
ities of the ISG attack on XMSSMT and K2SN-MSS are well matched.

20 24 28 212 216

2−14

2−12

2−10

2−8

2−6

2−4

2−2

20

Number of guesses g

S
u
cc

es
s

p
ro

b
a
b
il
it

y

Theor. vs. actual succ. prob. of ISG attack on XMSSMT

Theoretical succ. prob. when q = 20

Actual succ. prob. when q = 20

Theoretical succ. prob. when q = 28

Actual succ. prob. when q = 28

20 24 28 212 216

2−16

2−14

2−12

2−10

2−8

2−6

2−4

2−2

20

Number of guesses g

S
u
cc

es
s

p
ro

b
a
b
il
it

y

Theor. vs. actual succ. prob. of ISG attack on K2SN-MSS

Theoretical succ. prob. when q = 20

Actual succ. prob. when q = 20

Theoretical succ. prob. when q = 28

Actual succ. prob. when q = 28

Fig. 2: Theoretical and actual success probability of ISG attack on
XMSSMT(Left) and K2SN-MSS (Right).

We note that the theoretical runtime is a count of the atomic operations while
the actual runtime is in milliseconds. Figure 3 shows that both the theoretical
and the actual runtimes increase at a similar rate as the number of guesses
increase. Also note that the actual runtime begins to grow more slowly as g

8 For XMSSMT, we use the commit “fb7e3f8edce8d412a707f522d597ab3546863202”
that is published on Apr 24, 2019 as the weakness was fixed in later commits.

16 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

20 24 28 212 216
20

26

212

218

224

Number of guesses g

T
h
eo

re
ti

ca
l

ru
n
ti

m
e

(a
to

m
ic

o
p

er
a
ti

o
n
s)

Theor. vs. actual runtime of ISG attack on XMSSMT

Theoretical runtime when q = 20

Actual runtime, when q = 20

Theoretical runtime when q = 28

Actual runtime when q = 28

20

26

212

218

224

A
ct

u
a
l

ru
n
ti

m
e

(m
il
li
se

co
n
d
s)

20 24 28 212 216
20

26

212

218

224

230

Number of guesses g

T
h
eo

re
ti

ca
l

ru
n
ti

m
e

(a
to

m
ic

o
p

er
a
ti

o
n
s)

Theor. vs. actual runtime of ISG attack on K2SN-MSS

Theoretical runtime when q = 20

Actual runtime when q = 20

Theoretical runtime when q = 28

Actual runtime when q = 28

20

26

212

218

224

230

A
ct

u
a
l

ru
n
ti

m
e

(m
il
li
se

co
n
d
s)

Fig. 3: Theoretical and actual runtime of ISG attack on XMSSMT(Left) and
K2SN-MSS (Right).

gets close to its maximum value due to that our actual attack terminates before
making all the g guesses.

6 Mitigations Against the ISG Attack

To protect against the ISG attack, the generation of the pseudorandom keys for
OTSs must be revised. Recall that in XMSSMT, oski is generated as

oski = (xi,1, . . . ,xi,`) = (F(seedots,i, 1), . . . ,F(seedots,i, `)).

To prevent the attack, it suffices to generate oski by having the input to F
dependent on the position of the OTS instance. Specifically, one computes the
secret key of the i-th WOTS+ instance within an XMSS tree as

oski =
(
F(seedots,i, s‖t‖i‖1), . . . ,F(seedots,i, s‖t‖i‖`)

)
,

where s is the layer of the XMSS tree and t is the index of that tree within
layer s.

The same strategy can also be used for K2SN-MSS. Specifically, one can
generate oski in the following manner:

oski = (xi,1, . . . ,xi,t) = (F(seedots,i, i‖1), . . . ,F(seedots,i, i‖t)).

ETSI CyberSupport [1] also proposed a fix to prevent the attack by gener-
ating each secret string as

xi,j = F(seedXMSS,Addres),

where seedXMSS is the seed of an XMSS tree and Addres is the unique address
of xi,j within the hyper tree.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 17

7 Concluding Remarks

We proposed a multi-target attack called the ISG attack on XMSSMT and K2SN-
MSS, two hash-based signature schemes with provable security. The attacks,
however, do not contradict the security proofs of the two schemes because the
pseudorandom generation of secret keys is outside the security model and proofs
of these schemes, and is considered an implementation detail of the algorithms.
Thus our attack can be seen as an attack on the implementation. As discussed
above, preventing the attack is straightforward. However, proving the soundness
of using a secure PRF in an MSS structure remains a non-trivial open ques-
tion. Our results show once again the importance of detailed specifications of
cryptographic systems, and not leaving out important details that are needed in
practice.

Acknowledgment

The works of Roland Booth, Yanhong Xu and Reihaneh Safavi-Naini were sup-
ported in part by Alberta Innovates Strategic Chair in Information Security
Grant and Natural Sciences and Engineering Research Council of Canada Dis-
covery Grant. Roland Booth was also supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), [funding reference number
551629 - 2020]. (Roland Booth a été financé par le Conseil de recherches en sci-
ences naturelles et en génie du Canada (CRSNG), [numéro de référence 551629
- 2020].)

A Description of WOTS+

We now describe the WOTS+ used in [26,23]. Let w be the Winternitz param-
eter, n be the security parameter, and F : {0, 1}n × {0, 1}n → {0, 1}n be a

secure hash function. Define `1 =
⌈

n
log2(w)

⌉
and `2 =

⌊
log2(l1(w−1))

log2(w)

⌋
+ 1, and

` = `1 + `2. The secret key of WOTS+ is osk = (x1, . . . ,x`) ∈ ({0, 1}n)` and
the public key is opk = (y1, . . . ,y`) where yi = cw−1,0(xi,aci ,PubSeed). Here
aci is the address of the i-th chain within the OTS instance, PubSeed is a pub-
lic seed, and ci,j(x,ac,PubSeed) = F (ki,j , c

i−1,j(x,ac,PubSeed) ⊕ ri,j) and
c0,j(x,ac,PubSeed) = x for all j ∈ Z+, where ki,j , ri,j are pseudorandomly
computed. To sign a message M , one first computes a base-w representation
M = (M1, . . . ,M`1), then computes the checksum C =

∑`1
j=1(w − 1−Mj) and

its base-w representation C = (C1, . . . , C`2). Set B = (b1, . . . , b`) = M‖C. The
signature of M is

σ = (z1, . . . , z`) = (cb1,0(x1,ac1 ,PubSeed), . . . , cb`,0(x`,ac` ,PubSeed)).

The signature σ = (z1, . . . , z`) is considered valid if for all j ∈ [1, `]: yj =
cw−1−bj ,bj (zj ,acj ,PubSeed).

18 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

B Deferred Details of the ISG Attack on XMSSMT

Lower bound on P . Consider a WOTS+ signature σ on a random message M ,
let B = (b1, . . . , b`) be its base-w representation. The number of secret strings
revealed in σ is the same as the number of bi such that bi = 0. Given a random
message M , the probability that bi = 0 for i ∈ [1, `1] is 1

w . Unfortunately, there
is no easy way to calculate the probability that bi = 0 for i ∈ [`1 + 1, `]. To this
end, we provide a lower bound for P . Denote E as the number of bi such that
bi = 0 for i ∈ [1, `] and F as the number of bi such that bi = 0 for i ∈ [1, `1],
then we obtain the following:

P = Pr[E ≥ 2] ≥ Pr[F ≥ 2] = 1− Pr[F = 0]− Pr[F = 1]

= 1− (1− 1

w
)`1 − `1

w
(1− 1

w
)`1−1.

Runtime of ISG attack on XMSSMT. In Table 2, we give the details of the
runtime of our ISG attack on XMSSMT.

Subroutine Runtime

Compute WOTS+ chain node τWOTS+ChainNode = 2 · cPRF + cHash

Compute WOTS+ signature (on average)∗ τWOTS+SignAvg ≈ ` · cPRF + ` · (w−1)
2

·
τWOTS+ChainNode

Compute WOTS+ public key from a
message-signature pair (on average)

τWOTS+PKAvg ≈ ` · (w−1)
2

· τWOTS+ChainNode

Compute XMSSMT tree node τTreeNode = 3 · cPRF + cHash

Compute XMSSMTmessage digest τMsgDigest = cPRF + cHash

Compute XMSS tree root from a WOTS+
message-signature pair and authentication
path

τXMSSRootAvg = τWOTS+PKAvg + (`− 1 +h′) ·
τTreeNode

Compute XMSSMT signature forgery from
a WOTS+ seed (in the worst case)?

τComputeForgeryIS = τMsgDigest + (d − 1) ·
τXMSSRootAvg + τWOTS+SignAvg

∗: Computation of a WOTS+ signature includes
∑`

j=1 bj computation of the chain
node, where (b1, . . . , b`) is the base-w representation of a message M and its check-
sum C. On average,

∑`
j=1 bj = ` · w−1

2
. Similarly, computation of a WOTS+ public

key includes
∑`

j=1(w − 1 − bj) computation of the chain node, which on average

is
∑`

j=1 bj = ` · w−1
2

.
?: In the worst case, the guessed seed is on layer d−1. This implies that computation

of a forgery contains computation of the message digest, d − 1 XMSS tree roots
and a WOTS+ signature.

Table 2: Runtimes of subroutines of ISG attack on XMSSMT.

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 19

References

1. Public comments on draft sp 800-208. https://csrc.nist.

gov/CSRC/media/Publications/sp/800-208/draft/documents/

sp800-208-draft-comments-received.pdf, accessed: 12/10/2020
2. Anderson, R.: Two remarks on public key cryptology. Unpublished. Available from

http://www. cl. cam. ac. uk/users/rja14 (1997)
3. Aumasson, J.P., Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S.,

Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T., et al.: Sphincs
(2020), round 3 Submisstion to NIST Post Quantum Project

4. Aumasson, J., Endignoux, G.: Clarifying the subset-resilience problem. IACR
Cryptol. ePrint Arch. 2017, 909 (2017)

5. Aumasson, J., Endignoux, G.: Improving stateless hash-based signatures. In:
Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 219–242. Springer (2018)

6. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener,
M.J. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer (1999)

7. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EU-
ROCRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer (2015)

8. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: The sphincs+ signature framework. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J. (eds.) CCS 2019. pp. 2129–2146. ACM (2019)

9. Booth, R., Karati, S.: Isg attack. https://github.com/rmbooth2/isg-attack

(Dec 2020), accessed: 2021-16-16
10. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - A practical forward secure signa-

ture scheme based on minimal security assumptions. In: Yang, B. (ed.) PQCrypto
2011,. LNCS, vol. 7071, pp. 117–129. Springer (2011)

11. Buchmann, J., Dahmen, E., Klintsevich, E., Okeya, K., Vuillaume, C.: Merkle
signatures with virtually unlimited signature capacity. In: Katz, J., Yung, M. (eds.)
ACNS 2007. LNCS, vol. 4521, pp. 31–45. Springer (2007)

12. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In:
Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78.
Springer (2008)

13. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS - an
improved merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 349–363. Springer (2006)

14. Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Picnic: A family of post-quantum secure digital sig-
nature algorithms. https://microsoft.github.io/Picnic/

15. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller,
C.A.: Recommendation for stateful hash-based signature schemes. NIST Spe-
cial Publication (SP) 800-208 draft (2019), https://doi.org/10.6028/NIST.SP.
800-208-draft

16. Cooper, D.A., Apon, D.C., Dang, Q.H., Davidson, M.S., Dworkin, M.J., Miller,
C.A.: Recommendation for stateful hash-based signature schemes. NIST Special
Publication (SP) 800-208 (2020), https://doi.org/10.6028/NIST.SP.800-208

17. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer (2008)

https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://github.com/rmbooth2/isg-attack
https://microsoft.github.io/Picnic/
https://doi.org/10.6028/NIST.SP.800-208-draft
https://doi.org/10.6028/NIST.SP.800-208-draft
https://doi.org/10.6028/NIST.SP.800-208

20 Roland Booth, Yanhong Xu, Sabyasachi Karati, and Reihaneh Safavi-Naini

18. Dinur, I., Nadler, N.: Multi-target attacks on the picnic signature scheme and
related protocols. In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology - EU-
ROCRYPT 2019 - 38th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part III. Lecture Notes in Computer Science, vol. 11478, pp. 699–727.
Springer (2019)

19. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) IMACC 2005. LNCS, vol. 3796, pp. 96–115. Springer (2005)

20. Gjøsteen, K.: Comments on dual-ec-drbg/nist sp 800-90, draft december 2005 (04
2006)

21. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

22. Hülsing, A.: W-OTS+ - shorter signatures for hash-based signature schemes. In:
Youssef, A.M., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS,
vol. 7918, pp. 173–188. Springer (2013)

23. Hülsing, A., Butin, D., Gazdag, S.L., Rijneveld, J., Mohaisen, A.: Xmss: extended
merkle signature scheme. Tech. rep., RFC 8391 (2018)

24. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSS MT. In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E.R., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer (2013)

25. Hülsing, A., Rijneveld, J., Schwabe, P.: Armed SPHINCS - computing a 41 KB
signature in 16 KB of RAM. In: Cheng, C., Chung, K., Persiano, G., Yang, B.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 446–470. Springer (2016)

26. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based
signatures. In: Cheng, C., Chung, K., Persiano, G., Yang, B. (eds.) PKC 2016.
LNCS, vol. 9614, pp. 387–416. Springer (2016)

27. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge proofs from
secure multiparty computation. SIAM J. Comput. 39(3), 1121–1152 (2009)

28. Kalach, K., Safavi-Naini, R.: An efficient post-quantum one-time signature scheme.
In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 331–351.
Springer (2015)

29. Karati, S.: K2sn-mss. https://github.com/skarati/K2SN-MSS (Jun 2019), ac-
cessed: 2020-01-21

30. Karati, S., Safavi-Naini, R.: K2SN-MSS: an efficient post-quantum signature. In:
Galbraith, S.D., Russello, G., Susilo, W., Gollmann, D., Kirda, E., Liang, Z. (eds.)
AsiaCCS 2019. pp. 501–514. ACM (2019)

31. Katz, J.: Analysis of a proposed hash-based signature standard. In: Chen, L.,
McGrew, D.A., Mitchell, C.J. (eds.) SSR 2016. LNCS, vol. 10074, pp. 261–273.
Springer (2016)

32. Lamport, L.: Constructing digital signatures from a one way function. Tech. Rep.
CSL-98 (October 1979), this paper was published by IEEE in the Proceedings of
HICSS-43 in January, 2010.

33. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. IACR Cryptol. ePrint Arch. 2012, 64 (2012)

34. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest
proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
54–72. Springer (2008)

35. McGrew, D., Curcio, M.: Hash-based signatures. Internet-Draft draft-
mcgrew-hash-sigs-02 (2014), https://datatracker.ietf.org/doc/html/

draft-mcgrew-hash-sigs-02

https://github.com/skarati/K2SN-MSS
https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-02
https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-02

An Intermediate Secret-Guessing Attack on Hash-Based Signatures 21

36. McGrew, D., Curcio, M., Fluhrer, S.: Leighton-Micali hash-based signatures. Tech.
rep., RFC 8554 (2019), https://doi.org/10.17487/RFC8554

37. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer (1989)

38. Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D. Thesis, Stan-
ford University (1979)

39. Rijneveld, J., Hülsing, A., Cooper, D., Westerbaan, B.: xmss-
reference. https://github.com/XMSS/xmss-reference/commit/

fb7e3f8edce8d412a707f522d597ab3546863202 (Apr 2019)
40. Schoenmakers, B., Sidorenko, A.: Cryptanalysis of the dual elliptic curve pseudo-

random generator. IACR Cryptol. ePrint Arch. 2006, 190 (2006)
41. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factor-

ing. In: FOCS 1994. pp. 124–134. IEEE Computer Society (1994)
42. Strenzke, F.: An analysis of openssl’s random number generator. In: Fischlin, M.,

Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016. LNCS, vol. 9665,
pp. 644–669. Springer (2016)

43. Yang, G., Duan, S., Wong, D.S., Tan, C.H., Wang, H.: Authenticated key exchange
under bad randomness. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 113–
126. Springer (2011)

https://doi. org/10.17487/RFC8554
 https://github.com/XMSS/xmss-reference/commit/fb7e3f8edce8d412a707f522d597ab3546863202
 https://github.com/XMSS/xmss-reference/commit/fb7e3f8edce8d412a707f522d597ab3546863202

	An Intermediate Secret-Guessing Attack on Hash-Based Signatures
	Introduction
	Preliminaries
	Description of XMSSMT
	Description of K2SN-MSS

	ISG Attack on XMSSMT
	Verifying a WOTS+ Seed Guess for XMSSMT
	Using a WOTS+ Seed to Forge a Signature
	ISG Attack on XMSSMT
	Analysis of ISG Attack on XMSSMT

	ISG Attack on K2SN-MSS
	Verifying a KSN-OTS Seed Guess for K2SN-MSS
	Using a KSN-OTS seed to forge a signature
	 ISG Attack on K2SN-MSS and Its Analysis

	Implementation and Experiments
	Mitigations Against the ISG Attack
	Concluding Remarks
	Description of WOTS+
	Deferred Details of the ISG Attack on XMSSMT

