
Constructing and Deconstructing Intentional
Weaknesses in Symmetric Ciphers

Christof Beierle1, Tim Beyne2, Patrick Felke3, and Gregor Leander1

1 Ruhr University Bochum, Bochum, Germany firstname.lastname@rub.de
2 imec-COSIC, KU Leuven, Leuven, Belgium firsname.lastname@esat.kuleuven.be

3 University of Applied Sciences, Emden/Leer, Germany
patrick.felke@hs-emden-leer.de

Abstract. Deliberately weakened ciphers are of great interest in politi-
cal discussion on law enforcement, as in the constantly recurring crypto
wars, and have been put in the spotlight of academics by recent progress.
A paper at Eurocrypt 2021 showed a strong indication that the security
of the widely-deployed stream cipher GEA-1 was deliberately and secretly
weakened to 40 bits in order to fulfill European export restrictions that
have been in place in the late 1990s. However, no explanation of how
this could have been constructed was given. On the other hand, we have
seen the MALICIOUS design framework, published at CRYPTO 2020,
that allows to construct tweakable block ciphers with a backdoor, where
the difficulty of recovering the backdoor relies on well-understood cryp-
tographic assumptions. The constructed tweakable block cipher however
is rather unusual and very different from, say, general-purpose ciphers
like the AES.
In this paper, we pick up both topics. For GEA-1 we thoroughly explain
how the weakness was constructed, solving the main open question of
the work mentioned above. By generalizing MALICIOUS we – for the
first time – construct backdoored tweakable block ciphers that follow
modern design principles for general-purpose block ciphers, i.e., more
natural-looking deliberately weakened tweakable block ciphers.

Keywords: cryptanalysis · GPRS · GEA-1 · stream cipher · tweakable
block cipher · LFSR · malicious · invariant attacks

1 Introduction

The design of deliberate and often hidden weaknesses in (symmetric) crypto-
graphic primitives has a long history, both in practical examples as well as in
academic constructions. For the former, among the most famous examples are
the block cipher DES [31], for which the key size was deliberately weakened to
56 bits, and the pseudonumber generator Dual EC DRBG, which was equipped
with a backdoor (see [27]) by a proper selection of its parameters. We refer

© IACR 2022. This article is an extended version of the version to be published in
the proceedings of CRYPTO 2022.

2 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

to [8] for a detailed survey on the standardization and the weakness of Dual
EC DRBG. We also like to mention the Russian cipher GOST (R 34.12-2015),
aka Kuznyechik, where the S-box was shown to have undisclosed structures [28].
In [11] a nice argument was given that this structure is indeed very unlikely to
appear by chance.

For academic constructions, we have seen approaches based on hiding a
highly-biased linear approximation [32, 30] over a block cipher and approaches
based on partitioning cryptanalysis [18], where the backdoor consists of a parti-
tion of the plaintext space that is preserved under the encryption function [26,
5, 17]. The latter approach is related to invariant subspace attacks [23] and non-
linear invariant attacks [35]. In the case of hash functions, the work [1] showed
how to design malicious variants of SHA-1 with built-in collisions.

For all of these academic constructions, the designers either do not claim
security of the backdoor in the sense that it cannot be recovered even if its
general form is known, or there is an attack which recovers the backdoor from
the specification of the cipher (see e.g., [38]).

The interest into deliberately weakening symmetric primitives has been in-
creased recently, again with respect to both aspects. On the one hand, the
work [7] showed that there is a strong indication that the security of the widely
deployed cipher GEA-1 was deliberately and secretly weakened to 40 bits in order
to fulfill European export restrictions. On the other hand, we have seen the MA-
LICIOUS design framework [29] that allows to construct a tweakable block cipher
with a backdoor. One of the interesting features within this framework is that
the difficulty of recovering the backdoor relies on well-understood cryptographic
principles.

The MALICIOUS Framework. The authors defined the following four notions
a cryptographic backdoor can fulfill, which we directly quote from [29].

– Undetectability: this security notion represents the inability for an
external entity to realize the existence of the hidden backdoor.

– Undiscoverability: it represents the inability for an attacker to find
the hidden backdoor, even if the general form of the backdoor is
known.

– Untraceability: it states that an attack based on the backdoor should
not reveal any information about the backdoor itself.

– Practicability: this usability notion stipulates that the backdoor is
practical, in the sense that it is easy to recover the secret key once
the backdoor is known.

The basic idea of the MALICIOUS framework is to construct a tweakable
block cipher such that for a particular malicious tweak pair (t, t′), the instance
of the cipher for this tweak pair exhibits a differential property that allows for a
practical cryptoanalytic attack. The tweak pair (t, t′) is secured by being a pair
of preimages for outputs of an extendable-output function (XOF) H.

Constructing and Deconstructing Intentional Weaknesses 3

With such a construction, the backdoor fulfills the notions of practicability,
undiscoverability, and undetectability, but not untraceability.

The instances given in [29] are based on the block cipher LowMC [2]. The
drawback is that the round function needs to be constructed by using a rather
complex (basically random) linear layer and a partial S-box layer. As suggested
for future work in [29], it would be interesting to find similar constructions which
are based on cryptoanalytic attacks other than differential cryptanalysis, as this
might lead to more natural instances.

Deliberate Weakness in GEA-1. General Packet Radio Service (GPRS) is a
mobile data standard based on the GSM (2G) technology, and was widely de-
ployed during the late 1990s and the early 2000s. At the cryptographic level, the
data processed by the GPRS protocol is protected by a stream cipher. In 1998,
ETSI Security Algorithms Group of Experts (SAGE) initially designed the pro-
prietary 64-bit encryption algorithm GEA-1 for this purpose. The cipher GEA-1

is depicted in Figure 2 and consists of three LFSRs with different lengths and a
non-linear Boolean function combining their outputs to produce the keystream.

Although classical algebraic attacks on GEA-1 (e.g., those based on lineariza-
tion) are hard to conduct in practice because of the limit on the data available to
an adversary, in [7] the authors showed that GEA-1 does not achieve an adequate
security level. Indeed, they presented an attack on GEA-1 with complexity cor-
responding to a security level of 40 bits. It is based on a simple but remarkable
observation: After the linear initialization procedure, the joint state of two of the
LFSRs have a joint entropy of only 40 bits, whereas their joint size adds up to 64
bits. This loss of entropy directly leads to a classical meet-in-the-middle attack
with time complexity 240. Recently, in [3], the authors presented an attack on
GEA-1 with the same time complexity but a reduced memory complexity of only
4 MiB (instead of 44.5 GiB).

The authors of [7] further analyzed how frequently this surprising observation
occurs for randomly chosen LFSRs. For this, they replaced the (two) LFSRs used
in GEA-1 by primitive LFSRs in Galois mode of the corresponding size chosen
uniformly at random and computed the loss of entropy. After roughly one million
trials, the maximal loss that was observed was at most 9 bits,4 demonstrating
that this behavior is (i) very rare and thus (ii) most likely built in to keep the
ciphers effective strength at 40 bits.

One important question was not answered in [7], namely: How was this config-
uration of LFSRs constructed? By extrapolating the experimental observations
given in [7, Table 2], we estimate the cost of constructing this simply by ran-
domly picking primitive LFSRs to be in the range of roughly 247 trials, summing
up to around 265 binary operations in total.5 Taking into account that the design

4 When considering all possible combinations of two of the three registers in GEA-1,
the maximal observed loss was 11 bits.

5 We estimate the number of expected solutions to be s · 2−2d+1, where s denotes the
sample space and d the desired entropy loss. For each sample, one has to solve a
linear system of dimension 64 to compute the entropy loss.

4 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

is already more than 20 years old, the cost of this would have been prohibitive.
This strongly indicated that there must be a more elaborated and efficient way
of achieving the desired setting.

1.1 Our Contribution

Deconstructing GEA-1: Choosing LFSRs with a Hidden Weakness. In
the case of GEA-1 we answer the open question on how to construct a GEA-1-
like cipher with such a reduced security. Our observations and analysis, relying
mainly on the polynomial representation of the involved LFSRs, imply that the
actual GEA-1 instance could have been obtained from our construction.

For this we describe the states, the initialization and the intersection of states
by polynomials over F2. This description allows to formulate the conditions for a
set-up that enables an attack as the one on GEA-1 in terms of divisibility of state
polynomials by the characteristic polynomial of the LFSRs. In a second step, we
explain a possible construction of pairs of LFSRs with the desired entropy loss.
The general idea here is to turn the problem around by starting with elements
in the kernel and then searching for suitable LFSRs.

We show by decomposing the kernel of GEA-1 that it can be easily constructed
using our approach. As GEA-1 is then only one example of the (re?)-discovered de-
sign strategy, we elaborate about other possible parameter choices in Section 3.2
and discuss the limits of this approach.

As a side remark, the above mentioned use of LFSRs in Galois mode can now
also be justified: A Fibonacci LFSR that is based on a random characteristic
polynomial, and thus very likely has many taps, is unfavorable to implement in
software and thus unusual. For an LFSR in Galois mode, the choice of a random
characteristic polynomial resulting in many taps is desirable.

In contrast to the MALICIOUS framework, the weakness in GEA-1 is based on
hiding a cryptoanalytic attack. This approach has the drawback that in principle
everybody can recover this attack and can decipher messages encrypted with this
system. Thus, this design fails to fulfill three of the four conditions for a backdoor
proposed by [29], i.e., undiscoverability, undetectability and untraceability.

Constructing Backdoors: Trivial and Natural Variants of MALICIOUS.
As described above, the original MALICIOUS framework was formulated in terms
of differential cryptanalysis only. For our results, we use a naturally generalized
version of the framework.

Our contribution is twofold. First, we show that any (tweakable) block cipher
can be tweaked in a very simple way in order to comply with the MALICIOUS
framework. In a nutshell, the idea of constructing such an instance is to check
if the message hashes to a certain fixed value and if so, return the key instead
of the encrypted message. If the hash does not match, the cipher is executed
unchanged.

While this example shows that the initial goals of the MALICIOUS framework
can be achieved in a trivial way, this artificial construction does not give further

Constructing and Deconstructing Intentional Weaknesses 5

insights on how to construct hidden weaknesses. Ideally, a malicious designer
would aim for constructing a rather natural instance which follows modern design
principles in symmetric cryptography and for which a sound design rationale
can be formulated. Towards achieving this goal, we propose two new instances
of the MALICIOUS framework as our second contribution. While the instances
presented in [29] rely on the existence of a high-probability differential, we base
our construction on an invariant subspace, resp., nonlinear invariant, for the
malicious tweak value. As we argue, this allows for more natural instances. In
particular, in Section 5, we show how to use the round function of the Advanced
Encryption Standard (AES) and to adapt the key schedule in order to embed a
backdoor based on an invariant subspace over the round function. More precisely,
we exploit an invariant subspace that is already known since 2004, see [22]. In
Section 6, we construct a dedicated cipher, called Boomslang, that embeds a
backdoor based on a nonlinear invariant over two consecutive round functions.

Compared to previous constructions not based on the MALICIOUS frame-
work, in particular [26] and [30], our constructions also directly improve upon
the usability of the backdoor as they enable significantly more practical key-
recovery attacks.

Our constructions constitute the first backdoored ciphers that follow modern
design principles of general-purpose block ciphers, and are expected to achieve
competitive performance characteristics.

Ethical Aspect of Our Research. We (the authors) do not have the goal
to support people in building intentionally weakened ciphers. A first step in
order to prevent the use of intentionally weakened designs in the future is to
investigate the design space of such constructions. Only when knowing what
potential attackers, in this case acting as malicious developers of cryptographic
primitives, are capable of doing, we are able to prevent them from doing so.

2 GEA-1 and its Cryptoanalytic Properties

In this section we recall the description of the stream cipher GEA-1 as well as
its weakness, both as presented in [7]. Before doing so, we define and recall the
basic mathematics behind the cipher.

2.1 Preliminaries

As usual, a matrix A ∈ Fm×n2 corresponds to a linear map from Fn2 to Fm2 by
matrix-vector multiplication from the right. Thus the ith column of A is the
image of ei := (0, 0, . . . , 1, 0 . . . , 0) ∈ Fn2 , i.e., the ith canonical unit vector.

Galois mode LFSRs. We recall some basic facts about linear feedback shift
registers (LFSRs) in Galois mode, as depicted in Figure 1. For further reading
we refer to [34, pp. 378 ff.] and [19, p. 227].

6 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

. . .

∧ ∧ ∧ ∧ ∧

. . .

l0 l1 ln−2 ln−1

a0 a1 an−3 an−2 an−1

Fig. 1: An LFSR in Galois mode.

Given an LFSR L in Galois mode of degree n with entries in F2, clocking the
state l = (l0, . . . , ln−1) is equivalent to the matrix-vector multiplication

GL · l =


a0 1 0 · · · 0
a1 0 1 · · · 0
...

...
...

. . .
...

an−2 0 0 · · · 1
an−1 0 0 · · · 0




l0
l1
...

ln−2
ln−1

 =


a0l0 + l1
a1l0 + l2

...
an−2l0 + ln−1

an−1l0

 .
The characteristic polynomial of GL is

g := det(XIn +GL) = Xn + a0X
n−1 + · · ·+ an−2X + an−1 ∈ F2[X]

and is a multiple of the minimal polynomial of GL. Here, In denotes the n× n
identity matrix. Although LFSRs in Galois mode can be defined more generally,
we only consider the case where g is primitive. That is, g is the minimal polyno-
mial of an element α ∈ F2n that generates the multiplicative group F×2n . In this
case, g is also the minimal polynomial of GL. Only primitive polynomials are of
cryptographic interest as they correspond to LFSRs with a maximal period of
2n−1. Since primitive polynomials are necessarily irreducible, we have an−1 6= 0,
which is equivalent to the fact that GL is invertible. Conversely, any primitive
polynomial g corresponds to an (invertible) companion matrix of an LFSR in
Galois mode with minimal polynomial g.

Galois matrices. In the sequel, the matrix GL will be called a Galois matrix
of degree n and the corresponding minimal polynomial the Galois polynomial.
Moreover, given an LFSR L in Galois mode with minimal polynomial g, we also
denote the Galois matrix by Gg if appropriate.

To describe our construction, we need the following properties of Galois ma-
trices. These are well-known facts from classical ring or field theory respectively
(e.g., see [24, 36]). To keep the paper self-contained and to enhance readability
we include a proof below.

Theorem 1. Given a Galois matrix Gg of degree n with primitive Galois poly-
nomial g, let F2[Gg] := {∑m

i=0 tiG
i
g | m ∈ N, t ∈ Fm+1

2 } be the subring of Fn×n2

generated by Gg and let (g) denote the ideal generated by g ∈ F2[X]. Then the
following statements are true.

1. The map ψ : F2[X]/(g) → F2[Gg] defined by ψ(
∑m
i=0 tiX

i) =
∑m
i=0 tiG

i
g is

a ring isomorphism.6

6 Note that we use
∑m

i=0 tiX
i as a shorthand for the corresponding coset of F2[X].

Constructing and Deconstructing Intentional Weaknesses 7

2. Every nonzero element v ∈ Fn2 is Gg-cyclic, i.e., {v,Ggv, . . . , Gn−1g v} is a
basis for Fn2 .

Proof. By the definition of minimal polynomials, the set of all polynomials p
with p(M) = 0 for a matrix M with minimal polynomial q is equal to the ideal
(q). Since (q) is a maximal ideal, F2[X]/(q) is a finite field of degree n over F2.
As remarked above, g is primitive and the minimal polynomial of Gg. Thus, the
canonical map φ : F2[X] −→ F2[Gg] : p 7→ p(Gg) has kernel (g) and hence ψ is
an isomorphism by the first isomorphism theorem.

For the second claim, suppose the vectors v,Ggv, . . . , G
n−1
g v are linearly de-

pendent. Then there exist t0, . . . , tn−1 ∈ F2 such that not all ti equal zero and∑n−1
i=0 tiG

i
g v =

(∑n−1
i=0 tiG

i
g

)
v = 0 .

By applying the isomorphism ψ−1, we get that 0 6= ∑n−1
i=0 tiX

i ∈ F2[X]/(g) as

the degree of the polynomial
∑n−1
i=0 tiX

i is at most n− 1 and not all ti are equal

to zero. As F2[X]/(g) is a finite field, any nonzero element such as
∑n−1
i=0 tiX

i

is invertible. Since any isomorphism maps invertible elements to invertible el-
ements, it follows that

∑n−1
i=0 tiG

i
g is invertible. Hence

(∑n−1
i=0 tiG

i
g

)
v 6= 0 as

v 6= 0. This is a contradiction and therefore, v is Gg-cyclic. ut

Remark 1. Note that F2[X]/(g) is a field. The matrix Gg is the representation
matrix of the linear mapping p 7→ Xp over the finite field F2[X]/(g) with respect
to the basis Xn−1, Xn−2, . . . , 1. This connection to a central mapping in the
theory of finite fields (also called Galois fields), the so-called left multiplication,
leads to the name for these kind of LFSRs.

The following corollary is extensively used in the remainder of this paper.
The proof is a straightforward application of Theorem 1 and therefore omitted.

Corollary 1. Let e0 denote the vector e0 := (1, 0, . . . , 0) ∈ Fn2 and Gg a Galois
matrix of degree n for a primitive polynomial g. Then, for m ≥ 0, ti ∈ F2, i =
0, . . . ,m, we have

∑m
i=0 tiG

i
ge0 = 0 if and only if g divides

∑m
i=0 tiX

i in F2[X].

2.2 Description of GEA-1

We now turn to the description of GEA-1, and in particular the mechanism used
to initialize the LFSR registers.

Keystream generation. The keystream is generated from three LFSRs over F2,
called A,B and C, together with a 7-bit non-linear filter function f . The registers
A, B and C have lengths 31, 32 and 33, respectively and the LFSRs work in
Galois mode. In particular, the Galois polynomials corresponding to LFSRs A,

8 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

B and C are

gA = X31 +X30 +X28 +X27 +X23 +X22 +X21 +X19 +X18 +X15

+X11 +X10 +X8 +X7 +X6 +X4 +X3 +X2 + 1 ,

gB = X32 +X31 +X29 +X25 +X19 +X18 +X17 +X16 +X9 +X8

+X7 +X3 +X2 +X + 1 ,

gC = X33 +X30 +X27 +X23 +X21 +X20 +X19 +X18 +X17 +X15

+X14 +X11 +X10 +X9 +X4 +X2 + 1 ,

respectively. The function f belongs to a class of cryptographically strong Boolean
functions that can be decomposed into two bent functions on 6 bits. For the con-
siderations below, the choice of f is irrelevant and we omit it here.

When all registers have been initialized (see below), the actual keystream
generation starts. This is done by taking the bits at seven specified positions
in each register to be the input to f . The outputs of the three f -functions
are XORed together to produce one bit of the keystream. Figure 2 shows the
particular feedback positions of each register, as well as which positions form
which input to f . After calculating a single keystream bit, all registers are clocked
once each before the process is repeated to generate the next bit.

f

f

f

ai

bi

ci

zi

A

B

C

Fig. 2: Overview of the keystream generation of GEA-1 [7].

Initialization. The cipher is initialized using a non-linear feedback shift register
S of length 64. This register is filled with zeros at the start of the initialization
process. The input for initializing GEA-1 consists of a public 32-bit initialization
vector iv, one public bit dir (indicating direction of communication/uplink or
downlink in a cellular network), and a 64-bit secret key k. The initialization
starts by clocking S for 97 times, feeding in one input bit with every clock. The
input bits are introduced in the order iv0, iv1, . . . , iv31, dir, k0, k1, . . . , k63. When
all input bits have been loaded, the register is clocked another 128 times with

Constructing and Deconstructing Intentional Weaknesses 9

zeros as input. The feedback function consists of f , XORed with the bit that is
shifted out, and XORed with the next bit from the input sequence.

After S has been clocked 225 times, the content of the register is taken
as a 64-bit vector s = (s0, . . . , s63). This string is taken as a seed for initial-
izing A,B and C as follows. First, all three registers are initialized with ze-
ros. Then, each register is clocked 64 times, with an si-bit XORed onto the
bit that is shifted out before feedback. Register A inserts the bits from s in
the natural order s0, s1, ..., s63. The sequence s is cyclically shifted by 16 posi-
tions before being inserted to register B, so the bits are entered in the order
s16, s17, . . . , s63, s0, . . . , s15. For register C the sequence s is cyclically shifted by
32 positions before insertion starts. Figure 3 depicts the process for register B.
If any of the registers A,B or C end up in the all-zero state, the bit in position
zero of the register is forcibly set to one before keystream generation starts.

s16, s17, . . . , s63, s0, s1, . . . , s15

Fig. 3: Initialization of register B [7].

As already observed in [7], if we exclude the unlikely case that any of the
three registers A,B or C is still in the all-zero state after the shifted insertion of
s, the initialization process of the three registers with the string s is obviously
linear and therefore there exist three matrices MA ∈ F31×64

2 , MB ∈ F32×64
2 and

MC ∈ F33×64
2 such that α = MAs, β = MBs, and γ = MCs, where α, β and γ

denote the states of the three LFSRs after the initialization phase.

2.3 The Attack on GEA-1

Let us consider the initialization matrices MA ∈ F31×64
2 , MB ∈ F32×64

2 and
MC ∈ F33×64

2 such that α = MAs, β = MBs, and γ = MCs. We exclude here
the unlikely case that α, β or γ is still in the all-zero state after the shifted
insertion of s. These three matrices have full rank. This implies that the number
of possible starting states after initialization is maximal when each LFSR is
considered independently, i.e., there are 231 − 1 possible states for register A,
232−1 possible states for register B, and 233−1 possible states for register C, as
should be expected. This corresponds to the linear mappings represented by MA,
MB and MC having kernels of dimension of at least 33, 32 and 31, respectively.
However, when considering pairs of registers, one gets a decomposition of F64

2 as
a direct sum of the kernels of the linear mappings. In [7] it was observed that if
one denotes TA,C := ker(MA) ∩ ker(MC) and UB := ker(MB), then

dim(TA,C) = 24, dim(UB) = 32, and UB ∩ TA,C = {0} .
From this, it directly follows that F64

2 can be decomposed into the direct sum
UB ⊕ TA,C ⊕ V , where V is of dimension 8. Thus, for the key-dependent and

10 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

secret string s, there exists a unique representation s = u+ t+ v with u ∈ UB ,
t ∈ TA,C , v ∈ V and

β = MB(u+ t+ v) = MB(t+ v)

α = MA(u+ t+ v) = MA(u+ v)

γ = MC(u+ t+ v) = MC(u+ v) .

Indeed, from this decomposition, s can be computed with a meet-in-the-
middle attack with a complexity7 of 237 GEA-1 evaluations to build (and sort)
a table with 232 entries of size 89 bit (65 keystream bits to reconstruct the key
uniquely with high probability and 24 bits for t leading to this keystream) and
a brute-force step of complexity 240 GEA-1 evaluations for each new session key
k0, . . . , k63. For more details of the attack see [7]. Note that once s is recovered
it is easy to recover k0, . . . , k63 by clocking the S-register backwards. Hence,
the attack has to be conducted only once per GPRS session and is done in 240

operations once the table has been computed. In other words, the joint state of
A and C can be described with only 40 bits and thus can take only 240 possible
values. This is the key observation of the attack and in [7] computer simulations
are used to argue that such a decomposition of the key space is highly unlikely
to occur accidentally. The main question arising in this context is how to design
such a system. As demonstrated by the experiments conducted in [7], a trial and
error approach is elusive. This question will be answered in the next section.

3 Deconstructing GEA-1: Shifting Matters

In this section we will give a method to build ciphers of GEA-1 type which are
vulnerable to the attack described above and thereby answer the corresponding
question in [7].

It will become apparent (without giving a rigorous proof) that systems of
GEA-1 type with a keyspace that can be decomposed into a direct sum as above
only appear for very special choices of the shift constants together with very
special choices for the Galois polynomials. This is remarkable because one could
intuitively expect that shifting only strengthens the system.

In general, this demonstrates that it is not recommended to modify the canon-
ical way of feeding the key into the LFSRs. Indeed, only by modifying this ini-
tialization and by using the shifted key for the individual LFSRs, the attack
becomes possible.

3.1 The Impact of Shifting

We first settle the question how to find two primitive Galois polynomials g1 ∈
F2[X] and g2 ∈ F2[X] of degree d1 and d2, respectively, such that for the corre-
sponding Galois matrices Gg1 and Gg2 , the dimension of Tg1,g2,cs := ker(Mg1) ∩
7 The complexity is measured by the amount of operations that are roughly as complex

as GEA-1 evaluations (for generating a keystream of size ≤ 128 bit).

Constructing and Deconstructing Intentional Weaknesses 11

ker(Mg2,cs) is at least ξ with cs ∈ {0, 1, . . . , κ − 1} being the cyclic shift em-
ployed during the initialization and κ being the size of the session key (64
in case of GEA-1). Without loss of generality we focus on this case. It is a
routine matter to extend the approach presented in the sequel to the case
where in both initialization phases a shift is applied. First of all, note that
the columns of Mg1 (the initialization matrix without a shift) consist of Gκ−ig1 e0,
where e0 := (1, 0, . . . , 0) ∈ Fd12 and i = 0, . . . , κ− 1. Note that we have to clock
the register i times before the first bit of si not equal to zero is plugged into the
register and thus the state becomes non-zero. This explains the shape of MGg1

.
Suppose t ∈ ker(Gg1), then

0 = Mg1t =

κ−1∑
i=0

tiG
κ−i
gi e0 .

By Corollary 1, the above holds if and only if g1 divides
∑κ−1
i=0 tiX

κ−i . In the
case of g2, a similar reasoning takes into account the effect of cs such that the
columns of Mg2,cs (the initialization matrix with a shift) consist of Gcs−i

g2 e0 if

i < cs and Gκ−i+cs
g2 e0 otherwise, where e0 := (1, 0, . . . , 0)> ∈ Fd22 . Note that now

we have to clock the register κ + i − cs times before the first non-zero bit of si
is plugged into the register and thus the state is non-zero. This gives the first
case. The second follows in the same way. In the same vein as above we get that

0 = Mg2,cs t =

cs−1∑
i=0

tiG
cs−i
g2 e0 +

κ−1∑
i=cs

tiG
κ−i+cs
g2 e0

if and only if g2 divides
∑cs−1
i=0 tiX

cs−i+
∑κ−1
i=cs tiX

κ−i+cs. Hence, a vector t ∈ Fκ2
lies in Tg1,g2,cs if and only if g1 divides

∑κ−1
i=0 tiX

κ−i and g2 divides
∑cs−1
i=0 tiX

cs−i

+
∑κ−1
i=cs tiX

κ−i+cs. More specifically, we have the following theorem which shows
how to control the dimension of Tg1,g2,cs.

Theorem 2. Let g1, g2 ∈ F2[X] be two primitive Galois polynomials and cs ∈
{0, 1, . . . , κ−1} an integer. For t ∈ Tg1,g2,cs we define the associated polynomials

p1 :=

κ−1∑
i=0

tiX
κ−i, p2 :=

cs−1∑
i=0

tiX
cs−i +

κ−1∑
i=cs

tiX
κ−i+cs .

Let

r1 = min{k : Xk is a monomial with non-zero coefficient in p1},
r2 = min{k : Xk is a monomial with non-zero coefficient in p2},
r3 = min{r1, r2}

Then

1. The polynomial p1 is divisible by g1 and the polynomial p2 is divisible by g2.
2. For all 0 ≤ s ≤ r3−1, the shifted vectors ts := (0, . . . , 0, t0, t1, . . . , tκ−1−s)> ∈

Fκ2 are elements of Tg1,g2,cs.

12 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

3. The elements ts are linearly independent and thus span a subspace of Tg1,g2,cs
of dimension r3.

Proof. The first property was already established above. By definition, it holds
that tκ−1−(r1−1) = 1, as it is the coefficient of Xr1 in p1. We further have
tκ−1−(r1−1)+1 = 0, tκ−1−(r1−1)+2 = 0, . . . , tκ−1 = 0 from the definition of r1.
Hence, the elements ts are linearly independent.

Since t ∈ Tg1,g2,cs we have that g1 divides p1 and g2 divides p2. By definition
of r3, the associated polynomials of ts are of the form X−sp1, X−sp2 and still
contained in F2[X]. Therefore they are also divisible by g1 and g2. Thus the
elements ts form a subspace of dimension r3 of Tg1,g2,cs. ut

Remark 2. Note that slightly more can be said about the structure of good
choices for g1 and g2 and the corresponding space Tg1,g2,cs. For example looking
at the reciprocal polynomials of g1 and g2 results in the same dimension for the
kernel.

For this let κ be even and cs = κ/2. If t ∈ Tg1,g2,cs for two primitive
polynomials g1, g2 ∈ F2[X], we have t∗ = (tκ−1, . . . , t1, t0) ∈ Tg∗1 ,g∗2 ,cs, where

g∗i (X) := Xdeg gigi(X
−1) denotes the reciprocal polynomial of gi. This can be

seen as follows. For the polynomials p1 and p2 defined in Theorem 2, we let
qi(X) := Xκpi(X

−1). Then,

Xq1 =

κ−1∑
i=0

t∗iX
κ−i, Xq2 =

cs−1∑
i=0

t∗iX
cs−i +

κ−1∑
i=cs

t∗iX
κ−i+cs

and t∗ ∈ Tg∗1 ,g∗2 ,cs if g∗i divides Xqi for i ∈ {1, 2}. Since qi = Xκ−deg pip∗i , this
happens if g∗i divides p∗i for i ∈ {1, 2}. By assumption, t ∈ Tg1,g2,cs, so gi divides
pi for i ∈ {1, 2}, and therefore g∗i also divides p∗i for i ∈ {1, 2}. Moreover gi is
primitive if and only if g∗i is primitive.

3.2 Constructing the Galois Polynomials

The principle to construct systems vulnerable to the attack described in Sec-
tion 2.3 is now fairly simple. We start with an element in the (potential) kernel,
that would imply the desired dimension by the above theorem. Then, we con-
struct the two polynomials p1 and p2 and check if they are divisible by primitive
polynomials of the desired degree. We explain this in more detail below, first for
the parameters used in GEA-1 and then for the general case.

The case of GEA-1. We give an example for the case of κ = 64, cs = 32, ξ = 24,
and primitive polynomials g1, g2 of degree d1 = 31, d2 = 33. Those parameters
correspond exactly to the case of GEA-1. Other parameter choices are discussed
below.

First of all we will construct an element t = (t0, . . . , t63)> of the form such
that applying Theorem 2 yields t ∈ Tg1,g2,cs, where Tg1,g2,cs is of dimension 24.

Constructing and Deconstructing Intentional Weaknesses 13

For this, let us fix t such that ti = 0 for i ∈ {9, 10, . . . , 31} ∪ {41, . . . , 63} and
t0 = t40 = 1. We consider the polynomials

p1 := X64 +

8∑
i=1

tiX
64−i +

39∑
i=32

tiX
64−i +X24 ∈ F2[X]

p2 := X32 +

8∑
i=1

tiX
32−i +

39∑
i=32

tiX
64−i+32 +X56 ∈ F2[X]

to guarantee a kernel of dimension at least 24 if there exist proper g1, g2 of
degree 31,33 such that t ∈ Tg1,g2,cs. In the positive case the lower bound for
the dimension (here 24) is a direct consequence of Theorem 2. We have 216

possibilities to fix such an element t, i.e., to choose the above pair of polynomials
p1, p2. We choose such an element t uniformly at random and check if p1 is
divisible by a primitive polynomial g1 of degree 31 and if p2 is divisible by a
primitive polynomial g2 of degree 33.

It is well known that the number of primitive elements of a finite field of qn

elements, where q is a prime number, is ϕ(qn − 1) (see e.g., [21, p. 56]). Here, ϕ
denotes Euler’s totient function. Hence the number of primitive polynomials in
our case is ϕ(231−1)/31 and ϕ(233−1)/33, because the 31 (resp., 33) roots of a
primitive polynomial of degree 31 (resp., 33) are all primitive. By construction
p1 = X24 · h1, where h1 ∈ F2[X] with deg(h1(X)) = 40, independently of the
choice of the ti. Analogously, p2 = X24 ·h2, where h2 ∈ F2[X] with deg(h2(X)) ≤
40. The overall number of polynomials of degree 40 having a primitive divisor
of degree 31 is 29 ·ϕ(231− 1)/31 and similarly 28 ·ϕ(233− 1)/33 for polynomials
of degree at most 40 with a primitive divisor of degree 33. Therefore, under an
independence assumption, we expect the probability that both h1 has a primitive
divisor of degree 31 and h2 has a primitive divisor of degree 33 to be

ϕ(231 − 1)

31 · 231
ϕ(233 − 1)

33 · 233 ≈ 1

1250
.

As we have 216 possibilities to vary p1 and p2, we expect to be successful to find
the sought for polynomials g1 and g2 with t ∈ Tg1,g2,cs.

Indeed, the primitive polynomials gA and gC used in GEA-1 are exactly of this
form. More precisely, the element t satisfying (t0, . . . , t8) = (1, 0, 1, 1, 0, 0, 1, 1, 1),
(t32, . . . , t40) = (0, 0, 1, 1, 1, 1, 0, 0, 1), ti = 0 for i ∈ {9, 10, . . . , 31} ∪ {41, . . . , 63}
is contained in TA,C . The corresponding polynomial p1 is divided by

gA = X31 +X30 +X28 +X27 +X23 +X22 +X21 +X19 +X18 +X15

+X11 +X10 +X8 +X7 +X6 +X4 +X3 +X2 + 1 ∈ F2[X]

and the corresponding polynomial p2 is divisible by

gC = X33 +X30 +X27 +X23 +X21 +X20 +X19 +X18 +X17 +X15

+X14 +X11 +X10 +X9 +X4 +X2 + 1 ∈ F2[X] .

14 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

As expected by Theorem 2, the 24-dimensional linear space TA,C is spanned by
the shifted elements ts = (0, . . . , 0, t0, t1, . . . , t63−s)> ∈ F64

2 , 0 ≤ s ≤ 23.
From the 216 possibilities to choose t, except from the example given above,

also 47 other choices yield primitive divisors of p1 and p2 with degree 31 and
33, respectively. Note that once we have been successful in finding the primitive
polynomials g1 and g2, we could choose a primitive polynomial g3 of degree 32
and check if Ug3 ∩ Tg1,g2,cs = {0} in order to construct a stream cipher similar
to GEA-1. In Appendix A, we provide a sage [33] code that allows to construct
such weak GEA-1-like instances based on this construction. By the algorithm
above, it is possible to find a shift cs and corresponding polynomials such that
the resulting system can be broken with the attack described in Section 2.3.

Moreover, we conducted slightly more general experiments. Our results (given
by the case of `1 = 31 in Table 3 in Appendix B) imply that it would have been
possible to design the two LFSRs A and C of GEA-1 such that they yield a kernel
intersection of dimension 26, reducing the security of GEA-1 from 40 to 38 bits.
Interestingly, the designers decided not to do so, which suggests that they were
aiming at 40 bits security exactly.

The general case. We now focus on the case of an arbitrary (even) key length
κ and aim to construct two LFSRs of size `1 and `2 such that the kernel has a
dimension of (at least) ξ. In order to simplify the discussion and the notation,
we focus on the case of cs = κ/2. The case of other shift values can be handled
in a similar way as long as cs ≥ ξ.

In order to construct the two LFSRs, i.e., the corresponding primitive poly-
nomials of degree `1 and `2, we start again by an element in the kernel that, due
to Theorem 2, guarantees a kernel intersection of dimension at least ξ. That is,
we consider a vector t ∈ Fκ2 such that

ti = 0 for i ∈
{κ

2
− ξ + 1, . . . ,

κ

2
− 1
}
∪ {κ− ξ + 1, . . . , κ− 1}

and t0 = tκ−ξ = 1. To this choice of t, we get the corresponding polynomials

p1 := Xκ +

κ
2−ξ∑
i=1

tiX
κ−i +

κ−ξ−1∑
i=κ

2

tiX
κ−i +Xξ ∈ F2[X] (1)

p2 := X
κ
2 +

κ
2−ξ∑
i=1

tiX
κ
2−i +

κ−ξ−1∑
i=κ

2

tiX
κ−i+κ

2 +Xξ+κ
2 ∈ F2[X] . (2)

The number of vectors t and thus the number of pairs of polynomials (p1, p2) we
can construct this way is N = 2κ−2ξ. To successfully construct the LFSRs with
a kernel intersection of dimension at least ξ, we require that p1 is divisible by a
primitive polynomial of degree `1 and p2 is divisible by a primitive polynomial
of degree `2. To analyze the successes probability, we use as before a heuristic
approach. More precisely, we assume that (p1, p2) behaves as a uniformly and
independently chosen pair of polynomials (of degree κ and less than or equal to

Constructing and Deconstructing Intentional Weaknesses 15

κ respectively) with respect to their probability of being divisible by primitive
polynomials of the desired degree.

The number of polynomials of degree n with a primitive divisor of degree `
is, analogously as above, given by

Pn,` := 2n−`
ϕ(2` − 1)

`
.

In addition, the probability that a uniform random polynomial of degree n is
divisible by a primitive divisor of degree ` is

Ψ` :=
Pn,`
2n

=
ϕ(2` − 1)

`2`
.

Note that Ψ` is also the probability of a polynomial of degree less than or equal
to n to be divisible by a primitive divisor of degree `, as both nominator and
denominator are multiplied by a factor of two in this case.

While computing lower bounds on Euler’s totient function is non trivial, for
our purpose it is sufficient, easier, and more precise to compute ϕ(2` − 1) for
practical relevant values of `. For ` ≤ 512 we computed explicitly that

2`

ϕ(2` − 1)
≤ 3.4 , (3)

using a computer program.
Following the above heuristic on the random behavior of p1 and p2 we get

that the probability for a successful construction for one fixed t is given by

Ψ`1Ψ`2 =
ϕ(2`1 − 1)

`1 · 2`1
ϕ(2`2 − 1)

`2 · 2`2
.

From Equation (3), the expected number of trials until suitable polynomials are
found can be bounded by

(Ψ`1Ψ`2)
−1 ≤ 12`1`2

for `i ≤ 512, i ∈ {1, 2}. This shows that the approach is easily feasible for all
practical relevant choices of `1 and `2 and can be expected to find valid solutions
as long as the number of candidates N is larger than the expected number of
trials. Note that for concrete parameters with a large ξ, `1, `2, it is better to
check if (Ψ`1Ψ`2)

−1 ≤ N as N becomes relatively small and 12`1`2 significantly

larger than (Ψ`1Ψ`2)
−1
.

Applicability to longer keys. We recall that in the attack on GEA-1, the keyspace
F64
2 was decomposed into the direct sum UB ⊕ TA,C ⊕ V such that β = MB(u+
t+ v) = MB(t+ v), α = MA(u+ t+ v) = MA(u+ v), and γ = MC(u+ t+ v) =
MC(u + v), where dim(UB ⊕ V) = 40 and dim(TA,C ⊕ V) = 32. In general, if
the key size is κ, a straightforward divide-and-conquer attack could be applied

16 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

by either building a table of size at least 2dim(TA,C⊕V) bitstrings and conducting
exhaustive search of complexity 2dim(UB⊕V) cipher evaluations or vice versa.

Let us now discuss whether it is possible to build weak GEA-1-like instances
operating on a larger keyspace. For this, we restrict to the case of extending the
lengths of the three involved LFSRs and do not consider extending the number
of LFSRs. The reason is that the attack requires two steps; (1) building a table of
size exponentially in the dimension of the kernel intersection, (2) an exhaustive
search of complexity exponentially in the state size of the remaining register(s).
Since our construction yielding a large kernel intersection only works for two
LFSRs, adding more LFSRs would increase the complexity of the second step.

For κ = 96, it is possible to choose primitive polynomials gA and gC of
degree 47 and 49, respectively, such that for the corresponding LFSRs A and C
we have dimTA,C = 44 (where the shift for initializing LFSR C is cs = 48). Those
parameters directly correspond to the maximal dimension that can be expected
by the formulas above and are also verified experimentally (see in Table 3 in
Appendix B). To find this specific polynomials we have checked if it is possible

to have dimTA,C ≥ 42, i.e., ξ = 42 and `1 = 47, `2 = 49. As (Ψ`1Ψ`2)
−1 ≈ 2500

and N = 212 = 4096 our approach should be successful with high probability.
Indeed our algorithm computed the above solution with the even larger TA,C of
dimension 44. Note that these parameters are chosen at the edge with respect
to our theory. We could then choose a primitive polynomial gB of degree 48
such that dimUB = 48 and such that the keyspace can be decomposed into
F96
2 = UB ⊕ TA,C ⊕ V with dimV = 4. Thus, we can break such a scheme with

time complexity 252 cipher evaluations and memory complexity 248 · 141 bits.8

The size of such a table is 4512 TiB.
For larger key sizes, this approach quickly gets infeasible. For example, if we

would aim for a key length of κ = 112 bit (i.e., the minimum security required by
NIST), we would choose gA, gB , and gC of degrees 55, 56, and 57, respectively,
such that dimTA,C = 50, dimUB = 56 and dimV = 6. Other choices would
only allow for other trade-offs between memory and computation, but not for
reducing both. The divide-and-conquer (or meet-in-the-middle) attack against
such a GEA-1 instance would require

2dimUB · (κ+ 1 + dimTA,C + dimV) = 256 · (113 + 56) = 256 · 169

bits of memory, which corresponds to 1,384,448 TiB. Hence this approach is
tailored to key spaces of smaller sizes.

3.3 Properties of the GEA-1 Intentional Weakness

The weakness of GEA-1 can be understood as a hidden, or obfuscated, cryptona-
lytic attack. It does not fulfill the property of undetectability, or even undiscov-
erability, simply because everyone who has the specification of GEA-1 and some

8 The length of each entry in the table must be large enough to avoid false key can-
didates. Similarly as described in [7, Section 3.1], we assume that each bitstring
in the table is of size ` + dim(TA,C), where ` is the minimum integer such that
(1 − 2−`)2

κ

≥ 0.5.

Constructing and Deconstructing Intentional Weaknesses 17

knowledge of cryptoanalysis is in principle capable of finding the weakness and
is able to exploit the attack. Of course, the fact that the GEA-1 algorithm was
not made public by the designers significantly hardened the discoverability of
the weakness.

In the next part, we focus on the MALICIOUS framework, which is a method
for inserting a practical and undetectable backdoor within a symmetric crypto-
graphic algorithm, more precisely within a tweakable block cipher.

4 Revisiting the MALICIOUS Framework

In contrast to a hidden cryptographic weakness as in the case of GEA-1, the
specification of the tweakable block cipher can be published entirely.

In the following, we discuss a simple instance of the MALICIOUS frame-
work [29] that inserts a practical, undetectable backdoor into a tweakable block
cipher. For this, let H : F?2 → Fm2 be a cryptographic hash function and let
E : Fκ2 × Fτ2 × Fn2 → Fn2 be a (secure) tweakable block cipher with tweak length
τ , key length κ, and block length n. The malicious designer chooses a tweak
t? ∈ Fτ2 uniformly at random and computes s := H(t?). The chosen tweak t?

will serve as the secret backdoor. The designer then defines the tweakable block
cipher Ẽ : Fκ2 × Fτ2 × Fn2 → Fn2 as

Ẽ(k, t, x) :=

{
E(k, t, x) if H(t) 6= s

x+ k if H(t) = s .
(4)

In other words, if the backdoor t? is used as the tweak, the tweakable block
cipher Ẽ simply applies the permutation x 7→ x+ k, which allows the malicious
designer to recover the key k with one known plaintext/ciphertext pair. Due to
this simple key-recovery attack, the backdoor fulfills the notion of practicability.
If we assume that the hash function H is preimage resistant up to q queries, a user
having oracle access to Ẽ cannot recover the backdoor t? with less than q queries.
Therefore, the backdoor fulfills the notion of undiscoverability. More generally,
under the same assumption on H, a user cannot even prove the existence of a
secret backdoor with less than q queries to Ẽ. The reason is that the user cannot
distinguish between whether the tweakable block cipher defined by Equation (4)
was designed by a malicious designer who knows t? and generated s = H(t?)
accordingly or by an honest designer who simply chose a random s ∈ Fm2 to

specify Ẽ. Therefore, the backdoor fulfills the notion of undetectability.

We conclude that the backdoor in the simple construction defined in Equa-
tion (4) fulfills the same security notions as the backdoor in the original MALI-
CIOUS framework. However, similar to the original MALICIOUS framework, the
backdoor in Ẽ does not fulfill the notion of untraceability ; once Ẽ is queried with
the tweak t?, the full backdoor is revealed.

18 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

5 Malicious AES

We now describe how to construct a tweakable variant of the AES with a mod-
ified key-schedule to obtain a more natural backdoored cipher based on the
MALICIOUS framework. Instead of constructing a probability-one differential
over the cipher for a secret pair of tweak values (as in the original MALICIOUS
framework), we embed an invariant subspace that holds for a secret tweak value.
For the sake of completeness, we briefly recall the definition of the AES round
function. For further details, we refer to the book by Daemen and Rijmen [13].

5.1 Description of the AES

The AES is a family of block ciphers with a block length of 128 bits, supporting
three different key lengths of 128, 192, and 256 bits. In this section, we con-
centrate on the AES variant with a 128-bit key. For each fixed key, the AES
operates as a permutation on F128

2 . For a simpler description of the algorithm,
we represent the AES as a family of permutations on F4×4

28 . The internal state
can then be described by a 4× 4 array with elements in F28 (also called cells) as

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 .

The unkeyed round function R : F4×4
28 → F4×4

28 of AES is defined as the composi-
tion of the operations SubBytes, ShiftRows and MixColumns such that

R = MixColumns ◦ ShiftRows ◦ SubBytes .

The functions on the right-hand side are defined as follows.

SubBytes is a parallel application of the 8-bit AES S-box S : F28 → F28 to all
16 cells of the internal state. We refer to [13] for the definition of S, since its
details are not important for our construction.

ShiftRows cyclically rotates the ith row of the state i positions to the left, for
all i ∈ {0, 1, 2, 3}.

MixColumns multiplies the columns of the state with a matrix M . Again, we
refer to [13] for the definition of M .

The unkeyed AES rounds are interleaved by the addition of a round key. The
latter operation will be denoted by Addki : x 7→ x + ki. The ith round function
of the AES is then given by

Ri = Addki ◦ R .

The round keys ki are generated from the 128-bit master key k by the AES key
schedule, i.e., we have (k0, k1, . . . , k10) = KeySchedule(k). We refer to [13] for

Constructing and Deconstructing Intentional Weaknesses 19

the specification of the function KeySchedule. With the above notation, the AES
variant with a 128-bit key can then be described as

AESk = Addk10 ◦ ShiftRows ◦ SubBytes ◦ R9 ◦ · · · ◦ R2 ◦ R1 ◦ Addk0 ,
where (k0, k1, . . . , k10) = KeySchedule(k).

5.2 Specification of MaliciousAES

In this section, we define a tweakable variant of the AES that incorporates a
backdoor based on the MALICIOUS framework. The round function of Mali-
ciousAES is identical to that of the AES, but its key schedule is different and
it supports an arbitrary-length tweak. Note that, for other reasons, changing
the AES key-scheduling has been discussed previously, e.g. in [20] and [14] to
increase the resistance of AES against dedicated attacks.

Key and tweak schedule. Let k ∈ Fκ2 be a κ-bit master key. The partial (64-
bit) round keys k0, . . . , k10 ∈ F64

2 are derived from the master key using a key
scheduling function. The details of this function are left open. For reasons dis-
cussed in Section 5.3, it will be required that there is an efficient algorithm to
uniquely determine 64 bits of k given the value of k10. The actual round keys
are then equal to (k′0, . . . , k

′
10) = MaliciousKeySchedule(k), where the ith round

key k′i is defined by

k′i =


ki,0 ki,4 ki,0 ki,4
ki,1 ki,5 ki,1 ki,5
ki,2 ki,6 ki,2 ki,6
ki,3 ki,7 ki,3 ki,7

 , for i = 0, . . . , 9 and k′10 =


k10,0 k10,4 0 0
k10,1 k10,5 0 0
k10,2 k10,6 0 0
k10,3 k10,7 0 0

 ,
with ki,0, . . . , ki,7 being the bytes of ki. In order to support arbitrary-length
tweaks, the ith partial round tweak ti ∈ F64

2 will be derived from the master
tweak t using an extendable output function H, i.e., (t0, . . . , t9) = H(t). The full
round tweaks are then equal to (t′0, . . . , t

′
9) = MaliciousTweakSchedule(t) where

t′i is defined by

t′i =


ci,0 ci,4 ti,0 ti,4
ci,1 ci,5 ti,1 ti,5
ci,2 ci,6 ti,2 ti,6
ci,3 ci,7 ti,3 ti,7

 ,
with ti,0, . . . , ti,7 being the bytes of ti and ci,0, . . . , ci,7 being the bytes of ci.
The values c0, . . . , c9 are round constants that appear to look random but, as
explained below, are not necessarily so.

Overall structure. The ith round function is defined by R′i = Addk′i+t′i ◦ R and
the tweakable block cipher MaliciousAES can then be described as

MaliciousAESk,t = Addk′10 ◦ ShiftRows ◦ SubBytes ◦ R
′
9 ◦ · · · ◦ R′1 ◦ Addk′0+t′0 ,

where we have (k′0, . . . , k
′
10) = MaliciousKeySchedule(k) and we have (t′0, . . . , t

′
9) =

MaliciousTweakSchedule(t).

20 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

Backdoor setup. Similar to the instances of the MALICIOUS framework presented
in [29], we aim to introduce a tweak input such that the cipher can easily be
broken for a special secret value of the tweak. To set up a backdoored instance
of MaliciousAES, the attacker chooses a secret tweak t? and computes the values
(t?0, . . . , t

?
9) = H(t?). The round constants c0, . . . , c9 are then chosen as ci = t?i

for i = 0, . . . , 9. It will be shown in Section 5.3 that this choice results in the
desired backdoor.

5.3 Description of the Backdoor

The backdoor in MaliciousAES is based on an invariant subspace for the round
function R of the AES. For the secret backdoor tweak t?, this subspace is pre-
served up to the penultimate round of the cipher. Below, the invariant subspace
for R, its extension to MaliciousAES and the key-recovery procedure are discussed.

Invariant subspace for R. Consider the linear subspace I ⊆ (F28)4×4 in which
the first column of the 4 × 4 state matrix is equal to the third column and the
second column is equal to the fourth column, i.e.,

I :=



a0,0 a0,1 a0,0 a0,1
a1,0 a1,1 a1,0 a1,1
a2,0 a2,1 a2,0 a2,1
a3,0 a3,1 a3,0 a3,1


∣∣∣∣∣ ∀i ∈ {0, 1, 2, 3}, j ∈ {0, 1} : ai,j ∈ F28

 . (5)

It is well known (see, e.g., [22, Prop. 5]) that I is an invariant subspace for
the unkeyed AES round function R, i.e., R(I) = I. Indeed, I is invariant for
all of the three operations SubBytes, ShiftRows, and MixColumns independently.
However, since I is in general not invariant over the addition with a round key,
I cannot be used as an invariant subspace over multiple AES rounds interleaved
with round key additions.

Invariant subspace for MaliciousAES. When the cipher is evaluated with the
malicious tweak value t?, we have that each round tweak t′i with i = 0, . . . , 9 is
contained in I by construction. Hence, I is an invariant subspace for Addk′0+t′0
and more generally over any tweaked and keyed round function R′i, i = 1, . . . , 9.
The structure of the invariant subspace is depicted in Figure 4. Iterating this
property yields

(Addk′10 ◦MaliciousAESk,t?)(I) = I .
Under the assumption that for a tweak t 6= t?, each value ti of (t0, . . . , t9) = H(t)
for i ∈ {0, . . . , 9} is randomly drawn from a uniform distribution over F64

2 , the
probability that, for a fixed j ∈ {0, . . . , 9}, the value t′j is contained in I is equal

to (2−8)8 = 2−64. Therefore, we expect that for a tweak t 6= t?, the invariant
subspace property is already broken after the first round of MaliciousAES. For
this reason, if H is a cryptographically secure function, the backdoor fulfills the
notions of undiscoverability and undetectability.

Constructing and Deconstructing Intentional Weaknesses 21

x0 x4 x0 x4

x1 x5 x1 x5

x2 x6 x2 x6

x3 x7 x3 x7

z0 z4 z0 z4

z1 z5 z1 z5

z2 z6 z2 z6

z3 z7 z3 z7

z0 z4 z0 z4

z5 z1 z5 z1

z2 z6 z2 z6

z7 z3 z7 z3

z′0 z′4 z′0 z′4
z′1 z′5 z′1 z′5
z′2 z′6 z′2 z′6
z′3 z′7 z′3 z′7

z′′0 z′′4 z′′0 z′′4
z′′1 z′′5 z′′1 z′′5
z′′2 z′′6 z′′2 z′′6
z′′3 z′′7 z′′3 z′′7

y0 y4 y0 y4

y1 y5 y1 y5

y2 y6 y2 y6

y3 y7 y3 y7

ki,0 ki,4 ki,0 ki,4

ki,1 ki,5 ki,1 ki,5

ki,6ki,2ki,6ki,2

ki,3 ki,7 ki,3 ki,7

ci,0ci,4 0 0
ci,1ci,5 0 0
ci,2ci,6 0 0
ci,3ci,7 0 0

0 0 ti,0 ti,4

0 0 ti,1 ti,5

0 0 ti,2 ti,6

0 0 ti,3 ti,7

SB SR MC

Fig. 4: An invariant subspace over one round of MaliciousAES under tweak t?. In
the input state, if the first column is equal to the third column and the second
column is equal to the fourth column, the same property holds for the output
state after one round.

Key-recovery strategy. For t?, the last round key k′10 (which is constructed from
k10 ∈ F64

2) can be recovered using a chosen plaintext attack with a single plain-
text/ciphertext pair. For x ∈ I and y = MaliciousAESk,t?(x), we have

∀i ∈ {0, 1, 2, 3} : k10,i = yi,0 + yi,2, k10,4+i = yi,1 + yi,3 ,

where yi,j is the byte in row i and column j of the ciphertext y. Hence, the
64-bit partial round key k10 can directly be recovered. From k10, we can then
recover k by guessing the remaining κ − 64 bits. Therefore, if κ is sufficiently
small, MaliciousAES fulfills the notion of practicability.

Larger Keys. We only provided a very simple malicious variant of AES which
uses 64-bit round keys derived from a master key of length κ bits. This approach
is especially suitable when the master key is short, such as κ = 64. There are
several straightforward methods to construct instances operating on larger keys.
For instance, one can build a similar construction based on Rijndael-192 or
Rijndael-256 [13]. For larger κ, one could also enforce other properties on the last
(say the last two) round keys and use more elaborated key-guessing techniques
to recover more than 64 bits of key information.

Security Arguments. We do not provide an explicit security analysis for Mali-
ciousAES as (i) most of the security arguments for AES are equally valid for
MaliciousAES and (ii) increasing the number of rounds of MaliciousAES does not
invalidate the backdoor but should invalidate all potential non-backdoor based
attacks.

6 A Dedicated Tweakable Block Cipher

In this section, we propose the backdoored dedicated tweakable block cipher
Boomslang. Similar to MaliciousAES, the proposed cipher relies on the MALI-
CIOUS framework to achieve undiscoverability. However, the backdoor is based

22 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

on a nonlinear invariant rather than an invariant subspace. In fact, the back-
door implies the existence of an iterative perfect linear approximation over four
rounds of the cipher. Hence, it can also be compared to the recently proposed
block cipher DooR [30], which contains a backdoor based on linear cryptanalysis.
However, the design rationale of DooR is weaker and it does not offer undiscov-
erability, so it has only limited practicability.

6.1 Specification of Boomslang

The cipher operates on 128-bit blocks and the state will be represented by a
4 × 8 array of 4-bit cells. The key k is a 128-bit value, and the tweak t can be
any bitstring of arbitrary (bounded) length.

Round operations. The overall structure of the round function is shown in Fig-
ure 5 and it closely follows that of the AES. Specifically, the unkeyed round
function of Boomslang can be written as

R = MixColumns ◦ ShiftRows ◦ SubCells .

Below, each of the functions on the right-hand side will be briefly discussed.

S S S S S S S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

Fig. 5: Overview of the round function: SubCells, ShiftRows, MixColumns and the
addition of constants.

SubCells consists of the parallel application of an S-box S to the 4-bit cells
of the state. The S-box is the nonlinear function S : F4

2 → F4
2 defined by

Table 1.

ShiftRows is similar to the AES ShiftRows step. If the rows are numbered from
zero to three with zero corresponding to the top row, then ShiftRows rotates
the ith row of the state over 4 · i bits to the left.

MixColumns consists of a columnwise multiplication with a lightweight ma-
trix from the family of quasi-MDS matrices that was proposed for Qarma-
64 [4]. Let us denote the cells within one column of the state by (x0, . . . , x3),

Constructing and Deconstructing Intentional Weaknesses 23

where xi ∈ F4
2. MixColumns maps each column (x0, . . . , x3) to a new column

(y0, . . . , y3) defined by

yi = xi+1 + (xi+2 ≪ 1) + (xi+3 ≪ 2) ,

for i = 0, . . . , 3 and where the addition of the indices is regarded modulo 4.
The inverse mapping is given by

xi = yi+3 + (yi+1 ≪ 2) + (yi+2 ≪ 3) ,

for i = 0, . . . , 3. In software, MixColumns can be implemented using bitslicing.

Table 1: The 4-bit S-box S.

0 1 2 3 4 5 6 7 8 9 a b c d e f

8 2 4 a 5 f 7 6 0 c b 9 e d 1 3

The 2ith round function is then defined as

R2i = Addki ◦ Addc2i ◦ R ,

where ci are round constants and ki round
keys. The round keys ki can be derived using
an arbitrary key schedule. Since we do not aim
for related-key security, we propose ki = k for
simplicity. Similarly, the (2i+ 1)th round function is defined as

R2i+1 = Addti ◦ Addc2i+1
◦ R .

The ith round tweak ti is derived from the master tweak t using a strong tweak-
scheduling function. Specifically, (t0, t1, . . .) = H(t) where H is an extendable
output function such as SHAKE [16]. The round constants ci should appear to
look random, but – as discussed below – they are not necessarily so. Some specific
conditions on these constants, all of which are likely to be satisfied for a uniform
random choice, are discussed in Section 6.2.

Overall structure. The overall cipher is the composition of the round functions
R0,R1, The number of rounds, denoted by r, is required to be even, so that
the last round function always performs a round-tweak addition. Based on the
analysis in Section 6.2, r = 32 is a reasonable choice. The key k is also added to
the plaintext and σ(k) is added to the state after the last round, with σ being
a linear orthomorphism, i.e., we have that both k 7→ σ(k) and k 7→ σ(k) + k are
permutations. Specifically, we use σ(k) = (k ≫ 1)+(k � 63) as in Prince [12].
In summary, the overall cipher is defined by

Boomslang = Addσ(k) ◦ Rr−1 ◦ · · · ◦ R1 ◦ R0 ◦ Addk .

Backdoor setup. To set up a backdoored instance of Boomslang, one must choose
a secret tweak t? and compute the corresponding round tweaks (t?0, t

?
1, . . .) =

H(t?). The round constants c2i+1 should then be chosen as c2i+1 = t?i for i =
0, . . . , r/2− 1.

Given a few hundred known plaintext/ciphertext pairs encrypted under the
tweak t?, it will then be possible to efficiently recover the full key. The mechanism
for doing so will be explained in Section 6.3.

24 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

6.2 Design Rationale

In this section, we argue that the design of Boomslang follows standard modern
design principles. Our security analysis focuses on differential and linear crypt-
analysis, and invariants. The latter two are of particular relevance with respect
to the backdoor that will be revealed in Section 6.3. In the following, we first
motivate the overall structure of Boomslang and then discuss the choice of the
individual components.

Overall structure. The design follows the wide-trail strategy [13, Chapter 9] with
some changes to obtain a more lightweight cipher. Whenever possible, the design
was kept as simple as possible and close to that of the AES.

In general, the proposed cipher is geared towards hardware. This is the mo-
tivation for relying on 4-bit S-boxes rather than 8-bit S-boxes as in the AES. In
software, the 4× 8 state allows storing the rows as 32-bit words. The S-box and
linear layer can then be implemented using bitslicing.

The key schedule is chosen as the identity function, although other key sched-
ules could also be used. Since related-key security was not a design goal, we
decided to choose the simplest option. In addition, having a linear key schedule
sometimes enables more straightforward security arguments. For example, the
arguments from [6] related to the choice of round constants to prevent invariants
are only applicable to linear key schedules.

Finally, the choice of the tweak schedule can be motivated by the goal of
supporting arbitrary-length tweaks. Since related tweak security is important,
it seems necessary to use a cryptographically strong hash function or XOF to
derive round tweaks from the master tweak.

Choice of the components. We now argue that all of the basic components used
in the cipher are individually acceptable choices from the current state of the
art.

SubCells. The S-box has a maximum absolute correlation of 1/2 for nonzero
masks and a maximum differential probability of 1/4 for nonzero differences.
The S-box is chosen such that it is not an involution.

ShiftRows. The cell permutation is chosen such that the cells of each column
end up in different columns of the state. Shifting rows is a natural choice
because it allows for an efficient software implementation, and it is the same
as for the AES.

MixColumns. The MixColumns map is inspired by the linear layer of Qarma-
64 [4]. Specifically, the transformation of each column is defined by a circulant
matrix M of the form

M =


0 Xa Xb Xc

Xc 0 Xa Xb

Xb Xc 0 Xa

Xa Xb Xc 0

 ,

Constructing and Deconstructing Intentional Weaknesses 25

over the F2-vector space F2[X]/(X4 + 1). The input bitvector can be con-
sidered as an element of this space by the isomorphism δi 7→ Xi−1, where δi
is the ith standard basis vector of F4

2.
The matrix M is invertible with circulant inverse of the same form if and
only if a ≡ c (mod 4) or a ≡ c + 2 (mod 4). All of these matrices have
branch number four, which is the maximum possible for this type of matrix.
Furthermore, we impose the following criteria:
– Unlike in Qarma-64, we require that M is not an involution. Equivalently,

2b 6≡ 0 (mod 4). The motivation for this requirement is that involutions
more easily lead to 2-round invariants, as demonstrated in the case of
Midori-64 [9].

– M should not be orthogonal or nearly orthogonal, i. e. M−1 6= cM> for
any c ∈ F2[X]/(X4 + 1). This requirement is motivated by the fact that
any quadratic form of the type

∑m
i=1 x

>
i Qxi is a nonlinear invariant for

an m ×m orthogonal matrix [35]. More generally, for a nearly orthog-
onal matrix, any such quadratic function which is also invariant under
multiplication by c is a nonlinear invariant.

The second criterium leads to the requirement that Xa+b 6= Xb+c or equiv-
alently a 6≡ c (mod 4). From the viewpoint of software implementations, it
makes sense to choose one of a, b or c equal to zero. Choosing a = 0 and
b = 1 then gives c = 2.

Linear and differential cryptanalysis. The wide-trail strategy directly gives up-
per bounds on the absolute correlation of linear trails and on the probability of
differential characteristics. In particular, since M has a branch number of four,
the number of active S-boxes over four rounds is at least 16 [13, Theorem 9.4.1].
Hence, after 16 rounds the average probability of any differential characteristic
is lower than 2−128 and the absolute correlation of any linear trail is at most
2−64. The suggested choice of 32 rounds was obtained by taking twice as many
rounds; taking into account potential improvements and key-recovery attacks.

In fact, it is to some extent possible to extend the above results to linear
approximations and differentials. In particular, for independent uniform random
constants, [25, Corollary 1 & 2] imply that the average probability of any 4-
round differential and the average squared correlation of any 4-round linear
approximation is at most (2−2×(4−1))4 = 2−24.

Invariants. Several lightweight ciphers have been found vulnerable to invariant
subspace [23] and nonlinear invariant attacks [35]. Hence, it is natural to attempt
to rule out the existence of invariants in Boomslang.

The argument from [6] can be used to rule out joint invariants over all the
affine layers (i.e., linear layers together with the constant additions) for a large
number of rounds using only the properties of the linear layer and the round
constants. Specifically, the security argument depends on the dimension of of the
smallest subspace invariant under the linear layer and containing the differences
of the constants. For the linear layer L = MixColumns ◦ ShiftRows of Boomslang
and constants c0, . . . , cr−1, denote this space by WL(c0+c1, c0+c2, . . . , c0+cr−1).

26 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

If WL(c0 + c1, c0 + c2, . . . , c0 + cr−1) = F128
2 , then joint invariants over the affine

layers can be ruled out with high probability. The linear map L has 16 invariant
factors and its minimal polynomial is (X + 1)8. Hence, by [6, Proposition 11],

Pr
c0,...,c23

[dimWL(c0 + c1, c0 + c2, . . . , c0 + c23) = 128] =

15∏
i=0

(
1− 1

223−i

)
≥ 0.99 ,

for uniformly chosen random constants c0, . . . , c23. Hence, 24 rounds are sufficient
to rule out with high probability the existence of such invariants. Note that this
argument does not yet rule out invariants over a small number of rounds and
also does not cover generalized and closed-loop invariants [37].

Most invariants considered in previous attacks have independent cells (‘rank-
one’, from the viewpoint of [9]), as this leads to an easier analysis of the SubCells
and ShiftRows steps. To investigate this in more detail, we used the tool from
[10, §6.2] to obtain the rank-one invariants of the linear layer M . Although M
has some rank-one invariants, they do not correspond to Boolean functions or
sets, and there are no shared invariants between M and the S-box layer.

6.3 Description of the Backdoor

The backdoor is a two-round invariant, which is not invariant for one round.
This is similar to one of the invariants of two-rounds of Midori-64 [9], but unlike
in that case the property is not invariant under the linear layer. Indeed, as
discussed above, that would not be possible due to the choice of the linear layer.
Importantly, the invariant only exists for the secret weak tweak for which the
round constants in even rounds cancel out.

Two-round nonlinear invariant. Let f : F4
2 → F2 and g : F4

2 → F2 be the Boolean
functions defined by

f(z0, z1, z2, z3) = (z0 + z2)(z1 + z3) + z0 + z2 + z3 + 1

g(z0, z1, z2, z3) = (z0 + z2)(z1 + z3) + z2 .

The functions f and g can be used to form a perfect nonlinear approximation
of M . This is due to the fact that the term (z0 + z2)(z1 + z3) is invariant under
rotations of z0, . . . , z3. Hence, if y = MixColumns(x), then

31∑
i=0

g(y4i, y4i+1, y4i+2, y4i+3) =

31∑
i=0

f(x4i, x4i+1, x4i+2, x4i+3) .

Furthermore, it is easy to see that

31∑
i=0

a>(y4i, y4i+1, y4i+2, y4i+3) =

31∑
i=0

5>(x4i, x4i+1, x4i+2, x4i+3) .

Constructing and Deconstructing Intentional Weaknesses 27

The S-box S defined in Table 1 also satisfies

5>S(z0, z1, z2, z3) = g(z0, z1, z2, z3)

f(S(z0, z1, z2, z3)) = a>(z0, z1, z2, z3) .

Since linear functions are invariant under the addition of any constant, and
because the constants are cancelled out by the tweak in even rounds, one obtains
the following two-round invariant:

31∑
i=0

g(y4i, y4i+1, y4i+2, y4i+3) = c+

31∑
i=0

g(x4i, x4i+1, x4i+2, x4i+3) ,

where y = (R2i+1 ◦ R2i)(x). The full nonlinear trail is illustrated in Figure 6.
Note that the last step only works for one in 264 constants, but the constants
are chosen such that there exists a tweak so that the constants are weak in all
odd-numbered rounds.

Alternatively, the nonlinear invariant discussed above can be described from
the point of view introduced in [9, 10]. Let

w = (0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0,−1, 0, 0,−1, 0)/2

v = (0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,−1, 0, 0)/2 .

In the above, w and v are the Walsh-Hadamard transform of f and g respectively.
It holds that CMw⊗4 = v⊗4, with CM being the correlation matrix of the linear
layer and ⊗ the tensor product. Furthermore, the S-box satisfies CSv = δ5 and
CSδa = w. The vector v is invariant under one in four constants.

Key-recovery strategy. The addition of whitenening keys k and σ(k) leads to
an efficient key-recovery attack. Specifically, one can use the fact that for every
plaintext/ciphertext pair (x, y) encrypted under the backdoored tweak, there
exist ` ∈ F128

2 and b ∈ F2 such that

31∑
i=0

g(xi + ki) +

31∑
i=0

g(yi + σ(k)i) = `>k + b ,

with x0, . . . x31, y0, . . . , y31 and k0, . . . , k31 being the nibbles of x, y and k, re-
spectively. Since σ is an orthomorphism, the 64 bits of k that are nonlinearly
mixed with x are linearly independent from the bits of k that are nonlinearly
mixed with y. Hence, given q messages, one can on average recover q bits of the
key even when q ≥ 64.

Solving the system of equations is easy because of the low number of quadratic
terms. One can either use Gröbner basis methods, exploiting the low degree of
regularity of the system, or one can directly rely on linearization. Since g con-
tains only a single quadratic term, each equation contains at most 64 quadratic
terms. Hence, given 192 known plaintext/ciphertext pairs, the full key can be
recovered using less than 1923 ≤ 223 bit operations.

28 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

SR

SB MC

AC

a a a a a a a a

a a a a a a a a

a a a a a a a a

a a a a a a a a

f f f f f f f f

f f f f f f f f

f f f f f f f f

f f f f f f f f

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

g g g g g g g g

SR

SB MC

AC

Fig. 6: Two-round invariant for Boomslang.

Construction of the backdoor. The backdoor primarily relies on the choice of
the S-box. The tool from [10, §6.2] was used to find symmetric nonlinear rank-
one approximations of the linear layer M . This resulted in the choice of the
vectors w and v listed above. One can then easily generate S-boxes such that
the conditions CSv = δ5 and CSv = δ10 are satisfied. There are still significant
degrees of freedom left in the choice of the S-box. These could be used to satisfy
additional design criteria, or to argue that the S-box was generated based on
certain magic constants.

7 Conclusion

Feeding a session key into LFSRs by making use of shifts is common in many
designs, e.g., besides in GEA-1 and GEA-2 it is also used in A5/1. Our work
demonstrates that those shifts, together with a clever choice of feedback polyno-
mials and filtering, can be used to deliberately weaken the construction. We gave
an explicit and efficient way to construct those choices for a large variety of pa-
rameters. Our construction includes the choices made for GEA-1 indicating that
this (or a related) strategy was used in the actual design process. On the positive
side, we again see that, in line with [7], this is unlikely to happen unintentionally.
While our theory is described with a focus on LFSRs in Galois mode, it applies
to LFSRs in Fibonacci mode as well. However, our construction yields random
looking feedback polynomials and thus seemingly selected taps. While for Galois

Constructing and Deconstructing Intentional Weaknesses 29

LFSRs and software implementations, this does not affect performance, it does
for LFSRs in Fibonacci mode. Here, the number of taps determines the number
of XOR operations and thus the construction is less interesting in this case as it
contradicts well-established design rationales.

In the second part of the paper, we outlined two designs of a tweakable block
cipher that embed a hidden trapdoor, based on the MALICIOUS framework. Our
constructions stress the importance of justifying the every single part of the
design. One possible approach is unswervingness (see [15]) as a design require-
ment. In a nutshell, the notion of unswervingness demands that each instance
of a (block) cipher fulfilling all the requirements given in its design rationale is
secure. However, this might be highly non-trivial to achieve as a designer.

For the MALICIOUS framework, it would be very interesting to actually in-
vestigate how backdoors could be triggered by many tweaks. In the original
work[29] two tweaks were necessary to enable the backdoor, while for our in-
stances a single tweak is sufficient. Using many tweaks could potentially lead
to achieving untraceability as one could hide the tweaks needed to activate the
backdoor with tweaks that do not. The goal would then be that finding the
correct subset becomes exponentially hard in the number of tweaks.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) within the framework of the Excellence Strategy of the Federal
Government and the States – EXC 2092 CaSa – 39078197. Tim Beyne is sup-
ported by a PhD Fellowship from the Research Foundation – Flanders (FWO).

References

1. Albertini, A., Aumasson, J., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious
hashing: Eve’s variant of SHA-1. In: Joux, A., Youssef, A.M. (eds.) Selected Areas
in Cryptography - SAC 2014. LNCS, vol. 8781, pp. 1–19. Springer (2014)

2. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers
for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology -
EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer (2015)

3. Amzaleg, D., Dinur, I.: Refined cryptanalysis of the GPRS ciphers GEA-1 and
GEA-2. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EU-
ROCRYPT 2022. LNCS, vol. 13277, pp. 57–85. Springer (2022)

4. Avanzi, R.: The QARMA block cipher family. Almost MDS matrices over rings with
zero divisors, nearly symmetric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-boxes. IACR Trans. Sym-
metric Cryptol. 2017(1), 4–44 (2017)

5. Bannier, A., Filiol, E.: Partition-based trapdoor ciphers. IntechOpen (2017)
6. Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against

invariant attacks: How to choose the round constants. In: Katz, J., Shacham, H.
(eds.) Advances in Cryptology - CRYPTO 2017. LNCS, vol. 10402, pp. 647–678.
Springer (2017)

7. Beierle, C., Derbez, P., Leander, G., Leurent, G., Raddum, H., Rotella, Y., Rup-
precht, D., Stennes, L.: Cryptanalysis of the GPRS encryption algorithms GEA-1
and GEA-2. In: Canteaut, A., Standaert, F. (eds.) Advances in Cryptology - EU-
ROCRYPT 2021. LNCS, vol. 12697, pp. 155–183. Springer (2021)

30 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

8. Bernstein, D.J., Lange, T., Niederhagen, R.: Dual EC: A standardized back door.
In: Ryan, P.Y.A., Naccache, D., Quisquater, J. (eds.) The New Codebreakers.
LNCS, vol. 9100, pp. 256–281. Springer (2016)

9. Beyne, T.: Block cipher invariants as eigenvectors of correlation matrices. In:
Peyrin, T., Galbraith, S.D. (eds.) Advances in Cryptology - ASIACRYPT 2018.
LNCS, vol. 11272, pp. 3–31. Springer (2018)

10. Beyne, T.: A geometric approach to linear cryptanalysis. In: Tibouchi, M., Wang,
H. (eds.) Advances in Cryptology - ASIACRYPT 2021. LNCS, vol. 13090, pp.
36–66. Springer (2021)

11. Bonnetain, X., Perrin, L., Tian, S.: Anomalies and vector space search: Tools for
s-box analysis. In: Galbraith, S.D., Moriai, S. (eds.) Advances in Cryptology -
ASIACRYPT 2019. LNCS, vol. 11921, pp. 196–223. Springer (2019)

12. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçin, T.: PRINCE - A low-latency block cipher for pervasive computing
applications - extended abstract. In: Wang, X., Sako, K. (eds.) Advances in Cryp-
tology - ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer (2012)

13. Daemen, J., Rijmen, V.: The Design of Rijndael - The Advanced Encryption Stan-
dard (AES), Second Edition. Information Security and Cryptography, Springer
(2020)

14. Derbez, P., Fouque, P., Jean, J., Lambin, B.: Variants of the AES key schedule for
better truncated differential bounds. In: Cid, C., Jr., M.J.J. (eds.) Selected Areas
in Cryptography - SAC 2018. LNCS, vol. 11349, pp. 27–49. Springer (2018)

15. Dunkelman, O., Perrin, L.: Adapting rigidity to symmetric cryptography: Towards
”unswerving” designs. In: Mehrnezhad, M., van der Merwe, T., Hao, F. (eds.) Pro-
ceedings of the 5th ACM Workshop on Security Standardisation Research Work-
shop. pp. 69–80. ACM (2019)

16. Dworkin, M.: SHA-3 standard: Permutation-based hash and extendable-output
functions (2015)

17. Filiol, E.: BSEA-1 - a stream cipher backdooring technique. arXiv preprint
arXiv:1903.11063 (2019)

18. Harpes, C., Massey, J.L.: Partitioning cryptanalysis. In: Biham, E. (ed.) Fast Soft-
ware Encryption, 4th International Workshop, FSE ’97. LNCS, vol. 1267, pp. 13–
27. Springer (1997)

19. Hoffman, K., Kunze, R.A.: Linear Algebra. PHI Learning (2004)
20. Khoo, K., Lee, E., Peyrin, T., Sim, S.M.: Human-readable proof of the related-key

security of AES-128. IACR Trans. Symmetric Cryptol. 2017(2), 59–83 (2017)
21. Koblitz, N.: Algebraic aspects of cryptography, Algorithms and computation in

mathematics, vol. 3. Springer (1998)
22. Le, T.V., Sparr, R., Wernsdorf, R., Desmedt, Y.: Complementation-like and cyclic

properties of AES round functions. In: Dobbertin, H., Rijmen, V., Sowa, A.
(eds.) Advanced Encryption Standard - AES, 4th International Conference. LNCS,
vol. 3373, pp. 128–141. Springer (2004)

23. Leander, G., Abdelraheem, M.A., AlKhzaimi, H., Zenner, E.: A cryptanalysis of
PRINTcipher: The invariant subspace attack. In: Rogaway, P. (ed.) Advances in
Cryptology - CRYPTO 2011. LNCS, vol. 6841, pp. 206–221. Springer (2011)

24. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Ap-
plications, Cambridge University Press, 2 edn. (1996)

25. Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the upper bound on the maximum
differential and the maximum linear hull probability for SPN structures and AES.

Constructing and Deconstructing Intentional Weaknesses 31

In: Johansson, T. (ed.) Fast Software Encryption, 10th International Workshop,
FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer (2003)

26. Paterson, K.G.: Imprimitive permutation groups and trapdoors in iterated block
ciphers. In: Knudsen, L.R. (ed.) Fast Software Encryption, 6th International Work-
shop, FSE ’99. LNCS, vol. 1636, pp. 201–214. Springer (1999)

27. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil ba-
sic safeguards of privacy on web. International New York Times
https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-
encryption.html (accessed September 30, 2021) (2013)

28. Perrin, L.: Partitions in the s-box of Streebog and Kuznyechik. IACR Trans. Sym-
metric Cryptol. 2019(1), 302–329 (2019)

29. Peyrin, T., Wang, H.: The MALICIOUS framework: Embedding backdoors into
tweakable block ciphers. In: Micciancio, D., Ristenpart, T. (eds.) Advances in
Cryptology - CRYPTO 2020. LNCS, vol. 12172, pp. 249–278. Springer (2020)

30. Posteuca, R., Ashur, T.: How to backdoor a cipher. IACR Cryptol. ePrint Arch.
p. 442 (2021)

31. PUB FIPS: 46: Data Encryption Standard (DES). US Department of Commerce,
National Bureau of Standards (1977)

32. Rijmen, V., Preneel, B.: A family of trapdoor ciphers. In: Biham, E. (ed.) Fast
Software Encryption, 4th International Workshop, FSE ’97. LNCS, vol. 1267, pp.
139–148. Springer (1997)

33. Sage Developers: SageMath, the Sage Mathematics Software System (Version 9.3)
(2021), https://www.sagemath.org

34. Schneier, B.: Applied cryptography - protocols, algorithms, and source code in C,
2nd Edition. Wiley (1996)

35. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack: Practical attack on
full SCREAM, iSCREAM, and Midori64. J. Cryptol. 32(4), 1383–1422 (2019)

36. Wardlaw, W.P.: Matrix representation of finite fields. Mathematics Magazine
67(4), 289–293 (1994)

37. Wei, Y., Ye, T., Wu, W., Pasalic, E.: Generalized nonlinear invariant attack and
a new design criterion for round constants. IACR Trans. Symmetric Cryptol.
2018(4), 62–79 (2018)

38. Wu, H., Bao, F., Deng, R.H., Ye, Q.: Cryptanalysis of Rijmen-Preneel trapdoor
ciphers. In: Ohta, K., Pei, D. (eds.) Advances in Cryptology - ASIACRYPT ’98.
LNCS, vol. 1514, pp. 126–132. Springer (1998)

32 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

A Source Code to Generate GEA1-like Systems

Listing 1.1: weakgea.sage

GEA -1 parameters

kappa = 64

xi = 24

l1 = 31

l2 = 33

l3 = 32

trials = 2**16

hkappa = int(kappa /2)

qkappa = int(kappa /4)

def getInitMatrix_fast(p,keyLength ,shift):

P.<x> = PolynomialRing(GF(2))

l = p.degree ()

Construct transformation matrix A for LFSR in Galois mode

A = companion_matrix(x^l+1)

A[0] = list(p)[0:l][:: -1]

A = A.transpose ()

e0 = vector(GF (2) ,[1]+[0]*(l-1))

M = zero_matrix(GF(2),l,keyLength)

for c in range(keyLength):

if (c < shift):

M.set_column(c,A**(shift -c)*e0)

else:

M.set_column(c,A**(keyLength -c+shift)*e0)

return M.transpose ()

V = VectorSpace(GF(2),(kappa -2*xi));

Pol.<X> = PolynomialRing(GF (2));

success = False

ctr = 0

while (ctr < trials):

v = V.random_element ()

p1 = X**kappa+X**xi

j = 0

for i in [1..(hkappa -xi)]+[hkappa ..(kappa -xi -1)]:

p1 = p1+v[j]*X**(kappa -i)

j = j+1

fp1 = list(p1.factor ())

for f in fp1:

if ((f[0]. degree ()==l1) and f[0]. is_primitive ()):

p2 = X** hkappa+X**(hkappa+xi)

Constructing and Deconstructing Intentional Weaknesses 33

j = 0

for i in [1..(hkappa -xi)]:

p2 = p2+v[j]*X**(hkappa -i)

j = j+1

for i in [hkappa ..(kappa -xi -1)]:

p2 = p2+v[j]*X**(kappa -i+hkappa)

j = j+1

fp2 = list(p2.factor ())

for g in fp2:

if ((g[0]. degree ()==l2) and g[0]. is_primitive ()):

g1 = f[0]

g2 = g[0]

print(’g1 = ’, g1)

print(’g2 = ’, g2)

ctr = trials

Initmat2 = getInitMatrix_fast(g2,kappa ,hkappa)

Initmat1 = getInitMatrix_fast(g1,kappa ,0)

T = Initmat2.kernel (). intersection(Initmat1.kernel ())

print(’dim T = ’, T.dimension ())

ctr = 0

while (ctr < trials):

g3 = X**l3+1

for i in [1..(l3 -1)]:

g3 = g3+(GF(2). random_element ())*X**i

if g3.is_primitive ():

Initmat3 = getInitMatrix_fast(g3,kappa ,qkappa)

if Initmat3.kernel (). intersection(T). dimension ()==0:

print(’g3 = ’, g3)

ctr = trials

else:

print(’try again’)

ctr = ctr+1

B Experimental Verification for GEA-like Constructions

We experimentally verified the plausibility of the heuristic used in our construc-
tion. This part demonstrations that the experiments nicely match the theoretical
predictions.

Recall that we assume that the polynomials constructed for a vector t ∈ Fκ2 as
given in Equation (1) and (2) behave as a uniform random pair of polynomials.
In particular this means that a fraction of Ψ`1 of the polynomials p1 have a
primitive divisor of degree `1 and, similarly, a fraction of Ψ`2 of the polynomials
p2 have a primitive divisor of degree `2.

34 Christof Beierle, Tim Beyne, Patrick Felke, and Gregor Leander

Table 2: For κ = 64 and ξ ∈ {23, 24, . . . , 28}, this table shows the number of
p1 that yield primitive divisors of degree ` (first number in cell), the number of
p2 (with cs = κ

2 = 32) that yield primitive divisors of degree ` (second number
in cell), compared to the theoretical estimate Ψ`2

κ−2ξ rounded to the closest
integer (number in parentheses).

(`, ξ) 23 24 25 26 27 28

29
8884 2190 442 76 24 0
9178 2224 544 114 40 0

(8988) (2247) (562) (140) (35) (9)

30
4242 1132 274 72 16 0
4322 1106 270 44 10 0

(4351) (1088) (272) (68) (17) (4)

31
9460 2158 506 126 44 18
8720 2052 518 106 26 14

(8456) (2114) (529) (132) (33) (8)

32
3822 966 226 40 0 0
4108 1110 272 68 12 4

(4096) (1024) (256) (64) (16) (4)

33
6416 1624 416 112 10 0
6158 1584 378 108 12 0

(6440) (1610) (402) (101) (25) (6)

34
4900 1194 314 46 18 6
5128 1268 336 78 18 10

(5140) (1285) (321) (80) (20) (5)

For κ = 64 and values of ξ between 24 and 28, we computed the exact number
of polynomials p1 and p2 and compared this to the theoretical estimate.

More importantly, we checked the behaviour of pairs directly. In order to
limit the set of parameter to consider, we restricted to the case of `2 = `1 + 2
and κ = `1 + `2. For each 4 ≤ `1 ≤ 67 we compared the maximal dimension that
could actually be constructed to the maximal dimension that could have been
expected to be possible following the heuristic. The results, shown in Table 3 and
verifiable by the sage code provided in Appendix A, suggest that the heuristic
is plausible.

Constructing and Deconstructing Intentional Weaknesses 35

Table 3: Experiments for parameters `2 = `1 + 2, κ = `1 + `2, for 4 ≤ `1 ≤ 67.
The value ξexp gives the maximum ξ such that Ψ`1Ψ`22κ−2ξ ≥ 1. The value ξmax

gives the maximum ξ for which there exist p1, p2 that yield primitive divisors
g1, g2 of degree `1 and `2, respectively. The value # sol gives the number of such
tuples (p1, p2). For all such solutions, the dimension of TGg1 ,Gg2,cs is equal to
ξmax.

`1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ξexp 1 3 3 4 4 6 6 8 8 10 10 11 11 13 13 15
ξmax 3 2 3 4 4 5 6 7 7 11 9 11 10 13 13 15
sol 2 8∗ 4 2 2 8 2 4 2 2 6 2 14 2 2 4

`1 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

ξexp 15 17 17 19 19 21 21 23 23 25 25 26 27 28 28 30
ξmax 16 16 18 20 20 21 22 23 22 23 24 26 27 28 28 29
sol 2 8 2 2 2 4 4 2 2 14 10 4 2 6 2 6

`1 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

ξexp 30 32 32 34 34 36 36 38 38 40 40 42 42 44 44 46
ξmax 30 32 32 34 34 36 35 38 39 40 39 44 44 44 45 45
sol 2 2 2 4 4 4 8 2 4 2 2 2 2 2 2 2

`1 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

ξexp 46 48 48 50 50 52 52 54 54 55 56 57 58 59 60 61
ξmax 46 48 47 50 49 53 51 53 53 55 56 57 58 60 59 60
sol 2 2 6 2 6 2 4 2 4 2 2 4 2 2 10 6

