On the hardness of the NTRU problem

Alice Pellet-Mary* and Damien Stehlé**

Abstract. The 25 year-old NTRU problem is an important computa-
tional assumption in public-key cryptography. However, from a reduc-
tion perspective, its relative hardness compared to other problems on
Euclidean lattices is not well-understood. Its decision version reduces to
the search Ring-LWE problem, but this only provides a hardness upper
bound.

We provide two answers to the long-standing open problem of providing
reduction-based evidence of the hardness of the NTRU problem. First, we
reduce the worst-case approximate Shortest Vector Problem over ideal
lattices to an average-case search variant of the NTRU problem. Second,
we reduce another average-case search variant of the NTRU problem to
the decision NTRU problem.

1 Introduction

In the NTRU encryption scheme [HPS98], the public key is an element h of
a polynomial ring R, that can be chosen as Z,[z]/® for some degree d monic
irreducible polynomial ¢ and some integer g > 2. This public key h is far from
uniform in R,, as it can be written as h = f/g mod ¢ where the secret key
polynomials f,g € R = Z[z]/® have coefficients with small magnitudes com-
pared to ,/q. In most concrete instantiations, such as the original scheme and
the NTRU and NTRU Prime Round-3 candidates to the NIST post-quantum
cryptography standardization project [CDH™20, BBC*20], the coefficients of f
and g even belong to {—1,0,1} and ¢ grows as a small degree polynomial in d.
As a result, the set of such h’s is very sparse in R,. The tasks of distinguish-
ing h from uniform and recovering a sufficiently short pair (f,g) from h are
respectively known as the decision and search variants of the NTRU problem.
The search NTRU problem can be solved with lattice reduction algorithms
(such as [Sch87]), but to succeed for the most usual setting of ¢ < poly(d),
they require a computational effort growing as exp(O(d)). In [KF15], Kirch-
ner and Fouque described a heuristic algorithm with slightly subexponential
cost exp(O(d/loglogd)) for the usual setting of ¢ < poly(d) and | f]wx, [lg]le <

* CNRS, Inria and Université de Bordeaux, alice.pellet-mary@math.u-bordeaux.fr

** ENS de Lyon and Institut Universitaire de France, damien.stehle@ens-lyon.fr
© IACR 2021. This article is the full version of the article published by Springer-
Verlag.

O(1). If the magnitude bound grows as 2(v/d), then the cost of this algo-
rithm is exp(O(d)). In the completely different regime of very large ¢ (but
with | f] and |g| growing at a much smaller pace), recent works [ABD16,CJL16,
KF17] have shown that the NTRU problem is significantly easier than previ-
ously thought. For example, one can recover appropriately distributed f, g with
If1l, lgll < poly(d) from h in quantum polynomial time when ¢ > exp(£2(+v/d)).
Prior to those works, it was believed that ¢ > exp(£2(d)) was necessary for poly-
nomial cost. This range of modulus ¢ is far from the one used for the NTRU
encryption scheme. However, NTRU instances with a large modulus g can occur
in more advanced cryptographic constructions such as [LTV12] and [GGH13].

On the lower-bound front, it was shown in [SS11] for ¢ a power-of-2 cy-
clotomic and extended in [WW18] to all cyclotomics that if f,g are Gaussian
over R (restricted to elements that are invertible modulo ¢) with standard de-
viation that is a little larger than /g, then the distribution of h = f/g mod g is
within 27(4) statistical distance from the uniform distribution over invertible
elements of R,. This variant of decision NTRU is therefore vacuously hard. This
parameter regime is relevant to the NTRU signature algorithm [HHP*03,SS13].
It also allows to obtain an NTRU-like public-key encryption scheme, but less
efficient than with smaller secret key polynomials f,g.

Despite 25 years of study, little is known about the relationships between
the NTRU problem variants and between them and other well-studied problems
over Euclidean lattices. To our knowledge, the only exceptions are the direct
reduction from decision NTRU to search NTRU and a reduction from deci-
sion NTRU to the search version of the Ring-LWE problem [SSTX09, LPR10],
sketched in [Peil6, Se. 4.4.4]. Note that this only provides an upper bound to
the hardness of the NTRU problem. Given this state of affairs, Peikert asked the
following question in [Peil6, Se. 7.1]:

Is there a worst-case hardness reduction, or a search-to-decision reduction,
for an NTRU-like problem?

CONTRIBUTIONS. We provide positive answers to both components of the above
question.

First, we give a reduction from the approximate Shortest Vector Problem re-
stricted to ideal lattices (ideal-SVP) to a worst-case variant of the search NTRU
problem. Combining the latter with the recent worst-case to average-case re-
duction for ideal-SVP from [dBDPW20] leads to a reduction from worst-case
ideal-SVP to an average-case version of the search NTRU problem. The in-
stance distribution is inherited from the distribution over ideal lattices consid-
ered in [dBDPW20]. We also show that this distribution over NTRU instances h
can be efficiently sampled from, together with a corresponding trapdoor (f,g),
if one has access to a quantum computer or if the modulus ¢ is sufficiently large:
this property allows to sample an NTRU encryption public key along with a
corresponding secret key.

Second, we exhibit a reduction from another (average-case) variant of the
search NTRU problem (see below) to the decision NTRU problem. The reduc-

tion works for a wide set of distributions for the search NTRU instances, and
the decision NTRU instance distribution is directly derived from the considered
search NTRU distribution. A sufficient condition on the search NTRU distribu-
tion is that it produces with overwhelming probability an h with trapdoor (f, g)
such that f and g have balanced coefficients (in canonical embedding) and f
or g is coprime to g. This covers in particular the standard ternary distribution
for f and g (i.e., f,g < U({—1,0,1}%)) provided we reject (f,g) when they are
not balanced enough or not coprime to ¢ (heuristically, this should happen with
probability < 1/2). On the other hand, the choice of the decision NTRU dis-
tribution is much less flexible: even if we start with a ternary distribution for
the search NTRU instances, it is very unlikely that the decision NTRU distri-
bution we obtain is ternary. Similarly to the first reduction, we show that if the
samples h from the search NTRU distribution can be efficiently sampled along
with a corresponding trapdoor (f, g), then so can the samples from the resulting
decision NTRU instance.

TECHNICAL OVERVIEW. For the sake of simplicity, in the forthcoming discussion,
we restrict ourselves to power-of-2 cyclotomic defining polynomials, i.e., ¢ =
2% + 1 for d a power of 2. In this case, the ring R = Z[x]/(z¢ + 1) matches the
ring of integers of the degree-d cyclotomic number field. Moreover, the coefficient
embedding (which is the one usually considered in the NTRU literature) and the
canonical embedding (used in this article) define the same geometry, up to scaling
and rotation. (In the core of the paper, the results are presented for arbitrary
number fields.)

To state the above contributions formally, we consider several variants of
the NTRU problem. We say that h € R, = Z,[z]/(z? + 1) is an NTRU in-
stance with gap 7 if there exists (f,g) € R?\{(0,0)} such that g-h = f mod ¢
and | f[, g < \/a/7. Note that writing g - h = f mod ¢ rather than the more
standard h = f/g mod ¢ allows one to consider ¢g’s that are not invertible mod-
ulo ¢ and suffices for cryptographic applications. The norm | f| is the Euclidean
norm of the vector made of the coefficients of f, and the comparison to /q
is justified by the fact that for a uniformly chosen h, one expects the smallest
such pair (f,g) to have Euclidean norm around /g, up to a small polynomial
in d (in the core of the paper, we consider the Euclidean norm induced by
the canonical embedding, which leads to a slightly different definition, differing
by another v/d factor). In the literature, the bound on ||f||,|g| is often abso-
lute rather than relative to ,/q: our definition variant stresses the distance to
the uniform h regime. For a distribution D over NTRU instances with gap -,
the decision problem (D, v, ¢)-ANTRU consists in distinguishing between D and
the uniform distribution over R,. On the search NTRU side, the situation is
more complex. We consider two variants of search NTRU, both of which with a
worst-case and an average-case version. For v > +/, the worst-case vector NTRU
problem wcNTRU,,. consists, given as input an NTRU instance h with gap v,
in recovering (f,g) # (0,0) such that g-h = fmodq and |f|,|g] < /a/¥-
Note that if h € R, has a trapdoor (f,g), then (¢ - f,t- g) is another NTRU
trapdoor of a possibly larger Euclidean norm, for any non-zero t € R. The

wcNTRU,. definition allows solutions whose norms are within an approxima-
tion factor v/4’ from the norms of the promise. Even though there may be plenty
of solutions of the form (¢- f,¢- g) for t € R, the pair ratio hg = (tf)/(tg) = f/g
over K := Q[z]/(z? + 1) is an invariant. This motivates the definition of the
worst-case module NTRU problem weNTRU,,q, which consists in recovering hr
from h. This is equivalent to recovering the rank-1 submodule (f, g)7 - K n M, of
the rank-2 R-module M, = {(f’,¢')T € R? : ¢’ - h = f’ mod ¢}, hence justifying
the name. The average-case counterparts to wcNTRU,.. and weNTRU,,q are
defined analogously.

We now sketch the reduction from ideal-SVP to weNTRU,.. Let us consider
the worst-case variants, and the restriction of ideal-SVP to principal ideals with a
known generator: we are given as input a generator z of a principal ideal T = {z)
of R, and want to use a weNTRU,.. oracle to find a short non-zero vector
in I. Any element g € I is of the form g = z - r for some r € R. Consider a
short non-zero g € I. Multiplying it by ¢/z, we obtain that g - (¢/z) = 0 mod g.
This already looks like an NTRU equation with a candidate ¢/z for h. But
note that ¢/z is in K = Q[z]/(z? + 1) and has no a priori reason to belong
to R = Z[x]/(x% + 1), whereas the element h of an NTRU instance must belong
to R. To handle this difficulty, we can round ¢/z to R (coefficient-wise). This
leads to g - |¢/z] = —g - {q/z} mod ¢q, where both g and f := —g - {¢/z} are
small elements of R. We obtain the existence of a small pair (f, g) € R2\{(0,0)}
such that ¢ - |¢/z] = f mod gq. We can then provide the element h := |g/z] to
the weNTRU,. oracle. The latter returns a pair (f/,¢’) € R*\{(0,0)} such that
9 - 1g/z] = f' mod ¢, and it can be proved that for any such sufficiently short
pair, we have that ¢’ is a short non-zero element of I. To handle possibly non-
principal ideals (and also principal ideals with unknown generator), we rely on
the 2-element representation of ideals.

If we forget polynomial factors and rely on a weNTRU,,. oracle with param-
eters ¢,y and 7/, the above allows to find 7s,, approximations to a shortest non-
zero vector of an arbitrary ideal of volume < N for N/¢ ~ Va/y and ysp ~ v/7'.
Note that the reduction is worst-case to worst-case and handles bounded-volume
ideals. To handle both limitations, we rely on the recent worst-case to average-
case reduction for ideal-SVP from de Boer et al [{BDPW20]. By using the reduc-
tion with ideals from the average-case distribution from [dBDPW20], we obtain a
reduction from worst-case ideal-SVP to average-case NTRU;.. Further, the ide-
als from the average-case distribution from [dBDPW20] have volumes bounded
as exp(O(d?)). This leads to q of the order of exp(O(d)), which is significantly
larger than in many applications. We refine the analysis of [{BDPW20] to show
that by allowing the worst-case to average-case ideal-SVP reduction to run in
time higher than polynomial in d, the average-case ideals from [dBDPW20] can
be chosen with smaller volumes. The resulting NTRU modulus ¢ is still slightly
larger than polynomial, but it can be chosen as small as d*(") if one considers
sub-exponential time reductions.

We now provide an overview of our second main result, which is a reduc-
tion from average-case NTRU,,oq to ANTRU. This one is applicable for ¢ larger

than some moderate poly(d). At the core of the reduction is an NTRU reran-
domization process. Assume we are given some h € R, for which there exists
a short pair (f,g) # (0,0) with g - h = f mod ¢q. Now, for any x1,z2 € R, we
have g-(x1h+x2) = 21 f + 229 mod ¢, which may be rewritten as g-h' = f/ mod ¢
with i/ = z1h + 25 and [’ = z1 f + z2g. Further, if 1 and x5 are short, then so
is f’. This hence gives a way to produce arbitrarily many NTRU samples with a
common denominator g, from a single one. Our aim is to query the dNTRU or-
acle on many such samples, and gather relevant information to solve NTRU,,04.
Concretely, we define the ANTRU distribution and show how to tweak the reran-
domization process to be able to use the Oracle Hidden Center Problem (OHCP)
framework from [PRS17]. At a high level, in the OHCP framework, one is given
access to a decision oracle whose acceptance probabilities on a family of distribu-
tions (D) .ec is a function of the distance |z —¢| to a hidden center ¢ € C. Under
some conditions on the oracle behaviour, there exists an efficient algorithm that
recovers an arbitrarily accurate approximation ¢ to ¢, by querying the OHCP
oracle on samples from D, for well-chosen values of z. Prior to this work, the
OHCP framework has been used to provide a reduction from ideal-SVP to the
decision version of Ring-LWE [PRS17], and a search to decision reduction for
Ring-LWE [RSW18].

Let us now look more closely at the rerandomization of f. It was shown
in [LSS14] that by sampling 21 and z from spherical Gaussians over R with
standard deviation sufficiently above max(||f||, |g||), the distribution of x1 f +z2g
is Gaussian over the ideal (f)+{g) with a covariance matrix that is a function of f
and g. This spherical Gaussian rerandomization defines our ANTRU distribution.
We extend the proof of [LSS14] to show that if instead we sample z; and x5 from
correlated non-spherical Gaussians over R, then the distribution of 1 f + z2g is
Gaussian over (f) + {¢g) with a covariance matrix that can be made to depend
solely on |f(¢) —z-g(¢)| for ¢ an arbitrary complex root of ® = 2%+ 1, and z € C
arbitrary. The center of the OHCP instance is ¢ = f(¢)/g(¢) = hr(¢) (recall
that hg = f/g belongs to K = Q[x]/(x¢ + 1)). Using the INTRU oracle within
the OHCP framework hence allows us to recover an approximation to hg(¢). In
the applications from [PRS17,RSW18] of the OHCP framework, one recovers a
vector ¢ of OHCP centers from an approximation € by observing that ¢ belongs
to a lattice: the exact center ¢ can hence be obtained by simply rounding a
sufficiently precise approximation €. In our case, we cannot proceed similarly,
as hg has rational coordinates. We instead show that the LLL algorithm [LLL82]
can be used in a manner similar to [KLL84] to recover hg = f/g € K from
a sufficiently precise approximation to hg({), given an a priori upper bound

to max([[£, [g])-

DiscussioN. The two reductions put forward in this work provide some evidence
towards supporting the conjectured hardness of the search vectorial NTRU prob-
lem and the decision NTRU problem. They may give the impression that the
hardness of the NTRU problems lies somewhere between the hardness of the
ideal-SVP and that of Ring-LWE. This is however neglecting the fact that there
are several NTRU problem variants, and it is unclear whether they are compu-

tationally equivalent. In particular, the reductions are incompatible, in that the
first one reduces to NTRU,.. and the second one from NTRU,,,q. NTRUy0q
reduces to NTRU,ec, but it is a reduction from NTRU,.. to NTRU,,,q that we
would need to obtain a chain of reductions from ideal-SVP to Ring-LWE via
the computationally equivalent NTRU problems. Note that if we assume that
ideal-SVP is easy, then these problems are computationally equivalent (see Sub-
section 3.4), but the reduction from ideal-SVP to NTRUe. becomes vacuous. In
fact, it seems that NTRUye. and NTRU,,0q could even be of different natures:
when attempting to solve NTRU,,. using an NTRU,,,q oracle, it is unclear how
to make the approximation factor v/’ appear, as NTRUy,oq is only parametrized
by the promise gap 7. Better understanding the differences between the NTRU
variants seems important to better capture the NTRU hardness. In this direc-
tion, note that the known attacks specific to NTRU [ABD16,CJL16,KF17] are
mostly relevant for NTRU,0q: they can also be used to solve NTRUec, but the
quality of the solution obtained for NTRU,.. is the same as the one we would
obtain by running the attack to solve NTRU,0q, and then running an ideal-SVP
solver on the dense rank-1 sub-module to obtain a somehow short vector.

Despite the apparent uncomposability of our two reductions, it would be in-
teresting to have NTRU instance distributions that are compatible with both
of them. The second reduction is very permissive with respect to the NTRUp,0q
instance distribution, but the latter still has to satisfy some properties (see Defi-
nition 5.1). In particular, the canonical embedding of f and g should be bounded
from below and above, and the ideal {f) + (g) should be coprime with {g). We
note that in the reduction from ideal-SVP to wcNTRUec, the element g is an
element of the ideal-SVP instance ideal, which could be chosen Gaussian. Using
standard properties of lattice Gaussians, it is not unlikely that one can prove the
desired property on its canonical embedding. There seems to be less flexibility
in the choice of f = —g - {q/z}. However, one could replace the deterministic
rounding by a Gaussian rounding, to then use a similar approach as the one
for g. Concerning the co-primality with {g), one could hope to use an inclusion-
exclusion argument for Gaussian sums like the one in [SS11].

Concerning the hardness of the NTRU problems relatively to ideal-SVP
and Ring-LWE, note that the state of the art suggests that ideal-SVP might
be strictly easier than Ring-LWE, as ideal-SVP is known to reduce to Ring-
LWE [SSTX09,LPR10,PRS17] but no reduction from Ring-LWE to ideal-SVP
is known. In fact, Ring-LWE seems less related to ideal-SVP than to finding two
short linearly independent vectors in rank-2 modules over R (SIVP): for an ap-
propriate parametrisation, Ring-LWE reduces to the latter problem [LS15, Se. 5]
and, although for some other parametrisation, the latter problem reduces to
Ring-LWE (by combining [LS15, Se. 4] and [AD17]). From a lattice perspec-
tive, NTRU is a generalization of the unique Shortest Vector Problem to rank-2
modules. At this stage, it is unclear whether its complexity matches the one of
ideal-SVP (i.e., SVP for rank-1 modules) or the one of SIVP restricted to rank-2
modules. It could also be strictly in between.

2 Preliminaries

The notations log and In respectively denote the logarithms in bases 2 and e.
For n an integer, we let [n] denote the set {1,2,...,n}. Vectors and matrices are
denoted with bold lower-case and upper-case letters, respectively. The statistical
distance between two distributions D and Dy with compatible countable sup-
ports is defined as dist(Dq, Do) = 13 |D1(2) — Do(x)|. We write Dy ~. Dy if
dist(Dy, D2) < € for some € > 0. If X is a finite set, then we let U(X) denote
the uniform distribution over X. If by,..., b, € R™ are linearly independent
vectors, then the notation (by,...,b,) refers to their Gram-Schmidt orthogo-
nalization. The notation ||-|| refers to the matrix norm induced by the Euclidean
norm. Finally, we define O(d) as O(d! poly(log d)) for any ¢ > 0 including ¢ = 0.

2.1 Euclidean lattices

A lattice L < R™ is a set of the form L = B - Z™*™ for some full column-
rank matrix B € R™*™ (for some m > n > 1). The columns of B are said to
form a basis of L. For i € [n], the ith lattice minimum is defined as \;(L) =
min(r : dim L n B(r) > i), where B(r) denotes the closed ball of R™ of ra-
dius r. The determinant det(L) is defined as 1/det(BTB), which is independent
of the particular choice of basis B of L. Minkowski’s (second) theorem states
that [[,y Mi(L) < V/n'" - det(L).

In this article, we will be interested in the ideal Hermite Shortest vector
problem. We first recall below the definition of the Hermite Shortest Vector
Problem (HSVP) for arbitrary lattices, and we will instantiate it for ideal lattices
in Section 2.4.

Definition 2.1 (y-HSVP). Let v > 1. Given as input a lattice L < Q™ (rep-
resented by an arbitrary Z-basis), the v-HSVP problem asks to find a vector
w € L\{0} such that |w| < - +/n-det(L)V".

By Minkowski’s theorem, this problem is well-defined for any v > 1.

2.2 Discrete Gaussian distributions

Let S € GL,(R) be an invertible matrix. The Gaussian density function with
parameter S is defined over R™ by
ps(x) = e ™IS,

When the matrix S is diagonal with diagonal coefficients all equal to some o > 0,
we also use the notation p, = pg. Let L < R™ be a full rank lattice, and c € R".
The discrete Gaussian distribution Dy, g over L with center ¢ and parameter S
is the distribution for which the probability of any v € L is pg(v —c¢)/ps(L — ¢),
where ps(T) = >, ps(t) for any countable 7 < R™. Again, we will use the
notation Dy, ,. when S = diag(o) for some ¢ > 0. When ¢ = 0, we omit the
subscript c.

If L ¢ R™ is a lattice, its smoothing parameter 7. (L) is defined as the small-
est 0 > 0 such that p;/,(L*\{0}) < &, where L* = {c € span(L) : Yb € L :
(b*,b) € Z} is the dual of L. For any n-dimensional lattice L and € > 0, we have
the following upper bound on the smoothing parameter (see [MRO7, Le. 3.3]):

In(2n(1+1/e
ne(L) <[220V) (21)
The following Lemma (adapted from [GPVO08, Th. 4.1]) shows that one can
efficiently sample (bounded) elements from a distribution that is statistically
close to a discrete Gaussian distribution. A proof can be found in Appendix A.2.

Lemma 2.2. There exists a ppt algorithm that takes as input a basis B =
(b1,...,byn) of an n-dimensional lattice L, a parameter o = +/n - max; b
and a center ¢ € Span(L) and outputs a sample from a distribution Dg ¢ such
that

e Dpoec Ro-am Do
o for all v« Dp o, it holds that |[v —c| < 4/n-o and v # 0.

The following lemma bounds the statistical distance between two discrete
Gaussian distributions over the same lattice L, depending on the distance be-
tween their centers and their parameter matrices. Similar results were already
present in previous works, such as in [Reg09, Claim 2.2] for 1-dimensional con-
tinuous Gaussian distributions, and in the proof of [dBDPW20, Th. 4.4] for the
case of ideal lattices with specific parameters and centers. Since the following
precise statement seems new, we provide a proof in Appendix A.3 for the sake
of completeness.

Lemma 2.3. Let L < R™ be a full rank lattice, S1,Ss € GL,(R) be two invert-
ible matrices and ci,co € R™ be two vectors. If nl/z(Sl_lL),nl/g(SglL) < 1/2,
then it holds that

dist (D15, 0 Drsyer) < - (/185181 = Ll + /185 (e — e2)]).

The next lemma states that a lattice Gaussian distribution with sufficiently
large standard deviation is almost uniform when reduced modulo a sublattice.

Lemma 2.4 ([GPVO08, Cor. 2.8]). Let L1 € Lo be two lattices of rank n. If
1= n.(Ly) for some e < 1/2, then (D, 1 mod L) ~o: U(Ly mod Ly).

2.3 Number fields

Let K be a number field of degree d > 2 and Kr = K ®gp R. We let R denote
its ring of integers. We identify any element of K with its canonical embed-
ding vector o : x — (01(%),...,04(z))T € C%. This leads to an identification
of K with {y € C* : Vi € [rg],y; € Rand Vi € [rc],Urmr2(t1) = Yrat2i+1}s

where rg and r¢ respectively denote the number of real and complex embed-
dings. Via this identification, the set Kg is a real vector subspace of dimension d
embedded in CZ. In the following, for any element 2 € R, K or Kg, we will
let |z (resp. ||x||s) denote the Hermitian norm (resp. infinity norm) of the vec-
tor o(x) € CZ. The set o(R) is a lattice, and the absolute field discriminant Az
is defined as Ay = |det(o(R))2|.! We have Ax = (7/4)¢-(d?/d!)?, which implies
that we have d = O(log Ak), for Ag growing to infinity.

The (absolute value of the) algebraic norm of x € Kg is defined as N (z) =
[1; loi(x)|. Any non-zero element r € R has algebraic norm > 1, which implies
in particular that 7], = 1.

In this work, we assume that we know a monic polynomial ¢ € Z[X] defin-
ing K and a Z-basis (r1,...,7rq) of R, where the r;’s are represented by poly-
nomials modulo @ (of degree < d) with rational coefficients. Let Dg > 0 be
the smallest integer such that Dg - 7; has integral coefficients for all ¢ (i.e., Dg
is the common denominator to all the r; polynomials), then the bit-size of Dg
is polynomial in d and ||®||, where |®| is the Euclidean norm of the vector of
coefficients of @ (see for instance [Sut16, Se. 12.4]).

We will assume that this basis has been LLL-reduced [LLL82]. We define
0r = max; ||r;]lo. Since |r|s =1 for all r € R\{0}, we know that dx > 1. Using
Minkowski’s second theorem and the LLL-reducedness of (r1,...,7rq), we have
that §x < Afo((l). In the case of cyclotomic number fields, taking the power basis
gives g = 1. For an element x =), x;7; € Kg, define |z] = > |x;]r;. We will
also use the notation {x} = x — |«]. It holds that ||{z}| s, < d/2 -k, and hence
that |[{z}| < d%? - 6.

For a rational © = x1/ze with 21,22 € Z and ged(z1,22) = 1, we define
size(z) = 1+ log|xi| + log|z2|. For an element = . x;7; € K, we define
size(x) =), size(x;). The following lemma shows that if we have a sufficiently
precise approximation to an embedding of x € K, then one can recover x exactly.
This seems folklore, but as we were unable to find a proof, we provide one
in Appendix A. The result and the proof strategy are mentioned in [Coh00,
Se. 6.2.4] in the context of quadratic fields and in Roblot’s PhD thesis [Rob97]
(just after Lemma 2.14). But both references are very brief on the topic. We
note that a detailed study was done on a p-adic counterpart in [BelO4a).

Lemma 2.5. Let k < d arbitrary. There exists an algorithm that, given ¥ such
that |g — ox(x)| < 27P for some x € K and some p = poly(d,logdk,log |P|,
size(z)), recovers x as a rational linear combination of the basis (r1,...,7q)
of R in ppt with respect to p.

2.4 Ideals and Modules

Ideals. An integral ideal I is a subset of R that is stable by addition and by
multiplication with any element of R. A fractional ideal is a subset of K of the

! Note that in order to avoid having absolute values everywhere in the rest of the
article, we define Ak as the absolute value of the discriminant of K.

form z - I for some z € K and some integral ideal I < R. We write (z) the
principal (fractional) ideal generated by z € K. Using the canonical embedding,
any non-zero fractional ideal of K is identified to a d-dimensional lattice, called
ideal lattice. The algebraic norm of an integral ideal I = R is defined by NV (I) =
|R/I|. We extend the notation to a fractional ideal zI with 2 € K and I an
integral ideal, by setting M (zI) = N (z) - N(I). For a non-zero fractional ideal
I=1/2with I1,I> € R and ged(I1, I5) = R, we define the quantity size(I) :=
log(N(11)) + log(N (12)).

Two-element representation of an ideal. Any fractional ideal I can be generated
by only two elements, i.e., there exist x,y € K such that I = {(z) + {y) (see,
e.g., [Coh95, Prop. 4.7.7]). In fact, for any x € I\{0}, there exists y € I such that
I = {z)+ {y). The lemma below states that computing such a y, given as input
(I,z), can be done in probabilistic polynomial time.

Lemma 2.6 (Adapted from [Bel04b, Alg. 6.15] and [FS10, Th. 3]).
There exists a probabilistic algorithm taking a fractional ideal I < K and a
non-zero x € I as inputs, computing y € I such that I = (x) + {y), and whose
run-time is polynomial in size(x), size(I) and log(Ak).

Proof. Wlog, we can restrict the study to non-zero integral ideals. The algorithm
is the same as the one given in [FS10, Fig. 1], except that in Step 1, the element x
is chosen to be x, rather than the first vector of a reduced basis. The correctness
proof is unchanged. The upper bounds on the bit-sizes of the elements appearing
during the algorithm execution do change, but one can check that all these bit-
sizes stay polynomial in size(x), as well as the other quantities related to I
and K that were already present in [FS10] (which are all polynomial in size(I)
and log Ak). So overall, the run-time remains polynomial in size(x), size(I)
and log A.]

Algorithmic problems over ideal lattices. The ideal-HSVP (or id-HSVP for short)
problem is the HSVP problem restricted to lattices that are (fractional) ideal
lattices. Using the fact that for an ideal lattice I < K we have det(I) = +/|Ak|-
N (I), the problem admits the following equivalent formulation.

Definition 2.7 (y-id-HSVP). Let v = 1. Given as input a non-zero fractional
ideal I ¢ K (represented by an arbitrary Z-basis), the v-id-HSVP problem asks

to find an element w € I\{0} such that |w| <~ -+/d- A%(Qd) N (DY,

Observe that y-id-HSVP is equivalent to 4'-SVP in ideal lattices, up to poly-
nomial losses < v/d - A%(Zd) in the approximation factors v and 7/, thanks to
the inequalities

NIV < A (I) < Vd- AYCD A1),

which hold for any non-zero fractional ideal I. The approximation factor loss is

polynomial when A%(zd) < poly(d).

10

If v = exp(O(d¥)) for a € [0,1], then Id-HSVP can be solved using lattice
reduction algorithms [Sch87], in time exp(O(d~)). In [CDW21], Cramer, Ducas
and Wesolowski obtained a heuristic quantum polynomial-time algorithm for v =
exp(O(d*/?)) for cyclotomic fields. In [PHS19], Pellet-Mary, Hanrot and Stehlé
gave a quantum heuristic algorithm for v = exp(O((log Ax)**+!)/d) running
in time exp(O((log Ag)1 ~2%)) for any field K, where a € [0,1/2] is arbitrary.
They also propose a classical variant of their algorithm, achieving the same
approximation factor v in time exp(O((log Ag)™**(2/3:1=2¢))) for any field K;
and in time exp(O(d™™*(1/2:1-2))) for cyclotomic fields. Both the classical and

the quantum algorithms require an advice depending only on the field K, whose
bit-length is bounded as exp(O((log A) ~2%)).

Smoothing ideals. The following lemma from [PRS17] provides a sufficient con-
dition for a diagonal matrix S to be above the smoothing parameter of an ideal
lattice.

Lemma 2.8 ([PRS17, Le. 6.9]). Let I c K be a fractional ideal and S € R*?
be a diagonal matriz with positive diagonal coefficients. Assume that

ci=([[Sa)* WD) Ag) =1,

then 1 = n.(S7), where ¢ = exp(—c?d).

Modules. For £ > k > 1, a rank-k module M c KH% is a set of the form M =
b1l +...+byl} for some non-zero ideals (I;); and some Kg-linearly independent
vectors (b;); (i.e., if >3, y;b; = 0, then all y;’s must be 0). The tuple ((I;, b;)); is
called a pseudo-basis of M. If M admits a pseudo-basis for which all the I;’s are
equal to R, then M is called free. We define det(M) as the determinant of M
when identified with a kd-dimensional lattice via the canonical embedding o.
For any pseudo-basis ((I;, b;)); of M, we have

det(M)? = Ak -/\/(detKR(ETB) HIE), (2.2)
where detg, is the determinant of a square matrix over Kp.

2.5 Oracle Hidden Center Problem

In the search to decision reduction from Section 5, we will make use of the
OHCP technique from [PRS17]. The proof of Proposition 2.10 is provided in
Appendix A.5.

Definition 2.9 (Oracle Hidden Center Problem [PRS17, Def. 4.3]). Let
g,0 € (0,1) and 8 = 1. An OHCP instance consists in a scale parameter D > 0
and a randomized oracle O : R¥ x Ryg — {0,1} such that, for all z € R¥ with
|z — z*| < BD and t € Rxq, it holds that Pr(O(z,t) = 1) = p(t + log ||z — z*||),

11

where z* € R* is an unknown center satisfying 6D < |z*| < D and p(-) is
an unknown function. The goal of the OHCP is to recover z € R¥ such that
|z —z*| <eD.

Proposition 2.10 (Adapted from [PRS17, Prop. 4.4]). There exists an
algorithm that takes as input a parameter k = 20log(k + 1), the scaling pa-
rameter D and the oracle O of a (exp(—k),exp(—k), 1+ 1/k)-OHCP instance in
dimension k, and solves it with probability = 1—exp(—k), in time poly(k, k), pro-
vided the oracle O satisfies the extra following conditions. For some py, € [0,1]
and t* = 0 we have

1. p(s*) = poo = 1/;
2. |p(t) — peo| < 2exp(—t/k) for any t > 0;
3. for any t1,t2 = 0, it holds that |p(t1) — p(t2)| < Kka/|t1 — tal;

where p(t) = Pr(O(0,t) = 1).

3 Different variants of the NTRU problem

In this section, we define the three variants of the NTRU problem that we will
consider in this work.

3.1 NTRU instances

We first define NTRU instances, which will be the inputs to the NTRU problem
variants. We also consider the less standard case of tuple NTRU instances, which
has also been considered in cryptographic constructions (see, e.g., the variant of
the candidate cryptographic multilinear map from [GGH13] proposed in [LSS14,
Se. 6]). All definitions of this section readily extend to the tuple setting, in a
manner that is consistent with the second part of Definition 3.1.

Definition 3.1 ((v,¢)-NTRU instance). Let ¢ > 2 an integer and v > 0 a
real number. A (v,q)-NTRU instance is an element h € R, such that there
exists (f,g) € R*\{(0,0)} with g-h = fmod q and |f|,|g] < \/a/y. The pair
(f,9) is called a trapdoor of the NTRU instance h.

Fort =1 and v and q as above, a (7, q,t)-tuple-NTRU instance is a tuple
(hi)i<t € Ry such that there exists ((fi)i<t,g) € RTTIN{(0,...,0)} with g - h; =
fi mod ¢ and max; | f;, 9] < v/a/v-

For a uniform h in R, we will see below that the expected norm of a smallest
trapdoor (f, g) is of the order of /g (up to factors depending on the field). Hence,
the quantity v of an NTRU instance measures the gap between the size of a short
trapdoor of h and the size of a smallest trapdoor of h we would have expected
if h was uniform modulo ¢. Note also that any (v, ¢)-NTRU instance is also a
(v, ¢)-NTRU instance for any 4" < 7 (the quantity v is only a lower bound on
the promised gap).

12

We now consider distributions over NTRU instances. To be useful for con-
structing cryptosystems, these distributions must be efficiently samplable and we
also need to be able to sample, together with the NTRU instance h, a trapdoor
(f,g) for h. This motivates the following definition.

Definition 3.2 ((D,~,q)-NTRU setup). Let g = 2, v > 0 and D a distribution
over (v,q)-NTRU instances. A (D,~,q)-NTRU setup is a ppt algorithm (with
respect to logq and log A) sampling triples (h, f,g) € Ry x R? such that

o the marginal distribution of h is D,

o (f,9) # (0,0) and |, gl < va/v,
e g-h=fmodg.

It was shown in [SS11] that for power-of-2 cyclotomic fields, there exists a
(D,v,q)-NTRU setup with D ~y-a@ U(R)) for any prime ¢ > 5 and some v =
1/ poly(d). This was extended to any cyclotomic field in [WW18]. In such cases,
the decision NTRU problem introduced below is information-theoretically hard,
if we replace U(R,) by U(R,). In this work, we rather focus on the case of v > 1.

3.2 Decision NTRU problem
We can now define the decision variant of the NTRU problem.

Definition 3.3 ((D,7,q)-ANTRU). Let ¢ = 2, v = 1 and D a distribution
over (7, q)-NTRU instances. The (D,~,q) decisional NTRU problem ((D,~,q)-
dNTRU for short) asks to distinguish between samples from D and from U(Ry).
The advantage of an algorithm A against the (D,~, q)-ANTRU problem is defined
as

Adv(A) : Pr (A(h)=1) — Pr (A(u) =1)

heD u—U(R,) ’

where the probabilities are also over the internal randomness of A.

A reduction from dANTRU to sRLWEis sketched in [Peil6, Se. 4.4.4].

3.3 Search NTRU problems

We consider two different search variants for the NTRU problem. The first one
consists in finding a trapdoor (f,g) for an NTRU instance h such that |f||
and |g|| are as small as possible, whereas the second variant only asks to recover
any multiple (zf, zg) (with z € K) of a small trapdoor (f, g). We explain below
why both variants may be of interest. Further, for both variants, the definition
comes with worst-case and average-case flavours.

Definition 3.4 ((D,v,7,q)-NTRUyee and (7,7, q)-wecNTRUyee). Let ¢ = 2,
v =+ >0 and D a distribution over (v,q)-NTRU instances. The (D,~,v',q)
average-case search NTRU vector problem ((D,~,7,q)-NTRUyec for short) asks,
given as input some h sampled from D, to compute a pair (f,g) € R?\{(0,0)}

13

such that g-h = f mod q and | f|,|g| < \/a/v'. The advantage of an algorithm A
against the (D,7,7',q)-NTRUyec problem is defined as

g-h = fmodq
Adv(A) = Pr [A() = (f.9) with |(1,9) # (0,0) |,
171 gl < v/

where the probability is also over the internal randomness of A.

The (7,7, q) worst-case search NTRU wvector problem ((-y,~', q¢)-wcNTRUyec
for short) asks, given as input a (v,q)-NTRU instance h, to compute a pair
(f.9) € R:\{(0,0)} such that g-h = f mod g and | f],|g] < v/a/v"

Before describing the second search variant of the NTRU problem, we prove
the following lemma, which states that all short trapdoors (f,g) of an NTRU
instance h are K-multiples of one another.

Lemma 3.5. Let ¢ > 2, v > /2 and h be a (v,q)-NTRU instance. Then,
for all trapdoors (f. g), (f',g') € R\{(0,0)} with | f], |gl, [f']. 9’| < /a/v and
g-h=fmodgq, ¢-h = f' mod q, it holds that (f,g) = z-(f',g") for somex € K.

Equivalently, there exists a unique field element hx € K such that, for all
trapdoors (f,g) € R2\{(0,0)} with | f|, g < \/a/v and g-h = f mod g, it holds
that f/g = hx (where the division is performed in K and not modulo q).

Proof. Let (f,g) and (f’,¢') be as in the lemma statement. Then
g -f=9¢g (@9g-h=g- (g h)=g-f modq.

This implies that ¢'f — gf’ € qR. Moreover, we know that |¢'f — gf'|| < |¢'| -
I£1+ gl | £ 1 < 2g/4* < q by assumption on +. Since any non-zero element of R
has euclidean norm at least 1, we conclude that all non-zero elements of ¢R have
norm at least ¢, and so ¢’ f —gf’ = 0 in K as desired. The equivalent formulation
follows immediately by taking hx = f/g for any short trapdoor (f, g). Note that
g must be invertible in K because otherwise g = 0, which implies that f € gR
and so f cannot satisfy | f| < \/q/7. O

We now describe our second search variant of the NTRU problem. Since
we have seen in Lemma 3.5 that recovering a K-multiple of a short trapdoor
is equivalent to recovering the (unique) element hg, we will use this second
approach in the description of the problem.

Definition 3.6 ((D,~,q)-NTRUyoq and (v, ¢)-wecNTRUpyoq). Let ¢ = 2, v >
V2 and D a distribution over (vy,q)-NTRU instances. The (D,~,q) search NTRU
module problem ((D,~,q)-NTRUyea for short) asks, given as input an NTRU
instance h sampled from D, to recover the unique field element hx € K associated
to h (as defined in Lemma 3.5). The advantage of an algorithm A against the
(D,7,q)-NTRUy,0q problem is defined as

Adv(A) = Pr (A(h) = hi),

14

where the probability is also over the internal randomness of A.

The (7, q) worst-case search NTRU module problem ((vy,q)-wcNTRUpoq for
short) asks, given as input a (v, q)-NTRU instance h, to recover the unique field
element hx € K associated to h.

We note that NTRU,,oq is definitionally convenient in that the quantity hg
that we are looking for is unique. In NTR Uy, on the contrary, the short trapdoor
(f, g) that we are looking for is far from being unique: it can always be multiplied
by small elements of R to obtain other trapdoors.

Given a (v, ¢)-NTRU instance h, one can construct the following free rank-2
module Mj,:

My, = (}ll(q))RQ = {(g,f)TeRz\g~h=fmodq}.

This module is called the NTRU-module associated to h. As a lattice, it has
determinant det M;, = Ag - ¢¢ and dimension 2d. If it were a generic lattice
with such determinant and dimension, we would heuristically expect that its
minimum is ©(v/d - A%(zd) - /q). However, since h is a (v,¢)-NTRU instance
with 7 > /2, we know that there exists an unexpectedly short vector (g, f)7 in
the module Mj,. This short vector is not unique, any small multiple (rg,rf)”
with r € R small is also a short vector of Mj. However, Lemma 3.5 implies
that the module spanned by all these short vectors has rank 1 and is unique.
Moreover, since this module contains unexpectedly short vectors, it will have an
unexpectedly small volume. Summing up, the rank-2 module M} has multiple
unexpectedly short vectors and a unique unexpectedly short rank-1 sub-module.
NTRUe. asks to find any of the unexpectedly short non-zero vectors of Mjp,
whereas NTRU,,0q asks to recover the unique short rank-1 sub-module (hence
the names “NTRU vector” and “NTRU module”).

3.4 Elementary relations between the different NTRU problems

NTRUyoq and NTRUyee respectively reduce to their worst-case counterparts.
The proof of the following lemma is similarly direct.

Lemma 3.7. Let ¢ > 2, v = ' > /2. Then there exists a ppt reduction from
(7, q)-weNTRUpoa to (7,7, q)-weNTRUyee. In the average-case setup, the re-
duction preserves the distribution of instances.

If one assumes that ideal-HSVP is easy, then the latter admits a converse
result. The proof of the following lemma is available in Appendix B.1.

Lemma 3.8. Let ¢ = 2, v =+ > +/2 and € > 0. Then there exists a ppt re-
duction from (7Y, Yvec, ¢)-WCNTRUyee to (7, ¢)-WeNTRUpod and ynsvp-id-HSVP,

where
1 Y

(1 + €)\/§A}(/(2d) “Yhsvp '
In the average-case setup, the NTRUyoq and NTRU. instance distributions are
identical.

Yvec =

15

To reduce ANTRU to NTRU,,q, it suffices to show that for a uniform h, we
do not expect an unexpectedly short non-zero vector (or short rank-1 submodule)
in My. We defer the proof of the following lemma to Appendix B.2.

Lemma 3.9. Let ¢ > 2 be a prime that does not divide Ag, v > 16 - +/d -
A%(zd) and D a distribution over (7, q)-NTRU instances. Then there exists a ppt
reduction from (D,7,q)-ANTRU to (D,~,q)-NTRUyea. Further, the reduction
makes a single call to the NTRUpoq oracle, and if the advantage of the NTRU04
solver is €, then the advantage of the resulting ANTRU solver is > ¢ — 277,

The objective of the next two sections is to (partly) complete the picture by
giving two more sophisticated reductions: a reduction from id-HSVP to NTR U,
and a reduction from NTRU,,0q to dNTRU.

4 Reduction from ideal-HSVP to NTRU,.

This section is devoted to reducing worst-case id-HSVP to average-case NTRU-
For this purpose, we first exhibit a Karp reduction from worst-case id-HSVP to
wcNTRUec. This reduction is then enhanced by using the worst-case to average-
case reduction for id-HSVP from [dBDPW20], resulting in a reduction from
worst-case id-HSVP to average-case NTRUye., where the NTRUe. average-case
distribution is defined as the distribution obtained by applying the worst-case
to worst-case reduction to the distribution on ideals from [dBDPW20]. In the
process, we improve the reduction of [dBDPW20] to better suit our needs. We
extend it to regimes in which it is not polynomial-time anymore, but allows to
reach smaller values for the NTRU modulus ¢, and we show that it allows to
sample from the average-case id-HSVP distribution along with a short non-zero
element of the ideal (provided g is sufficiently large, or we have access to a quan-
tum computer). The latter is important to allow to sample from the average-case
distribution over NTRU instances, along with a trapdoor.

4.1 Transforming an ideal lattice into an NTRU module

In this section, we show how to efficiently ‘embed’ an ideal lattice into an NTRU
module such that any sufficiently short vector of the NTRU module provides a
short vector of the embedded ideal lattice. We first give an efficient reduction
from ideal-HSVP to worst-case vectorial NTRU.

Theorem 4.1. Let ¢ = 2 and v = v > 0 with v -+ -vVd > 1. Let Yhevp =
4ddox - v/v'. There is a ppt (Karp) reduction from ~nsvp-id-HSVP to (v,v',q)-
WeNTRUye. for ideals I S R satisfying N'(I) € [N/2¢, N], with

d
N = (v)
ydlS Gy - A2

16

Note that the reduction is restricted to integral ideals of bounded norms.
The lower bound is not restrictive: given a non-zero integral ideal I such that
N(I) < N, we can scale it to the non-zero integral ideal I’ = [(N/N(I))Y4] -
I, which satisfies N'(I') € [N/2%, N] and for which a Yysyp-id-HSVP solution
directly leads to a Yhsvp-id-HSVP solution for I. Concerning the upper bound
restriction, the id-HSVP worst-case to average-case reduction from [dBDPW20]
(as refined in Subsection 4.2) shows that we can wlog focus on integral ideals T
of norms N ~ 24" for some a € (0,1]. This impacts the choice of the NTRU
modulus q.

Let us now focus on the problem parameters. If we put aside factors that
depend only on the number field, we can set N4 ~ \/q/7, and we then obtain
that Yhsvp &~ v/'. This means that the approximation factor (which is v/ in
the NTRU case) stays roughly the same, and that the root determinant of the
NTRU module is v times larger than the one of the ideal lattice.

Algorithm 4.1 Transforming an ideal lattice into an NTRU instance
Input: A Z-basis of a non-zero ideal I € R and a modulus q.

Output: An NTRU instance h.

1: Compute z € K such that I = R n {(z) (see Lemma 4.2).

2: Let h = |g/z] mod g € R,.

3: return h

The transformation that embeds an ideal lattice into an NTRU module is
described in Algorithm 4.1. In Lemma 4.3, we show some properties of Algo-
rithm 4.1, which will be used to prove Theorem 4.1.

Lemma 4.2. There exists a ppt algorithm (in size(I) and log A) which, given
a non-zero integral ideal I as input, computes z € K such that I = R n{z).

Proof. If I = 0, then the algorithm returns z = 0. If I = R, it returns z = 1. We
now assume that I is neither 0 nor R. Since I < R, it holds that 1 € I='. Let
y € I~! be the output of the algorithm of Lemma 2.6, given (I~!,1) as input:
we have 171 = (1) + {(y). Note that I # R implies that y # 0. We then define
z = 1/y, which fulfills our needs as J; n Jy = (J;' + J;*)~! for any non-zero
fractional ideals J; and Js. O

When using Lemma 4.2 in Algorithm 4.1, the element z is necessarily non-
zero, as I is non-zero. The analysis of Algorithm 4.1 follows the intuition pro-
vided by the case of principal ideals (with a known generator) described in the
introduction.

Lemma 4.3. Let ¢ > 2 and I S R a non-zero integral ideal. On input (I,q),
Algorithm 4.1 outputs h € Ry such that

e there exists a pair (f,g) € R*\{(0,0)} with g-h = f mod q and |f|,]g] <
d'5 . g A%@d) _N(I)l/d.

17

o for any pair (f',9') € R*\{(0,0)} with g’ - h = f'mod q and | f'|w, 9" <
q/(d- b - A%(zd) -N(D)Y%), we have ¢' € T\{0}.

Moreover, Algorithm 4.1 runs in time polynomial in size(I), logq and log Ak .

Proof. The run-time of the algorithm follows from Lemma 4.2. For the proofs of
the two main statements, we consider g € I\{0} with minimal infinity norm. By

Minkowski’s bound, we have that [g]s < A%@d) SNV,
We now prove the existence of f such that (f,g) is a short trapdoor for h.
By multiplying g with h, we obtain

g-h=g-lg/2l=9 q/2+f,

with f := —g - {q/z}. Since g € I and 271 € I~! (because I < (z)), we have
that ¢ - ¢/z € ¢R. This implies that f € R and gh = f mod ¢, as desired. Let us
now compute an upper bound on the norm of f (we already know that |g| <

V- A%(M) -N(I)Y%). We know from the preliminaries that [[{q/z}]. < d/2-0x,
from which we obtain:

Il < lgll - (d-6x) < d®? 65 - A - N(I)4.

Let us now prove the second property of the lemma. Let (¢', f') € R%\{(0,0)}
be such that ¢’ - h = f’ mod ¢ and

q
10 19" llo0 < e

d-ox - A¥ - N(I)

We first show that ¢’ # 0. Assume by contradiction that ¢’ = 0. Then
f'=0mod g, i.e., f’ € gR. But any non-zero element of ¢R has infinity norm > ¢
(using the fact that any non-zero element of R has infinity norm > 1). Since we
know that | f’[ls < ¢, we conclude that f’ = 0, which contradicts the assumption
that (f,¢") # (0,0).

We now show that ¢’ € I. Recall that z is such that I = R n (z). Since we
already know that ¢’ € R, it suffices to prove that ¢’ € (z), i.e., that ¢’/z € R.
By definition of h, we have:

g a/z=9 h+g gz} =f+g {a/z} +q-r

for some r € R. Multiplying this equation by g/q (recall that g is a shortest
non-zero vector of I for the infinity norm), we obtain

g -g9/z=(f+9 {a/2})-g9/a+g-r

We have seen that g/z € R, so that both terms ¢’ - g/z and g - r are in R. We
hence have that the term (f' + ¢’ - {¢/z}) - g/q must also belong to R. Further,
we know that

I+ (/o) - g/aleo < (oo + 16 o 1a/Ho) - Igllc/a
< max (|| f']e, [9'lo) - (1 4 d/2 - k) - A% -j\/'(])é/q_

18

By assumption, the above is < 1. Since no non-zero element of R has infinity
norm < 1, we conclude that f' + ¢’ - {q/z} = 0. This implies that ¢’ - ¢/z = ¢ - r.
Dividing this equality by ¢, we obtain that ¢’/z € R, as desired. o

We are now ready to prove Theorem 4.1.

Proof (Theorem j.1). The reduction consists in calling Algorithm 4.1 on I and ¢
to obtain some h € R, then calling the weNTRU,,. oracle on h and returning
the oracle output.

Let I S R be a Ypsvp-id-HSVP instance satisfying N'(I) € [N/2¢, N], with
N as in the theorem statement. The first statement of Lemma 4.3 ensures that
the element h computed by the reduction is a valid (7,7, ¢)-wcNTRUyee in-
stance. The weNTRU,,. oracle hence outputs a pair (f’,¢') € R*\{(0,0)} such
that ¢’ - h = f'mod ¢ and ||f’[,[¢'| < /g/7'. By the parameter conditions,
the assumption of the second statement of Lemma 4.3 holds. We hence have
that ¢’ € I\{0}. Further, by definition of N, the lower bound on A(I) and
definition of Yhsvp, We have

1

9l/d . N& .~ . L5, .Aﬁ 0

lg'l < = <
i

! /

Note that we used the inequality |z| > 2/2, which holds for any = > 1. O

4.2 From worst-case id-HSVP to average-case id-HSVP

In [dBDPW20], the authors gave a worst-case to average-case reduction for id-
HSVP, for a certain average-case distribution of ideals. We adapt [{BDPW20,
Th. 4.5] to Theorem 4.4 below, so that it better fits with our application. We
explain in Appendix C.1 how to adapt the proof.

Theorem 4.4 (Adapted from [dBDPW20, Th. 4.5], ERH). Let K a num-
ber field of degree d and N > (12d*logd - 0k - A%(zd))d an integer. Let v > 0.

There exist v = ~ - O(dl"r’A}{/d), a distribution DiF™SVF over non-zero integral
ideals of K of norm < N and a reduction:

e from worst-case v -id-HSVP for all fractional ideals of K,
e to average-case y-id-HSVP for integral ideals distributed from Dy HVF.

The reduction decreases the success probability by at most 2~ (@ makes a sin-
gle call to the average-case y-id-HSVP oracle, and runs in time Tg5™VE +
poly(log N, size(I),log Ag) where

o [is the input (worst-case) ideal;
o TiSYY s the time needed to solve id-HSVP with approzimation factor 20/8
and
d
b= 1 1/d 1.5 1/(2d) '
og (NV4/(6d'5logd - 65 - Ay"))

19

Moreover, there exist Ny = poly(Ay- Al ,0r,d)? and a ppt algorithm A (with
respect to log N and log Ag) such that for all N = Ny, algorithm A samples
pairs (J,w) such that:

e the ideal J is a mnon-zero integral ideal of norm < N;

e the distribution ’D‘“l HSVE of J satisfies DNV xg-a@ DYV

e the element w € J\{0} satisfies |w| < poly(d, 5K7A%d72\/m) i
N(J) l/d

If we have access to a factoring oracle or if N = N}y = Ny - 20(dVlog Ax+dlogd)
then we can reduce the size of w down to |w| < poly(d, dk, A 1/d) N(J)Ve,

Note that even though the reduction relies on a worst-case id-HSVP solver,
the latter is with an approximation factor 2¢# which is typically much larger
than 4'. This implies that 75 ™"*" is expected to be much smaller than the

time needed to solve 7'-id-HSVP. Assume that A%(Qd) and d are both poly(d)
and that we use the lattice reduction algorithm from [Sch87] with block size 8 to
solve 24/P_id-HSVP. It runs in time TP = 208 (up to a poly(log N, log Ag)
factor). Then, it can be seen that the reduction is polynomial-time when N =
2% (dz); it becomes more expensive when IV is below this bound; and it ends up
being 2049 when N ~ poly(d)?. The run-time of the reduction can be improved
using id-HSVP algorithms such as those mentioned in Subsection 2.3. In all cases,
we note that one can sample ideals J from D"V, together with a short vector
of J in quantum polynomial time even for small N, and in classical polynomial
time for larger N’s (of the order of 20(4""Viogd) jf A%(zd) and 0x are both
poly(d)).

All the ingredients for the proof of Theorem 4.4 are present in [{BDPW20],
however the latter only considered the case of N > (27-6d! logd- A}/*? . §)4,
since this is the range of parameters for which the reduction runs in polynomial
time. The generalization to smaller N and larger run-time is relatively imme-
diate and is provided in Appendix C.1. A further difference with [{BDPW20)
is that the distribution D "sVF in [dBDPW20] is over the inverses of integral
ideals (see [{BDPW20, Le. 4.1]) whereas here it is more convenient to have a
distribution over integral ideals. Finally, we also explain in Appendix C.1 how
to sample ideals from Dy **V" with a somehow short vector.

4.3 An average-case distribution of NTRU instances

In this subsection, we define a distribution DYTRY over (v, ¢)-NTRU instances.
This distribution is defined as the one being produced by Algorithm 4.2. In fact,
Algorithm 4.2 actually provides a (7, ¢)-NTRU setup for some 7 > v, i.e., the
instance h can be sampled along with a trapdoor (f, g) that may be a little larger
than a shortest one.

Lemma 4.5. There exist I' = poly(d, ik, Al/d) and I'" = I - 20(Vlog Ax+dlogd)
such that if \/q/y = I" (resp. \/q/y = I"), then Algorithm j.2 runs in quantum
(resp. classical) polynomial time (with respect to logq and log Ak).

20

Algorithm 4.2 Sampling h from D2$RU together with a trapdoor

Input: An integer ¢ > 2 and areal v > 1
Output: A triple (h, f,g) € R, x R?.

d
. - Va
1: Let N = {(7(11.56 & 1/(2d)> .

2: Sample I from Di™VP with v € 1\{0} such that |v] < poly(d, 5x, ALY - N'(1)"/?
(see Theorem 4.4).

Let I' = [(N/N(D)Y4] - T and v' = [(N/N(1))"¢] - v.

Run Algorithm 4.1 on I'; let h € R, be the output and z as in Algorithm 4.1.
Compute g = v’ and f = —g - {q/z}.

return (h, f,g).

Proof. Let I' = 2d*® - ¢ - A%(Qd) -Né/d (resp. I" = 2d'5 - 5y - A%(zd) A(NHVD,
where Ny (resp. IN§) is as in the second part of Theorem 4.4. Note that we have
I' = poly(d, 5K,A%d) (resp. I'" = I - 20Wlog Ax+dlogd)y a5 desired. Moreover,
by definition of N and using the fact that \/q/y = I" (resp. \/q/y = I""), we have
N = Ny (resp. N = N{)). Hence, by Theorem 4.4, one can sample (I,v) in Step 2
in quantum (resp. classical) time poly(log N,log Ak) = poly(log Ak, log q).

By Theorem 4.4, we also know that the ideal I is non-zero and satisfies
N(I) < N, hence |(N/N(I))*?] # 0. Therefore, the ideal I’ computed at Step 3
is also non-zero, and v’ is a non-zero element of I’. Thanks to Lemma 4.3, we
know that Algorithm 4.1 can be run on I’ in time poly(size(I’),logq,log Ak).
Since I’ is integral and N'(I') < N < q%, we conclude that size(I’) < poly(log g,
log Ak). Finally, computing f using the formula —g - {¢/z} can also be done in
time poly(log g¢,log Ak), since the rounding operation in R is efficient. O

Now that it is established that Algorithm 4.2 terminates, we can formally
define DWN};RU as the distribution produced by the algorithm.

Definition 4.6 (Distribution DYTRY). Let g, as in Algorithm 4.2. The dis-
tribution DE};RU over Ry is defined as the distribution of the element h produced
by Algorithm 4.2 on mput (q,7)-

Lemma 4.7. The support of the distribution DNTRU is contained in the set of
(v, q)-NTRU instances.

Proof. Let h be computed by Algorithm 4.2 on input (g, 7). By the first property
of Lemma 4.3, there exists a trapdoor (f*,g*) # (0,0) for h, with ||f*]|, |g*| <

A5y - APD NIV We have N (I') = |(N/N(I))V4]4. N'(I) < N. Using
the definition of N, we conclude that | f*], [¢*] < \/q/v. o

Algorithm 4.2 gives a way to sample from D§$RU together with a trapdoor.

Lemma 4.8. Let g, as in Algorithm 4.2 and I (resp. I'') as in Lemma 4.5.

If \Ja/y = I (resp. \/q/y = I"), then there exist ¥ = ~/poly(d,dx, A) such
that Algorithm 4.2 is a (DYIRY.5,q)-NTRU quantum (resp. classical) setup.

21

Proof. We have already seen in Lemma 4.5 that Algorithm 4.2 is quantum (resp.
classical) ppt. We have seen in Lemma 4.7 that D is a distribution over (v, ¢)-
NTRU instances. It is hence a distribution over (¥, ¢)-NTRU instances, as 5 < 7.
We now show that the sampled pair (f, g) # (0,0) satisfies g - h = f mod ¢ and
171 gl < v/ - poly(d, o, AYLY).

We have already seen that g = ¢’ is non-zero. Moreover, by definitions of
f = —g-{q¢/z} and h = |g/z], is holds that f = g- hmod g (see the proof of
Lemma 4.3). Further, we have (successively using Theorem 4.4, the definition
of I’ and the definition of N):

lgll = o] < poly(d, 6, ALY - N (I')V4 < poly(d, 6, ALYy - NV

< poly(d, 65, AY%) - ?

Moreover, by definition of f, we know that ||f|| < [lg|| - (d - 6x). Hence, there

exists some ¥ = v/ poly(d, 0k, A%d) such that | f||,|lg| < \/q/7, as desired. o

4.4 From average-case id-HSVP to average-case NTRU

By combining the results from Subsections 4.1 and 4.3, we obtain that, for well-
chosen parameters, average-case id-HSVP for distribution Dy "*'" reduces to
average-case NTRUge. for distribution Dg”TVRU. The proof of Theorem 4.9 is avail-
able in Appendix C.2. This theorem can in turn be combined with Theorem 4.4
to obtain a reduction from worst-case id-HSVP to average-case NTRUy.c.

Theorem 4.9. Let ¢ = 2, v = 1 and v > 0 such that v -~ -vd > 1 and
Va/v =13 -dlogd - 6% - A}, Define:

d

Vi -

N = (7 dl5 g Al/(Qd) and Yhsvp = ? ~4déy .
K

There is a ppt reduction (with respect to log Ak and logq) from average-case
Yhsvp-td-HSVP for ideals sampled from 25‘]§}'HSVP to (DT, 7,7, q)-NTRUyec.
The reduction makes a single call to the NTRU,e. oracle and preserves the suc-
cess probability.

5 A search to decision reduction for NTRU

In this section, we provide a reduction from average-case search-NTRU,,,q with
distribution D¢ to average-case dec-NTRU with distribution D?. The distribu-
tion D* can be chosen from a large class of distributions (it only has to be
bounded and to have an invertible denominator, as per Definition 5.1 below)
and the distribution D? is a function of Ds. Moreover, we show that if the dis-
tribution D enjoys an NTRU setup, then so does D9.

22

5.1 Choice of the distributions

We start by describing a property of distributions that we will need for our search
to decision reduction. We also describe the distribution D? as a function of D,
and explain how one can sample h with a trapdoor (f,g) from D¢, provided
there is an efficient algorithm doing it for Ds.

Definition 5.1 (Well-behaved elements and distributions). Let ¢ = 2 be
an integer and B > 1 be a real number. An element h € R, is said to be B-well-
behaved if there exists f,g € R such that gh = f mod q; {f>+{g)+{q) = R; and
for all 1 < i < d we have 1/B < |o;(f)|, |oi(9)| < B.

A distribution D over Ry is said to be (B, ¢e)-well-behaved for some € = 0 if
the probability that h — D is B-well-behaved is > 1 — €.

Observe that any (B, 0)-well-behaved distribution over R, is a distribution
over (7v,q)-NTRU instances, where v = ,/q/(Bv/d). Observe also that the con-
dition {f) 4+ {(g) + {g) = R is equivalent to asking that g is invertible modulo gq.
Indeed, since gh = f mod ¢, then any prime factor dividing both {g) and {q)
would also be a prime factor of (), contradicting the coprimality condition. Let
us now define a randomized mapping ¢p over R,.

Definition 5.2 (Function ¢p). Let ¢ > 2 and B > 1. We define the random-
ized mapping ¢pp over Ry as follows

¢p: Rqg— Ry
h— xh+ymod q where z,y < DR aBdsy-

We extend ¢ to distributions over Ry: for a distribution D, we let (D) be the
distribution over R, obtained by sampling h — D and then outputting ¢g(h).

Finally, we show that if D enjoys an NTRU setup, then so does ¢5(D).

Lemma 5.3. Let B> 1, ¢ > 2, v >0 and D a distribution over (v, q)-NTRU
instances. If there exists a (D,~,q)-NTRU setup, then there exists a (D', q)-
NTRU setup where D' is a distribution over R, such that D' ~y aw ¢p(D)
and v = v/(4Bd*56k).

Proof. Let A be a ppt algorithm (with respect to loggq and log Ax) sampling
triples (h, f,g) € R, x R? such that the marginal distribution of h is D, (f, g) #
(0,0), If], gl < +/@/v and g - h = f mod g.

We consider the following algorithm B:

e run A; let (h, f,g) be the output;
e use the algorithm from Lemma 2.2 with parameters o = 2Bddx and ¢ = 0
to sample = and y (using the basis (r1,...,7rq) of R);

o return (1, f',¢') = (zh +y,zf + yg,9).

23

Note that B is ppt and that (f’,¢’) is non-zero and satisfies ¢’-h’' = f' mod q.
By Lemma 2.2, we also have

q
1] < 2Bd"365 - (If] + |g]) < 4Bd*%6 - [

Finally, as the residual distribution of A is D, Lemma 2.2 also implies that the
residual distribution of A’ is within statistical distance 2= from ¢p(D). ©

We can now state the main result of this section: a reduction from NTRU,,0q
to dNTRU, for well-chosen distributions. This theorem follows from Lemmas 2.5,
5.6 and 5.7, which are stated and proved in the following subsections. The proof
of Theorem 5.4 is provided in Appendix D.2.

Theorem 5.4. Let ¢ = 2, B € (1,q], € = 0 and D* be a (B,e)-well-behaved
distribution over R,. Assume that logq,log Ax,log|®| < 2°9) (recall that &
is a defining polynomial of K). Define v := % and assume that v > 1.
Let A be an algorithm solving (¢p(D*),~', q)-ANTRU with advantage Adv(A) =
2794 Then, there exists an algorithm B solving (D*,~y,q)-NTRUpeq with v =
\/@/(BVd) and advantage Adv(B) > (Adv(A) — 2¢)/4. Algorithm B is ppt (with
respect to log q, log Ak, log |®| and Adv(A)~1) and makes (possibly that many)
oracle queries to A.

Observe that up to polynomial factors depending on the number field K, we
have v ~ /q/B and v ~ ,/q/B?. Said differently, the Euclidean norm of the
short trapdoor is squared when we go from D* (which has short trapdoors of size
roughly B) to ¢5(D*) (which has short trapdoors of size roughly B?). Hence,
one should consider B < ¢'/* for the ANTRU instances to have short trapdoors
of norm > ,/q.

5.2 Creating new NTRU instances

In this section, we give a lemma which will allow us to rerandomize an NTRU
instance h so that the distribution of the new NTRU instance depends on
c101(f) + ca01(g) for some parameters ¢; and co that we can customize. This
lemma will be used to prove Lemma 5.7, in the next subsection.

Lemma 5.5. Let (f,g) € R*\{(0,0)} and I = {f) + {g). Let c1,ca € 01(Kg)
(which is either R or C), so > 0 and s = v/dox - (| f] + [g])-
Given t € o1(KR), we define 1(t) € Kg as (t,0,...,0)T € Kg if o1 is a real
embedding and as (t/v/2,1/3/2,0,...,0)T € Kg if 01 is a complex embedding with
— 2
09 = 01.
Let D be the output distribution of the following algorithm:

o sample co < Dy, (ky),50,07
o sample T < DR s y(co-c;) and Y < DR sy
o returnx - f+y-gel.

CD'CQ);

2 The scaling by a factor 1/\/5 in the complex case ensures that the norm of ¥(¢) is
still equal to |t|, which allows simpler expressions.

24

Then it holds that D ~y-aw Dy g, where S is a diagonal matriz with

Su = \/33 “leror(f) + c201(9)? + 5% - (lon ()2 + |ow(9) 1)

S — S11 if o1 is a compler embedding
27 s]o2(H2 + [o2(9)]? if o1 is a real embedding

Si=s-|oi(N)]? +loi(g)> for i=3.

The above can be obtained by combining the convolution result of [Peil0,
Th. 3.1] and the discrete Gaussian leftover hash lemma from [LSS14, Th. 5.1].
Unfortunately, the statements of [Peil0, Th. 3.1] and [LSS14, Th. 5.1] do not
exactly match what we need (in particular, non-zero centers are not consid-
ered in [LSS14, Th. 5.1] and the convolution result of [Peil0, Th. 3.1] does not
consider ¢y being sampled from a smaller space and extended with zeros). In
Appendix D.1, we prove some slight variants of these results, in order to prove
Lemma 5.5.

Observe that by taking s = 2Bddx and ¢; = ¢ = 0, then the distribution
of z- f 4+ vy - g is exactly the distribution of the numerator of ¢g(h), over the
randomness of ¢p (i.e., when h, f and g are fixed). Note that for Lemma 5.5
to be applicable, we need s = 2Bddx = Vddr - (||f|| + | g||), which holds true if
[flloo; |glec < B. This is the source of the ‘standard deviation squaring’ in The-
orem 5.4. Finally, note that by using the lemma multiple times with the same h,
we obtain tuple NTRU instances (as defined in Definition 3.1), implying that
the ANTRU and NTRU,,. problem variants reduce to their tuple counterparts
(under proper parametrization).

5.3 Using the OHCP framework

We now prove two lemmas for the core of the proof of Theorem 5.4. Lemma 5.6
essentially states that when sampling h from D¢, then one should get a “good” h
with non-negligible probability. Lemma 5.7 then shows that when h is “good”, it
is possible to recover a very accurate approximation of o1 (hg) using the ANTRU
oracle. Combining these two lemmas with Lemma 2.5 (which states that one
can recover an element z € K exactly from a sufficiently good approximation
of o1(z)) then yields Theorem 5.4 (whose proof is provided in Appendix D.2).

Lemma 5.6. Let ¢ = 2, B € (1,q], ¢ = 0 and D* be a (B,e)-well-behaved
distribution over R,. Let A be an algorithm solving (¢5(D"),~,q)-dNTRU for
some v = 1. Then, there exists a set H — Ry such that every h in H is B-well-
behaved; Prpps(h € H) = Adv(A)/2 —e; and for all he H

‘Pr (A(¢p(h)) = 1) — Pr (A(u) = 1)(> Adv(A)/2,

where the probabilities are taken over the internal randomness of A, the ran-
domness of ¢p and the random choice of u < U(R,) (but not over the choice

of h).

25

Proof. There exists Hy < R, of weight > Adv(A)/2 under D* such that for
all h € Hy, the advantage of A on ¢p(h) is at least Adv(A)/2. We define H as
the subset of the h’s in Hy that are B-well-behaved. The result follows from the
definition of (B, ¢)-well-behavedness and the union bound. |

Lemma 5.7. Let ¢ > 2, Be (1,q], € = 0 and D* be a (B, e)-well-behaved distri-
bution over R,. Let D* = ¢p(D"). Let A and H as in Lemma 5.6. Assume that
Adv(A)~t logq,log Ax < 20(d) Then, there exists a probabilistic algorithm B
that, given an integer ¢ < 2°9 and any h € H, recovers oi(hg) with ¢ bits
of absolute precision’® with probability = 1 — 2~(d) (where hi is defined as in
Lemma 5.5). Moreover, algorithm B runs in time polynomial in £, Adv(A)~!,log q
and log Ax and makes (possibly that many) oracle queries to A.

Proof. In order to prove the lemma, we will express our problem as an instance
of the Oracle Hidden Center Problem (see Definition 2.9) and then use Propo-
sition 2.10 to conclude.

Let h € H be fixed once and for all, and given to B. Let us also fix some
(unknown) (f,g) € R? such that g-h = f mod ¢; g is invertible modulo ¢; and
loi ()], |oi(g)] € [1/B, B] for all embeddings o; (we know that such f and g exist
since h is B-well-behaved by definition of H). We write I = {f) + {g), which is
also fixed once and for all (and is coprime to {g)).

Let £ =1 if 03 is a real embedding and k = 2 if 07 is a complex embedding.
In the following, we will identify R* with ¢ (Kg). Note that in both cases, the
Euclidean norm of a vector in R¥ corresponds to the absolute value of the element
seen in R or C.

In order to fit the OHCP framework, we need to describe a randomized
oracle O that takes as input a pair (z,t) € R¥ x R®% and outputs 0 or 1 such
that Pro(O(z,t) = 1) = P(t + ln|z — 01(hk)|), for some (unknown) function P
(that may depend on h). In other words, we want that the acceptance probability
of the oracle O only depends on ¢ + In |z — 01 (hg)| (when ¢ and z vary).

We start by considering an oracle O that we do not know how to im-
plement efficiently, but which is more convenient for the analysis. We will later
replace it by an oracle O***** that can be implemented efficiently and whose
behavior is very close to the one of 0. Oracle O is as follows. On input
(z,t) e R*¥ x RY it first samples f’ < Dr s, where S is a diagonal matrix with

S11 = yJexp(t — d)2[o1(f) — z01(g)[+ 4B2d28% (joa (/)]2 + |0 (g) ?)

S = S11 if o1 is a complex embedding
2271 2Bddg~/(Joa(F)]? + |02(9)2) if o1 is a real embedding

Sii = 2Bdogc~/(|oi ()12 + |os(g)]?) ifi>3.

The astute reader will observe that sampling such an f’ may be difficult: this is
why we will later introduce O****. QOracle O then defines h' = f’/g mod ¢
(recall that g is invertible modulo ¢) and returns A(h').

3 The term “absolute precision” refers here to |Z—z| < 27¢ as opposed to the “relative
precision” which would be £=2l < 2-¢,

||

26

Note that z and ¢ only appear in Si; (and Ses = Sy if oy is a complex
embedding). Since |o1(f) — zo1(g)|/|o1(9)| = |o1(hx) — 2|, we obtain that the
success probability of the oracle depends only on ¢t +1n |z — 01 (hk)| when ¢ and 2z
vary, as required (recall that h, f and g are fixed once and for all).

In Claim 5.8 below, we show that the oracle O'* satisfies all the desired
conditions to be an OHCP oracle and the conditions of Proposition 2.10. This
will imply that one can efficiently recover an approximation of o1 (hg) by using
the oracle @' as a black box.

Claim 5.8. There exist a parameter ko = poly(Adv(A)~!,logq,log Ax) and

—_—

an algorithm B’ that takes as input any parameter x > k¢ and outputs o1 (hg) €
o1(KR) such that |af1(\h;) —01(hg)| < B? - exp(—k) with probability > 1 —
exp(—k). Algorithm B’ runs in time poly(x) and makes (possibly that many)
oracle queries to the OHCP oracle O described above.

The difficulty with algorithm B’ from Claim 5.8 is that it makes oracle calls
to O which we do not know how to run in polynomial time given only access
to h and A (in order to run O efficiently, we would probably need to know
f and g). To handle this difficulty, we describe another oracle O*P*** whose
behavior is very close to the one of O**'| but which can be run efficiently.

On input (z,t) € R¥ x RZ% the randomized oracle O*P** proceeds as follows.
It first samples ¢ in R* from the continuous Gaussian distribution Dy exp(t—d),05
it then defines ¢; = 1(cp) € Kg and co = ¥(—cg - 2) € Kg (where ¢ is as defined
in Lemma 5.5); the oracle then samples x « f)R,QBd.gK,Cl and y «— ER’QBd.(;K,CQ
(see Lemma 2.2); finally, the oracle runs A on input h=x h+ y mod ¢, and
outputs A(h).

Oracle O™ can indeed be run in polynomial time from /. Let us now write
f=ax-f+y-g, sothat h = f/g mod q. Observe that Pr(OQ»r==(z,t) = 1) =
Pr(A(h) = 1), and Pr(O"“(z,t) = 1) = Pr(A(K') = 1), where h and h’ are two
random variables. So | Pr(O(z,t) = 1) — Pr(O=!(z,t) = 1)| < dist(h, k).
Since g is fixed, we have dist(h, #’) = dist(f, f'), and we obtain that

| Pr(OP (2, 1) = 1) — Pr(0"(z,t) = 1)| < dist(f, f') <272,

The last inequality comes from Lemma 5.5 and Lemma 2.2.

To conclude, algorithm B is obtained by taking algorithm B’ of Claim 5.8,
but replacing its oracle calls to O***! by oracle calls to O***** and taking k =
max(kg, d, ¢+ 21n(B)). By assumption on log ¢, Adv(A), ¢ and log Ag, we know
that x < 2°(9 (recall that B < ¢), so that algorithm B makes at most 2°(®)
oracle calls to O**r**, Hence, we obtain that

| Pr(B succeeds) — Pr(B’ succeeds)| < 204 . 272(d) — 9=2(d),
This completes the proof of Lemma 5.7.]

Proof (Claim 5.8). First, we need to check that the oracle O is a valid OHCP
oracle. Let us write z* = o1(hg). Since o1(hg) = o1(f)/01(g), we know by

27

choice of f and g that |z*| € [1/B2, B?]. Hence, the oracle O and scale
parameter D = B? form a valid instance of the (g,d,3)-OHCP problem (cf
Definition 2.9), for any ¢ € (0,1), any § € (0,1/B*] and any 8 > 1.

We will show below that for all K > ko with

Ko := max (4 Adv(A) L, 8d(1 + In(gA}%Y), 41n(B)),
the OHCP oracle satisfies the conditions of Proposition 2.10, with

= P Alu) =1 d s*=0.
pe=, Pr (A = 1) and s
More formally, letting p(t) denote Pr(Q'**(0,¢) = 1) as in Proposition 2.10, we
prove that

L p(s*) = poo = 1/
2. |p(t) — peo| < 2exp(—t/k) for any ¢ = 0;
3. for any t1,t2 > 0, it holds that |p(t1) — p(t2)| < k+/[t1 — t2l.

Using Proposition 2.10, we the conclude that there exists an algorithm B’
solving the (exp(—k), exp(—k), 1+ 1/k)-OHCP problem in time poly(x) by mak-
ing oracle calls to O'"!. Thanks to the condition x > 4In(B), it holds that
exp(—k) < 1/B* is a valid choice of §. Moreover, using the fact that B < ¢, we
see that xo = poly(Adv(A)~1,logq,log Ak), which proves Claim 5.8. We now
proceed to prove the three properties above.

Property 1. We want to show that p(s*) is very close to Pr(A(¢p(h)) = 1),
which will allow us to conclude with Lemma 5.6. Observe that by definition
of the OHCP oracle O we know that p(s*) = Pr(A(h') = 1), where b’ =
f’/g mod g. So in order to bound the difference between Pr(A(¢p(h) = 1)
and p(s*), it suffices to bound the statistical distance between the two random
variables ¢ (h) and b/, which is equivalent to bounding dist(g - ¢ (h), f') (i-e.,
it suffices to consider the numerator since the denominator is g in both cases).

Using Lemma 5.5 with ¢; = ¢co = 0 and s = 2Bdd g, we know that the distri-
bution of g-¢p(h) is within 2—92(d) gtatistical distance from Drs,.0, where Sy is
a diagonal matrix with i-th diagonal entry equal to 2Bddx -+/|o;(f)|2 + |o:(g) |2
Moreover, by definition of O/ the distribution of f’ is Dy g, 0, where S; is
identical to Sa, except for first diagonal coefficient (or first two diagonal coeffi-
cients if o1 is complex), which is equal to

V@BAs) (o1 (P + o (9)P) + exp(—2d) - [o1 (F) 2.

We now apply Lemma 2.3 to show that these two Gaussian distributions are
statistically close. We first check that 771/2(Si_1I) < 1/2, for i € {1,2}. We know
from Equation (2.1) that

_ In(2d(1 + 2
n1/2(S; ') < w

<Vd-2(S7H)

Aa(S7T)

28

Recall that T = {f)+{g), so that f e I. Hence, we know that the S;!- f-r,’s are
linearly independent vectors of S;' - I (recall that the r;’s form a basis of R).
For every j, it holds that |S;' - f-7;| < 6k - |S; " f| < 6k -V/d/(2Bddk) (since
every diagonal coefficient of S; is no smaller than the corresponding coefficient
of f multiplied by 2Bddf). Hence, we conclude that \s(S;'I) < 1/(2+/d) and
that 171/2(8;1[) < 1/2, as desired. We can apply Lemma 2.3 and we obtain that

dist(D1s,.0, D1.s,.0) < 4Vd -1 /[|S3'S1 — L.

The matrix Sy 1S, — 1, is zero, except for the top-left coefficient (or for the first
two top-left coefficients if oy is a complex embedding), which is equal to /T + n—
1 where n = exp(—2d) - |o1(f)[*/((2Bddx)* - (lo1(f)* + |o1(g)[*)). Since n <
exp(—2d), we conclude that |\/T+7 — 1] < exp(—2d), and so [|S;'S; — I <
exp(—2d) (or < 2exp(—2d) in case we had two non-zero coefficients). We finally
obtain that Dr g, 0 ~o-2w D1 s,,0, which in turn shows that

Ip(s*) — Pr (A(¢p(h) = 1)| < 2794,

Finally, since h € H, we know from Lemma 5.6 that | Pr(A(¢g(h) = 1) — ps| =
Adv(A)/2. Wlog, we can assume that Pr(A(¢g(h) = 1) — psy = 0 (otherwise we
can simply consider A" = 1 — A), from which we obtain that

p(s*) — pop = Adv(A)/2 — 272D > Adv(A)/4,

where the last inequality holds asymptotically when d tends to infinity, since we
assumed that 1/ Adv(A) < 2°(9). By choice of &, this implies that p(s*) — po =
1/k.

Property 2. To prove this second property, we want to show that when t is
sufficiently large, then the distribution of f’ mod ¢ (where f’ is implicitly com-
puted by the oracle O as defined above) is statistically close to uniform
in R mod qR. Recall that the support of f’is I, which may be a strict subset
of R. However, we know that I = {f) + (g) is coprime to {g). So if f € I is
uniform in I/(qI), then f + R is a uniform class of R/(qR). Hence, it suffices
to show that f’ is statistically close to uniform in I/(g[).

Recall that f’ is sampled from the distribution D; g, where S is a diago-
nal matrix with positive diagonal coefficients, with S1; = exp(t — d) - |o1(f)|
(we consider z = 0 here) and S;; = |o;(f)| for ¢ > 2. Taking the product,
we conclude that [, Si; = exp(t — d) - N(f). Let us call ¢ the quantity ¢ =
(exp(t—d)N (f)/(N(q¢I)-Ax))"?. Using Lemma 2.8, we know that when ¢ is suffi-
ciently large so that ¢ > 1, then it holds that 1 > n.(S™1-(qI)) for & = exp(—c?d).
Moreover, applying Lemma 2.4 to L1 = S™!-(¢I) and Ly = S™!- I, we see that

dist (Dsfl,Ll mod 87! (¢I),U(S™! - Tmod S™!- (qI))) < 2exp(—c?d).
Multiplying the outputs of these two distributions by S, we finally obtain

dist (DLS mod ¢I,U(I mod qI)) < 2exp(—c?d).

29

Using the fact that ¢ > ¢ (as ¢ > 1), that exp(z) > x for all z € R, and that
N(I) < N(f), we obtain the upper bound

2exp(—c’d) < 2exp(—cd) < 2exp (— eli=d=In(¢"Ax))/d d)
< 2exp (— (t—d(1 + In(gA}"Y))).

If t > 2d(1 —&—ln(qA%d)), then (t—d(l—l—ln(qA%d)) > t/2 and ¢ > 1, which implies
that
Ip(t) — poo| < 2exp(—1/2) < 2exp(—t/k).

For smaller ¢, note that ¢ < /2. In this case, the upper bound 2 exp(—t/x) is at
least 1, and so the property is also satisfied.

Property 3. Let us fix some ¢; > t2 > 0. We want to show that |p(t1) — p(t2)| <
K+ 4/[t1 — ta]. Observe first that since p takes values in [0,1] and k > 1, then
the condition is always satisfied when [t; — t3] = 1. We will hence assume wlog
that 0 <t; — 1t < 1.

We know from the definition of O"**' that |p(t1) —p(t2)| < dist(Dr.s,, Dr.s,),
where S; and S, are diagonal and equal, except for their for top-left coefficient
(or two top-left coefficients if o7 is a complex embedding):

(S1)11 = e+ (exp(ty — d)|or(£))? and (S2)11 = v/ + (exp(t2 — d)]or (£)])?,

for some ¢ > 0. As when proving Property 1, one can check that nl/Q(Sfll),

11/2(S5 1) < 1/2. Therefore, we can apply Lemma 2.3 to obtain that
dist (DI,Sl7DI,S2) < 4\/& . }HSQ_lSl — Idm

Once again, the matrix S;lsl — 14 is zero, except for its top-left coefficient
(or two top-left coefficients) which is equal to

\/c + (ep(ti = Ao (A _ \/ (exp(ts — d)|o (£)])
= d g1

)2

-1 = exp tl—tg —1.
o @iz~ DN @l - ()7 o
The first inequality comes from the fact that t; > to (and ¢ and (exp(ty —
d)|o1(f)])? are non-negative). Finally, since 0 < t; —ta < 1, we conclude
that exp(ty — t2) — 1 < 2|t; — ¢2]. This in turns implies that |p(t1) — p(t2)| <
8Vdr/[t1 — ta| < kn/]t1 — ta], as desired. =

Acknowledgments. The authors thank Koen de Boer, Léo Ducas, Guillaume
Hanrot, Miruna Rosca aux Adeline Roux-Langlois for insightful discussions. The
first author was supported in part by CyberSecurity Research Flanders with ref-
erence number VR20- 192203 and by the Research Council KU Leuven grant
C14/18/067 on Cryptanalysis of Post-quantum Cryptography. The second au-
thor was supported in part by European Union Horizon 2020 Research and In-
novation Program Grant 780701 and BPI-France in the context of the national
project RISQ (P141580).

30

References

ABDI16.

AD17.
AGHS13.

BBC*20.

BelO4a.
Bel04b.
BS96.

CDH20.

CDW21.

CJL16.

CL15.
Coh95.
Coh00.
dBDPW20.
FS10.
GGH13.
GPVO08.

HHP*03.

HPS98.

KF15.

M. R. Albrecht, S. Bai, and L. Ducas. A subfield lattice attack on over-
stretched NTRU assumptions - cryptanalysis of some FHE and graded
encoding schemes. In CRYPTO, 2016.

M. R. Albrecht and A. Deo. Large Modulus Ring-LWE > Module-LWE.
In ASIACRYPT, 2017.

S. Agrawal, C. Gentry, S. Halevi, and A. Sahai. Discrete gaussian leftover
hash lemma over infinite domains. In ASIACRYPT, 2013.

D. J. Bernstein, Brumley B. B., M.-S. Chen, C. Chuengsatiansup,
T. Lange, A. Marotzke, B.-Y. Peng, N. Tuveri, C. van Vredendaal,
and B.-Y. Yang. NTRU Prime round-3 candidate to the NIST post-
quantum cryptography standardisation project, 2020. Available at https:
//ntruprime.cr.yp.to/.

K. Belabas. A relative van Hoeij algorithm over number fields. J Symb
Comput, 37(5), 2004.

K. Belabas. Topics in computational algebraic number theory. J. théorie
des nombres de Bordeauz, 16, 2004.

E. Bach and J. O. Shallit. Algorithmic Number Theory: Efficient Algo-
rithms. MIT Press, 1996.

C. Chen, O. Danba, J. Hoffstein, A. Hiilsing, J. Rijneveld, T. Saito, J. M.
Schank, P. Schwabe, W. Whyte, K. Xagawa, T. Yamakawa, and Z. Zhang.
NTRU round-3 candidate to the NIST post-quantum cryptography stan-
dardisation project, 2020. Available at https://ntru.org/.

R. Cramer, L. Ducas, and B. Wesolowski. Mildly short vectors in cyclo-
tomic ideal lattices in quantum polynomial time. J. ACM, 68(2), 2021.
J. H. Cheon, J. Jeong, and C. Lee. An algorithm for NTRU problems and
cryptanalysis of the GGH multilinear map without an encoding of zero.
LMS J Comput Math, 19(A), 2016.

J. H. Cheon and C. Lee. Approximate algorithms on lattices with small
determinant. TACR ePrint 2015/461, 2015.

H. Cohen. A Course in Computational Algebraic Number Theory.
Springer, 1995.

H. Cohen. Advanced topics in computational number theory. Springer,
2000.

K. de Boer, L. Ducas, A. Pellet-Mary, and B. Wesolowski. Random self-
reducibility of Ideal-SVP via Arakelov random walks. In CRYPTO, 2020.
C. Fieker and D. Stehlé. Short bases of lattices over number fields. In
ANTS, 2010.

S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, 2013.

C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, 2008.

J. Hoffstein, N. Howgrave-Graham, J. Pipher, J. H. Silverman, and
W. Whyte. NTRUSIGN: digital signatures using the NTRU lattice. In
CT-RSA, 2003.

J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: a ring based public
key cryptosystem. In ANTS, 1998.

P. Kirchner and P.-A. Fouque. An improved BKW algorithm for LWE
with applications to cryptography and lattices. In CRYPTO, 2015.

31

https://ntruprime.cr.yp.to/
https://ntruprime.cr.yp.to/
https://ntru.org/

KF17.

Kle00.

KLL84.

LLL82.

LPR10.

LPSW19.

LS15.
LSS14.

LTVi2.

MGO02.
MRO7.
Peil0.
Peil6.
PHS19.
PRS17.
Reg09.

Rob97.

RSW18.

Sch87.

SMSV14.

SS11.

SS13.

SSTX09.

P. Kirchner and P.-A. Fouque. Revisiting lattice attacks on overstretched
NTRU parameters. In EUROCRYPT, 2017.

P. N. Klein. Finding the closest lattice vector when it’s unusually close.
In SODA, 2000.

R. Kannan, A. K. Lenstra, and L. Lovdsz. Polynomial factorization and
nonrandomness of bits of algebraic and some transcendental numbers. In
STOC, 1984.

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz. Factoring polynomials
with rational coefficients. Math Ann, 1982.

V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning
with errors over rings. In EUROCRYPT, 2010.

C. Lee, A. Pellet-Mary, D. Stehlé, and A. Wallet. An LLL algorithm for
module lattices. In ASTACRYPT, 2019.

A. Langlois and D. Stehlé. Worst-case to average-case reductions for mod-
ule lattices. Des Codes Cryptography, 2015.

A. Langlois, D. Stehlé, and R. Steinfeld. GGHLite: More efficient multi-
linear maps from ideal lattices. In EUROCRYPT, 2014.

A. Lépez-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In
STOC, 2012.

D. Micciancio and S. Goldwasser. Complexity of lattice problems: a cryp-
tographic perspective. Kluwer Academic Press, 2002.

D. Micciancio and O. Regev. Worst-case to average-case reductions based
on gaussian measures. SIAM J. Comput., 37(1), 2007.

C. Peikert. An efficient and parallel gaussian sampler for lattices. In
CRYPTO, 2010.

C. Peikert. A decade of lattice cryptography. Found. Trends Theor. Com-
put. Sci., 10(4), 2016.

A. Pellet-Mary, G. Hanrot, and D. Stehlé. Approx-SVP in ideal lattices
with pre-processing. In FEUROCRYPT, 2019.

C. Peikert, O. Regev, and N. Stephens-Davidowitz. Pseudorandomness of
ring-LWE for any ring and modulus. In STOC, 2017.

O. Regev. On lattices, learning with errors, random linear codes, and
cryptography. J ACM, 2009.

F.-X. Roblot. Algorithmes de factorisation dans les extensions relatives
et applications de la conjecture de Stark a la construction des corps de
classes de rayon. PhD thesis, Université Bordeaux 1, 1997. Available at
http://math.univ-1lyonl.fr/~roblot/resources/these.pdf.

M. Rosca, D. Stehlé, and A. Wallet. On the ring-LWE and polynomial-
LWE problems. In EUROCRYPT, 2018.

C.-P. Schnorr. A hierarchy of polynomial lattice basis reduction algo-
rithms. Theoretical Computer Science, 53, 1987.

Saruchi, I. Morel, D. Stehlé, and G. Villard. LLL reducing with the most
significant bits. In ISSAC, 2014.

D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case prob-
lems over ideal lattices. In EUROCRYPT, 2011.

D. Stehlé and R. Steinfeld. Making NTRUEncrypt and NTRUSign as
secure as standard worst-case problems over ideal lattices. TACR ePrint
2013/004, 2013.

D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key
encryption based on ideal lattices. In ASIACRYPT, 2009.

32

http://math.univ-lyon1.fr/~roblot/resources/these.pdf

Sut16. A. Sutherland. Lecture notes of Number Theory I, taught at
MIT. Available at https://math.mit.edu/classes/18.785/2016fa/
LectureNotes12.pdf, 2016.

WW18. Y. Wang and M. Wang. Provably secure NTRUEncrypt over any cyclo-
tomic field. In SAC, 2018.

33

https://math.mit.edu/classes/18.785/2016fa/LectureNotes12.pdf
https://math.mit.edu/classes/18.785/2016fa/LectureNotes12.pdf

A Additional preliminaries and missing proofs from
Section 2

This section contains some missing proofs from Section 2, together with some
additional preliminaries that is used only for the appendices.

A.1 Additional preliminaries for the appendices

Properties of Gaussian distributions. When the standard deviation of the dis-
crete Gaussian distribution is larger than the smoothing parameter, then it some-
how behaves like a continuous discrete Gaussian distribution. This is formalized
for different properties in the lemmas below.

Lemma A.1 (Proof of [MRO7, Le. 4.4]). Let L < R™ be a full rank lattice,
ceR" and o = n.(L) for some € > 0. Then it holds that

n

det(L)’

po(L+c)e[l—e1+¢]-
Lemma A.2 ([MRO7, Le. 4.4]). Let L < R" be a full rank lattice, c € R"
and o = n.(L) for some € > 0. Then it holds that

1+¢
1—¢

Pr (|Jv—c|>+n o)< -277

ve—Dr 5.c

It is possible to efficiently sample elements from a distribution that is sta-
tistically close to a discrete Gaussian distribution over lattices. This can be
done using an algorithm proposed by Klein [Kle00] and analyzed by Gentry,
Peikert and Vaikuntanathan [GPV08], provided that the standard deviation is
sufficiently large.

Lemma A.3 (Adapted from [GPVO08, Th. 4.1]). There ezists a ppt algo-
rithm that takes as input a basis B = (bq,...,b,) of an n-dimensional lattice L,

a real number s > 0 with s > \/n-max; |b;| and a center ¢ € Span(L) and outputs
a sample from a distribution D g such that Dy sc ~o—n DB sc-

Integer lattices of small volume. The following result, proved by Cheon and Lee
in [CL15], states that for an integral lattice L of rank n with sufficiently small
volume, then one can find, in polynomial time, significantly smaller non-zero
vectors of L than one would get by using the LLL algorithm.

Lemma A.4 (Adapted from [CL15, Th. 2]). Let L < Z™ be a full rank
integral lattice. Then, there is a ppt algorithm computing v € L\{0} such that

HVH < 2w/logdct(L) . det(L)l/n.

34

Proof. The algorithm takes as input a basis B of L and starts by computing its
Hermite Normal Form B’. It then selects the first m vectors of B’ (with m < n
to be defined later), runs LLL on them and outputs the first vector v # 0 of the
LLL output basis. We have:

m—1

4

Iv| <2" - |det B/|Y™ < 2

If 24/log det(L) < n, then we set m = [24/log det(L)]. Else we set m = n. In the
first case, the above inequality leads to |[v| < 2V1°89°t(E) I the second case,
we have

~det(L)Y™.

vl < o T .det(L)l/” < on/log det(L) | det(L)l/n.

This completes the proof. O

Complez conjugation in a number field. For x € Kg, we define T € Kg as the
element obtained by componentwise complex conjugation of the canonical em-
bedding vector of x. We extend this notation to vectors and matrices over Kg.
We define K and R as the subsets of Ky obtained by applying complex conju-
gation to elements of K and R, respectively. We define K = Ky n (Rx¢)? and,

for z € K, we define \/z = o7 ((1/04(z));).

Ideals versus rank-1 modules. We now observe that 4-HSVP for rank-1 modules
is computationally equivalent to y-id-HSVP. By mapping an ideal I to the rank-
1 module I - (1,0,...,0)T, we obtain a reduction from v-id-HSVP to v-HSVP
for rank-1 modules. The following lemma handles the converse.

Lemma A.5. Let v > 1, ¢ > 1 and € > 0. Then there exists a reduction from
v-HSVP for rank-1 modules M < K* to (1 + ¢)y-id-HSVP.

Proof. The proof relies on the QR-factorization over Kg. For any B € Kﬂng
with Kg-linearly independent columns, there exist Q € K5** and R e KE**
such that B = QR, QTQ = I; and R is upper triangular with all diagonal
coefficients in KD'{ . This decomposition is unique and called the QR-factorization
of B. As implied by [LPSW19, Se. 2.3], if B € K*** has Kg-linearly independent
columns, then the coefficients of its Q-factor and R-factor may be computed to
arbitrary precision in polynomial time.

Let M < K’ be a rank-1 module represented by a pseudo-basis I - b for
some non-zero vector b € K* and non-zero fractional ideal I. The algorithm first
computes the QR-factorization b = Qr, with Q € K]é“ and r € Kﬂ'{. We have

0i(r) = 4/ 2j<e10i(b;)?, where b = (b, ... ,be)T. The algorithm then calls the

oracle on the rank-1 module M’ = QTM = r -1 c Kg. As left-multiplication

by Q and QT preserves the Euclidean norm, solving ~-id-HSVP for ideal M’
suffices. The oracle finds z € M"\{0} such that |z| < v -+/d-det(M’)"/?. The
algorithm then outputs Qz € M\{0}, which satisfies:

|Qu| = || < - Vd-det(M")V* = v Vd - det(M)"/1.

35

In the above, we assumed exact computations over complex numbers and a
~v-id-HSVP for ideals over Kr. These precision issues can be handled using LLL-
preprocessing and rounding techniques such as described in [SMSV14]. This
allows to find s € M\{0} such that [s| < (1 + &)y -V/d - det(M)V? with a time
overhead that is polynomial in log1/e. m]

A.2 Proof of Lemma 2.2

This lemma is obtained by combining Lemmas A.1, A.2 and A.3. The algo-
rithm consists in running Klein’s sampler, and restarting if the output vector v
is at distance > y/n - o from c or if v = 0. As the minimum over all bases
of max; |b;| is bounded from below by A,(L), it holds that o > /nA,(L) >
n.(L) for e = 272 (by (2.1)). The probability that |v — c| = y/no is hence
bounded as 27" by Lemma A.2. By the triangular inequality applied to the
statistical distance and Lemma A.1, we have:

1
po(L)

Since det(L) < A\,(L)" < (0/+/n)", we conclude that Pr(v = 0) < 279",
Combining both results, we see that the probability to restart the algorithm is
bounded from above by 27" implying that the algorithm runs in polynomial
time. The claim follow from Lemma A.3.]

Pr(v=0) <

+2790) < 2det7iL) + 278,
g

A.3 Proof of Lemma 2.3

As in [dBDPW20], it is convenient to use the Kullback-Leibler divergence. The
Kullback-Leibler divergence of two random variables X, Y defined over the same
set S and such that Pr(Y = s) > 0 for all s € S is defined as

dxn(X|Y) = Z Pr(X =s)-In <Pr(X—;9

seS

The Kullback-Leibler divergence can be used to bound the statistical distance
between X and Y, using Pinsker’s inequality:

dist(X,Y) < % ~diL(X[Y).

In the following, we will compute an upper bound on dkr(Dr s, .c,|DL.8s.c0)
(observe that both distributions are defined over the same set S := L and any
element of S has a non-zero weight for both).

In the first part of this proof, we assume that ps,(L — ¢c2) < ps, (L — c1).
We will then make sure at the end of the proof that the lemma statement also
holds when pg, (L — c2) < ps, (L — c¢1) (observe that the upper bound given in
the lemma is not symmetric in S; and Ss).

36

By definition of the Kullback-Leibler divergence, we have

nps1(v_c1) 'pS2(L_C2)>

dxr (D D ~E, (1
] U ==y

1 (psg(L - Cz))
ps, (L - cl)

+ By (831 (v —)| = [ST (v — e1)[?),
where the expectancies are for v < Dy g, ¢,. As we assumed that pg, (L —c2) <
ps, (L — c1), the first term of the sum above is < 0. Let us now consider the
second term. We start by fixing some v € L. In order to simplify the equation
below, we will write v = S7'(v—c;) and € = S;*(c; —c3). With these notations,
we have S; (v — c2) = S5 'SV + €. Then, we have

[S27(v —e2)|* = ST (v —e)|* = [S578:¥ + & — ¥
< (Is3"81% + & + I¥]) - [IS7 517 + &) - I
< ((lIs3'sull + 1)+ 191 + [2]) - 18578:% +& - 9]

< (Isz*sull + - 1¥1 + &) - (183781 = L[| - 191 + 121
<P (IS "Sufl + 1) -[[S3 781 — L]
+2- 3] - ([Isz'Su]| + 1) - €] + [€]*.
Observe that in the last bound above, the only quantity depending on v is V.
Still for v < Dp, g, ¢,, We obtain that that
Ey([S31 (v —e2)|* = [STH (v — c1)[?)
<E (I92) - (IS5 781][+ 1) - [IS2"S1 — L]
+2-Ey([¥]) - (IS 'Su]| + 1) - €] + [[€]>.

By rewriting v = S; - w, we see that

—1 2 -1 2
Bvebys, o STV = e)?) = Buwen o (I —STterP).

Using [MR07, Lemma 4.3] instantiated with e = 1/2 (and using the assump-
tion that 1 > 2771/2(Sl_1L)), we have the upper bound Ew.p__, (|w —

Ttrasyte
S7'ci|?) < 2n. Hence, we obtain that E, (|¥]?) < 2n and E(|¥]|) < v2n (by
Jensen’s inequality). Combining everything, we obtain that

Ey([S3" (v —c2)|* = [ST' (v — c1)[?)
<20 (||S5184]| + 1) - [|S5181 — L] +2v2n - (||S5184]| + 1) - 3] + &2

In order to simplify this expression, let us observe that whenever we have
|HS;181 —1I,,|| = 1/16 or || > 1/16, then the upper bound in the statement of

37

the lemma is > 1, and so the lemma is vacuously true. Hence, we can assume that
these two quantities are < 1/16. This implies in particular that WSQ_ISl H| < 17/16
and ||€|? < |€[/16. Doing so, we finally obtain

dkL(DL.s, e [DLss.c0) < 190 - (||S5781 — L[| + S5 (1 — e2)).

Using Pinsker’s inequality and the fact that va + b < y/a + Vb for all a,b > 0,
we obtain that

dist (D8, .ers DLy.es) < 3.1/ (\/MS;S1 ~1) + \/Hsz—l(c1 - cz)u).

The above holds if ps, (L — c2) < ps, (L — ¢1). Let us now consider the case
where pg, (L —c2) = ps, (L —c1). In this case, we have a symmetric upper bound

dist (DL751,C1’DL752702) < 3'1\/ﬁ' (\/MS;lS? - I"|H + \/|‘S;1(C1 - C2)H>
Note that [|S7"Sa| < [[S7"'S2 — L[| + 1 < [|S7 'Szl - [[Tn — S5'S1]| + 1. Using
the fact that the lemma statement is vacuously true when |HS;181 - 1H| > 1/16,

we can assume that [|S;S; —1|| < 1/16 and so |[ST'S2|| < 17/16. We hence
obtain

_ _ _ 17

578~ L < [I87Sa] - 185"8: Ll < 1L [ls3"s, ~ L.
_ _ _ 17, .

ST (c1 —ca)| < [|ST'S2 | IS5 (e1 — ca) | < T6/S2 e —).

We finally conclude that

dist (D15, > Disnes) < v (/182281 L] + /185 H(er — ea)]),

even when pg, (L — ¢3) < ps, (L — ¢1). O

A.4 Proof of Lemma 2.5

We will adapt the approach of Kannan, Lenstra and Lovész [KLL84] for com-
puting the minimal polynomial of an algebraic number, using lattice reduction.
Define 0 = 0. We assume that we are given as input some ¥ (in C, with a
zero imaginary part if the embedding o is real) such that |§ — o(z)| < 27P for
some x € K, where p will be determined later (in Lemma A.10 below). We first
compute same-quality approximations to the o(r;)’s where (r1,...,rq) is the
given basis of R:

Vi<d: |z;(\rj) —o(r)| < 27P.

This can be performed in ppt (with respect to log |®|, log Ax and p) using
the defining polynomial @ (recall that the r;’s are given as polynomials in
Q[X]/?(X), with degree < d).

38

We consider the following matrix in C4+3)*(4+1D) " where y = o(z):

[27 - Re(y) 2P - Re(o(r1)) 27 - Re(a(ra)) - -+ 2P - Re(o(ry))
2P - Tm(y) 27 - Im(o(r1)) 27 - Im(o(ra)) - -+ 2P - Im(o(rq))

1 0 0 0

M — 0 1 0 0 ,
0 0 1 0
0 0 0 1

as well as its approximated version:

27 Re(§) 27 - Re(a(r1)) 27 - Re(a (b)) -+ 2° - Re(a(rq))

—

27 - Tm(3) 2 - Im(o (r)) 27 - Im(o (rz)) - - 27 - Im(o(rq))

1 0 0 0
M = 0 1 0 0
0 0 1 0
0 0 0 1

Matrix M is the one we would like to work with, but instead we use M,
which can be represented with a finite number of bits. We will show that if the
approximations are sufficiently accurate, matrix M suffices to provide the result.
The strategy to recover z is given in Algorithm A.1, for a sufficiently large value
of p, to be determined later.

Algorithm A.1

Input: An integer p, a complex § such that |§ — o(z)| < 27P for some z € K.
Output: Element = expressed as a (Q-combination of the r;’s.
1: Compute M. N
2: Apply the LLL algorithm on (the columns of) M and let ¥ = (&1, &, Qo, ..., Qa)”
be the first output vector.
. _ \d Qi
3: Return © = >}7_, —5krs.

We first analyze a simpler case where M is used instead of M. Correctness
is easier to prove, assuming that the LLL can handle real numbers. Later, we
show that the rational matrix M also leads to .

The exact case. We want to apply the LLL algorithm to the (d + 1)-dimensional
lattice L generated by the columns of M and we hope that the short vector we
get will allow us to find x. This holds if p is sufficiently large, as implied by the
following lemmas.

39

Lemma A.6. Ifv = (0,0,Qo,...,Q4)T is a non-zero vector of L, then the Q;’s
are integers, Qg is non-zero and xr = Zl<i<d —(Qi/Qo)ri-

Lemma A.7. Ifv = (e1,e2,Qo,...,Qq)7T is a vector of L with (e1,es) # (0,0)
and if p satisfies

. d
P > (27/2~(d+1) . 6K . ((d + 1) . ”@”)3(1-&-3 . 245126(7;)) ,

then |v|| = 20@+D/2. x (L).

These lemmas show that if we applied the LLL algorithm on basis M of L
(assuming it were rational), we would get a vector w that would allow us to
recover z. Indeed, LLL returns a non-zero vector w such that |w| < 242 .
A1(L). By Lemma A.7, its first two entries must be zero, and by Lemma A.6, its
coordinates with respect to the basis M of L reveal z. Below, we will show that
LLL applied on the exactly known rational M suffices to recover x.

Proof (Proof of Lemma A.6). If we let (v;); denote the columns of M. We have
that v. = Qogvo + -+ + QqVvq. By looking at the first two rows, we see that
Qoo () + X1 <cicqQio(ri) = 0. As 0 is a morphism, we can rewrite the latter as
0(Qor + 21 ;<4 Qiri) = 0. Since o is injective, we have Qox + 3, ;4 Qiri = 0.
As we assumed that the);’s are not all zero and as the r;’s form a Q-basis of K,
this implies that Qg # 0. The result follows. O

Proof (Proof of Lemma A.7). Let v = (e1,e2,Qo, - ..,Q4)T be avector of L with
(e1,e2) # (0,0) and the Q;’s in Z. We want to prove that |[v| = 2@+1/2. \ (L).
Let D, be the least common multiple of the denominators of the x;’s (writing z =
Y xiri). Note that v/ := (0,0, =Dy, D21, .. ., D,-24)T belongs to L. Moreover,
we know that max; |z;|, D, < 2size() g0 we get

A1 (L) < ”v’“ < \/m . 22512(:(1).

To prove the lemma, it thus suffices to show that |v| = v/d + 1-2(4+1)/2.92size(z)
Without loss of generality, we assume that (Yo_;., Q7)'/? is smaller than this
quantity.

Let ¢ € C be the root of @ such that for all g € K seen as a rational
polynomial, we have o(g) = g(¢). We can then write e; + Ieg = 2P - R(() for the
rational polynomial R defined by

R= Qox+ Z Qiry = Z (Qozi + Qi)rs.

1<i<d 1<i<d

We then use a result of [KLL84] to get a lower bound on |R({)| and prove
that |v| is large.

Lemma A.8 (Adapted from [KLL84, Prop. 1.6]). Let h and g be non-zero
polynomials of Z[X] of degrees n and m, respectively. Let ¢ be a root of h. If h
is irreducible and g(¢) # 0 then,

1 - 1
T e (L4 Ryt g]nt

19(Q)] = n-||h|™ - |g|?t - max(1,|¢|*1)

40

Proof (Proof of Lemma A.8). The first inequality comes from the proof of
[KLL84, Prop 1.6], with a small modification to handle the case where |¢| > 1
(just after [KLL84, Eq. (1.7)]). The second inequality follows from the Cauchy
bound on roots of polynomials, which implies that || < 1+ |A]|. =

We now use this lemma with h = @ and ¢ = D, - D, - R, where D,. is the
least common multiple of the denominators of the coefficients of the r;’s when
viewed as rational polynomials. Note that D, < (2d|®])3¢ as R < %Z[C] c

ﬁZ[C], where @' is the derivative of @. Both h and g have integer coefficients.

We have |h| = |®| and, using the triangular inequality,

lg| < Do D, Z |Qozi + Qil - 4

1<i<d

< 2D, D, Vdo25® N (Y Q)2

1<i<d 0<j<d
< 2<d + 1)22(d+1)/25K(2d”¢“)3d24size(:c).
Using Lemma A.8 with these bounds on |k| and |g|, we obtain

1
lg(Q)| = d. 2+ (d—1)/2 . fgd—1

with K = 05 (2(d + 1)||®])33+32%517¢(*) | We then have

@l 2
D,D, =~ d-2(@d+1)(d-1)/2. fd-1 Dy - D,

vl = 2

It hence suffices to set p so that 2P > (2(+1/2K)4 to obtain that |v| =
2(d+1)/2. X\, (L). The condition in the lemma statement guarantees it. o

The approximate case. We first prove that if we take a vector v.= Qovg + -+
Qavaq in L (recall that the v;’s are the columns of M) and its approximation
V = QoVo + -+ QaVg in L (with the v;’s denoting the columns of M), then
the difference between their norms is small.

Lemma A.9. Letv = (e1,e2,Qo,...,Qa)T € L and ¥V = (€1,65,Q0,...,Qq)T €
L. Then [|[v] — V]| < Xp<icq |Qil-

Proof. By definition of M, we have

0= (Quy+ Y, Qio(rs)) — Qo+ Y, Qio(r))|

1<i<d 1<i<d
<1Qol-ly =31+ 2} 1Qil-lo(r:) = o(ry)]
1<i<d
<(), Q-2
o<i<d
We then obtain that |[v|| — V|| < [v = V[<27 -5 < X5y |Qil- o

41

This lemma allows us to obtain a bound on A;(L). Let v/ = (0,0, =Dy, D, -
21,...,Dy - 24)T € L as in the proof of Lemma A.7 (i.e., with D, the least

common multiple of the z;’s), and let v/ € L be its corresponding approximation.
Then

MEI) <V < V] + Dol + D) ag]) < 2(d + 1)2257(),
1<i<d

The latter results combined with Lemma A.7 allow us to ensure that all
vectors that do not correspond to x are significantly longer than Ay (L).

Lemma A.10. Assume that p satisfies:
) d
o > (2(7d+9)/2 O ((d+1)- H@H)Sd+4 . 245126(9:))

Let vV = YlycicqQiVi € L. If the first two entries of the corresponding v =
Zogigd Q;v; € L are not both zero, then

9] = 2@+1/2. 5 (D).
Else, we have x = Y, ;. —(Qi/Qo)7i.

A direct consequence of this lemma is that when given M as input, the LLL
algorithm returns a vector v = >, <i<a @i~ Vv; € L such that the first two entries
of v.=> ;<4 Qi Vi€ L are zero. By Lemma A.6, the Q;’s reveal .

Proof. As in the proof of Lemma A.7, we may assume that (Yo_;,, Q?)"? <
2(d+3)/2 . (d 4- 1)22517¢(*) We know that in this case (see the end of the proof of
Lemma A.7):
op
vl = — = ,

d-2(d+1)(d-1)/2 . [gd-1. D, - D,
where K = 85 (2(d + 1)[®])3d+424s12¢(*) (the update from K to K comes from
the upper bound on (X ,;<4 Q%)'/2, which has been multiplied by 2+v/d + 1).
Thanks to Lemma A.9, we obtain that

~ 2p
Il = (d+1)(d—1)/2 . fod—1 B Z @il
d-2 KDy - D gSeyg
- 2P _ 9@+8)/2(g | 1)292size(),

T d.20@+)@-1)/2. gd-1. D . D,

The condition on p implies that 2 > (2(@+1/2)4 which ensures that |¥] >
2(d+1)/2 .) (L). =

The fact that Algorithm A.1 returns z follows from Lemma A.10. Its poly-
nomial complexity follows from the facts that M may be computed in polyno-
mial time and that LLL runs in polynomial time. This completes the proof of
Lemma 2.5. O

42

A.5 Proof of Proposition 2.10

We only explain how to adapt the proof of [PRS17, Prop. 4.4]. Observe that
in [PRS17, Prop. 4.4], the third condition is rather

3. for any t1,to = 0, it holds that |p(t1) — p(t2)| < s|t1 — ta2].

However, we argue that Property 3’ can be replaced by Property 3 without
impacting the result and with limited impact on the proof. Indeed, in [PRS17],
Property 3’ is only used to ensure that, in the proof of Lemma 4.2 (on page 13),
it holds that |p(t + xA) — p(t)| < 1/(100Atmax) for some A = 1/poly(x, A) and
all x € [0,1] (the exact definitions of A and tyax are given in [PRS17] but are
not necessary here; we only need to know that ¢.x = poly(x,A)). In order to
prove this, the authors pick A := 1/(1006Atmax) = 1/poly(k, A) and then use
Property 3’ to show that

Ip(t + xA) — p(t)| < KA < 1/(100 A tax).

If we have Property 3 instead of Property 3’, we obtain the same result by
setting A := 1/(100x A tmayx)?, which is also > 1/ poly(k, A). The rest of the proof
only uses the fact that A > 1/poly(k, A) and not the exact value of A, so it is
unchanged. O

B Missing proofs from Section 3

B.1 Reducing NTRU,. to NTRU,,oq— Proof of Lemma 3.8

Let h be a (v,q)-NTRU instance. Using the (v,q)-NTRUyoa oracle, the re-
duction first recovers hx € K as defined in Lemma 3.5. Then it computes a
lattice basis of the rank-1 submodule (1,hx)T - K n M), of M. It contains
(g,)T, where (f,g) is arbitrary satisfying g - h = fmodq and |f|,|g] <
\/@/7- In particular, by inclusion into (g,)T - R, the corresponding lattice has
determinant at most /A (v/2¢/7)?. By using the Thsvp-id-HSVP oracle via
Lemma A.5, we obtain (¢', f)T € (1,hg)? - K n Mj, such that |f'[,[d'| <

(1 +) mevp ALY (y2g/7). O

B.2 Reducing dNTRU to NTRU,,,q— Proof of Lemma 3.9

Let h be a (D,~, ¢)-dANTRU instance. The goal is to decide whether h has been
sampled from D or U(R,). For this, the reduction B:

1. calls the (D,~, q)-NTRUyoq oracle A; let h be its (possibly incorrect) out-
put;

2. computes the intersection M’ between (1, h) - K and Mjy;

3. outputs 1 if and only if M’ is a rank-1 module and det(M") < /A (1/2q/7)4.

43

If h is sampled from D, then A receives a correctly distributed (D,~,q)-
NTRUyoq instance and returns hyg with probability Adv(.A). In that case, the
module M’ has rank 1 and contains a non-zero vector (g, f)* with ||f], |g] <
\/q/7- In this situation, algorithm B outputs 1.

If h is sampled from U(R,), we claim that M} does not contain any rank-
1 module M’ with det(M’) < /Ax(y/2q/7)%. If it was, then, by Minkowski’s
theorem, it would contain a vector (g, f)T such that | £, |lg| < A}{/(Qd)\/%/'y.
We prove that for a sufficiently large «y, this can happen only with exponentially
small probability. Unless this unlikely event occurs, algorithm B outputs 0. Prov-
ing the lemma below will hence complete the proof of Lemma 3.9.

Lemma B.1. Let ¢ = 2 be a prime that does not divide A . Except with a
probability < 2~¢ over the uniform choice of h € Ry, we have \(My) > Va/8.

The proof follows the design of the standard proofs of the Minkowski-Hlawka
theorem. More concretely, we adapt the proof of [RSW18, Le. 5.2] to our precise
setup.

Proof. By choice of ¢, we can write gR = [[, p; for distinct prime ideals p;. By
the Chinese Remainder Theorem, we have R, ~ @, ;, F e, with g% = N(p,).
Fix some bound B (to be determined later) and define pp as the probability
that X\ (M) < B over h < U(R,). By definition of M} and the union bound,

we have:

pB < Z 12r[g~h=fmodq].
(£,9) € R\{(0,0)}
I£1: gl < B

This leads us to studying the number of solutions h € R, to the equation g-h =
f mod ¢q. Note that if there is an 4 such that ¢ = 0 mod p; and f # 0 mod p;,
then there is no solution. Now, let S denote the set of i’s such that g = 0 mod
p; and assume that f = Omod p; for all i € S. Let ds = >,,.gd;. Then, by
considering the Chinese Remainder Theorem decomposition, one sees that there
are exactly [[, o q% = q¢%s solutions h to g-h = f mod q. We hence obtain that
Prp[g-h = f mod q] = ¢?s~9, and:

PB < Z Z gds—4.

Sc[k] (f,9) € R?\{(0,0)}
I£1, gl < B
VieS: f,gep;

For any B and S, define N(B,S) as the number of elements of Iy := [[,.q i
of Euclidean norms < B. As there are 2¥ < 2 possible choices for S, we obtain
that: ,
N(B,S)? -1
< 2¢. —_—
To bound N(B,S), observe that the balls of radius A\ (Ig)/2 and centers the
elements of Is cannot intersect. This implies that N(B,S) < (1 4+ 2B/A;(Is))<.

44

Further, as seen is Subsection 2.4, we have that A\ (Ig) = N (Ig)Y4 = ¢9s/4,
Overall, we obtain that:

1 if B <qis/d

N(B,S) < {QQdquds else,

where the first line comes from the definition of N(B,S) and A\ (Is). Plugging
the latter in the last upper bound on pp, we obtain:

5d B2dg=2ds 5d p2d d
. _ = o . . -
pB < 2 Srréa[}lcc] R 2°¢. B¢ . q7%
¢4s/i < B
The result follows. O

C Missing proofs from Section 4

C.1 Reducing worst-case to average-case id-HSVP — Proof of
Theorem 4.4

We start with a lemma which will be used in the proof of Theorem 4.4. It
considers the task of sampling a prime ideal together with a short non-zero
element of it. Note that it holds under the Extended Riemann Hypothesis (ERH).

Lemma C.1 (Sampling prime ideals with a short vector, ERH). There
exists a classical algorithm that on input an integer B = 1 samples pairs (v,p)
in time polynomial in log B and log Ak, such that

1. p is a prime ideal of norm < B and its distribution is within 2@ statistical
distance from the uniform distribution over prime ideals of norm < B;

2. vep\{0};
3. v <2vIsB . 4.5y - BY,

Moreover, if we have access to an oracle factoring integers of bit-lengths <
log(B) + log Ay + d - log(d*® - §x), then Property 3 can be improved to

3. v < d -G - A}(/d . Bl/d.

Proof. We describe two different algorithms, one using a factoring oracle and
the other one not.

Algorithm without factoring oracle. The algorithm proceeds as follows. It first
samples a uniform prime ideal p of norm < B in time polynomial in log Ak
and log B, using for instance [dBDPW20, Le. 2.2] (which holds under ERH).
Note that [dBDPW20, Le. 2.2] requires that B should be larger than some
quantity that is polynomial in log Ak: for B smaller than this bound, one can
simply enumerate in polynomial time all prime ideals of norm < B and then pick
one uniformly at random in the list. Then the algorithm would use Lemma A.4

45

to find a somehow short vector in p. Note however that Lemma A.4 cannot be
directly used, as p may not be an integral lattice. In order to make it into an
integral ideal, we consider a basis of p over R. If B, is a basis of p, then since p
is a sub-lattice of R, we know that B, = Bg - S, for some matrix S € Z4*% and
where Bp, is the known basis of R (recall that each coefficient of B has absolute
value at most dx). Let us consider the lattice L = £(.5), which is integral. We
know that det(L) = |det(S)| = M(p) < B. Using Lemma A.4, we can find in
polynomial time a vector w € L\{0} such that

HW“ < 2\/logB . Bl/d.
Multiplying by Bg, we obtain a vector v = Bg - w € p\{0} such that

vl < max ri] - [wly < d- 6 -2V P - BYL.
2

Algorithm with a factoring oracle. Contrary to the previous algorithm, which
constructed the prime ideal p first and then computed a short vector in p, this
algorithm first samples a small v € R\{0} and then constructs a prime ideal
containing v. More formally, we will consider a first algorithm A that proceeds
as follows

e sample v «— EBR,m where By is the known basis of R and o = BY/?. A%d .
d-Ix;

e factor (v) = []i_, pi* - H;=1 q{j , where the p;’s are distinct prime ideals of
norm < B, the q;’s are distinct prime ideals of norm > B and e;, f; > 1;

e pick ig € {1,...,r} uniformly at random (r is the number of distinct prime
factors of (v) of norm < B); if r = 0, then A outputs 1;

e output (v,p;,) with probability log(B-AK«T(dl-f’-&K)d) . N(go), and otherwise
output L.

Thanks to Lemma 2.2, if one can factor (v}, then A runs in polynomial time. To
factor (v), it suffices to factor M (v), which is an integer bounded from above by
lv|¢ < (Vd-o) < BAg-(d">-6)?% (where we used Lemma 2.2 and the definition
of o). Observe also that since N'(v) < B - Ag - (d*° - x)?, then v has at most
log(B - Ag - (d*®° - 6)9) prime factors, and so the quantity log(B<AK-?d1-5-5K)d) .
N(gio)

in the last step of the algorithm is indeed in [0, 1]. Finally, observe that
if A outputs (v,p), then v € p\{0}, and |v| < BY?. A%d ~d*® - 0k (using
Lemma 2.2).

Let us now fix some prime ideal p of norm < B and compute the probability
that A outputs p (together with some vector v).

Pr(A outputs p) = Z Dg,,.0(v) - Pr(A outputs p|v).
vER

Let us fix some v € R. We know that if v ¢ p, then Pr(A outputs pjv) = 0.
If v € p, then p|(v), and so in the decomposition (v) = []_, p§* ~H;=1 qifj of the

46

algorithm, we can assume wlog that p; = p (and in particular » > 1). Then we
have
, r Np)
log(B- Ak - (d'®-6k)4) B
_ 1 Np)
log(B - Ak - (d'5-0k)Y) B -

Pr(A outputs p|v) = Pr(ip = 1)

Observe that this probability does not depend on v (as long as v € p). Combining
everything, we obtain that
1 N(p)
p () : :
vebm . \"F) log(B- Ax - (@7 o)) B
_ Op
 log(B - Ay - (d'5 - 0k)%) - B’

Pr(A outputs p)

for some &, € [1 — 279D 1 4+ 272(d] Here we used the fact that Pr(v € p) =
N(p)~'- (1 +2-%@) thanks to Lemmas 2.2 and A.1. Note that we can indeed
use Lemma A.1, as o = vd\g(p) = 1y-a(p) (due to Eq. (2.1) and the fact
that Ag(p) < dxA1(p)). To conclude, algorithm A has the same probability to
output any prime ideal p of norm < B, up to a factor 1 + 274,

Let us now consider algorithm B, which runs A until A outputs a pair (v, p)
(rather than 1), and then outputs this pair. We have seen that the pair (v, p)
output by B satisfies Properties 1, 2 and 3’ from the lemma statement. We also
know that A runs in polynomial time (given access to a factoring oracle). Hence,
it suffices to show that B calls A an expected number of times that is polynomial
in log B and log Ak . To do so, we bound the probability that A outputs a pair
(v,p) #L from below.

Pr(A does not output 1) = Z Pr(A outputs p)

p prime

N(p)<B

5P
B ppz log(B - Ak - (d15 - 6x)?) - B

N(p)<B
_ (1=272@) - |{prime p | N'(p) < B}|
log(B- Ak - (A5 -05)4) - B

By [BS96, Th. 8.7.4] (under ERH), we have that |[{prime p|N(p) < B}| =
B/poly(log Ak, log B). Hence, we conclude that A outputs a good pair (v, p)
with probability at least 1/ poly(log Ak, log B), and so B runs in expected poly-
nomial time (provided we have a factoring oracle). |

Let us now recall and prove Theorem 4.4.

Theorem 4.4 (Adapted from [dBDPW20, Th. 4.5], ERH) Let K a num-
ber field of degree d and N > (12d*logd - §x - A%(zd))d an integer. Let v > 0.

47

There exist v = ~ - O(dl"r’A}{/d), a distribution DiFSVF over non-zero integral
ideals of K of norm < N and a reduction:

e from worst-case v -id-HSVP for all fractional ideals of K,
e to average-case y-id-HSVP for integral ideals distributed from Dy "5Vr.

The reduction decreases the success probability by at most 2~°(@ makes a sin-
gle call to the average-case y-id-HSVP oracle, and runs in time Tg™™VF +
poly(log N, size(I),log Ak) where

o [is the input (worst-case) ideal;
. T;'HSVP is the time needed to solve id-HSVP with approzimation factor 2458
and

d
B = :
log (N'/4/(6d*5logd - 6 - A%Qd)))

Moreover, there exist Ny = poly(A%d,(SK,d)d and a ppt algorithm A (with
respect to log N and log Ak) such that, for all N = Ny, algorithm A samples
pairs (J,w) such that:

e the ideal J is a non-zero integral ideal of norm < N;

o the distribution D™V of J satisfies Dy "VF ~g-0w@ DN T™VE;

o the element w € J\{0} satisfies |w| < poly(d, 5K7A%d72‘/m))
N (),

If we have access to a factoring oracle or if N = N} = 20(dvlog Ax+dlogd) . N
then we can reduce the size of w down to ||w| < poly(d, dx, A%d) CN()V,

Proof. We first recall the high level idea of the worst-case to average-case re-
duction of [dIBDPW20, Se. 4]. In order to re-randomize an ideal I, the reduction
proceeds as follows. It multiplies I by a product of n randomly chosen prime
ideals of algebraic norms < B (where n and B have to be chosen carefully),
and by an element x € Kgr very close to 1. Let us call L =z - I - H?Zl p; the
obtained ideal. The reduction then computes an LLL-reduced basis of L, and
samples v € L from a Gaussian distribution. It then outputs J := v~' - L as the
average-case ideal. The multiplication of I by the = - [} ; p; is used to make
the ideal somehow uniform, and the multiplication by v~! is used to extract a
canonical representation of L, that does not depend on x nor on the product
[T, pi- The high level intuition behind the reduction is the following. The ideal
L is very close to the ideal I - []!"_, p; (since z is very close to 1), which is itself
a (not too sparse) sublattice of I. Hence, any vector of L multiplied by 7! is a
vector of I, and the short vectors of L (after multiplication by #=!) will still be
somehow short in I (since multiplication by x and ! does not distort the space
too much). Then, since v is sampled from a Gaussian distribution, it should be
balanced with high probability, and so multiplication by v or v~! should not
change the geometry of the ideal too much. In particular, any short vector w € J
can be transformed into a somehow short vector = - v - w of I.

48

Let us now consider the first part of the theorem, i.e., the reduction from
worst-case to average-case ideal-HSVP. The statement above differs from what
was proven in [dBDPW20, Se. 4] in three ways: the average-case distribution
Dy SVF is over integral ideals instead of inverses of integral ideals; we have the
ability to reduce the upper bound N on the norm of the ideals in exchange for
a longer run-time; and the success probability is decreased by a factor 2~ 2(d)
instead of d—+().

Let us start with a high level overview. We have seen that the average case
ideal that is output by the reduction in [dBDPW20, Se. 4] is J = v=! - L for
some v € L, which is indeed the inverse of an integral ideal. In order to output
an integral ideal, we sample v € L™! and then output J = v - L. This does not
change anything for the rest of the reduction, since the only important aspect
here is that the multiplication by v or v~! does not change the geometry of the
corresponding lattices too much. Let us now consider the norm of J. This norm
will be roughly equal to |v[|? - N(L). If we have a basis of L~! whose vectors
have norms < v - N(L~")/? (for some approximation factor v > 1), then we
can sample v as small as this quantity (up to polynomial factors in d), and so
we obtain an ideal v - L of norm bounded by v%. The reduction of [{BDPW20]
runs the LLL algorithm on L' in order to obtain v = 2¢, which means that the
output ideal has norm 20(d), By running a stronger reduction algorithm than
LLL, one can decrease =y, which in turn will decrease the norm of the output ideal,
but will increase the reduction run-time. Finally, the somehow large loss in the
success probability in [ABDPW20] (i.e., d“())) comes from the fact that the
authors tried to obtain a very tight bound for the new approximation factor 7/
for cyclotomic fields. To do so, they consider a distortion x which is close to 1,
but only with probability d=“™). In our case, we consider a distribution of z
close to 1 with probability 2-(4) even if this leads to a slightly larger loss in
the approximation factor +'.

We now give more precise details on which parts of [{BDPW20, Se. 4] need to
be updated to obtain the first part of our theorem. The distribution that we call
DiHSVP in this article is the distribution that was called Dsej\r/[fe“ in [{BDPW20]
(and defined in [dABDPW20, Eq. (11)]). It was proven in [{BDPW20, Le. 4.1] that
this distribution D?fﬁe“ is over fractional ideals b such that b~! is an integral
ideal and M (b71) < (Vids + M)<.

We first observe that one can easily obtain integral ideals instead of inverses of
integral ideals. To do so, it is sufficient to change the second and third steps of the
Extract procedure described in [{BDPW20, Algorithm 1]: instead of sampling v
in L and outputting v~! - L, one can sample v in L~! and output vL (here L
is an ideal lattice). Since any v € L™! is of the form (v) = b- L™! for some
integral ideal b, we have that v- L = b is an integral ideal as desired. Moreover,
sampling v in L™! instead of L does not change the rest of the reduction (note
that L is an ideal of norm 1, hence L~! is also an ideal of norm 1). With
this small modification, the proof of [{BDPW20, Le. 4.1] still works, and we

can show that the new distribution DP%,°" outputs integral ideals b such that

N(b) < (Vds + M)<.

49

Let us now see that we can lower the upper bound N := (v/ds + M)? on the
norms of the ideals, if we are willing to spend more time on the reduction. In the
reduction proven in [dBDPW20, Th. 4.5], the parameters ¢ and M are chosen
to be equal to ¢ = 291 . \/d - A%(Qd) -Ag(R) and M = 2+/ds. This gives us the
upper bound N = (6-2¢-4d%>. A%@d) -0)% on the norms of the ideals produced
by D?,H]\;e“ (where we used the fact that A\g(R) < v/ddf). This can be achieved
with a polynomial time reduction.

If one wants to lower the bound N = (\/Ec + M)d, one could keep M = 24/d¢
and simply try to lower ¢. The lower bound on ¢ provided in [dBDPW20, Th. 4.5]
actually comes from [dBDPW20, Th. 4.4]. In this theorem, the lower bound on ¢
is used twice in the proof. First, in order to show that the distributions Dj
and D, introduced in the proof are statistically close, one needs to ensure that
¢ = +/dlogd - M\y(R) - A%@d). This lower bound is much smaller than the one
we try to improve (it does not contain the 2¢ term), and so we will keep it. The
second place in the proof where the lower bound on ¢ is used is to show that
the distributions Dg and D7 are statistically close. In this part of the proof,
we need to ensure that it is possible to use Klein’s algorithm to sample from
a Gaussian distribution with parameter ¢ in an ideal lattice (L')™! of norm
N((L')~') < 2.* This will be doable only if ¢ > v/d - max; ;|| where (¢;); is
a known basis of the ideal lattice (L’)~!. In order to obtain a somehow short
basis (¢;); of (L')~! in polynomial time, the authors of [{BDPW20] use the LLL
algorithm in the lattice (L')~!, resulting in the 2¢ term appearing in the lower
bound of ¢. However, we observe here that one could spend more time in reducing
the ideal lattice L', in order to obtain a shorter basis (¢;);, and then decrease
the lower bound on .

Let us assume that instead of running the LLL algorithm in (L)', one uses
an ideal-HSVP solver in the ideal lattice (L')~!, with approximation factor 245
for some integer 8 > 1. This can be performed in time Téd'HSVP. Let ve (L)}
be the obtained short vector. From v, one can compute a basis (¢;); of (L')~*
such that

max leill < 0k - v
< 24/8 . 5K\/g. A%(Qd) ~N(L’)_1/d
<2298 . §pN/d - A%(Qd) (recall that NV (L)' < 2).
Using this smaller basis, the lower bound on ¢ becomes
¢>2-28 5 - dlogd - AYCY.

where the log(d) is here to ensure that the other lower bound on ¢ is also always
satisfied.

* Compared to [{BDPW?20], we are taking L' = L - N([, p: - a) /%, instead of mul-
tiplying ¢ by this same quantity; this does not change anything to the reasoning.
Recall also that compared to [dBDPW20], we want to sample v in (L) instead
of L' (in order to obtain an integral ideal).

50

Taking ¢ as small as possible, we finally obtain an upper bound
d
N = (6277 d" 10gd - by - AP

on the norms of the ideals sampled from vaej\r/[fe“. Note however that the run
time of the reduction is now Téd'HSVP + poly(log s, size(I),log Ax) (where I is
the input ideal). If N is given as input as in the statement of Theorem 4.4, then
one can choose

d
/8 B .
Log (Nl/d/(G A5 logd - Oy - A%(Zd)))}

Note that the lower bound on N in the theorem statement ensures that the
denominator of the expression above is always > 1, so that 8 < d. This completes
the proof of the first part of the theorem.

Finally, let us prove that the success probability can be decreased by a factor
at most 279, In the proof of [ABDPW20, Theorem 5], all the probability
losses are of the form 27(49) except at the very end, when one wants to upper
bound |z|s - |z[! In [ABDPW20, Algorithm 2], is sampled such that Log(x)
follows a continuous Gaussian distribution of parameter 1/log(d)?. In the proof
of [ABDPW20, Theorem 5], the authors conclude that with probability at least
1 —d=“M it holds that |Log(z)|sx < 1, and so they have a nice bound on
|#]oo - |2[5t In order to increase this probability, we can simply sample Log(x)
from a Gaussian distribution with parameter 3/d, instead of 1/log(d). Changing
the value of this standard deviation has no impact on the reduction, except on
the choices of B and n needed for the random walk to produce uniform ideals.
One can see in [{BDPW20, Corollary 3.4] that taking the standard deviation
to be 3/d is allowed, and does not change the value of B and n compared to
a standard deviation 1/(logd)?. Hence, we obtain the same bound on 7' as
in [dBDPW20, Theorem 5], in the case of arbitrary number fields.” Note that
the standard deviation 3/d is not allowed in [dBDPW20, Corollary 3.5], so we
cannot obtain a better bound on 4’ in the special case of prime power cyclotomic
fields (as in [{BDPW20, Theorem 5]). This is not really important in our case,
and we prefer to keep a unique bound for 4/, which holds for all number fields.

Let us now prove the second part of the theorem, i.e., that one can sample
from Diy™V" in polynomial time and produce a somehow short vector of the
sampled ideal at the same time.

Let us start again with the high level idea. In order to sample an ideal from the
average-case distribution, we will simply run the reduction algorithm, starting
with the ideal I = R. In other words, we sample n random prime ideals p; of
norms < B; we define L = [, p;; we sample v in L~ and we output J = v- L.
In fact, we choose n = 1. It was shown in [dBDPW20] that as long as B is

5 This value of ' is slightly modified in our statement, since we do not consider exactly
the same definition of ideal-HSVP as in [dBDPW20].

51

sufficiently large, this will achieve the same distribution as taking B smaller
and n larger. So we will have L = p a prime ideal of norm at most B. Using
Lemma C.1, we will sample p together with a short vector w’. Sampling v € p~*
will be easy because we know a short basis of p~!, since R = p~!. So we will
be able to sample v € L™! quite small. And we know that w := v - w’ will be a
small element of the output ideal J = v - L.

More formally, we know from [dBDPW20, Th. 3.3] that there exists some
By = poly(Ak,d?) such that the random walk with parameters n = 1, B = By
and s = 1/(log(d))? provides a distribution that is within statistical distance 27¢
from uniform in the Arakelov class group. Hence, if we run [dBDPW20, Algo-
rithm 2] (with the modifications described above) with n = 1 and B = By, then
the distribution of J will be the same as before. Let us run [dBDPW20, Al-
gorithm 2] with a = R and n = 1. The lattice L computed at Step 4 will
be of the form L = z - p, for some p uniformly chosen among prime ideals of
norms < B and z € Kg such that M(z) € [1/2,2] and |z|, ||z} < 2. Let
us sample p together with a short vector w’ € p as in Lemma C.1. At Step 7
of [ABDPW20, Algorithm 2], we want to sample v in L™!, from a distribution
with standard deviation that is as small as possible. We know that |27 < 2
and that R < p~'. Hence, we can compute a basis of L' with vectors of norms
at most 2d - 0k (using for instance [MGO02, Le. 7.2] to compute a short basis
from an arbitrary basis and a short set of linearly independent vectors). This
implies that we can sample v in L~! from a Gaussian distribution with standard
deviation parameter ¢’ = N (p)~ /% as small as 2d'° - . Overall, this means

that one can take ¢ as small as 2d'*° - 0 - Bé/d. Recall that the parameter M
of [IBDPW20, Th. 2] is chosen to be equal to 2+/ds, and that we have seen that
the norm of the output ideal is bounded from above by (M +v/ds)* = (3v/ds)®.
Hence, we can sample from D HSVF for N as small as poly(Ax, d?, 6%).

Moreover, we know that the vector w := v -z - w’ is a vector of the output
ideal J = v - x - p. By Lemma C.1, this vector has norm at most

lwl < 2|of -2v*8 7 - d - 65 - BYY,
if we use the sampling algorithm without factoring oracle, and
wl < 2ol -d"® - b5 - AY"- BV,

if we use the sampling algorithm with factoring oracle. The element v is sampled
from a Gaussian distribution with parameter ¢’ = N'(p)~%? . ¢ and center ¢/ =
N(p)~Y4.ce Kg with |o;(c)] = M = 2V/ds for all i < d. Hence, we know that
with overwhelming probability, it holds that o;(v) € [Vd - </,3v/d - <] for all
embeddings o;. This implies in particular that

lv| < Vd-(3Vd-<') <3Vd- [N ()|

Using the fact that N (J) = N(vL) = |N(v)]/2 (since N(L) = N (z) = 1/2), we
conclude that |w| < poly(d,dx, A}(/d,QvlogAKJ’dlogd) -N(J)Y4, and that this

52

can be decreased to |w| < poly(d, 6K,A%d) - N(J)Y4 if we have a factoring
oracle.

It remains to show that one can also achieve ||w| < poly(d, dx, A%d) N(J)Ve
if NV is sufficiently large. To do so, we will use the same algorithm as above,
except that we will take L, = ' - p~! instead of L = z - p. The random
walk theorem [dBDPW20, Th. 3.3] states that L/det(L)"/? is a uniform ideal of
norm 1, hence its inverse also is a uniform ideal of norm 1. Therefore, replacing L
by its inverse L; = L~! leads to the same output distribution. Recall that we
know a very short vector of L=! but only a moderately short vector of L. This
is why we were able to sample v in L™' very short, but could only compute a
moderately short element of the output ideal J = v- L. Taking L; = L~! instead
of L means that we know a very short vector of Li, and so we will be able to
produce a very short vector w of the output ideal J = vL;. However, we only
know a moderately short vector of Ll_l, and so we will only be able to sample a
moderately short v in L.

More concretely, using Lemma C.1, we sample in classical polynomial time
the ideal p together with a somehow short vector w’ € p such that |w’|| < 2vI°sB.
d-0x - B'/?. We know that z-w’ is a vector of LT of norm |Jzw’| < 2|w’|. From
this, we can obtain a basis of L with vectors of norms at most 2v/d - §x - ||w’|,
and so we can sample in L1_1 from a Gaussian distribution with parameter ¢’ as
small as 2d - 6 - |w’|. This means that we can take ¢ = ¢’ - M (p)~"/¢ as small
as 2d - 6 - ||w’||, and so N as small as poly(2V'os Ax+dlogd A%d,éK,d)d. Let v
be the vector that we sample in Lfl. We have already seen that thanks to the
center ¢’ and by choice of M, it holds that |v|| < 3N (v)Y/?. Using this and the
fact that w := va~! € vL; = J, we obtain a vector w € J of norm

[wl < 2]v] < 6N ()" < 6- N (Ly) 7" N < 12 BYE N ()Y,

This concludes the proof of the second part of the theorem.]

C.2 Reducing average-case id-HSVP to average-case NTRU —
Proof of Theorem 4.9

We first observe that thanks to the lower bound on \/ﬁ/’y, we have N > (12al1'5 .
logd -k - A%@d))d, and so the distribution 25‘13,'“5“’ is well-defined.

On input an ideal I sampled from ﬁ}@'HSVP, the reduction proceeds as follows.
It defines I' = |(N/N(I))Y4] - I; it runs Algorithm 4.1 on (I,q) to obtain an
NTRU instance h € Ry; it calls the (D™, v,7', q)-NTRUye. algorithm A on h
to obtain a pair (f, g); and, finally, it outputs the element v := g/|(N/N(I))"4].
The reduction is indeed ppt (by Lemma 4.3) and makes a single call to the
NTRU;,. oracle. We are left to compute a lower bound on its success probability.

As I is distributed according to ﬁ}%’“svp and the definition of N in the
theorem is consistent with the one in Algorithm 4.2, the element h is exactly
distributed from DJ7*Y. Therefore, with probability Adv(.A), the pair (f, g) out-
put by A satisfies (f,g) # (0,0), g-h = fmod q and |f,[g] < /g/7'. Let us

53

show that for such a trapdoor, the reduction output an element v which is a
solution to Yhevp-id-HSVP for ideal I, which will complete the proof.
We have

NG g
, < — < \/E -y < ;
7110 9l < =5 Vi 40 AR (1)1

where we used the inequalities v -+’ - v/d > 1 and N (I")Y/4 < NV < \/g/(v -
' - 65 - AYCD) We can hence use Lemma 4.3 to conclude that g € I\{0},
which implies that v € I\{0}.

It finally remains to bound | g|. First, observe that thanks to our scaling, the
ideal I’ satisfies N'(I')d > N /2. We also have N/ > ﬁ/(?y'd1'5~6K~A%(2d)).
Combining everything, and using the definition of yhevp, We see that

Va

1
lgl < Y= = < YmevpVdAR - N(I')E. o

Vi
v “Yhsvp "}/4d5K

D Missing proofs from Section 5

D.1 Proof of Lemma 5.5

Lemma 5.5. Let (f,g) € R*\{(0,0)} and I = {f) + {g). Let c1,ca € o1(Kg)
(which is either R or C), so > 0 and s = \/dog - (| f]| + gl

Given t € o1(Kg), we define (t) € Kg as (t,0,...,0)T € Kg if o1 is a real
embedding and as (t//2,1/3/2,0,...,0)T € Kg if o1 is a complex embedding with
02 =01.

Let D be the output distribution of the following algorithm:

o sample co < Do, (Ky),s0,07
o sample v — DR,S#IJ(CO'Cl) and y < DR@#’(CO'CZ);
o returnz - f+y-gel.

Then it holds that D ~9-ow) Drs,0, where S is a diagonal matriz with

Su =3+ le101(f) + e201(9) 2 + 52 - (Jo1 (F)? + |or (9)]2)

S, — S11 if 01 is a complex embedding
22 s /|o2(f)2 + |o2(9)|2 if o1 is a real embedding
Sii = s |oi(N)P +oi(g)? for i=3.

In order to prove this lemma, we will use the two lemmas below, which are
very similar to [LSS14, Th. 5.1] and [Peil0, Th. 3.1], respectively.

Lemma D.1 (Adapted from [LSS14, Th. 5.1]). Let (f,g) € R*\{(0,0)} and
I={fY+{g). Let c1,co € Ky and s = \/dog - (| f| + |gll). Then

DR7s,cl . f + DR,S762 * g Ro-—0(d) DI,S,ca

where ¢ = ¢1 - f +c2-g € Kr and S is a diagonal matriz with S;; = s -

VIei(H)I? +loi(g)]2.

54

This lemma is very similar to [LSS14, Th. 5.1], except that it is stated for
arbitrary number fields, the ideal I needs not be principal and the elements x
and y may be sampled with a non-zero center. In order to prove the lemma, we
use the same approach as [L.SS14, Th. 5.1].

Proof. Let us define A = {(z,y)” € R?|xzf + yg = 0}, which is a rank-1 R-
module contained in R?. Via the canonical embedding, this can be viewed as
a d-dimensional lattice living in C??. The first step is to show that if s >
max(ny-aw (A), Ny—aw (R)), then Lemma D.1 holds; and the second step will
be to show that we indeed have s > max(ny-«w (A),Ny—ew (R)). For the first
step, the authors of [LSS14] used [AGHS13, Le. 10], which we will also need to
adapt to our setting.

Let us fix some z € I. To prove the desired upper bound on the statistical
distance, it suffices to show that:

Pr (Jc fH+y-g= z) € Drs.c(z)- [1 — 2= 0d) 14 2_‘0("1)] ,
z — D s,c
y‘*D§:s:c;

Let A, denote the shifted lattice A, = {(z,y)” € R?|zf + yg = z}. With
this notation, we have

Pr (ac fry-g= z) = Z DR s, () “ DR s,c (y)

z«— DR g ¢
»S,C1 P T
¥ < DR s.cy (z,y)TeA,

exp (_ WWM)
wrea, PsB—c1) ps(B—c2)
T _ T2
:n.<det(R))2. Z eXp(—ﬂ-H(x’y) (c1,e2)t)’

d 2
S S
(m)y)TEAz

for some n € [1 —27%(@ 1 + 2-2(d)], For the last equality, we used Lemma A.1
and the fact that s = 1750w (R).

Let us now define 7' = Span ., (A), which is an R-vector space of dimension d
contained in K3. Note that Spang, ((f,g)") is also a d-dimensional R-vector
space contained in K3 (because K is stable by complex conjugation, as opposed
to K which may not be), and that it is orthogonal to T, where orthogonality is
with respect to the Hermitian inner product over K2. Since K2 has dimension 2d
over R, we conclude that K2 = T@, SpanKR((f, 9)T). In other words, given any
vector (u,v)T € K3, there exists o € Kg and (u/,v')T € T such that (u,v) =
a(f,g) + (', v"). Moreover, we know that a = (fu + gv)/(ff + gg)-

Let us fix some (x,y)T € A,. We know that
2 2

+ H(ﬂﬁo, yo)TH)

2 _|(fz+gy) —(far+9) 7 7
(@) = fene | = | —Ueto) ;g
H | ey
for some (9,90)” € T. By definitions of S and ¢, and using the fact that (z,y)? €
A, the first term is exactly s? - [S7!(z — ¢)|?. Observe also that when (z,y)T

95

varies in A, then the second term varies in (zo, o) + A. Hence, we obtain that

Z exp (- [, 9)" = (e, CQ)THQ)

2
S
(z,y)TeA,

= exp(—m - [S7(z = 0)*) - ps(A + (20, %0)")

Sd

det(A)’

=m-ps(z—c)-

for some 7, € [1 — 272D 14+ 2-2@], For the last equality, we used Lemma, A.1
and the fact that s = 75-0w (A).
Combining everything, we obtain that

(det(R))*

Csddet(A) ps(z =).

@ — DR g
Y DR s,co

Since the term (det(R))?/(s%-det(A)) is independent from 2, we conclude that the
probability that = f+yg = z is within a factor 1+2~ (4 from pg(z—c)/ps(I—c) =
Dy s.c(z), as desired.

It remains to show that the lower bound on s implies that s = max(ny-ew (A),
Ng-aw (R)). We know thanks to Equation (2.1) that for some ¢ = 27(4) it holds
that n.(A) < Vd\g(A) and n.(R) < Vd\g(R). Regarding R, we know that
Ad(R) < k| f| since f € R, and so we indeed have s = 7.(R). Regarding A, we
know that all the vectors r; - (—g, f)T are in A and are linearly independent (re-
call that the r;’s form a basis of R), hence we have that A\g(A4) < dx - (|f]+9g]).
and the lower bound on s implies that s > n.(A) as well. o

Lemma D.2. Let I ¢ Kg be a lattice of dimension d and o € o1(Kg). Let so >
0 and S € GL4(R) be a diagonal matriz with positive diagonal coefficients (S};);
such that Sy = Sj; if 0y = 0 forms a pair of conjugate complex embeddings.
Assume that 1 = 1.(S™I) for some e = 22D Let ¢ : 01(Kg) — Kg be as
defined in Lemma 5.5. Let D be the output distribution of the following algorithm:

o sample co < Do, (Ky),s0,07
o return z < D1 g y(co-a)-

Then it holds that D ~y-aw Drg/ o, where S is a diagonal matriz with the
following positive diagonal coefficients

= A/ ST + sgla?

Sho = S11 if o1 is a complexr embedding
Sho = Soo if o1 is a real embedding
S;z =S5 for = 3.

This result is very close to an instantiation of [Peil0, Th. 3.1], except that we
want to sample ¢g in a space of dimension smaller than d (equivalently, we could

56

sample cg in Kg with covariance matrix so-+/% () - ¥(a@)” but this matrix is not
invertible, and [Peil0, Th. 3.1] requires the covariance matrices to be invertible).
We hence prove the result for this specific setting. The proof follows the same
steps as the one of [Peil0, Th. 3.1].

Proof. For the proof, we assume that o is a complex embedding and that oo =
1. The case of a real embedding is very similar, except that we only have one
coordinate to handle (and no scaling factor 1/4/2). Let us fix some z € 1. We
have

Pr(D =z2) = Drs,p(co-0)(2) - De,s0,0(co)dco

coeC
~ n-det(ST)
=7

| e (=187 = vteo)P + sy o)) deo,
coeC

for some 7 € [1 —2-%(d) 1 +2_Q(d)]. For the second equality, we used Lemma A.1
and the fact that 7.(S~'I) < 1 for some ¢ = 2-%(4),
Let us focus on the term |S™!(z — 9(co -))|?. This is equal to

25701 (2) — coa/ V2P +) 8oy (=),

j=3

where we used the fact that S1; = Seo and that o1(2z) = 02(2) since we are in
the complex embedding case. By term rearrangement, we have:

291 |o1(2) — coc/ V2P + |55 ol
—1 _
=2(1/S% +1s0-al?) o1 ()] + 577 - |eo — e,

for 1 = 1/ 552 + 51_12\042 > 0 that depends only on «, sy and Si; and ¢; =

V2528 %|01(2)a| € C that does not depend on c. Using the fact that 2|o (2)|?
|o1(2)]2 + |o2(2)|? and that S1; = Saa, we finally see that

IS7H(= = w(co -)| + Isg eol* = [(8") 12| + 572 - feo — e[

Going back, we obtain that

~det(S1I _ —
D) = L9 oy (— () 212) | e (= ms e) deo
SO coeC
n-det(S71I) _
=g e (e),

where we used the fact that ¢; does not depend on ¢q for the last equality. Since
s1 does not depend on z, we finally see that D(z) is within a factor 1 + 2~?(<)
from ps/(z) (up to a uniform normalization factor), which proves that D ~5 a(a
Dy g0 as desired. |

o7

Proof (Proof of Lemma 5.5). Let z be the random variable x f + yg produced by
the algorithm. Since s > v/ddg - (| f| + |g|), we can apply Lemma D.1 and we
know that the conditional distribution of z once ¢y has been fixed is statistically
close to Dr g ., where

¢ = f(eoer) + g bleocz) = ¥ (co - (101(f) + e201(9)))

and S is a diagonal matrix with positive diagonal coefficients equal to S;; =
Vo (DI + [o:(9)P.

We now want to apply Lemma D.2 with a = c101(f) + c201(g) € o1(KR).
For this, we need to check that the assumption 1 > 7,-ew (S71I) is satisfied.
From Equation (2.1) we know that 7y—ew (S7') < v/d - A\g(S™1I). We also
know that the S_lrj f’s are linearly independent vectors of S™!I, which all have
norms < &x - v/d/s. Combining both, we obtain that n,-cw (S™'I) < 6 - d/s.
Recall that by assumption, we have s = v/ddx - (| f|| + |g]), hence it suffices to
prove that (|f| + |g|) = v/d. This is indeed the case, since (f,g) € R?\(0,0)
and any non-zero element z € R satisfies || = v/d - N'(z)"/? > +/d (the first
inequality follows from the inequality of arithmetic and geometric means applied
to the |oy(z)[?’s). We conclude that 1 > ny—ow (S71I) as required. Applying
Lemma D.2 completes the proof.]

D.2 Proof of Theorem 5.4

Let h € Ry be B-well-behaved. We start by bounding size(hx) from above. We
know that hx = f/g € K for some |f|,|g] < B and f,g € R. This implies
that hi - N(g) € R, and since N (g) € Z, we see that size(hx) < dlog|N(g)| +
size(hr - N'(g)). Since |g| < B, we know that |N(g)] < B?. Further, as the
basis (rq,...,74) of R is LLL-reduced, for any r € R, it holds that size(r) =
poly(d,log |r|). Combining everything, we obtain that size(hy) = poly(d,log B).

Using Lemma 2.5, we know that there exists some ¢y = poly(log B, d,log ik,
log |®|) such that given 0:(\h_[;) e C with |cr:(\h;) —o1(hg)| < 27%, one can
recover hi as a rational linear combination of the r;’s in time poly({y) (note
that this choice of £y works for any h that is B-well-behaved).

Let us now describe an algorithm for solving (D?,, ¢)-NTRUy,0q4. On input
some h <« D¢, the algorithm runs Algorithm B from Lemma 5.7 with ¢ = £y, in

order to recover some o1 (hg). Then, the algorithm uses Lemma 2.5 on o (hg)
to recover hx exactly.

Combining Lemmas 5.7 and 2.5, one can see that this NTRU,q solver
succeeds with probability > 1 — 27%(@ as long as h € H (where H is as de-
fined in Lemma 5.6). We also know from Lemma 5.6 that Prpps=(h € H) >
Adv(A)/2—e¢. Hence, we conclude that the NTRUyoq solver succeeds with prob-
ability > (Adv(A)/2 —¢)/2. The run-time of the algorithm follows by observing
that B = poly(q,d) since one can always reduce f and g modulo ¢. Finally,
the values of v and +' come from the remark after Definition 5.1 and from

Lemma 5.3. O

o8

	On the hardness of the NTRU problem
	Introduction
	Preliminaries
	Euclidean lattices
	Discrete Gaussian distributions
	Number fields
	Ideals and Modules
	Oracle Hidden Center Problem

	Different variants of the NTRU problem
	NTRU instances
	Decision NTRU problem
	Search NTRU problems
	Elementary relations between the different NTRU problems

	Reduction from ideal-HSVP to NTRU vector
	Transforming an ideal lattice into an NTRU module
	From worst-case id-HSVP to average-case id-HSVP
	An average-case distribution of NTRU instances
	From average-case id-HSVP to average-case NTRU

	A search to decision reduction for NTRU
	Choice of the distributions
	Creating new NTRU instances
	Using the OHCP framework

	Additional preliminaries and missing proofs from Section 2
	Additional preliminaries for the appendices
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of Lemma 2.5
	Proof of Proposition 2.10

	Missing proofs from Section 3
	Reducing NTRUvec to NTRUmod– Proof of Lemma 3.8
	Reducing dNTRU to NTRUmod– Proof of Lemma 3.9

	Missing proofs from Section 4
	Reducing worst-case to average-case id-HSVP – Proof of Theorem 4.4
	Reducing average-case id-HSVP to average-case NTRU – Proof of Theorem 4.9

	Missing proofs from Section 5
	Proof of Lemma 5.5
	Proof of Theorem 5.4

