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Abstract

We formally introduce, define, and construct memory-hard puzzles. Intuitively, for a difficulty param-
eter t, a cryptographic puzzle is memory-hard if any parallel random access machine (PRAM) algorithm
with “small” cumulative memory complexity (≪ t2) cannot solve the puzzle; moreover, such puzzles
should be both “easy” to generate and be solvable by a sequential RAM algorithm running in time t.
Our definitions and constructions of memory-hard puzzles are in the standard model, assuming the exis-
tence of indistinguishability obfuscation (iO) and one-way functions (OWFs), and additionally assuming
the existence of a memory-hard language. Intuitively, a language is memory-hard if it is undecidable by
any PRAM algorithm with “small” cumulative memory complexity, while a sequential RAM algorithm
running in time t can decide the language. Our definitions and constructions of memory-hard objects are
the first such definitions and constructions in the standard model without relying on idealized assump-
tions (such as random oracles).

We give two applications which highlight the utility of memory-hard puzzles. For our first application,
we give a construction of a (one-time) memory-hard function (MHF) in the standard model, using
memory-hard puzzles and additionally assuming iO and OWFs. For our second application, we show any
cryptographic puzzle (e.g., memory-hard, time-lock) can be used to construct resource-bounded locally
decodable codes (LDCs) in the standard model, answering an open question of Blocki, Kulkarni, and Zhou
(ITC 2020). Resource-bounded LDCs achieve better rate and locality than their classical counterparts
under the assumption that the adversarial channel is resource bounded (e.g., a low-depth circuit). Prior
constructions of MHFs and resource-bounded LDCs required idealized primitives like random oracles.

1 Introduction

Memory-hardness is an important notion in the field of cryptography that is used to design egalitarian proofs
of work and to protect low entropy secrets (e.g., passwords) against brute-force attacks. Over the last decade,
there has been a rich line of both theoretical and applied work in constructing and analyzing memory-hard
functions [FLW14,AS15,BDK16,AB16,ABP17,ACP+17,AT17,BZ17,ABH17,ABP18,BHK+19,CT19]. Ide-
ally, one wants to prove that any algorithm evaluating the function (possibly on multiple distinct inputs)
has high cumulative memory complexity (cmc) [AS15] (asymptotically equivalent to the notions of (amor-
tized) Space-Time complexity and (amortized) Area-Time complexity in idealized models of computation
[ABP17]). Intuitively, the cmc of an algorithm Af evaluating a function f on input x (denoted by cmc(Af , x))
is the summation of the amount of memory used by Af during every step of the computation, and the cmc
of Af for inputs of size λ (denoted by cmc(Af , λ)) is the maximum of cmc(Af , x) over all x of length λ.
Currently, security proofs for memory-hard objects rely on idealized assumptions such as the existence of
random oracles [AS15,ACP+17,AT17,ABP18] or other ideal objects such as ideal ciphers or permutations
[CT19]. Informally, a function f is memory-hard if there is a sequential algorithm computing f in time t,
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but any parallel algorithm computing f (possibly on multiple distinct inputs) has high cmc, e.g., t2−ε for
small constant ε > 0. An important open question is to construct provably secure memory-hard objects in
the standard model.

In this work, we focus specifically on memory-hard puzzles. Cryptographic puzzles are cryptographic
primitives that have two desirable properties: (1) for a target solution s, it should be “easy” to generate
a puzzle Z with solution s; and (2) solving the puzzle Z to obtain solution s should be “difficult” for any
algorithm A with “insufficient resources”. Such puzzles have seen a wide range of applications, including
using in cryptocurrency, handling junk mail, and constructing time-released encryption schemes [DN93,
RSW96, JJ99, Nak]. For example, the well-known and studied notion of time-lock puzzles [RSW96, BN00,
GMPY11, MMV11, BGJ+16, MT19] requires that for difficulty parameter t and security parameter λ, a
sequential (i.e., non-parallel) machine can generate a puzzle in time poly(λ, log(t)) and solve the puzzle in
time t · poly(λ), but requires that any parallel algorithm running in sequential time significantly less than
t (i.e., any polynomial size circuit of depth smaller than t) cannot solve the puzzle, except with negligible
probability (in the security parameter). In the context of memory-hard puzzles, we want to ensure that
the puzzles are easy to generate, but that any algorithm solving the puzzle has high cmc. More concretely,
we require that the puzzles can be generated (resp., solved) in time poly(λ, log(t)) (resp., t · poly(λ)) on a
sequential machine while any algorithm solving the puzzle has cmc at least t2−ε for small constant ε > 0.
We remark that any sequential machine solving the puzzle in time at most t · poly(λ) will have cmc at most
t2 · poly(λ) so a lower bound of t2−ε for the cmc of our puzzles would be nearly tight.

In this work, we ask the following questions:

Is it possible to construct memory-hard puzzles under standard cryptographic assumptions? If yes, what
applications of memory-hard puzzles can we find?

1.1 Our Results

We formally introduce and define the notion of memory-hard puzzles. Inspired by time-lock puzzles and
memory-hard functions, we define memory-hard puzzles without idealized assumptions. Intuitively, we say
that a cryptographic puzzle is memory-hard if any parallel random access machine (PRAM) algorithm with
“small” cmc cannot solve the puzzles. This is in contrast with time-lock puzzles which require that any
algorithm running in “small” sequential time (i.e., any low-depth circuit) cannot solve the puzzle. For
both memory-hard and time-lock puzzles, the puzzles should be “easy” to generate; i.e., in sequential time
poly(λ, log(t)).

Similar to the time-lock puzzle construction of Bitansky et al. [BGJ+16], we construct memory-hard
puzzles assuming the existence of a suitable succinct randomized encoding scheme [IK00,AIK04,BGL+15,
BGJ+16,LPST16,App17,GS18], and the additional assumption that there exists a language which is “suit-
ably” memory-hard. Towards this end, we formally introduce and define memory-hard languages: such
languages, informally, require that (1) the language is decidable by a family of uniformly succinct circuits
(see Definitions 3.1 and 3.3)—succinct circuits which are computable by a uniform algorithm—of appropriate
size; and (2) any PRAM algorithm deciding the language must have “large” cmc. We discuss the technical
ideas behind our construction in Section 2.2 and present its memory-hardness in Theorems 2.7 and 2.8.

We stress that our construction does not rely on an explicit instance of a memory-hard language: the
existence of such a language suffices to prove memory-hardness of the constructed puzzle, mirroring the
construction of [BGJ+16]. We use succinct randomized encoding scheme of Garg and Srinivasan [GS18],
which is instantiated from indistinguishability obfuscation (iO) for circuits and somewhere statistically
binding hash functions [HW15, KLW15, OPWW15].1 We remark that our constructions are primarily of
theoretical interest, as known constructions of randomized encodings rely on expensive primitives such as iO
[BGI+01,GGH+13,KLW15,LM18,BIJ+20,AP20,BDGM20,JLS21]. We make no claims about the practical
efficiency of our constructions.

1Such hash functions generate a hashing key that statistically binds the i-th input bit. For example, a hash output y may
have many different preimages, but all preimages have the same i-th bit. Construction of such hash functions exist under
standard cryptographic assumptions such as DDH and LWE, among others [OPWW15].
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It is important to note that even if we defined memory-hard puzzles in an idealized model (e.g., the random
oracle model), memory-hard functions do not directly yield memory-hard puzzles. Cryptographic puzzles
stipulate that for parameters t and λ the puzzle generation algorithm needs to run in time poly(λ, log(t)).
However, using a memory-hard function to generate a cryptographic puzzle would require the generation
algorithm to compute the memory-hard function, which would yield a generation algorithm running in time
(roughly) proportional to t · poly(λ).

1.1.1 Application 1: Memory-Hard Functions.

We demonstrate the power of memory-hard puzzles via two applications. For our first application, we
use memory-hard puzzles to construct a (one-time secure) memory-hard function (MHF) in the standard
model. As part of this construction, we formally define (one-time) memory-hard functions in the standard
model, without idealized primitives; see Definitions 5.1 and 5.2. We emphasize that all prior constructions
of memory-hard functions rely on idealized primitives such as random oracles [FLW14,AS15,BDK16,AB16,
ABP17,ACP+17,AT17,BZ17,ABH17,ABP18,BHK+19] or ideal ciphers and permutations [CT19]. In fact,
prior definitions of memory-hardness were with respect to an idealized model such as the parallel random
oracle model, e.g., [AS15].

Recall that a function f is memory-hard if it can be computed by a sequential machine in time t (and
thus uses space at most t), but any PRAM algorithm evaluating f (possibly on multiple distinct inputs)
has large cumulative memory complexity (cmc); e.g., at least t2−ε for small constant ε > 0. One-time
security stipulates that for any input x, any attacker with low cmc cannot distinguish between (x, f(x))
and (x, r) with non-negligible advantage when r is a uniformly random bit string.2 Assuming the existence
of indistinguishability obfuscation, puncturable pseudo-random functions, and memory-hard puzzles, we
give a construction of one-time secure memory-hard functions. We discuss the technical ideas of our MHF
construction in Section 2.3 and present its memory-hardness in Theorem 2.9.

We stress that, to the best of our knowledge, this is the first construction of a memory-hard function under
standard cryptographic assumptions and the additional assumption that a memory-hard puzzle exists. Given
our construction of a memory-hard puzzle, we construct memory-hard functions from standard cryptographic
assumptions additionally assuming the existence of a memory-hard language. As stated previously, all prior
constructions of memory-hard functions were proven secure under idealized assumptions, such as the random
oracle model or ideal cipher and permutation models.

We also conjecture that our scheme is multi-time secure as well: if an attacker with low cmc, say some g,
cannot distinguish between (x, f(x)) and (x, r) for uniformly random bit string r, then an attacker with cmc
at mostm·g cannot distinguish between (xi, f(xi)) and (xi, ri) form distinct inputs x1, . . . , xm and uniformly
random strings r1, . . . , rm. However, we are unable to formally prove this due to some technical barriers in
the security proof. At a high level, this is due to the fact that allowing the attacker to have higher cmc (e.g.,
m · g) eventually leads to an attacker with large enough cmc to simply solve the underlying memory-hard
puzzle that is used in the MHF construction, thus allowing the adversary to distinguish instances of the
MHF instance. See Section 2.1 for discussion.

1.1.2 Application 2: LDCs for Resource-Bounded Channels.

We use cryptographic puzzles to construct efficient locally decodable codes for resource-bounded channels
[BKZ20]. A (ℓ, δ, p)-locally decodable code (LDC) C[K, k] over some alphabet Σ is an error-correcting

code with encoding function Enc : Σk → {0, 1}K and probabilistic decoding function Dec : {1, . . . , k} → Σ
satisfying the following properties. For any message x, the decoder, when given oracle access to some ỹ
such that ∆(ỹ,Enc(x)) ⩽ δK, makes at most ℓ queries to its oracle and outputs xi with probability at least
p, where ∆ is the Hamming distance. The rate of the code is k/K, the locality of the code is ℓ, the error
tolerance is δ, and the success probability is p. Classically (i.e., the adversarial channel introducing errors

2Our one-time security definition differs from those in prior literature (e.g., [AS15,ACP+17]), and is, in fact, stronger. See
Section 2.3 for discussion.
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is computationally unbounded), there is an undesirable trade-off between the rate k/K and locality, e.g., if
ℓ = polylog(k) then K ≫ k.

Modeling the adversarial channel as computationally unbounded may be overly pessimistic. Moreover,
it has been argued that any real world communication channel can be reasonably modeled as a resource-
bounded channel [Lip94,BKZ20]. A resource-bounded channel is an adversarial channel that is assumed to
have some constrained resource (e.g., the channel is a low-depth circuit), and a resource-bounded LDC is a
LDC that is resilient to errors introduced by some class of resource-bounded channels C. Arguably, error
patterns (even random ones) encountered in nature can be modeled by some (not necessarily known) resource-
bounded algorithm which simulates the same error pattern, and thus these channels are well-motivated by
real world channels. For example, sending a message from Earth to Mars takes between (roughly) 3 and
22 minutes when traveling at the speed of light; this limits the depth of any computation that could be
completed before the (corrupted) codeword is delivered. Furthermore, examining LDCs resilient against
several resource-bounded channels has led to better trade-offs between the rate and locality than their
classical counterparts [Lip94, MPSW05, BGH+06, GS16, SS16, BGGZ19]. Recently, Blocki, Kulkarni, and
Zhou [BKZ20] constructed LDCs for resource-bounded channels with locality ℓ = polylog(k) and constant
rate k/K = Θ(1), but their construction relies on random oracles.

We use cryptographic puzzles to modify the construction of [BKZ20] to obtain resource-bounded LDCs
without random oracles. Given any cryptographic puzzle that is secure against some class of adversaries
C, we construct a locally decodable code for Hamming errors that is secure against the class C, resolving
an open problem of Blocki, Kulkarni, and Zhou [BKZ20]. We discuss our LDC construction in Section 2.4
and present its memory-hardness in Theorem 6.8. We can instantiate our LDC with any (concretely secure)
cryptographic puzzle. In particular, the time-lock puzzles of Bitansky et al. [BGJ+16] directly give us LDCs
secure against small-depth channels, and our memory-hard puzzle construction gives us LDCs secure against
any channel with low cmc. Our LDC construction for resource bounded Hamming channels can be extended
to resource-bounded insertion-deletion channels by leveraging recent “Hamming-to-InsDel” LDC compilers
[OPC15,BBG+20,BB21]. See discussion in Section 2.4 and Corollaries 2.10 and 2.11.

1.1.3 Challenges in Defining Memory-Hardness.

Defining the correct machine model and cost metric for memory-hard puzzles is surprisingly difficult. As
PRAM algorithms and cmc are used extensively in the study of MHFs, it is natural to use the same machine
model and cost metric. However, cmc introduces subtleties in the analysis of our memory-hard puzzle
construction: like [BGJ+16], we rely on parallel amplification in order to construct an adversary which
breaks our memory-hard language assumption. While parallel amplification does not significantly increase
the depth of a computation (which is the metric used by [BGJ+16]), any amplification directly increases
the cmc of an algorithm by a multiplicative factor proportional to the number of amplification procedures
performed. This requires careful consideration in our security reductions.

One may also attempt to define memory-hard languages as languages with cmc at least t2−ε, for small
constant ε > 0, that are also decidable by single-tape Turing machines (à la [BGJ+16]) in time t, rather than
by uniformly succinct circuit families. However, we demonstrate a major hurdle towards this definition. In
particular, we show that any single-tape Turing machine running in time t can be simulated by any PRAM
algorithm with cmc O(t1.8 · log(t)); see Section 2.1 for discussion and Theorem 2.4 for our formal theorem.
Taking this approach, we could not hope obtain memory hard puzzles with cmc at least t2−ε for small ε as
we can rule out the existence of memory-hard languages with cmc≫ t1.8. To contrast, under our uniformly
succinct definition, we can provide a concrete candidate language with cmc plausibly as high as t2−ε such
that the language is also decidable by a uniformly succinct circuit family of size Õ(t).3 Furthermore, we
show that our definition is essentially minimal, i.e., we can use memory-hard puzzles to construct memory-
hard languages under the modest assumption that the puzzle solving algorithm is uniformly succinct; see
discussion in Section 2.1 and Proposition 2.3.

3In fact, one can provably show that the cmc is t2−ε in the random oracle model.
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1.2 Prior Work

Cryptographic puzzles are functions which require some specified amount of resources (e.g., time or space)
to compute. Time-lock puzzles, introduced by Rivest, Shamir, and Wagner [RSW96] extending the study
of timed-released cryptography of May [May], are puzzles which require large sequential time to solve:
any circuit solving the puzzle has large depth. [RSW96] proposed a candidate time-lock puzzle based
on the conjectured sequential hardness of exponentiation in RSA groups, and the proposed schemes of
[BN00,GMPY11] are variants of this scheme. Mahmoody, Moran, and Vadhan [MMV11] give a construction
of weak time-lock puzzles in the random oracle model, where “weak” says that both a puzzle generator and
puzzle solver require (roughly) the same amount of computation, whereas the standard definition of puzzles
requires the puzzle generation algorithm to be much more efficient than the solving algorithm. Closer
to our work, Bitansky et al. [BGJ+16] construct time-lock puzzles using succinct randomized encodings,
which can be instantiated from one-way functions, indistinguishability obfuscation, and other assumptions
[GS18]. Recently, Malavolta and Thyagarajan [MT19] introduce and construct homomorphic time-lock
puzzles: puzzles where one can compute functions over puzzle solutions without solving them. Continued
exploration of indistinguishability obfuscation has pushed it closer and closer to being instantiated from
well-founded cryptographic assumptions such as learning with errors [JLS21].

Memory-hard functions (MHFs), introduced by Percival [Per09], have enjoyed rich lines of both theoretical
and applied research in construction and analysis of these functions [CT19,AS15,AT17,BDK16,FLW14,AB16,
ABP17,ABP18,ACP+17,BZ17,ABH17,BHK+19]. The security proofs of all prior MHF candidates rely on
idealized assumptions (e.g., random oracles [AS15, ACP+17, AT17,ABP18, BRZ18]) or other ideal objects
(e.g., ideal ciphers or permutations [CT19]). The notion of data-independent MHFs—MHFs where the data-
access pattern of computing the function, say, via a RAM program, is independent of the input—has also been
widely explored. Data-independent MHFs are attractive as they provide natural resistance to side-channel
attacks. However, building data-independent memory-hard functions (iMHFs) comes at a cost: any iMHF
has amortized space-time complexity at most O(N2 ·loglog(N)/ log(N)) [AB16], while data-dependent MHFs
were proved to have maximal complexity Ω(N2) in the parallel random oracle model [ACP+17] (here, N is
the run time of the honest sequential evaluation algorithm). Recently, Ameri, Blocki, and Zhou [ABZ20]
introduced the notion of computationally data-independent memory-hard functions: MHFs which appear
data-independent to a computationally bounded adversaries. This relaxation of data-independence allowed
[ABZ20] to circumvent known barriers in the construction of data-independent MHFs as long as certain
assumptions on the tiered memory architecture (RAM/cache) hold.

LDC constructions, like all code constructions, generally follow one of two channel models: the Hamming
channel where worst-case bit-flip error patterns are introduced, and the Shannon channel where symbols
are corrupted by an independent probabilistic process. Probabilistic channels may be too weak to capture
natural phenomenon, while Hamming channels often limit achievable code constructions. For the Hamming
channel, the channel is assumed to have unbounded power. Protecting against unbounded errors is desirable
but often has undesirable trade-offs. For example, current constructions of LDCs with efficient (i.e., poly-
time) encodings an obtain any constant rate R < 1, are robust to δ < (1 − R)-fraction of errors, but have

query complexity 2O(
√
logn log logn) for codeword length n [KMRS17]. If one instead focuses on obtaining

low query complexity, one can obtain schemes with codewords of length sub-exponential in the message size
while using a constant number q ⩾ 3 queries [Yek08,DGY11,Efr12]. These undesirable trade-offs have lead
to a long line of work examining LDCs (and codes in general) with relaxed assumptions [Lip94,MPSW05,
BGH+06,GS16,SS16,BGGZ19]. Two relaxations closely related to our work are due to Ostrovsky, Pandey,
and Sahai [OPS07] and Blocki, Kulkarni, and Zhou [BKZ20]. [OPS07] introduce and construct private
Hamming LDCs: locally decodable codes in the secret key setting, where the encoder and decoder share a
secret key that is unknown to the (unbounded) channel. [BKZ20] analyze Hamming LDCs in the context of
resource-bounded channels. The LDC construction of [BKZ20] bootstraps off of the private Hamming LDC
construction of [OPS07], obtaining Hamming LDCs in the random oracle model assuming the existence of
functions which are uncomputable by the channel.

While Hamming LDCs have enjoyed decades of research [KT00,STV99,DGY10,Efr09,KW03,KMRZS17,
KS16, Yek08, Yek12], the study of insertion-deletion LDCs (or InsDel LDCs) remains scarce. An InsDel
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LDC is a LDC that is resilient to adversarial insertion-deletion errors. In the non-LDC setting, there has
been a rich line of research into insertion-deletion codes [Lev66,KLM04,GW17,HS17,GL19,GL18,HSS18,
HS18, BGZ18, CJLW18, CHL+19, CJLW19, HRS19, Hae19, SB19, CGHL20, CL20, GHS20, LTX20], and only
recently have efficient InsDel codes with asymptotically good information rate and error tolerance been well-
understood [HS18,Hae19,HRS19,GHS20, LTX20]. Ostrovsky and Paskin-Cherniavsky [OPC15] and Block
et al. [BBG+20] give a compiler which transforms any Hamming LDC into an InsDel LDC with a poly-
logarithmic blow-up in the locality. Block and Blocki [BB21] extend the compiler of [BBG+20] to the private
and resource-bounded settings. Recently, Blocki et al. [BCG+21] give lower bounds for InsDel LDCs with
constant locality: they show that (1) any 2-query InsDel LDC must have exponential rate; (2) 2-query linear
InsDel LDCs do not exist; and (3) for any constant q ⩾ 3, a q-query InsDel LDC must have rate that is
exponential in existing lower bounds for Hamming LDCs.

2 Technical Overview

Our construction of memory-hard puzzles relies on two key technical ingredients. First we require the
existence of a language L ⊆ {0, 1}∗ that is suitably memory-hard. Given such a language, we additionally
require succinct randomized encodings [BGL+15,LPST16,GS18] for succinct circuits. With these two objects,
we construct memory-hard puzzles. Both of our memory-hard objects are defined with respect to parallel
random access machine (PRAM) algorithms and cumulative memory complexity (cmc). We say that an
algorithm A is a PRAM algorithm if during each time-step of the computation, the algorithm has an internal
state and can read from multiple positions from memory, perform a computation, then write to multiple
positions in memory. Recall that cmc(A, x) is the summation of the memory used by A(x) during every time
step of the computation, and cmc(A, λ) = maxx : |x|=λ cmc(A, x). Moreover, for a function y, we say that
cmc(A) < y if cmc(A, λ) < y(λ) for all λ ∈ N; see Section 3.1 for more discussion on PRAM algorithms and
cmc.

We discuss the key ideas and present our main results in the remainder of this section. Section 2.1
presents our formal definition of memory-hard languages and a discussion on the plausibility and necessity
of this assumption. Section 2.2 presents our formal definition of memory-hard puzzles and presents an
overview of our construction assuming the existence of a memory-hard language and a succinct randomized
encoding scheme. Section 2.3 presents an overview of our construction of a (one-time secure) memory-hard
functions assuming the existence of indistinguishability obfuscation, one-way functions, and memory-hard
puzzles. Finally, Section 2.4 presents our construction of resource-bounded locally decodable codes from any
cryptographic puzzle.

2.1 Memory-Hard Languages

Our definition of memory-hard languages is inspired by the notion of non-parallelizing languages,4 which
are required by Bitansky et al. [BGJ+16] to construct time-lock puzzles (also using succinct randomized
encodings). We define our memory-hard languages with respect to a language class SCt.

Definition 2.1 (Language Class SCt). Let t be a positive function. We define SCt as the class of languages
L decidable by a uniformly succinct circuit family {Ct,λ}λ (as per Definition 3.3) such that there exists a
polynomial p satisfying |Ct,λ| ⩽ t · p(λ, log(t)) for every λ and t := t(λ).

The above definition uses the notion of uniformly succinct circuits. Informally, a circuit family {Ct,λ}λ∈N is
uniformly succinct if there exists a smaller circuit family {C ′t,λ}λ∈N such that for every t ∈ N:

1. |C ′t,λ| = polylog(|Ct,λ|);

2. on input gate number g of Ct,λ the circuit C ′t,λ(g) outputs the indices of the input gates of g and the
function fg computed by gate g; and

4Informally, a language is non-parallelizing if any polynomial sized circuit deciding the language has large depth.
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3. there exists a sequential algorithm running in time poly(|C ′t,λ|) that outputs the description of the
succinct circuit C ′t,λ for every λ.

See Definitions 3.1 and 3.3 for the formal definitions.
Given Definition 2.1, we define memory-hard languages. Intuitively, a language L ∈ SCt is memory-hard

if any (PRAM) algorithm B that ε-decides L must have large cmc.5

Definition 2.2 ((g, ε)-Memory Hard Language). Let t be a positive function. A language L ∈ SCt is a
(g, ε)-memory hard language if for every PRAM algorithm B with cmc(B, λ) < g(t(λ), λ), the algorithm B
does not ε(λ)-decide Lλ for every λ. If ε(λ) = negl(λ), we say L is a g-strong memory-hard language. If
ε(λ) ∈ (0, 1/2) is a constant, we say L is a (g, ε)-weakly memory-hard.

Note that one may define a weak memory-hard language with respect to ε(λ) = 1/ poly(λ); however, this
turns out to be essentially equivalent to ε(λ) ∈ (0, 1/2). See Remark 4.2 for a discussion. Moreover, our
definition of memory-hard languages is essentially minimal, as one can construct memory-hard languages
from memory-hard puzzles under the modest assumption that the puzzle solving algorithm is uniformly
succinct. We prove the following proposition in Section 4.2.

Proposition 2.3. Let Puz = (Puz.Gen,Puz.Sol) be a (g, ε)-memory hard puzzle such that Puz.Sol is com-
putable by a uniformly succinct circuit family {Ct,λ}t,λ of size |Ct,λ| ⩽ t · poly(λ, log(t)) for every λ and
difficulty parameter t := t(λ). For language LPuz := {(Z, s) : s = Puz.Sol(Z)}, we have that LPuz ∈ SCt and
is a (g, ε)-memory hard language.

Plausibility of Memory-Hard Languages. We complement our definition of memory-hard languages
by providing a concrete construction of a candidate memory-hard language. We define a language Lλ =
L∩{0, 1}λ that is decidable by a uniformly succinct circuit Ct,λ of size t2 ·polylog(t). Our language relies on a
hash function H, and under the idealized assumption that H is a random oracle, Lλ is provably memory-hard
with cumulative memory complexity at least t2/ log(t).

Key to defining Lλ is a recent explicit construction of a depth-robust graph due to Blocki, Cinkoske,
Lee, and Son [BCLS21]. Depth-robustness is a combinatorial property which is sufficient for constructing
memory-hard functions in the parallel random oracle model [ABP17]. Crucially, this graph is explicit and
deterministic, and can be fully encoded by a uniformly succinct circuit. We remark that other randomized
constructions of depth-robust graphs such the one used in the DRSample memory-hard function [ABH17]
cannot be used to construct memory-hard languages as the graphs are not uniformly succinct. See Section 7
for more discussion.

We acknowledge that we only know how to prove our candidate language is memory-hard in the random
oracle model or other idealized models of computation, which we are trying to avoid in our memory-hard
puzzle construction. However, our construction only relies on the existence of a memory-hard language to
prove security, and our goal is simply to establish a plausible candidate for such a language. In particular, we
conjecture that our defined language will remain memory-hard when the random oracle is instantiated with
a concrete cryptographic hash function such as SHA3. Proving that the conjecture holds in the standard
model, however, would require major advances in the difficult field of complexity theory and circuit lower
bounds. Moreover, assuming that all of our cryptographic assumptions hold, a concrete attack against our
memory-hard puzzle construction would directly show that memory-hard languages do not exist, which is
presumably a difficult problem in complexity theory.

PRAM Algorithms versus Turing Machines. One might try to define memory-hard languages to
require they be decidable by a single-tape Turing machine rather than a PRAM algorithm. However, we
show that if we require our memory-hard language to be decidable by a single-tape Turing machine in time
t = t(λ), then the language is only secure against PRAM algorithms with cmc less than Õ(t1.8). We show this

5Informally, a probabilistic algorithm ε-decides a language L if it decides the language with advantage at least ε; see
Section 3.3 for formal details.
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by proving that any single-tape Turing machine running in time t = t(λ) for λ-bit inputs can be simulated
by a PRAM algorithm in time O(t) using with space at most O(t0.8 · log(t)). As cmc is upper bounded by
the maximum space of a computation times the maximum time of a computation, this implies that cmc is
at most O(t1.8 · log(t)). We prove the following theorem in Section 8.

Theorem 2.4. For any language L decidable in time t(n) by a single-tape Turing machine for inputs of
size n, there exists a constant c > 0 such that L is decidable by a PRAM algorithm with cmc at most
c · t(n)1.8 · log(t(n)).

It is an interesting open question if such a reduction holds for multi-tape Turing machines; in particular,
showing such a reduction for two-tape Turing machines would only strengthen our definition due to the
reduction from multi-tape to two-tape Turing machines [PF79].

2.2 Memory-Hard Puzzles

We formally define memory-hard puzzles. Intuitively, a memory-hard puzzle is a cryptographic puzzle (see
Definition 4.1) which requires any PRAM algorithm solving the puzzle to have large cmc. We give two flavors
of memory-hard puzzles and begin with an asymptotically secure memory-hard puzzle.

Definition 2.5 (g-Memory Hard Puzzle). A puzzle Puz = (Puz.Gen,Puz.Sol) is a g-memory hard puzzle
if there exists a polynomial t′ such that for all polynomials t > t′ and for every PRAM algorithm A with
cmc(A) < y for the function y(λ) := g(t(λ), λ), there exists a negligible function µ such that for all λ ∈ N
and every pair s0, s1 ∈ {0, 1}λ we have

|Pr [A(Zb, Z1−b, s0, s1) = b]− 1/2| ⩽ µ(λ), (1)

where the probability is taken over b
$←{0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}.

Note that for any difficulty parameter t := t(λ) for security λ, we assume that Puz.Sol is computable in
time t · poly(λ) on a sequential RAM algorithm (see Definition 4.1). This implies that there exists a PRAM
algorithm A computing Puz.Sol has cmc(A, λ) ⩽ (t · poly(λ))2 = t2 · poly(λ). This yields an upper bound
on the function g of Definition 2.5: take t to be any (large enough) polynomial. Then suitable values of
g (ignoring poly(λ) factors) include g = t2/ log(t) or g = t2−θ for small constant θ > 0. In particular, we
cannot expect to design g-memory hard puzzles for any function g = ω(t2 · poly(λ)) (by our definitions).

We complement Definition 2.5 with the following concrete security definition.

Definition 2.6 ((g, ε)-Memory Hard Puzzle). A puzzle Puz = (Puz.Gen, Puz.Sol) is a (g, ε)-memory hard
puzzle if there exists a polynomial t′ such that for all polynomials t > t′ and every PRAM algorithm A with
cmc(A) < y for y(λ) := g(t(λ), λ), and for all λ > 0 and any pair s0, s1 ∈ {0, 1}λ, we have

|Pr [A(Zb, Z1−b, s0, s1) = b]− 1/2| ⩽ ε(λ), (2)

where the probability is taken over b
$← {0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}. If ε(λ) =

1/ poly(λ), we say the puzzle is weakly memory-hard.

Similar to Definition 2.5, suitable values of g for Definition 2.6 include g = t2/ log(t) and g = t2−θ for small
constant θ > 0, as any PRAM algorithm with cmc larger than t2 ·poly(λ) can trivially break puzzles security
simply by running the algorithm Puz.Sol.

We note that in our security definition the adversary is given two puzzles Zb, Z1−b in random order
along with both solutions s0, s1 (in the correct order). An alternate security definition would only give the
adversary one puzzle, Zb, and the solutions s0, s1. We remark that our security definition is at least as strong
since the attacker can simply choose to ignore Z1−b. It is an open question whether or not there is reduction
in the other direction establishing tight concrete security guarantees. Thus, we choose to use the stronger
definition.
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We construct memory-hard puzzles by using succinct randomized encodings for succinct circuits and
additionally assuming that a (suitable) memory-hard language exists. Informally, a succinct randomized

encoding for succinct circuits consists of two algorithms sRE.Enc and sRE.Dec where Ĉx,G ← sRE.Enc(1λ,
C ′, x, G) takes as input a security parameter λ, a succinct circuit C ′ describing a larger circuit C with G

gates and an input x ∈ {0, 1}∗ and outputs a randomized encoding Ĉ in time poly(|C ′|, λ, log(G), |x|). The
decoding algorithm sRE.Dec(Ĉx,G) outputs C(x) in time at most G · poly(log(G), λ). Note that the run-
ning time requirement ensures sRE.Enc cannot simply compute C(x). Intuitively, security implies that the

encoding Ĉx,G reveals nothing more than C(x) to a computationally bounded attacker. We define asymp-
totically secure succinct randomized encodings in Definition 3.6 and provide a concrete security definition in
Definition 3.7.

We extend ideas from [BGJ+16] to construct memory-hard puzzles from succinct randomized encod-
ings; the formal construction is presented in Construction 4.3. In particular, the generation algorithm
Puz.Gen(1λ, t, s) first constructs a Turing machine Ms,t that on any input runs for t steps then outputs

s, where t = t(λ) and s ∈ {0, 1}λ. This machine is then transformed into a succinct circuit C ′s,t (via a
transformation due to Pippenger and Fischer [PF79], see Lemma 3.8), and then encodes this succinct circuit
with our succinct randomized encoding; i.e., Z = sRE.Enc(1λ, C ′s,t, 0

λ, Gs,t). Here, C ′s,t succinctly describes
a larger circuit Cs,t which is equivalent to Ms,t (on inputs of size λ) and has Gs,t := |Cs,t| gates. The puzzle
solution algorithm simply runs the decoding procedure of the randomized encoding scheme; i.e., Puz.Sol(Z)
outputs s← sRE.Dec(Z).

Security is obtained via reduction to a suitable memory-hard language L. If the security of the constructed
puzzle is broken by an adversary A with small cmc, then we construct a new adversary B with small
cmc which breaks the memory-hard language assumption by deciding whether x ∈ L with non-negligible
advantage. Suppose that Z0 ← Puz.Gen(1λ, t, s0), Z1 ← Puz.Gen(1λ, t, s1), b is a random bit, and t := t(λ).
If A(s0, s1, Zb, Z1−b) can violate the MHP security and predict b with non-negligible probability, then we
can construct an algorithm B with similar cmc that decides our memory-hard language. Algorithm B first
constructs a uniformly succinct circuit Ca,a′ such that on any input x we have Ca,a′(x) = a if x ∈ L;
otherwise Ca,a′(x) = a′ if x ̸∈ L. Our defiition of memory-hard languages ensures that Ca,a′ is uniformly
succinct and has size G = t · poly(λ, log(t)). Let C ′a,a′ denote the smaller circuit that succinctly describes

Ca,a′ . The adversary computes Zi = sRE.Enc(1λ, C ′si,s1−i
, x,G) for i ∈ {0, 1}, samples b

$←{0, 1}, and obtains
b′ ← A(Zb, Z1−b, s0, s1). Our adversary B outputs 1 if b = b′ and 0 otherwise.

Observe that if x ∈ L then Puz.Sol(Z0) = s0 and Puz.Sol(Z1) = s1; otherwise if x ̸∈ L then Puz.Sol(Z0) =
s1 and Puz.Sol(Z1) = s0. By security of sRE, adversary A cannot distinguish between a puzzle generated with
Puz.Gen and Zi = sRE.Enc(1λ, C ′si,s1−i

, x,G). Thus on input (Zb, Z1−b, s0, s1), the adversaryA outputs b′ = b
with non-negligible advantage. By our above observation, we have that B now (probabilistically) decides the
memory-hard language L with non-negligible advantage. To obtain an adversary B′ that deterministically
decides L, we use standard amplification techniques, along with the assumption of B′ being a non-uniform
algorithm (à la the argument for BPP ⊂ P/poly). Whereas amplification—when performed in parallel—does
not significantly increase the total computation depth, any amplification increases the cmc of an algorithm
by a multiplicative factor proportional to the amount of amplification performed. Intuitively, this is because
the cmc of an algorithm A is equal to the sum of the cmc of all sub-computations performed by A. See
Section 4.1 for more details.

The memory-hardness of Construction 4.3 relies on the particular succinct randomized encoding scheme
used, and the existence of an appropriately memory-hard language. We again stress that the memory-
hardness of our construction does not rely on an explicit instance of a memory-hard language, and the
existence of such a language is sufficient for the above reduction to hold. We show that Construction 4.3
satisfies two flavors of memory-hardness. First, given an asymptotically secure succinct randomized en-
coding scheme sRE (Definition 3.6) and the existence of a strong memory-hard language, we show that
Construction 4.3 is an asymptotically secure memory-hard puzzle.

Theorem 2.7. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. Let sRE = (sRE.Enc, sRE.Dec)
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be a succinct randomized encoding scheme. If there exists a g′-strong memory-hard language L ∈ SCt for

g′(t, λ) := g + 2psRE(log(t), λ)
2 + 2pSC(log(t), log(λ))

2 +O(λ),

then Construction 4.3 is a g-memory hard puzzle. Here, psRE and pSC are fixed polynomials for the run-times
of sRE.Enc and the uniform machine constructing the uniform succinct circuit of L, respectively.

To get a handle on Theorem 2.7, consider a large enough polynomial t such that t≫ psRE(log(t), λ) and
t ≫ pSC(log(t), log(λ)). Then if there exists a g′-strong memory-hard language for g′(t, λ) = t2/ log(t), we
obtain a g-memory hard puzzle for g(t, λ) = (1−o(1))·g′(t, λ) (i.e., there is little loss in the memory-hardness
of the constructed puzzle).

Next, assuming a concretely secure succinct randomized encoding scheme sRE (Definition 3.7) and the
existence of a weak memory-hard language, then Construction 4.3 is a weakly-secure memory-hard puzzle.

Theorem 2.8. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. Let sRE = (sRE.Enc, sRE.Dec)
be a (g, s, εsRE)-secure succinct randomized encoding scheme for g := g(t, λ) and s(λ) := t · poly(λ, log(t))
such that psRE is a fixed polynomial for the runtime of sRE.Enc. Let ε := ε(λ) = 1/ poly(λ) > 3εsRE(λ) be
fixed. If there exists a (g′, εL)-weakly memory-hard language L ∈ SCt for

g′(t, λ) := [g + 2psRE(log(t), λ)
2 + 2pSC(log(t), log(λ))

2 +O(λ)] ·Θ(1/ε),

and some constant εL ∈ (0, 1/2), then Construction 4.3 is a (g, ε)-weakly memory-hard puzzle. Here, pSC is
a fixed polynomial for the runtime of the uniform machine constructing the uniform succinct circuit for L.

Notice here we lose a factor of Θ(1/ε) when compared with Theorem 2.7. Concretely, using our same
example from Theorem 2.7, if t is sufficiently large such that t≫ psRE(log(t), λ) and t≫ pSC(log(t), log(λ)),
and if ε = 1/λ2, then for g′ = t2/ log(t) we obtain a (g, ε)-weakly memory-hard puzzle for g = g′ ·Θ(λ2). This
loss is due to the security reduction: our adversary performs amplification to boost the success probability
of breaking the weakly memory-hard language assumption from ε to the constant εL. To achieve constant
εL, one needs to amplify Θ(1/ε) times. As discussed previously, amplification directly incurs a multiplicative
blow-up in the cmc complexity of a PRAM algorithm performing the amplification.

2.3 Memory-Hard Functions from Memory-Hard Puzzles

Using our new notion of memory-hard puzzles, we construct a one-time memory-hard function under standard
cryptographic assumptions. To the best of our knowledge, this is the first such construction in the standard
model; i.e., without random oracles [AS15] or other idealized primitives [CT19]. Recall that informally a
function f is memory-hard if any PRAM algorithm computing f has large cmc. We define the one-time
security of a memory-hard function f via the following game between an adversary and an honest challenger.
First, before the game begins an input x is selected and provided to the challenger and the attacker. Second,

the challenger computes y0 = f(x) and samples y1 ∈ {0, 1}λ and b
$←{0, 1} uniformly at random, and sends

yb. Then the attacker outputs a guess b′ for b. We say that the adversary wins if b′ = b, and say that f is
(t, ε)-one time secure if for all inputs x and all attackers running in time ⩽ t the probability that the attacker
outputs the correct guess b′ = b is at most ε(λ). Note that this definition differs from prior definitions in the
literature (e.g., [AS15,ACP+17]), and is in fact stronger than requiring that an adversary with insufficient
resources cannot compute the MHF. However, we remark that in the random oracle model, for random oracle
H, any MHF f immediately yields a function f ′(x) = H(f(x)) which is indistinguishable from random to
any adversary that cannot compute f(x). We provide two definitions of memory-hard functions: one for
asymptotic security (presented in Definition 5.1), and one for concrete security (presented in Definition 5.2).

Our construction relies on our new notion of memory-hard puzzles, and additionally uses indistinguisha-
bility obfuscation (iO) for circuits and a family of puncturable pseudo-random functions (PPRFs) {Fi}i
[BW13,KPTZ13,BGI14]. Informally, PPRFs are pseudo-random functions that allow one to “puncture” a
keyK at values x1, . . . , xk, where the keyK can be used to evaluate the function at any point x ̸∈ {x1, . . . , xk}
and hide the values of the function at the points x1, . . . , xk.
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We formally present our memory-hard function in Construction 5.4, and provide a high-level overview
of the construction here. During the setup phase we generate three PPRF keys K1, K2, and K3 and
obfuscate a program prog(·, ·) which does the following. On input (x,⊥), prog outputs a memory-hard
puzzle Puz.Gen(1λ, t(λ), s; r) with solution s = FK1

(x) using randomness r = FK2
(x). On input (x, s′),

prog checks to see if s′ = FK1
(x) and, if so, outputs FK3

(x); otherwise ⊥. Given the public parameters
pp = iO(prog), we can evaluate the MHF as follows: (1) run pp(x,⊥) = iO(prog(x,⊥)) to obtain a puzzle Z;
(2) solve the puzzle Z to obtain s = Puz.Sol(Z); and (3) run pp(x, s) = iO(prog)(x, s) to obtain the output
FK3

(x). Intuitively, the construction is shown to be one-time memory-hard by appealing to the memory-hard
puzzle security, PPRF security, and iO security.

We establish one-time memory-hardness by showing how to transform an MHF attacker A into a MHP
attacker B with comparable cmc. Our reduction involves a sequence of hybrids H0, H1, H2 and H3. Hybrid
H0 is simply our above constructed function. In hybrid H1 we puncture the PPRF keys Ki{x0, x1} at
target points x0, x1 and hard code the corresponding puzzles Z0, Z1 along with their solutions—iO security
implies that H1 and H0 are indistinguishable. In hybrid H2 we rely on PPRF security to replace Z0, Z1

with randomly generated puzzles independent of the PPRF keys K1,K2 and hardcode the corresponding
solutions s0, s1. Finally, in hybrid H3 we rely on MHP security to break the relationship between si and Zi;
i.e., we flip a coin b′ and hardcoded puzzles Z ′0 = Zb′ and Z ′1 = Z1−b′ while maintaining si = Puz.Sol(Zi).
In the final hybrid we can show that the attacker cannot win the MHF security game with non-negligible
advantage.

Showing indistinguishability of H2 and H3 is the most interesting case. In fact, an attacker who can
solve either puzzle Zb or Z1−b can potentially distinguish the two hybrids. Instead, we only argue that the
hybrids are indistinguishable if the adversary has small area-time complexity. In particular, if an adversary
with small cmc is able to distinguish between H2 and H3, then we construct an adversary with small cmc
which breaks the memory-hard puzzle.

Our main result is that given a concretely secure memory-hard puzzle (Definition 2.6), a concretely secure
iO scheme (Definition 3.5), and a concretely secure PPRF family (Definition 3.4), then Construction 5.4 is
a concretely secure memory-hard function.

Theorem 2.9. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. If there exists a (tPPRF, εPPRF)-
secure PPRF family, a (tiO, εiO)-secure iO scheme, and a (g, εMHP)-memory hard puzzle for g ⩽ min{tiO(λ),
tPPRF(λ)}, then Construction 5.4 is a one-time (g′, εMHF)-MHF for

g′(t, λ) = g(t, λ)/p(log(t), λ)2,

where εMHF(λ) = 2 · εMHP(λ)+ 3 · εPPRF(λ)+ εiO(λ) and p(log(t), λ) is a fixed polynomial which depends on
the efficiency of underlying memory-hard puzzle and iO.

To get a handle on Theorem 2.9, consider the following parameter settings. Let θ > 0 be a small constant and
suppose that t is suitably large such that p(log(t), λ)2 = Θ(tc) for some suitably small constant 0 < c < θ.
Then for g(t, λ) = t2−θ+c, εMHP = (1/6) ·2−λ, εPPRF = (1/9) ·2−λ, and εiO = (1/3) ·2−λ, our theorem yields
a (g′, εMHF) for g′(t, λ) = Θ(t2−θ) and εMHF = 1/2λ. Note that the exact parameters of the constructed
MHF depend explicitly on the parameters of the underlying primitives used in the construction.

We remark that for any instantiation of iO that we are aware of, our construction is also a (computa-
tionally) data-independent MHF [ABZ20], i.e., the memory access pattern is (computationally) independent
of the secret input x. This is a desirable and useful property that provides natural resistance to side-channel
attacks.

Barriers to Proving Multi-Time Security. While we conjecture that our MHF construction achieves
stronger multi-time security, we are unable to formally prove this. An interesting aspect of our final hybrid
is that indistinguishability does not necessarily hold against an attacker with higher cmc who could trivially
distinguish between (s0, s1, Z0, Z1) and (s0, s1, Z1, Z0) by solving the puzzles Z0 and Z1. However, once the
cmc of the attacker is high enough to solve one puzzle, then we cannot rely on the MHP security for the
indistinguishability of the final two hybrids. Proving multi-time security would involve proving that any
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attacker solving m distinct puzzles has cmc that scales linearly in the number of puzzles; i.e., any attacker
with cmc = o (m · g(t(λ)) will fail to solve all m puzzles. In particular, even though we expect the cmc of
the attacker to be too small to solve all m puzzles, the cmc will become large enough to solve at least one
puzzle, which allows the attacker to distinguish between the hybrids in our security reduction. See Section 5
for more details.

2.4 Resource-Bounded LDCs from Cryptographic Puzzles

Recall that a resource-bounded LDC is a (ℓ, δ, p) locally decodable code that is resilient to δ-fraction of
errors introduced by some channel in some adversarial class C, where every A ∈ C is assumed to have some
resource constraint. For example, C can be a class of adversaries that are represented by low-depth circuits,
or have small cumulative memory complexity. In more detail, security of resource-bounded LDCs requires
that any adversary in the class C cannot corrupt an encoding y = Enc(x) to some ỹ such that (1) the distance
between y and ỹ is at most δ · |y|; and (2) there exists an index i such that the decoder, when given ỹ as its
oracle, outputs xi with probability less than p.

We construct our resource-bounded LDC by modifying the construction of [BKZ20] to use cryptographic
puzzles in place of random oracles. In particular, for algorithm class C, if there exists a cryptographic puzzle
that is unsolvable by any algorithm in C, then we use this puzzle to construct a LDC secure against C. See
Definition 6.5 for a formal definition of a (C, ε)-hard puzzle, and Definition 6.6 for a formal definition of a
C-secure LDC.

Our construction crucially relies on a private LDC [OPS07]. Private LDCs are LDCs that are additionally
parameterized by a key generation algorithm Gen that on input 1λ for security parameter λ outputs a shared
secret key sk to both the encoding and decoding algorithm. Crucially, this secret key is hidden from the
adversarial channel. See Definition 6.4 for a formal definition.

Construction 6.7 gives the formal construction of our LDC, and we provide a high-level overview here.
Let (Gen,Encp,Decp) be a private Hamming LDC. The encoder Encf , on input message x, samples random

coins s ∈ {0, 1}λ then generates cryptographic puzzle Z with solution s. The encoder then samples a secret
key sk ← Gen(1λ; s), where Gen uses random coins s, and encodes the message x as Y1 = Encp(x; sk). The
puzzle Z is then encoded as Y2 via some repetition code. The encoder then outputs Y = Y1 ◦ Y2. This
codeword is corrupted to some Ỹ , which can be parsed as Ỹ = Ỹ1 ◦ Ỹ2.

The local decoder Decf , on input index i and given oracle access to Ỹ , first recovers the puzzle Z by
querying Ỹ2 and using the decoder of the repetition code (e.g., via random sampling with majority vote).
Given s, the local decoder is able to generate the same secret key sk ← Gen(1λ; s) and now runs the local

decoder Decp(i; sk). All queries made by Decp(i; sk) are answered by querying Ỹ1, and the decoder outputs
Decp(i; sk). The construction is secure against any class C for which there exist cryptographic puzzles that
are secure against this class. For example, time-lock puzzles give an LDC that is secure against the class C
of circuits of low-depth, and memory-hard puzzles give an LDC that is secure against the class C of PRAM
algorithms with low cmc.

Security is established via a reduction to the cryptographic puzzle. Suppose there exists an adversary
A ∈ C which can violate the security of our LDC. The reduction relies on a two-phase hybrid distinguishing
argument [BKZ20]. Fix (Encf ,Decf) to be the encoder and local decoder constructed above. We define two
different encoders to be used in the hybrid arguments. First the encoder Enc0 := Encf is defined to be exactly
the same as our LDC encoder. Second, the encoder Enc1 is defined to be identical to Encf , except with the
following changes: (1) Enc1 receives both a message x and some secret key sk as input; (2) Enc1 encodes x

as Y1 = Encp(x; sk); and (3) Enc1 samples some s′
$←{0, 1}λ that is uncorrelated with its input sk, computes

puzzle Z ′ ← Puz.Gen(s′), and computes Y2 as the repetition encoding of Z ′.
We now construct our attacker B which violates the security of the cryptographic puzzle as follows:

B is given (Zb, Z1−b, s0, s1) for uniformly random bit b, where Zi is a puzzle with solution si as input.
Then B fixes a message x and encodes x as follows. (1) Using puzzle solution s0, generate secret key
sk ← Gen(1λ, s0). (2) Compute Y2 as the encoding of Zb (i.e., its first input) using the repetition code.
(3) Compute Y1 ← Encp(x; sk). (4) Set Y = Y1 ◦ Y2. With Y in hand, the adversary B simulates adversary
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A to obtain Ỹ = Ỹ1 ◦ Ỹ2 ← A(x, Y ). Finally, B outputs b′ ← D(x, sk, Ỹ1). Here, the distinguisher D is given
Ỹ1, the secret key sk0, and message x as input; additionally, it can simulate the local decoding algorithm

Decp. In particular, the distinguisher D is defined as follows: (1) sample an index i
$←{1, . . . , |x|} uniformly

at random; (2) compute x̃i ← DecỸ1
p (i; sk0); and (3) output b′ = 0 if xi ̸= x̃i and b′ = 1 otherwise.

Intuitively, if b = 1 then Y1 = Encp(s; sk0) where the secret key sk0 is information theoretically hidden

from A when the corrupted private-key codeword Ỹ1 ← A(x, Y ) is produced. Private key LDC security

ensures that, except with negligible probability, DecỸ1
p (i; sk0) will output the correct answer x̃i = xi and D

will output the correct answer b′ = 1. On the other hand if b = 0 we have Y = Enc0(x) and Ỹ ← A(x, Y )

so that the probability that DecỸ1
p (i; skb) outputs the wrong answer xi ̸= x̃i will be non-negligible — at

least 1/|x| times the advantage of A in the LDC security game. Thus, the probability that D outputs the
correct answer b′ = 0 is also non-negligible. It follows our adversary B outputs the correct bit b = b′ with
non-negligible advantage violating security of the underlying memory hard puzzles. See Section 6.2 for more
details.

Our main result shows that if there exists a memory-hard puzzle, then given any private Hamming LDC
there exists a resource-bounded LDC that is secure against the class of PRAM algorithms with comparable
parameters to the private LDC.

Corollary 2.10. Let g be a function, let C(g) := {A : A is a PRAM algoirthm and cmc(A) < g}, and
let Cp[Kp, kp, λ] be a (ℓp, δp, pp, εp)-private Hamming LDC. If there exists a (g, ε′)-memory hard puzzle then
there exists a (ℓ, δ, ε)-resource bounded LDC C[Ω(Kp), kp] that is secure against the class C(g) with parameters
ℓ = Θ(ℓp), δ = Θ(1), p = 1− negl(λ), and ε = Θ(εp + ε′).

In Section 6.2, we prove a more general theorem (Theorem 6.8) which utilizes any private LDC in con-
junction with a more general (C, ε)-hard puzzle (i.e., the puzzle is secure against the class of adversaries C;
see Definition 6.5), which allows us to construct a resource-bounded LDC that is secure against the class C.

Resource-Bounded LDCs for Insertion-Deletion Errors in the Standard Model. Recently, Block
and Blocki [BB21] proved that the so-called “Hamming-to-InsDel” compiler of Block et al. [BBG+20] extends
to both the private Hamming LDC and resource-bounded Hamming LDC settings. That is, there exists a
procedure which compiles any resource-bounded Hamming LDC to a resource-bounded LDC that is robust
against insertion-deletion errors such that this compilation procedure preserves the underlying security of
the Hamming LDC. We apply the result of Block and Blocki [BB21] to Construction 6.7 and obtain the first
construction of resource-bounded locally decodable code for insertion-deletion errors in the standard model.
We remark that the prior construction presented in [BB21] was in the random oracle model.

Corollary 2.11. Let C(g) = {A : A is a PRAM algoirthm and cmc(A) < g} and let Cp[Kp, kp, λ] be a
private Hamming LDC. If there exists a (g, ε′)-memory hard puzzle and a (ℓ, δ, p, ε) resource-bounded LDC
that is secure against the class C(g), then there exists a (ℓ′, δ′, p′, ε′′)-LDC C[n, k] for insertion-deletion errors
against class C(g), where ℓ′ = ℓ·O(log4(n)), δ′ = Θ(δ), p′ < p, ε′′ = ε/(1−negl(n)), k = kp, and K = Ω(Kp).

3 Preliminaries

Let λ ∈ N be the security parameter. A function µ : N→ R+ is said to be negligible if for any polynomial p
and all sufficiently large n we have µ(n) < 1/|p(n)|. We let negl(·) denote the class of negligible functions or an
unspecified negligible function. Similarly, we let poly(·) and polylog(·) denote the class of polynomial or poly-
logarithmic functions, respectively, or unspecified polynomial or poly-logarithmic functions, respectively. For

a finite set S we let x
$← S denote the process of uniformly sampling elements from S. For positive integer

n, we let [n] := {1, . . . , n}. We let PPT denote probabilistic polynomial time. For a randomized algorithm
A, we let y ← A(x) denote obtaining output y from A on input x. Sometimes, we fix the coins of A with

r
$←{0, 1}∗, and denote y ← A(x; r) as obtaining output y from A using coins r.
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3.1 PRAM Algorithms and Cumulative Memory Complexity

We primarily work in the Parallel Random Access Machine (PRAM) model. An algorithm A is a PRAM
algorithm if during each time-step of computation, the algorithm has an internal state and can read multiple
positions from memory, perform a computation, then write to multiple positions in memory. For our pur-
poses, it is enough to think of this algorithm as follows: during each time-step, the algorithm makes multiple
load requests to memory, makes a small-depth computation (possibly using the loaded values), and write
back to multiple locations in memory (see, e.g., [ACK+16,ABP17], for formal definitions).

For a PRAM algorithm A with input x ∈ {0, 1}∗, we define a configuration σi as the internal state of
A and the non-empty contents of memory at time-step i, and let σ0 denote the initial configuration of an
algorithm A. We define the trace of A on input x as Trace(A, x) = (σ0, σ1, . . . σT ), where A(x) terminates in
T steps. If A(x) does not terminate, we define Trace(A, x) :=∞. We restrict our attention to terminating
PRAM algorithms (and thus finite traces). Given Trace(A, x), we define the cumulative memory complexity
of A on input x as

cmc(A, x) :=
∑

σ∈Trace(A,x)

|σ|.

A useful property of cmc is that for two PRAM algorithms A1, A2 performing independent computations
on x1 and x2 respectively then cmc((A1, A2), (x1, x2)) = cmc(A1, x1) + cmc(A2, x2); i.e., the cmc of running
both computations at the same time is the sum of the individual cmc’s. For PRAM algorithm A and for
λ ∈ N we define cmc(A, λ) := maxx∈{0,1}λ cmc(A, x). Finally, for a function y(·) and PRAM algorithm A,
we say that cmc(A) < y if for all λ > 0 we have cmc(A, λ) < y(λ).

We are also concerned with sequential random access machine algorithms, or RAM algorithms. A RAM
algorithm is simply a PRAM algorithm which during any time-step of the computation only loads from a
single location of memory, performs a short computation, and writes to a single location of memory. A RAM
algorithm running in time t and space s completes its computation after t steps and accesses no more than
s cells of memory. It is well-known that a time t RAM algorithm can be simulated by a Turing machine in
time O(t2) (cf., [AB09]).

3.2 Circuits

A Boolean circuit is a function C : {0, 1}n → {0, 1}m comprised of input gates and a series of AND, OR,
and NOT gates with some (possibly bounded) fan-in. We restrict our attention to gates with fan-in 2 (note,
NOT always has fan-in 1), and we let |C| denote the number of (non-input) gates of C (i.e., the size of C).
We let depth(C) denote the depth of C (that is the longest path from an input gate to an output gate).
A randomized circuit C(x; r) is a circuit with two types of input wires: wires for the input x and wires for
(uniformly) random bits r. For a family of (randomized) circuits C = {Ci}i∈N, we say that the family C
is uniform if for every i, there exists an efficient PRAM algorithm which on input i constructs Ci in time
poly(|Ci|). Otherwise C is non-uniform. We are particularly interested in families of succinct circuits.

Definition 3.1 (Succinct Circuits [BGT14,GS18]). Let C : {0, 1}n → {0, 1}m be a circuit with N −n binary
gates. The gates of the circuit are numbered as follows. The input gates are given numbers {1, . . . , n}. The
intermediate gates are numbered {n + 1, n + 2, . . . , N −m} such that for any gate g with inputs from gates
i and j, the label for g is bigger than i and j. The output gates are numbered {N −m + 1, . . . , N}. Each
gate g ∈ {n+1, . . . , N} is described by a tuple (i, j, fg) ∈ [g− 1]2×GType where the outputs of gates i and j
serve as inputs to gate g and fg denotes the functionality computed by gate g. Here, GType denotes the set
of all binary functions f : {0, 1}2 → {0, 1}.

We say that C is succinctly describable if there exists a circuit Csc such that on input g ∈ {n + 1, N}
outputs description (i, j, fg) and |Csc| < |C|.

The above definitions naturally extend to randomized circuits. For notational convenience, for any circuit
Csc that succinctly describes a larger circuit C, we define FullCirc(Csc) := C and SuccCirc(C) := Csc. The
following lemma states that any Turing machine M is describable by a succinct circuit.
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Lemma 3.2 ([PF79,GS18]). Any Turing machine M , which for inputs of size n, requires a maximal running
time t(n) and space s(n), can be converted in time O(|M | + log(t(n))) to a circuit CTM that succinctly
represents circuit C : {0, 1}n → {0, 1} where C computes the same function as M (for inputs of size n), and

is of size Õ(t(n) · s(n)).

We expand Definition 3.1 and define succinctly describable circuit families. As with Definition 3.1, the
following definition naturally extends to families of randomized circuits.

Definition 3.3 (Uniform Succinct Circuit Families). We say that a circuit family {Ct,λ}t,λ is succinctly de-
scribable if there exists another circuit family {Csc

t,λ}t,λ such that |Csc
t,λ| = polylog(|Ct,λ|)6 and FullCirc(Csc

t,λ) =
Ct,λ for every t, λ. Additionally, if there exists a PRAM algorithm A such that A(t, λ) outputs Csc

t,λ in time
poly(|Csc

t,λ|) for every t, λ, then we say that {Ct,λ}t,λ is uniformly succinct.

3.3 Languages and Decidability

We say that a deterministic algorithm A decides a language L if for every x ∈ L, we have A(x) = 1 (and
A(x) = 0 for x ̸∈ L). We say that a randomized algorithm A ε-decides a language L if for every x ∈ L we
have Pr[A(x) = 1] ⩾ 1/2 + ε(|x|), and for every x ̸∈ L we have Pr[A(x) = 0] ⩾ 1/2 + ε(|x|). Similarly, we

say that Li := L ∩ {0, 1}i is decided by algorithm A if A restricted to i-bit inputs decides Li.
We say that a language L is decided by circuit family {Ci}i∈N if for every i the language Li is decided

by Ci. We say that a randomized circuit family {Ci}i∈N ε-decides a language L if for every i ∈ N and every

x ∈ {0, 1}i, the circuit Ci ε-decides the language Li where the probability is taken over uniformly random
string r ∈ {0, 1}∗.

3.4 Cryptographic Primitives

For our results, we require the existence of three cryptographic primitives from the literature. The first
primitive is that of a puncturable pseudorandom function (PPRF) [BW13,KPTZ13,BGI14]. Informally, a
PPRF can efficiently generate a punctured key K \ {x1, . . . , xk} which can be used to evaluate F (K,x) on
any input x ̸∈ {x1, . . . , xk} and hide the values F (K,x1), . . . , F (K,xk). We give the formal definition below.

Definition 3.4 (Puncturable Pseudorandom Functions). A puncturable pseudorandom function (PPRF)
is a tuple of PPT algorithms F = (F.KeyGen, F.eval, F.puncture) with the following syntax.

• F.KeyGen(1λ) is a randomized algorithm which takes as input the security parameter λ in unary and
outputs a PPRF secret key K ∈ K (for some keyspace K).

• F.puncture(K,x1, . . . , xk) is a randomized algorithm which takes as input a PPRF secret key K and
a list of inputs x1, . . . , xk ∈ X from input space X , and outputs a punctured key K{x1, . . . , xk} ∈ Kp

(for some keyspace Kp).

• F.eval(K,x′) is a randomized algorithm which takes as input a PPRF secret key K ∈ K ∪ Kp and
outputs a pseudorandom string y ∈ Y ∪ {⊥}.

Additionally, the tuple F = (F.KeyGen, F.eval, F.puncture) is required to satisfy the following properties.

Correctness. Let x = (x1, . . . , xk) ∈ X k. For all K ∈ supp(F.KeyGen(1λ)) and all K ′ ∈ supp(F.puncture(K,x)),
for any x ∈ X we have that

Pr[F.eval(K,x) = F.eval(K ′, x) | x ̸∈ x] = 1

Pr[F.eval(K ′, x) = ⊥ | x ∈ x] = 1
.

6For our purposes, we require the size of the succinct circuit to be poly-logarithmic in the size of the full circuit. One can
easily replace this requirement with the requirement presented in Definition 3.1.
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Selective Security. We require the tuple F to satisfy one of the following notions of selective security.

Asymptotic Selective Security. We say that F is a selectively secure PPRF if for all constants
k > 0, all x = (x1, . . . , xk) ∈ X k, and all PPT adversaries A there exists a negligible function µ(·)
such that for all λ ∈ N, we have that

Advss-pprfA,F (1λ,x) ⩽ µ(λ) ,

where Advss-pprfA,F is defined in the experiment SS-PPRF of Fig. 1.

Concrete Selective Security. For functions t(·), ε(·), we say that F is a (t, ε)-selectively secure
PPRF if for all constants k > 0, all x = (x1, . . . , xk) ∈ X k, all λ ∈ N, and any adversary running in
time at most t(λ), we have that

Advss-pprfA,F (1λ,x) ⩽ ε(λ),

where Advss-pprfA,F is defined in the experiment SS-PPRF of Fig. 1.

The Selectively secure PPRF experiment SS-PPRFA,F (1
λ,x)

• Init.

1. The challenger C generates a PPRF key K ← F.KeyGen(1λ) and sets K ′ := K{x} ←
F.puncture(K,x).

2. C samples b
$←{0, 1}.

3. For each i ∈ [k] the challenger C sets yi := F.eval(K,xi) if b = 0; otherwise yi
$←Y.

4. C sends K ′ and y := (y1, . . . yk) to the adversary A.

• Guess. The adversary A is given K{x}, x, and y as input and outputs a guess b′ ∈ {0, 1} for b.
If b = b′ the output of the experiment is SS-PPRFA,F (1

λ,x) = 1 indicating that A wins the game;
otherwise the experiment outputs SS-PPRFA,F (1

λ,x) = 0.

We define the advantage of A in this experiment as follows:

Advss-pprfA,F (1λ,x) =
∣∣Pr[SS-PPRFA,F (1

λ,x) = 1]− 1/2
∣∣ .

Figure 1: Description of the experiment SS-PPRFA,F (1
λ, x).

The second primitive we require is an indistinguishability obfuscator for circuits. Informally, for a circuit
class C = {Cλ}λ we say that a PPT algorithm iO is an indistinguishability obfuscator for C if (1) for every
λ and every C ∈ Cλ, we have that C ′(x) = C(x) for every x and C ′ ← iO(1λ, C); and (2) if C0, C1 ∈ Cλ
compute the same functionality, then no PPT adversary can distinguish between iO(1λ, C0) and iO(1λ, C1)
except with negligible advantage. We give the formal definition below.

Definition 3.5 (Circuit Indistinguishability Obfuscation). Let C = {Cλ}λ be a class of poly(λ)-sized circuit
families. We say that a PPT algorithm iO is an indistinguishability obfuscator for C if the following
conditions are satisfied.

Correctness. For all security parameters λ ∈ N, all circuits C ∈ Cλ, and any input x, we have that

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1 ,

where the probability is taken over the random coins of iO.
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Indistinguishability. We require iO to satisfy one of the following notions of indistinguishability.

Asymptotic Indistinguishability. We say that iO is asymptotically secure (or indistinguishable) if
for all PPT distinguishers D there exists a negligible function µ(·) such that for all security parameters
λ ∈ N and all pairs of circuits C0, C1 ∈ Cλ, we have

AdvD(λ) :=
∣∣Pr[D(iO(1λ, C0)) = 1]− Pr[D(iO(1λ, C1)) = 1]

∣∣ ⩽ µ(λ). (3)

Concrete Indistinguishability. Let t(·), ε(·) be functions. We say that iO is (t, ε)-secure (i.e.,
indistinguishable) if for all security parameters λ ∈ N and any distinguisher D running in time t(λ),
we have that AdvD(λ) ⩽ ε(λ).

Finally, we require a randomized encoding scheme [IK00]. Such a scheme is described by a pair of
algorithms RE = (RE.Enc,RE.Dec), where RE.Enc is a randomized algorithm that on input 1λ, the description

of a machine M , input x, and time bound t outputs an encoding M̂x and RE.Dec is a deterministic algorithm
that on input M̂x outputs y, where y is the output of M(x) after t steps of computation. In this work, we
extensively make use of succinct randomized encodings. For our purposes, we require succinct randomized
encodings for succinct circuits and define these encodings directly.

Definition 3.6 ([BGL+15, GS18]). A succinct randomized encoding consists of two algorithms sRE =
(sRE.Enc, sRE.Dec) with the following syntax:

• sRE.Enc(1λ, C ′, x,G): takes as input the security parameter λ, a succinct circuit C ′ encoding a larger

circuit C, input x and size G (gates) of the circuit C, and outputs the randomized encoding Ĉx,G.

• sRE.Dec(Ĉx,G): takes as input the randomized encoding Ĉx,G and deterministically computes the output
y.

We require the scheme to satisfy the following three properties.

Correctness. For every x and C ′ such that FullCirc(C ′) = C and |C| = G, it holds that y = C(x) with
probability 1 over the random coins of sRE.Enc.

Security. There exists a PPT simulator Sim such that for any poly-size adversary A there exists negligible
function µ such that for every λ ∈ N, circuit C ′ encoding larger circuit C with G gates, and input x:∣∣∣Pr[A(Ĉx,G) = 1]− Pr[A(Sim(1λ, y, C ′, G, 1|x|)) = 1]

∣∣∣ ⩽ µ(λ),

where Ĉx,G ← sRE.Enc(1λ, C ′, x,G) and y is the output of C(x).

Succinctness. The running time of sRE.Enc on a sequential RAM and the size of the encoding Ĉx,G are
poly(|C ′|, |x|, log(G), λ). The running time of sRE.Dec on a sequential RAM is G · poly(log(G), λ).7

We are also interested in concretely secure succinct randomized encodings, as opposed to the asymptotic
security definition given in Definition 3.6.

Definition 3.7 ((t, s, ε)-Secure Succinct Randomized Encoding). A succinct randomized encoding sRE =
(sRE.Enc, sRE.Dec) is (t(·), s(·), ε(·))-secure if it satisfies the following concrete security requirement: there
exists a probabilistic simulator Sim and a polynomial p(·) such that for every security parameter λ, every
adversary A running in time at most t(λ) and every circuit C ′ representing a larger circuit C with G ⩽ s(λ)

gates and every input x ∈ {0, 1}λ:∣∣∣Pr[A(Ĉx,G) = 1]− Pr[A(Sim(1λ, y, C ′, G)) = 1]
∣∣∣ ⩽ ε(λ),

where Ĉx,G ← sRE.Enc(1λ, C ′, x,G), y is the output of C(x), and Sim runs in time at most G · p(λ).
7A weaker requirement succinctness requirement allows for the running time of sRE.Dec to be poly(G,λ). This stronger

requirement is achievable and is crucial for applications to cryptographic puzzles.
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Note that one-way functions and iO are sufficient for constructing succinct randomized encodings [KLW15,
BGL+15]. In our constructions, we use the succinct randomized encoding scheme of Garg and Srinivasan
[GS18], with a slight modification. The encoding scheme is modified to accept uniformly succinct circuits as
inputs rather than Turing machines. The encoding scheme of [GS18] transforms the input Turing machine
to obtain a succinct circuit via Lemma 3.2, then runs iO on this succinct circuit. We observe that we can
directly input the succinct circuit to avoid the need of this internal transformation.

Lemma 3.8 ([GS18]). Assuming the existence of iO for circuits and somewhere statistically binding hash
functions, there exists a succinct randomized encoding sRE = (sRE.Enc, sRE.Dec) for succinct circuits C ′ with
G′ gates representing larger circuit C with G gates such that sRE.Enc runs in time poly(G′, log(G), λ, n) and
sRE.Dec runs in time G · poly(G′, log(G), λ), where n is the input length of C.

4 Memory-Hard Puzzles

We formally introduce and define the notion of memory-hard puzzles. First we define puzzles.

Definition 4.1 (Puzzles [BGJ+16]). Let λ ∈ N be the security parameter. A puzzle is defined by a tuple of
algorithms (Puz.Gen,Puz.Sol) satisfying the following requirements.

• Puz.Gen(1λ, t, s) is a randomized algorithm which takes as input security parameter λ ∈ N, time pa-

rameter t := t(λ) < 2λ, and arbitrary solution s ∈ {0, 1}λ and outputs a puzzle Z.

• Puz.Sol(Z) is a deterministic algorithm which takes puzzle Z as input and outputs solution s.

• Completeness: For every λ ∈ N, t < 2λ, s ∈ {0, 1}λ, and puzzle Z ← Puz.Gen(1λ, t, s), we have that
s = Puz.Sol(Z) with probability 1 over the random coins of Puz.Gen.

• Efficiency: For all λ, t, s, we require that Puz.Gen(1λ, t, s) is computable in time poly(λ, log(t)) on a
sequential RAM, and Puz.Sol(Z) is computable in time t · poly(λ) on a sequential RAM.

We remark that in the above definition we are interested in the case that t(λ) is a polynomial, and without
loss of generality we assume that Puz.Gen uses λ-bits of randomness.

Informally, we define a memory-hard puzzle as a puzzle that requires any PRAM algorithm solving it to
have high cmc. In Section 2.2, we introduced two flavors of memory-hard puzzles. We recall them here. The
first flavor is memory-hard puzzles with asymptotic security.

Definition 2.5 (g-Memory Hard Puzzle). A puzzle Puz = (Puz.Gen,Puz.Sol) is a g-memory hard puzzle
if there exists a polynomial t′ such that for all polynomials t > t′ and for every PRAM algorithm A with
cmc(A) < y for the function y(λ) := g(t(λ), λ), there exists a negligible function µ such that for all λ ∈ N
and every pair s0, s1 ∈ {0, 1}λ we have

|Pr [A(Zb, Z1−b, s0, s1) = b]− 1/2| ⩽ µ(λ), (1)

where the probability is taken over b
$←{0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}.

Next we recall the definition of memory-hard puzzles with concrete security.

Definition 2.6 ((g, ε)-Memory Hard Puzzle). A puzzle Puz = (Puz.Gen, Puz.Sol) is a (g, ε)-memory hard
puzzle if there exists a polynomial t′ such that for all polynomials t > t′ and every PRAM algorithm A with
cmc(A) < y for y(λ) := g(t(λ), λ), and for all λ > 0 and any pair s0, s1 ∈ {0, 1}λ, we have

|Pr [A(Zb, Z1−b, s0, s1) = b]− 1/2| ⩽ ε(λ), (2)

where the probability is taken over b
$← {0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}. If ε(λ) =

1/ poly(λ), we say the puzzle is weakly memory-hard.
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We construct memory-hard puzzles from standard cryptographic assumptions and the (essentially min-
imal) assumption that a memory-hard language exists. This assumption is similar to the non-parallelizing
language assumption necessary for constructing the time-lock puzzles of Bitansky et al. [BGJ+16]. Our first
step towards defining memory-hard languages is defining a language class that is decidable by uniformly
succinct circuit families. We recall the language class SCt of Definition 2.1.

Definition 2.1 (Language Class SCt). Let t be a positive function. We define SCt as the class of languages
L decidable by a uniformly succinct circuit family {Ct,λ}λ (as per Definition 3.3) such that there exists a
polynomial p satisfying |Ct,λ| ⩽ t · p(λ, log(t)) for every λ and t := t(λ).

Given the language class SCt, we now recall our definition of memory-hard languages.

Definition 2.2 ((g, ε)-Memory Hard Language). Let t be a positive function. A language L ∈ SCt is a
(g, ε)-memory hard language if for every PRAM algorithm B with cmc(B, λ) < g(t(λ), λ), the algorithm B
does not ε(λ)-decide Lλ for every λ. If ε(λ) = negl(λ), we say L is a g-strong memory-hard language. If
ε(λ) ∈ (0, 1/2) is a constant, we say L is a (g, ε)-weakly memory-hard.

Remark 4.2. One can also define weakly memory-hard languages for ε(λ) = 1/poly(λ); however, this is
essentially equivalent to our above definition of weakly memory-hard languages. Given a (g, ε)-memory hard
language L for ε(λ) = 1/ poly(λ), the language L is also a (g′, ε′)-memory hard language for g′(t(λ), λ) =
g(t(λ), λ) ·Θ(1/ε(λ)) and any constant ε′ ∈ (0, 1/2). This can be seen as follows: given any adversary B with
cmc(B, λ) < g(t(λ), λ) that ε-decides Lλ, we can construct an adversary B′ with cmc(B′, λ) < g′(t(λ), λ) that
ε′-decides Lλ. The adversary B′ simply runs B in parallel Θ(1/ε(λ)) times and takes the majority output,
where the hidden constant depends on the target constant ε′ > 0.

Note that while parallel amplification does not increase the overall depth of a computation both sequential
and parallel amplification incur significant overheads to the cmc of the algorithm performing the amplifica-
tion. This is simply due to a key property of cmc: if a PRAM algorithm A is running two computations A1

and A2 with inputs x1, x2, respectively, then cmc(A, (x1, x2)) = cmc(A1, x1) + cmc(A2, x2). In fact, this is
exactly what occurs when a PRAM algorithm performs amplification: it is repeating a computation some
number, say c ∈ N, times, then takes the majority of all the outputs of all these computations. This incurs
a multiplicative blow-up by c in the cmc of the PRAM algorithm (plus the cmc of computing majority).

Defining the correct machine model for memory-hard languages is surprisingly subtle. While we require
our memory-hard languages to be decidable by uniformly succinct circuits, one can imagine a simpler defi-
nition where we require decidability with respect to single-tape Turing machines (TMs) à la [BGJ+16]. In
the context of time-lock puzzles, there are plausible sequentially hard languages that can be decided in time
t := t(λ) on a single-tape TM; e.g., the language LPuz := {(N, x, t) : ∃y s.t. y = x2t mod N}, where N is the
product of two safe primes [RSW96] can be decided in time t · polylog(N) on a single-tape TM. However,
in Section 8 we show that any language L that can be decided by a single-tape TM in time t can also be
decided by any PRAM algorithm with cmc at least Ω(t1.8 · log(t)). Thus if SCt is defined with respect to
single-tape Turing machines, this result rules out any (g, ε)-memory hard language for g = Ω(t1.8 · log(t))
and any ε. Our formal theorem is given in Theorem 2.4 and proved in Section 8.

On the positive side, we show that SCt with respect to uniformly succinct circuits is essentially minimal,
and also plausible. Section 4.2 discusses the minimality of Definitions 2.1 and 2.2 and Section 7 discusses
the plausibility of the existence of such memory-hard languages. We stress that barring any major advances
in circuit complexity lower bounds, it is highly unlikely that we will be able to formally prove the existence
of memory-hard languages. For now, we turn to presenting our constructions of memory-hard puzzles.

4.1 Memory-Hard Puzzle Construction

We present our construction of memory-hard puzzles. Our construction relies on the succinct randomized
encoding scheme sRE for succinct circuits given by Lemma 3.8.

Construction 4.3. Let sRE = (sRE.Enc, sRE.Dec) be a succinct randomized encoding for succinct circuits,

let λ ∈ N be the security parameter, let t be polynomial in λ, and let s ∈ {0, 1}λ.
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• Puz.Gen(1λ, t, s): On input 1λ, t, and s, the algorithm first defines a Turing machine Mt,s which on
any input x outputs s after delaying for t steps. The algorithm then applies Lemma 3.2 to construct a
circuit Csc

t,s,λ which succinctly represents a larger circuit Ct,s,λ equivalent to Mt,s on inputs of size λ.

Finally the algorithm outputs Z ← sRE.Enc(1λ, Csc
t,s,λ, 0

λ, t).

• Puz.Sol(Z): On input Z, the algorithm outputs output s← sRE.Dec(Z).

We prove that Construction 4.3 satisfies both of our notions of memory-hard puzzles, depending on the
flavor of the security of the succinct randomized encoding scheme sRE. In either case, we use the succinct
randomized encoding scheme of Lemma 3.8. First, assuming a asymptotically secure succinct randomized
encoding scheme sRE (Definition 3.6) and the existence of a strong memory-hard language, we obtain an
asymptotically secure memory-hard puzzle. We recall Theorem 2.7 of Section 2.2.

Theorem 2.7. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. Let sRE = (sRE.Enc, sRE.Dec)
be a succinct randomized encoding scheme. If there exists a g′-strong memory-hard language L ∈ SCt for

g′(t, λ) := g + 2psRE(log(t), λ)
2 + 2pSC(log(t), log(λ))

2 +O(λ),

then Construction 4.3 is a g-memory hard puzzle. Here, psRE and pSC are fixed polynomials for the run-times
of sRE.Enc and the uniform machine constructing the uniform succinct circuit of L, respectively.

Next, assuming a concretely secure succinct randomized encoding scheme sRE (Definition 3.7) and the
existence of a weak memory-hard language, we obtain a weakly secure memory-hard puzzle. We recall
Theorem 2.8 of Section 2.2.

Theorem 2.8. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. Let sRE = (sRE.Enc, sRE.Dec)
be a (g, s, εsRE)-secure succinct randomized encoding scheme for g := g(t, λ) and s(λ) := t · poly(λ, log(t))
such that psRE is a fixed polynomial for the runtime of sRE.Enc. Let ε := ε(λ) = 1/ poly(λ) > 3εsRE(λ) be
fixed. If there exists a (g′, εL)-weakly memory-hard language L ∈ SCt for

g′(t, λ) := [g + 2psRE(log(t), λ)
2 + 2pSC(log(t), log(λ))

2 +O(λ)] ·Θ(1/ε),

and some constant εL ∈ (0, 1/2), then Construction 4.3 is a (g, ε)-weakly memory-hard puzzle. Here, pSC is
a fixed polynomial for the runtime of the uniform machine constructing the uniform succinct circuit for L.

Remark 4.4 (Non-uniform PRAM Algorithms). If we modify our memory-hard language definition (Defini-
tion 2.2) to allow for non-uniform PRAM algorithm adversaries, then Theorem 2.8 holds with respect to
εL = 1/2. With a non-uniform algorithm, we perform amplification à la BPP ⊂ P/poly in our security
reduction to obtain an adversary which breaks the memory-hard language assumption. This results in an
additional poly(λ) blow-up in the cmc upper bound g. This is in contrast to Bitansky et al. [BGJ+16]: as
they are concerned with the depth of the computation (as opposed to the cmc), parallel amplification does
not increase the overall depth of the computation.

Efficiency and Correctness of Construction 4.3. Let Puz = (Puz.Gen,Puz.Sol) be the puzzle of
Construction 4.3 and let sRE = (sRE.Enc, sRE.Dec) be the succinct randomized encoding used in the
construction. Correctness directly follows by correctness of the succinct randomized encoding scheme.
For efficiency, first consider the generation algorithm Puz.Gen. On input 1λ, t, s, the Turing machine
generated by Puz.Gen has description size O(λ + log(t)), runs in time t and space O(λ + log(t)), and
can be generated in time O(λ + log(t)). By Lemma 3.2, the circuit Ct,s,λ equivalent to Mt,s has size
t · poly(λ, log(t)), and thus the succinct circuit Csc

t,s,λ representing Ct,s,λ has size poly(λ, log(t)). Next

Puz.Gen obtains Z ← sRE.Enc(1λ, Csc
t,s,λ, 0

λ, t). By definition, sRE.Enc(1λ, C, x,G) runs in sequential time
poly(|C|, |x|, log(G), λ) for any succinct circuit C such that |FullCirc(C)| = G, input x, and security param-
eter λ. This implies that sRE.Enc(1λ, Csc

t,s,λ, 0
λ, t) runs in time poly(λ, log(t)). Thus the overall efficiency of

Puz.Gen is poly(λ, log(t)) +O(λ+ log(t)) = poly(λ, log(t)) as desired.
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Now consider the solve algorithm Puz.Sol. On input Z ← Puz.Gen(1λ, t, s), the algorithm Puz.Sol simply
computes and outputs s← sRE.Dec(Z). By definition of Puz.Gen, we have that Z ← sRE.Enc(1λ, Csc

t,s,λ, 0
λ, t),

where Csc
t,s,λ is the succinct circuit described above. By Lemma 3.8 the algorithm sRE.Dec(Z) runs in

time G · poly(G′, log(G), λ), where |Ct,s,λ| = G and |SuccCirc(Ct,s,λ)| = G′. Further, we have |Ct,s,λ| =
t · poly(λ, log(t)), and by assumption (Definition 2.1) we have G′ = polylog(G) = polylog(λ, t). This implies
that sRE.Dec runs in time t · poly(λ, log(t)). Finally, recalling that t is a polynomial in λ, we have that
sRE.Dec runs in time t · poly(λ), which implies that Puz.Sol runs in time t · poly(λ) as desired.

Memory-Hardness of Construction 4.3. We give a high-level overview of the proof of memory-hardness
of Construction 4.3, and present the full proofs in Sections 4.3 and 4.4 at the end of this section. Focusing
first on Theorem 2.7, we argue memory-hardness via a reduction: if there exists an adversary A with cmc
less than g such that A’s advantage in Eq. (1) is at least 1/ poly(λ) (thus violating Definition 2.5), then
we can construct an adversary B with cmc less than g′ which is able to decide the language L ∈ SCt with
non-negligible advantage (i.e., 1/ poly(λ) advantage).

The reduction proceeds as follows: suppose we have a PRAM adversary A with cmc less than g such that
A has at least 1/ poly(λ) advantage in Eq. (1). By assumption,since L ∈ SCt, there exists PRAM algorithm
AL which on input t, λ outputs a succinct circuit Csc

L such that the circuit CL = FullCirc(Csc
L ) decides the

language L. Given CL, we define a circuit C̃a,b : {0, 1}λ → {0, 1}λ for any a, b ∈ {0, 1}λ such that

C̃a,b(x) =

{
a CL(x) = 1

b CL(x) = 0
.

The key observation is that for fixed a, b ∈ {0, 1}λ, the circuit C̃a,b is a uniformly succinct circuit; that

is, there exists a PRAM algorithm Ã which on input t, λ, a, b outputs a succinct circuit C̃sc
a,b such that

C̃a,b = FullCirc(C̃sc
a,b). Note that the circuit C̃a,b can be simply described as the circuit CL, 2λ fixed input

gates for the values a, b ∈ {0, 1}λ, and 2λ AND-gates which output a or b depending on if CL(x) is 1 or 0,

respectively. So C̃a,b is a circuit of size |CL|+O(λ) ⩽ t · poly(λ, log(t)) +O(λ) = t · poly(λ, log(t)) (which is

asymptotically the same as CL). Thus the PRAM algorithm Ã simply runs AL to obtain Csc
L and adjusts

this circuit to include these fixed wire values and the AND-gates.
Crucially, we use the PRAM algorithm Ã to construct an input to the adversary A such that if A can

distinguish this input then we can use the output of A to decide the language L. Looking at the definition
of Puz.Gen of Construction 4.3, we see that Puz.Gen outputs a succinct randomized encoding Z of a succinct
circuit Csc

t,s,λ with full circuit FullCirc(Csc
t,s,λ) of size size Õ(t) (note that polylog factors are hidden). Recall

that the succinct circuit C̃sc
a,b that is output by Ã represents a circuit C̃a,b = FullCirc(C̃sc

a,b) with size at most

t · poly(λ, log(t)) = Õ(t) since t is a polynomial in λ. This implies that |sRE.Enc(C̃sc
a,b)| ≈ |sRE.Enc(Csc

t,s,λ)|.
Putting it all together, we construct randomized PRAM algorithm B which decides L with non-negligible

advantage as follows. Let s0, s1 ∈ {0, 1}λ be the puzzle solutions given as part of the input to A.

1. Algorithm B first constructs two succinct circuits C̃sc
i := C̃si,s1−i

for i ∈ {0, 1} using the PRAM

algorithm Ã.

2. Next, algorithm B computes Zi ← sRE.Enc(1λ, C̃sc
i , 0λ, t) for i ∈ {0, 1}.

3. Algorithm B then samples b
$←{0, 1} and obtains b′ ← A(Zb, Z1−b, s0, s1).

4. Algorithm B outputs 1 if and only if b = b′; otherwise it outputs 0.

Note that for i ∈ {0, 1} we have

sRE.Dec(Zi) = Puz.Sol(Puz.Gen(si)) if x ∈ L
sRE.Dec(Zi) = Puz.Sol(Puz.Gen(s1−i)) if x ̸∈ L.
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Thus it holds that

(Zb, Z1−b, s0, s1) ≡ (Puz.Gen(sb),Puz.Gen(s1−b), s0, s1) if x ∈ L
(Zb, Z1−b, s0, s1) ≡ (Puz.Gen(s1−b),Puz.Gen(sb), s0, s1) if x ̸∈ L.

Now since |sRE.Enc(C̃sc
a,b)| ≈ |sRE.Enc(Csc

t,s,λ)|, we can appeal to the security of the succinct randomized
encoding and the assumption that A distinguishes with non-negligible advantage at least ε(λ) = 1/ poly(λ).
That is, we have that the adversary B decides the language L with probability at least 1 − (ε(λ) − µ(λ)),
where µ is a fixed negligible function given by the security of the randomized encoding. At this point, we
are almost done: the algorithm B decides the language L with non-negligible advantage. The final step is
arguing that cmc(B, λ) < g′(t(λ), λ). This can be seen by observing that the cmc of B is proportional to
the cmc of A, Puz.Gen, and the PRAM algorithm for the succinct circuits of SCt. Thus we obtain a PRAM
adversary B which violates the g′-strong memory-hard language assumption on L.

For Theorem 2.8, the proof is nearly identical except we appeal to the concrete security of the succinct
randomized encoding. By carefully specifying the parameters of the randomized encoding scheme, we obtain
the same adversary B which decides the language L with advantage 1/ poly(λ). The final step is then
constructing adversary B which decides L with constant advantage in the range (0, 1/2). This is done via
amplification à la BPP ⊂ P/ poly; namely, B runs B in parallel Θ(1/ε) times and takes the majority output,
which results in an adversary with constant advantage < 1/2. Further, the adversary B with cmc that is a
factor Θ(1/ε) larger than the cmc of B, completing the proof.8

Remark 4.5. As noted many times, amplification directly incurs a multiplicative blow-up in the cmc of a
PRAM algorithm performing the amplification. Thus we must carefully control the number of times our
adversary performs amplification in the security reduction, else the newly constructed adversary would have
cmc too large, causing our reduction to fail.

This is in direct contrast to the time-lock puzzle construction of Bitansky et al. [BGJ+16]: key to their
adversary is amplification à la BPP ⊂ P/poly. Note this is a non-uniform amplification, as it requires an
advice string (i.e., the required random string). However, this non-uniform parallel amplification does not
increase the overall depth of the computation, thus preserving their reduction. Such an amplification in our
setting would additionally incur a poly(λ) factor in the cmc of our adversary. Thus while our construction
borrows heavily from [BGJ+16], there are many subtle differences between the two that require careful
attention.

4.2 Minimality of Definition 2.2

We demonstrate that our definition of a memory-hard language is (essentially) minimal. In particular, given
a memory-hard puzzle (as per Definition 2.6) with a uniformly succinct solving algorithm, we construct a
memory-hard language (as per Definition 2.2). We recall and prove Proposition 2.3 of Section 2.1.

Proposition 2.3. Let Puz = (Puz.Gen,Puz.Sol) be a (g, ε)-memory hard puzzle such that Puz.Sol is com-
putable by a uniformly succinct circuit family {Ct,λ}t,λ of size |Ct,λ| ⩽ t · poly(λ, log(t)) for every λ and
difficulty parameter t := t(λ). For language LPuz := {(Z, s) : s = Puz.Sol(Z)}, we have that LPuz ∈ SCt and
is a (g, ε)-memory hard language.

Proof. Fix a difficulty parameter t. First note that given (Z, s), computing s′ = Puz.Sol(Z) and checking
s = s′ decides the language. Furthermore, by assumption Puz.Sol is uniformly succinct with circuit family
{Ct,λ} such that |Ct,λ| ⩽ t · poly(λ, log(t)), which implies that LPuz ∈ SCt. Second, if there exists a PRAM
algorithm cmc which decides LPuz with advantage at least ε and cmc(A) < g, then we can easily construct
adversary A′ to violate the security of the memory-hard puzzle. Upon receiving (Zb, Z1−b, s0, s1) as specified
by the security requirement of the memory-hard puzzle, A′ obtains b′ ← A(Zb, s0) and outputs 1 − b′.
Note that by construction cmc(A′) < g. Furthermore, if b = 0 (resp., b = 1), then (Z0, s0) ∈ LPuz (resp.,

8Relaxing the definition of weakly memory-hard language to 1/poly(λ) advantage instead of constant advantage removes
the Θ(1/ε) factor.
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(Z0, s0) ̸∈ LPuz), and A outputs the correct answer b′ = 1 (resp., b′ = 0) with advantage at least ε. Thus A′
outputs (1− b′) = b with advantage at least ε, breaking the security of the memory-hard puzzle.

We remark that the assumption that Puz.Sol is computable by some uniformly succinct circuit family is a
modest assumption that is satisfied by our construction. In particular, we note that the succinct randomized
encoding algorithm sRE.Dec of Garg and Srinivasan [GS18] used in our construction of Puz.Sol satisfies our
requirement of uniform succinctness.

It is an interesting open question to determine whether or not memory-hard puzzles yield memory-hard
languages unconditionally. Prior works have developed RAM to circuit transformations which transform
RAM algorithms running in time t to circuits of size t · polylog(t) [BCGT13, BTVW14]. However, it is
unclear if such transformations yield uniformly succinct circuits. Giving a uniformly succinct transformation
would (nearly) resolve the question: if one of the many RAM to circuit transformations yielded a uniformly
succinct circuit, then Proposition 2.3 holds unconditionally for any polynomial t.

4.3 Proof of Security for Theorem 2.7

We prove the security of Theorem 2.7. Suppose that Construction 4.3 is not a g-memory hard puzzle. Then
for every polynomial t′ there exists a polynomial t > t′ and a PRAM algorithm A with cmc(A, λ) < g(t(λ), λ),

for every negligible function µ there exists λ ∈ N and s0, s1 ∈ {0, 1}λ such that

Pr[A(Zb, Z1−b, s0, s1) = b] >
1

2
+ µ(λ),

where the probability is taken over b
$← {0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}. We construct

a PRAM adversary B that breaks the memory-hardness of some g′-strong memory-hard language L ∈ SCt,
for t := t(λ).

Fix t′, t, A, ε, λ, s0, and s1, where ε(λ) is the advantage of A. Note that ε(λ) = 1/ poly(λ). We specify
sub-routines that the adversary B will use.

1. Let L ∈ SCt be a g′-strong memory-hard language. By assumption there exists a PRAM algorithm
AL such that on input λ and t, AL(t, λ) outputs succinct circuit Csc

t,λ in time O(|Csc
t,λ|) such that

circuit Ct,λ = FullCirc(Csc
t,λ) decides Lλ. By assumption, |Ct,λ| = t · poly(λ, log(t)) and |Csc

t,λ| =
polylog(|Ct,λ|) = polylog(λ, t). Let pSC denote the polynomial such that AL(t, λ) runs in time
pSC(log(λ), log(t)). Note that cmc(AL, λ) ⩽ pSC(log(λ), log(t))

2.

2. For a, b ∈ {0, 1}λ, define a circuit C̃a,b such that for every x ∈ {0, 1}λ

C̃a,b(x) =

{
a Ct,λ(x) = 1

b Ct,λ(x) = 0
,

where Ct,λ decides the language Lλ. Note that since Ct,λ is uniformly succinct, the circuit C̃a,b is also

uniformly succinct. Thus there exists a PRAM algorithm Ã such that on input t, λ, a, b constructs
circuit C̃sc

a,b such that C̃a,b = FullCirc(C̃sc
a,b). Further, cmc(Ã, λ) ⩽ O(λ) + pSC(log(λ), log(t))

2.

We now define PRAM adversary B to break the memory-hard language assumption for language L.
We argue that B decides the language L with non-negligible advantage. We analyze the probability

that B(x) = 1 for x ∈ Lλ and note that the case for x ̸∈ Lλ is symmetric. By construction, we have

that B(x) ← (b = A(Z̃b, Z̃1−b, s0, s1)) for b
$← {0, 1} and Z̃i ← sRE.Enc(1λ, C̃sc

i , x,G). By construction, the

algorithm Puz.Gen(1λ, t(λ), si) constructs machine Mt,si such that on any input x′ ∈ {0, 1}λ, Mt,si(x
′) delays

for t steps then outputs si. Then Puz.Gen outputs Zi ← sRE.Enc(1λCsc
t,si , GM ) where GM = |FullCirc(Csc

t,si)|.
Note that Mt,si runs in time t and space O(λ + log(t)). By Lemma 3.8 this implies that GM = Õ(t · (λ +
log(t))) = t · poly(λ, log(t)) and that |Csc

t,si | = O(λ+ log(t)).
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PRAM algorithm B

Input: x ∈ {0, 1}λ.
Hardcoded: s0, s1 ∈ {0, 1}λ, t, λ, PRAM algorithms A and Ã, and sRE.Enc.

1. Obtain succinct circuits C̃sc
i := C̃sc

si,s1−i
= Ã(t, λ, si, s1−i) for i ∈ {0, 1}.

2. Obtain Z̃i ← sRE.Enc(1λ, C̃sc
i , x,G) for i ∈ {0, 1} where G = |FullCirc(C̃sc

i )| = t · poly(λ, log(t)).

3. Sample b
$←{0, 1}.

4. Obtain b′ ← A(Z̃b, Z̃1−b, s0, s1).

5. Output b′ = b.

Figure 2: PRAM adversary B for breaking memory-hard language L.

By the security of sRE, there exists a PPT simulator S such that for any poly-sized adversary AsRE there
exists a negligible function ϑ such that for all λ ∈ N, succinct circuits Csc, input x, and G = |FullCirc(Csc)|
we have ∣∣∣Pr [AsRE(Ĉ

sc
x′,t) = 1

]
− Pr

[
AsRE(S(1λ, y′, Csc, G)) = 1

]∣∣∣ ⩽ ϑ(λ),

where Ĉsc
x′,t ← sRE.Enc(1λ, Csc, x′, t) and y′ is the output of FullCirc(Csc)(x). Note that by construction of

the memory-hard puzzle, the adversary A is also an adversary against the succinct randomized encoding

scheme. This implies that for b
$←{0, 1} we have

Pr
[
A(Zb, Z1−b, s0, s1) = b : Zi ← Puz.Gen(1λ, t, si)

]
=

Pr
[
A(Zb, Z1−b, s0, s1) = b : Zi ← sRE.Enc(1λ, Csc

t,λ, 0
λ, t)

]
=

Pr
[
A(Ŝb, Ŝ1−b, s0, s1) = b : Ŝi ← S(1λ, si, Csc

t,λ, GM )
]
± ϑ(λ), (4)

and

Pr[B(x) = 1] = Pr
[
A(Z̃b, Z̃1−b, s0, s1) = b : Z̃i ← sRE.Enc(1λ, C̃sc

i , x,G)
]

= Pr
[
A(S̃b, S̃1−b, s0, s1) = b : S̃i ← S(1λ, si, C̃sc

i , G)
]
± ϑ(λ). (5)

SinceGM andG are both of asymptotic size t·poly(λ, log(t)), we have that Eqs. (4) and (5) are distinguishable
by A with advantage at most ±ϑ(λ). By assumption, A correctly outputs b with advantage at least ε(λ).
Observe that

(Z̃b, Z̃1−b, s0, s1) ≡ (Zb, Z1−b, s0, s1) x ∈ L;

(Z̃b, Z̃1−b, s0, s1) ≡ (Z1−b, Zb, s0, s1) x ̸∈ L,

where the above distributions are identical over b
$←{0, 1} and the random coins of sRE.Enc since sRE.Dec(Z̃i) =

Puz.Sol(Zi) for x ∈ L and sRE.Dec(Z̃i) = Puz.Sol(Z1−i) for x ̸∈ L. This implies for x ∈ L

Pr[B(x) = 1] ⩾ Pr
b

$←{0,1}

[
A(Zb, Z1−b, s0, s1) = b : Zi ← Puz.Gen(1λ, t, si))

]
− 2 · ϑ(λ)

>
1

2
+ ε(λ)− 2 · ϑ(λ),
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and for x ̸∈ L

Pr[B(x) = 0] ⩾ Pr
b

$←{0,1}

[
A(Zb, Z1−b, s0, s1) = b : Zi ← Puz.Gen(1λ, t, si))

]
− 2 · ϑ(λ)

>
1

2
+ ε(λ)− 2 · ϑ(λ),

This implies that B decides L with advantage δ(λ) = ε(λ)− 2 · ϑ(λ). Since ε(λ) = 1/ poly(λ), we have that
δ(λ) is a non-negligible function.

Finally, to break the g′-strong memory-hard language assumption, we show that cmc(B, λ) < g′(t, λ).

First note that sRE.Enc(1λ, C̃sc
i , x,G) runs in time poly(|C̃sc

i |, λ, log(G)). Then since |C̃sc
i | = polylog(λ, t)

and G = t · poly(λ, log(t)), we have that the runtime of sRE.Enc is poly(λ, log(t)). By assumption we have
that sRE.Enc runs in time psRE(λ, log(t)). Now by construction of B we have that

cmc(B, λ) < 2 · cmc(Ã, λ) + 2 · psRE(λ, log(t))2 + g′(t, λ)

⩽ O(λ) + 2 · pSC(log(λ), log(t))2 + ·psRE(λ, log(t))2 + g(t(λ), λ)

= g′(t, λ).

This implies that B breaks the g-strong memory-hard language assumption, completing the proof.

4.4 Proof of Security for Theorem 2.8

We prove the security of Theorem 2.8. We restate the theorem here as a reminder.

Theorem 2.8. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. Let sRE = (sRE.Enc, sRE.Dec)
be a (g, s, εsRE)-secure succinct randomized encoding scheme for g := g(t, λ) and s(λ) := t · poly(λ, log(t))
such that psRE is a fixed polynomial for the runtime of sRE.Enc. Let ε := ε(λ) = 1/ poly(λ) > 3εsRE(λ) be
fixed. If there exists a (g′, εL)-weakly memory-hard language L ∈ SCt for

g′(t, λ) := [g + 2psRE(log(t), λ)
2 + 2pSC(log(t), log(λ))

2 +O(λ)] ·Θ(1/ε),

and some constant εL ∈ (0, 1/2), then Construction 4.3 is a (g, ε)-weakly memory-hard puzzle. Here, pSC is
a fixed polynomial for the runtime of the uniform machine constructing the uniform succinct circuit for L.

Suppose that Construction 4.3 is not (g, ε)-memory hard. Then for any polynomial t′ there exists poly-
nomial t > t′ and a PRAM algorithm A with cmc(A, λ) < g(t(λ), λ), there exists λ0 such that for all λ > λ0

there exists s0, s1 ∈ {0, 1}λ such that

Pr [A(Zb, Z1−b, s0, s1) = b] >
1

2
+ ε(λ),

where the probability is taken over b
$← {0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}. We construct a

PRAM adversary B that breaks the memory-hardness of some g′-weakly memory-hard language L ∈ SCt.
Fix t′, t, A, ε, λ0, λ, s0, and s1. The remainder of the proof is nearly identical to the proof presented

in Section 4.3, however, the analysis is different to account for the concrete security requirements. In
particular, we first construct PRAM adversary B exactly as in Figure 2. We then appeal to the concrete
security requirement of the succinct randomized encoding. That is, there exists a probabilistic simulator S
and polynomial pS such that for every λ, every adversary AsRE running in time g(t(λ), λ), every succinct

circuit C ′ such that |FullCirc(C ′)| = G ⩽ s(λ), and every input x ∈ {0, 1}λ, we have∣∣∣Pr [AsRE(Ĉx,G) = 1
]
− Pr

[
AsRE(S(1λ, y, C ′, G)) = 1

]∣∣∣ ⩽ εsRE(λ),

where Ĉx,G ← sRE.Enc(1λ, C ′, x,G), y = FullCirc(C ′)(x), and S runs in time at most G · pS(λ). We remark
that the adversary A against our puzzle is also and adversary against the specified succinct randomized
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encoding scheme. In particular, adversary A has cmc(t, λ) < g(t(λ), λ), which upper bounds the running
time of A, and the puzzle constructs a succinct randomized encoding of the succinct circuit representing
Turing machine Mt,si . This succinct circuit C

sc
t,si represents larger circuit Ct,si of size t · poly(λ, log(t)). By

the same argument as in Section 4.3, we have that for x ∈ L

Pr[B(x) = 1] ⩾ Pr
b

$←{0,1}

[
A(Zb, Z1−b, s0, s1) = b : Zi ← Puz.Gen(1λ, t, si)

]
− 2 · εsRE(λ)

>
1

2
+ ε(λ)− 2 · εsRE(λ),

and for x ̸∈ L

Pr[B(x) = 0] ⩾ Pr
b

$←{0,1}

[
A(Zb, Z1−b, s0, s1) = b : Zi ← Puz.Gen(1λ, t, si)

]
− 2εsRE(λ)

>
1

2
+ ε(λ)− 2 · εsRE(λ).

Thus B decides L with advantage δ(λ) = ε(λ) − 2εsRE(λ). By the same analysis as in Section 4.3, we have
that

cmc(B, λ) < O(λ) + 2 · pSC(log(λ), log(t))2 + 2 · psRE(λ, log(t))2 + g(t(λ), λ).

Finally, we obtain adversary B which has advantage 1/4 for deciding L by amplification. That is, we run
adversary B in parallel Θ(1/δ(λ)) times and output the majority answer. Note that the initial Θ(1/δ)
amplification increases the advantage so some constant that depends on δ, after which we amplify Θ(1)
additional times to reach advantage 1/4. This increases the cmc by a multiplicative Θ(1/δ(λ)), which
implies

cmc(B, λ) <
(
O(λ) + 2 · pSC(log(λ), log(t))2 + 2 · psRE(λ, log(t))2 + g(t(λ), λ)

)
·Θ(1/δ(λ))

= g′(t(λ), λ).

Thus B breaks the g-weakly memory-hard language assumption.

5 One-time Memory-Hard Functions in the Standard Model

In this section we use memory-hard puzzles to construct (one-time) memory hard functions. Specifically, we
present a construction of a one-time memory-hard function assuming memory-hard puzzles exist, the exis-
tence of puncturable psuedorandom functions (PPRFs), and the existence of indistinguishability obfuscation
(iO) for circuits. In fact, we conjecture that our construction is a secure multi-time MHF though we are
unable to formally prove this for technical reasons. To the best of our knowledge, ours is the first construc-
tion of a memory-hard function in the standard model, assuming the existence of a suitably memory-hard
language.

We first formally define one-time memory-hard functions and their security in the standard model. Prior
definitions of memory-hard functions have been in the parallel random-oracle model (cf., [AS15,AT17]).

Definition 5.1 (One-Time Memory Hard Functions). A memory-hard function contains a pair of algorithms
(MHF.Setup,MHF.Eval) which are descried as follows.

• MHF.Setup(1λ, t(λ)) is a randomized algorithm that on input λ the security parameter and t(λ) the
hardness parameter, outputs public parameters pp.

• MHF.Eval(pp, x) is a deterministic algorithm that on input the public parameter pp and message x ∈
{0, 1}λ outputs h ∈ {0, 1}λ.

We say that (MHF.Setup,MHF.Eval) is a one-time memory hard function if the following hold.
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Efficiency. There exists a polynomial p(·) such that for all security parameters λ ∈ N, MHF.Eval is com-
putable in time t(λ) · p(λ) by a sequential RAM;

Correctness. There exists a negligible function µ such that for all security parameters λ, for all x, and
for all pp ∈ supp(MHF.Setup(1λ, t(λ))), we have Pr[h = h′] ⩾ 1 − µ(λ) for h := MHF.Eval(pp, x) and
h′ := MHF.Eval(pp, x) (if µ(λ) = 0 we say that the MHF is perfectly correct); and

One-Time Memory-Hard. Given a function g(·, ·) we say that MHF is g-memory hard if there exists a
polynomial t′ such that for all polynomials t(λ) > t′(λ) and every adversary A with cumulative memory
complexity cmc(A) < y for the function y(λ) := g(t(λ), λ), there exists a negligible function µ(λ) such

that for all λ ∈ N and every input x ∈ {0, 1}λ we have

|Pr [A(x, hb, pp) = b]− 1/2| ⩽ µ(λ),

where the probability is taken over pp ← MHF.Setup(1λ, t(λ)), b
$← {0, 1}, h0 ← MHF.Eval(x, pp) and

a uniformly random string h1
$←{0, 1}λ.

We are also interested in concretely secure one-time memory-hard functions.

Definition 5.2 (One-time (g, ε)-MHF). A tuple MHF = (MHF.Setup,MHF.Eval) is a one-time (g, ε)-MHF
if there exists a polynomial t′ such that for all polynomials t(λ) > t′(λ) and every adversary A with area-time

complexity cmc(A) < y, where y(λ) = g(t(λ), λ), and for all λ > 0 and x ∈ {0, 1}λ we have

|Pr [A(x, hb, pp) = b]− 1/2| ⩽ ε(λ),

where the probability is taken over pp ← MHF.Setup(1λ, t(λ)), b
$← {0, 1}, h0 ← MHF.Eval(x, pp) and a

uniformly random string h1 ∈ {0, 1}λ.

Remark 5.3. Security for our memory-hard functions is required to hold for any input x ∈ {0, 1}λ, not just
any x chosen by an adversary A. This is a strictly stronger requirement than allowing the adversary to
choose A (before or after the selection of public parameters).

5.1 Memory-Hard Function Construction

We construct a one-time memory-hard function from memory-hard puzzles, indistinguishable obfuscation
(iO), and (puncturable) psuedorandom functions (PPRFs). Our construction is shown in Construction 5.4,
and we show that it is a one-time memory-hard function in Theorem 2.9.

Construction 5.4. Let iO be an indistinguishablity obfuscator. Let λ ∈ N be the security parameter, let
t be a polynomial in λ, let F : {0, 1}λ × {0, 1}λ → {0, 1}λ be a PPRF, and let (Puz.Gen,Puz.Sol) be a
(g, ε)-memory-hard puzzle. We describe algorithms MHF.Setup and MHF.Eval in Figure 3.

Theorem 2.9. Let t := t(λ) be a polynomial and let g := g(t, λ) be a function. If there exists a (tPPRF, εPPRF)-
secure PPRF family, a (tiO, εiO)-secure iO scheme, and a (g, εMHP)-memory hard puzzle for g ⩽ min{tiO(λ),
tPPRF(λ)}, then Construction 5.4 is a one-time (g′, εMHF)-MHF for

g′(t, λ) = g(t, λ)/p(log(t), λ)2,

where εMHF(λ) = 2 · εMHP(λ)+ 3 · εPPRF(λ)+ εiO(λ) and p(log(t), λ) is a fixed polynomial which depends on
the efficiency of underlying memory-hard puzzle and iO.

Efficiency of Construction 5.4. The efficiency of MHF.Eval follows directly from the run-time of prog
and Puz.Sol. Since (Puz.Gen,Puz.Sol) is a puzzle, we have that Puz.Sol runs in time t(λ) · poly(λ). Next,
the run-time of prog depends on the run-time of the PRF scheme and Puz.Gen. In particular, PRFs are
efficiently computable in time poly(λ) and Puz.Gen is computable in time poly(λ, log(t(λ))). Therefore the
efficiency of MHF.Eval is t(λ) · poly(λ) + poly(λ, log(t(λ))) = t(λ) · poly(λ) as desired.
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pp← MHF.Setup(1λ, t := t(λ))

1. Sample keys Ki
$←{0, 1}λ for i ∈ [3]

2. Output pp := iO(prog[K1,K2,K3, λ, t])

h = MHF.Eval(pp, x)

1. Compute Z ← pp(x,∅)
//Z = Puz.Gen(1λ, t, F (K1, x);F (K2, x))

2. Compute r′ ← Puz.Sol(Z)

3. Compute h← pp(x, r′) //h = F (K3, x)

4. return h

prog[K1,K2,K3, λ, t](x, s
′)

Internal (hardcoded) state: the set of secret
PRF keys K1,K2,K3, and hardness parameter λ
and t = t(λ).

1. Compute s := F (K1, x) and r := F (K2, x)

2. if s′ = ∅,

- return Z := Puz.Gen(1λ, t, s; r)

3. else if s = s′, return h = F (K3, x)

4. else return ⊥

Figure 3: MHF.Setup, MHF.Eval, and prog.

Correctness of Construction 5.4. Completeness of (Puz.Gen,Puz.Sol) guarantees that for every λ ∈ N,
t < 2λ, s ∈ {0, 1}λ, and Z ← Puz.Gen(1λ, t, s), we have that s = Puz.Sol(Z) with probability 1. This

implies that for a fixed random string r ∈ {0, 1}λ, we have s = Puz.Sol(Puz.Gen(1λ, t, s; r)). Once pp ←
MHF.Setup(1λ, t(λ)) has been fixed, the PPRF keys are fixed within prog. This implies that on any input
x, if h1, h2 ← MHF.Eval(pp, x) then h1 = h2 with probability 1.

One-Time Memory-Hardness of Construction 5.4. We give a high-level overview of proof of memory-
hardness of our construction. The formal proof is presented to Section 5.2. To prove memory-hardness, we
transform a MHF attacker A with depth d and total size G (gates) into a MHP attacker B with depth
d′ = d+ p(log(t), λ)/4 and size G′ = G+ p(log(t), λ)/4, leading to the multiplicative loss in cmc.

To prove Theorem 2.9, we show how to use an MHF attacker A to break security of the underlying MHP.
Our reduction involves four hybrids. Most of the security reduction is fairly standard. In the first hybrid
H0, we construct our memory-hard function as per Construction 5.4. Our second hybrid H1 then modifies
the construction by first puncturing the PPRF keys Ki{x0, x1} at a target points x0, x1 and hardcode the
values sj = F (K1, xj), Zj = Puz.Gen(1λ, t, sj , F (K2, xj)) and h = F (K3, xj) for j ∈ {0, 1} to obtain a
new (equivalent) program prog1, relying on iO security for indistinguishability with the first hybrid H0.
In the third hybrid H2 we modify s0, s1, Z0, Z1 and h0, h1 appropriately and rely on PPRF security for
indistinguishability between H2 and H1. The most interesting step in our reduction is the final hybrid
H3 where we flip a bit b′ and swap the puzzles Z0, Z1 if and only if b′ = 1; i.e., we hardcode puzzles
Z ′0 = Zb′ , Z

′
1 = Z1−b′ . We rely on the security of the memory-hard puzzle to show that any attacker with

low cmc cannot distinguish between the last two hybrids.

Remark 5.5. For some MHF applications it is desirable to ensure that the evaluation algorithm is data-
independent; i.e., the induced memory access pattern is independent of the input. Data-independent memory-
hard functions (iMHFs) (and computationally data-independent memory-hard functions (ciMHFs) [ABZ20])
provide natural resistance to side-channnel attacks. We observe that Construction 5.4 is (computationally)
data-independent as long as the underling iO and sRE schemes have data-independent evaluation algorithms,
and that any candidate iO/sRE scheme would satisfy this condition.

5.2 Proof of Theorem 2.9

Proof Overview. We use a hybrid argument to prove that Construction 5.4 is secure. We introduce
hybrids H0, H1, H2 and H3 where H0 is the original construction and we can show that any attacker wins
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the MHF game in H3 with negligible probability. Indistinguishability of the hybrids will follow from iO
security, PPRF security, and MHP security, respectively.

In the rest of this section, we first define the relevant hybrids, then we will prove their indistinguishability,
and finally prove the security of the proposed scheme.

5.2.1 Defining Hybrids

In what follows, we will define the hybrids H0, H1, H2 and H3 describing the differences between each pair Hi

and Hi+1. Hybrid H0 is the real world where we use Construction 5.4 without modification. We use notation
prog[K1,K2,K3, λ, t](x, s) to represent the program prog with hardcoded values K1,K2,K3, λ, t which takes
(x, s′) as input.

Hybrid H0. Our first hybridH0 (real) uses the original construction Construction 5.4 without modification
i.e., we set ppH0

← MHF.Setup(1λ).

Hybrid H1. This hybrid is similar toH0 except that we modify MHF.Setup to puncture the keysK1,K2,K3

at x0 and x1, hardcode the puzzles Z0, Z1 (resp. solutions s0, s1 and outputs h0, h1) corresponding to x0

and x1. Specifically we hardcode the values si = F (K1, xi), hi = F (K3, xi) and Zi := Puz.Gen(1λ, si; ri)
for i ∈ {0, 1} where ri := F (K2, x). We also modify prog to and equivalent program prog1 that uses the
puctured keys Ki{x0, x1} along with the hardcoded values Z0, Z1. MHF.Setup is defined below.

pp← MHF.Setup(1λ, t(λ))

1. Sample secret keys Ki
$←{0, 1}λ for i ∈ [3].

2. Generate punctured keys Ki{x0, x1} ← F.puncture(Ki, x0, x1) for each i ∈ [3].

3. Compute hardcoded values si = F.Eval(K1, xi), ri := F (K2, x), Zi := Puz.Gen(1λ, si; ri) and hi =
F (K3, xi) for i ∈ {0, 1}.

4. Output pp := iO(prog1[K1{x1, x2},K2{x1, x2},K3{x1, x2}, s0, s1, h0, h1, Z0, Z1, λ, t = t(λ)] ).

We replace the original program prog with the program prog1 with hard-coded values

[Kj∈[3]{x0, x1}, s0, s1, h0, h1, Z0, Z1]

described in Figure 4 and then set ppH1
= iO (prog1). Here, we stress that the hardcoded values are

selected to ensure that prog and prog1 are functionally equivalent; i.e., Z0 := Puz.Gen(1λ, s0; r0), Z1 :=
Puz.Gen(1λ, s1; r1), si = F.Eval(K1, xi), ri = F.Eval(K2, xi) and hi = F.Eval(K3, xi) for i ∈ {0, 1}. Intu-
itively, indistinguishability of hybrids 1 and 2 follows from iO security.

The key difference between prog1 and prog (highlighted in blue) is that the PPRF keys K1, K2 and K3 are
replaced with the punctured keys K1{x0, x1}, K2{x0, x1}, and K3{x0, x1} respectively. The missing values
are hard coded so that prog1 can still mimic prog exactly even when the input is x0 or x1. By appealing to
iO security we can argue that any attacker running in time at most tiO(λ) can distinguish H0 and H1 with
probability at most εiO(λ).

Hybrid H2. The key difference between hybrid 2 and hybrid 1 is that we now select the hardcoded values
s0, s1, h0, h1, Z0, and Z1 randomly — independent of the PPRF keys K1,K2,K3. In particular, for i ∈ {0, 1}
we sample si, hi, ri uniformly at random and then set Zi = Puz.Gen(1λ, si; ri). We then set

ppH2
← iO(prog1[K1{x0, x1},K3{x0, x1},K3{x0, x1}, s0, s1, h0, h1, Z0, Z1, λ, t(λ)]) .

The modified program MHF.Setup is defined below.
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prog1[Kj∈[3]{x0, x1}, s0, s1, h0, h1, Z0, Z1, λ, t(λ)](x, s
′)

Internal (hardcoded) state: punctured PRF keys K1{x0, x1}, K2{x0, x1}, K3{x0, x1}, h0, h1, s0, s1,
Z0, Z1, hardness parameters λ, t

Input: x, s′.

1. if x ∈ {x0, x1}

if s′ = ∅
if x = x0, return Z0, else, return Z1

else if x = x0 and s′ = s0, return h0

else if x = x1 and s′ = s1, return h1

else return ⊥

2. s := F (K1{x0, x1}, x), r := F (K2{x0, x1}, x)

3. if s′ = ∅

return Z := Puz.Gen(g(t(λ)), s; r)

4. if s = s′

return h = F (K3{x0, x1}, x)

5. return ⊥

Figure 4: Description of the program prog1[Kj∈[3]{x0, x1}, s0, s1, h0, h1, Z0, Z1].

pp← MHF.Setup(1λ, t(λ))

1. Sample secret keys Ki
$←{0, 1}λ for i ∈ [3].

2. Generate punctured keys Ki{x0, x1} ← F.puncture(Ki, x0, x1) for each i ∈ [3].

3. Sample si, hi, ri uniformly at random and compute Zi := Puz.Gen(1λ, si; ri) for i ∈ {0, 1}.

4. Output pp := iO(prog1[K1{x1, x2},K2{x1, x2},K3{x1, x2}, s0, s1, h0, h1, Z0, Z1, λ, t(λ)]).

Intuitively, indistinguishability follows from puncturable PRF security. In particular, any attacker run-
ning in time at most tPPRF (λ) distinguishes H1 and H2 with advantage at most 3 · εPPRF(λ) since we
punctured three PPRF keys K1,K2,K3.

Hybrid H3. In this hybrid the values s0, s1, h0, h1, Z0, Z1 are selected exactly as in hybrid 2. We then flip
a random coin b′ ∈ {0, 1} and set

ppH3
← iO(prog1[K1{x0, x1},K3{x0, x1},K3{x0, x1}, s0, s1, h0, h1, Zb′ , Z1−b′ , λ, t(λ)]).

If b′ = 0 then we follow hybrid 2 exactly, but if b′ = 1 the puzzles Z0 and Z1 are swapped. The modified
program MHF.Setup is defined below.
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pp← MHF.Setup(1λ, t(λ))

1. Sample secret keys Ki
$←{0, 1}λ for i ∈ [3].

2. Generate punctured keys Ki{x0, x1} ← F.puncture(Ki, x0, x1) for each i ∈ [3].

3. Sample si, hi, ri randomly and compute Zi := Puz.Gen(1λ, si; ri) for i ∈ {0, 1}.

4. Sample a random bit b′ ∈ {0, 1}.

5. Output pp := iO(prog1[K1{x1, x2},K2{x1, x2},K3{x1, x2}, s0, s1, h0, h1, Zb′ , Z1−b′ , λ, t(λ)]).

Intuitively, indistinguishability follows from (g, εMHP)-security of the underlying memory hard puzzle
MHP. However, we stress that indistinguishability only followed against a cmc bounded adversary who is not
able to win the MHP security game. For example, if b = 1 and attacker is able to solve Z0 := ppH3

(x0,∅) then
the attacker might notice that the order of the hardcoded puzzles Zb and Z1−b was swapped in comparison
to the solutions s0 and s1 which will never happen in hybrid 2. We argue that if the attacker can distinguish
between hybrids 2 and 3 then we can simulate the attacker to win the MHP security game. It follows that
any attacker A with bounded cmc(A) cannot distinguish between hybrids H2 and H3.

Finally, we remark that an MHF attacker has negigible advantage in hybrid H3. Otherwise, we could
break security of the underlying MHP since the puzzles Z0 and Z1 are presented in random order. It remains
to argue that hybrids H2 and H3 are indistinguishable. We show this via the following lemma.

Lemma 5.6 (Indistinguishability of hybrid H2 and H3). Suppose that a (g, εMHP)-MHP is used in Construc-
tion 5.4. Then, for any distinguisher A with cmc(A) ⩽ y for the function y(λ) = g(t(λ), λ)/p(log t(λ), λ)2

and any λ > 0 we have ∣∣Pr[A(x0, x1, ppH3
) = 1]− Pr[A(x0, x1, ppH2

) = 1]
∣∣ ⩽ εMHP(λ)

Here, p(·, ·) is a fixed polynomial which depends on the efficiency of the underlying MHP and iO constructions.

Proof. To prove this lemma, we first suppose for contradiction that there exists an adversary, say A, who
can distinguish between hybrids H2 and H3 with advantage f(λ) > εMHP(λ). Then we construct another
adversary B with cmc(B, λ) < cmc(A, λ) · p(log t(λ), λ)2 ⩽ g(t(λ), λ) that simulates A to break (g, εMHP)-
security for the underlying MHP.

Our MHP attacker B(Zb, Z1−b, s0, s1) attempts to solve its MHP challenge (Zb, Z1−b, s0, s1) as follows.
First, B sets

pp← iO(prog1[K1{x0, x1},K2{x0, x1},K3{x0, x1}, s0, s1, h0, h1, Zb, Z1−b, λ, t(λ)]),

where h0 and h1 are selected uniformly at random. Then the adversary B runs A(x0, x1, pp) to obtain a bit
b′, and outputs b′.

Observe that pp is generated exactly as in hybrid H3. Conditioning on the event that b = 0 we have that
pp is generated as in hybrid H2. Thus, we have Pr[A(x0, x1, pp) = 1|b = 0] = Pr[A(x0, x1, ppH2

) = 1] and

Pr[A(x0, x1, pp) = 1|b = 1] = 2Pr[A(x0, x1, pp) = 1]− Pr[A(x0, x1, pp)|b = 0]

= 2Pr[A(x0, x1, ppH3
) = 1]− Pr[A(x0, x1, ppH2

) = 1] .

Then B wins with probability

Pr[B(s0, s1, Zb, Z1−b) = b]

=
1

2
Pr[A(x0, x1, pp) = 1|b = 1] +

1

2
(1− Pr[A(x0, x1, pp) = 1|b = 0])

= Pr[A(x0, x1, ppH3
) = 1]− 1

2
Pr[A(x0, x1, ppH2

) = 1]− 1

2
Pr[A(x0, x1, pp) = 1|b = 0] +

1

2
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= Pr[A(x0, x1, ppH3
) = 1]− Pr[A(x0, x1, ppH2

) = 1] +
1

2
.

So we have ∣∣∣∣Pr[B(s0, s1, Zb, Z1−b) = b]− 1

2

∣∣∣∣ = ∣∣Pr[A(x0, x1, ppH3
) = 1]− Pr[A(x0, x1, ppH2

) = 1]
∣∣

⩾ f(λ).

This contradicts the security of the underlying MHP as long as the cmc of B is sufficiently small; i.e.,
cmc(B, λ) < g(t′(λ), λ).

Finally, we analyze the cmc of B. Note that a circuit for Bλ requires at most p(log(t′), λ) additional gates
to generate public parameters pp as

pp← iO(prog1[K1{x0, x1},K2{x0, x1},K3{x0, x1}, s0, s1, h0, h1, Zb, Z1−b, λ, t(λ)])

before simulating A. Here, the specific polynomial p(·, ·) depends on the complexity of the underlying iO
construction and the underlying MHP construction. Suppose that the circuit for Aλ had depth d > 1
(time) and G gates (area) then the circuit for Bλ would have depth at most d + p(log(t′), λ) and at most
G+ p(log(t′), λ) gates. Then the cmc of Bλ would be at most

(d+ p(log(t′), λ)) · (G+ p(log(t′), λ)) ⩽ G · d+ (G+ d) · p(log(t′), λ) + p(log(t′), λ)2

⩽ G · d · (1 + p(log(t′), λ)) + p(log(t′), λ)2

⩽ G · d · p(log(t′), λ)2

⩽ cmc(A, λ) · p(log(t′), λ)2 = g(t(λ), λ).

This completes the proof.

Next we show that any adversary in hybrid 3 has bounded advantage.

Lemma 5.7 (Bounded advantage in H3). Suppose that we use a (g, εMHP)-secure MHP and (tiO, εiO)-
secure iO in Construction 5.4. Then, for any A with cmc(A) ⩽ y with y(λ) = g(t(λ), λ)/p(log(t), λ)2 and
any λ > λ0 we have ∣∣∣∣Pr[A(x0, hb, ppH3

) = b]− 1

2

∣∣∣∣ ⩽ εMHP(λ) ,

where the specific polynomial p(·, ·) depends on the efficiency of the underlying constructions of iO and the
memory-hard puzzle.

Proof. Assume by contradiction that an MHF attacker A wins the MHF security game with advantage
f(λ) > εMHP(λ). We define a MHP attacker B(Zb, Z1−b, s0, s1) as follows. First we generate pp as pp ←
iO(prog1[Kj∈[3]{x0, x1}, s0, s1, h0, h1, Zb, Z1−b, λ, t(λ)]), where the values si, hi, ri are sampled randomly and

Zi = Puz.Gen(1λ, si; ri). Next we run A(x0, h0, pp) to obtain a bit b′. We then output this bit b′. Observe
that B’s advantage is identical to that of A; i.e., at most f(λ). In particular, if b = 0 then

Pr[b′ = b|b = 0] = Pr[A(x0, h0, ppH3
) = 0].

Similarly,
Pr[b′ = b|b = 1] = Pr[A(x0, h1, ppH3

) = 1]

since swapping Z0, Z1 is equivalent to swapping h0, h1. Thus we have∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ = f(λ) .

Thus, if the cmc of B is sufficiently small we obtain a contradiction. As in the proof of Lemma 5.6 above,
the cmc increases by a multiplicative factor of p(t(λ), λ)2 at worst, where the specific polynomial p(·, ·)
depends on the complexity of the underlying iO construction and the underlying MHP construction.
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We now to prove Theorem 2.9.

Proof of Theorem 2.9. Fix our MHF attackerA(x0, hb) with cmc(A) ⩽ y with y(λ) = g(t(λ), λ)/p(log(t), λ)2.
A attempts to distinguish hb if a real value or a uniformly random value. From Lemma 5.7 we have∣∣∣∣Pr[A(x0, hb, ppH3

) = b]− 1

2

∣∣∣∣ ⩽ εMHP(λ) .

Since hybrids H2 and H3 are indistinguishable we can apply Lemma 5.6 to show that∣∣∣∣Pr[A(x0, hb, ppH2
) = b]− 1

2

∣∣∣∣ ⩽ ∣∣∣∣Pr[A(x0, hb, ppH3
) = b]− 1

2

∣∣∣∣+ εMHP ⩽ 2εMHP(λ) .

Note that since A has cmc(A, λ) ⩽ g(t(λ), λ)/p(log t, λ)2 we can assume that A runs in time less than
min{tiO(λ), tPPRF(λ)}. Thus, by PPRF security we have∣∣∣∣Pr[A(x0, x1, hb, h1−b, ppH1

) = b]− 1

2

∣∣∣∣ ⩽ ∣∣∣∣Pr[A(x0, x1, hb, h1−b, ppH2
) = b]− 1

2

∣∣∣∣+ 3εPPRF(λ)

⩽ 3εPPRF(λ) + 2εMHP(λ) .

Finally, by iO security we have∣∣∣∣Pr[A(x0, hb, ppH0
) = b]− 1

2

∣∣∣∣ ⩽ ∣∣∣∣Pr[A(x0, x1, hb, h1−b, ppH1
) = b]− 1

2

∣∣∣∣+ εiO(λ)

⩽ εiO(λ) + 3εPPRF(λ) + 2εMHP(λ) .

This completes the proof.

6 Locally Decodable Codes for Resource-Bounded Channels in
the Standard Model

Our second application of memory-hard puzzles is constructing locally decodable codes (LDCs) for resource-
bounded channels in the standard model. In the classical LDC setting the sender first encodes message
x ∈ {0, 1}k to obtain a longer C = Enc(x) ∈ {0, 1}K and transmits C over a noisy (adversarial) channel. The

adversarial channel may flip up to δK bits in C before delivering the corrupted codeword C̃ ∈ {0, 1}K to the
receiver. If the receiver wants to decode a bit xi of the original message, the receiver can run a probabilistic
local decoding procedure which will (with high probability) recover the correct value of xi after examining at

most ℓ bits of the codeword C̃. It is desirable to ensure that the code has constant rate (K = Θ(k)) and small
locality, e.g., ℓ = polylog(k). Unfortunately, in the classical setting there are no known LDC constructions
which achieve both of these properties. For example, for constant δ there are irreconcilable tradeoffs between
the rate and the locality. The best known constructions with constant locality ℓ ⩾ 3 have super-polynomial
rate [Yek08, DGY11, Efr12], and the best known constructions with constant rate have super-logarithmic
(but slightly sub-polynomial) locality [KMRS17]. Moreover, it is known that K = Θ(exp(k)) when ℓ = 2
[KdW04], and the best known lower bounds are only quadratic [Woo12].

Blocki, Kulkarni, and Zhou [BKZ20] studied LDCs in the setting where the adversarial channel is resource-
bounded and showed how to achieve LDCs with constant rate and locality ℓ = polylog(k). In this setting,
the channel is given C and is still allowed to flip up to δK bits, but the computations that the channel may
perform are constrained in some way: e.g., space, cmc, sequential time. Arguably, any channel arising in
nature can be modeled as a resource-bounded channel. In this sense, the constructions of Blocki, Kulkarni,
and Zhou [BKZ20] would be suitable solution for communication over noisy channels arising in nature.
However, the constructions of Blocki, Kulkarni, and Zhou [BKZ20] utilize random oracles, and the question
of constructing resource-bounded LDCs in the standard model was left as an open question.
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We show how to utilize cryptographic puzzles to construct resource-bounded LDCs in the standard
model with constant rate and locality ℓ = polylog(k). Our construction extends ideas of Blocki, Kulkarni,
and Zhou [BKZ20] by replacing random oracles with cryptographic puzzles that are unsolvable by the
resource-bounded channel in consideration. Combined with our construction of Memory-Hard Puzzles and
the Time-Lock Puzzles from [BGJ+16], this yields concrete constructions of an LDC against cmc bounded
channels and sequentially bounded channels, respectively. We additionally leverage a recent result of Block
and Blocki [BB21] to obtain LDCs in the setting where the resource-bounded may insert/delete up to δK
bits by using the “Hamming-to-InsDel” compiler of Block et al. [BBG+20] to transform our construction
into a resource-bounded LDC for insertion-deletion errors.

6.1 Building Blocks

We begin by introducing definitions and building blocks relevant to our construction. For ease of presentation,
we write this section assuming a binary alphabet {0, 1}, but note that the definitions extend to any q-ary
alphabet Σ.

Definition 6.1. A (K, k)-coding scheme C[K, k] = (Enc,Dec) is a pair of algorithms Enc : {0, 1}k → {0, 1}K

and Dec : {0, 1}K → {0, 1}k. The rate of the scheme is defined as R = k/K.

For two strings x, y ∈ {0, 1}n, we let HAM denote the Hamming distance between x and y, where
HAM(x, y) := |{i : xi ̸= yi}|.

Definition 6.2. A (K, k)-coding scheme C[K, k] = (Enc,Dec) is an (ℓ, δ, p)-locally decodable code (LDC) if
Dec on input index i ∈ [k] and oracle access to string y′ such that HAM(Enc(x), y′) ⩽ δK outputs xi with
probability at least p, making at most ℓ queries to y′.

The following definition is a slight variation of LDCs called LDC∗. An LDC∗ is an LDC that is required
to decode the entire original message while making as few queries as possible to its provided oracle.

Definition 6.3 ([BKZ20]). A (K, k)-coding scheme C[K, k] = (Enc,Dec) is an (ℓ, δ, p)-LDC∗ if Dec, with
oracle access to a word y′ such that HAM(Enc(x), y′) ⩽ δK, makes at most ℓ queries to y′ and outputs x
with probability at least p.

Using a repetition code one can construct a LDC∗ where ℓ = Θ̃(k) and K ≫ ℓ, k can be as large as we
want [BKZ20].

We also define private LDCs which are secure with respect to a particular class of algorithms C. In this
setting, the encoder/decoder share a secret key sk ∈ {0, 1}∗ which is not given to the channel. Fixing C as
the class of all probabilistic polynomial time algorithms, Ostrovsky et al. [OPS07] constructed a private LDC
with constant rate and locality polylog(k). We follow the definition of private LDCs from [BKZ20,BB21],
which is equivalent to the definition from [OPS07].

Definition 6.4 (One-Time Private Key LDC). A triple of probabilistic algorithms C[K, k, λ] = (Gen,Enc,Dec)
is (ℓ, δ, p, ε,C)-private locally decodable code (private LDC) against the class of algorithms C if

1. Gen(1λ) is the key generation algorithm that takes as input 1λ and outputs secret key sk ∈ {0, 1}∗ for
security parameter λ;

2. Enc : {0, 1}k ×{0, 1}∗ → {0, 1}K is the encoding algorithm that takes as input message x ∈ {0, 1}k and

secret key sk and outputs a codeword y ∈ {0, 1}K ;

3. Decy
′
: [k]× {0, 1}∗ → {0, 1} is the decoding algorithm that takes as input index i ∈ [k] and secret key

sk, is additionally given query access to a corrupted codeword y′ ∈ {0, 1}K , and outputs b ∈ {0, 1} after
making at most ℓ queries to y′; and
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4. For all algorithms A ∈ C and all messages x ∈ {0, 1}k we have

Pr[priv-LDC-Sec-Game(A, x, λ, δ, p) = 1] ⩽ ε,

where the probability is taken over the random coins of A and Gen, and priv-LDC-Sec-Game defined in
Figure 5.

priv-LDC-Sec-Game(A, x, λ, δ, p) :
1. The challenger generates a secret key sk← Gen(1λ), computes the codeword y ← Encsk(x, λ) for the

message x and sends the codeword y to the attacker.

2. The attacker outputs a corrupted codeword y′ ← A (x, y, λ, δ, p, k,K) where y′ ∈ {0, 1}K should have
Hamming distance at most δK from y.

3. The output of the experiment is determined as follows:

priv-LDC-Sec-Game(A, x, λ, δ, p) =

{
1 if HAM(y, y′) ⩽ δK and ∃i ∈ [k] s.t. Pr[Decy

′

sk(i, λ) = xi] < p

0 otherwise

If the output of the experiment is 1 (resp. 0), the attacker A is said to win (resp. lose) against C.

Figure 5: Definition of priv-LDC-Sec-Game, which defines the security of the a one-time private Hamming
LDC against the class C of algorithms.

6.2 LDC Construction

Our construction is a general compiler which takes a private LDC, a LDC∗, and a puzzle Puz which is hard
for some class of algorithms C and outputs an LDC which is secure against the class of algorithms C. We first
formally define puzzles which are hard for algorithm class C (generalizing Definition 2.6) and then define
LDCs which are secure against the class C.

Definition 6.5 ((C, ε)-hard Puzzle). A puzzle Puz = (Puz.Gen,Puz.Sol) is a (C, ε)-hard puzzle for algorithm
class C there exists a polynomial t′ such that for all polynomials t > t′ and every algorithm A ∈ C, there
exists λ0 such that for all λ > λ0 and every s0, s1 ∈ {0, 1}λ we have

|Pr[A(Zb, Z1−b, s0, s1) = b]− 1/2| ⩽ ε(λ),

where the probability is taken over b
$←{0, 1} and Zi ← Puz.Gen(1λ, t(λ), si) for i ∈ {0, 1}.

Definition 6.6 (C-Secure LDC). Let C be a class of algorithms. A (K, k)q coding scheme C[K, k] is an
(ℓ, δ, p, ε,C)-locally decodable code if

1. Enc : {0, 1}k → {0, 1}K is the encoding algorithm that takes as input message x ∈ {0, 1}k and outputs

a codeword y ∈ {0, 1}K ;

2. Decy
′
: [k] → {0, 1} is the decoding algorithm that takes as input index i ∈ [k], is additionally given

query access to a corrupted codeword y′ ∈ {0, 1}K , and outputs b ∈ {0, 1} after making at most ℓ
queries to y′; and

3. For all algorithms A ∈ C and all messages x ∈ {0, 1}k we have

Pr[LDC-Sec-Game(A, x, λ, δ, p) = 1] ⩽ ε,

where the probability is taken over the random coins of A and LDC-Sec-Game, defined in Figure 6.
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LDC-Sec-Game(A, x, λ, δ, p) :
1. The challenger computes Y ← Enc(x, λ) encoding the message x and sends Y ∈ {0, 1}K to the

attacker.

2. The channel A outputs a corrupted codeword Y ′ ← A (x, Y, λ, δ, p, k,K) where Y ′ ∈ {0, 1}K has
Hamming distance at most δK from Y .

3. The output of the experiment is determined as follows:

LDC-Sec-Game(A, x, λ, δ, p) =

{
1 if HAM(Y, Y ′) ⩽ δK and ∃i ⩽ k s.t. Pr[DecY

′
(i, λ) = xi] < p

0 otherwise

If the output of the experiment is 1 (resp. 0), the channel is said to win (resp. lose).

Figure 6: LDC-Sec-Game defining the interaction between an attacker and an honest party.

We now present our LDC construction.

Construction 6.7. Let Cp[Kp, kp, λ] = (Gen,Encp,Decp) be a private LDC, let C∗[K∗, k∗] = (Enc∗,Dec∗) be
a LDC∗, and let Puz = (Puz.Gen,Puz.Sol) be a (C, ε′)-hard puzzle. Let t′ be the polynomial guaranteed by
Definition 6.5. Then for any λ ∈ N we construct Cλ[K, k] = (Encλ,Decλ) as follows:

Encλ(x)[Cp, C∗,Puz] : Dec
Y ′
p ◦Y

′
∗

λ (i)[Cp, C∗,Puz] :

1. Sample random seed s
$←{0, 1}kp .

2. Choose polynomial t > t′ and compute Z ←
Puz.Gen(1λ, t(λ), s), where Z ∈ {0, 1}k∗ .

3. Set Y∗ ← Enc∗(Z).

4. Set sk← Genp(1
λ; s).

5. Set Yp ← Encp(x, λ; sk).

6. Output Yp ◦ Y∗.

1. Decode Z ← DecY
′
∗
∗ .

2. Compute s← Puz.Sol(Z).

3. Compute sk← Genp(1
λ; s).

4. Output Dec
Y ′
p

p (i; sk).

We prove that if there exists a C-hard puzzle, then Construction 6.7 is a C-secure Hamming LDC.

Theorem 6.8. Let C be a class of algorithms. Let Cp[Kp, kp, λ] be a (ℓp, δp, pp, εp)-private LDC and let
C∗[K∗, k∗] be a (ℓ∗, δ∗, p∗)-LDC

∗. Further assume that Encp, Decp, and Enc∗ are contained in C. If there
exists a (C, ε′)-hard puzzle, then for any λ ∈ N Construction 6.7 is a (ℓ, δ, p, ε,C)-locally decodable code
Cλ[K, k] = (Encλ,Decλ) with k = kp, K = Kp + K∗, ℓ = ℓp + ℓ∗, δ = (1/K) · min{δ∗ · K∗, δp · Kp},
p ⩾ 1− kp(2− pp − p∗), and ε = k · (εp · p+ 2ε′)/(1− p).

Remark 6.9. In the above theorem, ε has an implicit dependence on pp and p∗. In particular, since p ⩾
1− kp(2− pp − p∗), we have that ε ⩾ k · [εp · (1− kp(2− pp − p∗))]/(kp(2− pp − p∗)).

Efficiency. The efficiency of the scheme is directly given by the efficiency of Cp, C∗, and Puz. In particular,
if all of the algorithms defined by Cp, C∗,Puz are polynomial time, then Encλ and Decλ both run in polynomial
time. We also remark that our LDC encoder Encλ can be resource bounded: the encoder Encλ only needs
to be able to compute Puz.Gen, Encp, Enc∗, and Genp. Crucially, the encoder does not need to compute
Puz.Sol. This is in contrast with [BKZ20], where their encoding function could not be resource-bounded,
i.e., the construction inherently requires both the decoder and the encoder to evaluate a safe-function that
cannot be computed by the resource-bounded channel.
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Security. We formally show the security of our scheme in Section 6.3 at the end of this section, and provide
a high-level overview here. In the same vein as Blocki et al. [BKZ20], we employ the use of a two-phased
hybrid distinguisher. To set up this distinguishing argument, first we consider two encoders Enc0 and Enc1.
The encoder Enc0 is exactly the encoder for our LDC in Construction 6.7. The encoder Enc1 is the hybrid
encoder and differs as follows: (1) Enc1 is given additionally as input a secret key sk to be used with the
private LDC Cp, rather than generating this key; and (2) the part of the codeword Y∗ is constructed by
sampling some s′ independently and uncorrelated with sk, and then encoding Enc∗(Puz.Gen(s

′)).
Given the encoders Enc0,Enc1, we construct our two-phase hybrid distinguisher D = (D1,D2) as follows.

Phase one consists of the algorithm algorithm D1 which is given as input message x, and is additionally
given access to both Enc0 and Enc1. Then D1 performs the following computations:

1. flips bit b
$←{0, 1}; and

2. outputs codeword Yb ← Encb(x).

The output of D1(x) is then given to the adversarial channel, resulting in Y ′b = Y ′p,b ◦Y ′∗ ← A(Yb) for A ∈ C.
Here, Y ′p,b is a substring of Y ′b that corresponds to the corruption of the codeword Yp,b ← Encp(x, skb). Phase
two consists of the algorithm D2 which is given as input the original message x, the secret key skb, and
the corrupt codeword Y ′p,b, where b corresponds to the bit that was flipped when running D1(x). Upon this
input, D2 performs the following computations:

1. sample i
$← [|x|];

2. run x′i ← Dec
Y ′
p,b

p (i; skb); and

3. output b′ = 0 if xi ̸= x′i; otherwise output b′ = 1.

We say that the distinguisher D wins if b = b′.
Now if the adversary A is able to break LDC-Sec-Game with probability at least ε, we want to construct an

algorithm B ∈ C that uses this distinguishing argument to break the security of Puz. This is done as follows.

Suppose B is given as input (Zb, Z1−b, s0, s1) for some b
$←{0, 1} that is unknown to B and where s0, s1 are

uniformly random. Then B uses s0 to generate sk, encodes Y∗ ← Enc∗(Zb), and encodes Yp ← Encp(x, sk)
for some fixed message x. We observe that if b = 0, then s0 is the solution to Z0 = Zb, and thus Y∗ is
correlated with the secret key sk. Further, if b = 1, then s0 is uncorrelated with Zb = Z1. Corrupted
codeword Y ′ ← A(Yp ◦ Y∗) is then obtained. Next, given x, secret key sk, and substring Y ′p , the algorithm
simulates Decp using sk and attempts to decode xi for some arbitrary i ∈ [|x|], obtaining x′i. If x

′
i ̸= xi, then

B outputs b′ = 0; otherwise it outputs b′ = 1.
Now B is able to break the security of Puz as follows. If b = 0, then sk is correlated with Y∗. This implies

that A is able to win LDC-Sec-Game with probability at least ε by assumption; in particular, it forces Decp
to output an incorrect bit for some index i with probability at least (1 − p), and the probability that the
adversary selects this index is 1/k. In this case, b′ = 0 with probability at least ε ·(1−p) ·(1/k). If b = 1, then
sk is completely uncorrelated with Y∗, so information theoretically A cannot win LDC-Sec-Game except with
probability at most εp. This implies that with probability at most εp · p the decoder fails to output correctly
on some index i, which implies that with probability at least 1−εp ·p the decoder outputs correctly on every
bit. In this case, b′ = 1 with probability at least 1− εp · p. This allows B ∈ C to distinguish (Zb, Z1−b, s0, s1)
with noticeable advantage Ω(ε · (1− p) · (1/k)− εp · p) thus breaking the security of the puzzle.

6.3 Proof of Theorem 6.8

We first remark that definitions of k, K, ℓ, δ, and p follow directly by construction. We now turn to arguing
the security of our scheme under the game LDC-Sec-Game, which we recall next.
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LDC-Sec-Game(A, x, λ, δ, p) :

1. The challenger computes Y ← Encλ(x) encoding the message x and sends Y ∈ {0, 1}K to the attacker.

2. The channel A outputs a corrupted codeword Y ′ ← A (x, Y, λ, δ, p, k,K) where Y ′ ∈ {0, 1}K has
Hamming distance at most δK from Y .

3. The output of the experiment is determined as follows:

LDC-Sec-Game(A, x, λ, δ, p) =

{
1 if HAM(Y, Y ′) ⩽ δK and ∃i ⩽ k such that Pr[Decy

′

λ (i) = xi] < p

0 otherwise

If the output of the experiment is 1 (resp. 0), the channel is said to win (resp. lose).

To prove security, we assume that if there exists an adversary A ∈ C that, given the puzzle Puz, can win
LDC-Sec-Game with probability at least ε, then we can construct an adversary B ∈ C which breaks the
(C, ε′)-hard puzzle.

To prove this, we employ a two-phase hybrid distinguishing argument. We first phase defines two encoders:
Enc0 and Enc1. The encoder Enc0 is exactly identical to the encoding function of Construction 6.7, which
we denote as Enc. The encoder Enc1 is our hybrid encoder, and is defined as follows.

Enc1(x, λ, sk) :

1. Sample s′
$←{0, 1}kp .

2. Choose polynomial t > t′ and compute Z ′ ← Puz.Gen(1λ, t(λ), s′).

3. Set Y∗ ← Enc∗(Z
′).

4. Set Yp ← Encp(x, λ; sk).

5. Output Yp ◦ Y∗.

Given the encoders Enc0,Enc1, we construct our two-phase hybrid distinguisher D = (D1,D2) as follows.
Phase one consists of the algorithm algorithm D1 which is given as input message x, and is additionally
given access to both Enc0 and Enc1. Then D1 performs the following computations:

1. flips bit b
$←{0, 1}; and

2. outputs codeword Yb ← Encb(x, λ, skb).

The output of D1(x) is then given to the adversarial channel, resulting in Y ′b = Y ′p,b ◦Y ′∗ ← A(Yb) for A ∈ C.
Here, Y ′p,b is a substring of Y ′b that corresponds to the corruption of the codeword Yp,b ← Encp(x, skb). Phase
two consists of the algorithm D2 which is given as input the original message x, the secret key skb, and
the corrupt codeword Y ′p,b, where b corresponds to the bit that was flipped when running D1(x). Upon this
input, D2 performs the following computations:

1. sample i
$← [|x|];

2. run x′i ← Dec
Y ′
p,b

p (i; skb); and

3. output b′ = 0 if xi ̸= x′i; otherwise output b′ = 1.

We say that the distinguisher D wins if b = b′.
We formally give our two-phase distinguisher which breaks the (C, ε′)-hard puzzle if there exists a channel

A ∈ C which wins LDC-Sec-Game with probability at least ε. Suppose such an adversary A exists. For puzzle
solutions s0, s1 (viewed as independent random strings), we want to construct an adversary B ∈ C which
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distinguishes (Zb, Z1−b, s0, s1) with probability at least ε′ for b
$← {0, 1}. Fix a message x and security

parameter λ. Our adversary B is constructed as follows: suppose B is given as input (Zb, Z1−b, s0, s1) for

some b
$←{0, 1} unknown to B.

1. Fix message x.

2. Encode the message x as follows:

(a) Obtain sk← Genp(1
λ, s0).

(b) Set Y∗ ← Enc∗(Zb).

(c) Set Yp ← Encp(x, λ; sk).

(d) Set Y = Yp ◦ Y∗.

3. Obtain Y ′ ← A(x, Y, λ, δ, p, k,K).

4. Set Y ′p to be the substring of Y ′ that corresponds to the corruption of Yp above.

5. Simulate x′i ← Dec
Y ′
p

p (i, sk) for i
$← [|x|].

6. If xi ̸= x′i output b
′ = 0. Else output b′ = 1.

We first note that by assumption, B ∈ C since A,Encp,Decp,Enc∗ ∈ C. Now we argue that our adver-
sary distinguishes (Zb, Z1−b, s0, s1) with noticeable probability. First note that sk is always generated as
Genp(1

λ, s0). Notice that for b = 1 the puzzle Z1 is encoded as Y∗, and the secret key sk is unrelated to the
solution s1 of puzzle Z1. In this case, the adversary A wins the LDC-Sec-Game with probability at most εp;
this holds information theoretically since sk and Y∗ are completely unrelated and uncorrelated. In particular,
with probability at most εp, A introduces an error pattern such that the distance between Y and Y ′ is at
most δK and there exists i ⩽ k such that the decoder outputs xi with probability less than p. For the case
b = 0, puzzle Z0 is encoded as Y∗ and has solution s0, which is used to generate sk. Thus in this case, the
probability that the decoder outputs an incorrect xi for some i ⩽ k with at most probability p is at least ε
since we assume A wins LDC-Sec-Game with probability at least ε.

We analyze the probability B outputs bit b′. First consider the case where b = 0. Then the probability
that b′ = 0 is at least ε · (1− p) · (1/k) by the argument above. Now for b = 1, the probability that b′ = 0 is
at most εp · p, which implies that b′ = 1 is at least 1− εp · p. Therefore

Pr
b

$←{0,1}
[B(Zb, Z1−b, s0, s1) = b] ⩾

1

2
(ε · (1− p) · (1/k) + 1− εp · p)

which implies that

Pr
b

$←{0,1}
[B(Zb, Z1−b, s0, s1) = b]− 1

2
⩾

ε · (1− p)(̇1/k)− εp · p
2

= ε′.

Thus B breaks Puz with probability at least ε′, which contradicts the hardness of Puz.

7 Plausibility of Memory-Hard Languages

We present evidence that memory-hard languages exist by giving a concrete example of a function that is
computable by a succinctly describable circuit Cλ of size t(λ) · polylog(t(λ)) and which is provably memory-
hard when we assume that the underlying hash function is a random oracle. We remark that the succinct
circuit describing Cλ can itself be constructed efficiently in time poly(λ, log(t(λ))).

The rich line of work on the construction of memory-hard functions has (generally) utilized the following
paradigm: given a depth-robust graph G and random oracle H, a function FG,H is defined by the final
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output of the following labeling function. Suppose G = (V,E) and let V = [N ]. For all v ∈ V , if v = 1 then
we set the label of v as Lv = H(x◦0(λ−1) log(N)). Otherwise if v > 1 we set Lv = H(Lu1 , Lu2 , . . . , Luk

) where
ui is parent i of v.

9 The function FG,H(x) outputs LN . Then FH
G is memory-hard based on the hardness of

the underlying graph being depth robust. Briefly, a DAG G = (V,E) is (e, d)-depth robust if after removing
any S ⊂ V nodes such that |S| ⩽ e, the remaining graph has depth at least d. As an example, consider
the language L = {(x,G) : ∃y s.t. y = FH

G (x)}. Then it is known that the language L is memory-hard in
the parallel random oracle model [ACP+17]; i.e., any algorithm evaluating FH

G in the parallel random oracle
model has cmc cost at least Ω(e · d · λ). We interpret this as evidence that for reasonable instantiations
of the random oracle H, memory-hard languages exist under standard cryptographic assumptions; e.g., we
can redefine the language as L = {(x,G, ⟨H⟩) : ∃y s.t. y = FH

G (x)} where ⟨H⟩ is the description of a hash
function H such as SHA3 or the Argon2 round function [BDK16].

One key property needed by the function FH
G in order for the language L to be a memory-hard language is

our uniform succinctness condition. In particular, we must have a function FH
G which is uniformly succinct,

and such a function would need the graph G and the hash function H to be uniformly succinct. While certain
concrete hash functions, such as SHA3, certainly have uniformly succinct description, many constructions of
FH
G are only memory-hard when the underlying DAG G is constructed via a random process. Such a graph

cannot ever hope to be uniformly succinct, and therefore many MHF constructions of the form FH
G would

not yield a memory-hard language, even if H was uniformly succinct.

Remark 7.1. The discussion in this section is purely concerned with the plausibility of the existence of
memory-hard languages. We stress that we do not know how to formally prove the existence of such
languages, barring some major advances in circuit lower bounds.

7.1 An Explicit Depth-Robust Graph

Recently, Blocki, Cinkoske, Lee, and Son [BCLS21] gave new constructions of explicit (e, d)-depth robust
graphs on N vertices with constant indegree at most 2 such that e = Ω(N/ log(N)) and d = Ω(N). Moreover,
this graph has an efficient function parents such that on any input v ∈ [N ], parents(v) returns the set of
parents of the node v in time O(polylog(N)). Let denote this graph as Gbcls,N and summarize its properties
in the following lemma.

Lemma 7.2 ([BCLS21]). There exists an explicit DAG Gbcls,N = (V,E) with V = [N ] and indegree at
most 2 and a single source and sink such that Gbcls,N is (e, d)-depth robust for e = Ω(N/ log(N)) and
d = Ω(N). Furthermore, there exists a function parents : [N ] → [N ] ∪ {⊥} × [N ] ∪ {⊥} such that for all
v ∈ V , parents(v) = (u0, u1) such that u0 and u1 are the parents of v in graph Gbcls,N and parents is
computable by a single-tape Turing machine in time O(polylog(N)).

Because the graph Gbcls,N is an explicit (and hence deterministic) DAG and the function parents runs
in time O(polylog(N)), it follows that there exists an efficient uniform and deterministic algorithm A which
computes parents; thus, Gbcls,N is uniformly succinct. This is in contrast to other depth-robust graphs
(e.g., [ABP17, ABH17, ABP18]) which use a random algorithm A to generate parents, which implies N ·
polylog(N) random-bits are needed just to specify the graph G itself. Working with Gbcls,N allows us
to construct a function FH

Gbcls,N
that is uniformly succinct whenever H is uniformly succinct (which is a

reasonable assumption for many concrete hash functions such as SHA3).
We dedicate the remainder of this section to proving that the language L described at the start of this

section is memory-hard given the function FH
Gbcls,N

. First note that in the random oracle model, the function

FH
Gbcls,N

has large cmc. This is due to a result of Alwen, Blocki, and Pietrzak which (roughly) states that

an (e, d)-depth robust graph has cumulative pebbling complexity at least e · d, and therefore cmc at least
Ω(e · d · λ). Applying this result to our graph Gbcls,N , we have the following lemma.

9This is one general flavor of constructions of memory-hard functions. However, not all constructions follow this exact
methodology. We state this methodology here for intuition and ease of presentation.
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Lemma 7.3 ([ABP17]). In the parallel random oracle model, the function FH
bcls,N has cumulative memory

complexity at least Ω(N2 · λ/ log(N)).

Let Rbcls,N =
{
(x, y) : y = FH

Gbcls,N
(x)

}
and let Lbcls,N be the language for relation Rbcls,N .

Proposition 7.4. Let N,λ ∈ N. Let Lλ
bcls,N be the language for the relation Rbcls,N instantiated with

x, y ∈ {0, 1}λ and hash function HN,λ : {0, 1}2λ → {0, 1}λ such that HN,λ is a uniformly succinct circuit of
size N · poly(λ, log(N)). Then Lλ

bcls,N ∈ SCN ′ for N ′ = N2.

Remark 7.5. Real-world hash functions satisfy the requirements of Proposition 7.4. Moreover, the construc-
tion of Proposition 7.4 is easily extended to any (e, d)-depth robust graph that has a uniformly succinct
circuit representation, albeit with different parameters.

Proof. It suffices to prove that there exists a circuit a uniformly succinctly describable circuit which computes
FH
Gbcls,N

of size O(N ′·poly(λ, log(N ′))) forN ′ = N2. In particular, we construct a circuit CN,λ which computes

FH
Gbcls,N

of size O(N ′ · poly(λ, log(N ′))) that is succinctly describable by a circuit of size O(polylog(λ,N ′))
under H = HN,λ.

Construction of CN,λ is clear; namely, it is a layered circuit of repeated applications of HN,λ where the
inputs are specified by different output layers. By definition of Gbcls,N , for any v ∈ V , if parents(v) = (⊥,⊥)
then Lv = HN,λ(x); otherwise, Lv = HN,λ(Luv,0 , Luv,1), where (uv,0, uv,1) = parents(v).10 Thus for fixed
N and λ, the circuit CN,λ consists of N layers, where every layer i > 1 consists of the circuit for parents
and the circuit for HN,λ evaluating Li = HN,λ(parents(i)), and the first layer simply computes HN,λ(x).
Furthermore, CN,λ has L⊥ := 0λ hardcoded.

By Lemma 7.2, the function parents is computable in time O(polylog(N)) which implies that there is a
circuit of size O(polylog(N)) which computes parents as well. Since CN,λ computes the circuits HN,λ and
parents a total of N times, and the circuit HN,λ is assumed to have size O(N · poly(λ, log(N))) and parents
has size O(polylog(N)), we have that CN,λ has size O(N2 · poly(λ, log(N))) = O(N ′ · poly(λ, log(N ′))).

Next, uniform succinctness follows from uniform succinctness of HN,λ and the uniform succinctness of
parents. By assumption, HN,λ is uniformly succinct. Now we observe that parents is also uniformly succinct;
this is because (1) parents runs in time O(polylog(N)); and (2) the graph Gbcls,N is explicit and deterministic
for every N . This implies there is a uniform algorithm (and hence a uniformly succinct circuit) which on
input N outputs the circuit for parents, and hence there exists a uniformly succinct circuit representing
parents. Hence the uniformly succinct circuit for CN,λ is obtained via N applications of the uniformly
succinct circuits for HN,λ and parents. Thus Lλ

Po2,N ∈ SCN ′ .

8 Space Efficient Simulation of Single Tape Turing Machines

We prove that any single-tape Turing machine running in time t := t(n) for inputs of size n is decidable by
a PRAM algorithm with cmc at most O(t1.8 · log(t)). We believe this result may be of independent interest.
This shows that if we modify the language class SCt (Definition 2.1) to require any language in this class to
be decided by a time t single-tape Turing machine, then memory-hard languages can only be secure against
adversaries with cmc = o(t1.8 · log(t)). We note that we don’t prove that our simulation is optimal, thus it
is possible to give a simulation with less cmc. We dedicate this section to proving the following theorem.

Theorem 2.4. For any language L decidable in time t(n) by a single-tape Turing machine for inputs of
size n, there exists a constant c > 0 such that L is decidable by a PRAM algorithm with cmc at most
c · t(n)1.8 · log(t(n)).

Note that Theorem 2.4 only holds for single-tape Turing machines. It is an interesting open question if
there is a similar result for multi-tape Turing machines. In particular, if one could show such a simulation
for two-tape Turing machines, then one can leverage the multi-tape to oblivious two-tape Turing machine

10In the case that either uv,0 or uv,1 is ⊥, we let L⊥ := 0λ.
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reduction of [PF79] to obtain a similar result for multi-tape Turing machines; or one could prove a simulation
directly.

8.1 Brief Review of Turing Machines

A single-tape Turing machine M consist of the three elements: (1) an infinite tape which includes cell
numbered as Z+; (2) a two-way read/write head which is the program counter and indicates the current
state of the machine; and (3) a finite set of controlling states, Q = {η1, · · · , ηm} and a transition function δ.
For each Turing machine M , we define the input alphabet as Σ, and the tape alphabet as Γ ⊇ Σ∪ {□} such
that □ ̸∈ Σ is the blank symbol. Semantically, a Turing machine M works as follows:

• Initial configuration: The input x1, . . . , xn is initially placed in cells 1, . . . , n and all other cells
contain □. In this configuration, the location of head is on the first cell of the tape and ηstart ∈ Q is
the initial state of the machine.

• Transition Details: The transition function δ : Q× Γ→ Q× Γ× {L,R} takes as input the current
state η ∈ Q of M along with the current cell contents σ ∈ Γ and outputs a new state η′ ∈ Q, updates
the cell contents with σ′ ∈ Γ and moves the head left or right. We let T [i, t′] ∈ Γ denote the content
of cell i at time t′.

8.2 Simulation Overview

For any language L such that Ln is decidable in time t(n) by a Turing machine, we show how to simulate
this Turing machine via a PRAM algorithm in time t and space O(t0.8 · log(t)), and thus cmc at most
O(t1.8 · log(t)). To show this, let M be any Turing machine which halts after t steps on inputs of size n.
Then we build our PRAM algorithm A which simulates M using space c · t0.8 · log(t) for some constant c > 0.

To begin we describe a simulator A′ which uses space O
(
t0.75 · log(t)

)
, but requires a hint hx that

depends on the specific input x (i.e., A′ is a non-uniform algorithm). Intuitively, the hint allows us to
compress intervals on the TM tape in such a way that the contents of the tape can still be recovered in
reasonable time. We can further utilize parallelism to ensure that our simulation is never delayed. We then
show how to modify the simulator to eliminate the input dependent hint hx. This modification increases our
space usage slightly to O

(
t0.8 · log(t)

)
.

8.3 Simulation Details

We first define some notation we use throughout the remainder of this section.

• We let T [i, t′,M, x] ∈ Γ denote the content of cell i at time t′ when Turing machine M is run on input
x. Similarly, we let S[t′,M, x] ∈ Q denote the state of the Turing machine at time t′. When M and x
are clear from context we simplify and write T [i, t′] and S[t′] respectively.

• χ(i, t′,M, x) denotes the number of visits by the TM head at the i-th cell of M ’s tape up to time t′.
When M and x are clear from context, we simply write χ(i, t′).

• χ(i, j, t′,M, x) denotes the total summation of visits by the TM head for all cells {i, i + 1, . . . , j}. So

we have χ(i, j, t′) =
∑j

k=1 χ(k, t
′).We write χ(i, j, t′) when M and x are clear from context.

• γ1: We partition the TM tape into t/γ1 intervals of size O(γ1).

• γ2: We maintain the invariant that if our Turing machine head is on cell j at time t′ then we also have
T [j − γ2, t

′], T [j − γ2 + 1, t′], . . . , T [j, t′], T [j + 1, t′], . . . , T [j + γ2, t
′] stored in memory — the current

contents of the Turing machine for any cell that we might visit within γ2 steps.

Based on the above definitions, we have the following useful observation.
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Observation 8.1. For all times t′ ⩽ t and all pairs i < j ⩽ t there exists i ⩽ k ⩽ j such that χ(k, t′) ⩽
χ(i,j,t′)
j−i+1 . In particular, if χ(i, j, t′) ⩽ γ2 and j − i+ 1 ⩽ γ1 then χ(k, t′) ⩽ γ2

γ1
.

This observation follows immediately from the definition since χ(i,j,t′)
j−i+1 is the average value of χ(k, t′) for

k ∈ [i, j].

Definition 8.2 (Compressed state). Given the Turing machine M , cell indices i, j of the tape and the
current time t′, we define Compress(i, j, t′) which is the following states:

• ti1 < ti2 < . . . < tia and T [i, ti1], . . . , T [i, t
i
a] and S[ti1], . . . , S[t

i
a] where a = χ(i, t′).

• tj1 < tj2 < . . . < tjb and T [j, tj1], . . . , T [j, t
j
a] and S[tj1], . . . , S[t

j
a] where b = χ(j, t′).

Here, tik (resp. tjk) denotes the time of the i-th visit to cell i on the Turing Machine tape.

Lemma 8.3 (Decompression lemma). Given the compressed state Compress(i, j, t′) for all visits to cells i
and j, the current tape contents at time t′ can be recovered for an arbitrary interval [i, j] in time χ(i, j, t′)
with extra space usage O(j − i+ 1).

Proof. For all i < k < j we can reconstruct the content and state of cell k. So, we start simulating Turing
machine from i to recover k. Now, we use the data available in the sates Compress(i, j, t′) to compute the
k-th cell content. Observing that at time t′ = ti1 we have T [k, t′] = □ (blank) for every i < k < j, we begin
the simulation with (ti1, S[t

i
1], T [i, t

i
1]) ∈ Compress(i, j, t′) for as long as the tape head stays in the interval

[i, j]. If during the simulation the head goes to the right of j (resp., left of i), we halt computation and
lookup the next time tjl (reps., til) when the Turing machine head moves back to cell j (resp. i) along with

the corresponding state (til, S[t
i
l], T [i, t

i
l]) ∈ Compress(i, j, t′) (resp. (tjl , S[t

j
l ], T [j, t

j
l ]) ∈ Compress(i, j, t′) )

for some 1 < l ⩽ a (reps. 1 < l ⩽ b). Now, we continue simulation from this new starting point.

By Observation 8.1, for each cell i ⩽ k ⩽ j we have χ(k, t′) ⩽ χ(i,j,t′)
j−i+1 , and as we have j − i + 1 cells,

the total time for reconstructing the target cell contents in interval [i, j] is at most χ(i, j, t′). As the size
of the this interval is j − i + 1, we also need to keep the recovered cells during simulation which results in
O(j − i+ 1) extra space.

Lemma 8.4 (Recompression lemma). Given Turing machine M , tape indices i, j and the current time t′,
we can recover both the tape contents between i and j, and the value χ(k, t′) such that k ∈ [i, j] is associated

to the lowest in total time χ(i, j, t′) and extra space O

(
log(t′) +

χ(i, j, t′)

j − i+ 1

)
.

Proof. This lemma is similar to Lemma 8.3; however, Compress(i′, j′, t′) is not given in advance. So first
we need to find some potential cell indices i − ∆ ⩽ i, j ⩽ j + ∆ where ∆ ∈ O(j − i), and compute
Compress(i′, j′, t′). Then the steps are exactly the same as Decompression (Lemma 8.3) and we can recover
the contents of tape in the given interval. Therefore, we just need to add and consider these extra space and
time costs in our analysis in comparison with the previous lemma.

We define ∆ = α(j − i) for some constant 0 < α < 1. Then we start simulating the Turing machine for
the given interval from cell i−∆. We simulate this interval twice. For the first time in addition to the cell
contents, we also define a counter to store the number of visit we have. The counter requires at most log(t)
bits. We continue computation until the head reaches at cell j+∆. We set the counter in order to know the
number of visits to each cell. Then, we check the cells around i in and interval of [(i−∆), (i+∆)] and find
the one whose counter, say i′ = {k′ : χ(k′, t′) = mini−∆⩽k⩽i+∆ χ(k, t′)}. Similarly we do the same for j and
determine j′ = {k′ : χ(k′, t′) = minj−∆⩽k⩽j+∆ χ(k, t′)}. Now, we run the simulation for the second time
and we store all the visit information at cells i′.j′ and basically compute Compress(i′, j′, t′), and remove the
contents of other cells. Now given the state Compress(i′.j′, t′) we can simply follow Lemma 8.3 and recover
the cell contents in time O(j − i). We note that, the value of each counter is in fact χ(k, t′) for all k ∈ [i, j].

Based on the described steps, the running time for traversing the interval for two times is 2χ(j, i, t′) based
on Observation 8.1 and the fact we simulate twice. This is extra time in comparison with Lemma 8.3, where
the running time is also O(χ(j, i, t′)). Therefore, the overall time would be O(χ(j, i, t′)).
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For the space usage, we can see that for each cell we need to consider a space for counter which requires
log t. In addition, we need to reserve a space for the cells in interval [(i − ∆), (i + ∆)] (similarly for [(j −
∆), (j +∆)]) as the one of them may be selected for compression phase, i.e., Compress(i′, j′, t′). So, based

on Observation 8.1 for each i′, j′ in Compress(i′, j′, t′) we need max{χ(i−∆,i+∆)
2∆ , χ(j−∆,j+∆)

2∆ } extra space.

Based on the selection of ∆ = α(j− i) we can see that the extra space for this case is at most χ(i,j)
2(j−i) . So the

total extra storage is O(log(t) + χ(i,j)
(j−i) ).

Warm-up Discussion. Before we prove Theorem 2.4, consider simulator A′(x) given hint hx to simulate
Turing machine M in time t and space t3/4 · log(t). In particular, hx encodes indices i1, . . . , it/γ1

with
ij ∈ [(j − 1) · γ1, j · γ1] and bits b1, . . . , bt/γ1

such that bj = 1 if and only if χ((j − 1) · γ1 + 1, j · γ1, t) ⩽ γ2.
Furthermore, for each j with bj = 1 we can require that χ(ij , t) ⩽ γ2/γ1 by Observation 8.1. For each ij and
ij+1 with bj = bj+1 = 1 the simulator will store state Compress(ij , ij+1, t

′) and we call the interval [ij , ij+1]
compressible; otherwise, we call j incompressible. The simulator maintains the invariant that the contents
of the Turning machine tape at locations i−4 ·γ2 to i+4 ·γ2 are always stored in memory. Furthermore, for
any j with bj = 1 we will maintain the invariant that the content of the Turing machine tape at all locations
in the interval from ij−1 to ij+1 are stored in memory.

The crucial observation is that if bj , bj+1 = 1, then based on Lemma 8.3 we can quickly, within 2 · γ2
steps, recover the current contents of the Turing machine tape at all cells in the interval ij to ij+1 using
Compress(ij , ij+1).

For time complexity, we point out that based on selection of ij (according to hint) the number of visits
at cell ij is bounded to γ2/γ1. Once the right starting point determined, we can recover the machine state
and content of our intended cell by 2γ2 steps as based on Observation 8.1 we have χ(ij , ij+1, t

′) ⩽ γ2 which
implies the worst case.

We can also do this in parallel for any value of j with bj , bj+1 = 1 to maintain our invariant that we
always keep the contents of the turning machine tape at locations i − 4 · γ2 to i + 4 · γ2 in memory. In
particular, if |ij − i| ⩽ 6γ2 and bj = bj+1 = 1 then we start the decompression process. If bj = 0 or bj+1 = 0
then the contents of these ⩽ 2γ1 cells are already stored. We have at most 2t/γ2 uncompressible intervals
i.e., j s.t. bj = 0 or bj+1 = 0. Thus, we require space at most γ1 · 2t/γ2 to store these uncompressible
intervals. We require space at most γ2/γ1 ·O(log(t)) for each index ij with bj = 1. Thus, we use total space
t/γ1 · γ2/γ1 · O(log(t)) to store the compressible intervals. Finally, we have at most 6γ2/γ1 intervals that
are being decompressed at any point in time and we require additional space γ1 for each such interval. The

overall space usage is O
(
γ2 +

tγ1

γ2
+ t·γ2·log(t)

γ2
1

)
. We can minimize by setting γ1 =

√
t and γ2 = t3/4 which

gives us overall space usage O(t3/4 · log(t)). This gives that the cmc of our PRAM algorithm is at most
O(t1.75 · log(t)).

8.4 Proof of Theorem 2.4

The proof idea is similar to the way we designed the simulator A′(x). The main difference here is that the
simulator does not have access to the hint. So we will show that there still exist a simulator like A(x) which
reconstructs the removed cell contents with an extra space and the same order of running time. This extra
space results in total cmc(A, n) = c · t(n)1.8 · log(t(n)). We use Lemma 8.4 to prove this lemma.

Our goal is to to extract the points bj , bj+1 = 1 and use them to set Compress(ij , ij+1, t
′) as in this case

A(x) is not given the hint. Initially, we set ij = γ1j and set bj = 1 for these potential points. Then we
dynamically update these points to ensure that χ(ij , t

′) ⩽ 2γ2/γ1 i.e., bj = 1; otherwise, we find a new point
ij′ and set bj′ = 1. For updating the point, we use the results of recompression lemma, i.e., Lemma 8.4, we can
extract the χ(k, t′) for all k ∈ [ij−1, ij+1] and find indexes ij−∆ ⩽ i′j ⩽ ij+∆ and ij+1−∆ ⩽ i′j+1 ⩽ ij+1+∆
which are corresponding to the minimum number of visits satisfying χ(i′j , t

′), χ(i′j+1, t
′) ⩽ 2γ2/∆. Here, as

the size of interval is γ1 we can set ∆ = α(ij+1 − ij) = αγi. Without loss of generality we can consider
the constant value α = 1

10 and we have ∆ = γ1

10 . Therefore, replacing the ∆ in the bounds we will have
χ(i′j , t

′), χ(i′j+1, t
′) ⩽ 20γ2/γ1, which in fact the results we are looking for. Now, we just need to update
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bj = bj+1 = 0 and set b′j = b′j+1 = 1 which are actually the flags corresponding to i′j and i′j+1. As the last
step, we also need to compute and store Compress(i′j , i

′
j+1, t

′).
If χ(ij , t

′), χ(ij+1, t
′) > 2γ2/γ1, and we need to find alternative indexes i′j , i

′
j+1 then Lemma 8.4 implies

that extra space cost which would be O(log(t) + γ2/γ1). As we have at most γ2 such cases, thus, the
total extra space usage is at most O(γ2 · log(t) + γ2

2/γ1) (in comparison with simulator A′(x) with hint).

Therefore, the overall space usage is O
(
γ2 · log(t) + t·γ1

γ2
+ t·γ2·log(t)

γ2
1

+ γ2
2/γ1

)
. Now we can minimize by

setting γ2 = t3/5 and γ1 = t2/5 to achieve overall space usage O
(
t4/5 · log(t)

)
.

8.5 The Necessity of Compress(ij, ij+1, t
′)

Here we discuss why we need to store all visits information of cell ij . If we only store the tuple associated
with the first visit of head at location ij (that is, tuple (tij ,1, S[tij ,1], T [i, tij ,1])), then it may take more time
for the simulator to recover the cells of the target interval (more than γ2 steps). This is due to the fact that
the head may return to the starting cell ij and then exit the interval [ij , ij+1] and continue for a long period
of time outside it. This imposes a delay in the final running time an we cannot recover the interval contents
in time at most 2 · γ2.

So for handling this problems, we need to store extra tuples for cell ij regarding all visits. This is one
scenario implies why we need to store tuples for all visits. In this case, when head decides to go out of the
interval, we halt and start simulation from the next stored tuple (tij ,k, S[tij ,k], T [i, tij ,k]) for some 1 < k ⩽ a
(a = χ(ij , t

′)) which guides the simulation inside the interval (the head continues to go to the right of ij).
In addition, we cannot start at position corresponding to the last visit as we do not have the last visit

information of the neighboring cell, i.e., the tuple (tij+1,a′ , S[tij+1,a′ ], T [ij + 1, tij+1,a′ ]) (which are basically
blank; i.e., □) so we may not be able to reconstruct the correct values. Therefore, considering both these
scenarios, we need to store Compress(ij , ij+1) for all cells that bj = bj+1 = 1.
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