
How Byzantine is a Send Corruption?

Karim Eldefrawy1, Julian Loss2, and Ben Terner3

1 SRI International, Menlo Park, CA karim.eldefrawy@sri.com
2 University of Maryland, College Park, MD julianloss@gmail.com

3 UC Irvine, Irvine, CA bterner@uci.edu

Abstract. Consensus protocols enable n parties, each holding some in-
put string, to agree on a common output even in the presence of cor-
rupted parties. While the problem is well understood in the classic byzan-
tine setting, recent work has pushed to understand the problem when
realistic types of failures are considered and a majority of parties may
be corrupt. Garay and Perry [11] consider a model with both byzan-
tine and crash faults and develop a corruption-optimal protocol with
perfect security tolerating tcra crash faults and tbyz byzantine faults for
n > tcra+3tbyz. Follow up work by Zikas, Hauser, and Maurer extends the
model by considering receive-corrupt parties that may not receive mes-
sages sent to them, and send-corrupt parties whose sent messages may
be dropped. Otherwise, receive-corrupt and send-corrupt parties behave
honestly and their inputs and outputs are considered by the security def-
initions. Zikas, Hauser, and Maurer gave a perfectly secure, linear-round
protocol for n > trcv + tsnd + 3tbyz, where trcv and tsnd represent thresholds
on the number of parties that are receive-or-send-corrupted.

In this paper we ask “what are optimal thresholds in the cryptographic
setting that can be tolerated with such mixes of corruptions and faults?”
We develop an expected-constant round protocol tolerating n > trcv +
2tsnd + 2tbyz. We are unable to prove optimality of our protocol’s corrup-
tion budget in the general case; however, when we constrain the adversary
to either drop all or none of a sender’s messages in a round, we prove
our protocol achieves an optimal threshold of n > trcv + tsnd + 2tbyz. We
denote this weakening of a send corruption a spotty send corruption.

In light of this difference in corruption tolerance due to our weakening of a
send corruption, we ask “how close (with respect to corruption thresholds)
to a byzantine corruption is a send corruption?” We provide a treatment
of the difficulty of dealing with send corruptions in protocols with sublin-
ear rounds. As an illustrative and surprising example (even though not
in sublinear rounds), we show that the classical Dolev-Strong broadcast
protocol degrades from n > tbyz corruptions in the byzantine-only model
to n > 2tsnd+2tbyz when send-corrupt parties’ outputs must be consistent
with honest parties; we also show why other recent dishonest-majority
broadcast protocols degrade similarly. We leave open the question of
optimal corruption tolerance for both send- and byzantine corruptions.

Keywords: Consensus · byzantine agreement · constant rounds · dis-
honest majority

1 Introduction

Consensus protocols, also known as byzantine agreement protocols, enable n
parties, each holding some input value, to agree on common outputs even in
the presence of some threshold of byzantine corrupted parties. While protocols
designed for byzantine failures achieve the strongest security guarantees, they
often do not accurately reflect the real world; in practice, crashing a party4 is
much easier and cheaper than corrupting it.

Toward a more realistic failure model in which a majority of parties may be
corrupted, a line of work has explored mixed models in which both crash faults
and byzantine faults are permitted. In the error-free setting, Garay and Perry
[11] and Altmann, Fitzi, and Maurer [4] show that byzantine agreement is possi-
ble if and only if n > tcra + 3tbyz. In the asynchronous model, the work of Backes
and Cachin [5] showed that reliable broadcast within the mixed model is possible
if and only if n > 2tcra + 3tbyz. For byzantine agreement, Kursawe [15] developed
a protocol for the same bound (n > 2tcra + 3tbyz) assuming a public key infras-
tructure (PKI). Recent work in the dishonest majority setting by Wan et al. [22,
21] showed round efficient broadcast protocols in the majority dishonest setting.
Expanding further into even more realistic failures, Zikas, Hauser and Maurer
[23] gave a protocol in the error-free synchronous model for n > trcv +tsnd +3tbyz,
where trcv bounds the number of receive corruptions, tsnd bounds the number of
send corruptions, and tbyz bounds the number of byzantine corruptions.

Faulty Parties With Consistent Outputs. The work by Zikas, Hauser and Maurer
is notable because their model introduces parties which may be faulty but the
faulty processors’ outputs must be consistent with honest parties’ outputs because
they otherwise behave honestly. In all other corruption models, the output of
any faulty party need not be considered towards the definition. We extend their
work by asking: “what are optimal thresholds in the cryptographic setting that
can be tolerated with mixed corruptions?” We show that the duality of a send-
corrupt party whose outputs must nonetheless be consistent with honest parties
introduces new challenges. In this model, is it currently not known how to push
corruption tolerance for sublinear-round broadcast to the dishonest majority
setting, and for sublinear-round consensus we do not know how to do better
than treating a send-corrupt party as fully byzantine.

1.1 Send and Receive Corruptions: Honest-but-Faulty

Send-corrupt parties participate in a protocol as honest parties do, but an ad-
versary has the power to determine which messages sent by a send-corrupt party
are delivered and which are not. Nevertheless, they still listen to the protocol
and their outputs must be consistent with the honest parties’ outputs.

Receive-corrupt parties may cease to receive messages, but are guaranteed
that the messages they send are delivered. In any protocol, a receive-corrupted

4 Crashing parties may be achieved via denial-of-service (DoS) attacks, one of the
most frequent attacks on distributed systems and on the Internet.

2

party may detect that it is receive-corrupted if it does not receive messages that
it is expecting. If a receive-corrupted party detects that it is corrupted, then –
as in [23] – the party moves into a zombie state. A party that becomes a zombie
stops sending and receiving messages, and outputs ⊥, becoming the functional
equivalent to a crashed party in the common literature. If a receive-corrupted
party has not detected that it is corrupt then it may continue to participate, and
we require that its output agrees with the honest parties’ outputs, even though
it may not receive all protocol messages.

Send corruptions and receive corruptions are both strict generalizations of
crash corruptions, as in either case a crashed party ceases to send and receive
messages. However, unlike send- and receive-corrupted parties, crashed parties’
outputs are never required to be consistent with the honest parties’ outputs.

Zombies and Live Parties. Because send-corrupted and receive-corrupted
parties may still continue to participate without intentionally deviating from
the protocol, our definitions require that their outputs (if they produce outputs)
are consistent with those of the honest parties. We call all honest, send-corrupt,
and non-zombie receive-corrupt parties live parties; this denotes that the party
continues to (try to) participate as if it were an honest party.

We use the convention that whenever a party becomes a zombie, it sends a
special message (zombie) to all other parties. Upon receiving such a message, a
party deducts one from its count of n the number of parties, as well as deducts
one from its threshold for the number of receive-corrupted parties. Note that
send-corrupt parties may fail to send their zombie declarations, and receive-
corrupt parties may fail to receive other parties’ declarations.

1.2 The Pathology of Send Corruptions

We consider two forms of send corruptions, one more pathological than the other.

1. Standard send corruption: In the general case (denoted as simply a send
corruption) as in [23], the adversary may adaptively drop any of a send-
corrupt party’s outgoing messages in any round.

2. Spotty send corruption: In a weaker case, an adversary adaptively drops
either all or none of a send-corrupt party’s outgoing messages in a round.

We consider a strongly adaptive, rushing adversary that can observe all of a
party’s messages and then remove them after they have sent.

Pathology of a (standard) send corruption. Our standard model of a send cor-
ruption permits the adversary to selectively drop messages by send-corrupting
a party. Because this behavior is a subset of a byzantine corruption, one would
expect that corruption bounds follow directly from the byzantine case. We show
that this is not the case in general. The consistency property of many current
protocols breaks under the specific attack that some (corrupt) party selectively
sends a message to some honest parties which other honest parties may never

3

receive. In our model, a send-corrupt party may receive a message that would
change its output and fail to inform any honest party about the message.

As an illustrative example (embodying a common technique), the Dolev-
Strong broadcast protocol requires that if some honest party – whose output is
constrained by definition – receives a message, then all other honest parties will
receive that message before the protocol terminates. But as we show in Section
3.2, Dolev-Strong breaks down in our model because a send-corrupt party may
receive a message that would change its output but fail to forward it.

Generalizing this theme, an adversary can undermine current techniques by
dividing the execution such that send-corrupt parties are unable to send messages
to honest parties, but send-corrupt parties receive all messages sent by honest
parties. Crucially, a situation results where there are two sets of parties with
different sets of messages received by the end, but their outputs are constrained
by consistency. For example, divide an execution into sets such that S contains
all send-corrupt parties and H contains all honest parties, and let |S| > |H|.
Then it may be the case that a majority of parties cannot communicate with the
honest parties, but all of their outputs must be consistent.

Although we cannot prove it, it appears very difficult to tolerate more send-
corrupt parties than honest parties because this partition requires the use of some
threshold scheme to ensure sufficiently many parties are “aware” of a message
to allow it to influence the output. Specifically, we do not know how to generate
and use information that an honest party has not received a message sent by
a send-corrupt party as part of the protocol. On the other hand, impossibility
proofs that depend on partitioning techniques also fail in this model because it is
impossible to completely separate the send-corrupt group from the honest group,
since send-corrupt parties always receive all of the honest parties’ messages.

The spotty corruption model, described below, alleviates the above issue
because it enforces unanimity: if any send-corrupt party or honest party receives
a message sent by a send-corrupt party, then all honest and send-corrupt parties
receive the message. This is sufficient to enforce consistency of honest and send-
corrupt views that permits thresholds over the number of byzantine parties.

Pathology of a spotty send corruption. We argue that although our “spotty”
send corruption is limited in some ways, it is still rich enough to cause failure of
some popular techniques for synchronous consensus. In particular, it is unclear
how to construct a protocol that employs leader election in order to reach con-
stant expected round complexity in our model. Specifically, a strongly rushing
adversary as described above can wait for a leader to be elected – and even to
send messages that attest to its election (e.g., based on a Verifiable Random
Function, VRF, as in [19, 12]) – spotty-corrupt the party, and force it to fail as
leader for the duration of its tenure, without even expending its budget towards
byzantine corruptions. While in the purely byzantine model this type of attack
can be easily mitigated by using threshold signatures (see, e.g., [16, 2]), this ap-
proach completely fails in our model, as electing a leader in this way would most
likely elect one of the potentially tsnd send-corrupt parties (since tsnd can be much
larger than the number of honest and in-synch parties). For this reason, recent

4

protocols for dishonest majority broadcast that rely on the player-replaceable
paradigm, such as [6] and [1] fail in our model.

1.3 Contributions

We provide the first systematic treatment of the pathology of send-corruptions,
and show that considering send-corrupt parties as “nearly” honest in the defi-
nition either completely breaks or substantially deteriorates the corruption toler-
ance of both classical and recent broadcast protocols.

We then provide an expected-constant-round byzantine agreement protocol
that is secure in the strongly adaptive setting against tsnd send-corruptions, trcv
receive corruptions, and tbyz byzantine corruptions where trcv + 2tsnd + 2tbyz < n.
Our protocol builds consensus from graded consensus and a common coin [8, 14],
with subtle adaptations for our corruption model, with a parallelization of the
implementation of FixReceive from [23]. When send-corruptions are spotty, we
show our protocol achieves optimal corruption tolerance of trcv + tsnd +2tbyz < n.

To our knowledge, our consensus protocol for the spotty send model is the
first sublinear-round consensus protocol where a majority of online parties may
be faulty in any model.

1.4 Comparison with Related Work and Obvious Solutions

Recent Advances in Dishonest-Majority Broadcast. One might expect
that because dishonest-majority broadcast protocols tolerate n > tbyz corrup-
tions, they are sufficient for building a consensus protocol tolerating n > tsnd +
2tbyz corruptions via folklore reductions (which we discuss in detail in Appendix
B), which would achieve better corruption tolerance than our construction in
Section 4. We show that this is not true and that recent advances in dishonest-
majority for adaptive adversaries by Wan et al [22, 21] also fail in our model.

The work of Wan et al. [22] provides an expected constant round protocol
for dishonest majority broadcast under a weakly adaptive adversary. However,
their “Trust Graphs” assume that only byzantine parties do not send messages,
and any party that fails to send a message can be excluded. This fails in our
model because send-corrupt parties must be consistent with honest parties.

Another recent work [21] uses time-lock puzzles to provide a round-efficient
broadcast protocol in the presence of dishonest majority and a strongly adaptive
adversary. However, the approach also fails because honest parties may never
learn the puzzles sent by send-corrupt parties. It is possible to construct an
execution in which honest parties solve a set of puzzles T , and the send-corrupt
parties solve another set of time-lock puzzles T ′ = T ∪ S, where S are puzzles
that are never distributed to the honest parties. However, our definitions require
that send-corrupt parties’ outputs match those of the honest parties.

Adapting ZHM [23] to an Expected Constant-Round Protocol. A natu-
ral attempt to achieve sub-linear round consensus tolerating n > trcv+tsnd+3tbyz

5

Table 1. Comparison with relevant consensus protocols in mixed corruption mod-
els. R̂ indicates the round complexity R is given in expectation; otherwise the round
complexity is worst-case. DS denotes Dolev-Strong.

Protocol Faults # Rounds

Modified DS (Section 3.2) Send & Byz: 2tsnd + 2tbyz < n O(n)

GP [11] Crash & Byz: tcra + 3tbyz < n O(n)

ZHM [23] Receive, Send, Byz: tsnd + trcv + 3tbyz < n O(n)

This paper Receive, Spotty Send, Byz: trcv + tsnd + 2tbyz < n Ô(1)

This paper Receive, Send, Byz: trcv + 2tsnd + 2tbyz < n Ô(1)

is to adapt the protocol by Zikas, Hauser and Maurer (ZHM) [23] to an expected
constant-round protocol using the standard construction [8, 14] via graded con-
sensus and a common coin protocol. The protocol by ZHM is a linear-round
protocol because it depends on the phase-king paradigm [10]; the protocol must
run long enough to guarantee that the king is honest in at least one round.
To move to an expected-constant round protocol, phase king is replaced with a
common coin primitive; however, all common coin constructions that we know
require some threshold scheme. Threshold schemes work in our model when
n− trcv > 2(tsnd + tbyz), meaning there are more honest parties than send-corrupt
or byzantine parties. In the dishonest majority setting where send-corrupt plus
byzantine parties outnumber honest parties, the construction suffers from the
partitioning attack described above: a group of send-corrupt parties reach the
threshold independently of and without knowledge of honest parties, and honest
parties therefore output a different coin than send-corrupt parties. The ZHM
construction and corruption bound therefore fail in sublinear rounds.

Expected Constant-Round Consensus Protocols. There are a number
of expected constant-round consensus protocols for the honest-majority setting
that consider only byzantine faults. Feldman and Micali [8] gave an expected
constant round scheme for n > 3tbyz. Katz and Koo [14] later gave a protocol
tolerating n > 2tbyz, assuming a PKI and signatures. Micali [18] gave another
simple protocol assuming n > 3tbyz. Abraham et al [2] gave the most efficient
scheme and tolerate a strongly rushing, adaptive adversary for n > 2tbyz.

Mixed Corruption Models. In Table 1 we overview the results most relevant
to our work: consensus protocols in mixed corruption models. We include a con-
struction by modifying Dolev-Strong broadcast (Section 3.2) via the reduction
of consensus to broadcast.

To our knoweldge, our “spotty” send-corrupt protocol exceeds the corrup-
tion bounds of all comparable models with “exotic” corruptions, who always
require that a majority of online nodes are honest. For example, recent work has
generalized crash corruptions into “sleepy” [20] or “sluggish” [13] faults. In the
sluggish model [13], a (mobile) sluggish party can be temporarily disconnected

6

from honest parties due to network partition, but can later rejoin. While discon-
nected, messages sent by or to a party are delayed until the party is reconnected.
However, in that work it is (inherently) required that at least half of the parties
are not sluggish and participate in the protocol at all times, and the adversary
is static. This is a sharp contrast to our model, which allows a majority of dis-
honest parties and an adaptive adversary. Abraham et al [3], also in the sluggish
model, require a majority of online parties to be honest at all times.

Pass and Shi [20] introduce a model in which the adversary can make parties
“fall asleep” and later wake them up (i.e., temporarily crash them) at which
point all messages that they missed are delivered at once, along with potentially
some adversarially-inserted messages. They show that in their model, a protocol
requires only that a majority of the awake parties are honest, which closely
resembles our result. However, in the sleepy model, there are no send-or-receive-
corruptions, meaning all awake parties are full participants in the protocol, so
their sends always succeed and no incoming messages are dropped; this avoids
the difficulties studied in this paper.

Malkhi et al [17] consider yet another mixed model of corruption, but require
that a majority of online players behave honestly at any time. The protocol of
Garay and Perry [11], mentioned above, runs in O(n) round complexity, but only
works when n > 3tbyz + tcra.

1.5 Paper Outline

The rest of the paper is organized as follows: Section 2 covers preliminaries and
definitions required in the rest of this paper. Section 3 discusses the pathology
of send corruptions by illustrating how common paradigms for broadcast fail
for send-corrupt parties. Section 4 introduces our new expected-constant round
consensus protocol for send and receive corruptions. In Section 5, we show that
the construction in Section 4 has improved corruption tolerance in the spotty
send model, and prove its optimality.

In Appendix A we recall the lowerbound proof by Dolev and Strong for
round complexity of deterministic broadcast and their protocol for authenticated
broadcast. In Appendix B we give a (folklore) construction of consensus from
broadcast that completes the reduction of optimal fault tolerance for consensus in
the presence of (general) send corruptions to optimal fault tolerance of broadcast
in the presence of send corruptions.

2 Model and Definitions

2.1 Model

In this work we consider a set of n parties P = {p1, . . . , pn} who may send and
receive messages over a network. A protocol specifies the messages that parties
send to each other, how they change their internal states, and how they produce
their outputs. An execution of a protocol proceeds in a series of time steps, in

7

which in each step each party may send and receive messages. In each time step
in which a party receives and sends messages, first it receives all messages and
then it sends messages. We assume that all parties start an execution at the
same time and have internal clocks that advance at the same rate.

Network. We assume that the network is managed by an adversary that is
constrained by synchronization requirements. Parties are connected via peer-
to-peer authenticated channels. We assume a synchronous network; this means
there is a known bound ∆ such that during normal operation, any message that
is sent at time t must be delivered to its intended recipient by time t + ∆.
Within this bound, the adversary may arbitrarily schedule delivery of messages
via peer-to-peer channels, subject to the constraint imposed by ∆.

Corruptions. The adversary may adaptively corrupt parties that participate
in an execution. We allow an adversary to corrupt a party in one of three modes,
which we describe in the following. A party that is not corrupted must follow
the protocol specification and is called honest. Once a party is corrupted, it may
not become honest again.

– A receive corruption allows the adversary to selectively drop messages sent
to the party.

– A send corruption allows the adversary to selectively drop messages sent by
the party.

– A byzantine corruption allows the adversary to control all messages sent by
the party and view its internal state.

Where we categorize send corruptions in two types:

1. A send corruption allows the adversary to drop arbitrary messages sent by
the party without constraint.

2. A spotty corruption allows the adversary to drop messages sent by the party,
although the party continues to follow the protocol specification (and the ad-
versary does not get to see its state). Specifically, the adversary may adap-
tively drop all undelivered messages sent by a spotty party p by issuing an
instruction (drop, p) to the network. The drop instruction is constrained such
that if any message sent by p within the last ∆ time has been delivered, then
the instruction fails. However, the adversary may wait for a spotty party to
send all of its messages in any span of ∆ time (without delivering them to
their recipients) before choosing to drop them all. Because all messages sent
by a party within the last ∆ time must either be delivered or dropped, we say
that the adversary must uniformly drop or deliver messages for the party.

We note that the adversary does not need to corrupt both a sender and a
receiver in order to drop a message between them; it suffices for the adversary to
corrupt only one of them. We also do not require that the sets of send-corrupt
and receive-corrupt parties are disjoint. However, any party that is both send-
corrupt and receive-corrupt is counted as both a send corrupted party and a
receive corrupted party.

8

Strongly Rushing Adversary. We consider an adversary that is strongly
rushing, similar to that of [2, 1], but we extend it to drop messages from send-
corrupt parties. In our model, a strongly rushing adversary is permitted to read
messages that are sent by an honest party over the network and then choose to
corrupt the party in the same time step. If the adversary chooses to send-corrupt
the party, then it can drop messages sent by the party in that step; similarly,
if the adversary chooses to receive-corrupt the party, then it can drop messages
sent to the party in that step. In either case, the party is send- or receive-
corrupted from that step forth. If the adversary chooses to byzantine corrupt
a party in some step, it removes all messages sent by the party at that time
step. The adversary then chooses what messages the party sends in that step,
and to which parties it sends what messages. The corrupted party is byzantine
corrupted from that time forth.

2.2 Digital Signatures and Coin Flipping

Our constructions require the use of a digital signature scheme. In particular,
we assume that parties have access to a public key infrastructure (PKI) for a
digital signature scheme, meaning each party is aware of a set of public keys
{pk1, . . . , pkn}, where pki is associated with pi for i ∈ [n]. We consider that all
parties choose their own public and private keys; in particular, some parties may
adversarially choose their key pairs. Our constructions will assume an idealized
signature scheme for which signatures are perfectly unforgeable; when using
signature schemes that achieve unforgeability against computationally bounded
adversaries, our protocols achieve our desired properties except with negligible
probability.

Additionally, our construction requires the use of an unbiasable coin flipping
protocol Πcoin. Our protocols assume idealized access to such a primitive, which
may be considered to be implemented by an ideal functionality that takes no
input (or more formally, takes as input the empty string) and delivers a uniformly
random bit to all parties. At a high level, we require that:

– Until at least one live party queries Πcoin in the r-th invocation, the output
for that invocation is uniformly distributed for the adversary.

– All live parties output the same value in Πcoin.

Such a coin flipping protocol may be instantiated (assuming a trusted setup) by
augmenting threshold signatures [16] (using threshold tbyz + 1, see below) with a
protocol for reliable sends in our model, such as FixReceive ([23], or ours below).

2.3 Defining Broadcast and Consensus

We provide new definitions for the considered mixed model by adapting the
standard definitions of consensus protocols and constraining the behavior of all
live parties, including send-corrupt parties and receive-corrupt parties that have
not become zombies. Note that our definitions quantify over all the inputs of

9

live parties that participate starting at the beginning of an execution, and over
the outputs of only parties that are not zombies by the end of the execution.

Towards the definitions, we introduce thresholds on the number of corrup-
tions that we permit the adversary to make per execution. We use tsnd, trcv,
and tbyz to denote thresholds on the number of send, receive, and byzantine cor-
ruptions, respectively, in an execution. We introduce the following definition of
an execution in which some parties may be corrupted in order to facilitate the
definitions of our consensus problems.

Definition 1 ((tsnd, trcv, tbyz)-Compliant Execution). For a protocol Π, we
say that an execution of Π is (tsnd, trcv, tbyz) compliant if at most tsnd, trcv, and
tbyz parties are send-corrupted, receive-corrupted, and byzantine-corrupted, re-
spectively, in the execution.

We now define broadcast and binary consensus in our model. Our construc-
tions will make use of weaker primitives; we define those as necessary for the
constructions.

Broadcast In a broadcast protocol, a dealer D ∈ P wishes to send a message
m ∈ {0, 1}∗ to the parties in P. Each party p ∈ P outputs a message m′ ∈
{0, 1}∗ ∪ {⊥}, subject to the following constraints:

Definition 2 (Broadcast). Let Π be a protocol for parties P = {p1, . . . , pn} in
which a distinguished party D ∈ P holds an input m ∈ {0, 1}∗. Π is a Broadcast
with Unanimity for Send-Corruptions protocol if the following properties hold
except with negligible probability.

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-
compliant execution in which D is honest or receive corrupt (but not send-
corrupt), every live party outputs m.

2. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-
compliant execution in which any live party outputs m′ ∈ {0, 1}∗∪{⊥}, every
live party outputs m′.

3. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every
(tsnd, trcv, tbyz)-compliant execution, every live party outputs some m′ ∈ {0, 1}∗∪
{⊥} and terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating
then we call it (tsnd, trcv, tbyz)-secure.

Consensus In a (binary) consensus protocol, each party has an input b ∈ {0, 1}.
Each party is expected to output a bit v ∈ {0, 1}.

Definition 3 (Consensus). Let Π be protocol for parties P = {p1, . . . , pn}
in which each party has an input b ∈ {0, 1}. Π is a Consensus protocol if the
following properties hold except with negligible probability.

10

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-
compliant execution in which all live parties have the same input b ∈ {0, 1},
all honest parties output b.

2. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-
compliant execution in which any live party outputs v, every live party out-
puts v.

3. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every
(tsnd, trcv, tbyz)-compliant execution, every live party outputs v ∈ {0, 1} and
terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating
then we call it (tsnd, trcv, tbyz)-secure.

3 On the Difficulty of Optimal Corruption Tolerance for
Send-Corrupt Parties

In this section we discuss the pathology of “standard” send corruptions with
respect to current techniques in the literature, and describe why send corruptions
appear as deleterious as full byzantine corruptions. Although our focus is on
consensus protocols, we consider techniques for both consensus and broadcast;
the two are related by a (folklore) reduction, which we discuss in Appendix B.

1. We first recall the proof by Dolev and Strong that any deterministic broad-
cast protocol requires at least tbyz + 1 rounds (for at most tbyz byzantine
corruptions), and we show that the impossibility result immediately requires
that when send-corrupt parties exist, any deterministic broadcast protocol
requires at least tsnd + 1 rounds (for at most tsnd send-corruptions).

2. We show that the Dolev-Strong broadcast protocol fails as written when
considering send corruptions. We modify the protocol and show that without
new ideas, its corruption threshold degrades from n > tbyz (in the original
model) to n > 2(tsnd + tbyz).

3. We visit recent techniques for security against strongly rushing, adaptive
adversaries – who have the ability to adaptively remove messages from the
network after they have been sent – and show that these also fall short of a
corruption threshold better than n > 2tsnd +2tbyz (which our construction in
Section 4 achieves). One might expect these techniques would apply to send-
corrupt parties because of the adversary’s ability to adaptively drop messages
from a majority of parties. However, the techniques fail when requiring send-
corrupt parties’ outputs to be consistent with honest parties’ outputs.

3.1 Dolev and Strong’s Lowerbound with Send Corruptions

The classical lowerbound for deterministic broadcast by Dolev and Strong trans-
fers directly to the case of send corruptions, applying the observation (discussed
in their paper) that all of the byzantine parties in their proof are constrained
to dropping messages that should be sent, but otherwise behave honestly. We

11

provide a full exposition of Dolev and Strong’s lowerbound in Appendix A.2. We
restate the theorem here.

Theorem 1 (Dolev and Strong [7]). There is no deterministic broadcast
protocol tolerating tsnd send corruptions which terminates in fewer than tsnd + 1
rounds, even assuming an idealized PKI and signatures.

We remark that there has been recent work by Chan, Pass, and Shi [6] to
extend the lowerbound by Dolev and Strong to randomized protocols. Because
their adaptation also requires only dropping sent messages, their lowerbound
also directly transfers to the send-corrupt model.

3.2 Modifying Dolev-Strong Broadcast

As an example of the pathology of send-corruptions, we now recall the classical
authenticated broadcast protocol by Dolev and Strong [7]. Because the protocol
is canon, we defer the original to Appendix A.1 but review it here.

The protocol uses a data structure that we will call a sig-chain. A 1-sig-chain
is a pair (m,σ), where σ is a signature on string m. For i > 1, an i-sig-chain
is a pair (m,σ), where m is an (i − 1)-sig-chain and σ is a signature on m. A
valid i-sig-chain is a sig-chain with the property that no two signatures in the
sig-chain are computed using the same key. An i-sig-chain contains a message
m′ if m′ is the message of the 1-sig-chain on which the sig-chain is built.

The protocol operates as follows: In the first round, the dealer creates a 1-
sig-chain containing its input and sends the sig-chain to all parties. In every
subsequent round i, any party that received a valid i − 1 chain in the previous
round that did not contain a signature that it had computed creates an i − 1
sig-chain by appending its own signature to the chain. It then sends the i-sig-
chain to all parties. In any round i, if a party receives a valid i-sig-chain, then
it adds the message m contained in the sig-chain to a set of candidate outputs.
If the set of candidate outputs contains only one candidate at the end, then the
party outputs that message. Otherwise it outputs ⊥.

Where Dolev-Strong Fails. In the send-corruption model, the Dolev-Strong pro-
tocol fails because it is possible for send-corrupt parties to output some message
m while honest parties output ⊥. Consider an execution in which the parties
are partitioned into three sets: H contains all of the honest parties, S contains
all send-corrupt parties, and B contains all byzantine parties. (For the sake of
this argument, we need not consider receive-corrupt parties.) Let the dealer be
send-corrupt. It is possible that in this execution, the send-corrupt parties com-
municate only with parties in S ∪ B. Then send-corrupt and byzantine parties
can collectively build a tbyz + 1-chain containing m and no honest parties ever
receives the dealer’s message or any sig-chain containing the message. But this
violates consistency, because all send-corrupt and honest parties are required to
output the same thing.

12

Protocol 1 Modified Dolev Strong Broadcast Protocol ΠmodDS

Shared Setup: Public Key Infrastructure (PKI) for a signature scheme.
Inputs: The dealer D ∈ P has an input m ∈ {0, 1}∗.
Outputs: Each party p ∈ P outputs a value m′ ∈ {0, 1}∗ ∪ {⊥}.
Local Variable: Each party p ∈ P maintains a local variable S, which is a set initialized
to {}.
Protocol: The protocol begins at time 1 and proceeds in rounds. Each round party p
proceeds as follows:

1. Round 1: Dealer’s Messages The Dealer D signs its input σ ← signsk(m) and
sends (m,σ) to all parties.

2. Sig Chains: For every round i from 2 to tsnd + tbyz + 1: For every valid (i− 1)-sig-
chain c that p received at the end of round i − 1 in which none of the signatures
were constructed by p, p computes σ ← signsk(c) and sends (σ, c) to all parties.

3. Output: For every valid (tsnd + tbyz + 1)-sig-chain c that p received at the end of
round tsnd+tbyz+1, let m′ be the message contained by c and update S = S∪{m′}.
If |S| = 1, then p outputs the element m′ ∈ S. If |S| 6= 1, then p outputs ⊥.

Fig. 1. Modified Dolev-Strong Broadcast Protocol ΠmodDS

Modifications. In order to resolve this problem, we must make two modifications
to the protocol. First, a party must receive an tsnd + tbyz + 1-sig-chain for any
message that it will output; no chain of less than tsnd + tbyz + 1 length may add
a message to the set of candidate outputs. (This additionally requires that the
protocol is run for tsnd+tbyz+1 rounds.) Second, we update the bounds to require
that n > 2tsnd + 2tbyz. A majority of honest parties is necessary to ensure that
honest parties can always build a tsnd + tbyz + 1-sig-chain without the assistance
of byzantine or send-corrupt parties, which is necessary for validity.

We present our modified Dolev-Strong protocol (ΠmodDS) in Figure 1.

Theorem 2. ΠmodDS is a (tsnd, tbyz)-secure broadcast protocol for n > 2tsnd +
2tbyz.

Proof. The proof is similar to the original by Dolev and Strong, subject to modifi-
cations described above. Validity follows from the fact that when n > 2tsnd+2tbyz
and the dealer is honest, the honest parties build a (tsnd + tbyz +1) sig-chain, and
that no sig-chain can exist containing some m′ that the dealer did not send. Con-
sistency follows from the fact that if a (tsnd + tbyz +1) sig-chain exists, then some
honest party’s signature must be included. It follows that if any honest party
output m, then all honest parties receive a (tsnd + tbyz + 1) sig-chain containing
m. Assume that some honest party receives a (tsnd+tbyz+1) sig-chain containing
m and another honest party receives a (tsnd + tbyz + 1) sig-chain containing m′.
Then both sig-chains must include an honest signature, and therefore there must
be (tsnd + tbyz + 1) sig-chain containing m and m′ in the view of every honest
party. It follows that every honest and send-corrupt party outputs ⊥.

13

Can Dolev-Strong Be Fixed to Support n > tsnd+tbyz? We have shown that with-
out new ideas, Dolev-Strong cannot be updated to tolerate n > tsnd + tbyz (which
it is easy to prove is an optimal corruption budget). However, we cannot rule out
such a threshold. In the pathological execution described above, honest parties
do not send any messages if they do not receive any valid sig-chains. However,
honest parties may send messages in each round containing ⊥, indicating “I have
not received a message,” which conveys that the party’s sent message was not
dropped. This provides more information to the protocol, but we do not know
how to use such a technique to improve broadcast.

3.3 Recent Techniques for Adaptive, Strongly Rushing Adveraries

We explain that recent techniques for byzantine agreement and broadcast against
a strongly rushing adversary also fail when requiring consistency between send-
corrupt parties’ outputs and honest parties’ outputs, even when the adversary is
not strongly adaptive. For example, the byzantine agreement protocol by Abra-
ham et al [2] and the broadcast protocol by Wan et al [21] achieve security
against a strongly adaptive adversary by effectively committing to any leader’s
messages early in the protocol, and then revealing a leader in a later round. This
thwarts strongly rushing adaptive adversaries because by the time a leader is
elected, it is too late to corrupt the leader and remove the messages it has sent.

In the partitioning attack, send-corrupt parties are able to communicate with
each other but not with the honest parties, and are able to reach signature
thresholds on messages that no honest party ever receives. For example, in [2],
messages often require b + 1 distinct signatures (implying at least one honest
party signed a message) in order to be recognized by an honest party. But when
there are more send-corrupt parties than honest parties, any threshold number
of signatures that honest parties must be able to attain on their own must also
be attainable by send-corrupt parties only. This can cause send-corrupt parties
to adopt a different leader in some step than the honest parties. Similarly, in
[21], send-corrupt parties’ puzzles may never be delivered to honest parties.
When honest parties choose a leader based on the solutions to a set of time-lock
puzzles, send-corrupt parties may make a decision based on a larger set than the
honest parties, and their decisions may differ. This form of attack is prevented
by the implicit echoing assumption in [21], but it does not carry into the send-
corrupt model. In our model, this attack is thwarted by requiring the number
of honest parties be greater than 2(tsnd + tbyz), as thresholds on the number of
signatures can enforce that some honest party signs a message.

4 Constant-Round Synchronous Consensus for
n > trcv + 2tsnd + 2tbyz

We now present a protocol for consensus in synchronous networks in the presence
of send corruptions, receive corruptions, and byzantine corruptions where digital
signatures are available. We prove that the protocol is (tsnd, trcv, tbyz)-secure for

14

Protocol 2 All-To-All FixReceive Protocol ΠFR(tsnd, trcv, tbyz)

Inputs: Each party p ∈ P has an input m ∈ {0, 1}∗.
Outputs:Each party p ∈ P outputs some message for every other party in P, or outputs
zombie.
Protocol: The protocol proceeds in two rounds, in which every party sends its input m
to every other party, and then parties forward the unique messages they have received,
as follows:

1. Send Messages: Each party sends its signed input m to every other party.
2. Replay: Every party forwards every unique message that it received in Round 1

to every other party. If a party did not receive any unique messages in Round 1,
it sends ⊥ to every other party.

3. Output: If a party p does not receive more than n−tsnd−tbyz > tbyz +trcv messages
(including ⊥) in either round, then it sends zombie to all other parties, outputs
⊥, and becomes a zombie. Otherwise, p outputs the set of unique messages that it
received in Round 2.

Fig. 2. All-to-all FixReceive Protocol ΠFR

n > trcv + 2tsnd + 2tbyz. In Section 5, we show the same protocol is (tsnd, trcv, tbyz)-
secure for n > trcv + tsnd + 2tbyz when send corruptions are spotty, and that
corruption budget is optimal.

Towards presenting our consensus protocol, we first present protocols for
weak broadcast, weak consensus, and graded consensus. Each protocol is used
as a building block in our ultimate consensus protocol. However, before these
building blocks, we introduce another protocol for reliable sending when all par-
ties send messages to each other. A party detects whether it is receive-corrupt
based on the number of messages it receives; if so, it becomes a zombie and noti-
fies the other parties. If not, it continues to participate and outputs the messages
that it received.

4.1 All-To-All FixReceive

We present a protocol that is similar to FixReceive from [23], tuned for the
common scenario in our future protocols, in which all parties attempt to send a
message to all other parties. The parties all forward unique messages that they
receive, in order to ensure that every party either receives message that was sent,
or detects that it is receive-corrupted. The parties output all unique messages
that they receive during the protocol.

We prove that a receive-corrupt party that does not become a zombie must
receive a message from another honest or send-corrupt party. We then prove
that if some honest party attempts to send a message m via the protocol, then
every non-zombie party must receive that message.

15

Lemma 1. Any party p becomes a zombie during ΠFR only when it is receive-
corrupt. If p does not become a zombie then it received a message from at least
one honest or send-corrupt party.

Proof. If p receives fewer than n − tsnd − tbyz then it must be receive-corrupt,
since at most tsnd send-corrupt parties and tbyz byzantine parties may not send
messages to p. If p does not become a zombie, then it must receive at least
n − tsnd − tbyz > tbyz + trcv messages. Therefore, one of the messages it received
must have been from an honest or send-corrupt (but not also receive-corrupt)
party.

Lemma 2. If an honest party or receive-corrupt party (but not send-corrupt)
sends a message m using ΠFR, then every live party receives m or becomes a
zombie.

Proof. Follows from the fact that in the first round, all honest parties and send-
corrupt receive m. In the second step, if any party p does not become a zombie,
then it must receive a message either some honest or send-corrupt party, which
must include m.

4.2 Weak Broadcast

Our first building block is a weak broadcast primitive. In a weak broadcast
protocol, a dealer D ∈ P wishes to send a message m ∈ {0, 1}∗ to the parties
in P. Each party p ∈ P outputs a message m′ ∈ {0, 1}∗ ∪ {⊥}, subject to the
following constraints:

Definition 4 (Weak Broadcast). Let Π be a protocol for parties P = {p1, . . . , pn}
and a distinguished party D ∈ P holds an input m ∈ {0, 1}∗. Π is a Weak Broad-
cast protocol if the following properties hold except with negligible probability.

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-
compliant execution in which D is honest or receive corrupt (but not send-
corrupt), every live party outputs m.

2. (tsnd, trcv, tbyz)-Unanimity: Π is (tsnd, trcv, tbyz)-unanimous if in every (tsnd, trcv, tbyz)-
compliant execution in which D is live, either every live party outputs m ∈
{0, 1}∗ or every live party outputs ⊥.

3. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-
compliant execution in which any honest party outputs m′ ∈ {0, 1}∗, every
live party outputs m′ or ⊥.

4. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every
(tsnd, trcv, tbyz)-compliant execution, every live party outputs some m′ ∈ {0, 1}∗∪
{⊥} and terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating
then we call it (tsnd, trcv, tbyz)-secure. If Π is additionally (tsnd, trcv, tbyz)-unanimous,
then we call it (tsnd, trcv, tbyz)-secure with unanimity.

16

Protocol 3 Weak Broadcast Protocol ΠWB

Shared Setup: Public Key Infrastructure for a signature scheme, every party knows the
identity of the dealer and its public key pk.
Inputs: The dealer D ∈ P has an input m ∈ {0, 1}∗.
Outputs: Each party pi ∈ P outputs a value m′ ∈ {0, 1}∗ ∪ {⊥}.
Protocol: The protocol begins at time 0 and proceeds in rounds, in which each round
lasts for ∆ time. Each round party p proceeds as follows:

1. Dealer’s Messages: The Dealer D signs its input σ ← signsk(m) and sends
(deal,m, σ) to all parties, where σ is the signature on m using its secret signing
key sk.

2. Echo Dealer’s Value: Parties run ΠFR based on the messages they received
from D. If p received a message from D, let (m′, σ) be the message and signature
that p received. p inputs (echo,m′, σ) to ΠFR. Otherwise, p inputs (echo,⊥,⊥) to
ΠFR.

3. Replay: Parties again run ΠFR based on the messages they received in the previ-
ous round, where each party provides all of the unique messages it received in the
previous ΠFR as input.

4. Verification and Output: If p did not output any messages signed with D’s key
from the first run of ΠFR, then it outputs ⊥. If in the outputs of the second run
of ΠFR, p receives any two pairs (m′i, σi) and (m′j , σj) such that m′i 6= m′j but
verpk(σi) = 1 and verpk(σj) = 1, then p outputs ⊥. Otherwise, p outputs the unique
message m′ that it received in the first run of ΠFR whose signature verifies with
D’s public key.

Fig. 3. Weak Broadcast Protocol ΠWB

Our protocol for weak broadcast is presented in Figure 3. It follows a standard
construction, adapted for our corruption model by invoking ΠFR to distribute
messages. It permits a designated dealer to send an arbitrary message m to all
parties, with the guarantee that every party outputs either m or ⊥.

Lemma 3. Protocol ΠWB(tsnd, trcv, tbyz) is a (tsnd, trcv, tbyz)-secure weak broad-
cast protocol for n > tsnd + trcv + 2tbyz.

Proof. Termination is trivial. We prove validity and consistency.

(tsnd, trcv, tbyz)-Validity: If the dealer is honest or receive-corrupt (but not send-
corrupt) then every honest party receives a valid signature on the dealer’s input
m from the dealer. Then, by Lemma 2, all non-zombie parties output m from
the first run of ΠFR. By the unforgeability of our idealized signature scheme,
no signed message m′ under the dealer’s key can be forged. Therefore, every live
party outputs m.

(tsnd, trcv, tbyz)-Consistency: Assume that honest party p outputs m and live
party q outputs m′. Then p forwards m and its signature to q via the second

17

invocation of ΠFR. By Lemma 2, q must output m and its signature from the
second invocation of ΠFR, or become a zombie. Because q is not a zombie, it
received a signed message containing m that verifies with the dealer’s public key,
and therefore does not output m′, a contradiction.

We provide an additional statement about the outputs of ΠWB when the
sender is corrupt but not byzantine. Specifically, consistency holds over the out-
puts of all live parties when the dealer is send-corrupt (and not only when some
honest party outputs m 6= ⊥).

Lemma 4. When the dealer is send-corrupt, if one live party outputs m 6= ⊥,
then every live party outputs m′ ∈ {m,⊥}

Proof. Follows directly from unforgeability of the idealized signature scheme.

4.3 Weak Consensus

We use weak consensus as a stepping stone to achieve consensus. In a weak
consensus protocol, all honest parties have an input b ∈ {⊥, 0, 1}, and all honest
parties are expected to output a value v ∈ {⊥, 0, 1}, subject to the following:

Definition 5 (Weak Consensus). Let Π be a protocol for parties P = {p1, . . . , pn}
in which every party p ∈ P has an input b ∈ {0, 1}. Π is a Weak Consensus
protocol if the following properties hold except with negligible probability.

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-
compliant execution in which all honest parties have the same input b and
no live parties have input 1− b, all honest parties output b.

2. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-
compliant execution in which any live party outputs v ∈ {0, 1}, no live party
outputs 1− v.

3. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every
(tsnd, trcv, tbyz)-compliant execution, every live party outputs v ∈ {⊥, 0, 1}
and terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating
then we call it (tsnd, trcv, tbyz)-secure.

We present our weak consensus protocol ΠWC in Figure 4. The protocol is
an adaptation of the reduction from Weak Consensus to Weak Broadcast [9],
modified for our corruption setting. Specifically, the protocol proceeds in two
synchronous rounds. First, in parallel, each party signs its protocol input and
sends its signed input to all parties. Second, upon receiving all other parties’
inputs, each party attempts to generate a certificate in favor of some output
value. A certificate for a bit u is a set of n − tsnd − trcv − tbyz unique, valid
signatures on u. If a party is able to generate a certificate, it sends the certificate
to all other parties.

18

Protocol 4 Weak Consensus ΠWC(tcra, tbyz)

Shared Setup: Public Key infrastructure for a signature scheme.
Inputs: Each party p ∈ P has an input b ∈ {⊥, 0, 1} and a secret signing key for the
signature scheme.
Outputs: Each party p ∈ P outputs a value v ∈ {⊥, 0, 1}.
Protocol: The protocol begins at time 0 proceeds in rounds, in which each round lasts
for ∆ time. Each party pi proceeds as follows:

1. Sign Inputs: In parallel, each party signs its input bit and sends its signed input
to all other parties.

2. Construct Certificates and WB: Each party collects all of the signed input bits
from the other parties. If there is a v ∈ {0, 1} for which n−tsnd−trcv−tbyz valid signed
messages are received, p constructs a certificate composed of n − tsnd − trcv − tbyz
signatures from distinct parties on v. The parties then invoke n weak broadcasts
in parallel, in which pi is the dealer in the ith weak broadcast, and pi provides its
certificate as input if it has one; otherwise pi provides ⊥ as its input.

3. Output: Each party receives any certificates sent to it in Round 2. If p constructed
a certificate for some v in round 2 AND p has received at least n− tsnd − trcv − tbyz
certificates for v by the end of round 2 from distinct parties AND p has not received
a valid certificate for 1− v, then p outputs v. Otherwise, p outputs ⊥.

Fig. 4. Weak Consensus Protocol ΠWC

A party outputs a bit v only if it meets three conditions: First, it must
generate a certificate in the beginning of the second round; second, it must
receive at least n− tsnd − trcv − tbyz valid certificates from distinct parties; third,
it must not receive a valid certificate for 1− v from any other party. Otherwise
it outputs ⊥.

Intuitively, validity of the protocol is guaranteed by the fact that if all live
parties have input b, then all honest parties will be able to construct a certificate
for b, and there will not be enough corrupt parties to construct a certificate for
1 − b. Consistency is guaranteed by the fact that if two live parties are able to
generate certificates for opposite values, then they must share their certificates
with each other, and then both output ⊥.

Lemma 5. Protocol ΠWC(tsnd, trcv, tbyz) is a (tsnd, trcv, tbyz)-secure Weak Con-
sensus protocol in synchronous networks for n > trcv + 3

2 tsnd + 2tbyz.

Proof. Termination is trivial. We separately prove validity and consistency.

(tsnd, trcv, tbyz)-Validity : If all honest parties have input b, then because there
are at least n − tbyz − tsnd − trcv honest parties, every honest party receives at
least n − tbyz − tsnd − trcv signatures on b in the first round. It follows that at
least n − tbyz − tsnd − trcv honest parties construct valid certificates for v and
weak broadcast them to all live parties. By validity of ΠWB, all of these weak
broadcasts are received by all live parties. Moreover, because no live parties have

19

input 1− b and n− tbyz − tsnd − trcv > tbyz, no certificate can be constructed by
corrupt parties for 1− b. Therefore, every live party outputs b.

(tsnd, trcv, tbyz)-Consistency : Assume live party p outputs v and live party q
outputs 1− v. Then p must have received at least n− tbyz− tsnd− trcv certificates
for v and q must have received at least n− tbyz − tsnd − trcv certificates for 1− v.

Let A be the set of parties from which p received a certificate and B be the set
of parties from which q received a certificate. Note that by validity and Lemma
4, no live party in A may also be in B, or vice versa; otherwise, q (respectively
p) received a certificate for v (respectively 1− v), and q (respectively p) did not
output 1− v (respectively v). Therefore, only corrupt parties may be in both p
and q, and there are at most b of them.

We proceed toward contradiction by showing that in fact, there must be some
honest or receive-corrupt party in both A and B. We do so by arguing about the
size of the union of A and B. If |A ∪ B| > tsnd + tbyz, then there must be some
honest or receive-corrupt party that weak broadcasted the same certificate to p
and q, and by validity both p and q received that certificate. This is sufficient to
conclude the proof, because then p or q does not output v or 1 − v, as argued
above.

Recall that |A ∪ B| = |A| + |B| − |A ∩ B|. We have argued that |A| ≥
n − tbyz − tsnd − trcv, |B| ≥ n − tbyz − tsnd − trcv, and |A ∩ B| ≤ tbyz. Then
|A ∪ B| ≥ 2(n − tbyz − tsnd − trcv) − tbyz, and when n > trcv + 3

2 tsnd + 2tbyz,
|A ∪B| > tsnd + tbyz. As explained above, this is a contradiction.

4.4 Graded Consensus

We define an additional weakened form of consensus called graded consensus,
which was originally introduced by Feldman and Micali [8]. In a graded consensus
protocol, each party has an input b ∈ {0, 1}. Each party is expected to output a
pair (v, g) ∈ {0, 1}2, where v is the output bit and g is a grade.

Definition 6 (0/1 Graded Consensus). Let Π be a protocol for parties P =
{p1, . . . , pn} where each party has input b ∈ {⊥, 0, 1}. Π is a 0/1 Graded Con-
sensus protocol if the following properties hold except with negligible probability.

1. (tsnd, trcv, tbyz)-Validity: Π is (tsnd, trcv, tbyz)-valid if in every (tsnd, trcv, tbyz)-
compliant execution in which all honest parties have the same input b ∈ {0, 1}
and no live parties have input 1− b, all live parties output (b, 1).

2. (tsnd, trcv, tbyz)-Consistency: Π is (tsnd, trcv, tbyz)-consistent if in every (tsnd, trcv, tbyz)-
compliant execution in which any live party outputs (v, 1), every live party
outputs (v, g) ∈ {0, 1}2.

3. (tsnd, trcv, tbyz)-Termination: Π is (tsnd, trcv, tbyz)-terminating if in every
(tsnd, trcv, tbyz)-compliant execution, every live party outputs (v, g) ∈ {0, 1}2
and terminates within finitely many steps.

If Π is (tsnd, trcv, tbyz)-valid, (tsnd, trcv, tbyz)-consistent, and (tsnd, trcv, tbyz)-terminating
then we call it (tsnd, trcv, tbyz)-secure.

20

Protocol 5 Graded Consensus ΠGC(tsnd, trcv, tbyz)

Inputs: Each party p ∈ P has an input b ∈ {⊥, 0, 1}
Outputs: Each party p ∈ P outputs a pair (v, g) ∈ {0, 1}2
Protocol: The protocol begins at time 0 and proceeds in synchronous rounds, labeled
below, where each round lasts long enough for its corresponding subprotocol to com-
plete. Each party p proceeds as follows:

1. Weak Consensus: Run ΠWC with b as input. Let b′ denote the output of ΠWC.
2. Weak Broadcast: In parallel, all parties invoke n copies of ΠWB(tsnd, trcv, tbyz),

where pj is the dealer in the jth copy. pj uses the value b′ as its input to ΠWB. For
u ∈ {⊥, 0, 1}, let nu denote the number of weak broadcasts for which p outputs u.

3. Output:
– Assign v ← u ∈ {0, 1} for which nu > n1−u. Break ties by assigning v ← 1.

Assign g ← 1 if nv ≥ n− tbyz − trcv − tsnd. Else g ← 0. Output (v, g)

Fig. 5. Graded Consensus Protocol ΠGC

Our graded consensus protocol ΠGC is presented in Figure 5; it is an adapta-
tion to our fault model of the reduction of graded consensus to weak broadcast
discussed by Fitzi [9]. Specifically, ΠGC proceeds in synchronous rounds in which
two subprotocols are invoked. First, parties invoke a weak consensus protocol,
using their protocol inputs as input to the weak consensus protocol. Second, in
parallel, all parties weak broadcast their outputs from the weak consensus proto-
col. Parties determine their outputs based on the weak broadcasts they receive.
First, a party sets the bit v to the value u ∈ {0, 1} for which it received more
weak broadcasts carrying u than 1 − u. Second, a party sets its grade g to 1 if
it receives than n − tbyz − trcv − tsnd weak broadcasts carrying bit v, and sets
its grade to 0 otherwise. It then outputs (v, g). Intuitively, each party outputs
a bit v based on the majority of weak broadcasts that it has received. A party
outputs grade 1 if it has received a large enough majority of weak broadcasts
carrying v that it is guaranteed no other honest party has received a majority
of weak broadcasts carrying 1 − v. The proof follows from a standard quorum
argument.

Lemma 6. Protocol ΠGC(tsnd, trcv, tbyz) is a (tsnd, trcv, tbyz)-secure graded consen-
sus protocol in synchronous networks for n > trcv + 2tsnd + 2tbyz.

Proof. Termination is trivial. We separately prove validity and consistency.

(tsnd, trcv, tbyz)-Validity: By the validity of ΠWC, if all honest parties have the
same input b ∈ {0, 1} and no live parties have input 1− b, then every live party
outputs b from ΠWC, and no live party outputs 1 − b from ΠWC. Next, every
honest party weak-broadcasts b via ΠWB, so there are at least n− tbyz− tsnd− trcv
weak broadcasts from which each honest party outputs b. Moreover, because no
live party outputs 1 − b from ΠWC, there are at most tbyz executions of weak

21

broadcast from which any party outputs 1−b. Because n− tbyz− tsnd− trcv > tbyz
(by assumption), each honest party outputs b as its value. Because at least
n− tbyz − tsnd − trcv honest parties weak broadcasted b, each live party outputs
1 as its grade.

(tsnd, trcv, tbyz)-Consistency: Suppose a live party pi outputs (v, 1) for v ∈
{0, 1} and a live party pj outputs (1− v, g) for some g ∈ {0, 1}.

First we establish that no live party weak-broadcasted 1 − v in Round 2. It
must be the case that pi output v from at least n − tbyz − tsnd − trcv parties in
Round 2. Because n− tbyz− tsnd− trcv > tbyz, there must be some live party that
sent v to pi. Let this honest party be q. It must therefore be the case that q
output v from the execution of ΠWC. By the consistency of ΠWC, no live party
output 1− v from ΠWC, and therefore no live party weak-broadcasted 1− v.

Next, consider that pi received at least n− tbyz − tsnd − trcv weak broadcasts
of v. We now consider the view of pj

1. In at most s weak broadcasts, the dealer was send-corrupt; therefore pj
output ⊥ from at most s of the broadcasts with live dealer from which pi
output v.

2. Let b∗ be the number of weak broadcasts with byzantine dealer from which
pi output v. By consistency of weak broadcast, pj must output v or ⊥ from
those weak broadcasts.

Because pj output (1− v, g) it must be the case that n1−v > nv in pj view. By
the above statements, nv must be at least n−tbyz−tsnd−trcv−s−b∗ in pj ’s view.
Because only byzantine parties may have weak broadcasted 1− v, and because
b∗ corrupt parties did not weak broadcast 1− v, n1−v is at most tbyz− b∗ in pj ’s
view. This is a contradiction because n − tbyz − tsnd − trcv − s − b∗ > tbyz − b∗
when n > r + 2tsnd + 2tbyz, and therefore nv > n1−v in pj ’s view and pj did not
output (1− v, g). This is a contradiction.

4.5 Expected Constant Round Consensus

In Figure 6 we present Π∗, our expected-constant round protocol for consensus.
The protocol follows the standard coin-loop paradigm to go from graded con-
sensus to byzantine agreement. To ensure termination, the protocol ensures that
when a party terminates, it holds a certificate that it can send to all parties in
order to make them terminate with the same value.

Theorem 3 (Main Theorem). Π∗(tsnd, trcv, tbyz) is a Π∗(tsnd, trcv, tbyz)-secure
consensus protocol in synchronous networks for n > trcv + 2tsnd + 2tbyz, where a
common coin primitive is available.

We proceed to prove the theorem via a sequence of lemmas. We start with
validity.

Lemma 7 (Validity). Π∗(tsnd, trcv, tbyz) is (tsnd, trcv, tbyz)-valid in synchronous
networks for n > trcv + 2tsnd + 2tbyz.

22

Protocol 6 Expected Constant Round Protocol Π∗(tsnd, trcv, tbyz)

Common Setup: The parties have access to a public key infrastructure for some signa-
ture scheme.
Inputs: Each party p ∈ P has an input b ∈ {0, 1}
Outputs: Each party p ∈ P outputs some b′ ∈ {0, 1}
Internal Variable: Each party maintains a variable v ∈ {0, 1} which is initialized to b.
For each u ∈ {0, 1}, each party also maintains a set Du of distinct (decide, u) messages
that it has received.
Protocol: The protocol begins at time 0 and proceeds in synchronous rounds. Each
party p proceeds as follows:

– Loop starting with iteration i = 0 until terminating:
1. Subround A (Graded Consensus): Run ΠGC(tsnd, trcv, tbyz) with v as input.

Let (u, g) denote p’s output of ΠGC.
2. Subround B (Common Coin): Invoke a common coin protocol Πcoin and

assign to ψi the output.
3. Conditional Update: If g = 0, then update v ← ψi. If g = 1, then update

v ← u.
4. Conditional Decision: If g = 1 and v = ψi: sign (decide, v), send the signed

message to all parties, and output v.
5. Certificate Send: All parties invoke ΠFR, where any party that has gen-

erated or received a certificate since the last invocation of ΠFR provides the
certificate as input, and terminates after ΠFR. Any party that does not have
a certificate inputs ⊥.

– Certificate: Upon receiving a signed (decide, u) message from any party, add the
message to Du. When Du contains at least tbyz + 1 messages from distinct parties,
construct a certificate of tbyz + 1 (decide, u) messages from distinct parties. Upon
receiving a certificate, output u (if have not already output).

Fig. 6. Expected Constant Round Consensus Protocol Π∗

Proof. If all live parties have input v, then by (tsnd, trcv, tbyz)-validity of Graded
Consensus, each live party outputs (v, 1) from every iteration of Graded Con-
sensus. It follows that the first time Πcoin outputs v, all live parties output v.

Before proving consistency and termination, we prove the following claim of
any (tsnd, trcv, tbyz)-compliant execution of Π∗ that will facilitate the proofs of
both properties:

Claim 8 Let i be the iteration in which the first live party p outputs u. Then
in every iteration s > i while no honest party has terminated, every live party
outputs (u, 1) from subprotocol ΠGC.

Proof. We will show that at the end of iteration i, every live party updates
its internal value v to u. The claim follows from the fact that in the following
iteration, every live party inputs u to ΠGC. By validity of Graded Consensus,

23

this implies that every live party outputs (u, 1) from ΠGC in that iteration and
maintains the value of its internal variable v.

Inductively, as long as no honest party terminates, no live party ever changes
its internal variable v after iteration i. This follows from the fact that all honest
parties maintain the value of their internal variable v as long as all honest parties
have input v and no live party has input 1−v; although send-corrupt or receive-
corrupt parties may terminate before an honest party, their inputs are treated
as ⊥ in the subsequent executions ΠGC, and the honest parties’ internal variable
of v is maintained by validity.

Now we show that at the end of iteration i, every live party updates its
internal value v to u. We consider the two following cases for any live party
q 6= p, based on q’s output from ΠGC in iteration i. By consistency of Graded
Consensus, because p output (u, 1), q may output either (u, 0) or (u, 1) from
ΠGC:

1. q output (u, 0). Then q updates its internal variable v to the value ψ from
the coin tossing in that iteration. By the fact that p outputs v in iteration
i, ψi = v.

2. q output (u, 1). Then q updates its internal variable v to the value u by the
protocol specification.

Lemma 9 (Consistency). Π∗(tsnd, trcv, tbyz) is (tsnd, trcv, tbyz)-consistent in syn-
chronous networks for n > trcv + 2tsnd + 2tbyz.

Proof. To prove consistency, we show that if some live party p outputs u, then
no live party q ever outputs 1−u. Recall that are two methods by which a party
may produce output. We enumerate them as follows:

1. First, a party may output in iteration i when its internal variable v matches
ψi.

2. Second, a party may output by receiving a certificate of signed decision
messages.

Assume that in a (tsnd, trcv, tbyz)-compliant execution of Π∗, some live party
p outputs u and another live party q outputs 1− u. First we claim that no two
live parties may output conflicting values if both output by method 1.

Claim 10 In any execution of Π∗, no two live parties r and s may output u
and 1− u, respectively, by method 1.

Proof. Let there be an execution in which live party r outputs u by method 1
and live party s outputs 1− u by method 1. If r and s both output by method
1, they must have different values of their internal variable v at the moments
they output. This is because when any party p outputs a value u by method 1,
it must hold u in its internal variable v. However, because in every iteration, r
and s both output the same value from Πcoin, and because each party outputs
only when the output of Πcoin matches the value of its internal variable v, r and

24

s may not both output in the same iteration. Therefore, r and s must produce
their outputs in different iterations.

Without loss of generality, let r produce output before s, and let s be the
first live party to output 1 − u by method 1 after r outputs u. (If s was not
already the first live party to output 1− u by method 1 after r outputs u, then
proceed to derive contradiction with respect to the first such party.) By Claim
8, every live party must have u in the value of its internal variables v until some
honest party terminates. Therefore, because s must have 1 − u in the value of
its internal variable v when it outputs 1− u, some honest party must terminate
between the time that r produces output and s produces output. Let w be the
first honest party to terminate, and let it terminate in iteration i. Since w is the
first honest party to terminate, by Claim 8 w must terminate after outputting u.
But then w sends its certificate via ΠFR in round i, and by Lemma 2, s received
w’s certificate or s becomes a zombie at the end of ΠFR. Then s does not output
1− v, which is a contradiction.

It follows from Claim 10 that p and q may not both have output by method
1. Therefore, at least one party must have output by method 2.

Before concluding the proof, we claim that if any live party outputs a value
u by method 2, then some live party must have output u by method 1. This
follows directly from the fact that a valid certificate requires tbyz + 1 signed
(decide, u) messages. In particular, at least one live party’s signed (decide, u)
message must be included in any certificate, and parties only produce signed
(decide, u) messages when producing output by method 1.

We conclude the proof using this claim. Without loss of generality, let p
output u by method 1 and q output 1 − u by method 2. Then by the previous
claim, there must be two honest parties that output conflicting values by method
1, which is a contradiction with Claim 10. We derive a similar contradiction with
Claim 10 if two live parties output conflicting values by method 2.

Lemma 11 (Termination). For all κ ≥ 1 and n > trcv + 2tsnd + 2tbyz, with
probability at least 1− 1

2κ , every live party running Π∗(tsnd, trcv, tbyz) terminates
in at most 2κ+ 1 iterations.

Proof. To analyze the probability that the all live parties terminate after m
iterations, we separate the analysis into two steps. First, we define a unanimous
iteration as an iteration at the end of which all live parties set their internal
variables v to the same value. We will denote the first unanimous iteration of
the protocol by i∗ and analyze how many iterations the protocol requires until its
first unanimous iteration. Second, we analyze how many iterations the protocol
requires until all honest parties terminate after i∗.

To analyze how long the protocol requires until the first unanimous iteration,
we first analyze how a unanimous iteration may occur. There are two possible
ways that a unanimous iteration may occur:

1. If every live party outputs (·, 0) from ΠGC in iteration i, then at the end of
iteration i, every live party updates its internal variable v to ψi.

25

2. If some live party outputs (u, 1) from ΠGC in iteration i and ψi = u, then at
the end of the iteration, all live parties update their internal variable v to u.

Therefore, i∗ is the first iteration in which either all live parties output g = 0
from ΠGC or in which some live party outputs (v, 1) from ΠGC and Πcoin outputs
v. Conditioned on the fact that some live party outputs (·, 1) from ΠGC in each
iteration, it follows from the fact that Πcoin is not biasable that each iteration
i is unanimous with probability 1

2 . It follows that i∗ occurs by iteration ` with
probability at least 1 − 1

2`
. Let all live parties set their internal variable v to

some v∗ ∈ {0, 1} at the end of iteration i∗. Next we claim that every live party
outputs a bit no later than the next iteration s > i∗ in which ψs = v∗. The claim
follows as a direct consequence of Claim 8, since all live parties are guaranteed to
output (v∗, 1) from ΠGC in every iteration after i∗, and in the case that ψs = v∗,
every party that has not yet produced output must output v∗. Because Πcoin

is not biasable, ψs = v∗ with probability 1
2 in each iteration s > i∗. It follows

that every live party outputs v∗ by iteration i∗ + ` with probability at least
1− 1

2`
. It follows from linearity of expectations that all live parties output a bit

from Π∗ within 2κ iterations with probability 1 − 1
2κ . When all honest parties

output a bit, it follows that they all sign and send (decide, v) messages to each
other. At latest, each party receives a certificate at the end of the iteration in
which all honest parties output. Therefore, all live parties terminate Π∗ within
2κ iterations with probability 1− 1

2κ .

5 Optimal Synchronous Consensus for Spotty Send
Corruptions

In this section, we present slight modifications to the proofs in Section 4 that
show Π∗ achieves better corruption bounds when send-corruptions are spotty.
We then prove that protocol Π∗ is optimal in the number of corruptions it
tolerates when send-corruptions are spotty.

5.1 Analysis for Spotty Send Corruptions

We now show that Π∗ achieves better bounds for send-corruptions when such
send failures are spotty.

Theorem 4. When send-corruptions are spotty and a common coin primitive
is available, Π∗ is (tsnd, trcv, tbyz)-secure for n > trcv + tsnd + 2tbyz.

The proof follows in the remainder of this section, by updating the bounds and
proofs of the underlying building block protocols.

Weak Broadcast With Unanimity. First we show thatΠWB is (tsnd, trcv, tbyz)-
secure with unanimity when send failures are spotty, for n > trcv + tsnd + 2tbyz.
Because the construction does not change, we simply append the proof of una-
nimity.

26

Lemma 12. ΠWB is (tsnd, trcv, tbyz)-unanimous for n > trcv + tsnd + 2tbyz when
send corruptions are spotty.

Proof. We show that if the dealer is live and broadcasts m, then every live party
either outputs m or every live party outputs ⊥. By the unforgeability of our
idealized signature scheme, no signed message m′ under the dealer’s key can be
forged. Therefore, whether every party outputs m or every live party outputs
⊥ is determined completely by whether D’s send succeeds in the first round of
ΠFR. If D is honest, receive-corrupt, or if its send succeeds, then every honest
and send-corrupt party receives m in the first round of ΠFR. If any receive-
corrupt party does not receive m in the first round of ΠFR, then it must receive
m in the second round, or become a zombie.

Weak Consensus We show that ΠWC is (tsnd, trcv, tbyz)-secure for n > trcv +
tsnd + 2tbyz when send corruptions are spotty. We do not need to update the
protocol, and we update only the proof of consistency.

Lemma 13. ΠWC is (tsnd, trcv, tbyz)-consistent for n > trcv + tsnd + 2tbyz when
send corruptions are spotty.

Proof. The proof is identical to the one for Lemma 5, except that if send-failures
are spotty, then we require only that |A ∪ B| > b. This is because if any send-
corrupt party sends a weak-broadcast that is received by any honest party, it
must be received by all others by unanimity of Weak Broadcast, Lemma 12.

Graded Consensus We next show that ΠGC is (tsnd, trcv, tbyz)-secure for n >
trcv + tsnd + 2tbyz when send corruptions are spotty. Once again, we do not need
to update the protocol, and for this protocol we only update the proof of con-
sistency.

Lemma 14. ΠGC is (tsnd, trcv, tbyz)-consistent for n > trcv + tsnd + 2tbyz when
send corruptions are spotty.

Proof. The proof is identical to the one in Lemma 6, except that we need not
consider send-corrupt parties whose weak broadcasts are delivered to pi but not
to pj .

Because pj output (1− v, g) it must be the case that n1−v > nv in pj view.
Then nv must be at least n − tbyz − tsnd − trcv − b∗ in pj ’s view. Because only
byzantine parties may have weak broadcasted 1 − v, and because b∗ corrupt
parties did not weak broadcast 1 − v, n1−v is at most tbyz − b∗ in pj ’s view.
We reach a contradiction because n − tbyz − tsnd − trcv − b∗ > tbyz − b∗ when
n > r+ tsnd + 2tbyz, and therefore nv > n1−v in pj ’s view and pj did not output
(1− v, g).

And it follows that ΠGC is (tsnd, trcv, tbyz)-secure because the proof of validity
requires only n > trcv + tsnd + 2tbyz.

27

Expected Constant Round Consensus The protocol and proof of Π∗ do not
need to be updated, as they inherit the bounds of the building block protocols,
all of which are secure for n > trcv + tsnd + 2tbyz.

5.2 Optimality with Respect to Spotty Send and Byzantine
Corruptions

We now prove that Π∗ is optimal in the number of corruptions it tolerates with
respect to send corruptions and byzantine corruptions when send-corruptions
are spotty. The proof does not consider a model with receive-corrupt parties.
Recall that this model generalizes the crash failure model.

Theorem 5 (Optimal Send- and Byzantine Fault Tolerance). There is
no protocol for synchronous consensus in the mixed fault model which permits
zombie processes that tolerates tsnd send corruptions and tbyz byzantine corrup-
tions for n ≤ trcv + tsnd + 2tbyz

Proof. The proof considers only send-corrupt and byzantine parties. It can be
trivially extended to include a factor for trcv parties simply by adding an addi-
tional group of receive corrupt parties and forcing them to become zombies as
the protocol begins.

Assume there is a consensus protocol Π resilient to tsnd and tbyz faults for
tsnd + 2tbyz ≥ n. We proceed by analyzing three separate executions of Π. As
a tool towards analyzing executions, we first divide the set of parties P into
three groups: A, B, and S. Group A has n − tsnd − tbyz parties, Group B has
tbyz ≥ n− tsnd− tbyz parties, and Group S has tsnd parties. In the following three
executions, the schedules of messages sent by and delivered to all parties are
identical. Only the corruption status of parties across groups A, B, and S differ.

1. Execution 1: In this execution, all of the parties in Group A are honest
and all have input 1. All the parties in Group B are byzantine and act as
if they were honest parties with input 0. All of the parties in Group S are
send-corrupt and do not send any messages, but have input 1. By validity,
the honest parties (Group A) must output 1.

2. Execution 2: In this execution, all of the parties in Group A are byzantine
and act as if they have input 1. All of Group B are honest and have input 0.
All of the parties in S are send corrupt and do not send messages, but have
input 0. By validity, all of the honest parties (Group B) must output 0.

3. Execution 3: In this execution, all parties in Groups A and B are honest.
Group A all have input 1 and Group B all have input 0. All of the parties
in S are send corrupt and do not send messages, but have input 1.

We now analyze the outputs of the parties in Execution 3. Notice that to the
parties in Group A, this execution is identically distributed to Execution 1, so
they must output 1. To the parties in Group B, this execution is identically
distributed to Execution 2, so they must output 0. This violates consistency.

28

References

1. Ittai Abraham, TH Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling
Ren, and Elaine Shi. Communication complexity of byzantine agreement, revis-
ited. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pages 317–326, 2019.

2. Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.
Synchronous byzantine agreement with expected o(1) rounds, expected o(n{̂2})
communication, and optimal resilience. In International Conference on Financial
Cryptography and Data Security, pages 320–334. Springer, 2019.

3. Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Maofan Yin. Sync
hotstuff: Simple and practical synchronous state machine replication. Cryptology
ePrint Archive, Report 2019/270, 2019. https://eprint.iacr.org/2019/270.

4. Bernd Altmann, Matthias Fitzi, and Ueli M. Maurer. Byzantine agreement secure
against general adversaries in the dual failure model. In DISC, volume 1693 of
Lecture Notes in Computer Science, pages 123–137. Springer, 1999.

5. Michael Backes and Christian Cachin. Reliable broadcast in a computational hy-
brid model with byzantine faults, crashes, and recoveries. In DSN, pages 37–46.
IEEE Computer Society, 2003.

6. T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. Round complexity of byzantine
agreement, revisited. IACR Cryptology ePrint Archive, 2019:886, 2019.

7. Danny Dolev and H. Raymond Strong. Authenticated algorithms
for byzantine agreement. SIAM J. Comput., 12(4):656–666, 1983.
URL: https://doi.org/10.1137/0212045, http://dx.doi.org/10.1137/0212045
doi:10.1137/0212045.

8. Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for syn-
chronous byzantine agreement. SIAM J. Comput., 26(4):873–933, 1997.

9. Matthias Fitzi. Generalized Communication and Security Models in Byzantine
Agreement. PhD thesis, ETH Zurich, 3 2003. Reprint as vol. 4 of ETH Series
in Information Security and Cryptography, ISBN 3-89649-853-3, Hartung-Gorre
Verlag, Konstanz, 2003.

10. Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round
complexity of authenticated broadcast with a dishonest majority. In FOCS, pages
658–668. IEEE Computer Society, 2007.

11. Juan A. Garay and Kenneth J. Perry. A continuum of failure models for distributed
computing. In WDAG, volume 647 of Lecture Notes in Computer Science, pages
153–165. Springer, 1992.

12. Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In SOSP, pages 51–
68. ACM, 2017.

13. Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of
partition tolerance. Cryptology ePrint Archive, Report 2019/179, 2019.
https://eprint.iacr.org/2019/179.

14. Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for
byzantine agreement. In CRYPTO, volume 4117 of Lecture Notes in Computer
Science, pages 445–462. Springer, 2006.

15. Klaus Kursawe. Distributed protocols on general hybrid adversary structures.
2004.

16. Benôıt Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully dis-
tributed non-interactive adaptively-secure threshold signatures with short shares.
In PODC, pages 303–312. ACM, 2014.

29

17. Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance.
CoRR, abs/1904.10067, 2019.

18. S. Micali. Byzantine agreement , made trivial. 2017.
19. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.

In FOCS, pages 120–130. IEEE Computer Society, 1999.
20. Rafael Pass and Elaine Shi. The sleepy model of consensus. In ASIACRYPT

(2), volume 10625 of Lecture Notes in Computer Science, pages 380–409. Springer,
2017.

21. Jun Wan, Hanshen Xiao, Srinivas Devadas, and Elaine Shi. Round-efficient byzan-
tine broadcast under strongly adaptive and majority corruptions. In TCC (1),
volume 12550 of Lecture Notes in Computer Science, pages 412–456. Springer,
2020.

22. Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas. Expected constant
round byzantine broadcast under dishonest majority. In TCC (1), volume 12550
of Lecture Notes in Computer Science, pages 381–411. Springer, 2020.

23. Vassilis Zikas, Sarah Hauser, and Ueli M. Maurer. Realistic failures in secure multi-
party computation. In TCC, volume 5444 of Lecture Notes in Computer Science,
pages 274–293. Springer, 2009.

A Dolev and Strong’s Results

Below we first review the classic result of Dolev and Strong for authenticated
broadcast, and then review the lower-bound on the round complexity of a de-
terministic broadcast protocol.

A.1 Dolev and Strong’s Authenticated Broadcast Protocol

We recall Dolev and Strong’s authenticated broadcast protocol in Figure 7.

A.2 Dolev and Strong’s Impossibility

In this section we provide an exposition of Dolev and Strong’s lower-bound on
the round complexity of a deterministic broadcast protocol. We highlight the fact
that the proof requires only send-corruptions and not fully byzantine corruptions,
and therefore the impossibility result holds for only send-corruptions.

Recall that the result by Dolev and Strong proves there is no determinis-
tic broadcast protocol tolerating b byzantine parties that terminates in at most
b rounds. The proof proceeds by assuming such a protocol and considering a
“good” execution in which all messages of the protocol are delivered in every
round. It then proceeds to define a series of “neighboring” executions such that
every two neighboring executions are identical except that in one of the two
executions, there is one exactly one round in which a message sent by one party
is dropped. The transition between neighboring executions maintains two invari-
ants:

1. In every pair of neighboring executions A and B, there is some honest party
q such that the view of q is identical in A and B. (This means that q receives
exactly the same messages in the two neighboring executions.)

30

Protocol 7 Dolev Strong Broadcast Protocol ΠDS

Shared Setup: Public Key Infrastructure for a signature scheme.
Inputs: The dealer D ∈ P has an input m ∈ {0, 1}∗.
Outputs: Each party p ∈ P outputs a value m′ ∈ {0, 1}∗ ∪ {⊥}.
Local Variable: Each party p ∈ P maintains a local variable S, which is a set initialized
to {}.
Protocol: The protocol begins at time 1 and proceeds in rounds. Each round party p
proceeds as follows:

1. Round 1: Dealer’s Messages The Dealer D signs its input σ ← signsk(m) and
sends (m,σ) to all parties.

2. Sig Chains For every round i from 2 to tbyz + 1: For every valid (i− 1)-sig-chain
c that p received at the end of round i − 1 in which none of the signatures were
constructed by p, p computes σ ← signsk(c) and sends (σ, c) to all parties. For
every valid i-sig-chain c received in round i, let m′ be the message contained by c.
Update S = S ∪ {m′}.

3. Output If |S| = 1, then p outputs the element m′ ∈ S. If |S| 6= 1, then p outputs
⊥.

Fig. 7. Dolev-Strong Broadcast ΠDS

2. In no execution are more than b parties corrupted.

Because of invariant 1, we require that in every execution in the sequence,
all honest parties output the same value. This follows from the fact for every
pair of neighboring executions, the party q whose view is identical in the two
executions must output the same value in both, and all other parties must output
q’s value in both executions by consistency. Contradiction follows by arriving at
an execution in which the dealer sends no messages; therefore, the output of
every party must be independent of the dealer’s value.

In order to define a series of executions that satisfy the above properties,
the proof defines a “communication graph” that describes all messages sent in
an execution. A communication graph is a directed acyclic graph (DAG) which
is divided into “levels” such that in each level, every party is represented by a
distinct vertex. If in some execution, party A sends a message to party B in
round r that B receives round r + 1, then there is an edge from A’s vertex in
level r to B’s vertex in level r + 1. (We assume synchronous communication in
which all messages sent in round r are always delivered in round r + 1.)

The proof begins with the full execution graph and defines a recursive pro-
cedure by which all messages sent by a party in round r and greater can be
removed from the graph, while maintaining the properties required above. Let
R be the final round in an execution, and consider two graphs such that the only
difference is that a message from party A to party B sent in round R − 1 and
received in R is removed from one of the two graphs. Clearly, all parties except
for B have views that are identical between the two executions. Next, consider
two graphs such that the only difference between the two is that a message from

31

party A to party B sent in round r < R−1 and received in r+1 is removed from
one of the two graphs, but for which B sends no messages in any round r′ ≥ r+1.
Again, all parties except for B have the same view of the execution in the two
graphs. Similarly, the reverse operations also preserve invariant 1. Namely, an
edge can be “restored” from A to B in either of the two above scenarios.

The proof shows how to remove all edges from the sender while maintaining
the above invariants. In order to remove all messages from a party P starting
at round r: For every party Q that receive a message that P sends in round r
and are delivered in round r + 1, remove all future edges sent by Q starting in
round r + 1. Then remove the edge from P to Q sent in round r and delivered
in round r + 1. Then restore all edges sent by Q starting in round r + 1. The
proof guarantees that in any execution graph, at most one party is corrupted
per round of the protocol in which messages are dropped, which maintains that
if the protocol requires R rounds, then at most R parties need to be corrupted.
The contradiction follows for any protocol requiring fewer than tbyz + 1 rounds
– or in our case, tsnd + 1 rounds.

For a full treatment, we refer the reader to the very thorough explanation by
[6], complete with diagrams.

B Generic Consensus from Broadcast

Here we provide the folklore construction (also discussed by Fitzi [9]) of achieving
consensus using a broadcast primitive. Recall that we do not know how to prove
an optimal corruption threshold for consensus in our regime for the general form
of send corruption; however we provide an upperbound of n > trcv +2tsnd +2tbyz.
By this construction, the problem is reduced to finding a broadcast protocol
tolerating n > trcv + tsnd + 2tbyz.

The construction is as follows: given a broadcast protocol ΠB, all parties
simultaneously broadcast their inputs. Each party counts the number of broad-
casts for which it outputs 0, 1, and ⊥, and it outputs whichever of 0 and 1
appears more. In our model, we require that n > tsnd + trcv +2tbyz to enforce that
even if all send-corrupt parties’ broadcasts and receive-corrupt parties’ broad-
casts output ⊥ (because they fail in their own respective ways), a majority of
the remaining parties are honest.

Note that it is still an open problem (with closest attempt coming from Wan
et al [22]) to obtain a constant round byzantine broadcast protocol for dishonest
majority, with only crash and byzantine faults. Our model is still stronger than
theirs, as we consider a strongly adaptive adversary (theirs is weakly adaptive)
and we permit send-corruptions.

Lemma 15. If there exists a (tsnd, trcv, tbyz) secure broadcast protocol for n >
tsnd + trcv + 2tbyz then there is a (tsnd, trcv, tbyz)-secure consensus protocol for
n > tsnd + trcv + 2tbyz.

Proof. Given a (tsnd, trcv, tbyz) secure broadcast primitive or protocol ΠB for n >
tsnd+trcv+2tbyz, we construct a corresponding consensus protocol ΠC as outlined
in Figure 8.

32

Protocol 8 Consensus from Broadcast ΠC

Inputs: Each party p ∈ P has an input b ∈ {0, 1}.
Outputs:Each party p ∈ P outputs v ∈ {0, 1}.
Protocol: Each party p proceeds as follows:

1. Broadcast Input: Each party broadcasts its input to all other parties using ΠB.
2. Count Received Bits: For u ∈ {⊥, 0, 1}, let nu be the number of broadcasts in

the previous step for which p output u.
3. Output: Output v ∈ {0, 1} for which nv > n1−v. If n0 = n1 then output 1.

Fig. 8. Generic Consensus from Broadcast Construction

We prove that ΠC is a (tsnd, trcv, tbyz)-secure protocol. Termination follows
from the fact that ΠB terminates. Consistency follows from consistency of ΠB,
which requires that if any live party output m ∈ {⊥, 0, 1} from any instance
of ΠB, then all live parties output the same thing. It follows that every live
party has the same values of n0, n1, and n⊥. Validity follows from the fact that
even if all send-corrupt parties’ broadcasts output ⊥ and all receive-corrupt
parties become zombies before completing their broadcast protocols (implicitly
assuming that a protocol at worst outputs ⊥ if a receive-corrupt sender does not
complete the protocol), then there are still more honest parties who successfully
broadcast than byzantine parties. This follows from n− tsnd − trcv > 2tbyz.

33

