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Abstract

Secure comparison (SC) is an essential primitive in Secure Multi-
party Computation (SMC) and a fundamental building block in Privacy-
Preserving Data Analytics. Although secure comparison has been studied
since the introduction of SMC in the early 80s and many protocols have
been proposed, there is still room for improvement, especially providing
security against malicious adversaries who form the majority among the
participating parties. It is not hard to develop an SC protocol secure
against malicious majority based on the current state of the art SPDZ
framework. SPDZ is design to work for arbitrary polynomially-bounded
functionalities, and it may not provide the most efficient SMC implemen-
tation for a specific task, such as SC. In this paper, we propose a novel
compiler that is specifically designed to convert most existing SC proto-
cols with semi-honest security into the ones secure against the malicious
majority. This compiler provides a flexible and efficient way to achieve
both covert and active security for passively secure SC protocols.

1 Introduction

Comparison serves as one of the most fundamental operators in various data
analytics. When the data considered under these applications contain sensi-
tive information and are from multiple sources, privacy-preserving data ana-
lytics (PPDA) protocols may have to be adopted to protect the data and the
outcomes. Secure Multiparty Computation (SMC) primitives sever as essential
building blocks for developing many existing PPDA protocols. Among the SMC
primitives, secure comparison (SC) enjoys widespread adoption.

Although, SMC techniques provide very strong guarantee on personal pri-
vacy and data security, they are computationally expensive. For the last three
decades, significant efforts have been devoted into developing efficient SMC
primitives including SC. Current SC implementations can be classified into sev-
eral categories based on the underlying building blocks, such as garbed cir-
cuits [32,45], homomorphic encryption [19,39], secret sharing [17,38,40,41,43],
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and the SPDZ framework [3,20,22,36]. Additionally, the existing SC protocols
can also be classified based on their security guarantees, such as semi-honest,
covert and malicious [1, 2, 27].

If a protocol is secure under the semi-honest assumption, the participating
parties are expected to follow the execution requirement of the protocol but
may use what they see during the execution to compute more than they need to
know. If a protocol is secure under the malicious assumption, the participating
parties can diverge arbitrarily from the normal execution of the protocol. The
semi-honest adversarial model often leads to more efficient privacy-preserving
protocols than the malicious model, but the malicious model is less restrictive
and thus more realistic. To take advantage of both, the covert model [1, 2], a
sub-class of the malicious model, allows the computation to diverge arbitrarily
(as with the malicious), but provide certain guarantees of detectability of such
behaviors. As a result, protocols satisfy covert security are more efficient than
the ones that guarantee full malicious security.

In this paper, we use semi-honest, covert, or malicious security to mean the
security under the semi-honest, covert, or malicious model respectively. What
kind of security can be achieved also depends on the number of malicious parties
among the participating entities. When the majority (e.g., n − 1 out of n) of
the participating parties are malicious, to our knowledge, full malicious security
cannot be achieved at least for SC protocols. The best can be done is to detect
if any party behaved maliciously during protocol execution.

These SC protocols [17, 38, 40, 41] are secure under the malicious model.
However, their security is only guaranteed when the number of malicious parties
is less than half of the total parties involved in the protocol execution. When
the majority of parties are malicious (or malicious majority), the current state
of the art implementation of an SC to achieve malicious security is to adopt
the SPDZ framework [3, 22, 36] that combines additive secret sharing and fully
homomorphic encryption [11]. The framework utilizes zero-knowledge (ZK)
proofs and triple sacrifice techniques [4, 35] to detect malicious behaviors. ZK
proofs are computationally expensive, and SPDZ is a general framework to
implement maliciously secure SMC protocols. Thus, it may not be the best tool
to design very efficient and maliciously secure SC protocols.

1.1 Our Contribution

The goal of this paper is to propose a novel technique, termed as randomized
replication, to develop a compiler that transforms semi-honestly secure SC pro-
tocols to be secure against malicious majority. More specifically, we consider the
client-server computing model where clients outsource their data and analytics
tasks to two or more independent servers. Most existing SMC solutions are
applicable in the model. Our proposed compiler is also generic in that a newly
developed and more efficient secure comparison protocol can be used without
changing most of its code or structure.

Since the clients are not involved in protocol execution, the servers are com-
monly referred to as the participating parties. As a result, an SC protocol under
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the client-server model may be formulated as:

SC
(〈
Pi, [a]Pi , [b]Pi

〉)
→
〈
Pi, [τ ]Pi

〉
(1)

where a and b are actual values being compared, [a]Pi and [b]Pi are secret shares
of a and b that are possessed by party Pi, and i varies from 1 to n. The
comparison result is represented by τ , secretly shared among the n parties. In
this work, we propose a novel compiler that transforms an SC protocol with
semi-honest security into a maliciously secure SC protocol that is more efficient
than the current state of the art SPDZ based solutions [3,22,36]. Our compiler
overcomes the high cost of the SPDZ protocols using a simple yet effective
treatment. Our contributions are as follows:

• We present a novel compiler that executes an semi-honest SC protocol κ
times with randomized and replicated inputs plus end protocol verifica-
tion, where κ is a user-chosen statistical security parameter.

• The κ parameter in our compiler is independent of the underling fully
homomorphic encryption (FHE) scheme. This leads to a small polynomial
dimension N and a short ciphertext.

• Our protocol achieve security in both covert and malicious models only
by adjusting the actual value of κ.

1.2 Security Guarantee and Threat Model

Let n denote the number of parties/servers, and up to n − 1 parties can be
malicious. The assumption of computing power of these parties depends on the
actual design and implementation of the SC protocols being transformed using
the proposed compiler. For example, if an SC protocol assumes the parties
are computationally unbounded, then the same assumption holds under our
compiler. The security of an SMC protocol may have several criteria:

• Privacy: the private input data of an honest party is not disclosed to the
other parties during protocol execution.

• Correctness: in presence of malicious behaviors, the honest parties can
still receive the correct output.

• Fairness: either every party receives the correct output or no parties re-
ceive the correct output.

• Detectability: any malicious behaviors can be detected.

Any SMC protocols have to guarantee privacy, but the other properties may
or may not be achieved depending on the number of malicious parties. For
example, correctness may be achievable if the number of malicious parties is
less than n

3 with Shamir’s secret sharing scheme.
Under the malicious majority setting, in addition to privacy, the existing

SMC protocols only guarantee detectability of malicious behaviors. Malicious
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behaviors generally mean collusion among the parties and not following the
protocol, all of which are equivalent to changing or modifying the shares. For
instance, suppose a value v = v1 + v2 + v3 mod p is secretly shared among three
parties: P1, P2 and P3. Each Pi has the share vi. Suppose v is a private
input of an SMC protocol, and P1 and P2 are malicious. Then any malicious
behaviors of P1 and P2 are equivalent to using v′1 and v′2 as their shares during
protocol execution where v′1 and v′2 may or may not be the same as v1 and v2.
Therefore, except for prematurely aborting the protocol, detecting malicious
behaviors actually means the protocol can detect or verify if the shares have
been modified.

In summary, our proposed solutions provide detectibility when the number
of colluding and malicious parties is bounded by n − 1, and the participating
parties have either limited or unlimited computing power depending on the
implementation of the underlying SC protocols.

1.3 Organization

The rest of the paper is organized as follows: Section 2 presents the background
and the work most relevant to ours. Section 3 discusses the underlying tools
required to build our protocol. Section 4 proposes a novel compiler that can
transform most SC protocols to satisfy security against malicious majority. Sec-
tion 5 concludes the paper with future research directions.

2 Related Work

Secure Multiparty Computation (SMC) was first introduced by Yao’s Millionaire
problem for which a provably secure solution was developed [44, 45]. This was
extended to multiparty computations by Goldreich et al. [28]. SMC can be cate-
gorized as either computational [14,28,45] or information theoretic [9,13]. In the
computational model, the adversary is assumed to be bounded by polynomial-
time. In the information theoretic model, the adversary is assumed to be un-
bounded. Much work exists to address various aspects (e.g., complexity, adver-
sarial behaviors, the number of corrupted parties) of SMC.

There are three main types of adversaries related to the SMC definitions:
semi-honest, covert, and malicious [1, 2, 27]. If a protocol is secure under the
semi-honest assumption, the participating parties are expected to follow the
execution requirement of the protocol but may use what they see during the
execution to compute more than they need to know. If a protocol is secure
under the malicious assumption, the participating parties can diverge arbitrarily
from the normal execution of the protocol. The semi-honest adversarial model
often leads to more efficient privacy-preserving protocols than the malicious
model, but the malicious model is less restrictive and thus more realistic. To
take advantage of both models, the covert model [1, 2] allows the computation
to diverge arbitrarily (as with the malicious), but provide certain guarantees of
detectability of such behaviors.
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2.1 SMC in the Malicious Model with Honest Majority

A number of SMC solutions have been proposed to address the security is-
sues under the malicious majority adversary model. Here we summarize a few
representative work in this area, where the functionalities are represented as
arithmetic circuits. A verifiable secret sharing scheme is proposed in [25] which
uses Shamir’s secret sharing and homomorphic commitments based on the dis-
crete log assumption. The commitments are updated along the computations,
and any malicious changes to the computation will lead to inconsistent com-
mitments. On the other hand, the commitment scheme is computationally
expensive. Combining dispute control [6] and utilizing a designed party for
intermediate computation [31], more efficient solutions were introduced in [21]
that has linear complexity based on the circuit size, and its verification tech-
nique has error probability negligible in terms of pre-defined security parameter.
To remove this error probability, [7] proposed to use hyper-invertible matrices
to perform batched correctness check of shares that leads to a perfectly secure
solution assuming the number of malicious parties is less than n

3 .
In [29], a technique of 4-consistent tuples of shares was introduced to improve

the communication complexity given in [7] by removing the quadratic terms in
the multiplicative depth of the circuit. To ensure perfect security in presence
of malicious parties, all these solutions assume the number of malicious parties
is less than n

3 . Based on the solution given in [10], the work [30] proposed a
solution with linear complexity and less than n

2 parties can be malicious. More
efficient solutions exist, but they can only detect whether or not the parties have
followed the protocol.

In [37], a framework was introduced to allow computations performed by
using a semi-honest protocol along with an efficient verification steps to check
the correctness of a set of Beaver triples [5]. In [15], a circuit randomization
technique was proposed to verify the consistencies between two executions: one
on the original circuit and one on a randomized circuit by multiplying the inputs
with a random value. Both works [15,37] assume that the multiplication protocol
is secure up to additive attacks [23,24],1 and the number of malicious parties is
less than n

2 .

2.2 SMC against Malicious Majority

For malicious majority (up to n − 1), designing efficient SMC protocol gets
more and more challenging. The well-known SPDZ framework was proposed
in [22] and later improved in [20] with cut-and-choose techniques instead of ZK
proofs [16] to detect malicious behaviors. The framework utilizes fully homo-
morphic encryption scheme [11,26] to efficiently produce multiplication triples.
MASCOT [35] adopts OT extensions [33] to produce the triples more efficiently
than the earlier implementations of the SPDZ framework. Due to more efficient

1Additive attack means that an adversary can add any chosen value to the output of a
secure multiplication.
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ZK proofs and other advancement, recent SPDZ based solutions offer the best
performance [3, 8, 34,36] in this adversary setting.

2.3 Secure Comparison

A number of methods have been proposed for this functionality, but we only dis-
cuss the designs that can be incorporated into the SPDZ framework to produce
an SC protocol secure against malicious majority. These designs were started by
the constant round SC protocol of Damg̊ard et al [18]. In this design, secretly
shared values must first be bit decomposed among the parties involved in the
computation. Alternatively, the values may exist as bitwise shares initially. This
means the protocol takes as input bit decomposed shares of the private values
to be compared. If this procedure is necessary, though expensive, it is poten-
tially beneficial when other bit-wise operations may be seen as advantageous.
The cost incurred in this scheme for bit decomposition may be amortized some-
what across all those sub-protocols which require it. Though there is a fairly
high computational complexity and communication cost, this important result
demonstrates constant rounds secure comparison is indeed possible and well
within feasibility.

The latter strategy, that of exploiting properties of finite field arithmetic,
seeks to affect a comparison through intermediate comparisons and some logic
to bring the meaning of these intermediate comparisons together to form the
desired solution. This method was introduced in the work of Nishide and Ohta
[38]. Other optimizations have since come which cut back on the complexity and
the number of intermediate calculations necessary based on some restrictions to
the domain of values [40,41]. The proposed transformation technique works on
all existing secure comparison protocols.

3 Preliminaries and Definitions

This section provides background on the secret sharing scheme used to construct
the proposed protocols, commonly used notations and security definitions.

3.1 Conventions and Notations

The following notations are commonly used in the literature and for the rest of
the paper:

• P1, . . . , Pn: n parties or servers who collaboratively and securely perform
the required computations.

• Zp: a prime domain {0, . . . , p − 1} where p is a prime and |p| = l, the
number of bits needed to represent p.

• [x]: a value x is secretly shared among the n parties. The shares are drawn
from Zp. The domain of x is bounded by p. Whenever the context is clear,
we drop p from the notation, i.e., [x].
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• [x]Pj (or [x]Pj ): the secret share of x belongs to party Pj . Thus, [x] is a
set of shares denoted by [x]P1 , . . . , [x]Pn .

The superscript in [x]Pj may also be dropped for succinctness. For example,
the expression below represents local computations performed by Pj based on
its own shares.

• Pj : [x]Pj ←
∑n
j=1[xj ]Pj

It produces Pj ’s secret share of x by summing each secret share of [xj ]Pj . To
simplify the notations, we often adopt the following expression instead:

• Pj : [x]←
∑n
j=1[xj ]

Moreover, the term “secret share” (or “secretly shared”) is interchangeable with
“share” (or “shared”).

3.2 Secret Sharing and its Functionalities

We require that any secret sharing scheme to be used have the ability to perform
the following operations, and the ones required communications among the par-
ties are denoted as ideal functionalities with symbol F . As stated previously, we
assume that the adversary A is computationally bounded and control at most
n− 1 parties who remain the same throughout the protocol execution. We only
need to guarantee privacy.

• The adversary does not learn any information about the private input of
an honest party.

Since we do not need to guarantee the computation correctness, the implemen-
tations of these functionalities are highly efficient. Note that detecting mali-
cious behaviors is achieved through our proposed compiler instead of at the
sub-protocol level which leads to a very efficient SC implementation against the
malicious majority.

• Fshare(x): given a particular value x ∈ Zp, a dealer can generate shares
[x]P1 , . . . , [x]Pn ∈ Zp of x. Each party Pj has share [x]Pj . This must
be done in a way that they can be uniquely recombined in a method
applicable to the scheme to reconstruct the original value.

• Fopen([x]): all n shares [x]Pj are needed to reconstruct x.

• Fmult([x], [y]): given two secretly shared values x and y, it returns secret
shares of xy. Specifically, the functionality returns [xy]Pj to party Pj .

• Fmult2(〈Pi, α〉, 〈Pj , β〉): a two-party functionality that allows Pi with pri-
vate input α and Pj with private input β to derive [αβ]Pi and [αβ]Pj .

• Local operations:
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– Addition with a public constant: given shares [x], and a public con-
stant c, execute the necessary operations to calculate [c+ x].

– Addition: given two shared values [x] and [y], calculate the shares of
the sum of the original values [x+ y].

– Multiplication by a public constant: given shares [x], and a public
constant c, execute the necessary operations to calculate [cx].

We adopt additive secret sharing that satisfies the above requirements. Here we
briefly discuss how to implement each functionality and local operations.

• Fshare(x): to share x, a dealer (or any Pj) randomly selects s1, . . . , sn−1 ∈
Zp, and computes:

– [x]Pj ← sj , for 1 ≤ j ≤ n− 1.

– [x]Pn ←
(
x−

∑n−1
j=1 sj

)
mod p.

The dealer sends [x]Pj to party Pj , for 1 ≤ j ≤ n.

• Fopen([x]): Pj broadcasts [x]Pj to the other parties. Then each party
locally compute x←

∑n
j=1[x]Pj mod p.

• Fmult([x], [y]): This functionality is implemented using Fmult2 according
to the following observation.

xy =
(
[x]P1 + · · ·+ [x]Pn

) (
[y]P1 + · · ·+ [y]Pn

)
=

n∑
i=1

[x]Pi [y]Pi +

n∑
i=1

n∑
j=1∧i 6=j

[x]Pi [y]Pj

The first summation is computed locally by each party, and the second
summation utilizes the Fmult2 functionality to produce secret shares of
multiplication between each 〈[x]Pi , [y]Pj 〉 pair. Then the share of [xy] for
each party can be derived by summing all its local shares:

[xy]Pi ← [x]Pi [y]Pi +

n∑
j=1∧j 6=i

Fmult2

(
[x]Pi , [y]Pj

)
• Fmult2(〈Pi, α〉, 〈Pj , β〉): the implementation of Fmult2 uses homomorphic

encryption (FHE) provided by the SEAL library [42]. The suitable FHE
parameters are chosen by Pi according to the plaintext domain and the
required security level.

• Local operations:

– Addition with a public constant: given shares [x], and a public con-
stant c, let P1 be a designed party. Then [c + x]P1 ← c + [x]P1 and
[c+ x]Pj ← [x]Pj for 2 ≤ j ≤ n.
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– Addition: given two shared values [x] and [y], each party sets [x +
y]Pj ← [x]Pj + [y]Pj .

– Multiplication by a public constant: given [x], and a public constant
c, each party sets [cx]Pj ← c[x]Pj .

3.3 Generating Secretly Shared Random Values

The proposed protocols require the parties to secretly share a random bit or a
random value and compute the inverse of a secretly shared value from Zp. We
define these functionalities below and their implementations.

• Frand(p): generating a random value r in Zp and secretly sharing it among
the n parties. At the end, Pj holds share [r]Pj , and no parties know r.

• Frandb(p): generating a random bit τ ∈ {0, 1} and secretly sharing it
among the n parties. At the end, Pj holds share [τ ]Pj , and no parties
know τ .

• Finvert([r]): generating shares of
[
r−1
]
, where r−1 is the multiplicative

inverse of r in Zp. At the end, Pj holds share
[
r−1
]Pj

, and no parties
know r−1.

In these functionalities, p also defines the domain for the random shares. Ex-
isting protocols for these functionalities can be found in [17].

4 Compiler for Transforming Secure Compari-
son against the Malicious Majority

In the previous protocols, a malicious party can modify the shares to produce
invalid comparison results. By doing so, the malicious party would have a very
good chance of flipping the comparison outcome. The attack success rate is
about 1

2 analyzed below.
Except for aborting the protocol, a malicious behavior during protocol execu-

tion is equivalent to share modification. Therefore, we merely need to estimate
the probability that by modifying the shares, how likely the comparison result
of SC will change. The following attack is feasible and may flip the result:

• The adversary A modifies the shares [a]
A

and [b]
A

during an execution of
Fsc or an SC protocol.

Let E be the event of flipping the comparison result by modifying the shares,
and the probability of E can be estimated as follows assuming a ≥ b and a < b
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are equally likely to happen in practice:

P(E) = P(a ≥ b)P(E|a ≥ b) + P(a < b)P(E|a < b)

=
1

2
P(E|a ≥ b) +

1

2
P(E|a < b)

=
1

2
(P(b > a) + P(b ≤ a))

=
1

2

Such an attack can be easily carried out because the malicious party knows
exactly which share to modify. In what follows, we will propose novel strategies
to reduce the attack success rate to a negligible one.

Let κ be a statistical security parameter, and our goal is to detect malicious
behaviors with probability bounded by 1 − 1

2κ . To achieve this, the key idea
in our design is for the participating parties to execute κ independent copies of
the SC protocol with randomized input. By randomization, we mean the input
shares 〈[a], [b]〉 are randomly permuted so that the malicious parties will not
be able to consistently alter the shares across all κ copies. The following steps
are needed to transform any semi-honest secure SC protocols into a secure one
under the malicious model.

• Input commitment: The clients provide their inputs to the servers along
with commitments to prevent input modification by the malicious servers.

• Randomized input replications: After the servers receive the shares, they
randomize the ordering of the input to produce κ copies of the input pairs
for subsequent κ independent SC computations.

• Output verification: Checking if all κ copies produce the same outputs.

4.1 Input Commitment

For the rest of this section, we use a triple [a, θa, δa] to represent shares of the
input value a, where δa is randomly chosen from Z+

p , and θa = a · δa. The value
θa serves as a message authentication code (MAC) for a. Such code is also used
in [35, 36]. To verify if the shares of a have been modified or not, the parties
can perform the following verification steps:

• Collaboratively generate a random secretly shared value r from Z+
p . As

discussed in [17], this can be done by randomly generate [r] and [s] from
Zp. [t] ← Fmult([r], [s]) and Fopen([t]). If t = 0, repeat these steps;
otherwise, return [r].

• Compute [ω]← [r]([θa]− [a][δa]).

• Fopen([ω]) and examine:

– If ω = 0, verification passed.
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– If ω 6= 0, verification failed.

As long as one party follows the steps, any modifications to the shares can be
detected with probability 1 − 1

p . The goal of this verification is to make sure
that when inputs are replicated, any malicious changes to the shares can be
detected before executing the SC protocol.

4.2 Input Randomization and Replication

Input commitment only guarantees the inputs are valid; however, it cannot be
used to verify if the parties followed the the prescribed steps during protocol
execution. To be able to verify if the parties followed the protocol, the parties
execute SC κ times in parallel with randomized inputs. For example, we flip a
coin κ times, the outcome of each coin flip is denoted by ti for 1 ≤ i ≤ κ. For
succinctness, we use [[a]] to represent 〈[a] , [θa] , [δa]〉, and adopt 〈[[x]] , [[y]] , [ti]〉
or 〈[[x]] , [[y]]〉ti to represent the randomized input for the i-th SC execution
based on ti:

• 〈[[x]] , [[y]]〉ti = 〈[[a]] , [[b]]〉, if ti = 0

• 〈[[x]] , [[y]]〉ti = 〈[[b]] , [[a]]〉, if ti = 1

The randomization of the input shares has to be performed in an oblivious way
so that the parties do not know which input shares are actually swapped. To
achieve this, the parties perform the steps given in Protocol 1:

• Step 1: the parties generate a shared random bit [ti] for randomizing each
input pair, and it will also be used to de-randomize the output of the i-th
SC execution.

• Step 2: from [ti], the parties generate a permutation matrix [Mti ] for each
input pair 〈[[a]] , [[b]]〉. When ti = 0, Mt is the 2-by-2 identity matrix.
When ti = 1, Mti is a transpose of the 2-by-2 identity matrix.

• Step 3: randomize each input pair by securely multiplying 〈[[a]] , [[b]]〉 with
[Mti ]. Note that the secure matrix multiplication is applied to each pair
of components of [[a]] and [[b]], i.e., 〈[a] , [b]〉, 〈[θa] , [θb]〉 and 〈[δa] , [δb]〉. At
the end, the protocol produces 〈[[x]] , [[y]] , [ti]〉.

Protocol 1 Input Rand([[a]] , [[b]]) → 〈[[x]] , [[y]] , [ti]〉
Require: p is a prime defining the share domain.
1: [ti]← Frandb(p)

2: [Mti ]←
{

[1− ti] [ti]
[ti] [1− ti]

}
3: 〈[[x]] , [[y]]〉ti ← 〈[[a]] , [[b]]〉 × [Mti ]
4: return 〈[[x]] , [[y]] , [ti]〉
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At the step 3 of Protocol 1, to derive the shares of [1− ti], a designated party,
say P1, sets its share [1 − ti]

P1 ← 1 − [ti]
P1 , and the other parties set their

shares to [1− ti]Pj ← p− [ti]
Pj . The computations for the rest of the protocol

can be carried out normally with standard secure additions and multiplications.
The same set of permutation matrices can be used to permute the inputs for
a number of SCs on different inputs as long as the comparison results are not
leaked until the end of all SC executions.

Functionality 2 Fscm

(〈
[[a]]

A
, [[b]]

A
〉
,
〈

[[a]]
Ā
, [[b]]

Ā
〉)
→ [[τ ]]

A
, [[τ ]]

Ā

Require:
〈

[[a]]
A
, [[b]]

A
〉

indicates the set of authenticated input shares con-

trolled by the adversary A, and
〈

[[a]]
Ā
, [[b]]

Ā
〉

refers to the set of authen-

ticated shares from honest parties. κ is the security parameter.

1: Fscm receives
〈

[[a]]
Ā
, [[b]]

Ā
〉

from the honest parties, denoted by PĀ. It

also receives
〈

[[a]]
A
, [[b]]

A
〉

from A.

2: From these shares, Fsc derives [a′, θa′ , δa′ ] and [b′, θb′ , δb′ ]:

(a) If θa′ 6= a′ · δa′ or θb′ 6= b′ · δb′ , send abort message to all parties.

3: Set τ = 0 if a′ ≥ b′; otherwise, set τ = 1.

4: Construct authenticated shares of [[τ ]]
A

and [[τ ]]
Ā

according to the security

parameter κ, and send [[τ ]]
A

to A.
5: Fscm waits for reply from A:

(a) If the reply is abort, send abort to PĀ.

(b) If the reply is continue, send [[τ ]]
Ā

to PĀ.

Protocol 3 Verify ([[a]])

Require: [[a]] ≡ 〈[a] , [θa] , [δa]〉
1: [t]← Fmult([a] , [δa])
2: [s]← [t]− [θa]
3: Return Fverify zero ([s])

4.2.1 Randomizing Inputs with Multiple Components

To permute a pair of random triples, we could apply the same permutation
matrix on the corresponding components of each triple. Alternatively, we could
first pact the three components of a triple into a bigger share and generate a
permutation matrix in a larger field to contain the bigger share. After multiply-
ing the pair of the bigger shares with the permutation matrix, we can unpact
the bigger shares to produce a permuted pair of triples.
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Protocol 4 Verify Zero ([s])

1: [r1]← Frand(p) and [r2]← Frand(p)
2: [t]← Fmult([r1], [r2])
3: t← Fopenm([t])
4: Abort the protocol if Fopenm([t]) aborts.
5: If t = 0, repeat the previous steps.
6: [t′]← Fmult([r1], [s])
7: t← Fopenm([t′])
8: Abort the protocol if Fopenm([t]) aborts.
9: If t′ = 0, return true; otherwise, return false.

4.3 Output Verification

The modified comparison will be performed κ times. After that we need to verify
the consistency of these results. Let [z1] , . . . , [zκ] be the results running the
protocol κ times on randomized inputs. Before verifying the consistency of the
results, we need to de-randomize them based on the ti values used to randomize
the input shares. However, we cannot simply de-randomize the results since the
probability that the adversary alters the de-randomized results without being
detected is no longer negligible. For instance, if the results are 0, then the
adversary could add one to the share it controls across all κ results. This causes
the comparison result flipped, and it is not guaranteed to detect such malicious
behaviors. As a solution, the parties need to authenticate the shares of zi and
ti to produce [[zi]] and [[ti]] before de-randomization.

4.3.1 Share Authentication and Result De-randomization

The parties commit or authenticate their shares of the results before de-randomization.
Let [[z1]] , . . . , [[zκ]] be the authenticated shares of z1, . . . , zκ, and τ1, . . . , τκ be
the de-randomized results. The parties can derive [[τi]] from [[zi]] and [[ti]], and
all these authenticated shares use a global and secretly shared MAC key δ (see
Section 4.4 for the details). To verify if the τi values are consistent, the parties
perform the following steps:

• Derive [[τ ]] ≡ 〈[τ ] , [θτ ] , [δτ ]〉, where

– [τ ]←
∑κ
i=1 [τi]

– [θτ ]←
∑κ
i=1 [θτi ]

– [δτ ]← [δ]

• Call Fverfy([[τ ]]): If verification fails, we conclude malicious behavior oc-
curred during protocol execution.

To see why the above verification works, we need to examine closely how the
shares are derived. The security guarantee of the verification procedure is for-
malized in the next section.
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4.4 The SCm Protocol

Protocol 5 SCm (〈[[a]] , [[b]]〉) → [[c0]]

Require:

(a) Fsc is secure comparison functionality defined in Equation 1.

(b) κ is a parameter indicating κ-bit statistical security.

(c) Index i is bounded by κ, i.e., 1 ≤ i ≤ κ.

1: Input randomization and replication:

(a) 〈[[x]] , [[y]] , [ti]〉 ← Finput rand([[a]] , [[b]])

2: Input verification:

(a) For each 〈[[x]] , [[y]] , [ti]〉, call Fverify([[x]]) and Fverify([[y]])

(b) The protocol aborts if any verification aborted or failed.

3: Executing κ secure comparison in parallel and generate authenticated shares for
each result:

(a) [zi]← Fsc

(
〈[x], [y]〉ti

)
(b) [δ]← Frand(p) and

[
δ−1
]
← Finvert([δ])

(c) [θzi ]← Fmult([zi], [δ]) and [θti ]← Fmult([ti], [δ])

(d) [[zi]]← 〈[zi] , [θzi ] , [δ]〉
[[ti]]← 〈[ti] , [θti ] , [δ]〉

4: De-randomize the results and derive the authenticated shares of de-randomized
results:

(a) [τi]← [ti] + [zi]− 2×Fmult([ti], [zi])

(b) [ζτi ]← 2×Fmult ([θti ] , [θzi ])

(c) [θτi ]← [θti ] + [θzi ]−Fmult

(
[ζτi ] ,

[
δ−1
])

(d) [[τi]]← 〈[τi] , [θτi ] , [δ]〉
5: Verifying the result:

(a) [τ ]←
∑κ
i=1 [τi], [θτ ]←

∑κ
i=1 [θτi ], and [δτ ]← [δ]

(b) Call Fverfy([[τ ]]), and the protocol aborts if any verification returns either
abort or fail.

6: Derive the final authenticated result:

(a) [c0]← κ−1 [τ ] and [θc0 ]← κ−1 [θτ ]

(b) [[c0]]← 〈[c0] , [θc0 ] , [δc0 ]〉 where [δc0 ]← [δ]

Based on the proposed transformation techniques, we are ready to construct
the SCm protocol whose key steps are presented in Protocol 5. In what fol-
lows, we discuss its steps and the intuition behind the proposed design choices.
Detailed security analysis is presented in Section 4.5. The protocol takes authen-
ticated shares from the clients or dealers. In real applications, a and b generally
belong to two different clients. The shares are distributed to the servers or
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parties who perform the secure computations.

• Step 1: the original input shares are randomized and replicated κ times.
Each time, a shared random bit ti is generated to produce randomized
input shares [[x]] and [[y]]. Note that those are authenticated shares, but
the shares of ti are not. In the later steps, the protocol will generate
authenticated shares for ti. It is possible to generate the authenticated
shares for ti at this step.

• Step 2: verify the integrity of the shares. The protocol aborts if any
verification failed or aborted. This step captures if any malicious parties
modified their shares during input randomization process.

• Step 3: for each randomized input pairs, call the Fsc functionality, and
the randomized comparison result is secretly shared and stored in [zi].
Next, the authenticated shares for both zi and ti are produced using a
randomly generated and secretly shared value δ.

• Step 4: de-randomize the result to obtain the actual result τi for each
comparison. Step 4(a) performs a secure xor of zi and ti; that is, [τi] =
[zi ⊕ ti]. Then based on the authenticated shares [[zi]] and [[ti]], the pro-
tocol derives the authenticated shares of τi. Step 4(b) derives [ζτi ] which
will be used to compute [θτi ] as follows:

[θτi ] = [θti ] + [θzi ]− [ζτi ][δ
−1]

= [tiδ] + [ziδ]− 2[tiδ][ziδ][δ
−1]

= [tiδ + ziδ − 2tiziδ]

= [(ti + zi − 2tizi) δ]

= [τiδ]

At the end of this step, [δτi ] is set to [δ].

• Step 5: verify the comparison result based on the strategy discussed in
Section 4.3. The protocol aborts if the verification aborted or failed.

• Step 6: derive the final authenticated comparison result. κ−1 indicates
the multiplicative inverse of κ in Zp. If the verification passed at Step 5,
τ is either 0 or κ and θτ is either 0 or κδτ . That is:

[[τ ]] =

{
〈[0] , [0] , [δ]〉 if τ = 0
〈[κ] , [κδ] , [δ]〉 if τ = κ

Thus, after multiplying κ−1 with [τ ] and [θτ ], c0 is set to 0 or 1, and [[c0]]
is returned as

[[c0]] =

{
〈[0] , [0] , [δ]〉 if c0 = 0
〈[1] , [δ] , [δ]〉 if c0 = 1
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At the end of the protocol, each party sends its shares of [[c0]] to the client
whose reconstructs c0, θc0 and δc0 . The client accepts the result if θc0 = c0δc0 .
If SCm is adopted as a sub-protocol, then [[c0]] can be directly used for the
subsequent secure computations.

The protocol can be simplified by requiring the client to perform some extra
computations. At Step 3, the shares of κ pairs of [[zi]] and [[ti]] can be returned
to the client who then verifies the authenticated shares and de-randomize the
comparison results. The client accepts the result if all verifications passed and
all κ de-randomized results are the same. Alternatively, if SCm is a subroutine,
the execution could end at Step 4 where the [[τi]] values would be used for the
subsequent computations.

4.5 Security and Complexity Analyses

In this section, we analyze the security of SCm using the real-ideal paradigm.
First, we prove the following claim which is related to the correctness of the
output verification step of SCm.

Claim 1. If the parties follow the SCm protocol, Fverfy([[τ ]]) will succeed. If
any shares are modified, the verification will fail with probability

min

(
1− 1

p
, 1− 1

2κ

)
Proof. Suppose the parties follow the protocol to derive [[τ ]] correctly, then all
τi values are either 0 or 1, and we have

θτ =

κ∑
i=1

θτi =

κ∑
i=1

τiδ = κτiδ (2)

If τi = 0, then τ = 0 and θτ = 0. If τi = 1, then τ = κ and θτ = κδ. In either
case, θτ is derived correctly. Thus, the verification will go through successfully.

Next we analyze the probability that the verification passes when any shares
could be modified by the adversary A. During the verification process, the
parties check if τδ = θτ . Since ti is random chosen, zi is a random. Although
τi derived at step 4(a) is no longer random, any modifications to the shares of
τi will make τiδ = θτi highly unlikely because θτi is derived independently from
τi. In order words, we do not directly compute τiδ to derive θτi . Instead, it is
computed from θti , θzi and δ. As a result, if τ 6= 0 or τ 6= κ, but still making the
equality τδτ = θτ valid is difficult for the adversary due to the above reasons.
The probability of the equality is valid after any modifications to the shares is
bounded by 1

p .
Also, if zi and ti could be correctly predicted, the verification would pass.

Nevertheless, since each pair of input was randomized, and ti was randomly
generated, the probability that the adversary can predict both values correctly
is bounded by 1

2κ because there are κ input pairs and ti values. Combining
these probabilities, the overall probability of passing the verification when τ is

neither 0 or κ is max
(

1
p ,

1
2κ

)
which leads to the claimed failure probability.
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Claim 2. Protocol SCm securely implements Fscm with abort in the
(Finput rand,Fverify,Fsc,Frand,Finvert,Fverify zero,Fmult)-hybrid model in pres-
ence of a malicious adversary controlling at most n− 1 parties.

Proof. We prove the security of SCm under the universally composable security
model [12]. The main idea is to build a simulator that interacts with the ideal
functionalities. If the protocol is secure, then the environment cannot distin-
guish a real execution of SCm from an ideal execution between the simulator
and the functionalities. The simulator Sscm is constructed as follows:

• Receive [[a]]
A

and [[b]]
A

from the adversary A.

• Sscm calls the simulator Sinput rand

(
[[a]]

A
, [[b]]

A
)

of

Finput rand, and let
〈

[[x∗]]
A
, [[y∗]]

A
, [t∗i ]

A
〉

be the i-th output from Sinput rand,

where 1 ≤ i ≤ κ.

• For each
〈

[[x∗]]
A
, [[y∗]]

A
, [t∗i ]

A
〉

, Sscm calls the simulators Sverify

(
[[x∗]]

A
)

and Sverify

(
[[y∗]]

A
)

of Fverify. Sscm outputs abort if any Sverify returned

abort.

• For each
〈

[[x∗]]
A
, [[y∗]]

A
, [t∗i ]

A
〉
Sscm calls the simulator Ssc

(〈
[[x∗]]

A
, [[y∗]]

A
〉
t∗i

)
of Fsc, and let [z∗i ]

A
be the output of each call to Ssc.

• Sscm calls the simulator Srand(p) of Frand to produce [δ∗]
A

, and calls the

simulator Sinvert

(
[δ∗]
A
)

of Finvert to produce
[
δ−1∗]A.

• Sscm calls the simulator Smult

(
[z∗i ]
A
, [δ∗]

A
)

and

Smult

(
[t∗i ]
A
, [δ∗]

A
)

of Fmult. Let
[
θ∗zi
]A

and
[
θ∗ti
]A

be the output of Smult.

• Sscm calls Smult

(
[t∗i ]
A
, [z∗i ]

A
)

, Smult

([
θ∗ti
]A
,
[
θ∗zi
]A)

, Smult

([
ζ∗τi
]A
,
[
δ−1∗]A).

From the outputs, Sscm derives [[τ∗i ]]
A

and [[τ∗]]
A

.

• Sscm calls Sverify

(
[[τ∗]]

A
)

. Sscm outputs abort if Sverify returned abort.

• Sscm sends [[τ∗]]
A

to A, and outputs whatever A outputs.

It is straightforward to check that the simulated view produced by Sscm is
computationally indistinguishable from the real view.

5 Conclusion and Future Work

In this paper, we present a compiler that is capable of transforming most passive
secure comparison (SC) protocols into the ones against malicious adversaries.
The compiler has the following benefits:
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• It is general and works for most existing passive secure SC protocols.

• We only need to adjust the value of κ to achieve covert security without
changing the protocol implementations.

• It is more efficient than the cut-and-choose technique to achieve covert
security since the compiler requires less number of copies than the standard
cut-and-choose technique.

As a future work, we will benchmark the performance of our compiler against
the current state of the art.
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