
Post-quantum Asynchronous Deniable Key Exchange
and the Signal Handshake

Jacqueline Brendel1, Rune Fiedler1, Felix Günther2, Christian Janson1, and Douglas Stebila3

1 Technische Universität Darmstadt firstname.lastname@cryptoplexity.de
2 ETH Zürich mail@felixguenther.info

3 University of Waterloo dstebila@uwaterloo.ca

Version 1.3∗, September 2024

Abstract. The key exchange protocol that establishes initial shared secrets in the handshake of the Signal
end-to-end encrypted messaging protocol has several important characteristics: (1) it runs asynchronously
(without both parties needing to be simultaneously online), (2) it provides implicit mutual authentication
while retaining deniability (transcripts cannot be used to prove either party participated in the protocol),
and (3) it retains security even if some keys are compromised (forward secrecy and beyond). All of these
properties emerge from clever use of the highly flexible Diffie–Hellman protocol.
While quantum-resistant key encapsulation mechanisms (KEMs) can replace Diffie–Hellman key exchange
in some settings, there is no replacement for the Signal handshake solely from KEMs that achieves all three
aforementioned properties, in part due to the inherent asymmetry of KEM operations. In this paper, we show
how to construct asynchronous deniable key exchange by combining KEMs and designated verifier signature
(DVS) schemes, matching the characteristics of Signal. There are several candidates for post-quantum DVS
schemes, either direct constructions or via ring signatures. This yields a template for an efficient post-
quantum realization of the Signal handshake with the same asynchronicity and security properties as the
original Signal protocol.

Keywords: authenticated key exchange · deniability · asynchronous · Signal protocol · post-quantum ·
designated verifier signatures

1 Introduction

The Signal protocol [77,76], designed by Marlinspike and Perrin, has enabled mass adoption of end-to-end
encrypted messaging in consumer applications such as WhatsApp, Signal, Facebook Messenger, Skype, and
more. From a cryptographic perspective, the Signal protocol consists of an initial handshake and key exchange
(called “X3DH” [77], a simplified version of which is shown in Figure 1), asymmetric and symmetric key exchange
“ratchets” that establish new keys for every new chat message sent (called the “double ratchet” algorithm [76]),
and symmetric authenticated encryption for application data. Each of these components contributes to Signal’s
interesting and useful security features:

– Implicit mutual authentication in the handshake: The session key K established in the handshake can only
be computed by the intended peer. This comes from the terms involving the long-term secret keys a and b in
Figure 1.

– Forward secrecy in the handshake: The session key K established in the handshake remains secret even if
long-term keys are later compromised. This comes from the terms involving the ephemeral keys x and y in
Figure 1.

– Offline deniability of the handshake: A judge seeing a transcript of an honest communication session cannot
be convinced that a particular party was actually involved in the session. This comes from the use of Diffie–
Hellman for authentication rather than signatures; all of the DH shared secrets input to the key derivation
function in Figure 1 could have been computed unilaterally either by Alice or by Bob (e.g., both Alice and
Bob can compute gas, using a and s respectively). We provide a new formalization of deniability reflecting the
specification of Signal more closely. We discuss the differences between the deniability notions in Section 4
and in more detail in Appendix A. While a formal proof that X3DH fulfills our new notion is not known to
the authors, we expect it to hold without any additional assumptions. See [91] for a detailed analysis of the
deniability of X3DH with respect to the deniability notion of [29].

∗A preliminary version of this paper appears in the proceedings of the 25th International Conference on Practice
and Theory of Public-Key Cryptography (PKC 2022), © IACR 2022. DOI: 10.1007/978-3-030-97131-1 1. This is the full
version. Please see Appendix C for an overview of major changes from earlier versions of this work.

https://doi.org/10.1007/978-3-030-97131-1_1

2 Brendel, Fiedler, Günther, Janson, and Stebila

Alice Bob
gb, gs, gy

Bob’s pre-key bundle

ga

Alice’s pre-key bundle
x←$ Zq

gx

K ← KDF(gas∥gxb∥gxs∥gxy) K ← KDF(gas∥gxb∥gxs∥gxy)

Fig. 1. Simplified version of Signal’s X3DH handshake.
Long-term keys a and b; semi-static key s; ephemeral keys x and y.

– Asynchronicity : The two communicating parties need never be online simultaneously, and can leave packets
at an untrusted relay server until the other party comes back online. The handshake is made asynchronous
by allowing each party to upload a pre-key bundle to an untrusted server in advance, consisting of long-term,
medium-term, and ephemeral public keys, and an initiator can start sending text messages before their peer
comes online. The restrictions on communication flow in an asynchronous protocol are weaker than those of
non-interactive key exchange [43].

– Forward secrecy and post-compromise security [23] in long-lived conversations: Keys are updated using a new
DH key exchange with each chat message via the asymmetric ratchet, enabling secrecy of past and future
messages after a compromise.

1.1 Making Signal Post-quantum

Since the Diffie–Hellman problem upon which much of Signal relies is not secure against quantum adversaries,
it is important to have a post-quantum alternative available.

The symmetric ratchet and authenticated encryption components of Signal are built on symmetric primitives,
and thus are not in immediate danger from quantum algorithms. The asymmetric ratchet was phrased by
Marlinspike and Perrin [76] and analyzed by Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [22] in terms
of Diffie–Hellman. Alwen, Coretti, and Dodis [1] generalized it into a primitive called continuous key agreement
that can be built from KEMs, yielding post-quantum security. Hence, our focus in the rest of this paper is on
the handshake.

The post-quantum primitives to be standardized by the United States National Institute of Standards and
Technology (NIST) post-quantum standardization project are signatures and key encapsulation mechanisms
(KEMs), so these would be most preferable to employ. It is certainly possible to generically construct an authen-
ticated key exchange protocol from signatures and KEMs, but it is not possible to use only KEMs and signatures
in a generic way to create a post-quantum replacement for Signal with all of the properties listed above. Suppose
one tried to use KEMs instead of Diffie–Hellman in Figure 1. Recall that, to use a KEM for key exchange,
one party uses the key generation algorithm to create a public-key/secret-key pair and transmits the public key
to their peer; the peer encapsulates against that public key, producing a ciphertext and a shared secret, then
transmits the ciphertext, which the first party decapsulates using their secret key to compute the shared secret.
In the Signal handshake, one could try using KEM public keys to replace the Diffie–Hellman shares in Alice
and Bob’s pre-key bundles. We can still obtain ephemeral key exchange (by having Alice encapsulate against
Bob’s ephemeral public key) and implicit Bob-to-Alice authentication (by having Alice encapsulate against Bob’s
long-term public key). However, we cannot obtain Alice-to-Bob authentication using KEMs without adding an
extra flow: Bob cannot produce a ciphertext for Alice to decapsulate without knowing Alice’s public key first,
so he cannot asynchronously produce a pre-key bundle for Alice to immediately use. This highlights the differ-
ence between DH and KEMs: in DH, both parties’ shares are objects of the same type and can be generated
independently, but in generic KEMs, public keys and ciphertexts are in principle objects of differing types and a
ciphertext is generated with respect to a given public key. To obtain Alice-to-Bob authentication without adding
an extra communication round, Alice could of course produce a signature for Bob to verify, but this undermines
deniability.

The problem, in a nutshell, is to create an asynchronous deniable authenticated key exchange protocol that
can be instantiated in the post-quantum setting, preferably with an efficient construction based on standardized
primitives or at least cryptographic assumptions used in standardized primitives.

1.2 Options for PQ Asynchronous DAKE

There are several examples of authenticated key exchange protocols built generically from KEMs which have the
potential for deniability [14,13,44,27,86] but do not have the desired asynchronicity property for reasons similar
to the discussion above.

Post-quantum Asynchronous DAKE and the Signal Handshake 3

Alice Bob
pkKEM

B , pkDVS
B , epkKEM

B

Bob’s pre-key bundle

pkDVS
A

Alice’s pre-key bundle

(K1, c1)←$ KEM1.Encaps(pk
KEM
B)

(K2, c2)←$ KEM2.Encaps(epk
KEM
B)

σ←$ DVS.Sign(skDVS
A , pkDVS

B , transcript)
c1, c2, σ

DVS.Vrfy(pkDVS
A , pkDVS

B , transcript, σ)

K1 ← KEM1.Decaps(skKEM
B , c1)

K2 ← KEM2.Decaps(eskKEM
B , c2)

K ← KDF(K1∥K2, transcript) K ← KDF(K1∥K2, transcript)

Fig. 2. Our core asynchronous DAKE protocol, combining static and ephemeral key encapsulation schemes KEM1 and
KEM2, and a designated verifier signature DVS.

One post-quantum option that avoids the problem with KEMs described above is to use CSIDH [21], a prim-
itive based on supersingular isogenies that yields a commutative group action which enables non-interactive key
exchange. CSIDH could be used to achieve implicit Alice-to-Bob authentication while maintaining asynchronicity
and deniability; indeed several key exchange protocols from CSIDH have been proposed [61,60]. Unfortunately,
there are several reasons CSIDH may not be a fully satisfactory solution: it is much more computationally ex-
pensive than most other forms of post-quantum cryptography, and there is ongoing debate about the security of
its concrete parameters [80,12].

KEMs built on most other post-quantum assumptions, including SIDH [58] and learning-with-errors (LWE)
[83], are insecure against key reuse attacks without additional protection such as the Fujisaki–Okamoto transform
[45] that leaves them unable to be used for non-interactive key exchange (since the ciphertext must be generated
with respect to a given public key). There have been several attempts at SIDH-based non-interactive key exchange
which have ended up being insecure [2,36,31,32], and one attempt relying on an additional novel assumption [11]
the security of which is unknown.

Brendel, Fischlin, Günther, Janson, and Stebila [16] previously considered the question of building a post-
quantum version of the Signal handshake, highlighting many of these problems. They proposed decomposing the
three operations of a KEM into a 4-operation “split KEM”, and showed how a Signal-like handshake could be
built from a split KEM meeting a suitably strong security notion. They showed how CSIDH and LWE could be
used to build split KEMs meeting a weaker security notion, but these constructions did not achieve the strong
security notion required for their Signal-like handshake, effectively leaving the overall problem unsolved.

Unger and Goldberg [89,90] also consider deniable authenticated key exchange (DAKE) protocols for secure
messaging. Their protocol permits the optional use of a PQ KEM for ephemeral key exchange to achieve forward
secrecy against future-quantum adversaries. To achieve deniability, they employ ring signatures with classical
security and further rely on dual receiver encryption, which does not yet appear to have a PQ instantiation in
the literature. Observe that their formalization of deniability is given in the UC model.

The recent work by Hashimoto, Katsumata, Kwiatkowski, and Prest [53] is closest to ours. Their core protocol
is meant to replace the Signal handshake based on (post-quantum) KEMs and signatures. It achieves security
against exposure of long-term keys and session state and a weaker deniability level. Unlike Signal (and our
proposed protocol), it does however not provide security against randomness exposure and lacks support for
semi-static keys to mitigate the exhaustion of ephemeral pre-keys. Hashimoto et al. provide an implementation
for their weakly-deniable protocol and further discuss two additional variants achieving stronger deniability. The
second protocol achieves deniability against semi-honest adversaries based on ring signatures, while their third
protocol additionally uses non-interactive zero-knowledge arguments and strong knowledge-type assumptions for
plaintext-aware [4] KEMs to achieve deniability against malicious adversaries.

Dobson and Galbraith [30] recently proposed using SIDH key exchange to replace the DH key exchange in the
(slightly modified) X3DH protocol. Even though SIDH is in general insecure against adaptive attacks, Dobson
and Galbraith show that carefully adding a zero-knowledge proof enables them to prove that the long-term SIDH
public keys are generated honestly. In order to prove deniability, they require strong knowledge-type assumptions
following [91].

1.3 Our Contributions

We show how to construct an asynchronous deniable authenticated key exchange protocol generically from
designated verifier signature schemes and key encapsulation mechanisms.

Introduced by Jakobsson, Sako, and Impagliazzo [57], a designated verifier signature (DVS) scheme allows a
signer to convince a chosen recipient, called the designated verifier, of the authenticity of a message, but in such

4 Brendel, Fiedler, Günther, Janson, and Stebila

a way that the designated verifier cannot convince any other party of the authenticity. In a DVS scheme, both
the signer and the verifier have a public-key/secret-key pair; signing requires both the signer’s secret key and the
verifier’s public key, and verification uses both parties’ public keys. To achieve the non-transferability property
(called “source hiding”), a DVS scheme is accompanied by an additional simulation algorithm with which the
designated verifier can, using its own secret key, construct a signature indistinguishable from one generated by
the signer.

Asynchronous DAKE construction. We combine a DVS with a KEM to achieve an asynchronous deniable
authenticated key exchange as shown in Figure 2. As expected, Bob-to-Alice authentication comes from an
implicitly authenticated key exchange in which Alice encapsulates to Bob’s long-term KEM key (KEM1 with
long-term public key pkKEMB and ciphertext c1 in Figure 2), and forward secrecy comes from a key exchange using
an ephemeral KEM key (KEM2 with public key epkKEMB and ciphertext c2). Alice-to-Bob authentication comes
from Alice using the designated verifier signature scheme to sign a transcript with Bob as the designated verifier;
she can obtain Bob’s DVS verification key (pkDVSB) from his pre-key bundle. Since the source hiding property
of the DVS scheme enables Bob to also have created a valid-looking signature from Alice with himself as the
designated verifier, the transcript of the key exchange protocol could have been constructed by either Alice or
Bob, yielding the desired deniability property.

Deniability. We model the informal deniability requirement from the Signal specification [77, §4.4] through a new
deniability notion (for asynchronous DAKE) capturing the following scenario: Alice wants to convince a judge
that a certain conversation took place between her and Bob. Hence, Alice gives the corresponding transcript
to the judge. The judge may coerce Alice and Bob to give up their secret keys (e.g., by law). Under these
circumstances, the judge should not be able to tell if this transcript stems from a real conversation or if Alice
faked the transcript on her own without Bob’s interaction. On the one hand, our new notion is weaker than the
definition of [29] in the sense that we limit Alice to stick to the protocol description (i.e., be semi-honest) and
allow the use of a secret key for faking a transcript. On the other hand, our new notion is stronger in the sense
that we allow the judge to know all secret keys. On a more technical note, we provide a game-based definition
while [29] uses the simulation paradigm. In a nutshell, a strength of our notion is that it provides deniability
against powerful judges that can compromise secret keys of users. A consequence of our new, incomparable
deniability definition is that we can achieve it without strong knowledge assumptions needed for X3DH [91] and
in the work of Hashimoto et al. [53,54]; we conjecture both protocols can likewise be shown to be deniable wrt.
our definition without such assumptions.

Post-quantum designated verifier signatures. To achieve our goal of post-quantum asynchronous DAKE, we
thus need a post-quantum designated verifier signature scheme. While there is a long line of research on DVS
schemes from pre-quantum assumptions (including [57,85,65,87,69,94,17,26]), comparatively little is available
in the literature on post-quantum DVS schemes. An isogeny-based DVS scheme was proposed in [88] but is
insecure due to key reuse attacks identified in [49]. There are several lattice-based DVS schemes which may fit
the bill [92,93,79,67,97], but these have not received much scrutiny in the mainstream cryptographic literature;
we summarize this literature in Section 3.1. These lattice-based DVS schemes are direct constructions not based
on any NIST candidates, so they would require their own thorough analysis.

DVS from ring signatures. Rather than constructing DVS schemes directly, it is possible to use a ring signature
scheme [84] as a designated verifier signature scheme. In a ring signature scheme, one signer can sign a message
intended to verify under a ring of public keys, only one of which is theirs; yet no one should be able to determine
which signer produced such a signature. Following ideas sketched in [84,8], we show in Section 3.2 how to use a
2-user ring signature scheme to build a DVS scheme: the ring used by the signer consists of the public keys of
themselves and the one designated verifier. There are several candidates for post-quantum ring signatures whose
properties we discuss in Section 3.2.

In a concurrent update to their work, Hashimoto et al. have shown the reverse, i.e., constructing a ring
signature scheme from a DVS scheme [54] (which is the full version of [53]). Hence, in the 2-user case ring
signatures and DVS are equivalent under the security notions put forward in this paper.

Given this equivalence, observe that our core asynchronous DAKE protocol (Figure 2) is indeed similar to
the second construction of [53]. While our construction sends the DVS signature as is, their construction employs
a ring signature that is masked with the output of a PRF evaluation.

Application to the Signal handshake. We present a version of the Signal X3DH handshake which we call SPQR—
Signal in a Post-Quantum Regime—based on our asynchronous DAKE design that uses KEMs and a designed

Post-quantum Asynchronous DAKE and the Signal Handshake 5

verifier signature scheme. We show that the SPQR handshake achieves strong (“maximal-exposure”) session key
security in a variant of the security model of [22] covering compromises of long- and medium-term keys and
ephemeral randomness, as well as deniability.

Outline of the paper. In Section 2 we introduce preliminaries. Section 3 focuses on the security properties of
designated verifier schemes and how to construct these in a post-quantum setting, including existing direct
constructions as well as via ring signatures, and gives a discussion of our failed attempts at constructing DVS
from chameleon hash functions in an earlier version of this work. In Section 4 we present a security model for key
exchange that captures session key indistinguishability with implicit mutual authentication and weak forward
secrecy, as well as offline deniability. In Section 5 we show that our core asynchronous deniable authenticated
key exchange protocol from Figure 2 fulfills these security notions; in particular, offline deniability is based on
the source hiding property of the DVS scheme. In Section 6 we introduce a complete post-quantum version of
the Signal handshake that extends our core protocol to include additional components present in the Signal
handshake (e.g., semi-static keys). In Section 7 we provide a security model for our full protocol and prove, in
Section 8, its session key indistinguishability and deniability. In Section 9, we conclude with a discussion of the
results and some limitations.

2 Preliminaries

We begin by introducing notation and recapping some basic components.

2.1 Notation

To sample an element x uniformly at random from a set S (or a distribution on an underlying set) we write
x←$ S. For deterministic algorithms A we denote by y ← A(x) the execution of A on input x with output y.
Similarly, y←$ A(x) denotes the probabilistic execution of A, and y ← A(x; r) the deterministic execution of a
probabilistic algorithm A with its random coins fixed to r. Adversaries are typically denoted by A and we write
AOracle to indicate that A has access to the oracle Oracle. Adversaries can have local quantum computation
power but their oracle access and outputs are still classical. For an integer n, we denote by [n] the set {1, . . . , n}.
Double square brackets J·K that enclose a boolean statement return the bit 1 if the statement is true, and 0
otherwise.

2.2 Key Encapsulation Mechanisms

The main building block for our post-quantum secure initial key agreement of Signal are so-called key encap-
sulation mechanisms that allow an encapsulator to transfer a shared secret key K via a ciphertext c to the
decapsulator.

Definition 1 (Key Encapsulation Mechanisms). A key encapsulation mechanism KEM is a triple of algo-
rithms KEM = (KGen,Encaps,Decaps). In more detail:

– KGen() $→ (pk, sk): A probabilistic algorithm that outputs a public-key/secret-key pair with (pk, sk) ∈ PK ×
SK.

– Encaps(pk) $→ (c,K): A probabilistic algorithm taking as input a public key pk ∈ PK and outputs a ciphertext
c ∈ C and the therein encapsulated key K ∈ K.

– Decaps(sk, c) → K ′: A deterministic algorithm taking as input a ciphertext c ∈ C and secret key sk and
outputs K ′ ∈ K ∪ {⊥}, where ⊥ indicates an error.

We say that a KEM KEM = (KGen,Encaps,Decaps) is δ-correct if, for every key pair (pk, sk)←$ KGen(), and
every encapsulation (c,K)←$ Encaps(pk), we have

Pr[K ′ ̸= K |K ′ ← Decaps(sk, c)] ≤ δ.

We call KEM (perfectly) correct if δ = 0.
We define the key-collision probability of a KEM KEM = (KGen,Encaps,Decaps) via a function γcoll : N →

[0, 1], where γcoll(n) bounds the probability that two among n ∈ N honestly generated public keys collide. That is,
for (pki, ski)←$ KGen() for i ∈ [1, n], we have

Pr[pki = pkj ∧ i ̸= j] ≤ γcoll(n).

6 Brendel, Fiedler, Günther, Janson, and Stebila

G indcpaKEM (A):

1 (pk, sk)←$ KGen()

2 (c∗,K∗
0)←$ Encaps(pk)

3 K∗
1 ←$K

4 b←$ {0, 1}
5 b′←$A(pk, c∗,K∗

b)

6 return Jb′ = bK

G indccaKEM (A):
1 (pk, sk)←$ KGen()

2 (c∗,K∗
0)←$ Encaps(pk)

3 K∗
1 ←$K

4 b←$ {0, 1}
5 b′←$ADecaps(pk, c∗,K∗

b)

6 return Jb′ = bK

Decaps(c):

7 if c = c∗

8 return ⊥
9 else

10 return Decaps(sk, c)

Fig. 3. IND-CPA and IND-CCA security for KEM = (KGen,Encaps,Decaps) with key space K.

Security of KEMs is defined in terms of indistinguishability of encapsulated keys from random given the
decapsulator’s public key and the encapsulating ciphertext:

Definition 2 (IND-ATK Security of KEMs). Let KEM = (KGen,Encaps,Decaps) be a KEM with key space K.
We say that KEM is (t, ϵ)-IND-CPA-secure, resp. (t, ϵ,QD)-IND-CCA-secure, if for any adversary A with running
time at most t and (for IND-CCA) making at most QD queries to the Decaps oracle, we have that

AdvindatkKEM (A) :=
∣∣∣∣Pr[G indatkKEM (A) = 1

]
− 1

2

∣∣∣∣ ≤ ϵ,

where G indatkKEM (A) (with atk = cpa, resp. atk = cca) is defined in Figure 3.

2.3 (Twisted) Pseudorandom Functions

Beyond classical pseudorandom functions for key derivation, another crucial component for our SPQR protocol
are special pseudorandom functions called twisted pseudorandom functions [44,64]. In the following we recall the
respective definitions and security games.

Definition 3. Let F : {0, 1}κ × {0, 1}ι → {0, 1}ω be an efficient keyed function with key length κ, input length
ι, and output length ω.

Let GprfsecF (A) be defined as in the top of Figure 4. We call F a (t, ϵ,QF)-pseudorandom function (or simply
(t, ϵ,QF)-PRFSEC), if for any adversary A with running time at most t and making at most QF queries to the
PRFChallenge oracle, we have that

AdvprfsecF (A) :=
∣∣∣∣Pr[GprfsecF (A) = 1

]
− 1

2

∣∣∣∣ ≤ ϵ.

Let GtprfsecF (A) be defined as in the bottom of Figure 4. We call F a (t, ϵ, q)-twisted pseudorandom function
(or simply (t, ϵ, q)-tPRFSEC), if for any adversary A with running time at most t, we have that

AdvtprfsecF,q (A) :=
∣∣∣∣Pr[GtprfsecF,q (A) = 1

]
− 1

2

∣∣∣∣ ≤ ϵ.

Note that one can easily build a twisted PRF tPRF from a PRF F in the standard model. Following Kurosawa
and Furukawa [64], a secure construction doubling the key and label lengths is:

tPRF((k, k′), (e, e′)) = F(k, e)⊕ F(e′, k′).

3 Designated Verifier Signatures

Designated verifier signature (DVS) schemes were introduced by Jakobsson, Sako, and Impagliazzo [57]. Their
goal is for a signer to convince a chosen recipient (the “designated verifier”) that a message is authentic but in
such a way that the designated verifier cannot convince any other party of the authenticity of the message4. This
property is typically modeled by requiring that the designated verifier can efficiently simulate signatures that
are indistinguishable from signatures produced by the signer.

4In contrast, a strong DVS scheme allows only the designated verifier to verify a signature by requiring the verifier’s
secret key as input to the verification algorithm.

Post-quantum Asynchronous DAKE and the Signal Handshake 7

GprfsecF (A):

1 K←$ {0, 1}κ
2 g←$ {functions f : {0, 1}ι → {0, 1}ω}
3 b←$ {0, 1}
4 b′←$APRFChallenge()

5 return Jb′ = bK

PRFChallenge(x):

6 if b = 0

7 return F(K,x)

8 else

9 return g(x)

GtprfsecF,q (A):

1 g←$ {functions f : {0, 1}ι → {0, 1}ω}
2 g′←$ {functions f : {0, 1}κ → {0, 1}ω}
3 K,K′←$ {0, 1}2κ
4 b←$ {0, 1}
5 x, x1, x2, . . . , xq←$ {0, 1}(q+1)ι

6 s0 ←
{
(x1,F(K,x1)), (x2,F(K,x2)), . . . , (xq,F(K,xq)), (K

′,F(K′, x))
}

7 s1 ←
{
(x1, g(x1)), (x2, g(x2)), . . . , (xq, g(xq)), (K

′, g′(K′))
}

8 b′←$A(sb)
9 return Jb′ = bK

Fig. 4. Pseudorandomness (GprfsecF (A), top) and twisted pseudorandomness (GtprfsecF,q (A), bottom) of a function F.

Definition 4. A designated verifier signature scheme (DVS) is a tuple of algorithms DVS = (SKGen,VKGen,
Sign,Vrfy,Sim) along with a message spaceM.

– SKGen() $→ (pkS , skS): A probabilistic key generation algorithm that outputs a public-/secret-key pair for the
signer.

– VKGen() $→ (pkD, skD): A probabilistic key generation algorithm that outputs a public-/secret-key pair for the
verifier.

– Sign(skS , pkD,m) $→ σ: A probabilistic signing algorithm that uses a signer secret key skS to produce a sig-
nature σ for a message m ∈M for a designated verifier with public key pkD.

– Vrfy(pkS , pkD,m, σ)→ true/false: A deterministic verification algorithm that checks a message m and signa-
ture σ against a signer public key pkS and verifier public key pkD.

– Sim(pkS , skD,m) $→ σ: A probabilistic signature simulation algorithm that uses the verifier’s secret key skD
to produce a signature σ on message m for signer public key pkS.

A DVS scheme DVS is correct, if, for any honestly generated key pairs (pkS , skS), (pkD, skD) and every message
m ∈M, it holds that

Pr[Vrfy(pkS , pkD,m,Sign(skS , pkD,m)) = true] = 1.

We follow Laguillaumie and Vergnaud [65] in defining separate key generation algorithms for signers and
designated verifiers; in some cases these two algorithms may be identical.

A long line of research has scrutinized the security of DVS schemes in different settings, e.g. strong DVS
schemes, including [57,85,65,87,69,94,17,26]. For the purpose of this paper, it suffices to define the security
notions of unforgeability and source hiding. Unforgeability for DVS schemes is similar to that for standard
signature schemes, providing the adversary with a signing oracle and asking it to forge a signature on a (fresh)
message of its choice. Prior work restricts the signing oracle to the challenge designated verifier key. In contrast,
and to account for settings where a signer’s key is used with many other users’ verifier keys (cf. Section 5), we
allow the adversary to pick the designated verifier key to be used in the signing oracle from a set of additional,
honestly generated key pairs.

Definition 5. A designated verifier signature scheme DVS is (t, ϵ, n,QS)-unforgeable if, for any adversary A
with running time at most t, having access to n additional DVS verifier key pairs beyond the challenge keys, and
making at most QS queries to the Sign oracle, we have that

AdvufDVS(A) = Pr
[
GufDVS(A) = 1

]
≤ ϵ,

where GufDVS(A) is as in Figure 5.

The second property we consider is called source hiding [65], demanding that it should be infeasible for
an adversary to determine whether a given signature has been generated by the signer (using Sign) or by the
designated verifier (using Sim), even if the adversary learns the secret keys of both parties.

8 Brendel, Fiedler, Günther, Janson, and Stebila

GufDVS(A):
1 Q← ∅
2 L ← ∅
3 (pkS , skS)←$ DVS.SKGen()

4 (pkD, skD)←$ DVS.VKGen()

5 for i ∈ [n]

6 (pki, ski)←$ DVS.VKGen()

7 L ← L ∪ {(pki, ski)}
8 (m∗, σ∗)←$ASign(pkS , pkD,L)
9 d← DVS.Vrfy(pkS , pkD,m∗, σ∗)

10 return Jd = true ∧ m∗ /∈ QK

Sign(pk,m):

11 if pk = pkD
12 Q← Q ∪ {m}
13 else if (pk, ·) /∈ L
14 return ⊥
15 σ←$ DVS.Sign(skS , pk,m)

16 return σ

GsrchidDVS (A):
1 (pkS , skS)←$ DVS.SKGen()

2 (pkD, skD)←$ DVS.VKGen()

3 b←$ {0, 1}
4 b′←$AChall(pkS , skS , pkD, skD)

5 return Jb′ = bK

Chall(m):

6 if b = 0

7 σ←$ DVS.Sign(skS , pkD,m)

8 else

9 σ←$ DVS.Sim(pkS , skD,m)

10 return σ

Fig. 5. Unforgeability (top) and source hiding (bottom) of a designated verifier signature scheme DVS.

Definition 6. A designated verifier signature scheme DVS is (t, ϵ,QCh)-source hiding if, for any adversary A
with running time at most t and making at most QCh queries to the Chall oracle, we have that

AdvsrchidDVS (A) =
∣∣∣∣Pr [GsrchidDVS (A) = 1

]
− 1

2

∣∣∣∣ ≤ ϵ,

where GsrchidDVS (A) is defined in Figure 5.

The property of source hiding also appears under different terms in the literature such as the designated
verifier property [57,85], non-transferability [87], source deniable [42], untransferability [17], and recently off-the-
record [26]. While all these definitions share the intuition that the sender can blame another party (in particular,
the designated receiver) as the originator of a signature, they vary in the adversary capabilities, i.e., whether the
adversary is unbounded or whether it gets access to the secret keys.

3.1 Post-quantum DVS Schemes: Prior Work and Failed Attempts

For this work, we are interested in DVS constructions that promise post-quantum security. Despite the long line of
research on DVS schemes, there are only a few candidate post-quantum constructions available in the literature;
furthermore, most of those have not received much scrutiny in the mainstream cryptographic literature.

This led us to attempt building, in a prior version of this paper (see Appendix C), a generic construction
of post-quantum-secure DVS schemes from chameleon hash functions through both full-domain-hash and Fiat–
Shamir-style signature schemes, drawing from post-quantum building blocks much closer to schemes involved in
NIST standardization. In the following, we summarize prior direct constructions and our own attempts, which
ultimately failed, before turning to generic constructions from ring signatures in Section 3.2.

Post-quantum DVS constructions in the literature. An isogeny-based strong DVS scheme was proposed
by Sun, Tian, and Wang [88] which turned out to be insecure due to key reuse attacks identified by Galbraith,
Petit, Shani, and Ti [49].

Wang, Hu, and Wang [92] construct a strong DVS scheme directly from lattice assumptions (LWE and SIS) by
combining the Bonsai tree lattice trapdoor of [20] with the GPV lattice-based signature scheme [51]; a subsequent
paper of theirs [93] extends this to the identity-based setting.

Noh and Jeong [79] improve on [92,93] by giving direct constructions from lattices that can be proven without
relying on random oracles; they do so by replacing the random oracle with a chameleon hash function.

Li, Liu, and Yang [67] construct a universal DVS scheme directly from ideal lattice assumptions (ring-SIS) by
combining a ring version of the GPV signature scheme [74] with a ring chameleon hash function [35] and adding
a Fiat–Shamir-with-aborts technique [72,73].

Zhang, Liu, Tang, and Tian [97] also give a DVS constructed directly from SIS by adapting the Lyubashevsky
signature scheme [73].

Post-quantum Asynchronous DAKE and the Signal Handshake 9

Construction attempts: GPV and Fiat–Shamir. In a previous version of this paper (see Appendix C) we
gave two attempted generic DVS constructions, to be instantiated from post-quantum building blocks close to
schemes involved in NIST standardization.

– Our first DVS construction was based on the full-domain-hash signature scheme [5], although following the
variant by Gentry, Peikert, and Vaikuntanathan [51] which uses a trapdoor function rather than a trapdoor
permutation as in [5].

– Our second DVS construction was based on the method of Fiat and Shamir [41] for constructing a signature
scheme from an honest-verifier zero-knowledge canonical identification protocol.

In both of these signature schemes, signatures were constructed in the normal “forward” direction by the signer
using the hashing and signing algorithms in the normal way. One can attempt to construct signatures in the
“backward” direction without the secret key by applying the permutation (for the full-domain hash scheme) or
generating an identification protocol transcript (in the Fiat–Shamir case), but a forger will get stuck without a
way to make the hash of the message match the hash digest picked during the backwards signature generation.
The key idea in both of our constructions was to replace the standard hash function with a chameleon hash
function (CHF) [63,20], which allows preimages of the hash function to be found with knowledge of a trapdoor,
which will be held by the verifier.

The security proof for these constructions falsely modeled the CHF as random oracle, which is not faithful.
For transparency and educational purposes we describe our insights in Appendix B.

3.2 Building Post-quantum DVS Schemes from Ring Signatures

We now turn to building DVS schemes generically from ring signatures, show which properties are required to
obtain a post-quantum-secure instantiation and evaluate several ring signature candidates. Our constructions
draws from the idea sketched in [84,8], with syntax and security closely following the exposition of Bender, Katz,
and Morselli [8].

Definition 7. A ring signature scheme is a tuple of algorithms Ring = (KGen,Sign,Vrfy) along with a message
spaceM.

– KGen() $→ (pk, sk): A probabilistic key generation algorithm that outputs a public-/secret-key pair.
– Sign(sks,m,R) $→ σ: A probabilistic signing algorithm that uses a secret key sks to produce a signature σ for

a message m ∈M w.r.t. to a list of distinct public keys R, where (pks, sks) is an honestly generated key pair
and pks ∈ R.

– Vrfy(R,m, σ) → true/false: A deterministic verification algorithm that checks a message m and signature σ
against a ring R.

A 2-user ring signature is a ring signature fixed to rings of size 2. A ring signature scheme Ring is correct, if,
for honestly generated key pairs {(pki, ski)}ni=1, any s ∈ [n], and any message m ∈M, it holds that

Pr[Vrfy({pki}ni=1,m,Sign(sks,m, {(pki)}ni=1)) = true] = 1.

The unforgeability and anonymity property we require for ring signatures are subtly different from prior
literature. Like in the unforgeability notion w.r.t. insider corruption defined in [8], we consider an unforgeability
adversary with access to a corruption oracle Corr. However, our unforgeability adversary is limited to rings
consisting of honestly generated public keys for both its final forgery as well as the queries to the signing oracle
(like the unforgeability against chosen-subring attacks defined in [8]). It is easy to see that unforgeability w.r.t.
insider corruption implies our unforgeability notion. Herranz [55] informally discusses a similar notion.

Definition 8. A ring signature scheme Ring is (t, ϵ, n,QS , QCo)-unforgeable w.r.t. honest-ring insider corruption
if, for any adversary A with running time at most t, having access to n public keys, and making at most QS

queries to the Sign oracle and QCo queries to the Corr oracle, we have that

AdvufRing(A) = Pr
[
GufRing(A) = 1

]
≤ ϵ,

where GufRing(A) is as in Figure 6.

We consider an anonymity notion based on anonymity against full key exposure [8].5 The first difference is
that we directly give all secret keys to the adversary instead of providing a signing and a corruption oracle to

5Note that we refer to [8, Definition 5], which differs from [7, Definition 4]: The former allows the adversary to learn
the key generation randomness of all users before choosing the challenge message and ring.

10 Brendel, Fiedler, Günther, Janson, and Stebila

GufRing(A):

1 QS ← ∅
2 QCo ← ∅
3 L ← ∅
4 for i ∈ [n]

5 (pki, ski)←$ Ring.KGen()

6 L ← L ∪ {pki}
7 (R⋆,m⋆, σ⋆)←$ASign,Corr(L)
8 d1 ← Ring.Vrfy(R⋆,m⋆, σ⋆)

9 d2 ← J(m⋆,R⋆) /∈ QSK
10 d3 ← JR⋆ ⊆ L\QCoK
11 return Jd1 ∧ d2 ∧ d3K

Sign(s,m,R):

12 if pks /∈ R ∨ s /∈ [n] //sign with honest key

13 return ⊥
14 if R ̸⊆ L //sign wrt. honest ring

15 return ⊥
16 QS ← QS ∪ {(m,R)}
17 σ←$ Ring.Sign(skS ,m,R)

18 return σ

Corr(i):

19 QCo ← QCo ∪ {pki}
20 return ski

GanonRing (A):

1 L ← ∅
2 for i ∈ [n]

3 (pki, ski)← Ring.KGen()

4 L ← L ∪ {(pki, ski)}
5 b←$ {0, 1}
6 b′←$AChall(L)
7 return Jb′ = bK

Chall(m, i0, i1,R):

8 if {pki0 , pki1} ̸⊆ R //challenge signers in ring

9 return ⊥
10 if {i0, i1} ̸⊆ [n] //sign with honest keys only

11 return ⊥
12 σ←$ Ring.Sign(skib ,m,R)

13 return σ

Fig. 6. Unforgeability w.r.t. honest-ring insider corruption (top) and anonymity against key exposure (bottom) of a ring
signature scheme Ring. The latter game is specialized for the ring size 2.

RingDVS.SKGen():

1 (pkS , skS)←$ Ring.KGen()

2 return (pkS , skS)

RingDVS.VKGen():

3 (pkD, skD)←$ Ring.KGen()

4 return (pkD, skD)

RingDVS.Sign(skS , pkD,m):

5 return Ring.Sign(skS ,m, {pkS , pkD})
RingDVS.Sim(pkS , skD,m):

6 return Ring.Sign(skD,m, {pkS , pkD})
RingDVS.Vrfy(pkS , pkD,m, σ):

7 return Ring.Vrfy({pkS , pkD},m, σ)

Fig. 7. Designated verifier signature scheme RingDVS = RingDVS[Ring] constructed from a 2-user ring signature scheme
Ring.

the adversary, where the latter in [8] returns the key generation randomness. The other difference is that we
parameterize the game in the number of queries QCh allowed to the challenge oracle. As a result, anonymity
against full key exposure implies our anonymity notion with QCh = 1.6 Similarly, the anonymity notions of [70]
and [40], where the attacker has access to a key generation oracle, imply our anonymity notion with QCh = 1.

Definition 9. A ring signature scheme Ring is (t, ϵ, n,QCh)-anonymous against key exposure if, for any adver-
sary A with running time at most t, having access to n key pairs, and making at most QCh queries to the Chall
oracle, we have that

AdvanonRing (A) =
∣∣∣∣Pr [GanonRing (A) = 1

]
− 1

2

∣∣∣∣ ≤ ϵ,

where GanonRing (A) is as in Figure 6.

It is easy to see that one can transform any (t, ϵ, n, 1)-anonymous against key exposure ring signature scheme
into a (t, ϵ ·QCh, n,QCh)-anonymous against key exposure scheme via a hybrid argument.

The construction. Our construction, denoted RingDVS, is a straightforward adaption of a 2-user ring signa-
ture Ring to the DVS setting as detailed in Figure 7. The security of the resulting DVS scheme hinges on the
unforgeability and anonymity of the ring signature as per Definitions 8 and 9.

Theorem 1 (Unforgeability of RingDVS). If Ring is a (t, ϵ, n + 2, QS , QCo)-unforgeable w.r.t. honest-ring
insider corruption 2-user ring signature scheme, then RingDVS defined in Figure 7 is (t′, ϵ, n,QS)-unforgeable,
with t′ ≈ t.

6This was disputed in [46,47] and the claim subsequently withdrawn [48]. Their separation considered [7, Definition
4] and not [8, Definition 5].

Post-quantum Asynchronous DAKE and the Signal Handshake 11

Proof. We reduce the unforgeability of RingDVS to the unforgeability w.r.t. honest-ring insider corruption of
Ring.

Initialization of A. The adversary B against unforgeability of the ring signature receives as input a list L of
honestly generated public keys {pki}n+2

i=1 . Next, B corrupts all keys except the first two via its Corr oracle.
It sets the first two public keys as challenge keys for A as pkS ← pk1 and pkD ← pk2. (Observe that we
choose these two indices wlog. for easier bookkeeping.) The reduction then initializes the adversary A against
unforgeability of the DVS on input (pkS , pkD, {(pki, ski)}n+2

i=3).
Queries to Sign. Queries of A to the Sign oracle are of the form (pk,m). If pk is not one of the honestly

generated keys that the reduction gave to A, return ⊥. For each query, B queries its own signing oracle on
(1,m, {pk1, pk}) and returns the answer directly to A. If pk = pk2, record m in Q.

Forgery. At some point, A outputs a DVS forgery (m∗, σ∗) wrt. pkS and pkD. The reduction outputs (m∗, σ∗,
pk1, pk2) as its own forgery.

The reduction soundly simulates the unforgeability game against RingDVS. It simulates the signing oracle
truthfully by using its own signing oracle.

If A outputs a valid DVS forgery wrt. sender key pkS = pk1 and verifier key pkD = pk2, the output of B
is a valid ring forgery wrt. the ring {pk1, pk2} by construction of RingDVS. Furthermore, since m /∈ Q, A has
not queried its Sign oracle on m and pkD. Thus, the message-ring pair (m, {pk1, pk2}) was not queried by B
to its oracle either. Lastly, the forgery is wrt. the keys {pk1, pk2}, which B did not corrupt. Hence, all winning
conditions for the ring unforgeability game are met.

The running time t of B is dominated by the running time t′ of A and we write t ≈ t′; simulating the signing
oracle and querying the corruption oracle n times are not expensive. If A outputs a successful DVS forgery with
probability ϵ, then B is able to produce a valid ring forgery with the same probability.

Theorem 2 (Source hiding of RingDVS). If Ring is a (t, ϵ, n,QCh)-anonymous against key exposure 2-user
ring signature for n ≥ 2, then RingDVS as shown in Figure 7 is (t′, ϵ, QCh)-source hiding, with t′ ≈ t.

Proof. We reduce the source hiding of RingDVS to the anonymity against key exposure of Ring.

Initialization of A. The adversary B against anonymity of the ring signature receives as input a list of honestly
generated key pairs {(pki, ski)}ni=1. It sets the first two public keys as challenge keys for A as pkS ← pk1 and
pkD ← pk2. The reduction then initializes the source hiding adversary A on input (skS , pkS , skD, pkD).

Queries to Chall. A’s queries to the Chall oracle are of the form m. For each of the QCh queries, B forwards
the query to its own Chall oracle as (m, 1, 2, {pk1, pk2}) and returns the answer it gets directly to A.

Output. When A outputs its guess b′, the reduction outputs b′.

The reduction soundly simulates the source hiding game against RingDVS forA. The runtime of B is essentially
the runtime of A plus the runtime to forward the challenge queries and responses and we write t ≈ t′.

Adversary A distinguishing between outputs of RingDVS.Sign and RingDVS.Sim amounts to distinguishing
between Ring signatures under the two signing keys sk1 and sk2 in the ring {pk1, pk2}. Hence, B inherits A’s
winning probability ϵ.

Implications and the inverse direction. Our construction above establishes that DVS schemes with the
security properites needed for this work (i.e., unforgeability and source hiding) can be generically constructed
from 2-user ring signatures that provide unforgeability w.r.t. honest-ring insider corruption and anonymity
against key exposure. We note that the latter security properties are weaker than those put forward by Bender,
Katz, and Morselli [8].

Hashimoto et al. have recently shown in the full version of their work [54] that it is indeed possible to construct
also the reverse direction (in contrast to an earlier statement of ours). For their construction each ring member
has a signer key pair and a designated verifier key pair. In the signing procedure, depending on the lexicographical
order of the signer public keys either DVS.Sign or DVS.Sim is executed generating a ring signature. Verification
follows analogously.

Post-quantum ring signature candidates. Several post-quantum ring signature schemes were suggested in
the literature. In the following, we list a selection of schemes having concrete instantiations and report on the
signature sizes and other practical parameters provided in the corresponding works to illustrate their practicality.
All schemes except Raptor (listed first) come with security proofs for unforgeability and anonymity definitions
that imply our notions.

12 Brendel, Fiedler, Günther, Janson, and Stebila

Lu, Au, and Zhang [71] introduce Raptor, which uses a chameleon hash function based on the NIST finalist
FALCON [82], producing signatures of size approximately 5KB for a 2-user ring. However, they argue that the
best-known attack is inefficient instead of proving unforgeability and anonymity.

Yuen, Esgin, Liu, Au, and Ding [95] propose DualRing-LB (which is a lattice-based instantiation of their
generic construction DualRing) with a signature size of 4.4KB for rings of size 2. They prove anonymity (against
full key exposure) of their scheme under a slightly different notion, where only the first-stage attacker has access
to a signing oracle and only the second-stage attacker gets the randomness used in creating all keys (i.e., access
to the secret keys).

The following two schemes use zero-knowledge proofs based on symmetric primitives, akin to the NIST
alternate candidate Picnic [96]: Derler, Ramacher, and Slamanig [28] provide a scheme using NIZK proofs and
accumulators. For their smallest reported ring size 25, signatures can have a size of 719KB. Katz, Kolesnikov,
and Wang [59] use NIZKPoK with the MPC-in-the-head paradigm. For their smallest ring size 27, signing takes
2 seconds and produces signatures of size 285KB.

In terms of lattice-based constructions, a series of works [39,38,40] by Esgin et al. provide constructions
relying on the hardness of M-LWE and M-SIS. The most recent candidate has a signature size of 18KB for a
2-user ring. A construction by Lyubashevsky, Nguyen, and Seiler [75] relies on (variants of) M-LWE and M-SIS
and their smallest signature for rings of size 25 is 16KB. Beullens, Katsumata, and Pintore [9] introduce Falafl
that also relies on M-LWE and M-SIS and produces signatures of size 29KB in less than 100 milliseconds.

Sheikhi-Garjan, Kiliç, and Cenk [50] recently presented an isogeny-based ring signature in which signing and
verifying scale in the product nq of the ring size n and isogeny security parameter q.

4 Security Model for Asynchronous Deniable Key Exchange

From a formal perspective, an asynchronous authenticated key exchange protocol is just a traditional authen-
ticated key exchange protocol with a specific type of message flow. In particular, asynchronicity allows one
party to post pre-key bundles containing long-term and possibly ephemeral public keys, provided that they can
be constructed without knowing the intended partner. We will formalize security for this setting based on a
Bellare–Rogaway-type model [3] with implicit authentication and (weak) forward secrecy using post-specified
peers [19,62]. The model presented in this section is simplified to deal with basic Bellare–Rogaway-type security
with only long-term keys as a warm-up; in Section 7 we present a more granular model that accommodates the
complex characteristics found in the Signal protocol handshake, including semi-static keys and stronger security
against maximal exposure.

Parties and sessions. Let P be the set of np parties, each of whom has a long-term public-key/secret-key pair
generated by an algorithm KGenLT. Each party may run multiple instances of the protocol simultaneously or
sequentially, each of which is called a session. The ith session at party P is denoted πi

P . For each session, the
party maintains the following collection of session-specific information:

– oid ∈ P: The identity of the session owner.
– pid ∈ P ∪ {⋆}: The identity of the intended peer, which may initially be unknown (indicated by ⋆).
– role ∈ {initiator, responder}: The role of the party.
– stexec ∈ {⊥, running, accepted, rejected}: The status of this session’s execution.
– sid ∈ {0, 1}∗ ∪ {⊥}: A session identifier defining partnering.
– cid ∈ {0, 1}∗ ∪ {⊥}: A contributive identifier, defining a preliminary form of partnering (often as a substring

or prefix of the session identifier) for the case the session is not yet bound to an authenticated peer [34].
– K ∈ KKE ∪ {⊥}: The session key established in this session.
– Any additional protocol-specific data used during execution.

Protocol specification. A 2-party key exchange protocol consists of the following algorithms:

– KGenLT() $→ (pk, sk): A probabilistic long-term key generation algorithm that outputs a public-key/secret-
key pair.

– Run(sk,pk, π,m) $→ (π′,m′): A probabilistic session execution algorithm that takes as input a party’s long-
term secret key sk, a list of long-term public keys for all honest parties pk, a session state π, and an incoming
message m, and outputs an updated session state π′ and a (possibly empty) outgoing message m′. To set up
the session sending the first message, Run is called with a distinguished message m = create.

In a deniable key exchange protocol, we will demand the existence of an additional algorithm:

– Fake(pkU , skV) $→ (K,T): A probabilistic transcript simulation algorithm that takes as input one party’s
public key and the other party’s secret key and generates asession key K and a transcript T of a protocol
interaction between them.

Post-quantum Asynchronous DAKE and the Signal Handshake 13

Asynchronous key exchange. In principle, a key exchange protocol can have an arbitrary number of message
flows, which correspond to multiple calls to Run for a single session. In normal execution of an asynchronous
authenticated key exchange protocol, the following three calls to Run occur: 1) a call to Run at the responder
(Bob)7 with m = create, which sets up the responder session and outputs the responder’s pre-key bundle,
including an ephemeral public key; 2) a call to Run at the initiator with the responder’s pre-key bundle (long-
term public and ephemeral public keys) which generates a session key and outputs a key exchange message;
and 3) a call to Run at the responder with the initiator’s long-term public key and key exchange message which
generates a session key and has no output message.

Partnering. Two sessions πi
U and πj

V are said to be partners if they agree on the session identifier (πi
U .sid =

πj
V .sid). An honest partner session is a partner session that is honest, i.e., not under adversarial control.

Session key indistinguishability. The first security property we want of an authenticated key exchange protocol
is indistinguishability of session keys. At the start of the security experiment, long-term public-key/secret-key
pairs are generated for all np honest parties and the public keys pk are provided to the adversary, as well as a
random challenge bit btest fixed for the duration of the experiment. The adversary is then able to interact with
honest parties via the following queries:

– Send(U, i,m): Sends message m to session πi
U , which corresponds to executing Run(skU ,pk, π

i
U ,m), saving

the updated session state π′ as πi
U , and returning the outgoing message m′ to the adversary.

– CorruptLTKey(U): Returns party U ’s long-term secret key skU to the adversary.
– RevealSessKey(U, i): If session πi

U has accepted, return its session key πi
U .K to the adversary.

– Test(U, i): If the Test query has been called before or session πi
U has not accepted, then return ⊥. Otherwise,

if btest = 0, return πi
U .K, otherwise return an element of KKE chosen uniformly at random. Record π∗ ← πi

U .

The test session π∗ = πi∗

U∗ is called fresh if the following all hold:

1. RevealSessKey(U∗, i∗) was never called.
2. RevealSessKey(V, j) was never called for any V, j such that π∗.sid = πj

V .sid.
3. Either
(a) there exists an honest partner session π∗p (π∗p .sid = π∗.sid if π∗ is a responder, and π∗p .cid = π∗.cid if π∗ is

an initiator), covering weak forward secrecy, or
(b) CorruptLTKey(π∗.oid) and CorruptLTKey(π∗.pid) were never called, covering implicit authentica-

tion.

At the end of the experiment, the adversary outputs a bit b′. The adversary is said to win if b′ = btest and
the test session π∗ is fresh. Formally, if the test session is fresh, the experiment outputs 1 if b′ = btest and 0
otherwise; if the test session is not fresh, then the experiment outputs a random bit. The adversary’s advantage
in the key indistinguishability game is the absolute value of the difference between 1

2 and the probability that
the experiment outputs 1.

Deniability. The second security property we want is deniability. At the start of this experiment, long-term
public-key/secret-key pairs are generated for all np honest parties and the public and secret keys are provided
to the adversary. A random challenge bit b is fixed for the duration of the experiment. The adversary is given
repeated access to a Chall oracle which takes as input two party identifiers U and V . If b is 0, then Chall will
generate an honest transcript of an interaction between U and V using the Run algorithm and each party’s secret
keys. If b is 1, then Chall will generate a simulated transcript of an interaction between U and V using the
Fake algorithm. At the end of the experiment, the adversary outputs a guess b′ of b. The experiment outputs 1 if
b′ = b and 0 otherwise. The adversary’s advantage in the deniability game is the absolute value of the difference
between 1

2 and the probability the experiment outputs 1.
There are several prior works giving definitions of offline deniability for key exchange [29,24,25,89,90]. Our

definition differs from previous ones threefold: Firstly, the challenge oracle executes Run on behalf of the framing
party, i.e., we consider semi-honest adversaries only. Secondly, the Fake algorithm (corresponding to the simulator
in simulation-based definitions) has access to the receiver’s secret key. Thirdly, the adversary (the judge in
simulation-based settings) has access to all secret keys. This restricts the deniability to semi-honest adversaries
and 1-out-of-2 (one needs a secret key of either party to create a transcript) but lifts us to the so-called big
brother setting. The strong point of this deniability notion is that you get some deniability guarantees even
against strong judges, who know all secret keys. This models the informal deniability requirement from the
Signal specification [77, §4.4]. See Appendix A for a more detailed discussion.

7Note that we call Bob the responder in our model despite Bob outputting the first, asynchronous key exchange
message. Based on the high-level protocol interaction, we deem it more natural to call Alice, who decides to initiate a
Signal session with Bob, the initiator (in contrast to, e.g., [89,22,90]).

14 Brendel, Fiedler, Günther, Janson, and Stebila

5 Security of the Core Protocol

We now show that our core protocol Π from Figure 2 achieves the security properties defined in Section 4. Key
indistinguishability of Π depends on the IND-CCA security of the two KEMs, the unforgeability of the DVS,
and the security of the KDF; deniability of Π depends on the source hiding of the DVS. Both proofs are in the
standard model.

To formally capture Π in the security model of Section 4, we need to specify a few more details:

– Alice takes the initiator role, Bob the responder role.
– The transcript in Figure 2 corresponds to the session identifier and consists of the parties’ identities and long-

term public keys, the responder’s ephemeral public key, and the KEM ciphertexts; the contributive identifier
corresponds to the pre-key bundle part of the transcript, received by Alice from Bob:

transcript = sid = (A,B, pkDVSA , pkKEMB , pkDVSB , epkKEMB , c1, c2),

cid = (B, pkKEMB , pkDVSB , epkKEMB).

Note that the session identifier does not include the DVS signature itself to avoid that the latter needs to be
non-malleable (akin to strong unforgeability of regular signatures) [68].

5.1 Key Indistinguishability

Theorem 3 (Key indistinguishability of Π). Let DVS be a (t, ϵDVS, np, QS)–unforgeable DVS scheme, KEM1

be a (t, ϵKEM1 , ns)–IND-CCA-secure KEM, KEM2 be a (t, ϵKEM2 , 1)–IND-CCA-secure KEM, and KDF be a (t, ϵKDF,
ns)–PRF-secure key derivation function when keyed through either of the key components K1 and K2. Then the
asynchronous DAKE protocol Π from Figure 2 provides key indistinguishability (as defined in Section 4) in that
the advantage ϵ′ of any adversary A running in time t′ ≈ t is upper bounded as

ϵ′ ≤ ns ·

ns ·
(
ϵKEM2

+ ϵKDF

)
+np ·

(
ϵKEM1 + ϵKDF

)
+n2

p ·
(
ϵDVS + ns · (ϵKEM2 + ϵKDF)

)
 ,

where ns ≤ QSnd is the maximum number of sessions (upper bounded by the number QSnd of Send queries) and
np the number of parties.

Proof. We proceed via a sequence of game hops starting from the key indistinguishability game for an adver-
sary A. We bound the difference between each hop until we reach a game where the adversary’s advantage
is 0.

Game 0. The initial key indistinguishability game forΠ, denoted G0, letting ϵ′ := AdvG0Π (A) = |Pr[G0 = 1]− 1
2 |.

Game 1 (Guess test session π∗). We first guess the tested session π∗ and “invalidate” the game by over-
writing the adversary’s bit guess with 0 if the adversary calls Test on a different session. Guessing among the
ns many sessions (where ns is at most the number QSnd of calls to the Send oracle),

AdvG0Π (A) ≤ ns · AdvG1Π (A).

For the remaining proof, we distinguish the following three cases for the test session being fresh:

A. There exists an honest partner session π∗p (π∗p .sid = π∗.sid if π∗ is a responder, and π∗p .cid = π∗.cid if π∗ is an
initiator).

B. The tested session is an initiator (“Alice”) session and CorruptLTKey(π∗.pid) was never called.8

C. The tested session is a responder (“Bob”) session and neitherCorruptLTKey(π∗.oid) norCorruptLTKey(
π∗.pid) was ever called.9

Treating theses cases as events in G1, and writing G1[X] to indicate that event X occurs, by the union bound we
have:

AdvG1Π (A) ≤ Adv
G1[A]
Π (A) + Adv

G1[B]
Π (A) + Adv

G1[C]
Π (A).

8This is slightly stronger than what freshness condition 3 (b) demands. In the security result for our full SPQR protocol
(see Section 6), this is captured more precisely.

9In our full SPQR protocol (see Section 6), we will strengthen this case by having Bob use semi-static DVS keys. This
limits the time window for a key-compromise impersonation (KCI) attack [10] against Bob, as in the Signal handshake [77,
§4.6].

Post-quantum Asynchronous DAKE and the Signal Handshake 15

Case A (Honest partner). In the first proof case, there exists a session π∗p that agrees with the tested session π∗

on the responder’s ephemeral KEM public key epkKEM used. We will leverage this to embed a challenge into the
ephemeral KEM ciphertext c2.

Game A.1 (Guess partnered session). We first guess a session π∗p which is partnered via sid (if π∗ is a
responder) or cid (if π∗ is an initiator) to the test session π∗, and let the adversary lose if the guess is incorrect.
By this case’s prerequisites, (at least) one partner session exists and is guessed with probability at least 1/ns,
hence

Adv
G1[A]
Π (A) ≤ ns · AdvGA.1

Π (A).

Game A.2 (Ephemeral KEM). We now replace the KEM key K2 with a random key K̃2 in π∗ and also in
π∗p (unless the latter is a responder and receives a different ciphertext c2 than sent by π∗).

We bound the difference introduced by this step through a reduction to the IND-CCA security of the KEM2

scheme, which simulates GA.1 truthfully except for the following changes and runs in time t ≈ t′. It embeds the
obtained challenge public key pk into the ephemeral KEM public key epk of the responder session among π∗

and π∗p , the challenge ciphertext c∗ as c2 of the initiator session (among π∗ and π∗p), and the challenge (real-or-
random) key K∗b) as K2 into both π∗ and π∗p . If π

∗ is an initiator session, it uses its Decaps oracle (at most
once, i.e., QD ≤ 1) to decrypt a potentially different ciphertext c′2 ̸= c2 = c∗ received by π∗p . Depending on the
IND-CCA KEM challenge bit, the reduction perfectly simulates GA.1 or GA.2, hence

AdvGA.1

Π (A) ≤ ϵKEM2
+ AdvGA.2

Π (A).

Game A.3 (KDF). We finally replace the key derivation function KDF in both π∗ and π∗p (in the latter only

if it uses K̃2) with a random function, in particular replacing the session key K of π∗ with a randomly sampled

key K̃.
We bound the introduced advantage difference via a reduction to the pseudorandomness of the key derivation

function KDF, treated as a PRF keyed through the second key component K2 and taking (K1, transcript) as

label. The reduction runs in time t ≈ t′ and simulates Game GA.2 truthfully, except that it does not sample K̃2

itself but instead uses its oracle PRFChallenge to compute the session key values derived from K̃2. It calls
its oracle at most twice, once for π∗ and possibly once for π∗p on a different label, hence QPRF ≤ ns. Depending
on whether its oracle output is the true KDF evaluation or that of a random function, the reduction perfectly
simulates GA.2 or GA.3, thus

AdvGA.2

Π (A) ≤ ϵKDF + AdvGA.3

Π (A).

In Game GA.3, the challenge key Ktest for π∗ is a uniformly random key, independent of btest. Furthermore,
by the first two freshness conditions, A cannot reveal Ktest via a RevealSessKey query on π∗ or any part-
nered session who might hold the same key. Thus, in GA.3, A cannot do better than guessing, leaving it with
advantage AdvGA.3

Π (A) = 0.

Case B (Initiator tested, peer uncorrupted). In the second proof case, we have that the tested initiator
session π∗ has an uncorrupted intended peer. We will leverage this to embed a challenge into the static KEM
ciphertext c1.

Game B.1 (Guess responder identity). We first guess the test session’s intended peer, V = π∗.pid, among
the np many parties in the game and let the adversary lose if we guess incorrectly. This reduces the adversary’s
advantage by a factor at most np:

Adv
G1[B]
Π (A) ≤ np · AdvGB.1

Π (A).

Game B.2 (Static KEM). We can now replace the KEM key K1 in π∗ (and any responder session of V

receiving the same ciphertext c1) with a random key K̃1.
We bound the advantage difference introduced by this step through a reduction to the IND-CCA security of

the KEM1 scheme. The reduction runs in time t ≈ t′ and simulates GB.1 truthfully, but embeds the obtained
challenge public key pk as V ’s public KEM key pkKEMV at the outset of the game. It further embeds the challenge
ciphertext c∗ as c1 sent by π∗ and the challenge (real-or-random) key K∗b) as K1 into π∗ (and any responder
session of V receiving c∗). The reduction uses the Decaps oracle to decapsulate any ciphertexts c1 ̸= c∗ received
by sessions of V (calling the oracle at most ns times), and never has to respond to CorruptLTKey(V) queries

16 Brendel, Fiedler, Günther, Janson, and Stebila

as otherwise π∗ would not be fresh. Depending on the IND-CCA KEM challenge bit, the reduction perfectly
simulates GB.1 or GB.2, hence

AdvGB.1

Π (A) ≤ ϵKEM1 + AdvGB.2

Π (A).

Game B.3 (KDF). We finally replace the key derivation function KDF in π∗ (and any other session using K̃1)

with a random function, in particular replacing the session key K of π∗ with a randomly sampled key K̃.
Analogous to Game GA.3, we can bound the introduced advantage difference by the pseudorandomness of KDF

when keyed through the first key component K1 and taking (K2, transcript) as label. The challenge static KEM

key K̃1 may possibly be decapsulated in many responder sessions of V , who use distinct transcript labels unless
they are partnered with π∗; the PRF reduction, running in time t ≈ t′, may hence make up to ns queries to its
PRFChallenge oracle. Simulating either of the two games in the reduction, we get

AdvGB.2

Π (A) ≤ ϵKDF + AdvGB.3

Π (A).

At this point, the challenge key Ktest for π
∗ is uniformly random and independent, as only partnered sessions

will use the same transcript label to derive their session keys, but for π∗ to be fresh those cannot be revealed.
Thus AdvGB.3

Π (A) = 0.

Case C (Responder tested, both parties uncorrupted). In the final proof case, we know that the tested
responder session π∗ has an uncorrupted intended peer. We will leverage this to ensure that there is a partnered
initiator session (which signed the transcript) and then embed a challenge into the ephemeral KEM ciphertext c2
between these two sessions.

Game C.1 (Guess initiator and responder identities). We first guess the (responder) test session’s
owner V = π∗.oid and intended (initiator) peer U = π∗.pid among the np many parties in the game and
“invalidate” the game (overwriting A’s bit guess by 0) if we guess incorrectly. Guessing both parties induces a
quadratic loss in np:

Adv
G1[C]
Π (A) ≤ n2

p · Adv
GC.1

Π (A).

Game C.2 (Signature unforgeability). We now “invalidate” the game (overwriting A’s bit guess by 0) if
the test session π∗ accepts a DVS signature σ on a transcript that no session of U has issued.

We bound this event by a reduction against the unforgeability of DVS, running in time t ≈ t′ and simulat-
ing GC.1 with the following modification: Instead of generating parties’ DVS keys itself, the reduction embeds
the unforgeability game’s challenge public keys as pkU = pkS and pkV = pkD, and assigns the additional DVS
public-secret key pairs from the unforgeability game’s list L to the remaining parties. (Note that the reduction
obtains the secret keys for the latter keys, allowing it to fully simulate those parties.) The reduction uses its
signing oracle to compute signatures under pkU = pkS (and for any peer public key pk). As U and V remain un-
corrupted in this proof case, the reduction never has to answer a CorruptLTKey(U) or CorruptLTKey(V)
query. In the case that π∗ receives a valid DVS transcript-signature pair (transcript, σ) that no session of U sent
(and hence transcript was not queried to the DVS Sign oracle), the reduction outputs this pair as its forgery and
wins. Therefore,

AdvGC.1

Π (A) ≤ ϵDVS + AdvGC.2

Π (A).

Game C.3 (Guess partnered session). As of GC.2, we know that π∗ receives a DVS signature on a transcript
value transcript = π∗.sid sent by some session of U . We now guess this (sid-partnered) session π∗p (among the ns

many sessions) and, invalidating the game (overwriting A’s bit guess by 0) upon wrong guess, get

AdvGC.2

Π (A) ≤ ns · AdvGC.3

Π (A).

Game C.4 (Ephemeral KEM). We next replace the KEM key K2 with a random key K̃2 in π∗ and π∗p .
As in Game GA.2, we bound the introduced advantage difference by the IND-CCA security of the KEM2

scheme. The reduction runs in time t ≈ t′, embeds the challenge pk and c∗ into π∗’s ephemeral KEM public key,
resp. π∗p ’s c2 ciphertext, and uses the challenge key K∗b in place of K2 in both sessions. It does not need to use its
Decaps oracle (i.e., QD = 0), since pk is not used in another session and we are at this point guaranteed that π∗

Post-quantum Asynchronous DAKE and the Signal Handshake 17

receives π∗p ’s ephemeral ciphertext. (So in fact we only need IND-CPA security of KEM2 here.) The reduction
simulates the difference between GC.3 and GC.4, so

AdvGC.3

Π (A) ≤ ϵKEM2
+ AdvGC.4

Π (A).

Game C.5 (KDF). In the final game hop, we replace KDF in both π∗ and π∗p with a random function,

replacing the session key K of π∗ with a randomly sampled key K̃.
As in Game GA.3, this is bounded by the pseudorandomness of KDF with key K2 and label (K1, transcript).

Due to π∗ and π∗p agreeing on the transcript input to KDF, the corresponding reduction only makes one query,
QPRF = 1 ≤ ns, running in time t ≈ t′. Simulating the game difference through this reduction, we get

AdvGC.4

Π (A) ≤ ϵKDF + AdvGC.5

Π (A).

This completes the last proof case, as the challenge key Ktest for π
∗ is now uniformly random and independent

(beyond partnered sessions), leaving A with advantage AdvGC.5

Π (A) = 0.

5.2 Deniability

Observe that we use a different deniability notion compared to prior works as discussed in Section 4. A more
thorough discussion of the different deniability notions can be found in Appendix A. In consequence, we can forgo
the strong knowledge assumptions that [91,53,30] used to prove deniability of X3DH and their own constructions,
respectively. We conjecture that their constructions can likewise be shown to be deniable wrt. our definition
without strong knowledge assumptions.

Theorem 4 (Deniability of Π). Let DVS = (SKGen,VKGen,Sign,Vrfy,Sim) be a (t, ϵsrchid, QCh)-source hid-
ing DVS scheme. Then the asynchronous DAKE protocol Π from Figure 2 provides deniability (as defined in
Section 4) in that the advantage ϵ′ of any adversary A running in time t′ ≈ t and making up to QCh challenge
queries is upper bounded as ϵ′ ≤ n2

p · ϵsrchid, where np is the number of parties.

Proof. The proof follows by a standard hybrid argument. Let A be a successful adversary against deniability of
Π, then we can construct a reduction B against the source hiding property of DVS. Observe that B computes for
each of the np parties a long-term key pair. It randomly guesses the identifiers of two parties iid∗, rid∗ ∈ [np] for
which A can distinguish between Run and Fake. Let a number i ∈ [n2

p] uniquely denote two independent values
iid, rid in a query (e.g., encoded as (iid− 1) ·np + rid) and let i∗ ∈ [n2

p] denote the specific guess iid
∗, rid∗ of B. For

party iid∗, B replaces the sampled long-term key with its challenge key pair (pkS , skS) and similarly it replaces
the long-term key for party rid∗ with (pkD, skD).

In case A makes a query i for 1 ≤ i < i∗, then B answers as if b = 0, i.e., it runs DVS.Sign. For all i∗ < i ≤ n2
p,

if A makes a query, then B answers as if b = 1, i.e., it runs DVS.Sim. If A queries i = i∗, then B passes it to its
own oracle. In all cases B returns the transcript and the session key K to A. Finally, when A returns its guess
bit b′, B returns b′ as its guess.

Observe that B faithfully simulates the deniability game for A. Moreover, the runtime of B is essentially the
runtime of A plus the runtime to generate the keys and answer the oracle queries.

Now we analyze the winning probability of A against deniability. For this, we define the hybrids H0, . . . ,Hn2
p

with Hi being the hybrid that answers all challenge queries for indices 1, . . . , i with Run and the challenge queries
for indices i + 1, . . . , n2

p with Fake. The extreme hybrids are Hn2
p
, which answers all the challenge queries with

Run, and H0, which answers all queries with Fake. Observe that Hi−1 and Hi only differ in one execution of
Run or Fake. Hence, the probability of distinguishing between Hi−1 and Hi is bounded by ϵsrchid. Since there
are n2

p many hybrids, we overall obtain that A’s probability of winning the deniability game is bounded by
ϵ′ ≤ n2

p · ϵsrchid.

6 Signal in a Post-quantum Regime

We now extend our core protocol Π from Figure 2 to capture all the characteristics of the Signal handshake.
The core protocol already captures implicit mutual authentication, forward secrecy, offline deniability, and asyn-
chronicity. Signal’s X3DH has a few more subtle aspects and security features to consider, which we address in
our extended asynchronous DAKE protocol: SPQR (Signal in a Post-Quantum Regime), depicted in Figure 8.

18 Brendel, Fiedler, Günther, Janson, and Stebila

KGenLT():

(pkKEM, skKEM)←$ KEM1.KGen()

(pkDVS, skDVS)←$ DVS.SKGen()
tk←$ tPRF.KGen()

pk ← (pkKEM, pkDVS)

sk ← (skKEM, skDVS, tk)
return (pk, sk)

KGenSS():

(sspkKEM, ssskKEM)←$ KEM2.KGen()

(sspkDVS, ssskDVS)←$ DVS.VKGen()

sspk ← (sspkKEM, sspkDVS)

sssk ← (ssskKEM, ssskDVS)
return (sspk, sssk)

KGenEP():

return (epk, esk)←$ KEM3.KGen()

Alice BobSignal Server

Initiator Registration Responder Registration

(pkA, skA)←$ KGenLT() (pkB , skB)←$ KGenLT()

(sspkB , ssskB)←$ KGenSS()

Responder Ephemeral Key Generation

(epkB , eskB)←$ KGenEP()Send Pre-Key Bundle to Initiator

B, pkB , sspkB , epkB

define: cid := (B, pkB , sspkB , epkB)

define: sid := (A,B, pkA, pkB , sspkB , epkB , n, c1, c2, c3)

Initiator Key Agreement and Protocol Message Responder Key Agreement (on input m)

(skKEM
A , skDVS

A , tkA)← skA (skKEM
B , skDVS

B , tkB)← skB

(ssskKEM
B , ssskDVS

B)← ssskB

(pkKEM
B , pkDVS

B)← pkB (pkKEM
A , pkDVS

A)← pkA

(sspkKEM
B , sspkDVS

B)← sspkB (sspkKEM
B , sspkDVS

B)← sspkB

(n, r)←$ {0, 1}λ ×RtPRF if DVS.Vrfy(pkDVS
A , sspkDVS

B , sid, σ) = false
r1∥r2∥r3∥r4 ← tPRF(tkA, r) return (⊥,⊥, rejected,⊥)
(K1, c1)← KEM1.Encaps(pk

KEM
B ; r1) K1 ← KEM1.Decaps(skKEM

B , c1)

(K2, c2)← KEM2.Encaps(sspk
KEM
B ; r2) K2 ← KEM2.Decaps(ssskKEM

B , c2)
if epkB ̸= ⊥ if eskB ̸= ⊥

(K3, c3)← KEM3.Encaps(epkB ; r3) K3 ← KEM3.Decaps(eskB , c3)

else (K3, c3)← (ε, ε) else (K3, c3)← (ε, ε)

ms← K1∥K2∥K3 ms← K1∥K2∥K3

σ ← DVS.Sign(skDVS
A , sspkDVS

B , sid; r4)
K ← KDF(ms, sid) K ← KDF(ms, sid)

m← (A, pkA, n, c1, c2, c3, σ)

return (K, sid, accepted,m) return (K, sid, accepted, ε)

m = (A, pkA, n, c1, c2, c3, σ)

Responder Fake transcript

run Responder Ephemeral Key Generation, and Initiator Key Agreement with a modified randomness sampling and DVS generation:
(K1, c1)←$ KEM1.Encaps(pk

KEM
B)

(K2, c2)←$ KEM2.Encaps(sspk
KEM
B)

if epkB ̸= ⊥ (K3, c3)←$ KEM3.Encaps(epkB)
else (K3, c3)← (ε, ε)

σ←$ DVS.Sim(ssskDVS
B , pkDVS

A , sid)
K ← KDF(ms, sid)
return (K,m = (B, pkB , sspkB , epkB , A, pkA, n, c1, c2, c3, σ))

Fig. 8. The SPQR protocol (top: key generation, middle: protocol flow, bottom: fake transcript generation), combining
static, semi-static and ephemeral key encapsulation schemes KEM1, KEM2, and KEM3, a designated verifier signature
DVS, and a twisted pseudorandom function tPRF.

Post-quantum Asynchronous DAKE and the Signal Handshake 19

Semi-static keys In Signal, asynchronicity is facilitated by a central, untrusted server which stores the users’
pre-key bundles. To enable multiple users to asynchronously contact some responder user, say Bob, the latter
uploads multiple ephemeral public pre-keys to the Signal server, of which one is handed to any initiator session
that wants to contact Bob (along with the other pre-key bundle elements) and then deleted from the Signal
server.

Bob will periodically upload new ephemeral pre-keys; however, if Bob has been offline for a long time, those
pre-keys may run out. Therefore, the Signal protocol also includes a semi-static key in user pre-key bundles, and
always includes key derivations based on that semi-static key. If the Signal server runs out of ephemeral pre-keys,
the corresponding key share is not derived and left out; in that case the semi-static key share still provides
delayed forward secrecy [15]. We capture this similarly in SPQR by encapsulating a key-ciphertext pair (K3, c3)
against Bob’s ephemeral KEM public key epkB only if the latter is present.

Maximal-exposure security Signal aims for very strong security guarantees, considering beyond long-term and
session key compromise and also compromise of semi-static and ephemeral keys (via the randomness of ses-
sions) [18,66,22]. We model this in an accordingly strong key exchange model (in Section 7) and prove (in Sec-
tion 8) that SPQR achieves equivalent security in the post-quantum setting as Signal does in the classical setting.
In particular, we show that session keys remain secret, as long as any of the (Alice–Bob) secret combinations
ephemeral–ephemeral, ephemeral–semi-static, ephemeral–long-term, and long-term–semi-static are uncompro-
mised. Secrecy from the first three is straightforwardly achieved via encapsulations against the corresponding
ephemeral, semi-static, and long-term KEM keys of Bob. To achieve secrecy from the last one (i.e., when all
initiator randomness is compromised), beyond relying on the DVS scheme for initiator authentication, we apply
a NAXOS-like [66] trick to extract randomness from Alice’s long-term secrets via a twisted PRF [44,64]. Twisted
PRFs can be generically instantiated from regular PRFs (see Section 2.3) and yield output indistinguishable
from random as long as a session’s long-term secret or randomness is uncompromised.

We present our formal security results for SPQR in Section 8 after introducing the full security model next.

7 Full Security Model

In this section we present the extensions to the core asynchronous DAKE model that we will use to prove our
post-quantum Signal construction SPQR depicted in Figure 8 secure. The key-indistinguishability game is fully
specified in Figure 9 and the deniability game in Figure 10. The main differences to the core security models are
as follows

– Signal employs semi-static keys; these keys are authenticated via signatures using the long-term key of the
respective party, reused, and updated regularly. We thus establish multiple of these keys for each party, identi-
fying each key pair uniquely via an identifier ssid ∈ [nss]. Sessions receive semi-static keys in an authenticated
manner in the model (just like long-term keys). The adversary is able to corrupt semi-static keys of a user U
via the CorruptSSKey(U, ssid) oracle, similar to the corruption of long-term keys via CorruptLTKey(U).

– The usage of ephemeral pre-keys is optional in Signal (as the pre-keys stored on the Signal server may run
out). We model this by introducing two types of sessions, full and reduced, depending on whether an ephemeral
pre-key is received by the initiator in the pre-key bundle or not.

– The adversary is now granted maximal-exposure capabilities by also revealing the randomness used in a
party’s execution Run. To this end, we make the used randomness explicit in syntax via the session state
variable coins, which during setup of the session samples random coins from the appropriate randomness
spaces. The adversary then has access to a RevealRandom(U, i) oracle that returns the coins sampled in
session πi

U , and marks them as revealed via a flag revrand.

Full protocol specification. We adapt the syntax to account for semi-static and ephemeral keys for an asynchronous
deniable authenticated key exchange protocol KE = (KGenLT,KGenSS,KGenEP,Run,Fake):

– KGenLT() $→ (pkU , skU): As before, a probabilistic long-term key generation algorithm that outputs a public-
key/secret-key pair.

– KGenSS() $→ (sspkssidU , ssskssidU): A probabilistic semi-static key generation algorithm that outputs a public-
key/secret-key pair of user U with semi-static identifier ssid.

– KGenEP() $→ (epkepidU , eskepidU): A probabilistic ephemeral key generation algorithm that outputs a public-
key/secret-key pair of user U with ephemeral identifier epid.

20 Brendel, Fiedler, Günther, Janson, and Stebila

– Run(skU , ssskU ,pk, sspk, π,m) $→ (π′,m′): A probabilistic session execution algorithm that takes as input
a party’s long-term secret key skU , a list of that party’s semi-static secret keys ssskU , lists of long-term and
semi-static public keys for all honest parties pk and sspk, a session state π, and an incoming message m,
and outputs an updated session state π′ and a (possibly empty) outgoing message m′. To set up the session
sending the first message, Run is called with a distinguished message m = create.

– Fake(pkU , skV , ssskV , ssid) $→ (K,T): A probabilistic transcript simulation algorithm that takes as input one
party’s long-term public key, the other party’s long-term secret key, a list of the other party’s semi-static
secret keys, and an identifier for a semi-static key and generates a session key K and a transcript T of a
protocol interaction between them, where the semi-static key ssid of V is used.

In our case, only the responder uses a semi-static key. If both parties use semi-static keys, the Fake algorithm
would take two semi-static identifiers as argument to denote which semi-static key to use for either party. For
the sake of simplicity we omit this in the following.

7.1 Key Indistinguishability

Definition 10. An asynchronous DAKE key exchange protocol KE is (t, ϵ, (QSnd, QCorrLT , QCorrSS , QRevR,
QRevSK))–key-indistinguishable if for any adversary A with running time at most t, we have that

Advadake-kindKE (A) =
∣∣∣∣Pr [Gadake-kindKE (A) = 1

]
− 1

2

∣∣∣∣ ≤ ϵ,

where Gadake-kindKE (A) is defined in Figure 9 and Qx for x ∈ {Snd,CorrLT,CorrSS,RevR,RevSK} denotes the
number of queries to the oracles Send,CorruptLTKey,CorruptSSKey,RevealRandom and RevealSessKey,
respectively. The model restricts the adversary to a single query to the Test oracle.

In addition to the state variables given for the core protocol in Section 4, the following protocol-specific
variables are introduced:

– ssid ∈ [nss] denotes the identifier of the responder’s semi-static key used in this session. If π.role = initiator
this refers to sspkssidpid , if π.role = responder this refers to sspkssidoid .

– type ∈ {full, reduced} indicates whether an ephemeral pre-key was included in the pre-key bundle, or not.
Setting type = full indicates that an ephemeral pre-key has been received and used by the initiator, whereas
type = reduced means that no ephemeral pre-key has been received resp. used by the initiator.

– coins ∈ RKE denotes the random coins from the randomness space RKE used in the execution of Run.
– revrand ∈ {true, false} indicates whether the random coins π.coins have been revealed via a RevealRandom

query. The default value is false.

In order to fully describe the security game Gadake-kindKE (A) that is played between the adversary and the
challenger, we introduce the following game-specific flags associated with a user U ∈ [np]. They indicate whether
a party U ’s long-term or one of it its semi-static secret keys have been compromised by the adversary:

– corrltkU ∈ {true, false} indicates whether the long-term secret key of party U has been compromised by the
adversary via a CorruptLTKey(U) query. The default value is false.

– corrsskssidU ∈ {true, false} indicates whether the semi-static secret key with index ssid of party U has been
compromised by the adversary via a CorruptSSKey query. The default value is false.

Session Partnering and Correctness. As in the core model, (full) session partnering is defined via session
identifiers: We say that a session πi

U owned by U is partnered with a session πj
V owned by V if they agree on

the session identifier, i.e., πi
U .sid = πj

V .sid ̸= ⊥. In order to identify sessions which may eventually derive the
same key but are not fully partnered (yet), we have introduced the concept of contributive identifiers cid. More
precisely, we say that a session πi

U owned by U is contributively partnered with a session πj
V owned by V , if they

agree on their contributive session identifier, i.e., whenever πi
U .cid = πj

V .cid ̸= ⊥.
We say that an asynchronous authenticated key exchange protocol KE with randomness space RKE is correct

if any protocol execution between honest parties without interference by the adversary results in two sessions
which accept with the same session key and session identifier.

Post-quantum Asynchronous DAKE and the Signal Handshake 21

Gadake-kind
KE (A):

1 btest←$ {0, 1} //sample test bit

2 π∗ ← ⊥ //variable for test session

3 for U ∈ [np]
4 (pkU , skU)←$ KGenLT() //long-term key generation

5 for ssid ∈ [nss]

6 (sspkssid
U , ssskssid

U)←$ KGenSS() //semi-static key generation

7 pk← {pkU}U∈[np]; sspk ← {sspkssid
U }

ssid∈[nss]

U∈[np]

8 b′←$A(pk, sspk) //run adversary

9 if sound() = false //adversary wins if it breaks soundness

10 return 1
11 if fresh(π∗) = false //attack invalid if test session is not fresh

12 b′ ← 0
13 return Jb′ = btestK //determine win or loss

fresh(π∗):

14 if π∗.revealed = true then return false //test session is revealed

15 if ∃ πj
V ̸= π∗ : (πj

V .sid = π∗.sid ∧ πj
V .revealed = true) then return false

//test session’s partner is revealed

16 return
(
π∗.type = full and cleanfull(π

∗)
)

//test session in full handshake mode and test session key is clean

or
(
π∗.type = reduced and cleanreduced(π

∗)
)

//test session in reduced handshake mode and test session key is clean

sound():

17 return ∀ distinct π, π′, π′′(
18 (π.sid = π′.sid ̸= ⊥ =⇒ π.K = π′.K ∧ π.type = π′.type ∧ π.cid = π′.cid)

//same session identifier imply same shared key, type, and contributive identifiers

19 and (π.sid = π′.sid ̸= ⊥ ∧ π.role = initiator =⇒ π′.role = responder)
//session identifiers of two initiator sessions never collide

20 and (π.sid = π′.sid = π′′.sid ̸= ⊥ =⇒ π.type = reduced)
)

//session identifiers of three sessions only collide in reduced mode

Send(U, i,m):

21 if πi
U = ⊥ //initiate session: for responders, m = create carries semi-static key identifier

22 πi
U .oid← U //set owner identity

23 if m = create then
24 πi

U .role← responder; πi
U .ssid← m.ssid

//set responder role and semi-static key identifier (carried in m)

25 else πi
U .role← initiator //set initiator role (m is first protocol message)

26 πi
U .coins←$RKE //sample session randomness

27 πi
U .stexec ← running

28 (πi
U ,m′)← Run(skU , ssskU ,pk, sspk, πi

U ,m;πi
U .coins)

//run session, with explicit random coins

29 return (m′, πi
U .stexec) //return message and session state

Test(U, i):

30 if πi
U = ⊥ or πi

U .stexec ̸= accepted or π∗ ̸= ⊥
//session does not exist, has not accepted yet, or test already asked

31 return ⊥
32 π∗ ← πi

U //record test session

33 if btest = 0
34 Ktest ← πi

U .K //real session key

35 else
36 Ktest←$KKE //random key from key space

37 return Ktest //return challenge key

CorruptLTKey(U):

38 corrltkU ← true //mark long-term key as corrupted

39 return skU //return long-term secret key

CorruptSSKey(U, ssid):

40 corrsskssidU ← true //mark semi-static key as corrupted

41 return ssskssid
U //return semi-static secret key

RevealRandom(U, i):

42 if πi
U = ⊥ then return ⊥ //session does not exist

43 πi
U .revrand← true //mark randomness as revealed

44 return πi
U .coins //return session’s random coins

RevealSessKey(U, i):

45 if πi
U = ⊥ or πi

U .stexec ̸= accepted then return ⊥
//session does not exist or has not derived key yet

46 πi
U .revealed← true //mark session key as revealed

47 return πi
U .K //return session key

cleanfull(π
∗):

48 return cleanreduced(π
∗) or cleanEE(π

∗)

cleanreduced(π
∗):

49 return cleanLTSS(π
∗) or cleanELT(π

∗) or cleanESS(π
∗)

cleanEE(π
∗):

50 return π∗.revrand = false and cleanpeerE(π
∗)

//randomness of test session is unrevealed and ephemeral contribution of peer

is clean

cleanpeerE(π
∗):

51 return
52

(
π∗.role = initiator and ∃π ̸= π∗ :

(π.role = responder and π∗.cid = π.cid and π.revrand = false)
)

//there exists a contributively partnered responder session whose random-

ness is unrevealed

53 or
(
π∗.role = responder and ∃π ̸= π∗ :

(π.role = initiator and π∗.sid = π.sid and π.revrand = false)
)

//there exists a partnered initiator session (which is unique by sound) whose

randomness is unrevealed

cleanLTSS(π
∗):

54 return
55

(
π∗.role = initiator and corrltkπ∗.oid = false and corrsskπ

∗.ssid
π∗.pid = false

)
//long-term secret of initiator test session and semi-static key of responder

peer are uncorrupted

56 or
(
π∗.role = responder and corrltkπ∗.pid = false and corrsskπ

∗.ssid
π∗.oid = false

)
//long-term secret of initiator peer and semi-static key of responder test session

are uncorrupted

cleanELT(π
∗):

57 return
58

(
π∗.role = initiator and π∗.revrand = false and corrltkπ∗.pid = false

)
//randomness of initiator test session is unrevealed and long-term secret of

responder peer is uncorrupted

59 or
(
π∗.role = responder and cleanpeerE(π

∗) and corrltkπ∗.oid = false
)

//ephemeral contribution of initiator peer is clean and long-term secret of

responder test session is uncorrupted

cleanESS(π
∗):

60 return
61

(
π∗.role = initiator and π∗.revrand = false and corrsskπ

∗.ssid
π∗.pid = false

)
//randomness of initiator test session is unrevealed and semi-static secret of

responder peer is uncorrupted

62 or
(
π∗.role = responder and cleanpeerE(π

∗) and corrsskπ
∗.ssid

π∗.oid = false
)

//ephemeral contribution of initiator peer is clean and semi-static secret of

responder test session is uncorrupted

Fig. 9. Key indistinguishability game Gadake-kindKE (A) for key exchange protocol KE against adversary A with access to
oracles Send, Test, CorruptLTKey, CorruptSSKey, RevealRandom, and RevealSessKey; composed of the main
game (top section), oracles (middle section), and clean predicates defining freshness (bottom section). Without loss of
generality, we assume that all queries that the adversary makes to the oracles are well-defined and valid, i.e., of the
expected type and in the appropriate ranges.

22 Brendel, Fiedler, Günther, Janson, and Stebila

Soundness. Soundness, captured in the predicate sound, describes the behavior with respect to a correct protocol
execution. If an adversary A manages to create one of the following situations, it will win the game immediately:

(i) Two sessions accept with the same session identifier, but derive different session keys, indicate different
handshake types (full vs. reduced), or do not agree on their contributive identifiers (Fig. 9, Line 18).

(ii) Two initiator sessions accept with the same session identifier (Fig. 9, Line 19).
(iii) Three sessions accept with the same session identifier in full handshake type (Fig. 9, Line 20).

Freshness. Granting the adversary A access to the oracles described in Figure 9 without restriction would
allow the adversary to trivially win the game, e.g., by testing a session key and then revealing it or corrupting
all secrets used in the key derivation of a session. Therefore, as in the core model, we require the tested session
to be fresh and for this introduce the predicate fresh (cf. Figure 9) which takes as input the test session π∗ and
prohibits all “trivial wins”. On a high level, the session key derived in the test session is considered to be fresh
if the following criteria hold:

(i) The session key of the test session has not been revealed to A via a RevealSessKey query (Fig. 9, Line 14).
(ii) The session key of any partnered session (i.e., any session with the same session identifier as the test session)

has not been revealed to A via a RevealSessKey query (Fig. 9, Line 15).
(iii) A has not obtained sufficiently many secrets to derive the session key of the test session itself viaCorruptLTKey

and/or CorruptSSKey and/or RevealRandom queries (Fig. 9, Line 16).

Clean keys Following the terminology of Cohn-Gordon, Cremers, Dowling, Garratt, and Stebila [22] the last
criterion of freshness is captured by a series of so-called clean predicates, which we discuss next. The formal
description can also be found in Figure 9. Let π∗ denote the test session. Depending on whether an ephemeral
pre-key was used in the key derivation of π∗ or not, we apply either the cleanfull or the cleanreduced predicate to
π∗.

Since cleanreduced is part of the description of cleanfull, we first assume that π∗.type = reduced. Intuitively, a
session key derived in such a session remains unknown to the adversary, if one of the three keys that constitute
the master secret, is “clean”, i.e., cannot be computed by the adversary. This is the case if either of the following
three clean predicates holds for the test session π∗:

cleanLTSS: This predicate indicates whether the combination of the long-term key of the initiator and the semi-
static key of the responder is unknown to the adversary.

cleanELT: This predicate indicates whether the combination of the ephemeral contribution10 of the initiator and
the long-term key of the responder is unknown to the adversary.

cleanESS: This predicate indicates whether the combination of the ephemeral contribution of the initiator and
the semi-static key of the responder is unknown to the adversary.

If the test session π∗ is a responder session, the evaluation of cleanELT and cleanESS necessitates a further
predicate called cleanpeerE (in all other cases, it is sufficient to consider the flags corrltk, corrssk, and revrand,
respectively). For responder test sessions, cleanpeerE indicates whether the randomness used in any partnered
initiator session π∗p is unknown to the adversary.

For test sessions in full handshake mode, i.e., where π∗.type = full, it must either hold that cleanreduced is true
or that the additional input to the master secret computation is clean. The latter is captured by the following
predicate:

cleanEE: This predicate indicates whether the combination of the ephemeral contribution of the initiator and the
ephemeral pre-key of the responder is unknown to the adversary.

Again, the predicate cleanpeerE helps to determine within cleanEE whether the randomness of the test session’s
(contributive) partners is unrevealed or uncorrupted, respectively.

Main differences to the model in [22]. Our authenticated key exchange model closely follows the one used
in the original Signal analysis of Cohn-Gordon et al. [22]. We make the following modifications: Since we are
only concerned about the initial key agreement and not the subsequent symmetric and asymmetric ratcheting
stages, we can forgo the notion of multi-stage AKE security, where multiple sessions keys are derived in a series
of stages. Lastly, we explicitly take the deniability feature of Signal into account in a separate notion to avoid
establishing a post-quantum solution that forgoes a key requirement of the specification.

10Recall that the ephemeral contribution in initiator sessions is determined by the session specific randomness coins ∈
RKE.

Post-quantum Asynchronous DAKE and the Signal Handshake 23

Gadake-denKE (A):
1 L ← ∅ //list of keys for the adversary

2 for U ∈ [np]

3 (pkU , skU)←$ KGenLT() //long-term key generation

4 L ← L ∪ {(pkU , skU)}
5 for ssid ∈ [nss]

6 (sspkssid
U , ssskssid

U)←$ KGenSS() //semi-static key generation

7 L ← L ∪ {(sspkssid
U , ssskssid

U)}
8 pk← {pkU}U∈[np]; sspk ← {sspkssid

U }
ssid∈[nss]

U∈[np]

9 b←$ {0, 1}
10 b′←$AChall(L)
11 return Jb′ = bK

Chall(iid, rid, ssid):

12 if b = 0

13 πrid.role← responder; πrid.stexec ← running
//initialize session variables

14 πiid.role← initiator; πiid.stexec ← running

15 (π′
rid,m)←$ Run(skrid, ssskrid,pk, sspk, πrid, (create, ssid))

//build pre-key bundle

16 (π′
iid,m

′)←$ Run(skiid, ssskiid,pk, sspk, πiid,m)
//initiator sends message

17 (K,T)← (π′
iid.K, (m,m′))

//save session key and transcript

18 else

19 (K,T)←$ Fake(pkiid, skrid, ssskrid, ssid)

20 return (K,T)

Fig. 10. Security game for deniability of an asynchronous DAKE protocol KE against an adversary A.

7.2 Deniability

Definition 11. An asynchronous DAKE protocol KE is (t, ϵ,QCh)-deniable if for any adversary A with running
time at most t and making at most QCh many queries to its Chall oracle, we have that

Advadake-denKE (A) =
∣∣∣∣Pr [Gadake-denKE (A) = 1

]
− 1

2

∣∣∣∣ ≤ ϵ,

where Gadake-denKE (A) is defined in Figure 10.

The main difference between the textual description of the deniability game in Section 5.2 and Figure 10 is
the use of semi-static keys. Here, we generate nss many semi-static keys per party, all of which are given to the
adversary. When querying the challenge oracle, the adversary may choose the semi-static key that the responder
uses. The pre-key bundle of the responder may depend on the semi-static key. The Initiator key agreement and
the Fake algorithm also use the semi-static key as specified by KE.

8 SPQR Security Proofs

In this section we present the security results for our SPQR protocol (Figure 8) via theorem statements and
detailed proofs of both key-indistinguishability and deniability in the previously described security model (Sec-
tion 7).

Before we start, we translate the informal protocol description of SPQR given in Figure 8 into the syntax of
our model. The resulting protocol flow is depicted in Figure 11.

8.1 Key Indistinguishability

Theorem 5 (Key indistinguishability of SPQR). Let DVS be a (t, ϵDVS, np · nss , QS)–unforgeable DVS
scheme.

Let KEM1 be a (t, ϵKEM1 , ns)–IND-CCA-secure KEM, KEM2 be a (t, ϵKEM2 , ns)–IND-CCA-secure KEM, KEM3

be a (t, ϵKEM3
, 1)–IND-CCA-secure KEM with randomness space RKEM3

for key generation and key collision prob-
ability γcoll, and δcorr be the maximal correctness error among KEM1, KEM2, and KEM3.

Let KDF be a (t, ϵKDF, ns)–PRF-secure key derivation function when keyed through any key component K1,
K2, K3, and tPRF a (t, ϵtPRF, ns)-secure twisted pseudorandom function with label space RtPRF.

Then the SPQR protocol with randomness space RKE = {0, 1}λ × RtPRF × RKEM3 as shown in Figure 8
and formalized in Figure 11 provides (t′, ϵ′, (QSnd, QCorrLT , QCorrSS , QRevR, QRevSK))–key indistinguishability
(formalized in Figure 11) for t ≈ t′ and

ϵ′ ≤ n2
s

2λ
+

n2
s

|RtPRF|
+ γcoll(ns) + 3ns · δcorr

+ ns · n2
p ·

(
nss ·

(
ϵDVS + 2ns · (ϵtPRF + ϵKEM2 + ϵKDF)

)
+ns ·

(
2ϵtPRF + ϵKEM1 + ϵKEM3 + 2ϵKDF

))
,

where ns ≤ QSnd is the maximum number of sessions (upper bounded by the number QSnd of Send queries), np

the number of parties, and nss the number of semi-static keys per party.

24 Brendel, Fiedler, Günther, Janson, and Stebila

Alice Bob

Run(skB ,pk, sspk, πB , (create, ssid))

πB .pid← ⋆

(⊥,⊥, r′)← πB .coins

(epkB , eskB)← KGenEP(; r′)

πB .cid← (B, pkB , sspkssid
B , epkB)

return (πB ,m = (B, ssid, epkB))

m

Run(skA, ssskA,pk, sspk, πA,m)

(skKEM
A , skDVS

A , tkA)← skA

(B, ssid, epkB)← m

(pkKEM
B , pkDVS

B)← pkB

(sspkKEM
B , sspkDVS

B)← sspkssid
B

(n, r,⊥)← πA.coins

r1∥r2∥r3∥r4 ← tPRF(tkA, r)

(K1, c1)← KEM1.Encaps(pk
KEM
B ; r1)

(K2, c2)← KEM2.Encaps(sspk
KEM
B ; r2)

if epkB ̸= ⊥
πA.type← full

(K3, c3)← KEM3.Encaps(epkB ; r3)

else
πA.type← reduced

(K3, c3)← (ε, ε)

ms← K1∥K2∥K3

sid← (A,B, pkA, pkB , sspkssid
B , epkB , n, c1, c2, c3)

σ ← DVS.Sign(skDVS
A , sspkDVS

B , sid; r4)
πA.pid← B

πA.K← KDF(ms, sid)

πA.cid← (B, pkB , sspkssid
B , epkB)

πA.sid← sid

πA.stexec ← accepted

return (πA,m′ = (A,n, c1, c2, c3, σ))

m′

Run(skB , ssskB ,pk, sspk, πB ,m′)

(skKEM
B , skDVS

B , tkB)← skB

(ssskKEM
B , ssskDVS

B)← ssskssid
B

(A,n, c1, c2, c3, σ)← m′

(pkKEM
A , pkDVS

A)← pkA

(sspkKEM
B , sspkDVS

B)← sspkssid
B

sid← (A,B, pkA, pkB , sspkssid
B , epkB , n, c1, c2, c3)

if DVS.Vrfy(pkDVS
A , sspkDVS

B , sid, σ) = false
πB .stexec ← rejected

return (πB , ε)

K1 ← KEM1.Decaps(skKEM
B , c1)

K2 ← KEM2.Decaps(ssskKEM
B , c2)

if c3 ̸= ε

πB .type← full

K3 ← KEM3.Decaps(eskB , c3)

else
πB .type← reduced

(K3, c3)← (ε, ε)

ms← K1∥K2∥K3

πB .pid← A

πB .K← KDF(ms, sid)

πB .sid← sid

πB .stexec ← accepted

return (πB , ε)

Fig. 11. Formal specification of the Run algorithm of asynchronous DAKE SPQR wrt. the model given in Section 7. Note
that the generation of long-term and semi-static keys during registration happens at the outset of the game Gadake-kindKE (A)
and the Signal Server is abstracted away. Thus these elements are not included explicitly in the above description. Note
that the responder saves the ephemeral secret key in its session state.

Post-quantum Asynchronous DAKE and the Signal Handshake 25

Proof. We proceed via a sequence of game hops starting from Gadake-kindSPQR (A) (cf. Figure 9), branching off into the

cleanness predicates. In the final games, we will have that the adversary A has probability exactly 1
2 in guessing

the test challenge bit b. Along the way, we will further establish that the soundness predicate sound is satisfied.

Game 0. The initial game, Game G0, is the key indistinguishability game Gadake-kindSPQR (A) for SPQR played by
A. By definition,

ϵ′ := Advadake-kindSPQR (A) = AdvG0SPQR(A) =
∣∣∣∣Pr[G0 = 1]− 1

2

∣∣∣∣ .
Game 1 (Nonce, randomness, and KEM key collisions). We modify G0 to overwrite the adversary’s
output with 0, if any two initiator sessions hold the same nonce n or the same randomness value r, or if two
responder sessions pick the same ephemeral KEM public key. As initiator nonces are uniformly random λ-bit
strings and the initiator randomness is a uniformly random element from tPRF’s label space RtPRF, we can upper-
bound the probability of this happening across the at most ns sessions by the birthday bound, and the probability
of two among the ns ephemeral KEM public keys colliding with the KEM’s key collision probability γcoll(ns):

AdvG0SPQR(A) ≤
n2
s

2λ
+

n2
s

|RtPRF|
+ γcoll(ns) + AdvG1SPQR(A).

Game 2 (KEM correctness). We modify G1 to overwrite the adversary’s output with 0 if for any key pair
(pk, sk)←$ KGenl() and encapsulation (c,K)←$ Encapsl(pk) used in any of the sessions, where l ∈ {1, 2, 3}, we
have that K ̸= K ′ ← Decapsl(sk, c). The probability of this happening for any tuple (pk, sk, c) is upper-bounded
by the maximal correctness error δcorr among KEM1, KEM2, and KEM3. As there are at most three such tuples
per session, we can bound any correctness errors happening by:

AdvG1SPQR(A) ≤ 3ns · δcorr + AdvG2SPQR(A).

Soundness. At this point, soundness (i.e., sound() = true) holds unconditionally and this will not change in
any of the subsequent game hops. Consider the three sub-conditions of the sound predicate:

– Shared key, type, contributive identifier (Figure 9, Line 18): Session identifiers fix the KEM keys and cipher-
texts involved in key derivation, hence by game G2 KEM correctness implies agreement on K1, K2, and (if
type = full) K3 and thus also on K under deterministic key derivation KDF. Session identifiers have distinct
entries depending, and ensuring agreement, on the session type (epkB = ⊥ if and only if type = reduced). Since
the entries in the contributive identifier are a (proper) subset of the entries of session identifiers, agreement
on session identifiers also yields agreement on contributive identifiers.

– No initiator session identifiers collide (Figure 9, Line 19): As of Game G1, each initiator session picks a unique
nonce. This nonce is part of the session identifier and thus ensures uniqueness of initiator session identifiers.

– No three session identifiers collide in full mode (Figure 9, Line 20): We ruled out initiator collisions above
already. For session identifiers to collide in two responder sessions in full mode, the two sessions would need
to use the same ephemeral public key epk, which we excluded in game G1.

Game 3 (Guess test session π∗). Next, we guess the tested session π∗ among the at most ns sessions total
at the outset of the game, and “invalidate” the game by overwriting the adversary’s bit guess with 0 if the
adversary calls Test on a different session. With probability 1/ns, the guess is correct and this change goes
unnoticed, so

AdvG2SPQR(A) ≤ ns · AdvG3SPQR(A).

Game 4 (Guess initiator identity U). We first guess the test session’s own identity if it is an initiator
session, or the test session’s peer identity if it is a responder session. Note that since the test session has
necessarily accepted, the peer in a responder session is also set to a valid identity in [np], i.e., is not set to ⋆
anymore. We denote the guessed initiator identity by U and overwrite the adversary’s bit guess with 0 if this
guess was incorrect. This step loses at most a factor of the number of users np:

AdvG3SPQR(A) ≤ np · AdvG4SPQR(A).

26 Brendel, Fiedler, Günther, Janson, and Stebila

Game 5 (Guess responder identity V). Next, we guess the identity of the involved (intended) responder.
This is π∗’s own identity if it is a responder session, or its intended peer identity if π∗ is an initiator session. We
denote the guessed responder identity by V and again overwrite the adversary’s bit guess with 0 if this guess
was incorrect. This step again loses at most a factor of the number of users np:

AdvG4SPQR(A) ≤ np · AdvG5SPQR(A).

Recall that the adversary’s bit guess at the end of the game is considered only if fresh(π∗) holds for the
tested session π∗. Freshness requires that the session key in neither π∗ nor in a partnered session was revealed
and that one of these four cleanness conditions is satisfied: cleanLTSS(π

∗) or cleanELT(π
∗) or cleanESS(π

∗) or(
π∗.type = full and cleanEE(π

∗)
)
.

We will now branch out into four sub-cases following the structure of the cleanness predicates, bounding
the adversary’s winning advantage AdvG5SPQR(A) by the sum of its advantages when conditioning the adversary
on each of the cleanness sub-conditions being satisfied (which we write as G5[c] for predicate c). Via the union
bound:

AdvG5SPQR(A) ≤
∑

c∈{cleanLTSS(π∗), cleanELT(π
∗),

cleanESS(π
∗), π∗.type=full∧ cleanEE(π

∗)}

Adv
G5[c]
SPQR(A).

Case A (cleanLTSS(π∗)). In this proof case, we are guaranteed that either

1. π∗ is an initiator session owned by U for which both its own long-term key and its intended peer V ’s semi-static
key are uncorrupted or

2. π∗ is a responder session owned by V whose own semi-static and intended peer U ’s long-term keys are both
uncorrupted.

We will leverage this to show that the KEM ciphertext c2 exchanged with the test session π∗ was generated for
an uncorrupted KEM key with good randomness, bootstrapping key indistinguishability from the corresponding
encapsulated key K2.

Game A.0. This is the game conditioned on cleanLTSS(π
∗) being satisfied.

AdvGA.0

SPQR(A) = Adv
G5[cleanLTSS(π∗)]
SPQR (A).

Game A.1 (Guess semi-static key of V). We now guess the identifier ssid of the responder V ’s (uncorrupted)
semi-static key sspkssidV . Note that depending on the role of π∗ this is either the test session’s own key (if
π∗.role = responder), or of the intended peer (if π∗.role = initiator). We denote the guessed identifier by ssid∗,
and abort, setting the adversary’s output bit to 0, if this guess is incorrect, losing at most a factor nss of the
number of semi-static keys per user:

AdvGA.0

SPQR(A) ≤ nss · AdvGA.1

SPQR(A).

Game A.2 (Signature unforgeability). We now abort the game (again, returning 0 as the adversary’s bit
guess) in the event that the test session π∗ is a responder session and accepts having received a DVS signature
σ that no session of U has issued. The probability of such an abort can be bounded by the advantage of the
following reduction B1 against the (t, ϵDVS, QS)-unforgeability of DVS.

Reduction B1 samples all key components itself except for the DVS keys: In place of the long-term public DVS
key pkDVSU of U and the semi-static public DVS key sspkDVSV of V it uses the public keys pkS and pkD, respectively,
obtained in its unforgeability game. For all semi-static DVS (verifier) keys, it uses the public-secret key pairs
obtained through the list L in the unforgeability game, while sampling all static DVS (signer) keys itself. (Hence,
it knows the secret key component for all DVS keys but pkDVSU and sspkDVSV). In its simulation of Game GA.2, B1
uses its signing oracle to compute signatures under skDVSU (and for any peer semi-static public key sspkDVS). Since
cleanLTSS(π

∗) = true, B1 never has to answer the query CorruptLTKey(U) or CorruptSSKey(V, ssid). Hence,
B1 can provide a perfect simulation of GA.2, and if π∗ as a responder receives a signature σ on a session-identifier
message sid that no session of U has issued, B1 can output this as its forgery and wins. Thus,

AdvGA.1

SPQR(A) ≤ ϵDVS + AdvGA.2

SPQR(A).

Post-quantum Asynchronous DAKE and the Signal Handshake 27

Game A.3 (Guess partnered initiator session). By Game GA.2, we are now ensured that a responder test
session does not accept unless an honest session π∗p has sent the ciphertext c2 that π∗ received, as c2 is signed
under σ. We now guess this initiator session π∗p (if π∗ is a responder), aborting and setting A’s output to 0, if
the test session is a responder and the guess was incorrect. This reduces the adversary’s advantage by a factor
of at most the number of sessions ns:

AdvGA.2

SPQR(A) ≤ ns · AdvGA.3

SPQR(A).

Game A.4 (Twisted PRF). Next, we replace all tPRF evaluations involving U ’s long-term secret tkU by the
evaluation of a randomly chosen function. This, in particular, replaces the value r2 in π∗ (if π∗ is an initiator) or
in π∗p (if π∗ is a responder) with an independent random value r̃2 (recall that the randomness value r is unique
per session as of Game G1).

We bound the advantage difference introduced by this step based on the (t, ϵtPRF, ns)-twisted pseudorandom-
ness of tPRF via the following reduction B2. The reduction B2 receives a sequence of ns tuples (xi, yi) (and a
tuple (K ′, z) but this is not relevant for our purposes here), which is either ((x1, tPRF(K,x1)), . . . , (xq, tPRF(K,
xq))) or ((x1, g(x1)), . . . , (xq, g(xq))) for random values K,x1, . . . , xq and a randomly chosen function g.

During the reduction, instead of sampling the tPRF key tkU itself, B2 will simply use yi as the expanded
randomness in the i-th initiator session of U (there are at most ns such sessions), setting r1∥r2∥r3∥r4 ← yi. (B2
simulates the rest of the game as usual, in particular generating the tPRF keys for all other users itself.) As its
bit guess, B2 outputs 1 if A wins the game and 0 otherwise. Depending on which sequence B2 is given, it either
simulates GA.3 or GA.4, thus

AdvGA.3

SPQR(A) ≤ ϵtPRF + AdvGA.4

SPQR(A).

Game A.5 (Semi-static KEM). In the following, let

(c2,K2)←$ KEM2.Encaps(sspk
ssid∗

V ; r̃2)

be the encapsulation computed in the initiator session between π∗ and π∗p under the semi-static key identified
by ssid∗ of V . Recall that by the previous game, r̃2 is an independent random value, unknown to the adversary.
This allows us to now replace the key K2 encapsulated in c2 with a randomly sampled key K̃2 in π∗ and its
partnered session(s), if existent. Furthermore, we replace K2 with K̃2 in any session of V using ssid∗ that has
received the same encapsulating ciphertext c2.

11

We can now boundA’s difference in advantage by the advantage of a reduction B3 in winning the (t, ϵKEM2 , ns)-
IND-CCA security game for KEM2. The reduction B3 obtains the IND-CCA challenge (pk, c∗,K∗b) and simulates
the game for A as follows: It samples the test bit btest itself and generates all long-term, semi-static, and ephemeral
pre-keys itself, except for the key pair (sspkssid

∗

V , ssskssid
∗

V) of the previously guessed responder identity V and
identifier ssid∗. The reduction embeds its received challenge public key pk by setting sspkssid

∗

V = pk. As predicate
cleanLTSS holds, A never asks the query CorruptSSKey(V, ssid∗) and the reduction thus never needs to output
the secret key sk corresponding to pk.

Whenever a decapsulation of some ciphertext c ̸= c∗ using sk is necessary to faithfully simulate the game
for A, B3 simply forwards this ciphertext to its decapsulation oracle Decaps (making at most ns queries as
claimed). In both π∗ and its partnered session(s) π∗p (if existent), B3 embeds K∗b wherever K2 would be used and
c∗ wherever c2 would be used. The same replacement is employed in responder sessions of party V that receive
c2 as an encapsulation under sspkssid

∗

V = pk. When A stop with output b′, the reduction B3 returns Jbtest = b′K.
Observe that B3 perfectly simulates GA.4 if b = 0 in G indccaKEM2

(B3) and GA.5 otherwise. Hence, any difference in
A’s advantage in the two games is bounded by the distinguishing advantage of B3 against the IND-CCA security
of KEM2:

AdvGA.4

SPQR(A) ≤ ϵKEM2
+ AdvGA.5

SPQR(A).

Game A.6 (Session key KDF). Lastly, we replace the output of the session key derivationK ← KDF(K1∥K̃2∥K3,

sid) in the test session and its partnered session(s), as well as in any other session using K̃2, by the output of a

random function; in particular replacing K with a uniformly random key K̃. We show that any adversary that

11Note that we know the involved initiator session of U (it is either the test session π∗ itself or its partnered session
π∗
p) and the identity V of the owner of the involved semi-static key pair with id ssid∗. This allows us to precompute c2 at

the outset of the game and thus easily identify responder sessions that receive c2.

28 Brendel, Fiedler, Günther, Janson, and Stebila

can efficiently distinguish Game GA.6 from Game GA.5 can be turned into an efficient adversary B4 against the
(t, ϵKDF, ns)-pseudorandomness of the key derivation function KDF, treated as a PRF keyed through the second
key component K2 and taking (K1,K3, sid) as label.

The reduction B4 generates all key pairs itself and initializes A as usual. In particular, B4 samples the test
bit btest itself and can answer all CorruptSSKey, CorruptLTKey queries truthfully. Similarly, the reduction
B4 can execute all Send queries. Furthermore, B4 can reveal the randomness and the session keys of sessions,
with the exception of session keys in the test session and its partnered session(s) (which is unproblematic since
these queries would trigger an immediate loss for the adversary when checking fresh(π∗)).

In any session using K̃2 as of Game GA.5, and in particular in the test session π∗ and its partner(s), B4
queries (K1,K3, sid) to its PRFChallenge oracle to compute the session key, where sid = (U, V, pkU , pkV ,
sspkV , epkV , n, c1, c2, c3); this amounts to at most ns oracle queries, as claimed. The returned values are either

KDF(K1∥K̃2∥K3, sid) for a uniformly random key K̃2 if b = 0, or the outputs of a uniformly random function g
if b = 1. When A terminates with output b′, B4 returns Jbtest = b′K.

Note that B4 perfectly simulates GA.5 if b = 0 and GA.6 if b = 1. Hence, if A can distinguish the two games,
the reduction can win the PRF security game against KDF with the same advantage and we have

AdvGA.5

SPQR(A) ≤ ϵKDF + AdvGA.6

SPQR(A).

Finalize To conclude this proof case, observe that in Game GA.6 the challenge Ktest for π∗ is now a uniformly
random key, independent of btest. Furthermore, A cannot reveal Ktest via a RevealSessKey query on π∗ or any
partnered session which might hold the same key. Thus, A cannot gain any information about the test bit btest
and can do no better than to guess:

AdvGA.6

SPQR(A) ≤ 0.

Case B (cleanELT(π∗)). In this proof case, we are guaranteed that either

1. π∗ is an initiator session owned by U whose randomness is unrevealed and whose intended peer V ’s long-term
key is uncorrupted or

2. π∗ is a responder session owned by V and (via cleanpeerE) there exists a unique partnered initiator session π∗p
whose randomness is unrevealed and which is unique (via sound). We further know that π∗p is owned by U ,
as the matching session identifiers include the initiator identity guessed in Game G4.

Game B.0. We now condition on cleanELT(π
∗):

AdvGB.0

SPQR(A) = Adv
G5[cleanELT(π∗)]
SPQR (A).

Game B.1 (Guess unique partnered initiator session). As mentioned above, if the test session π∗ is a
responder session, by cleanpeerE there exists an initiator partner session π∗p to π∗ which furthermore is unique
by sound. We now guess this partnered initiator session π∗p owned by party U ; if π∗ is an initiator session we
simply ignore the guess. The game is changed to overwrite A’s output to 0 if the test session is a responder and
the guess was incorrect. This reduces the adversary’s advantage by a factor of at most the number of sessions ns:

AdvGB.0

SPQR(A) ≤ ns · AdvGB.1

SPQR(A).

Game B.2 (Twisted PRF). Next, we replace the tPRF evaluation of the initiator session π owned by U by the
evaluation of a randomly chosen function (here π = π∗, if π∗.role = initiator, and π = π∗p , if π

∗.role = responder).
In particular, we replace the value r1 in π with an independent random value r̃1 (recall the randomness value r
is unique per session as of Game G1).

We bound the advantage difference introduced by this step by the (t, ϵtPRF, 0)–twisted pseudorandomness
of tPRF via the following reduction B5. The reduction receives (K ′, z) which is either (K ′, tPRF(K ′, x)) if b = 0,
or (K ′, g′(K ′)) if b = 1, where K ′, x are random values and g′ is a random function.

The reduction B5 then generates all keys and parameters for the key exchange games itself, but sets tkU ← K ′.
It uses tkU in all sessions of U except for π, where instead of evaluating tPRF(tkU , r), B5 sets r1∥r2∥r3∥r4 ← z.
Upon a potential CorruptLTKey(U) query, B5 can hand out tkU as part of U ’s secret key (note that r remains
hidden as RevealRandom(π) is never called). As its bit guess, B5 outputs 1 if A wins the game and 0 otherwise.
Depending on which sequence B5 is given, it either simulates GB.1 or GB.2, and thus:

AdvGB.1

SPQR(A) ≤ ϵtPRF · AdvGB.2

SPQR(A).

Post-quantum Asynchronous DAKE and the Signal Handshake 29

Game B.3 (Long-term KEM). In the following, let

(c1,K1)←$ KEM1.Encaps(pk
KEM
V ; r̃1)

be the encapsulation computed at session π, where again π = π∗, if π∗.role = initiator, and π = π∗p , if π
∗.role =

responder. Recall that by the previous game, r̃1 is an independent random value, unknown to the adversary. In
Game GB.3, we now replace the encapsulated key K1 with a randomly sampled key K̃1 in the test session π∗

and its partnered session(s), if existent. Furthermore, in any responder session of V that receives the same

encapsulating ciphertext c1, we replace K1 with K̃1, too. Observe that, knowing the involved initiator session π
as well as the long-term key identity V in advance, we can precompute c1 at the outset of the game and then
simply check when c1 is received by responder sessions owned by V .

We bound the difference in A’s advantage by the advantage of a reduction B6 against the (t, ϵKEM1
, ns)-

IND-CCA security of KEM1 as follows. B6 obtains a challenge (pk, c∗,K∗b) and simulates the game for A as
follows: It samples the test bit btest itself and generates all key pairs to initialize A itself, except for the long-term
KEM public key of V , for which it only sets pkKEMV = pk.

Note that cleanELT ensures that A never calls CorruptLTKey(V), so B6 never has to output skKEMV . When-
ever B6 would have to use skKEMV to decapsulate some ciphertext c ̸= c∗ in some responder session of V , it does
so via its Decaps oracle (quering the oracle at most ns times as claimed). In the test session π∗ and its potential
initiator partner π∗p , B6 embeds K∗b in the place of K1 and c∗ in the place of c1. Also, in responder sessions of V
receiving c1 (recall, B6 knows c1 from the start of the game), B6 uses K∗b in the place of K1 and c∗ in the place
of c1. When A stops and outputs its bit guess b′, B6 returns Jbtest = b′K.

The simulation B6 provides for A perfectly represents Game GB.2 if b = 0 in the IND-CCA game for KEM1,
and Game GB.3 otherwise. Any difference in A’s advantage between the two games hence translates into a
distinguishing advantage of B6 in the IND-CCA game against KEM1:

AdvGB.2

SPQR(A) ≤ ϵKEM1
+ AdvGB.3

SPQR(A).

Game B.4 (Session key KDF). As the final step in this proof case, we replace in Game GB.4 the session
key derived in the test and partnered session as K ← KDF(K1∥K2∥K3, sid), as well as in any other session

using K̃1, by the output of a random function; in particular replacing K with a randomly sampled key K̃. As in
the previous case in Game GA.6 we can bound the advantage introduced by this change by the advantage of an
adversary B7 against the (t, ϵKDF, ns)–pseudorandomness property of KDF, treated as a PRF keyed through the
first key component K1 and taking (K2,K3, sid) as label:

AdvGB.3

SPQR(A) ≤ ϵKDF + AdvGB.4

SPQR(A).

Finalize To conclude the proof, we observe that in Game GB.4, the challenge session key is uniformly random
independent of btest and cannot be revealed by A, hence A cannot do better than guessing:

AdvGB.4

SPQR(A) ≤ 0.

Case C (cleanESS(π∗)). In this proof case, we are guaranteed that either

1. π∗ is an initiator session owned by U whose session randomness is unrevealed and whose intended peer V ’s
semi-static key in question is uncorrupted or

2. π∗ is a responder session owned by V whose semi-static key in question is uncorrupted and (via cleanpeerE
and sound) there exists a unique partnered session π∗p owned by U whose randomness is unrevealed.

Similarly to the cases before, we leverage this to show that the KEM ciphertext c2 associated with the test
session π∗ was generated using an uncorrupted KEM key with good randomness, yielding key secrecy for the
corresponding encapsulated key K2.

Game C.0. We now condition on cleanESS(π
∗):

AdvGC.0

SPQR(A) = Adv
G5[cleanESS(π∗)]
SPQR (A).

Game C.1 (Guess unique partnered initiator session). We guess the unique existing partner session π∗p
of π∗, if the test session is a responder session; if π∗ is an initiator session, we simply ignore the guess. As before

30 Brendel, Fiedler, Günther, Janson, and Stebila

we set A’s output to 0 if the guess was incorrect. We thus reduce the adversary’s advantage by a factor of at
most the number of sessions ns:

AdvGC.0

SPQR(A) ≤ ns · AdvGC.1

SPQR(A).

Game C.2 (Guess semi-static key of V). Next, we guess the identifier ssid of the (uncorrupted) semi-
static key sspkssidV of party V , which, depending on the role of π∗, is either the test session’s own key (if
π∗.role = responder) or that of its intended peer (if π∗.role = initiator). As before, we denote the guessed
identifier by ssid∗, and abort with 0 if this guess is incorrect, losing at most a factor of the number of semi-static
keys per user nss :

AdvGC.1

SPQR(A) ≤ nss · AdvGC.2

SPQR(A).

Game C.3 (Twisted PRF). Next, we replace the tPRF evaluation of the initiator session π owned by U by the
evaluation of a randomly chosen function (here π = π∗, if π∗.role = initiator, and π = π∗p , if π

∗.role = responder).
In particular, we replace the value r2 in π with an independent random value r̃2 (recall the randomness

value r is unique per session as of Game G1). This change thus assures that the randomness involved in the
ensuing encapsulation under the semi-static public key of V is unknown to the adversary.

We bound the advantage difference induced by this step by the twisted (t, ϵtPRF, 0)-twisted pseudorandomness
of tPRF via the following reduction B8. The reduction receives (K ′, z) which is either (K ′, tPRF(K ′, x)) if b = 0,
or (K ′, g′(K ′)) if b = 1, where K ′, x are random values and g′ is a random function.

The reduction B8 then generates all keys and parameters for the key exchange games itself, in particular
it sets tkU ← K ′. Instead of evaluating tPRF(tkU , r) for (n, r) ← π.coins, B8 sets r1∥r2∥r3∥r4 ← z. Upon a
potential CorruptLTKey(U) query, B8 can hand out tkU as part of U ’s secret key (while r remains hidden
as RevealRandom(π) is never called). As its bit guess, B8 outputs 1 if A wins the game and 0 otherwise.
Depending on which sequence B8 is given, it either simulates GC.2 or GC.3, and thus:

AdvGC.2

SPQR(A) ≤ ϵtPRF + AdvGC.3

SPQR(A).

Game C.4 (Semi-static KEM). In the following, let

(c2,K2)←$ KEM2.Encaps(sspk
ssid∗

V ; r2)

be the encapsulation computed at session π, where π = π∗, if π∗.role = initiator, and π = π∗p , if π
∗.role = responder.

We can now replace the key K2 encapsulated in c2 under the semi-static key of V with identifier ssid∗ with
a randomly sampled key K̃2 in π∗and its partnered session(s), if existent. Furthermore, we replace K2 with K̃2

in any session of V that has received the same encapsulating ciphertext c2.
As in previous cases, we can bound A’s difference in advantage that was introduced by this change by the

advantage of a reduction B9 in winning the (t, ϵKEM2
, ns)-IND-CCA security game for KEM2, where the reduction

B9 obtains its IND-CCA challenge (pk, c∗,K∗b) and simulates the game A by generating all parameters of the game
itself, except for embedding its received challenge public key pk by setting sspkssid

∗

U = pk. The predicate cleanESS
holds, thus we know that A never asks a CorruptSSKey(V, ssid∗) query and the reduction need never output
the secret key sk corresponding to pk. Whenever a decapsulation of some ciphertext c ̸= c∗ using sk is necessary
to faithfully simulate the game for A, B9 simply forwards this ciphertext to its decapsulation oracle Decaps
(querying its oracle at most ns times as claimed). In both π∗ and its partnered session(s) π∗p (if existent), B9
embeds K∗b wherever K2 would be used and c∗, wherever c2 would be used. The same replacement is employed
in any responder sessions of party V that receive c2. At some point, A will stop with output b′, and the reduction
B9 returns 0 if b′ = btest and 1 otherwise.

Observe that B9 perfectly simulates GC.3 if b = 0 in G indccaKEM2
(B9) and GC.4 otherwise. Hence, any difference in

A’s advantage in the two games is bounded by the distinguishing advantage of B9 against the IND-CCA security
of KEM2:

AdvGC.3

SPQR(A) ≤ ϵKEM2
+ AdvGC.4

SPQR(A).

Game C.5 (Session key KDF). As the final step in this proof case, we replace in Game GC.5 the session

key derived in the test and partnered session as K ← KDF(K1∥K2∥K3, sid) by a randomly sampled key K̃. As
in the previous cases we can bound the advantage introduced by this change by the advantage of an adversary
B10 against (t, ϵKDF, ns)-PRFSEC property of KDF, this time keyed via K2:

AdvGC.4

SPQR(A) ≤ ϵKDF + AdvGC.5

SPQR(A).

Post-quantum Asynchronous DAKE and the Signal Handshake 31

Finalize To conclude the proof, we observe that the adversary expects the challenge Ktest to be the output of the
key derivation function KDF applied to the master secret ms and session identifier sid if btest = 0 or a uniformly
random string if btest = 1. In all of the above cases, this distinction cannot be made by A anymore as both keys
are now uniformly random. Thus, A cannot gain any information about the test bit btest and can do no better
than to guess, causing us to arrive at the final bound

AdvGC.5

SPQR(A) ≤ 0.

Case D (π∗.type = full and cleanEE(π∗)). In this proof case, we are guaranteed

1. π∗ is an initiator session owned by U whose session randomness is unrevealed and that has received an
ephemeral pre-key that was generated using unrevealed randomness in a session of intended partner V , or

2. π∗ is a responder session owned by V whose ephemeral pre-key generation was executed with unrevealed
randomness and there exists a partnered initiator session π∗p owned by U whose session randomness is unre-
vealed.

Similarly to the cases before, we leverage this to show that the KEM ciphertext c3 associated with the test
session π∗ was generated using an uncorrupted KEM key with good randomness, yielding key indistinguishability
for the corresponding encapsulated key K3.

Game D.0. We now condition on the test session running in full mode and cleanEE(π
∗) being satisfied:

AdvGD.0

SPQR(A) = Adv
G5[π∗.type=full∧ cleanEE(π

∗)]
SPQR (A).

Game D.1 (Guess unique (contributive) partner session). We first guess the unique existing (contribu-
tive) partner session π∗p of π∗: If π∗ is a responder session, π∗p is its sid-partner, if π∗ is an initiator session, π∗p
is its contributively partnered session via cid. (Recall that this unique contributive partner exists since we ruled
out collisions in the ephemeral pre-keys, and π∗.type = full, so π∗ received such ephemeral pre-key contained in
its contributive identifier.) The game sets A’s output bit to 0 if the guess was incorrect. We thus reduce the
adversary’s advantage by a factor of at most the number of sessions ns:

AdvGD.0

SPQR(A) ≤ ns · AdvGD.1

SPQR(A).

Game D.2 (Twisted PRF). Next, we replace the tPRF evaluation of the initiator session π owned by U by the
evaluation of a randomly chosen function (here π = π∗, if π∗.role = initiator, and π = π∗p , if π

∗.role = responder).
In particular, we replace the value r3 in π with an independent random value r̃3 (recall the randomness

value r is unique per session as of Game G1). This change thus assures that the randomness involved in the
ensuing encapsulation under the ephemeral pre-key of V is unknown to the adversary.

As in previous cases, we bound the advantage difference induced by this step by the (t, ϵtPRF, 0)-twisted
pseudorandomness of tPRF via a reduction B11. The reduction receives (K ′, z) which is either (K ′, tPRF(K ′, x))
if b = 0, or (K ′, g′(K ′)) if b = 1, where K ′, x are random values and g′ is a random function.

Instead of evaluating tPRF(tkU , r) for (n, r) ← π.coins, B11 sets r1∥r2∥r3∥r4 ← z; as in prior cases, B11 can
still answer a potential CorruptLTKey(U) query, but r remains hidden since RevealRandom(π) is never
called. As its bit guess, B11 outputs 1 if A wins the game and 0 otherwise. Depending on which sequence B11 is
given, it either simulates GD.1 or GD.2, and thus:

AdvGD.1

SPQR(A) ≤ ϵtPRF + AdvGD.2

SPQR(A).

Game D.3 (Ephemeral pre-key KEM). In the following, let

(c3,K3)←$ KEM3.Encaps(epkV ; r3)

be the encapsulation computed at session π, where π = π∗, if π∗.role = initiator, and π = π∗p , if π
∗.role = responder.

We can now replace the key K3 encapsulated in c3 under the ephemeral pre-key of V with a randomly sampled
key K̃3 in π∗and its partnered session(s), if existent. Furthermore, we replace K3 with K̃3 in any session of V
that has received the same encapsulating ciphertext c3.

Similar to previous cases, we can bound A’s difference in advantage that was introduced by this change by
the advantage of a reduction B12 in winning the (t, ϵKEM3

, 1)-IND-CCA security game for KEM3, which embeds

32 Brendel, Fiedler, Günther, Janson, and Stebila

the received challenge (pk, c∗,K∗b) by setting epkV = pk, c3 = c∗, and K3 = K∗b . The predicate cleanEE holds,
thus we know that A never asks a RevealRandom(π̃) query, where π̃ = π∗ if the π∗ is the responder, and
π̃ = π∗p , if π

∗ is the initiator; hence B12 need never output the secret key sk corresponding to pk. If session π̃
receives a different ciphertext than c3, B12 uses (once) its Decaps oracle to obtain the resulting key. At some
point, A will stop with output b′, and the reduction B12 returns 0 if b′ = btest and 1 otherwise.

Observe that B12 perfectly simulates GD.2 if b = 0 in G indccaKEM3
(B12) and GD.3 otherwise. Hence, any difference in

A’s advantage in the two games is bounded by the distinguishing advantage of B12 against the IND-CCA security
of KEM3:

AdvGD.2

SPQR(A) ≤ ϵKEM3 + AdvGD.3

SPQR(A).

Game D.4 (Session key KDF). As the final step in this proof case, we replace in Game GD.4 the session

key derived in the test and partnered session as K ← KDF(K1∥K2∥K3, sid) by a randomly sampled key K̃. As
in the previous cases we can bound the advantage introduced by this change by the advantage of an adversary
B13 against (t, ϵKDF, 2)-PRFSEC property of KDF (note that here, K̃ is used at most in two sessions, π∗ and π∗p):

AdvGD.3

SPQR(A) ≤ ϵKDF + AdvGD.4

SPQR(A).

Finalize To conclude the proof, we observe that the adversary expects the challenge Ktest to be the output of the
key derivation function KDF applied to the master secret ms and session identifier sid if btest = 0 or a uniformly
random string if btest = 1. In all of the above cases, this distinction cannot be made by A anymore as both keys
are now uniformly random. Thus, A cannot gain any information about the test bit btest and can do no better
than to guess, causing us to arrive at the final bound

AdvGD.4

SPQR(A) ≤ 0.

8.2 Proof of Deniability

Theorem 6 (Deniability of SPQR). If DVS is a (t, ϵsrchid, QCh)-source hiding designated verifier signature
and tPRF is a (t, ϵtPRF, 0)-twisted pseudorandom function, then the SPQR protocol as shown in Figure 8 and
formalized in Figure 11 is (t′, ϵ′, Q′Ch)-deniable, where t′ ≈ t, ϵ′ ≤ npQCh · ϵtPRF + n2

pnss · ϵsrchid, where np is the
number of parties and nss the number of semi-static keys per party, and Q′Ch = QCh.

Proof. We proceed via a sequence of game hops starting from Gadake-denSPQR (A) with the secret bit b = 0. In the first
game hop we replace the use of the tPRF with sampling the randomness uniformly at random. In the second
game hop we replace the use of DVS.Sign with DVS.Sim, which is the same as Gadake-denSPQR (A) with the secret bit
b = 1.

Game 0. The initial game, Game G0, is the deniability game Gadake-denSPQR (A) for SPQR played by A with the
secret bit b = 0, i.e., the Chall oracle always returns real transcripts.

Game 1 (Twisted PRF). First, we replace all tPRF evaluations inside theChall oracle with the evaluation of
a randomly chosen function. This replaces the values r1∥r2∥r3∥r4 ← tPRF(tk, r) (where tk is part of the initiator’s
long term secret key and r is a randomly sampled value) with independent random values r̃1∥r̃2∥r̃3∥r̃4.

We bound the advantage difference introduced by this step by the (t, ϵtPRF, 0)-twisted pseudorandomness
of tPRF via the following reduction B1. The reduction B1 receives (K ′, z) which is either (K ′, tPRF(K ′, x)) if
b = 0, or (K ′, g′(K ′)) if b = 1, where K ′, x are random values and g′ is a random function. The reduction then
simulates the game G0 or G1 (depending on the secret bit of the challenger) for A as follows.

For each of the np parties B1 generates a long-term key pair and nss many semi-static keys. It randomly
guesses the identifier of a party iid∗ ∈ [np] and the challenge query i∗ ∈ [QCh] (i.e., the i∗th challenge query
with iid∗ as initiator) for which the deniability adversary can distinguish between the two games. Let a number
i ∈ [npQCh] uniquely denote two independent values iid, q in a query (e.g., as (iid − 1) · QCh + q) and let
i∗ ∈ [npQCh] denote the specific guess iid∗, q∗ of the reduction. For the party iid∗, B1 replaces the tPRF key in
the long-term secret key with K ′ from its own challenge. It starts A with all key pairs.
B1 answers the queries of A to the Chall oracle as in G0 except for sampling the randomness: Here B1

distinguishes between three cases: The first case is that the query is for 1 ≤ i < i∗ (i.e., for iid < iid∗ or the
at most q − 1th query for iid = iid∗). Here, the reduction samples independent random values r̃1∥r̃2∥r̃3∥r̃4. The
second case is that the query is for i = i∗ (i.e., the qth query for iid = iid∗). In this case, the reduction uses the

Post-quantum Asynchronous DAKE and the Signal Handshake 33

randomness z from its own challenge. The third case is that the query is for i∗ < i ≤ npQCh (i.e., for iid > iid∗

or the at least q + 1th query for iid = iid∗). In that case, the reduction derives randomness using the tPRF key
from its own challenge: r1∥r2∥r3∥r4 ← tPRF(K ′, r) for a randomly sampled r. Finally, when A returns its guess
bit b′, B1 returns b′ as its guess.

The runtime of B1 is essentially the runtime of A plus the runtime to generate the keys and answer the oracle
queries.

Now let us analyze the probability of A distinguishing between the two games G0 and G1. For this, we define
the hybrids H0, . . . ,HnpQCh

with Hi being the hybrid that answers all challenge queries for indices 1, . . . , i using
randomness sampled uniformly at random and all other challenge queries for indices i+1, . . . , npQCh are answered
using randomness from tPRF(K ′, ·). The extreme hybrids are HnpQCh

which answers all the challenge queries
using randomness from tPRF(K ′, ·) and H0 which answers all queries using uniformly sampled randomness.
Hence, H0 is equivalent to G1 and HnpQCh

to G0. Observe that Hi−1 and Hi only differ on how the randomness
is sampled for one query depending on the reduction B1’s challenge oracle. Hence, it is easy to see that the
probability of distinguishing between Hi−1 and Hi is bounded by ϵtprfsec.

Summing the individual hybrid difference over all npQCh hybrid steps, we get

∣∣∣AdvG0SPQR(A)− AdvG1SPQR(A)
∣∣∣ = ∣∣∣AdvH0

SPQR(A)− Adv
HnpQCh

SPQR (A)
∣∣∣

≤
npQCh∑
i=1

∣∣∣AdvHi−1

SPQR(A)− AdvHi

SPQR(A)
∣∣∣ ≤ npQCh∑

i=1

ϵtprfsec ≤ npQCh · ϵtprfsec.

Game 2 (DVS simulation). In this game we replace the call to DVS.Sign with a call to DVS.Sim.
We bound the advantage difference introduced by this step by the (t, ϵsrchid, QCh)-source hiding of DVS via

the following reduction B2.
The challenger starts B2 with two DVS key pairs who then simulates the game G1 or G2 (depending on

the secret bit of the challenger) for A as follows. For each of the np parties B2 generates a long-term key
pair and nss many semi-static keys. It randomly guesses the identifiers of two parties iid∗, rid∗ ∈ [np] and the
identifier of a semi-static key ssid∗ ∈ [nss] for which the deniability adversary can distinguish between the
two games. Let a number i ∈ [n2

pnss] uniquely denote three independent values iid, rid, ssid in a query (e.g., as
(iid−1) ·np ·nss+(rid−1) ·nss+ssid) and let i∗ ∈ [n2

pnss] denote the specific guess iid
∗, rid∗, ssid∗ of the reduction.

For the party iid∗, B2 replaces the DVS sender key pair in the long-term key with its own challenge key pair
(pkS , skS). For the party rid∗, B2 replaces the DVS verifier key pair in the semi-static key with id ssid∗ with its
own challenge key pair (pkD, skD). It starts A with all key pairs.
B2 answers the queries of A to the Chall oracle as follows: First, it runs the responder ephemeral key gener-

ation. Then, it randomly samples the nonce n and the randomness used to compute the three KEM ciphertexts
and the DVS signature. Using this randomness, B2 computes the KEM ciphertexts (c1, c2, c3). It sets the master
secret ms to the concatenation of the KEM encapsulations. In the next step, the reduction computes the DVS
signature on the session identifier sid. Here B2 distinguishes between three cases: The first case is that the query
is for 1 ≤ i < i∗. Then the reduction executes DVS.Sign (using the randomness sampled previously). The second
case is that the query is for i = i∗. In this case the reduction forwards the query to its own oracle to obtain
a DVS signature or a simulated one depending on the outside challenge bit. The third case is that the query
is for i∗ < i ≤ n2

pnss . Then the reduction executes DVS.Sim (using the randomness sampled previously). In
all cases the reduction then proceeds to compute the session key K from the master secret and the session id.
Finally, the reduction returns the transcript and the session key K to A. Hence, the transcript and session key
were computed either as specified by Run (using uniformly sampled randomness instead) or as specified by Fake,
depending on the query index i and the secret bit of the DVS challenger. Finally, when A returns its guess bit
b′, B2 returns b′ as its guess.

The runtime of B2 is essentially the runtime of A plus the runtime to generate the keys and answer the oracle
queries.

Now let us analyze the probability of A distinguishing between the two games G1 and G2. For this, we define
the hybrids H0, . . . ,Hn2

pnss
with Hi being the hybrid that answers all challenge queries for indices 1, . . . , i by Run

(with uniformly sampled randomness) and all other challenge queries for indices i + 1, . . . , n2
pnss are answered

with Fake. The extreme hybrids are Hn2
pnss

which answers all the challenge queries with Run using uniformly
sampled randomness and H0 which answers all queries by Fake. Hence, H0 is equivalent to G1 and Hn2

pnss
to G2.

Observe that Hi−1 and Hi only differ in an execution of DVS.Sign or DVS.Sim depending on the reduction B2’s
challenge oracle. Hence, it is easy to see that the probability of distinguishing between Hi−1 and Hi is bounded
by ϵsrchid.

34 Brendel, Fiedler, Günther, Janson, and Stebila

Summing the individual hybrid difference over all npQCh hybrid steps, we get

∣∣∣AdvG1SPQR(A)− AdvG2SPQR(A)
∣∣∣ = ∣∣∣∣AdvH0

SPQR(A)− Adv
Hn2

pnss

SPQR (A)
∣∣∣∣

≤
n2
pnss∑
i=1

∣∣∣AdvHi−1

SPQR(A)− AdvHi

SPQR(A)
∣∣∣ ≤ n2

pnss∑
i=1

ϵsrchid ≤ n2
pnss · ϵsrchid.

Finalize To conclude the proof, we observe the initial game G0 is the game Gadake-denSPQR (A) with the secret bit b = 0,

and the final game G2 is the game Gadake-denSPQR (A) with the secret bit b = 1. Collecting the bounds, we get

ϵ′ = Advadake-denSPQR (A) =
∣∣∣AdvG0SPQR(A)− AdvG1SPQR(A)

∣∣∣+ ∣∣∣AdvG1SPQR(A)− AdvG2SPQR(A)
∣∣∣

≤ npQCh · ϵtPRF + n2
pnss · ϵsrchid.

9 Discussion and Limitations

Our protocols demonstrate that designated verifier signatures are helpful for constructing practical AKE protocols
with constraints on the message flow (asynchronicity) and with specialized security properties (deniability).

The key ingredient in our approach for achieving post-quantum asynchronous DAKE is a post-quantum desig-
nated verifier signature scheme. While there are several lattice-based DVS schemes in the literature as described
in Section 3.1, we believe that their security merits further scrutiny before adoption. In the meantime, we propose
instantiations via 2-user ring signatures, for which we discussed post-quantum candidates in Section 3.2.

We believe SPQR is a good start as a PQ replacement for the Signal X3DH handshake, but in any real-world
protocol deployment there are many subtleties, some of which we now highlight.

The way Signal is used in practice has the semi-static keys signed under the long-term key. In SPQR the
long-term key is not suitable for this purpose, so an additional long-term signing key might have to be introduced
solely for the purposes of signing the other keys; note this could be done without undermining deniability. This
characteristic was likewise not considered in the provable security analysis of Signal of [22].

SPQR is solely a replacement for the initial handshake (X3DH). A fully post-quantum Signal would require
quantum-resistance in the ratcheting and message encryption; fortunately there are several generic treatments
of ratcheting [6,81,1].

As Signal does not use certificates or a PKI, long-term public keys must be manually authenticated out-of-
band, and that remains the case with SPQR.

Our analysis of SPQR considers randomness exposure, but not malicious randomness. The latter has been
captured for ratcheting [1], but not yet in the initial handshake. Our security analysis shows that SPQR, as
an authenticated key exchange protocol, has offline deniability. As discussed in Appendix A, we think that our
deniability notion is the best one can hope for if the adversary has access to the secret keys. We leave formally
proving this as future work.

Cryptographic deniability should be treated with caution. How cryptographers understand deniability may
be different from how a judge in a legal system understands it [89]. Additionally, there are stronger notions
of deniability [33] that SPQR (and the Signal handshake) does not achieve, such as if one party maliciously
generates messages or colludes in real-time with the judge. One should further confirm deniability at all protocol
levels, and that deniability of individual components composes appropriately. Despite all these subtleties, steps
toward deniability are helpful, as Unger and Goldberg write [89]: “we should strive to design deniable protocols
to avoid unintentionally incriminating users.”

Acknowledgements

We thank Shuichi Katsumata and the anonymous reviewers of PKC 2022 for the helpful comments. Furthermore,
we also thank anonymous reviewers who pointed out a flaw in our DVS constructions in an earlier version of this
paper.

R.F. was supported by the German Federal Ministry of Education and Research and the Hessian Ministry of
Higher Education, Research, Science and the Arts within their joint support of the National Research Center for
Applied Cybersecurity ATHENE. F.G. was supported in part by German Research Foundation (DFG) Research
Fellowship grant GU 1859/1-1. C.J. was (partially) funded by the Deutsche Forschungsgemeinschaft (DFG) –
SFB 1119 – 236615297. D.S. was supported by Natural Sciences and Engineering Research Council of Canada
(NSERC) Discovery grant RGPIN-2016-05146.

Post-quantum Asynchronous DAKE and the Signal Handshake 35

References

1. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and modularization for the Signal
protocol. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer, Cham
(May 2019). https://doi.org/10.1007/978-3-030-17653-2 5

2. Azarderakhsh, R., Jao, D., Leonardi, C.: Post-quantum static-static key agreement using multiple protocol instances.
In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 45–63. Springer, Cham (Aug 2017). https:
//doi.org/10.1007/978-3-319-72565-9 3

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO’93. LNCS,
vol. 773, pp. 232–249. Springer, Berlin, Heidelberg (Aug 1994). https://doi.org/10.1007/3-540-48329-2 21

4. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: Santis, A.D. (ed.) EUROCRYPT’94. LNCS, vol. 950,
pp. 92–111. Springer, Berlin, Heidelberg (May 1995). https://doi.org/10.1007/BFb0053428

5. Bellare, M., Rogaway, P.: The exact security of digital signatures: How to sign with RSA and Rabin. In: Maurer,
U.M. (ed.) EUROCRYPT’96. LNCS, vol. 1070, pp. 399–416. Springer, Berlin, Heidelberg (May 1996). https://doi.
org/10.1007/3-540-68339-9 34

6. Bellare, M., Singh, A.C., Jaeger, J., Nyayapati, M., Stepanovs, I.: Ratcheted encryption and key exchange: The
security of messaging. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part III. LNCS, vol. 10403, pp. 619–650.
Springer, Cham (Aug 2017). https://doi.org/10.1007/978-3-319-63697-9 21

7. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles.
In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Berlin, Heidelberg (Mar 2006).
https://doi.org/10.1007/11681878 4

8. Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles.
Journal of Cryptology 22(1), 114–138 (Jan 2009). https://doi.org/10.1007/s00145-007-9011-9

9. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: Logarithmic (linkable) ring signatures from isogenies
and lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 464–492. Springer,
Cham (Dec 2020). https://doi.org/10.1007/978-3-030-64834-3 16

10. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their security analysis. In: Darnell, M.
(ed.) 6th IMA International Conference on Cryptography and Coding. LNCS, vol. 1355, pp. 30–45. Springer, Berlin,
Heidelberg (Dec 1997). https://doi.org/10.1007/bfb0024447

11. Boneh, D., Glass, D., Krashen, D., Lauter, K., Sharif, S., Silverberg, A., Tibouchi, M., Zhandry, M.: Multiparty
non-interactive key exchange and more from isogenies on elliptic curves. Journal of Mathematical Cryptology 14(1),
5–14 (2020)

12. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EU-
ROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 493–522. Springer, Cham (May 2020). https://doi.org/10.1007/
978-3-030-45724-2 17

13. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Stehlé, D.: CRYSTALS
– Kyber: a CCA-secure module-lattice-based KEM. In: 2018 IEEE European Symposium on Security and Privacy,
EuroS&P 2018. pp. 353–367. IEEE (2018), https://cryptojedi.org/papers/#kyber

14. Boyd, C., Cliff, Y., Gonzalez Nieto, J.M., Paterson, K.G.: One-round key exchange in the standard model. IJACT 1,
181–199 (2009)

15. Boyd, C., Gellert, K.: A Modern View on Forward Security. The Computer Journal 64(4), 639–652 (08 2020).
https://doi.org/10.1093/comjnl/bxaa104, https://doi.org/10.1093/comjnl/bxaa104

16. Brendel, J., Fischlin, M., Günther, F., Janson, C., Stebila, D.: Towards post-quantum security for Signal’s X3DH
handshake. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 404–430. Springer,
Cham (Oct 2020). https://doi.org/10.1007/978-3-030-81652-0 16

17. Cai, J., Jiang, H., Zhang, P., Zheng, Z., Wang, H., Lü, G., Xu, Q.: Id-based strong designated verifier signature
overR-SIS assumption. Secur. Commun. Networks 2019, 9678095:1–9678095:8 (2019). https://doi.org/10.1155/2019/
9678095, https://doi.org/10.1155/2019/9678095

18. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Berlin, Heidelberg (May 2001).
https://doi.org/10.1007/3-540-44987-6 28

19. Canetti, R., Krawczyk, H.: Security analysis of IKE’s signature-based key-exchange protocol. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 143–161. Springer, Berlin, Heidelberg (Aug 2002). https://doi.org/10.1007/
3-540-45708-9 10, https://eprint.iacr.org/2002/120/

20. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. Journal of Cryptology
25(4), 601–639 (Oct 2012). https://doi.org/10.1007/s00145-011-9105-2

21. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: An efficient post-quantum commutative group
action. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part III. LNCS, vol. 11274, pp. 395–427. Springer,
Cham (Dec 2018). https://doi.org/10.1007/978-3-030-03332-3 15

22. Cohn-Gordon, K., Cremers, C.J.F., Dowling, B., Garratt, L., Stebila, D.: A formal security analysis of the Signal
messaging protocol. In: IEEE European Symposium on Security and Privacy, EuroS&P 2017. pp. 451–466 (2017).
https://doi.org/10.1109/EuroSP.2017.27

23. Cohn-Gordon, K., Cremers, C.J.F., Garratt, L.: On post-compromise security. In: Hicks, M., Köpf, B. (eds.) CSF
2016 Computer Security Foundations Symposium. pp. 164–178. IEEE Computer Society Press (2016). https://doi.
org/10.1109/CSF.2016.19

https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/978-3-319-72565-9_3
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/BFb0053428
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/978-3-319-63697-9_21
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/s00145-007-9011-9
https://doi.org/10.1007/s00145-007-9011-9
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/bfb0024447
https://doi.org/10.1007/bfb0024447
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-030-45724-2_17
https://cryptojedi.org/papers/#kyber
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1093/comjnl/bxaa104
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1155/2019/9678095
https://doi.org/10.1155/2019/9678095
https://doi.org/10.1155/2019/9678095
https://doi.org/10.1155/2019/9678095
https://doi.org/10.1155/2019/9678095
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/3-540-45708-9_10
https://doi.org/10.1007/3-540-45708-9_10
https://eprint.iacr.org/2002/120/
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/s00145-011-9105-2
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19
https://doi.org/10.1109/CSF.2016.19

36 Brendel, Fiedler, Günther, Janson, and Stebila

24. Cremers, C., Feltz, M.: One-round strongly secure key exchange with perfect forward secrecy and deniability. Cryp-
tology ePrint Archive, Report 2011/300 (2011), https://eprint.iacr.org/2011/300

25. Dagdelen, Ö., Fischlin, M., Gagliardoni, T., Marson, G.A., Mittelbach, A., Onete, C.: A cryptographic analysis of
OPACITY - (extended abstract). In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134,
pp. 345–362. Springer, Berlin, Heidelberg (Sep 2013). https://doi.org/10.1007/978-3-642-40203-6 20

26. Damg̊ard, I., Haagh, H., Mercer, R., Nitulescu, A., Orlandi, C., Yakoubov, S.: Stronger security and constructions
of multi-designated verifier signatures. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp.
229–260. Springer, Cham (Nov 2020). https://doi.org/10.1007/978-3-030-64378-2 9

27. Delpech de Saint Guilhem, C., Smart, N.P., Warinschi, B.: Generic forward-secure key agreement without signatures.
In: Nguyen, P.Q., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 114–133. Springer, Cham (Nov 2017). https:
//doi.org/10.1007/978-3-319-69659-1 7

28. Derler, D., Ramacher, S., Slamanig, D.: Post-quantum zero-knowledge proofs for accumulators with applications
to ring signatures from symmetric-key primitives. In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptogra-
phy - 9th International Conference, PQCrypto 2018. pp. 419–440. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-79063-3 20

29. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key exchange. In: Juels, A., Wright,
R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006. pp. 400–409. ACM Press (Oct / Nov 2006). https:
//doi.org/10.1145/1180405.1180454

30. Dobson, S., Galbraith, S.D.: Post-quantum Signal key agreement with SIDH. Cryptology ePrint Archive, Report
2021/1187 (2021), https://eprint.iacr.org/2021/1187

31. Dobson, S., Galbraith, S.D., LeGrow, J.T., Ti, Y.B., Zobernig, L.: An adaptive attack on 2-sidh. Int. J. Comput.
Math. Comput. Syst. Theory 5(4), 282–299 (2020). https://doi.org/10.1080/23799927.2020.1822446, https://doi.org/
10.1080/23799927.2020.1822446

32. Dobson, S., Li, T., Zobernig, L.: A note on a static SIDH protocol. Cryptology ePrint Archive, Report 2019/1244
(2019), https://eprint.iacr.org/2019/1244

33. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability of authentication. In: Reingold, O.
(ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer, Berlin, Heidelberg (Mar 2009). https://doi.org/10.1007/
978-3-642-00457-5 10

34. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the TLS 1.3 handshake protocol
candidates. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015. pp. 1197–1210. ACM Press (Oct 2015). https:
//doi.org/10.1145/2810103.2813653

35. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 335–352. Springer, Berlin, Heidelberg (Aug 2014). https://doi.
org/10.1007/978-3-662-44371-2 19

36. Duits, I.: The Post-Quantum Signal Protocol: Secure Chat in a Quantum World. Master’s thesis, University of Twente
(2019), http://essay.utwente.nl/77239/

37. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC. pp. 409–418. ACM Press (May
1998). https://doi.org/10.1145/276698.276853

38. Esgin, M.F., Steinfeld, R., Liu, J.K., Liu, D.: Lattice-based zero-knowledge proofs: New techniques for shorter and
faster constructions and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol.
11692, pp. 115–146. Springer, Cham (Aug 2019). https://doi.org/10.1007/978-3-030-26948-7 5

39. Esgin, M.F., Steinfeld, R., Sakzad, A., Liu, J.K., Liu, D.: Short lattice-based one-out-of-many proofs and applications
to ring signatures. In: Deng, R.H., Gauthier-Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 19International Conference
on Applied Cryptography and Network Security. LNCS, vol. 11464, pp. 67–88. Springer, Cham (Jun 2019). https:
//doi.org/10.1007/978-3-030-21568-2 4

40. Esgin, M.F., Zhao, R.K., Steinfeld, R., Liu, J.K., Liu, D.: MatRiCT: Efficient, scalable and post-quantum blockchain
confidential transactions protocol. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 567–584.
ACM Press (Nov 2019). https://doi.org/10.1145/3319535.3354200

41. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko,
A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194. Springer, Berlin, Heidelberg (Aug 1987). https://doi.org/10.
1007/3-540-47721-7 12

42. Fischlin, M., Mazaheri, S.: Notions of deniable message authentication. In: Ray, I., Hopper, N., Jansen, R. (eds.) Pro-
ceedings of the 14th ACM Workshop on Privacy in the Electronic Society, WPES 2015, Denver, Colorado, USA, Oc-
tober 12, 2015. pp. 55–64. ACM (2015). https://doi.org/10.1145/2808138.2808143, https://doi.org/10.1145/2808138.
2808143

43. Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key exchange. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 254–271. Springer, Berlin, Heidelberg (Feb / Mar 2013). https://doi.org/10.
1007/978-3-642-36362-7 17

44. Fujioka, A., Suzuki, K., Xagawa, K., Yoneyama, K.: Strongly secure authenticated key exchange from factoring, codes,
and lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 467–484. Springer,
Berlin, Heidelberg (May 2012). https://doi.org/10.1007/978-3-642-30057-8 28

45. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M.J.
(ed.) CRYPTO’99. LNCS, vol. 1666, pp. 537–554. Springer, Berlin, Heidelberg (Aug 1999). https://doi.org/10.1007/
3-540-48405-1 34

https://eprint.iacr.org/2011/300
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1007/978-3-030-64378-2_9
https://doi.org/10.1007/978-3-030-64378-2_9
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1007/978-3-319-69659-1_7
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1007/978-3-319-79063-3_20
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1145/1180405.1180454
https://eprint.iacr.org/2021/1187
https://doi.org/10.1080/23799927.2020.1822446
https://doi.org/10.1080/23799927.2020.1822446
https://doi.org/10.1080/23799927.2020.1822446
https://doi.org/10.1080/23799927.2020.1822446
https://eprint.iacr.org/2019/1244
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1007/978-3-642-00457-5_10
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1145/2810103.2813653
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/978-3-662-44371-2_19
https://doi.org/10.1007/978-3-662-44371-2_19
http://essay.utwente.nl/77239/
https://doi.org/10.1145/276698.276853
https://doi.org/10.1145/276698.276853
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-26948-7_5
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1007/978-3-030-21568-2_4
https://doi.org/10.1145/3319535.3354200
https://doi.org/10.1145/3319535.3354200
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/2808138.2808143
https://doi.org/10.1145/2808138.2808143
https://doi.org/10.1145/2808138.2808143
https://doi.org/10.1145/2808138.2808143
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/3-540-48405-1_34

Post-quantum Asynchronous DAKE and the Signal Handshake 37

46. Gajland, P., Janneck, J., Kiltz, E.: Ring signatures for deniable AKEM: Gandalf’s fellowship. Cryptology ePrint
Archive, Paper 2024/890, version June 7, 2024 (2024), https://eprint.iacr.org/2024/890/20240607:132712

47. Gajland, P., Janneck, J., Kiltz, E.: Ring signatures for deniable AKEM: Gandalf’s fellowship. In: Reyzin, L., Stebila,
D. (eds.) CRYPTO 2024, Part I. LNCS, vol. 14920, pp. 305–338. Springer, Cham (Aug 2024). https://doi.org/10.
1007/978-3-031-68376-3 10

48. Gajland, P., Janneck, J., Kiltz, E.: Ring signatures for deniable AKEM: Gandalf’s fellowship. Cryptology ePrint
Archive, Report 2024/890 (2024), https://eprint.iacr.org/2024/890

49. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingular isogeny cryptosystems. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 63–91. Springer, Berlin, Heidelberg (Dec
2016). https://doi.org/10.1007/978-3-662-53887-6 3

50. Garjan, M.S., Kılıç, N.G.O., Cenk, M.: A supersingular isogeny-based ring signature. Cryptology ePrint Archive,
Report 2021/1318 (2021), https://eprint.iacr.org/2021/1318

51. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In:
Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 197–206. ACM Press (May 2008). https://doi.org/10.1145/
1374376.1374407

52. Harn, L., Lee, C., Lin, C., Chang, C.: Fully deniable message authentication protocols preserving confidentiality. Com-
put. J. 54(10), 1688–1699 (2011). https://doi.org/10.1093/comjnl/bxr081, https://doi.org/10.1093/comjnl/bxr081

53. Hashimoto, K., Katsumata, S., Kwiatkowski, K., Prest, T.: An efficient and generic construction for Signal’s handshake
(X3DH): Post-quantum, state leakage secure, and deniable. In: Garay, J. (ed.) PKC 2021, Part II. LNCS, vol. 12711,
pp. 410–440. Springer, Cham (May 2021). https://doi.org/10.1007/978-3-030-75248-4 15

54. Hashimoto, K., Katsumata, S., Kwiatkowski, K., Prest, T.: An efficient and generic construction for Signal’s handshake
(X3DH): Post-quantum, state leakage secure, and deniable. Cryptology ePrint Archive, Report 2021/616 (2021),
https://eprint.iacr.org/2021/616

55. Herranz, J.: Some digital signature schemes with collective signers. Ph.D. thesis, Universitat Politècnica de Catalunya,
Barcelona (2005), https://upcommons.upc.edu/bitstream/handle/2117/94334/01Jhs01de01.pdf

56. Hülsing, A., Weber, F.J.: Epochal signatures for deniable group chats. In: 2021 IEEE Symposium on Security and
Privacy. pp. 1677–1695. IEEE Computer Society Press (May 2021). https://doi.org/10.1109/SP40001.2021.00058

57. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.)
EUROCRYPT’96. LNCS, vol. 1070, pp. 143–154. Springer, Berlin, Heidelberg (May 1996). https://doi.org/10.1007/
3-540-68339-9 13

58. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: Yang,
B.Y. (ed.) Post-Quantum Cryptography - 4th International Workshop, PQCrypto 2011. pp. 19–34. Springer, Berlin,
Heidelberg (Nov / Dec 2011). https://doi.org/10.1007/978-3-642-25405-5 2

59. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum
signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. pp. 525–537. ACM Press (Oct
2018). https://doi.org/10.1145/3243734.3243805

60. Kawashima, T., Takashima, K., Aikawa, Y., Takagi, T.: An efficient authenticated key exchange from random self-
reducibility on CSIDH. In: Hong, D. (ed.) ICISC 20. LNCS, vol. 12593, pp. 58–84. Springer, Cham (Dec 2020).
https://doi.org/10.1007/978-3-030-68890-5 4

61. de Kock, B., Gjøsteen, K., Veroni, M.: Practical isogeny-based key-exchange with optimal tightness. In: Dunkelman,
O., Jr., M.J.J., O’Flynn, C. (eds.) SAC 2020. LNCS, vol. 12804, pp. 451–479. Springer, Cham (Oct 2020). https:
//doi.org/10.1007/978-3-030-81652-0 18

62. Krawczyk, H.: HMQV: A high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 546–566. Springer, Berlin, Heidelberg (Aug 2005). https://doi.org/10.1007/11535218 33

63. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000. The Internet Society (Feb 2000)
64. Kurosawa, K., Furukawa, J.: 2-pass key exchange protocols from CPA-secure KEM. In: Benaloh, J. (ed.) CT-RSA 2014.

LNCS, vol. 8366, pp. 385–401. Springer, Cham (Feb 2014). https://doi.org/10.1007/978-3-319-04852-9 20
65. Laguillaumie, F., Vergnaud, D.: Designated verifier signatures: Anonymity and efficient construction from any bilinear

map. In: Blundo, C., Cimato, S. (eds.) SCN 04. LNCS, vol. 3352, pp. 105–119. Springer, Berlin, Heidelberg (Sep 2005).
https://doi.org/10.1007/978-3-540-30598-9 8

66. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K.,
Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Berlin, Heidelberg (Nov 2007). https://doi.org/10.
1007/978-3-540-75670-5 1

67. Li, B., Liu, Y., Yang, S.: Lattice-based universal designated verifier signatures. In: 2018 IEEE 15th International
Conference on e-Business Engineering (ICEBE). pp. 329–334. IEEE (2018). https://doi.org/10.1109/ICEBE.2018.
00062

68. Li, Y., Schäge, S.: No-match attacks and robust partnering definitions: Defining trivial attacks for security protocols
is not trivial. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. pp. 1343–1360. ACM
Press (Oct / Nov 2017). https://doi.org/10.1145/3133956.3134006

69. Li, Y., Susilo, W., Mu, Y., Pei, D.: Designated verifier signature: Definition, framework and new constructions.
In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao, J. (eds.) Ubiquitous Intelligence and Computing, 4th
International Conference, UIC 2007, Hong Kong, China, July 11-13, 2007, Proceedings. Lecture Notes in Com-
puter Science, vol. 4611, pp. 1191–1200. Springer (2007). https://doi.org/10.1007/978-3-540-73549-6 116, https:
//doi.org/10.1007/978-3-540-73549-6 116

https://eprint.iacr.org/2024/890/20240607:132712
https://doi.org/10.1007/978-3-031-68376-3_10
https://doi.org/10.1007/978-3-031-68376-3_10
https://doi.org/10.1007/978-3-031-68376-3_10
https://doi.org/10.1007/978-3-031-68376-3_10
https://eprint.iacr.org/2024/890
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3
https://eprint.iacr.org/2021/1318
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1093/comjnl/bxr081
https://doi.org/10.1093/comjnl/bxr081
https://doi.org/10.1093/comjnl/bxr081
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/978-3-030-75248-4_15
https://eprint.iacr.org/2021/616
https://upcommons.upc.edu/bitstream/handle/2117/94334/01Jhs01de01.pdf
https://doi.org/10.1109/SP40001.2021.00058
https://doi.org/10.1109/SP40001.2021.00058
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1007/978-3-642-25405-5_2
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1145/3243734.3243805
https://doi.org/10.1007/978-3-030-68890-5_4
https://doi.org/10.1007/978-3-030-68890-5_4
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/978-3-030-81652-0_18
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-319-04852-9_20
https://doi.org/10.1007/978-3-319-04852-9_20
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-30598-9_8
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1109/ICEBE.2018.00062
https://doi.org/10.1109/ICEBE.2018.00062
https://doi.org/10.1109/ICEBE.2018.00062
https://doi.org/10.1109/ICEBE.2018.00062
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116

38 Brendel, Fiedler, Günther, Janson, and Stebila

70. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-based accumulators: Logarithmic-
size ring signatures and group signatures without trapdoors. In: Fischlin, M., Coron, J.S. (eds.) EURO-
CRYPT 2016, Part II. LNCS, vol. 9666, pp. 1–31. Springer, Berlin, Heidelberg (May 2016). https://doi.org/10.
1007/978-3-662-49896-5 1

71. Lu, X., Au, M.H., Zhang, Z.: Raptor: A practical lattice-based (linkable) ring signature. In: Deng, R.H., Gauthier-
Umaña, V., Ochoa, M., Yung, M. (eds.) ACNS 19International Conference on Applied Cryptography and Network
Security. LNCS, vol. 11464, pp. 110–130. Springer, Cham (Jun 2019). https://doi.org/10.1007/978-3-030-21568-2 6

72. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In: Matsui, M.
(ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Berlin, Heidelberg (Dec 2009). https://doi.org/10.
1007/978-3-642-10366-7 35

73. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 738–755. Springer, Berlin, Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4 43

74. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In: Coron, J.S., Nielsen, J.B. (eds.) EU-
ROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 293–323. Springer, Cham (Apr / May 2017). https://doi.org/10.1007/
978-3-319-56620-7 11

75. Lyubashevsky, V., Nguyen, N.K., Seiler, G.: SMILE: Set membership from ideal lattices with applications to ring
signatures and confidential transactions. Cryptology ePrint Archive, Report 2021/564 (2021), https://eprint.iacr.org/
2021/564

76. Marlinspike, M., Perrin, T.: The double ratchet algorithm (November 2016), https://www.signal.org/docs/
specifications/doubleratchet/

77. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (November 2016), https://signal.org/docs/
specifications/x3dh/

78. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer,
Berlin, Heidelberg (Aug 2002). https://doi.org/10.1007/3-540-45708-9 31

79. Noh, G., Jeong, I.R.: Strong designated verifier signature scheme from lattices in the standard model. Security Comm.
Networks 9, 6202–6214 (Feb 2017). https://doi.org/10.1002/sec.1766

80. Peikert, C.: He gives C-sieves on the CSIDH. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS,
vol. 12106, pp. 463–492. Springer, Cham (May 2020). https://doi.org/10.1007/978-3-030-45724-2 16

81. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 3–32. Springer, Cham (Aug 2018). https://doi.org/10.1007/
978-3-319-96884-1 1

82. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Ricosset, T., Seiler, G., Whyte, W.,
Zhang, Z.: FALCON. Tech. rep., National Institute of Standards and Technology (2020), available at https://csrc.
nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

83. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Gabow, H.N., Fagin, R. (eds.)
37th ACM STOC. pp. 84–93. ACM Press (May 2005). https://doi.org/10.1145/1060590.1060603

84. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248,
pp. 552–565. Springer, Berlin, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1 32

85. Saeednia, S., Kremer, S., Markowitch, O.: An efficient strong designated verifier signature scheme. In: Lim, J.I., Lee,
D.H. (eds.) ICISC 03. LNCS, vol. 2971, pp. 40–54. Springer, Berlin, Heidelberg (Nov 2004). https://doi.org/10.1007/
978-3-540-24691-6 4

86. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake signatures. In: Ligatti, J., Ou, X., Katz,
J., Vigna, G. (eds.) ACM CCS 2020. pp. 1461–1480. ACM Press (Nov 2020). https://doi.org/10.1145/3372297.3423350

87. Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier signatures. In: Laih, C.S. (ed.) ASI-
ACRYPT 2003. LNCS, vol. 2894, pp. 523–542. Springer, Berlin, Heidelberg (Nov / Dec 2003). https://doi.org/10.
1007/978-3-540-40061-5 33

88. Sun, X., Tian, H., Wang, Y.: Toward quantum-resistant strong designated verifier signature from isogenies. In: 4th
International Conference on Intelligent Networking and Collaborative Systems. pp. 292–296. IEEE (2012). https:
//doi.org/10.1109/iNCoS.2012.70

89. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM
CCS 2015. pp. 1211–1223. ACM Press (Oct 2015). https://doi.org/10.1145/2810103.2813616

90. Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges for secure messaging. PoPETs
2018(1), 21–66 (Jan 2018). https://doi.org/10.1515/popets-2018-0003

91. Vatandas, N., Gennaro, R., Ithurburn, B., Krawczyk, H.: On the cryptographic deniability of the Signal protocol. In:
Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 20International Conference on Applied Cryptography
and Network Security, Part II. LNCS, vol. 12147, pp. 188–209. Springer, Cham (Oct 2020). https://doi.org/10.1007/
978-3-030-57878-7 10

92. Wang, F., Hu, Y., Wang, B.: Lattice-based strong designate verifier signature and its applications. Malaysian Journal
of Computer Science 25, 11–22 (2012)

93. Wang, F., Hu, Y., Wang, B.: Identity-based strong designate verifier signature over lattices. The Journal of China
Universities of Post and Telecommunications 21, 52–60 (2014). https://doi.org/10.1016/S1005-8885(14)60345-9

94. Yang, B., Yu, Y., Sun, Y.: A novel construction of SDVS with secure disavowability. Clust. Comput. 16(4), 807–815
(2013). https://doi.org/10.1007/s10586-013-0254-y, https://doi.org/10.1007/s10586-013-0254-y

https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-319-56620-7_11
https://eprint.iacr.org/2021/564
https://eprint.iacr.org/2021/564
https://www.signal.org/docs/specifications/doubleratchet/
https://www.signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1002/sec.1766
https://doi.org/10.1002/sec.1766
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-030-45724-2_16
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1007/978-3-540-24691-6_4
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1007/978-3-540-40061-5_33
https://doi.org/10.1109/iNCoS.2012.70
https://doi.org/10.1109/iNCoS.2012.70
https://doi.org/10.1109/iNCoS.2012.70
https://doi.org/10.1109/iNCoS.2012.70
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1016/S1005-8885(14)60345-9
https://doi.org/10.1016/S1005-8885(14)60345-9
https://doi.org/10.1007/s10586-013-0254-y
https://doi.org/10.1007/s10586-013-0254-y
https://doi.org/10.1007/s10586-013-0254-y

Post-quantum Asynchronous DAKE and the Signal Handshake 39

95. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing: Generic construction of ring signatures with efficient
instantiations. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 251–281. Springer,
Cham, Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84242-0 10

96. Zaverucha, G., Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C., Slamanig, D., Katz, J.,
Wang, X., Kolesnikov, V., Kales, D.: Picnic. Tech. rep., National Institute of Standards and Technology (2020), avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
round-3-submissions

97. Zhang, Y., Liu, Q., Tang, C., Tian, H.: A lattice-based designated verifier signature for cloud computing. International
Journal of High Performance Computing and Networking 8, 135–143 (Jun 2015). https://doi.org/10.1504/IJHPCN.
2015.070013

https://doi.org/10.1007/978-3-030-84242-0_10
https://doi.org/10.1007/978-3-030-84242-0_10
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://doi.org/10.1504/IJHPCN.2015.070013
https://doi.org/10.1504/IJHPCN.2015.070013
https://doi.org/10.1504/IJHPCN.2015.070013
https://doi.org/10.1504/IJHPCN.2015.070013

40 Brendel, Fiedler, Günther, Janson, and Stebila

Supplementary Material

A Related Work on Deniability

Deniability allows a party to deny having interacted with a peer. In particular, the peer cannot convince a judge
of the first party having interacted with itself. Online deniability is concerned with the scenario of the judge
interacting with the peer during the protocol execution with the first party. This notion is not achievable in the
asynchronous setting. [89] Hence, we address offline deniability, where the peer presents data to the judge after
the protocol execution has taken place.

Prior work defined several notions of offline deniability for authenticated key exchange [29,24,25,89,90]. Based
on the work of Dwork, Naor, and Sahai [37] on deniable authentication, Di Raimondo, Gennaro, and Krawczyk
defined concurrently deniable (or fully deniable) authenticated key exchange using the simulation paradigm in
[29]. Given the list of all public keys and some auxiliary information (e.g., some honestly generated transcripts),
the adversary may freely interact with honest parties as either initiator or as responder, interleaving between
executions at will. The view of the adversary then consists of the transcripts, session keys, and random coins
of the protocol executions it took part in. The session key is included in the view as it may be used as part of
another protocol for which deniability is desirable. This view needs to be indistinguishable from the output of a
simulator running on the same inputs as the adversary.

Di Raimondo, Gennaro, and Krawczyk [29] also proposed a weaker notion called partial deniability, which
formalizes the intuition that it is indistinguishable whether an (honest) user interacted with party A or party B.
Based on the definition of partial deniability, Cremers and Feltz [24] proposed peer deniability and peer-and-time
deniability. For either notion the simulator does not have to output the session key and gets access to the secret
key of corrupted parties. Peer-deniability intuitively allows a user to deny its communication peer, while peer-
and-time deniability allows a party to deny that it was alive during a certain time frame and interacted with a
certain peer.

Dagdelen, Fischlin, Gagliardoni, Marson, Mittelbach, and Onete [25] proposed a game-based definition called
outsider deniability. Here, the adversary has access to Init, Exec, and Send oracles (identical to the key secrecy
game) and a modified challenge oracle. Depending on the secret bit, the challenge oracle returns either a real
transcript and session key or a transcript and session key simulated based on public data. Intuitively, this allows
parties to deny having engaged in a protocol run against an eavesdropper that frames a party.

In [89,90], Unger and Goldberg have given deniability definitions in the UC model. For this they define an
ideal functionality called post-specified peer key exchange with incrementing abort that unifies the model of
contributiveness, deniability with abort, and their model [89] of post-specified peers.

In [91], Vatandas, Gennaro, Ithurburn, and Krawczyk provided an analysis that Signal’s X3DH is deniable
(wrt. full deniability of [29]) under a general extractability assumption.

Recently, Hülsing and Weber have defined deniability for group chats (and not just key exchange) in [56].
They formalize a stronger notion than ours that allows an unbounded judge to choose all long-term key pairs
and learn all short-term keys, and the simulator does not get access to any secret key. Furthermore, the judge
chooses the instructions (i.e., messages and group actions) to be executed. However, the group setting requires
a restriction: Informally, they need one message that authentically reaches all other group members.

We propose a game-based definition, Definition 11, where the adversary interacts with a real-or-random
challenge oracle. Intuitively, the “real” part relates to the view of the adversary and the “random” part to
the simulated view. However this simulated view cannot make use of features like re-winding and is a plain
probabilistic classical algorithm. At the same time, the distinguisher (or judge) of simulation-based definitions
relates to the adversary in our game-based definition. Note that the “real” part of the challenge oracle is gener-
ated according to the protocol specification. Hence, our notion captures semi-honest adversaries, not malicious
adversaries.

We further take into account the informal requirement on deniability for asynchronous DAKE in [77, §4.4]:
In some cases a third party that has compromised legitimate private keys from Alice or Bob could be provided a
communication transcript that appears to be between Alice and Bob and that can only have been created by some
other party that also has access to legitimate private keys from Alice or Bob. This informal description implies
both a relaxation and a strengthening compared to previous definitions: Firstly, one has to make use of the secret
key of either party to simulate a transcript. Secondly, the judge may have access to all secret keys.

Observe that we only consider asynchronous DAKEs that consist of only one message with a specified peer
(for our protocols it is the the initiator’s message). Note that the responder’s message is independent of the peer
and, therefore, cannot serve as incriminating evidence. It remains to be shown that the initiator’s message could
have been produced by either using the initiator’s secret key and the Run algorithm, or by using the responder’s

Post-quantum Asynchronous DAKE and the Signal Handshake 41

secret key and the Fake algorithm. Since only one message is tied to a specific peer, we do not need to take any
special precautions to achieve deniability for concurrent executions.

We give the adversary (i.e., the distinguisher) access to all secret keys. This models the scenario where, e.g.,
a party is framed in court and the judge (in a legal sense) learns the secret keys of all involved parties through a
subpoena. Hence, our distinguisher is significantly stronger than previous distinguishers. As the distinguisher has
access to all secret keys, the challenge oracle does not return the random coins used. Otherwise, the distinguisher
could compute both the real and simulated execution of the protocol and check which result is identical to the
return value of the oracle. One could prevent this by requiring identical outputs instead of indistinguishably
distributed outputs. We deem this impractical, though.

Harn, Lee, Lin, and Chang [52] have introduced the terms 1-out-of-2 deniable, 1-out-of-n deniable, and 1-out-
of-∞ deniable to differentiate flavors of deniability (in the context of message authentication). A DVS signature
is 1-out-of-2 deniable since either party could have generated the signature (due to the source hiding property
defined in Definition 6). A ring signature is 1-out-of-n deniable for a ring of size n since any ring member could
have generated the signature (due to the anonymity property defined in Definition 9). An unauthenticated DH key
exchange is 1-out-of-∞ deniable since the DH key shares are not bound to anybody. Our deniability definition is
1-out-of-2 deniable since the Fake algorithm has access to the receiver’s secret key. Similarly, Hülsing and Weber
[56] distinguish between universal deniability (i.e., 1-out-of-∞ deniability) and non-universal deniability (i.e.,
1-out-of-2 and 1-out-of-n deniability). The deniability definitions of prior works [29,24,25,56] provide 1-out-of-∞
deniability since the simulator does not get access to any secret key.

In the context of deniable ring authentication, Naor [78] uses the terms source hiding and deniability to differ-
entiate between interactive and non-interactive adversaries (judges). Here the term source hiding corresponds to
online deniability while the term deniability corresponds to offline deniability in the key exchange literature. Naor
also considers both notions in the big brother setting, where the attacker (i.e., the judge in the simulation-based
setting) has access to all secret keys.

Using these terms, we provide the first definition of offline 1-out-of-2 deniability in the big brother setting for
key exchange. Previous definitions (in particular [29]) provide offline 1-out-of-∞ deniability outside of the big
brother setting.

Intuitively, it seems impossible to achieve 1-out-of-∞ deniability in the big brother setting: Assume a judge
in the big brother setting cannot distinguish between a real transcript and one that was simulated using only
public data. Then, the initiator-to-responder authentication is based on a proof that can be simulated using
public data only (e.g., a DVS signature with a Sim algorithm that does not need access to a secret key). Note
that the responder may leverage its own secret keys to verify the initiator-to-responder authenticator. However,
the judge also has access to the responder’s secret keys and can therefore use the same strategy to verify the
authenticator. It seems implausible that an authentication scheme is correct (i.e., convinces an honest responder)
and at the same time an authenticator that is simulated without knowledge to secrets is indistinguishable from
a valid authenticator if one has access to the secret keys. In consequence, it seems that 1-out-of-2 deniability is
the best we can hope for in the big brother setting.

B Designated Verifier Signatures from Chameleon Hash Functions

As mentioned in Section 3.1, in an earlier version we attempted to build post-quantum designated verifier signa-
tures in a direct manner, following full-domain-hash and Fiat–Shamir-type approaches and involving chameleon
hash functions. For transparency and educational purposes, we comment on these attempts a bit further in the
following.

We first recall the definition of a chameleon hash function, more concretely, the formalization of Cash,
Hofheinz, Kiltz, and Peikert [20], where the trapdoor enables preimage sampling (unlike [63], where the trapdoor
enables collision sampling).

Definition 12. A chameleon hash function (CHF) is a tuple of algorithms CHF = (KGen,Hash, Inv) with public
key space P, message spaceM, digest space D, randomness space R, and a (not necessarily uniform) distribution
Rdist over R:
– KGen() $→ (pk, sk): A probabilistic key generation algorithm.
– Hash(pk,m; r) → h: A hashing algorithm that takes as input a public key pk and a message m ∈ M along

with randomness r ∈ R, and outputs a digest h ∈ D.
– Inv(sk, h,m) $→ r: A probabilistic hash inversion algorithm that takes as input a secret key sk, digest h ∈ D,

and message m ∈M, and outputs randomness r ∈ R.

Chameleon hash functions provide the same security properties as standard hash functions, with the addition
of the chameleon properties introduced by the trapdoor:

42 Brendel, Fiedler, Günther, Janson, and Stebila

Definition 13. A CHF is (t, ϵ)-secure if it satisfies:

Uniformity For (pk, sk)←$ KGen(), m ∈ M, and r←$Rdist, we have that (pk,Hash(pk,m; r)) is ϵ-close to
uniform over P ×D.

Chameleon For (pk, sk)←$ KGen(), h ∈ D,m ∈M, we have that h = Hash(pk,m; Inv(sk, h,m)).

Collision resistance Given pk ∈ P, no time-t-bounded adversary can find distinct (m, r), (m′, r′) with Hash(pk,m; r) =
Hash(pk,m′; r′) with probability greater than ϵ.

Chameleon indistinguishability For all (pk, sk)←$ KGen(), m ∈ M, and h ∈ D, Inv(sk, h,m) is ϵ-close to
the distribution of r←$Rdist conditioned on Hash(pk,m; r) = h.

In the initial version of this paper, we used such chameleon hash functions within full-domain-hash and Fiat-
Shamir-style signatures to build designated verifier signatures. This required the modeling of the chameleon hash
function as a random oracle. However, as was kindly pointed out to us, chameleon hash functions have strong
algebraic properties, which makes them inappropriate for instantiating random oracles.

Since random oracles are crucial in the proofs of the DVS constructions in question, we tried to salvage
the situation by additionally introducing a standard hash function that could either be applied before or after
chameleon hashing. This newly-introduced hash function can be modeled as a random oracle RO, while the
chameleon hash function CHF is assumed to only provide the above-defined security properties. Unfortunately,
neither order of application (CHF-then-RO or RO-then-CHF) lead to a secure construction. We will briefly
outline the reasons next, using Fiat-Shamir-style signatures as illustrative example; the obstacles are analogous
for our attempted full-domain-hash based GPV [51] construction.

Recall that Fiat-Shamir signatures are built on top of a passively secure canonical identification scheme
CID = (KGen,P = (P1,P2),V = (V1,V2)). Signing in our failed DVS construction then was defined as in
Figure 12, with the chameleon hash function replacing the regular hash function in the Fiat-Shamir transform:

FSDVS.Sign(skS , pkD,m):

1 (com, st)←$ CID.P1(skS)

2 r←$ CHF.Rdist

3 ch← CHF.Hash(pkD, com∥m; r)

4 rsp←$ CID.P2(ch, st)

5 σ ← (r, (com, ch, rsp))

6 return σ

Fig. 12. Fiat-Shamir-style signature using a chameleon hash function.

B.1 CHF-then-RO

As CHF cannot be modeled as a random oracle, one loses the required programmability for the security proofs of
the FSDVS construction in Figure 12. One could try to salvage this construction by first applying the chameleon
hash function, and then a hash function modeled as a random oracle within the signature. Figure 13 shows this
approach, with the changes marked in boxed code.

FSDVS′.Sign(skS , pkD,m):

1 (com, st)←$ CID.P1(skS)

2 r←$ CHF.Rdist

3 h← CHF.Hash(pkD,m; r)

4 ch← RO(com∥h)
5 rsp←$ CID.P2(ch, st)

6 σ ← (r, (com, ch, rsp))

7 return σ

Fig. 13. Fiat-Shamir-style signature with RO applied to a CHF digest; changes from Figure 12 in boxes .

Post-quantum Asynchronous DAKE and the Signal Handshake 43

Unfortunately, this construction cannot provide source-hiding anymore. Recall that source-hiding requires
the existence of an efficient simulator Sim which, given the secret key of the designated verifier and a signer’s
public key, can output signatures that are indistinguishable from signatures by the sender for the designated
verifier.

The original construction given in Figure 12 achieved source hiding with a simulator that first retrieved an
accepting conversation (com, ch, rsp), and then utilized the trapdoor skD of the chameleon hash function to find
randomness r such that ch = Hash(pkD, com∥m; r).

However, such a simulator does not exist anymore for signatures generated as in Figure 13. Starting from an
accepting conversation (com, ch, rsp), the simulator cannot utilize the trapdoor in the chameleon hash function,
as it does not know the value h that led to ch, i.e., finding this value h would imply an efficient algorithm that
can find preimages of RO. The same obstacle arises in full-domain-hash style signatures based on GPV.

B.2 RO-then-CHF

The above issue clearly stemmed from the fact that the random oracle hid the relevant information for the
simulator. But what if we first used the random oracle to generate a uniformly random value and then applied
the chameleon hash function to that? Figure 14 depicts this approach, again marking changes in boxed code:

FSDVS′′.Sign(skS , pkD,m):

1 (com, st)←$ CID.P1(skS)

2 h← RO(com∥m)

3 r←$ CHF.Rdist

4 ch← CHF.Hash(pkD, h; r)

5 rsp←$ CID.P2(ch, st)

6 σ ← (r, (com, ch, rsp))

7 return σ

Fig. 14. Fiat-Shamir-style signatures with CHF applied to a RO digest; changes from Figure 12 in boxes .

Here, unforgeability fails to hold. Recall that the Fiat-Shamir transform crucially relies on the programming
of the random oracle that outputs the challenge ch for the prover P2 to achieve unforgeability of the resulting
signature scheme. This is not possible here, as the object that outputs the challenge for the prover is the chameleon
hash function and not the random oracle.

For our GPV construction this approach also fails. In the original proof, unforgeability hinges on a reduction
from a successful forger to the collision-resistance of the employed preimage-sampleable function. However,
since chameleon hashing is a probabilistic process (as opposed to regular hashing) and the forger controls the
randomness leading to the eventual signature forgery, no efficient collision-finder can be constructed.

C Summary of Major Changes

– version 1.0 and 1.0.1 - June 2021: Initial release and minor editorial changes
– version 1.1 - August 2021:
• removed direct DVS constructions using full-domain-hash GPV and Fiat–Shamir-type approaches lever-
aging chameleon hash functions due to flawed security proofs; added a discussion of the obstacles in
Appendix B

• added RingDVS construction in Section 3.2
– version 1.2 - March 2022:
• emphasized differences in the definition of deniability to prior work in Section 1 and Section 4
• extended comparison with concurrent work ([53] and [30]), especially in light of ring signatures and DVS
being equivalent for our case

• ensured consistent syntax for semi-static keys in Section 7
• fixed bound for deniability reduction of SPQR to account for pseudorandomness of tPRF in Theorem 6

– version 1.3 - September 2024:
• fixed bound for key indistinguishability reduction of SPQR for PRF label and ephemeral KEM key collisions
in G1 of Theorem 5

44 Brendel, Fiedler, Günther, Janson, and Stebila

• fixed the advantage term in Definition 9 (anonymity against key exposure for ring signatures)
• comment on confusion between anonymity definitions for ring signatures [46] between our Definition 9, [7,
Definition 4], and [8, Definition 5].

	Post-quantum Asynchronous Deniable Key Exchange and the Signal Handshake
	Introduction
	Making Signal Post-quantum
	Options for PQ Asynchronous DAKE
	Our Contributions

	Preliminaries
	Notation
	Key Encapsulation Mechanisms
	(Twisted) Pseudorandom Functions

	Designated Verifier Signatures
	Post-quantum DVS Schemes: Prior Work and Failed Attempts
	Post-quantum DVS constructions in the literature.
	Construction attempts: GPV and Fiat–Shamir.

	Building Post-quantum DVS Schemes from Ring Signatures
	The construction.
	Implications and the inverse direction.
	Post-quantum ring signature candidates.

	Security Model for Asynchronous Deniable Key Exchange
	Security of the Core Protocol
	Key Indistinguishability
	Deniability

	Signal in a Post-quantum Regime
	Full Security Model
	Key Indistinguishability
	Session Partnering and Correctness.
	Soundness.
	Freshness.
	Main differences to the model in Cohn-Gordon et al.

	Deniability

	SPQR Security Proofs
	Key Indistinguishability
	Proof of Deniability

	Discussion and Limitations
	Related Work on Deniability
	Designated Verifier Signatures from Chameleon Hash Functions
	CHF-then-RO
	RO-then-CHF

	Summary of Major Changes

