
Etherless Ethereum Tokens:

Simulating Native Tokens in Ethereum

John Andrews1, Michele Ciampi2, and Vassilis Zikas∗3

1Sunday Group, jandrews@sundaygroupinc.com
2The University of Edinburgh, michele.ciampi@ed.ac.uk

3Purdue University, vzikas@cs.purdue.edu

Abstract

Standardized Ethereum tokens, e.g., ERC-20 tokens, have become the norm in fundraising
(through ICOs) and kicking off blockchain-based DeFi applications. However, they require the
user’s wallet to hold both tokens and ether to pay the gas fee for making a transaction. This
makes for a cumbersome and counterintuitive—at least for less tech-savvy users—user experience,
especially when the token creator intends to switch to their own blockchain down the line, or
wishes the flexibility of transferring the token to a different smart-contract enabled blockchain.
We formalize, instantiate, and analyze in a composable manner a system that we call Etherless
Ethereum Tokens (in short, EETs), which allows the token creator to allow its users to transact
in a closed-economy manner, i.e., having only tokens on their wallet and paying any transaction
fees in token units rather than gas. In the process, we devise a methodology for capturing
Ethereum token-contracts in the Universal Composability (UC) framework, which can be of
independent interest. We have implemented and benchmarked our system and compared it to
another solution for obtaining similar functionality in Ethereum, i.e., the Gas Station Networks
(GSN); in addition to being the first system with a rigorous security analysis, we demonstrate
that EETs are not only far easier to deploy, but are also far less gas intensive than the GSN.

1 Introduction

As applications of smart contracts, e.g., Decentralized Finance (DeFi) and Non-Fungible Tokens
(NFTs), become mainstream, there is a need to make them as independent from the Ethereum chain
as possible. The paradigm in which such a need is most prominent is in the creation of Ethereum
tokens (e.g., ERC-20 tokens [VB15]). The usual implementation of such tokens requires that, for
a token-holder to use them (exchange them with other tokens, or transact with other holders of
the same token,) they need to also hold Ether, to be used to fuel the Ethereum transaction. This
poses a challenge both to the token creator and the users: on the one hand, token creators need
to provide a wallet which supports both their token and Ethereum, making it more challenging to
transition to their own blockchain or switch token platforms while offering a smooth user experience.
On the other hand, users need to make sure that they hold not only the token but also Ether, which

∗Work supported in part by NSF grant no. 2055599 and by Sunday Group.

1

makes it more challenging to expand this technology to less tech-savvy audiences, thereby hindering
wider societal adoption.

The easiest way to conceptualize the relevant bottleneck is through considering the life cycle
of an ETH-based initial coin offering (ICO): in a first stage, the token creator solicits investment
(typically in different cryptocurrencies), under the promise of a certain (prearranged) amount of
tokens once the token launches.1 In a second phase, the token creator initializes the promised new
token by launching a token smart contract (e.g. an ERC 20 token) on the Ethereum chain. In order
to hold their promise to the investors, the token creator would then have the investors create a new
token-specific Ethereum address where the promised tokens can be transferred. This can be done
by means of a wallet that offers generic support for Ethereum tokens.

Often, however, ICO-funded applications launch tokens which have the ultimate goal of eventually
being disconnected from the main Ethereum blockchain, and/or which aim to create an ecosystem
independent of Ethereum. In such cases, the token creator would typically also offer its users a
token-specific wallet application. However, in order for anyone to use this application to transfer his
tokens, the token-specific wallet needs to also support Ether as a currency. This leads to confusion
for less tech-savvy investors, and makes the user experience of migrating the token to a different
smart contract platform — e.g. a different smart-contract-enabled blockchain or a blockchain
developed by the token creator — less intuitive. We note that such migration is becoming more
relevant as more smart-contract-enabled blockchains are released, and as the gas price for Ethereum
smart contracts rises to a point where its use makes the corresponding tokens less attractive.

In this work, we propose a design methodology and formal treatment of Ethereum tokens
which allow their creator to provide the option to its users of making transfers without the need
to hold Ether in their wallet, a mechanism which we term Etherless Ethereum Tokens (in short,
EETs). The high-level idea is simple: allow the token creator to take on the cost (i.e., gas) for the
token transaction, and have the token contract perform an on-the-fly exchange of token-to-ether
at a pre-agreed rate, giving the user the experience of a native token. As one might expect,
properly specifying, implementing, and proving such a protocol secure is a challenging task; in
particular, it requires a model for token-enabled ledgers, which we provide and believe can be a
result of independent interest. We remark that, as a concept, etherless transactions have been
frequently discussed within the Ethereum community for several years, often under the term meta
transactions [Gri18 , AB20 , gsn]. However, to our knowledge, our work is the first formal treatment
and security analysis of the concept.

At a less technical level, we believe that in addition to offering a more intuitive, closed-economy
user experience, such a mechanism also provides assurance to the original ICO investors that the
token creator indeed expects value on the token, as he is willing to make marginal exchanges.
Nonetheless, the study of this market effect is outside the scope of our current work. We note
in passing that despite being explicitly implemented on the Ethereum blockchain, our design is
generic and can be ported to any smart-contract-enabled blockchain platform, and thus can enable
transferring the tokens from one blockchain to another.

We have implemented our EET design, and we demonstrate how it outperforms existing generic
systems that enable etherless transactions, such as the Gas Station Network (GSN) [gsn], both in
terms of simplicity of deployment and in terms of gas usage. We also compare such a deployment

1There are a number of legal issues regarding ICO’s — in particular, how to hold the token creator to his promise
and how to avoid scamming attacks — and there are technological advances that allow us to circumvent them; these
topics are outside the scope of this paper.

2

with how a native token could perform on Ethereum and demonstrate that the overhead makes the
flexibility which is offered by smart-contract-based tokens a reasonable compromise for the moderate
increase in the required gas it incurs over what a native token would require.

2 Our Contributions and Related Work

Our contribution is threefold:

A. A universally composable (UC) [Can01] treatment of ledgers supporting a broad class of smart
contracts, which includes token contracts (e.g. ERC 20).

B. A design and UC security analysis of EETs.

C. An implementation of our EET, benchmarks, and comparison with alternative approaches.

In the following, we expand on the key components of the above contributions, and put our
results in perspective with existing literature and systems.

2.1 Smart-Contract-Enabled Transaction Ledgers

The first analyses of blockchain protocols showed that they satisfy certain desirable properties, such as
common-prefix (also referred to as safety or consistency), chain-growth (also referred to as liveness),
chain quality, etc [BMTZ17 , BGK+18 , GKL15 , PSs17 , GKL17 , DPS19 , PS17]. Badertscher et
al. [BMTZ17] put forth the first universally composable treatment of the bitcoin backbone (i.e.
consensus layer) by introducing a UC functionality, called Fledger, which captures the interface that
Bitcoin offers to external applications, rather than the way in which this interface is implemented.
At a very high level, Fledger takes as input transactions which are validated by means of a validation
predicate Validate. All valid transactions are then stored into a data structure denoted as state.
The adversary has full control over the order in which transactions appear in state, and can define
(in a limited way) the portion of the state that each party can access. However, once something is
added to the state, it cannot be removed (not even by the adversary).

We note that the advantage of proving security in UC is that it enables use of the ledger as an
ideal primitive, and ensures that replacing this ideal ledger primitive by its implementation—the
corresponding blockchain—does not compromise the security of primitives that make ideal calls to
the ledger; nor does it affect the security of systems and protocols that run alongside the ledger. This
property is often referred to as universal composability, and it allows for a constructive approach
to cryptographic/security protocols, analogous to how programming uses libraries with fixed APIs
without worrying about their implementation. Following that work, a number of papers on the
design and analysis of blockchains have adopted UC as the model to prove their security and have
devised systems implementing variants of the above ledger [BGK+18 , KKKZ19].

UC [BMTZ17] has also been leveraged to describe how Fledger may be used together with a
digital signature scheme to derive a transaction ledger, abstracting the cryptocurrency aspects of
Bitcoin in addition to its backbone guarantrees.2 This was done by relying on digital signatures
where, to ensure composability, the ideal adversary is allowed to choose the signing and verification
keys (cf. [KZZ16]).

2Unlike transaction ledgers, the bare Fledger captures the consensus layer, and does not interpret its contents as
transactions which need to be verified with respect to whether or not they are spending some already spent coin.

3

2.1.1 The Transaction Ledger

In this paper we consider a simpler, more UC-friendly approach that abstracts away the public-
key infrastructure (PKI), analogous to how the UC signatures functionality [Can03] would. In a
nutshell, instead of having Validate rely on a specific signature scheme, we define a new transaction
ledger FT-Ledger that internally runs Fledger and also emulates existentially unforgeable signatures,
similar to [Can03]. FT-Ledger accepts transactions with the format tx := (v, addri, addrj , fee) where
v represents the number of coins involved in the transaction, fee is the fee that the issuer of the
transaction is willing to pay, and addri and addrj represent the wallet addresses of the sender the
receiver respectively. Upon receiving a transaction, FT-Ledger checks the state of Fledger to ensure
that the wallet address addri has at least v + fee coins and that the fee is sufficient, i.e. that
fee ≥ f(tx), where f is function specified in the description of FT-Ledger that determines the fee
that needs to be payed for the input transaction.

We note that it is straightforward to adapt the analysis of the transaction ledger [BMTZ17]—
using a specific existentially-unforgeable signatures scheme—to prove security of our ledger for a
standard Bitcoin-style blockchain protocol, such as bitcoin or the proof-of-work-based version of
Ethereum. Nonetheless, as we shall see, this makes it more intuitive to add cryptocurrency-relevant
features to the ledger–such as etherless tokens.

2.1.2 Adding Smart Contracts

The functionality FT-Ledger is sufficient to capture the base functionality of cryptocurrencies, but it
does not support smart contracts. To achieve that, we define an augmented functionality, which
we denote FTSC-Ledger. FTSC-Ledger internally manages FT-Ledger and a functionality FSC that
abstracts a smart contract: FSC maintains its own state cstate—corresponding to the state of a
(virtual) machine VM 3

 —and is parametrized by a function fCFee, that takes as input the query to
the contract (which contains also the fee that the caller is willing to pay to run the contract), and
checks whether or not the fee is enough for the VM to process the input and update its state.

FLedger

SigT

FT-Ledger FSC

VMSC

FTSC-Ledger

Figure 1: The Smart-Contract-Enabled Transaction Ledger Functionality FTSC-Ledger

The construction of FTSC-Ledger from its components is illustrated in Figure 1 . FTSC-Ledger

accepts either standard transactions in the native currency E (that are forwarded to FT-Ledger) or

3We do not specify a model of computation for describing the VM; one can use any such model, e.g. Turing
machines, RAMs, etc.

4

inputs/transactions that are intended as queries to the contract FSC. Upon receiving such a query
for the smart contract, FTSC-Ledger forwards the query to FSC, which checks if the fee specified
in the query is sufficient to update its state, and if so it updates cstate by running the VM on
input the given transaction and the state of FT-Ledger (which is handed to FSC by FTSC-Ledger)4

 ,
and returns the updated state (including the received input) to FTSC-Ledger. FTSC-Ledger then
pushes the query and the updated state cstate to the state of FT-Ledger (by submitting it as a
transaction).

Consistently with the Ethereum smart contract mechanism, FSC charges the contract caller
only for the fee that is required to update its state, even if the contract’s caller specified a higher
fee. Moreover, if a contract caller did not specify a fee high enough to conclude an update on the
contract’s state, the fee will be deducted from the caller account, and the input used to query the
contract will appear in the state of FT-Ledger, though no change to the contract’s state will be
committed.

2.1.3 Tokens as Smart Constracts

Given the above smart-contract-enabled ledger, it is straightforward to capture a smart contract
for creating a standard (e.g. ERC 20 [VB15]) Ethereum token by instantiating FTSC-Ledger with
contract functionality that stores and updates the state (balances for different addresses) of such a
token. Note that this results in a token-enabled transaction ledger FToken

ledger which allows parties
both to issue transactions in the native coin E, and to exchange tokens T.

In more detail, FToken
ledger instantiates FTSC-Ledger with a token-contract FT

SC which works as
follows: FT

SC collects all token transactions, and upon receiving a read-request returns only the
valid token transactions. Similarly to the way the ledger FT-Ledger deals with native transactions,
a token transaction consists of the components (v, addrTi , addr

T
j), where v is the number of tokens

involved in the transaction, and addri and addrj represent the token wallet addresses of the sender
and the receiver respectively. Furthermore, FT

SC internally emulates an existentially-unforgeable
signature scheme related to the token which is independent of the one that is used in FT-Ledger.5

We observe that there is no fee appearing in the description of the token transaction. The reason
is that the fee will be part of the query to the contract, and it is expressed in the native currency E.
Indeed, the issuer of the token transaction, in order to query the contract FT

SC, needs to possess
coins of type E.

2.1.4 The EET Functionality

As discussed in the introduction, the above contract implementation of tokens—which has become
a standard for Ethereum—has the undesireable property that a party who wants to send tokens
requires coins of type E to do so, coins which they might not have. In this work, we introduce EETs
to allow the token creator to offer, as a service, to take on the cost of the token transaction, in
exchange for tokens at a pre-agreed E-to-T rate. This is captured by tweaking the token-enabled
ledger FToken

ledger toward an EET-enabled ledger, denoted as FEET
Ledger, which supports an additional

input called submit-delegation. Upon receiveing submit-delegation, FEET
Ledger allows the user

to issue a token transaction which pays a fee, in T, to a special party, called intermediary (that we

4Note that FTSC-Ledger also keeps track of the history of the state of FT-Ledger.
5Note that we cannot generically use the same signature emulator procedure of FT-Ledger, as a token address is

typically overloaded to also be an Ethereum address.

5

denote with M), in exchange for the intermediary submitting the token transaction to FT
SC and

paying the E needed for the token contract to process the transaction.

2.2 EET Construction and Analysis

To realize FEET
Ledger we rely only on FT-Ledger and signatures. In particular, any party that wants to

issue a token transaction and has enough coins of type E to cover for the fee can issue a transaction
tx = (0, addri, 0

λ, (aux, σ), fee), where aux = (v, addrTi , addr
T
j) and σ is a signature of aux that verifies

under addrTi .
6

In a nutshell, tx is a standard transaction for FT-Ledger that contains in its payload the
information related to the token transaction properly signed by the sender. By definition, if the
fee fee is high enough, then tx will become part of FT-Ledger’s state. Let addrTM be the token
wallet address of M. To delegate a transaction, the sender Pi creates a special token transaction
aux = ([v, del-fee], addrTi , [addr

T
j , addr

T
M]) (where del-fee is a fee expressed in T that parametrizes

FEET
Ledger) and signs it to obtain σ. aux is the atomic representation of two token transactions: the

first moves v tokens from addrTi to addrTj , and the second moves del-fee from addrTi to addrTM. M,
upon receiving (aux, σ) submits a transaction to FT-Ledger that contains (aux, σ) in its payload. If
a party wants to obtain only the valid token transaction, they need to filter out the payload of the
transactions stored in FT-Ledger’s state, and output only the valid transactions. Similarly to what
we have described above, a token transaction (v, addrTi , addr

T
j) is valid if the sum of tokens with

receiver address addrTi minus the sum of tokens in the state with sender address addri (including the
fees) is greater than or equal to v.

2.3 Implementation, Benchmarks, and Comparisons

The Gas Station Network (GSN) is a relatively recent development in the Ethereum community that
shares some of our goals, but a broader scope. In particular, the GSN aims to create a decentralized,
trustless network of relay servers which can pick up the transaction fees for any GSN-enabled
contract.

The GSN is built around a RelayHub smart contract that:

1. Records available relay servers and their service fees,

2. Keeps ether deposits from GSN-enabled contracts for repayment of relay servers,

3. Facilitates the interaction between relays and GSN-enabled contracts, and punishes any
detected bad actors.

This is in contrast to our mechanism, in which there is no separate smart contract to manage the
delegation of transactions. Additionally, each GSN-enabled contract must interact with a separate
paymaster contract, which is responsible for performing any action needed to extract or verify
payment from users. Paymaster contracts may be written generically and shared between multiple
contracts, or purpose-written for particular contracts.

The outward functionality of the GSN is similar to our mechanism: a gasless user submits a
transaction to an intermediary relay server instead of directly to the blockchain, and the relay
submits the transaction on the user’s behalf, receiving an ether repayment from the target contract.

6In the protocol, the addresses become verification keys for a signature scheme.

6

The target contract, in turn, is allowed to extract any payment it wishes from the user, e.g. tokens.
The primary difference is in the complexity of implementation and development; where the GSN
aims to be fully generic and decentralized, and admits a great deal of complexity in service of that
aim, we have endeavored to keep our efforts very self-contained in order to ease implementation,
simplify formal analysis, and keep operational costs manageable.

As is common in designs that aim for maximally generic functionality, the GSN pays for
its genericity with increased complexity. This complexity manifests both in development effort —
anecdotally, we found setting up a testing environment for a GSN-enabled contract to be significantly
more cumbersome than for other contracts — and in gas consumption. Our experiments indicate
a 4-5x overhead in gas consumption when using the GSN as opposed to using our EET contract.
(Note that gas is pretty much the only relevant measurable unit of comparison. Other metrics —
e.g. running time, settlement time, etc. — are either very difficult to test in a controlled way, are
irrelevant for a contract which aims only to facilitate token exhange, or are negligible compared to
other confounding factors.) We note in passing that, to our knowledge, there is no formal security
analysis of the GSN, making our work the first rigorous treatment of the etherless token paradigm.

Remark (Contract-based vs Native Tokens). Recently, the blockchain/cryptocurrency community
has been entertaining the idea of making tokens native to the cryptocurrency chain. For example,
[Kia] outlines a plan to introduce such a mechanism, which would allow a user to post a token
transaction along with a token-to-native exchange rate he is willing to pay; any miner/minter who
agrees with the rate can pick this up and create a transaction in which they “foot the bill” in terms
of native-currency fees, in exchange for tokens at the proposed exchange rate. This clearly yields an
advantage in terms of fees needed for the transaction, but it does come at a cost: (1) The token
functionality is limited to what is hardwired on the token chain, and is therefore far less flexible
than a smart-contract-based solution. For example, it is unclear if or how such a solution would
allow the use of amortization/batching to save on bulk transactions. (2) If one adopts the natural
“pay-per-use” principle for fees — i.e. you pay more for a more complex transaction — as Ethereum
does, then adding this functionality would increase the cost of all transactions, including those
that only involve the native cryptocurrency. Although this increase is expected to be minimal, it is
unclear how the implicit auction for the submitted token transaction created by such a mechanism
would affect fees. In Appendix A , we have included an attempt to estimate the overhead this might
incur in a hypothetical implementation on Ethereum, and compare it with using a smart contract.
We note that in the absence of a (platform or blockchain supporting an) actual implementation
of native tokens, the relevant experiments are somewhat artificial and speculative. Thus, we do
not consider these experiments an important part of our contributions (and we defer them to
the appendix). Nonetheless, we do believe they give an interesting perspective to the discussion
on native tokens, and a pointer for experiments once such a functionality is implemented on a
mainstream blockchain.

3 Preliminaries

We use “=” to denote equality of two different elements (i.e. a = b then...) and “←” as the
assignment operator (e.g. to assign to a the value of b we write a← b). A randomized assignment

is denoted with a
$←− A, where A is a randomized algorithm and the randomness used by A is not

explicit. We call a function ν : N→ R+ negligible if for every positive polynomial p(κ), there exists
a κ0 ∈ N such that for all κ > κ0 : ν(κ) < 1/p(κ).

7

3.1 Signatures

Definition 3.1 (Signature scheme [Can03]). A triple of ppt algorithms (Kgen, Sign, Ver) is called
a signature scheme if it satisfies the following properties.

Completeness: For every pair (s, v)
$←− Kgen(1λ), and everym ∈ {0, 1}λ, we have that Pr[Ver(v,m, Sign(s,m)) =

0] < ν(λ).

Consistency (non-repudiation): For any m, the probability that Kgen(1λ) generates (s, v) and
Ver(v,m, σ) generates two different outputs in two independent invocations is smaller than
ν(λ).

Unforgeability: For every ppt A, there exists a negligible function ν, such that for all auxiliary
input z ∈ {0, 1}? it holds that:

Pr[(s, v)
$←− Kgen(1λ); (m,σ)

$←− ASign(s,·)(z, v)∧
Ver(v,m, σ) = 1 ∧m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A from the oracle
Sign(s, ·).

4 The Model

Following the recent line of works proving composable security of blockchain ledgers [BMTZ17 ,
BGK+18], we provide our protocols and security proofs in Canetti’s universal composition (UC)
framework [Can01]. In this section we discuss the main components of our real-world model
(including the associated hybrids). We assume that the reader is familiar with simulation-based
security and has basic knowledge of the UC framework. We review all the aspects of the execution
model that are needed for our protocols and proof, but omit some of the low-level details and refer
the interested reader to relevant works wherever appropriate.

We now recall the mechanics of activations in UC. In a UC protocol execution, an honest party
(ITI) gets activated either by receiving an input from the environment, or by receiving a message
from one of its hybrid functionalities (or from the adversary). Any activation results in the activated
ITI performing some computation on its view of the protocol and its local state, and ends with
either the party sending a message to some of its hybrid functionalities, sending an output to the
environment, or not sending any message at all. In any of these cases, the party loses the activation.7

We denote the identities of parties by Pi, i.e. Pi = (pidi, sidi), and call Pi a party for short. The
index i is used to distinguish two identifiers, i.e., Pi 6= Pj , and otherwise carries no meaning. We
will assume a central adversary A who gets to corrupt miners and might use them to attempt to
break the protocol’s security. As is common in (G)UC, the resources available to the parties are
described as hybrid functionalities.

Our protocols are synchronous (G)UC protocols [BMTZ17 , KMTZ13]: parties have access to
a (global) clock setup, denoted by Fclock. and can communicate over a network of authenticated
multicast channels.

7In the latter case the activation goes to the environment by default.

8

We adopt the dynamic availability model implicit in [BMTZ17] which was fleshed out in [BGK+18].
We next sketch its main components: All functionalities, protocols, and setups have a dynamic
party set. I.e., they all include special instructions allowing parties to register and deregister, and
allow the adversary to learn the current set of registered parties. Additionally, global setups allow
any other setup (or functionality) to register and deregister with them, and also allow other setups
to learn their set of registered parties (we refer to Appendix B for the formal treatment).

We conclude this section by elaborating on the main hybrid functionality used in our paper. For
self containment we have included formal descriptions of the ideal functionalities we consider in
Appendices C and D .

4.1 The functionality Fledger.

The main functionality (in fact, a global setup) we rely on is a cryptographic distributed transaction
ledger. We use the (backbone) ledgers proposed in the recent literature [BMTZ17 , BGK+18] in
order to describe a transaction ledger and its properties. As proved in [BMTZ17 , BGK+18], such a
ledger is implemented by known permissionless blockchains based on either proof-of-work (PoW), e.g.
Bitcoin, or poof-of-stake (PoS), e.g. Ouroboros Genesis. The ledger stores an immutable sequence
of blocks called state—each block containing several messages typically referred to as transactions
and denoted by tx—which is accessible from the parties under some restrictions discussed below. It
enforces the following basic properties that are inspired by [GKL15 , PSs17]:

• Ledger growth. The size of the ledger’s state should grow—new blocks should be added—as
the rounds advance.

• Chain quality. It is guaranteed that a percentage of honest blocks are created in a sufficiently
long sequence of blocks.

• Transaction liveness. Old enough (valid) transactions are included in the next block added to
the ledger state.

We next give a brief overview of the ledger functionality Fledger proposed in [BMTZ17 , BGK+18],
focusing on the properties of Fledger that are relevant for the understanding our results. Along the
way we also introduce some useful notation and terminology. We refer the reader interested in the
low-level details of the ledger functionality and its UC implementation to Figure 11 in Appendix D

and [BMTZ17 , BGK+18]. We note that with minor differences related to the nature of the resource
used to implement the ledger, PoW vs PoS, the ledgers proposed in these works are identical.

The functionality Fledger is parametrized by three main functions Validate, ExtendPolicy and
Blockify. At a high level, anyone (honest miner or the adversary) may submit a transaction to
Fledger. The trasaction is validated by means of a filtering predicate Validate, and if it is found to
be valid it is added to a buffer that we denote buffer. Taking a peak at the actual implementation
of the ledger, this buffer contains transactions that, although validated, are either not yet inserted
into a valid block, or are in a block which is not yet deep enough in the blockchain to be considered
immutable for an adversary. The adversary A is informed that the transaction was received and is
given its contents. Periodically, Fledger does the following: 1) fetches some of the transactions in
the buffer under the influence of the adversary (more on this will follow), 2) modifies them by means
of a procedure Blockify, 3) creates a block including the output of Blockify, and 4) adds this block
to its permanent state, denoted as state. state is a data structure that includes the sequences

9

of blocks that the adversary can no longer change. (In [GKL15 , PSs17] this corresponds to the
common prefix.) Any miner or the adversary is allowed to request a read of the contents of the state
and, every honest miner will eventually receive state as its output.8

To enforce transaction liveness and chain-quality, Fledger relies on the function ExtendPolicy.
At a high level, ExtendPolicy makes sure that the adversary cannot create too many blocks with
arbitrary (but valid) contents (chain quality) and that if a transaction is old enough, and still valid
with respect to the actual state, then it is included into the state. In more detail, ExtendPolicy
takes the current contents of the buffer, along with the adversary’s recommendation NxtBC, and
the block-insertion times vector τstate. The latter is a vector listing the times when each block was
inserted into the state. The output of ExtendPolicy is a vector including the blocks to be appended
to the state during the next state-extend time-slot. Each of these blocks is then given as input to
Blockify.

We conclude the discussion by providing a high-level description of the main input command of
Fledger used in our protocols/definitions, and refer to Appendix D for a detailed description of the
functionality.

• The input (read, sid) is used to request the content of the ledger’s state. Concretely, upon
receiving (read, sid) from some party (or the adversary on behalf of a corrupted party), the
ledger returns (a prefix of) state to the caller.

• The input (submit, sid, tx) is used to request that a transaction tx be added to the buffer.
That is, upon receiving a (submit, sid, tx) message from any party (or the adversary), the
ledger adds the transaction tx to the buffer buffer. If the validation predicate Validate, on
input state, buffer, tx outputs 1, then tx will be included in state.9 The time required
for the transaction to be part of state and visible to all honest parties who query Fledger

depends on the transaction liveness parameter defined in ExtendPolicy.

5 Define and Instantiate a New Cryptocurrency from Fledger

The ledger Fledger does not itself realize a cryptocurrency. We use E to denote the symbol of the
coins that will be maintaned by our ledger FT-Ledger, and show how to realize FT-Ledger from
Fledger

The validation predicate of Fledger, in this case, is defined to always output 1, and it is
FT-Ledger’s responsibility to make sure that only valid transactions are submitted to Fledger.
FT-Ledger also generates and manages the wallets of the parties. A transaction supported by
FT-Ledger consists of five main components (v, addri, addrj , aux, fee), where v represents the amount
of coins of type E, addri is the sender’s wallet address, addrj is the receiver’s wallet address, aux is
a payload, and fee represents the fee. At a high level, a transaction is valid if the fee fee is high
enough and if the amount of coins stored in the wallet with address addri is at least v + fee. How
high the fee should be in order for the transaction to be considered is specified by a function f

8As observed in [BMTZ17], it is not possible to guarantee with existing constructions that at any given point in
time all honest parties see exactly the same state (blockchain) length, so each party may have a different view of the
state which is defined by the adversary. However, the adversary can restrict the view of the honest parties only by a
bounded number of blocks. The parameter that defines such a bound is called windowSize.

9We have the guarantee that any transaction (either generated by a malicious or honest party) that manages to go
in buffer will eventually be included in state.

10

that is part of the description of FT-Ledger. f takes as input the transaction tx and computes the
required fee. In the case where the output of f is greater than fee, the transaction is immediately
discarded. Otherwise, FT-Ledger replaces fee with the output of the function and submits it. This
captures the fact that FT-Ledger charges the issuer of the transaction only for the cost of processing
the transaction, even if the transaction specifies a higher fee.

In more detail, each party has an associated wallet address, and different parties have different
wallet addresses. FT-Ledger manages a table T that, for each party Pi, stores Pi’s wallet address
addri. We initialize FT-Ledger with a party P0 which initially holds all the coins (e.g., V coins)
of type E10

 . To do so, FT-Ledger generates an address addr0 and sends (submit, sid, tx) to the
wrapped Fledger with tx := (V, 0λ, addr0,⊥, 0), where V is the initial amount of coins held by Pi
and 0λ is a special address used only for the initialization.

Upon receiving a registration request from a party Pi, FT-Ledger creates a new wallet address
addri and adds (addri, Pi) to the table T .
FT-Ledger, upon receiving (submit, sid, tx) from a party Pi, performs the following steps.

• Parse tx as (v, addri, addrj , aux, fee) and continue if and only if (Pi, addri) ∈ T and fee ≥ f(tx).

• Get state and buffer of Fledger and check that the balance of transactions to/from the
wallet address addri is at least v′ ≥ v + f(tx) coins. That is, the sum of coins with receiver
address addri minus the sum of coins in the state with sender address addri (including the
fees) is greater than or equal to v+ f(tx). If this is not the case, deem the transaction invalid;
otherwise, submit tx to Fledger with the fee f(tx).

FT-Ledger is also parametrized with the identifier of an ideal functionality Ftrap. Whenever
FT-Ledger receives the command (submit-trapdoor, sid, tx, Pi) from Ftrap, it forwards the trans-
action tx on behalf of Pi to Fledger without checking anything about tx in terms of balances and
fees. This simple mechanism allows FT-Ledger to interact with other ideal functionalities when
required. This becomes particularly helpful when we want to enhance the behavior of FT-Ledger

with smart contracts, and in the next section we show how to do that.
For all the other input commands, FT-Ledger just acts as a proxy between Fledger and its

external interface.
To conclude the description of FT-Ledger, we need to specify how Blockify works. Blockify is

a simple procedure that takes as input the next block to be added to the state, and outputs a
concatenation of the transactions contained in the block. This means that the state of Fledger

(which will correspond also to the state of FT-Ledger) is represented by just list of transactions.
We do not specify how ExtendPolicy works, as any realization of ExtendPolicy can be used in our
formalization. We provide a formal description of FT-Ledger in Figure 2 .

We note that FT-Ledger does not specify who gets the fee, but this would not be difficult to
do since Fledger keeps track of the party that ganerated each block. Hence, it would be easy to
modify FT-Ledger to keep track of which party gets the fees of the transactions that constitute a
block. Another simplification we make is to consider fixed relation between the cost required to
execute a transaction (or call a contract as we will see) and the complexity of the transaction (or
the contract call). In system like Ethereum this is not the case, as the fee that a party pays depends
on the complexity of the transaction (which determines the amount of gas) and on the gas price.

10It is easy to intialize the functionlity with an arbitrary number of parties that hold an initial amount of coin. To
simplify the description on the functionality, we decided to use only one party in this phase.

11

FT-Ledger

Initialization

1. Parameters: the trapdoor functionality Ftrap and the fee function f .

2. Send (register, P0) to A.

3. Upon receiving addr0 from A, if addr0 = 0λ, then ignore the command and stop, else add (P0, addr0) to T .

4. Initialize the functionality Fledger with a registered party P0.

Registration

• Upon receiving (register) from a party Pi, send (register, Pi) to A. Upon receiving addri from A, if there is
already an entry (Pj , addri) ∈ T for some Pj ∈ P, then ignore the command, else add (Pi, addri) to T), register
Pi to Fledger, and send (addri) to Pi.

Transactions

• Upon receiving (submit, sid, tx) from a party Pi, parse tx as (v, addri, addrj , aux, fee). If there exists an entry
(Pi, addri) in T and fee ≥ f(tx), then continue with the following steps, else ignore the command.

– Get state and buffer from Fledger, initialize balance← 0 and for each tx? in buffer and in state.

- If tx? = (v?, addri, addr, aux?, fee?), then compute balance← balance− v? − fee?.

- If tx? = (v?, addr?, addri, aux?, fee?), then compute balance← balance + v?.

– If balance ≥ v + f(fee), then send (submit, sid, (v, addri, addrj , aux, f(fee))) to Fledger on behalf of Pi.

Trapdoor input Upon receiving (submit-trapdoor, sid, tx, Pi) from Ftrap, send (submit, sid, tx) to Fledger on
behalf of Pi.

Getting state and other commands

• Upon receiving (read, sid) from Pi, send (read, sid) to Fledger. Upon receiving (read, sid, state), forward
(read, sid, state) to Pi

• Upon receiving any other input from an honest party Pi ∈ P (resp. from A), forward it to Fledger on behalf of
Pi (resp. A). Upon receiving a reply to a command sent on behalf of a party Pi (resp. from A), forward it to Pi
(resp. A).

Figure 2: This ledger allows exchanging coins of type E between parties.

This means that how fast and if a transaction will be executed depends on the product of gas price
and amount of required gas. We could modify FT-Ledger (and the other functionalities we will
consider) to accommodate for an additional mechanism that allows the adversary communicating to
the functionality the average gas price, in such a say that we can use this gas cost to decide whether
to accept or reject a transaction.

However, since these aspects are not relevant for our results, to simplify the description of our
already involved ideal functionalities, we have decided to not include such mechanisms in our model.

6 How to handle smart-contracts

In this section we define the functionality FTSC-Ledger that, in addition to FT-Ledger, captures a
ledger that enables a large class of smart contracts. FTSC-Ledger internally runs FT-Ledger and
a smart contract (formally defined by means of an additional ideal functionality). The contract
has a state that can be updated by any party that can afford to pay a fee (that depends on the
contract and on the input). After any valid update, the new contract state is pushed onto the
FT-Ledger’s state. As we have alluded, in order for the contract to freely interact with FT-Ledger,
the parameter Ftrap of FT-Ledger is set to be equal to the identity of FTSC-Ledger, which will act
as a bridge between the contract functionality and FT-Ledger. To simplify the description of the

12

functionality, we describe the case where only one smart contract is running; however, it is easy to
extend the functionality to the case where multiple smart contracts are running at the same time.

A smart contract FSC is a small functionality managed by FTSC-Ledger that maintains its own
state cstate. The behavior of FSC is fully determined by three procedures: fCFee, ffilter and ftrans.

• fCFee (the contract fee function) takes as input the contract state cstate, the ledger state of
FT-Ledger, a transaction, (which represents the input received by the contract’s caller) and the
fee specified in the input transaction. If the fee indicated is sufficient to update the contract
state, then fCFee returns the actual fee required to run the contract (which could be less than
the fee indicated by the contract’s caller). If the submitted fee is not sufficient, then the
function returns ⊥.

• ftrans (the state transition function) takes as input the payload of the input transaction,
FT-Ledger’s state, and the contract state cstate, and returns a new contract state updated
according to its inputs.

• ffilter (the filtering function) takes as input 1) the view that the contract’s caller has of
FT-Ledger’s state statei and 2) the contract state, and returns an arbitrary sub-set of the
information contained in statei.

The functionality FTSC-Ledger is also parametrized by Fee, which represents the minimum
fee that a party should pay in order to query a contract (to update the contract the fee might
be higher). In more detail, FTSC-Ledger accepts transactions with the following format: tx :=
(v, addrEi , addr

E
j , aux, fee, type), where type ∈ {E,SC} denotes whether the transaction should be

treated as a normal transaction or as a call to the contract. In particular, FTSC-Ledger checks
whether type = E or type = SC. In the former case, FTSC-Ledger removes the field type from the
transaction and forwards it to FT-Ledger. In the latter, FTSC-Ledger checks that fee ≥ Fee and that
the issuer of the transaction has at least fee coins of type E in its wallet11

 . If this check is successful,
then FTSC-Ledger forwards the transaction and the current ledger state to FSC, which does the
following: It uses fCFee to check whether the fee specified in tx minus the fee required to query the
contract (denoted with Fee) would be sufficient to update the contract state using the input aux. If
fCFee returns ⊥, then the contract returns (ko, cstate, fee).

Else, if fCFee returns feeSC, FSC computes the updated contract state cstate by running ftrans

on input the payload of tx (denoted with aux), the ledger state, and the contract state, and returns
(ok, cstate, feeSC + Fee).
FTSC-Ledger upon receiving (FlagC, cstate, actualfee) from FSC, constructs and sends to FT-Ledger

the transaction txE := (0, addrEi , 0
λ, (FlagC, aux, cstate,FSC.id), actualfee) using the command

submit-trapdoor, where we recall that aux is the payload of tx, FlagC ∈ {ok, ko}, and FSC.id is
the identifier of SC.

We note that the transaction txE is a standard FT-Ledger transaction that contains in its payload
the updated state of the contract (or the old state if the fee was not sufficient), the input used to
eventually update the contract’s state, and the fee actualfee such that:

• if FlagC = ko (i.e. the fee specified by the contract’s caller was not sufficient to update the
contract state) then actualfee = fee

11FTSC-Ledger can do this check since it has full access to FT-Ledger’s state and buffer.

13

• if FlagC = ok (i.e. fee was sufficient to update the contract’s state) then actualfee ≤ fee.

Note that it might be that actualfee < fee in the case where the fee required to update the
contract state is less that fee. That is, FTSC-Ledger only charges the contract caller exactly for the
fee required to run the contract. When fee is insufficient to complete execution of the contract, the
issuer of the transaction pays the full amount of fee even though no change to the contract state is
committed. (This is consistent with Ethereum and other blockchains that support Turing-complete
smart contracts.) We refer to Figure 3 for the formal description of FTSC-Ledger and for the
abstraction of FSC.

FTSC-Ledger

Parameters. Minimum fee Fee for contract calls.
Initialization. Initialize the contract functionality FSC with identifier FSC.id, and FT-Ledger with Ftrap = FTSC-Ledger.id.
Registration

• Upon receiving (register) from a party Pi register Pi to FT-Ledger thus obtaining addrEi and send addrEi to Pi.

Transactions

• (Standard transaction). Upon receiving (submit, sid, tx) from a party Pi, parse it as (v, addrEi , addrEj , aux, fee, type).

If type = E, then send (v, addrEi , addrEj ,⊥, fee) to FT-Ledger on behalf of Pi.

If type = SC and fee ≥ Fee, then:

– Get the state and the buffer of FT-Ledger and check if Pi has at least Fee coins of type E. If this is not the
case then reject the command. Otherwise, continue as follows.

– Define tx′ := (v, addrEi , addrEj , aux, fee).

– Send (submit, sid, Pi, tx
′, state) to FSC.

– Upon receiving (FlagC, cstate, actualfee) from FSC, define txE :=
(0, addrEi , 0

λ, (FlagC, aux, cstate,FSC.id), actualfee) and send (submit-trapdoor, sid, txE, Pi) to FT-Ledger.

Getting states

• Upon receiving (read, sid, type) from Pi forward the command (read, sid) to FT-Ledger on behalf of Pi.

• Upon receiving state from FT-Ledger, if type = E then:

– Initialize an empty list stateE.

– For each tx ∈ state such that tx = (v, addrEi , addrEj ,⊥, fee), add tx to stateE.

– Return stateE.

If type = SC, then send (filter, sid, state) to FSC, and send to Pi what FSC returns.

FSC abstraction

• FSC is initialized with the fee function fCFee, the state-transition function ftrans, the filtering function ffilter, and an
initial contract state cstate.

• Upon receiving (submit, sid, Pi, tx
′, state):

– Parse tx′ as (v, addrEi , addrEj , aux, fee).

– Check if (fee− Fee) is sufficient to run the contract, computing feeSC ← fCFee(cstate, state, aux, fee− Fee)
(i.e. feeSC represents the actual fee required to run the contract or ⊥ if fee is not sufficient to update the
contract’s state).

– If feeSC = ⊥, then return (ko, cstate, fee).

– Otherwise, compute cstate← ftrans(aux, state, cstate) and return (ok, cstate, feeSC + Fee)

• Upon receiving (filter, sid, state), return ffilter(state, cstate).

Figure 3: This ledger tolerates any type of contract abstracted by FSC.

14

FT
SC functions

Initialization. The contract is parametrized by the functions fTCFee, ftrans, and fTfilter described below. cstate consists of
the following components:

• Constants: y, addrT0, Fee, identifier FT
SC.id.

• Empy set token-set.

Functions and helper procedures
ftrans(auxE, state, cstate)

• Add , auxE to token-set of cstate and return the updated cstate.

fCFee(cstate, state, tx, fee)

• Define and initialize tfee← 0.

• Parse tx := (0, addrEi , 0
λ, auxE, fee).

• Parse txT as (v, addrTi , addrs, id) and compute tfee← tfee + Fee|v|.
• If tfee > fee, then return ⊥; otherwise, return tfee.

ffilter(cstate, state)

• Initialize the empty list stateT and set temp-buffer← token-set.

• For each txE = (0λ, addrEi , 0
λ, auxE, feeE) in state where auxE = (ok, (v?, addr?i , addrs?, id?i), cstate?,FT

SC.id):

– Define aux := (v?, addr?i , addrs?, id?i).

– If verify(aux, stateT) = 1 and aux ∈ temp-buffer, then add aux to stateT and remove aux from temp-buffer.

• Return (read, sid, state).

verify(auxE, stateT)

• Parse auxE as (vT, addrTi , addrs, idTi)

• If addrT0 = addrTi , then initialize balance← y; otherwise, balance← 0.

• For each tx? = (v?, addr?i , addrs?, id?i) in stateT:

- If addr? = addrTi , then compute balance← −
∑
k v?[k]

- For each k such that addrs?[k] = addrTi , compute balance← +v?[k].

• If
∑
k vT[k] ≥ balance then return 1 else return 0.

Figure 4: Smart contract for the creation of a new token. The fee required to run the contract is
computed by multiplying the number of token transactions encoded in the payload of the input tx
and Fee.

7 Our ideal functionality FEET
Ledger

In this section we can finally define the functionality FEET
Ledger. FEET

Ledger internally runs FTSC-Ledger,
parametrized by a contract FT

SC. FT
SC maintains a token T, and allows parties to issue transactions

with respect to such a token. At a high level, any party that has some tokens can sent it to another
party by querying the contract FT

SC. However, invoking the contract requires payment of a fee
in the native currency E, even if the transaction involves only tokens. To mitigate this problem,
our functionality allows a sender Pi to send tokens to another party Pj , even if Pi does not have
native coins. In particular, the sender will pay a fee of at least del-fee tokens T to a special party M,
called the intermediary, and M will pay the fee in E on the behalf of the sender (del-fee is a fixed
amount of tokens that parametrizes our functionality). The functionality guarantees that either the
transaction by Pi becomes part of the ledger state and M gets a fixed amount of tokens del-fee, or
nothing happens. We propose the formal description of FEET

Ledger in Figure 5 and the description of

15

FEET
Ledger

Initialization

• Initialize an empy set T T.

• Send (register, P0) to A.

• Upon receiving addrT0 from A, add (P0, addrT0) to T T, run the initialization procedure of FT
SC, and initialize the

wrapped functionality FTSC-Ledger with the contract FT
SC, using identifier FT

SC.id

• Send (register,M) to A.

• Upon receiving addrTM from A, add (M, addrTM) to T T.

Registration

• Upon receiving (register) from a party Pi, send (register, Pi) to A.

• Upon receiving addrTi from A, if there is already an entry (Pj , addrTi) ∈ T T for some Pj ∈ P, then ignore the com-
mand; otherwise, add (Pi, addrTi) to T T and register Pi to FTSC-Ledger, thus obtaining addrEi , and send (addrEi , addrTi)
to Pi.

Transactions

• (Standard transaction). Upon receiving (submit, sid, txT) from a party Pi, parse txT as
(v, addrEi , addrTi , addrEj , addrTj , fee,Coin).

If Coin = T, and there exists an entry (Pi, addrTi) in T T, and fee ≥ 2Fee, then do the following :

– Send (req-trx, Pi, tx
T) to A and, upon receiving idi, define aux := (v, addrTi , addrTj , idi) and tx =

(0, addrEi , 0
λ, aux, fee, SC).

If Coin = E and fee ≥ Fee, then:

Define tx := (v, addrEi , addrEj ,⊥, fee, E)

• Send (submit, sid, tx) to FTSC-Ledger on the behalf of Pi.

• (Delegatable transaction). Upon receiving (submit-delegation, sid, txT) from a party Pi, parse txT as
(v, addrTi , addrTj , feeT). If there exists an entry (Pi, addrTi) in T T and feeT ≥ del-fee, then do the following, ignor-
ing the command otherwise:

– Send (req-trx-del, Pi, tx
T) to A and, upon receiving idi, define aux := ([v, feeT], addrTi , [addrTj , addrTM], idi).

– If M is honest, then define tx := (0, addrM, 0
λ, aux, 3Fee, SC) and send tx to FTSC-Ledger on behalf of M. If

M is corrupted, do the following:

- Send (delegate, aux, Pi) to M.

- If M replies with (reject, Pi), then send reject to Pi. If M replies with (accept, Pi, fee), then define
tx := (0, addrM, 0

λ, aux, fee) and send tx to FTSC-Ledger on behalf of M.

Getting states

• Upon receiving (read, sid,Coin) from Pi, forward the command to FTSC-Ledger on behalf of Pi.

• Upon receiving (read, sid, state), forward it to Pi.

Forwarding queries to FTSC-Ledger.

• Upon receiving (inner-input, sid,m, Pi) from A, if Pi is an honest party, then ignore the command. Otherwise, if
Pi is corrupted, send m to FTSC-Ledger on behalf of Pi.

• Upon receiving any other input from an honest party Pi ∈ P (resp. from A), forward it to FTSC-Ledger on behalf
of Pi.

• Upon receiving a reply to a command sent on behalf of a party Pi ∈ P (resp. from A), forward it to Pi (resp. A).

Figure 5: This ledger allows parties with no coins of type E to post transactions using tokens of type
T (we call this transaction a delegated transaction). In the case where M is honest and has enough
coins of type E to pay the fee, the delegated transactions are always included in the ledger state.

FT
SC in Figure 4 , and provide a high level description of those below.

The functionality FEET
Ledger, interacts with a set of parties, with the adversary, and with a special

party that we denote with M (the intermediary), and manages the token wallet addresses of the

16

registered parties. We assume that a party P0 initially holds all of the available tokens12
 . We

denote the token wallet addresses of P0 and M with addrT0 and addrTM respectively. Any time FEET
Ledger

receives a registration command from a party Pi, it registers Pi to the ledger FTSC-Ledger, thus
obtaining addrEi . It then generates a token wallet address addrTi and returns (addrEi , addr

T
i) to Pi.

(addrEi , addr
T
i) represents respectively the wallet addresses for the native currency E and for the token

T. FEET
Ledger tolerates two types of transactions: standard and delegated transactions. Any registered

party Pi can issue a standard transaction txT := (v, addrEi , addr
T
i , addr

T
j , fee), where v denotes the

amount of tokens, (addrEi , addr
T
i) are the addresses of the sender, addrTj is the token wallet address of

the receiver, and fee is the fee expressed in coins of type E.
FEET
Ledger takes txT and creates a transaction txE for the ledger FTSC-Ledger that 1) has as a

sender address addrEi , 2) has a fee fee, and 3) calls the contract FT
SC and includes in its payload

what we call a token transaction tx′ := (v, addrTi , addr
T
j).

13
 FEET

Ledger then forwards txE to the ledger
FTSC-Ledger on behalf of Pi.

The contract FT
SC maintains a set token-set as part of its state, and if the fee specified in txE is

sufficient, it updates its state by adding tx′ to token-set and returns (ok, cstate, actualfee). Note
that this means that the tx′ is part of the contract state and appears in the FTSC-Ledger’s state by
definition.

To complete this first part of the description of FEET
Ledger, it remains to specify the function ffilter

(and fCFee, which we describe later in this section) of FT
SC. ffilter receives as input the contract state

and the state of FTSC-Ledger (which we denote state) and, for each transaction tx in state such
that txE := (0λ, addrEi , 0

λ, auxE, feeE) (where auxE = (ok, tx′, cstate?,FT
SC.id)), adds tx′ to stateT

if and only if:

1. tx′ appears in token-set (which is part of the token state).

2. tx′ := (v, addrTi , addr
T
j) and the sum of tokens in the token transactions stored so far in stateT

with receiver address addrTi , minus the sum of coins in the state with sender address addrTi , is
greater than or equal to v.

FEET
Ledger captures the main characteristics of a token, relying on the smart contract to filter

out invalid transactions. Unfortunately, the mechanism that we have discussed so far has a major
drawback: if a party wants to issue a token transaction, they must have the required amount of
coins of type E to query the contract.

To get rid of this requirement, FEET
Ledger admits what we call delegated transactions. A party

that wants to issue a delegated transaction submits txT := (v, addrTi , addr
T
j , fee

T) to FEET
Ledger, which

in turns asks the special party denoted M to pay the fee in E in exchange of (at least) del-fee
tokens T, which will be taken from Pi’s account. If M is honest and feeT ≥ del-fee, (where we
recall that del-fee is the minimum fee required for the delegation to be considered,) then FEET

Ledger

submits a call to the contract FT
SC on behalf of M with the input (the payload of the transaction)

aux := (([v, feeT], addrTi , [addr
T
j , addr

T
M])). If M has enough coins of type E to afford the call to FT

SC,
then aux will become part of the contract state. To accommodate for this special input, we modify
the filtering function ffilter of FT

SC in such a way that the value aux can also be understood as two
atomic token transactions: the first moves v tokens from the wallet address addrTi to the wallet

12As before, we could have multiple addresses having different amounts of tokens, but for simplicity, we assume that
only one party initially holds tokens.

13The payload also includes an identifier chosen by the adversary, which we omit in this informal description.

17

address addrTj , and the second moves feeT from the wallet address addrTi to the wallet address addrTM.
It remains to specify how the contract computes the fee. The function fCFee charges Fee coins of
type E for each token transaction encoded in aux (the input that is used to update the contract
state). Hence, for a non-delegated token transaction, fCFee would return Fee, and for a delegated
token transaction, it would return 2Fee. In addition to this fee, we need to consider the fee required
simply to query the contract. Hence, the total cost of a non-delegated transaction would be of 2FeeE,
and the total cost of a delegated transaction would be 3FeeE. We stress that this is a simplified
method of computing the fee, and that a more fine-grained calculation could be used to capture
what actually happens in the real world. We use this mechanism only to simplify the description of
the functionality, and later the security proof. In the Section 9 , we provide experimental results to
estimate the cost of executing these transactions in a real world realization of FEET

Ledger.

8 Our Protocol: how to realize FEET
Ledger

Our protocol is described in the FT-Ledger-hybrid world, where FT-Ledger is parametrized by
Ftrap = ⊥, and the fee function f which, upon receiving an input transaction txE, does the following:

- Parse tx as (v, addri, addrj , aux, fee).

- If aux = ⊥, then return Fee.

- Otherwise, return Fee + |aux|/κFee.

In a nutshell, the fee required for a transaction to settle in the FT-Ledger’s state is Fee, plus and
additional Fee for each κ bits contained in the payload, where Fee and κ are part of the description
of f .

We provide the formal description of our protocol in Figure 6 . At a very high level, the protocol
works as follows: Each party registers with FT-Ledger and runs Kgen(1λ) to obtain (skTi , addr

T
i),

where addrTi represents the token wallet address. A party Pi that wants to send vT to Pj and
has at least 2Fee coins of type E can do so by issuing a transaction for FT-Ledger that contains
in its payload aux := (v, addrTi , addr

T
j , id, σ

T
i), where id is a random value, and σTi is a signature of

(v, addrTi , addr
T
j , id) that verifies under the verification key addrTi . We require Pi to pay a fee of at

least 2Fee because we assume that, in this case, |aux| = κ.
When an honest party Pi receives the command (read, sid, T), they shall retrieve FT-Ledger’s

state, filter out the payload of each transaction (thus obtaining only the information related
to token transactions), and output only the valid token transactions. A token transaction
(v, addrTi , addr

T
j , id, σ

T
i) is valid if addrTi has received at least v tokens, σTi is a signature of (v, addrTi , addr

T
j , id)

that verifies under the verification key addrTi , and there does not exist any other token transaction
with the same sender address and identifier id.

Our protocol allows any party Pi that does not have coins of type E to delegate the pay-
ment of the fee to M, paying M with at least del-fee tokens T. To do so, Pi creates m :=
([v, del-fee], addrTi , [addr

T
j , addr

T
M], id) and signs it, thus obtaining σTi . Pi then sends (m,σTi) to M.

The honest M then creates a transaction for FT-Ledger that includes (m,σTi) in its payload and
has a fee of at least 3Fee, and submits it. We require M to pay a fee of at least 3FeeE because
we assume that, in this case, the payload of the transaction is 2κ bits (as, indeed, the payload
of this type of transaction contains more information). The honest M would immediately create

18

Protocol ΠToken

Initialization

• The issuer P0 does the following:

1. Register to FT-Ledger, thus obtaining addr0.

2. Compute (skT0, addrT0)
$←− Kgen(1λ).

• The intermediary M registers to FT-Ledger, thus obtaining addrM, and computes (skTM, addrTM)
$←− Kgen(1λ).

Registration

• Upon receiving (register, sid), the party Pi sends (register, sid) to FT-Ledger, thus obtaining addri, and computes

(skTi , addrTi)
$←− Kgen(1λ).

Transactions

• Pi, upon receiving (submit-delegation, sid, txT), parses txT as (v, addrTi , addrTj , feeT) and does the following:

1. If feeT < del-fee, then ignore the command. Otherwise, continue.

2. Sample id
$←− {0, 1}λ and define m := (([v, fee], addrTi , [addrTj , addrTM]), id).

3. Compute σTi
$←− Sign(skTi ,m).

4. Send (delegate,m, σTi) to M.

• M, upon receiving (delegate,m, σTi) from Pi, does the following:

1. Parse m as (([v, feeT], addrTi , [addrTj , addrTM]), id).

2. If Ver(addrTi ,m, σ
T
i) = 0 or feeT < del-fee, then ignore the message. Otherwise, continue.

3. Define txM = (0, addrM, 0
λ, (m,σTi), 3Fee).

4. Send (accept, Pi) to Pi and (submit, sid, txM) to FT-Ledger.

• Pi, upon receiving (submit, sid, txT), parses txT as (v, addri, addrTi , addrj , addrTj , fee,Coin) and does the following:

– If Coin = T and fee ≥ 2Fee then:

∗ Sample id
$←− {0, 1}λ, define m := ((v, addrTi , addrTj), id) and compute σTi ← Sign(sk,m).

∗ Define tx = (0, addri, 0λ, (m,σTi), fee).

– If Coin = E and fee ≥ Fee then

Define tx := (v, addri, addrj ,⊥, fee).

– Send I = (submit, sid, tx) to FT-Ledger.

Getting states

• Upon receiving (read, sid, type), P forwards the command (read, sid) to FT-Ledger.

• Upon receiving state from FT-Ledger, if type = E, then P does the following:

– Initialize an empty list stateE.

– For each tx ∈ state such that tx = (v, addrEi , addrEj ,⊥, fee), add tx to stateE.

– Return (read, sid, stateE).

Otherwise, P does the following:

– Initialize the the list stateT with (y, 0λ, addr0, 0) and, for each txE = (0, addrEi , 0
λ, auxE, fee) in state where

auxE = (vT, addrTi , addrs, idT, σTi), do the following:

- If checkvalidity(auxE, stateT) = 1, then add (vT, addrTi , addrs, idT) to stateT.

– Return (read, sid, stateT).

checkvalidity(auxE, stateT)

• Parse auxE as (vT, addrTi , addrs, idTi , σ
T
i) and define m := (vT, addrTi , addrs, idTi).

• If Ver(addrTi ,m, σ
T
i) = 0, then return 0. Otherwise, continue.

• Initialize balance← 0.

• For each tx? = (v?, addr?i , addrs?, id?i) in stateT:

- If addr? = addrTi and id?i = idTi , then return 0.

- If addr? = addrTi , then compute balance← −
∑
k v?[k].

- For each k such that addrs?[k] = addrTi , compute balance← +v?[k].

• If
∑
k vT[k] ≥ balance, then return 1. Otherwise, return 0.

Figure 6: Our protocol.

19

and submit such a transaction, whereas the corrupted M might decide when (and if) to create the
transaction. We require each token transaction to contain a random identifier in order to avoid
replay attacks; without such an identifier, the adversary could take the payload of any transaction
from FT-Ledger’s state, (for instance, the payload of a transaction that moves v tokens from the
address addrTi of an honest party to some potentially adversarial address,) copy this payload, and
use it to generate a new transaction for FT-Ledger. In this way, the adversary could empty the
token wallet of the honest party without their knowledge The other advantage of using identifiers is
that an honest party that has delegated a transaction to a malicious intermediary can at any point
decide to withdraw the delegation. Indeed, if M is not responding to a party that has delegated the
transaction m := ([v, del-fee], addrTi , [addr

T
j , addr

T
M], id) for a long time, and m does not appear in the

payload of any transaction that appears in the ledger’s state, then Pi can withdraw the delegation
by submitting (or delegating) a token transaction with the same identifier; then, at most one of
these transactions will be valid and accepted by the functionality.

Theorem 8.1. The protocol ΠToken realizes FEET
Ledger in the FT-Ledger-hybrid model.

Proof. In our proof we consider the more involved case where M is colluding with an arbitrary
set of parties S ⊂ P and P0 is honest; in any other case the proof follow from similar arguments.
The simulator SimM internally runs the corrupted parties, emulating for them the functionality
FT-Ledger.

Moreover, SimM reacts as follows on the inputs it receives:

1. Upon receiving (register, Pi) from FEET
Ledger, compute (skTi , addr

T
i)

$←− Kgen(1λ) and send
(Pi, addr

T
i) to FEET

Ledger.

2. Upon receiving (delegate, aux, Pi) from FEET
Ledger, compute σTi

$←− Sign(skTi , aux) and send
(delegate, aux, σTi) to M.

3. Upon receiving (req-trx-del, Pi, tx
T) from FEET

Ledger, sample idi
$←− {0, 1}λ and send idi to

FEET
Ledger.

4. Upon receiving (req-trx, Pi, tx
T) from FEET

Ledger, parse txT as (v, addri, addr
T
i , addrj , addr

T
j , fee,Coin)

and do the following:

• If Coin = T and fee ≥ 2Fee:

– Sample id
$←− {0, 1}λ, definem := ((v, addrTi , addr

T
j), id), and compute σTi ← Sign(sk,m).

– Define tx = (0, addri, 0
λ, (m,σTi), fee).

• If Coin = E and fee ≥ Fee, define tx := (v, addri, addrj ,⊥, fee).
• Send I = (submit, sid, tx) to FT-Ledger and return id to FEET

Ledger.

5. If FT-Ledger (emulated in the real-world) receives the input (submit, sid, txM) from M, and
all of the following are true:

• txM = (0, addrM, 0
λ, (m,σTi), fee), where m := (([v, feeT], addrTi , [addr

T
j , addr

T
M], id),

• An honest party Pi has queried FEET
Ledger with (submit-delegation, sid, txT), where

txT = (v, addrTi , addr
T
j , del-fee) and Ver(addrTi , ([v, fee

T], addrTi , [addr
T
j , addr

T
M], id), σTi),

20

• (accept, Pi, fee) has not been sent yet to FEET
Ledger,

then send (accept, Pi, fee) to FEET
Ledger.

6. Upon receiving any other command m on the adversarial interface of FT-Ledger, SimM forwards
it to FEET

Ledger.

We now argue that if the real and the ideal world are distinguishable, then there exists an
adversary that breaks either the security of the signature scheme or the security of FT-Ledger. There
are few cases that could make the simulator to fail, thus allowing the environment to distinguish
the two worlds. We now summarize these cases and argue that none of them occur with more than
negligible probability.

• In step 4, the simulator does not have the secret key skTi to generate the signature σTi . We recall
that FEET

Ledger forwards the command req-trx to A only if a party Pi is querying FEET
Ledger

with either (submit-delegation, sid, txT) or (submit, sid, txM), with (Pi, addri) ∈ T T.

If that is not the case, (implying that the calling party is malicious and has generated his own
address,) then we do not have the secret key. However, we do not need it, as FEET

Ledger would
ignore the message for the reason above.

• The simulator computes an address addr (upon receiving the command (register, Pi)), and
there already exists an entry (Pj , addr) in T T. If this happens with non-negligible probability,
then we can construct a reduction to the signature scheme. The reduction takes as input

a signature verification key addr for Σ, and computes (s, v)
$←− Kgen(1λ). If addr 6= v, the

reduction aborts, and otherwise computes and outputs Sign(s, 0λ).

Since, by contradiction, addr = v with non-negligible probability, and the reduction has never
queried the signing oracle, then we can claim that we have broken the security of Σ.

• Let stateideal be the output obtained when an honest party Pi queries FEET
Ledger with the input

(read, sid,SC). Let statereal be the output that an honest Pi would obtain when running
ΠToken with the same input. The simulation fails if statereal contains tx = (v, addrTi , addr

T
j , id

T)

and stateideal does not. Note that if tx = (v, addrTi , addr
T
j , id

T) appears in statereal, it means
that the state of FT-Ledger contains a transaction whose payload contains (tx, σTi) such that
Ver(addrTi , tx, σ

T
i) = 1.

This can happen in the following two scenarios:

– The simulator has never signed tx. In this case, we make a reduction to the security of
Σ, since the reduction would not need to query the signing oracle with the input tx.

– The simulator has signed tx. This means that tx was submitted by Pi through FEET
Ledger’s

interface. By construction of FT-Ledger and FEET
Ledger, if a transaction is accepted by

FEET
Ledger, it must be accepted by FT-Ledger as well. If this is not the case, then we can

make a reduction to the security of FT-Ledger.

The opposite scenario could also occur; that is, stateideal contains tx = (v, addrTi , addr
T
j , id

T)

and stateideal does not. This can happen in the case where the simulator has already sampled
the identifier idT for a previous transaction. However, the probability that this event occurs is
negligible. As before, the only other reason we might have such a situation is if the security

21

of FT-Ledger has been compromised. In this case, we could again make a reduction to the
security of FT-Ledger.

9 Implementation, Benchmarks, and Comparisons

We implemented our EET via an Ethereum smart contract, measured its gas consumption, and
compared it with other approaches. Our EET conforms to the ERC-20 standard. In its testing
mode, our contract has the added functionality of allowing unlimited minting of new tokens by
any account. This feature is included for ease of testing rather than for actual use, and should
be disabled when the EET is deployed in production. We wrote our contracts in Solidity 0.6.10,
and tested them using Hardhat 2.0.8, a Javascript and TypeScript framework for Ethereum smart
contract development and testing. We tested only on a locally-running test network, not on any live
public network; however, since the Hardhat test node is a faithful implementation of the Ethereum
protocol and virtual machine, this should not affect the amount of gas used on any given contract
invocation.

To compare the gas useage of our EET with that of the Gas Station Network (GSN), we deployed
the GSN infrastructure contracts (most notably the RelayHub contract) to our local test network and
ran a local relay server. The OpenGSN project provides a testing infrastructure that automatically
deploys the required contracts and runs a local relay server; our tests used version 2.1.0 of the
OpenGSN repository. The experiment code itself is written in TypeScript, using the Ethers 5.0.26
library for blockchain and contract interaction.

For each of our evaluation and comparison experiments below, we first select sender, receiver,
and other relevant addresses randomly (without replacement) from a pool of 20 addresses. After
executing the relevant transaction, we record the amount of gas consumed by the transaction. For
validation purposes, we also record the Ether and token balances of each address before and after
the transaction, to ensure that the correct amounts are transferred. Each experiment was run 1000
times, selecting a new set of addresses for each run.

9.1 EET vs. GSN vs. Standard ERC-20 token

For our first comparison, we ran the following three experiments:

• Self-funded token transactions: These experiments test the gas usage of typical, non-
delegated use of our EET contract, i.e. by a user that does not want to interact with
the delegation server (denoted M in our formalization) and has his own sufficiently funded
Ethereum address. The sending address transfers some amount of tokens to the receiving
address, submitting the transaction themselves and using their own Ether to pay the transaction
fee. In this case, the relevant addresses are the sender and the receiver.

• Delegated token transactions: These experiments test the gas usage of our EET dele-
gation mechanism. The sending address transfers some amount of tokens to the receiving
address, but a third delegate address (M, which may be another user, another address owned
by the same user, or a dedicated server,) submits the transaction and pays the ether fee,
automatically (by contract conversion and execution) receiving an equivalent amount of tokens

22

from the sending address in the process. In this case, the relevant addresses are the sender,
the receiver, and the delegate.

• GSN token transactions These experiments test the gas usage of delegation through the
GSN. The sending address transfers some amount of tokens to the receiving address, but
delegates to the locally-running relay server, which submits the transaction and pays the
ether fee, receiving a repayment of ether from the token contract (indirectly, from the token
contract’s deposit with the RelayHub contract). The EETPaymaster contract then extracts
an equivalent token fee from the sender. In this case, the relevant addresses are the sender,
the receiver, and the relay server address. However, we only have control over the sender and
receiver addresses; the relay server’s address is determined by the GSN testing infrastructure
and cannot be easily changed.

Figure 7: EETs vs GSNs

The results of our experiments are summarized in Figure 7 . As one can observe, using the
ethereless functionality (delegation mechanism) of our contract consumes less than twice the gas
of a standard self-funded token transaction, which we believe is a reasonable compromise for the
added user experience. In contrast, using the GSN incurs a 4-5x increase in gas usage as compared
to a self-funded transaction. This is the cost of the complexity of the GSN, a cost that is very
unattractive for projects that do not require the extreme decentralization and genericity of the GSN.

References

[AB20] Ahmed Al-Balaghi. The state of meta transactions - 2020. https://medium.com/

biconomy/the-state-of-meta-transactions-2020-506840e37e75 , 2020.

[BGK+18] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In
David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 913–930. ACM Press, October 2018.

23

https://medium.com/biconomy/the-state-of-meta-transactions-2020-506840e37e75
https://medium.com/biconomy/the-state-of-meta-transactions-2020-506840e37e75

[BMTZ17] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Bitcoin as a
transaction ledger: A composable treatment. In Jonathan Katz and Hovav Shacham,
editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 324–356. Springer,
Heidelberg, August 2017.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

[Can03] Ran Canetti. Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239, 2003. https://eprint.iacr.org/2003/
239 .

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In Salil P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 61–85. Springer, Heidelberg, February 2007.

[DPS19] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus
and applications to provably secure proof of stake. In Ian Goldberg and Tyler Moore,
editors, FC 2019, volume 11598 of LNCS, pages 23–41. Springer, Heidelberg, February
2019.

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol:
Analysis and applications. In Elisabeth Oswald and Marc Fischlin, editors, EURO-
CRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer, Heidelberg,
April 2015.

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol
with chains of variable difficulty. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 291–323. Springer, Heidelberg,
August 2017.

[Gri18] Austin Griffith. Ethereum meta transactions, 2018. https://medium.com/@austin_

48503/ethereum-meta-transactions-90ccf0859e84 .

[gsn] Ethereum gas station network (gsn) documentation. https://docs.opengsn.org/ .

[Kia] Aggelos Kiayias. Babel fees-denominating transaction costs in native tokens. https:

//iohk.io/en/blog/posts/2021/02/25/babel-fees/ .

[KKKZ19] Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboros
crypsinous: Privacy-preserving proof-of-stake. In 2019 IEEE Symposium on Security
and Privacy, pages 157–174. IEEE Computer Society Press, May 2019.

[KMTZ13] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. Universally com-
posable synchronous computation. In Amit Sahai, editor, TCC 2013, volume 7785 of
LNCS, pages 477–498. Springer, Heidelberg, March 2013.

[KZZ16] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party
computation using a global transaction ledger. In Marc Fischlin and Jean-Sébastien
Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 705–734.
Springer, Heidelberg, May 2016.

24

https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://medium.com/@austin_48503/ethereum-meta-transactions-90ccf0859e84
https://medium.com/@austin_48503/ethereum-meta-transactions-90ccf0859e84
https://docs.opengsn.org/
https://iohk.io/en/blog/posts/2021/02/25/babel-fees/
https://iohk.io/en/blog/posts/2021/02/25/babel-fees/

[PS17] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages
380–409. Springer, Heidelberg, December 2017.

[PSs17] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in
asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673. Springer, Heidelberg,
April / May 2017.

[VB15] Fabian Vogelsteller and Vitalik Buterin. Eip 20: Erc-20 token standard. 2015. https:
//eips.ethereum.org/EIPS/eip-20 .

A Native vs. Contract-based Tokens

The experiments discussed below, use the same software and infrastructure setup as the first set
(but different contracts).

• Overhead of Native Tokens: Adding native support for tokens on a cryptocurrency
blockchain following the PPU principle means that every (even non-token) transaction pro-
cessing will be slightly more (gas-)expensive than a transaction that does not support tokens.
The reason is that miners/minters will at the very least need to check whether a transaction
is native cryptocurrency (in which case it is added to a block as is) or a token transaction
(in which case they will need to calculate if they are willing to fund its fees and compute
the modified transaction to send to the network. As discussed, estimating this overhead in
currently infeasible in lack of a relevant platform. Instead, here we attempt a lower-bound of
this overhear, if it would be implemented in Ethereum. To this direction we implemented a
simple contract IfNoop wich performs a conditional branch on the value of an input byte—
corresponding to the check of whether it is a token or native cryptocurrency transaction—and
then exits in either case of the branch. This approximates the overhead of a single ‘if’ state-
ment, followed by native execution of either an ether or token transfer. We also implemented
an equivalent contract, IfNoopYul, in Yul, which omits the overhead of setting up the Solidity
runtime and performing method dispatch, and is therefore potentially a closer approximation
of the true overhead.

• Overhead of Smart-Contract Tokens: Our second experiment considers a contract
IfFull which performs a conditional branch on the value of an input byte, and in one case of
the branch transfers the ether value of the calling transaction to an address specified in the
remainder of the input data. This approximates the overhead of a contract implementing a
rough equivalent of native tokens, i.e. handling both ether and token transfers. (The case of
transfering tokens is already simulated by the self-funded transaction experiments above; the
leading ‘if’ statement can be assumed to be simulated by the Solidity method dispatch at the
beginning of the contract execution.) As above, to get a closer estimate we also implemented
a contract IfFullYul in the lower level EVM language Yul with the same functionality as
IfFull.

For each of the above contracts, we submitted identical input (a 1 byte, indicating an ether
transfer for the contracts that perform it, and a fixed address to transfer to) 100 times over,

25

https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20

Figure 8: Native vs Smart-Contract-Simulated Tokens

measuring the gas usage for each. Unsurprisingly, since the contracts are deterministic and do not
store or modify any state, each has a constant gas usage. Our experiments summarized, in Figure 8 ,
demonstrate that even when only charging for the if-brach in a native implementation—which is
clearly a favorable lower-bound on the overhead of every transaction on a native-tokens-enabled
blockchain—the gas overhead of emulating tokens via a smart contract is ≈ 33%. We believe that
this overhead is acceptable given the functionality and adaptability offered by smart contracts as
opposed to natively-hardwired validation.

B Functionalities with Dynamic Party Sets

UC provides support for functionalities in which the set of parties that might interact with the
functionality is dynamic. We make this explicit by means of the following mechanism, (which we
describe almost verbatim from [BMTZ17 , Sec. 3.1]): All the functionalities considered here include
the following instructions that allow honest parties to join or leave the set P of players that the
functionality interacts with, and inform the adversary about the current set of registered parties:

– Upon receiving (register, sid) from some party Pi (or from A on behalf of a corrupted Pi),
set P := P ∪ {pi}. Return (register, sid, pi) to the caller.

– Upon receiving (de-register, sid) from some party Pi ∈ P, the functionality updates P :=
P \ {Pi} and returns (de-register, sid, Pi) to Pi.

– Upon receiving (is-registered, sid) from some party Pi, return (register, sid, b) to the
caller, where the bit b is 1 if and only if Pi ∈ P.

– Upon receiving (get-registered, sid) fromA, the functionality returns the response (get-registered,
sid,P) to A.

In addition to the above registration instructions, global setups (i.e. shared functionalities that
are available both in the real and in the ideal world and allow parties connected to them to share

26

state [CDPW07]) allow UC functionalities to register with them. Concretely, global setups include,
in addition to the above party registration instructions, two registration/de-registration instructions
for functionalities:

– Upon receiving (register, sidG) from a functionality F with session-id sid, update F :=
F ∪ {(F, sid)}.

– Upon receiving (de-register, sidG) from a functionality F with session-id sid, update F :=
F{(F, sid)}.

– Upon receiving (get-registeredF , sidG) from A, return (get-registeredF , sidG, F) to A.

We use the expression sidG to refer to the encoding of the session identifier of global setups.
By default (and if not otherwise stated), the above four (or, in the case of global setups, seven)
instructions will be part of the code of all ideal functionalities considered in this work. However,
to keep the description simple, we will omit these instructions from the formal descriptions unless
deviations are defined.

C Modeling Time and Clock-dependent Protocol Execution

Katz et al. [KMTZ13] proposed a methodology for casting synchronous protocols in UC by assuming
they have access to an ideal functionality Fclock, the clock, that allows parties to ensure that
they proceed in synchronized rounds. Informally, the idea is that the clock keeps track of a round
variable whose value the parties can request by sending (clock-read, sidC) to Fclock. This value
is updated only once all honest parties send the clock a (clock-update, sidC) command. We lift
this idea to a shared setup: the global clock functionality Fclock is a shared clock that may interact
with more than one protocol session. The global clock provides a means for parties to synchronize
each of their sessions.14

 The clock can also be used as a local (not shared) hybrid functionality,
in which case the number of sessions it will synchronize is simply one. The description is given
in Figure 9 .

Given a clock, the authors of [KMTZ13] describe how synchronous protocols can maintain
their necessary round structure in UC: for every round ρ, each party first executes all of its round-
ρ instructions, and then sends the clock a clock-update command. Subsequently, whenever
activated, it sends the clock a clock-read command and does not advance to round ρ+ 1 until it
sees that the clock’s variable has been updated. This ensures that no honest party will start round
ρ+ 1 before every honest party has completed round ρ. In [KZZ16], this idea was transfered to the
(G)UC setting by assuming that the clock is a global setup. This allows for different protocols to
use the same clock, and this is the model we will also use here.

As argued in [KMTZ13], in order for an eventual-delivery (aka guaranteed termination) func-
tionality to be UC-implementable by a synchronous protocol, it needs to keep track of the number
of activations that an honest party gets, so that it knows when to generate output for honest parties.
This requires that the protocol itself, when described as a UC interactive Turing-machine instance
(ITI), has a predictable behavior when it comes to the pattern of activations that it needs before it

14The functionality presented here is different from shared clock functionalities used in prior work. We believe that
the version here is closer to the spirit of the GUC/EUC version of UC.

27

Functionality Fclock

The functionality manages the set P of registered identities, i.e. parties P = (pid, sid). It also manages the set F of
functionalities (together with their session identifiers). Initially, P := ∅ and F := ∅.
For each session sid, the clock maintains a variable τsid. For each identity P := (pid, sid) ∈ P, it maintains a variable dP .
For each pair (F, sid) ∈ F , it maintains a variable d(F,sid). All integer variables are initially 0.

Synchronization:

• Upon receiving (clock-update, sidC) from some party P ∈ P, set dP := 1, execute Round-Update, and forward
(clock-update, sidC , P) to A.

• Upon receiving (clock-update, sidC) from some functionality F in a session sid such that (F, sid) ∈ F , set
d(F,sid) := 1, execute Round-Update, and return (clock-update, sidC ,F) to the sending instance of F.

• Upon receiving (clock-read, sidC) from any participant (including the environment on behalf of a party, the
adversary, or any ideal — shared or local — functionality), return (clock-read, sidC , τsid) to the requestor, where
sid is the sid of the calling instance.

Procedure Round-Update: For each session sid do: If d(F,sid) := 1 for all F ∈ F and dP = 1 for all honest parties
P = (·, sid) ∈ P, then set τsid := τsid + 1, and reset d(F,sid) := 0 and dP := 0 for all parties P = (·, sid) ∈ P.

Figure 9: The shared/global clock functionality. We assume lazy creation of variables, i.e. a variable
is only created once it is needed.

sends the clock an update command. We capture this property in a generic manner in Definition C.1

(the content of this section and of Appendix D are taken almost verbatim from [BMTZ17]).
To follow the definition, recall the mechanics of activations in UC. In a UC protocol execution,

an honest party (ITI) gets activated either by receiving an input from the environment, or by
receiving a message from one of its hybrid-functionalities (or from the adversary). Any activation
results in the activated ITI performing some computation on its view of the protocol and its local
state, and ends with the party either sending a message to some of its hybrid functionalities, sending
an output to the environment, or sending no message at all. In any of these cases, the party loses
the activation.15

For any given protocol execution, we define the honest-input sequence ~IH to consist of all inputs
that the environment gives to honest parties in the given execution, in the order in which they were
given, along with the identity of the party who received the input. For an execution in which the
environment has given m inputs to the honest parties in session sid in total, ~IH is a vector of the
form ((x1, id1), . . . , (xm, idm)), where xi is the i-th input that was given in this execution, and idi
is the corresponding identity (i.e. idi = (pidi, sid) for some bitstring pid) of the party that received
this input in this session. We further define the timed honest-input sequence, denoted as ~ITH , to be
the honest-input sequence augmented with the respective clock time at which each input was given.
If the timed honest-input sequence of an execution is ~ITH = ((x1, id1, τ1), . . . , (xm, idm, τm)), this
means that ((x1, id1), . . . , (xm, idm)) is the honest-input sequence corresponding to this execution,
and for each i ∈ [n], τi is the time of the global clock when input xi was handed to idi.

Definition C.1. A Fclock-hybrid protocol Π has a predictable synchronization pattern iff there
exists an algorithm predict-timeΠ(·) such that, for any possible execution of Π in a session sid
(i.e. for any adversary and environment and any choice of random coins), the following holds: if
~ITH = ((x1, id1, τ1), . . . , (xm, idm, τm)) is the corresponding timed honest-input sequence for this

15In the latter case the activation goes to the environment by default.

28

Ledger Element Description

P,H,PDS The party sets and categories: Registered, honest, and honest-but-
desynchronized, respectively.

~ITH The timed honest-input sequence.

predict-time The function to predict the real-world time advancement.

state The ledger state, i.e. a sequence of blocks containing the content.

buffer The buffer of submitted input values.

pti, statei The pointer of party Pi into state state. This prefix is denoted statei
for brevity.

~τstate A vector containing for each state block the time when the block added
to the ledger state.

τL The current time as reported by the clock.

NxtBC Stores the current adversarial suggestion for extending the ledger state.

Validate Decides on the validity of a transaction with respect to the current state.
Used to clean the buffer of transactions.

ExtendPolicy The function that specifies the ledger’s guarantees in extending the ledger
state (e.g., speed, content etc.).

Blockify The function to format the ledger state output.

windowSize The window size (number of blocks) of the sliding window.

Delay A general delay parameter for the time it takes for a newly joining (after
the onset of the computation) miner to become synchronized.

Figure 10: Overview of main ledger elements such as parameters and state variables.

session, then for any i ∈ [m− 1] :

predict-timeΠ((x1, id1, τ1), . . . , (xi, idi, τi)) = τi+1,

where τi+1 is the clock time for this session (cf. Figure 9).

As we argue, all synchronous protocols described in this work are designed to have a predictable
synchronization pattern.

D The Basic Transaction-Ledger Functionality

29

Functionality Fledger

General: The functionality is parametrized by four algorithms Validate, ExtendPolicy, Blockify, and predict-time,
along with two parameters windowSize, Delay ∈ N. The functionality manages the variables state, NxtBC, buffer,
τL, and ~τstate, as described above. Initially, state := ~τstate := NxtBC := ε, buffer := ∅, τL = 0.
For each party Pi ∈ P the functionality maintains a pointer pti (initially set to 1) and a current-state view

statei := ε (initially set to empty). The functionality keeps track of the timed honest-input sequence ~ITH (initially
~ITH := ε).

Party management: The functionality maintains the set of registered parties P, the (sub-)set of honest parties
H ⊆ P, and the (sub-set) of de-synchronized honest parties PDS ⊂ H (following the definition in the previous
paragraph). The sets P,H,PDS are all initially set to ∅. If a new honest party is already registered with the clock
at the time it is registered with the ledger, it is added to the party sets H and P, and the time of registration is
recorded. If the current time is τL > 0, the new party is also added to PDS . Similarly, when a party is deregistered,
it is removed from P, and therefore also from PDS and H. The ledger maintains the invariant that it is registered
(as a functionality) with the clock whenever H 6= ∅. A party is considered fully registered if it is registered with
both the ledger and the clock.

Upon receiving any input I from any party or from the adversary, send (clock-read, sidC) to Fclock and, upon
receiving response (clock-read, sidC , τ), set τL := τ and do the following:

1. Let P̂ ⊆ PDS denote the set of desynchronized honest parties that have been registered (continuously, with

both ledger and clock) since time τ ′ < τL − Delay. Set PDS := PDS \ P̂. On the other hand, for any
synchronized party P ∈ H \ PDS , if P is not registered to the clock, then PDS ∪ {P}.

2. If I was received from an honest party Pi ∈ P:

(a) Set ~ITH := ~ITH ||(I, Pi, τL).

(b) Compute ~N = (~N1, . . . , ~N`) := ExtendPolicy(~ITH , state, NxtBC, buffer, ~τstate) and, if ~N 6= ε, set

state := state||Blockify(~N1)|| . . . ||Blockify(~N`) and ~τstate := ~τstate||τ`L, where τ`L = τL|| . . . , ||τL.
(c) For each BTX ∈ buffer: if Validate(BTX, state, buffer) = 0, then delete BTX from buffer.
(d) If there exists Pj ∈ H \ PDS such that |state| − ptj > windowSize or ptj < |statej |, then set

ptk := |state| for all Pk ∈ H \ PDS .

3. Depending on the input I and the ID of the sender, execute the respective code:

– Submiting a transaction:
If I = (submit, sid, tx) and I was received from a party Pi ∈ P or from A (on behalf of a corrupted
party Pi), do the following:

(a) Choose a unique transaction ID txid and set BTX := (tx, txid, τL, Pi).

(b) If Validate(BTX, state, buffer) = 1, then buffer := buffer ∪ {BTX}.
(c) Send (submit, BTX) to A.

– Reading the state:
If I = (read, sid) is received from a fully registered party Pi ∈ P, then set statei :=
state|min{pti,|state|} and return (read, sid, statei) to the requestor. If the requestor is A, then

send (state, buffer, ~ITH) to A.

– Maintaining the ledger state:
If I = (maintain-ledger, sid,minerID) is received by an honest party Pi ∈ P and (after updating ~ITH
as above) predict-time(~ITH) = τ̂ > τL, then send (clock-update, sidC) to Fclock. Otherwise, send I
to A.

– The adversary proposing the next block:
If I = (next-block, hFlag, (txid1, . . . , txid`)) is sent from the adversary, update NxtBC as follows:

(a) Set listOfTxid← ε.

(b) For i = 1, . . . , `, if there exists BTX := (x, txid,minerID, τL, Pi) ∈ buffer with ID txid = txidi,
then set listOfTxid := listOfTxid||txidi.

(c) Finally, set NxtBC := NxtBC||(hFlag, listOfTxid) and output (next-block, ok) to A.

– The adversary setting state-slackness:
If I = (set-slack, (Pi1 , p̂ti1), . . . , (Pi` , p̂ti`)), with {Pi1 , . . . , Pi`} ⊆ H \ PDS is received from the
adversary A do the following:

(a) If for all j ∈ [`] : |state| − p̂tij ≤ windowSize and p̂tij ≥ |stateij |, set pti1 := p̂ti1 for every

j ∈ [`] and return (set-slack, ok) to A.

(b) Otherwise, set ptij := |state| for all j ∈ [`].

– The adversary setting the state for desychronized parties:
If I = (desync-state, (Pi1 , state

′
i1

), . . . , (Pi` , state
′
i`

)), with {Pi1 , . . . , Pi`} ⊆ PDS is received from

the adversary A, set stateij := state′ij for each j ∈ [`] and return (desync-state, ok) to A.

Figure 11: The ledger functionality. We write [n] to denote the set {1, . . . , n}.
30

	Introduction
	Our Contributions and Related Work
	Smart-Contract-Enabled Transaction Ledgers
	The Transaction Ledger
	Adding Smart Contracts
	Tokens as Smart Constracts
	The EET Functionality

	EET Construction and Analysis
	Implementation, Benchmarks, and Comparisons

	Preliminaries
	Signatures

	The Model
	The functionality [ledger].

	Define and Instantiate a New Cryptocurrency from [ledger]
	How to handle smart-contracts
	Our ideal functionality [Ledger]EET
	Our Protocol: how to realize [Ledger]EET
	Implementation, Benchmarks, and Comparisons
	EET vs. GSN vs. Standard ERC-20 token

	Native vs. Contract-based Tokens
	Functionalities with Dynamic Party Sets
	Modeling Time and Clock-dependent Protocol Execution
	The Basic Transaction-Ledger Functionality

