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Abstract

Designing Boolean functions whose output can be computed with light
means at high speed, and satisfying all the criteria necessary to resist all
major attacks on the stream ciphers using them as nonlinear components,
has been an open problem since the beginning of this century, when alge-
braic attacks were invented. Functions allowing good resistance are known
since 2008, but their output is too complex to compute. Functions with
fast and easy to compute output are known which have good algebraic
immunity, such as majority functions and the so-called hidden weight bit
(HWB) functions, but they all have the same cryptographic weakness:
their too small nonlinearity.
In the present paper, we introduce a generalization of the HWB func-
tions into a construction of n-variable balanced functions f from (n− 1)-
variable Boolean functions g having some property held by a large number
of functions. Function f is defined by its support, equal to the image set
of a vectorial function depending on g. This makes the function complex
enough for allowing good cryptographic parameters, while its output is
light to compute. The HWB function is what we obtain with f when the
initial function g equals constant 1. Other well chosen functions g provide
functions f having good cryptographic parameters.
We analyze the constructed functions f , we provide a fast way to com-
pute their output, we determine their algebraic normal forms and we show
that, most often, their algebraic degree is optimal. We study their Walsh
transform and their nonlinearity and algebraic immunity. We observe
with computer investigations that this generalization of the HWB func-
tion allows to keep its quality of being fast to compute and having good
enough algebraic immunity, while significantly improving its nonlinearity.
The functions already obtained in the investigations provide a quite good
(and never reached before) trade-off between speed and security. Further
(probably difficult) work should allow obtaining, among such generalized
HWB functions whose number is huge, still better filter functions to be
used in stream ciphers.
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1 Introduction

Boolean functions can be used for designing error correcting codes [14]; the im-
portant parameter in such coding theoretic case is their nonlinearity. They can
also be used in stream ciphers as feedback functions in nonlinear feedback shift
registers (NFSR), or as filter functions in the filter model of pseudo-random gen-
erator (see e.g. [4]) or as filter functions in the recent filter permutator [13, 12].
In all these cryptographic cases, they must be chosen with care and need to
satisfy at the best possible levels some security criteria, one of which is also
the nonlinearity. It is a huge problem to determine the proper criteria in the
case of NFSR, while the criteria are well known in the two latter use cases, and
are quantified by proper parameters: balance (and when guess and determine
attacks are possible, resiliency), algebraic degree, nonlinearity, algebraic immu-
nity and fast algebraic immunity (and, when guess and determine attacks are
possible, the same parameters on the so-called descendant functions, obtained
by fixing some coordinates). Some properties are specific to the filter permu-
tator (see [8, 9]). Most functions known for having a good algebraic immunity
(one of the most important criteria in cryptography) have a weak nonlinearity
and cannot then be used in stream ciphers. This is for instance the case of the
majority function.
The known functions that satisfy all security criteria are few, see [6, 4]. More-
over, they are too complex for allowing the stream ciphers using them as non-
linear components to be fast enough (a stream cipher is supposed to be faster
than the AES in counter mode and this sets the bar high) and to be lightweight
enough (a stream cipher is supposed to need lighter computational means than
block ciphers). Designing such Boolean functions with fast output to compute
can be viewed as “the big single-output Boolean problem” (we refer here to “the
big APN problem”, whose expression has been introduced by Dillon, and which
designates the most important problem for vectorial functions to be used as sub-
stitution boxes in block ciphers1). Solving this problem needs to find construc-
tions providing enough complexity for potentially reaching good cryptographic
parameters with the constructed functions, but also allowing an output simple
and fast to compute, which is often contradictory in practice. We need also to
have a rather large class of functions within which diverse kinds of properties
and trade-offs can be favored. Before the invention of algebraic attacks, the
large class of Maiorana-McFarland functions [2] allowed a good trade-off be-
tween simplicity and security, but these functions do not behave quite well with
respect to algebraic attacks. We need then a large enough new class of functions
offering such good trade-off. A Boolean function proposed by R. E. Bryant [1],
mentioned by R. Knuth in Vol. 4 of “The Art of Computer Programming”, and

1We do not mean here that the two problems have strong similarities, but only that each
is the most difficult problem in its domain.
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called the hidden weight bit function (in brief, HWB function), vanishes at 0 and
takes at every nonzero input x ∈ Fn2 the value xi where i is the Hamming weight
of x. This function shares with the majority function a nice property: while
it has good algebraic immunity (less good than the majority function, though,
see below), its output is considerably faster to compute than those of the other
currently known functions having good algebraic immunity. The cryptographic
properties of the HWB function have been studied in [15] (we shall recall them
and see that, as the majority function, it has a very weak point: a low nonlin-
earity, which seems related to the simplicity of the function). In [5], we have
studied an apparently rather simple general construction using that the support
of any n-variable balanced Boolean function f can be obtained as the image set
of an injective function F from Fn−12 to Fn2 . We call such F a parameterization
of f . In the present paper, we use the parameterization technique to design
a construction of n-variable balanced functions from (n − 1)-variable Boolean
functions satisfying some condition that we shall explain (and that is satisfied

by many functions, roughly 23·2
n−3

of them, among which are all monotone
Boolean functions). The hidden weight bit function is then what we get with
the construction when the chosen initial function is the simplest nonzero func-
tion: constant function 1. We observe with computer investigations that the
algebraic degree and the algebraic immunity of the constructed functions can
be as good as (and sometimes, for the algebraic immunity, better than) those
of the HWB function in the same number of variables, and the nonlinearity is
strictly better, while keeping the property of the hidden weight bit function to
be fast to compute.

The paper is organized as follows. After preliminaries, we recall from [5]
in Section 3 the parameterization of balanced Boolean functions. In Section 4,
we deduce a generalization of the HWB function and we study the constructed
functions, that we call GHWB; we determine the condition under which they are
balanced. We show that despite their rather simple definition, their structure
is complex. In Section 5, we provide an expression for the output of GHWB
functions, which allows to compute it in a fast way. These functions combine
then the merits of being fast to compute and complex enough for potentially
allowing good cryptographic parameters. In Section 6, we transform this ex-
pression into an algebraic normal form, we study the algebraic degree and show
that it is most often optimal. In Section 7, we study the Walsh transform, non-
linearity and resiliency of GHWB functions and we provide an upper bound on
the nonlinearity, which gives some clue on conditions for a good nonlinearity.
We show thanks to computer investigations that GHWB functions can reach
good nonlinearity. In Section 8, we study their algebraic immunity (AI) and
show by computer investigations that their AI can be good as well. We end
with a conclusion in which we draw quite positive perspectives.
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2 Preliminaries

In this paper, we shall denote the same way, by +, additions in F2, in Fn2 , in
F2n , and in R, since there will be no ambiguity. We shall denote by 0 the zero
vector in any of the vector spaces over F2 and when needing to specify, we
shall denote by 0n the zero vector of length n. We shall also denote by 1n the
all-1 vector of length n and by wH(x) the Hamming weight of a binary vector
x. We call n-variable Boolean function every function from Fn2 to F2 and we
denote by Bn the vector space of all n-variable Boolean functions. The support
of a Boolean function f is the set supp(f) = {x ∈ Fn2 ; f(x) = 1}, while the
support of a vector x ∈ Fn2 equals {i ∈ {1, . . . , n};xi = 1}. We call co-supports
the complements of the supports. The Hamming weight wH(f) of a Boolean
function f (or of a vector) equals the size of its support. An n-variable Boolean
function is called balanced if it has Hamming weight 2n−1. The Hamming
distance between two Boolean functions f, g is dH(f, g) = wH(f + g). The
functions from Fn2 to Fm2 are called (n,m)-functions. Such function F being
given, the n-variable Boolean functions f1, . . . , fm, defined at every x ∈ Fn2 by
F (x) = (f1(x), . . . , fm(x)), are called the coordinate functions of F . When the
numbers m and n are not specified, (n,m)-functions are called vectorial Boolean
functions or simply vectorial functions. We refer to [4] for a complete state of
the art.

Two vectorial functions F and G are called affine equivalent (resp. linearly
equivalent) if there exist two affine (resp. linear) permutations L over Fm2 and
L′ over Fn2 such that G = L ◦ F ◦ L′.

Among the classical representations of Boolean functions and of vectorial
functions are the truth-table in the case of Boolean functions and the look-up
table (LUT) in the case of vectorial functions. Both are the table of all pairs
of an element of Fn2 (an ordering of Fn2 being fixed) and of the value of the
function at this input. The algebraic normal form (in brief the ANF), which
contains a little more information directly usable on the cryptographic strengths
of functions, is the unique n-variable multivariate polynomial representation of
the form

F (x) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
=

∑
I⊆{1,...,n}

aI x
I , (1)

where aI belongs to F2 in the case of Boolean functions and to Fm2 in the case of
(n,m)-functions (and where “xI” is a notation that we shall use all along this
paper). Note that we can deduce the ANF of the i-th coordinate function of F
by replacing in (1) each coefficient aI ∈ Fm2 by its i-th coordinate.
The degree of the ANF shall be denoted by dalg(f) (resp. dalg(F )); it is called
the algebraic degree of the function and equals max{|I|; aI 6= 0}, where |I|
denotes the size of I (with the convention that the zero function has algebraic
degree 0). This makes sense thanks to the existence and uniqueness of the
ANF. Note that the algebraic degree of an (n,m)-function F equals the maximal
algebraic degree of its coordinate functions. It also equals the maximal algebraic
degree of its component functions, that is, of the nonzero linear combinations
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over F2 of the coordinate functions, i.e. the functions of the form v · F , where
v ∈ Fm2 \ {0} and “·” is an inner product in Fm2 . It is an affine invariant (that
is, its value does not change when we compose F , on the right or on the left, by
an affine automorphism). We have:

∀x ∈ Fn2 , f(x) =
∑

I⊆supp(x)

aI , (2)

which is valid for Boolean and vectorial functions, and where supp(x) denotes
the support of x.
The converse is also true: for all I ⊆ {1, . . . , n}, we have:

∀I ⊆ {1, . . . , n}, aI =
∑

x∈Fn2 ; supp(x)⊆I

f(x), (3)

for f Boolean or vectorial. According to Relation (3), we have the well known
property (see [11, 4]):

Proposition 1 An n-variable Boolean function f satisfies dalg(f) = n if and
only if wH(f) is odd. More generally, an (n,m)-function F satisfies dalg(F ) = n
if and only if

∑
x∈Fn2

F (x) 6= 0m.

The affine (Boolean or vectorial) functions are the functions of algebraic degree
at most 1.

The Fourier-Hadamard transform of any pseudo-Boolean function ϕ (i.e. any
function from Fn2 to R) is the R-linear mapping which maps ϕ to the function ϕ̂
defined on Fn2 by

ϕ̂(u) =
∑
x∈Fn2

ϕ(x) (−1)u·x, u ∈ Fn2 , (4)

where “·” is some chosen inner product in Fn2 . It satisfies the so-called inverse
Fourier-Hadamard transform formula: for all a ∈ Fn2 , we have:∑

u∈Fn2

ϕ̂(u) (−1)u·a = 2nϕ(a),

which proves that the Fourier-Hadamard transform is a bijection.

Given an n-variable Boolean function f (we shall address vectorial functions
below), we have two associated transforms: the Fourier-Hadamard transform
of f , where f is then viewed as a function from Fn2 to {0, 1} ⊂ Z, and the
Walsh transform of f which is the Fourier-Hadamard transform of the sign
function (−1)f :

Wf (u) =
∑
x∈Fn2

(−1)f(x)+u·x.

We have:
Wf = 2n δ0 − 2f̂ , (5)
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where δ0 denotes the Dirac (or Kronecker) symbol over Fn2 , whose value is
nonzero only at 0n and whose ANF is:

δ0(x) =

n∏
i=1

(xi + 1) =
∑

I⊆{1,...n}

xI . (6)

The nonlinearity of a Boolean function f is the minimum Hamming distance
between f and affine Boolean functions. We shall denote it by nl(f). We have:

nl(f) = 2n−1 − 1

2
max
a∈Fn2

|Wf (a)|. (7)

The so-called covering radius bound states:

nl(f) ≤ 2n−1 − 2
n
2−1. (8)

A function is called bent if this inequality is an equality.
Let f be any n-variable Boolean function. An n-variable Boolean function

g such that fg = 0 is called an annihilator of f .
The minimum algebraic degree of nonzero annihilators of f or f+1 is called the
algebraic immunity (in brief, AI) of f and is denoted by AI(f). It also equals
the minimal value d such that there exist g 6= 0 and h, both of algebraic degree
at most d, such that fg = h. We have AI(f) ≤ max(dalg(f),

⌈
n
2

⌉
). We say that

f has optimal algebraic immunity if AI(f) =
⌈
n
2

⌉
. For n odd, the functions

with optimal algebraic immunity are necessarily balanced.
We address now vectorial functions. We call Walsh transform of an (n,m)-

function F , and we denote by WF , the function which maps any ordered pair
(u, v) ∈ Fn2×Fm2 to the value at u of the Walsh transform of the Boolean function
v · F (by abuse of notation, we denote by the same way the inner products in
Fn2 and Fm2 ):

WF (u, v) =
∑
x∈Fn2

(−1)v·F (x)+u·x; u ∈ Fn2 , v ∈ Fm2 .

In other words, the Walsh transform of F equals the Fourier-Hadamard trans-
form of the indicator (i.e. characteristic function) of its graph {(x, F (x)), x ∈
Fn2}.

The nonlinearity of an (n,m)-function is the minimum nonlinearity of its
component functions v · F , v 6= 0:

nl(F ) = 2n−1 − 1

2
max

v∈Fm2 \{0m}
u∈Fn2

|WF (u, v)| . (9)

3 The parameterization of balanced Boolean func-
tions

In [5] is introduced the following notion:
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Definition 1 Let F be an injective (n− 1, n)-function. We call Boolean func-
tion parameterized by F and denote by fF the n-variable balanced function of
support Im(F ) = {F (z), z ∈ Fn−12 }. Then z is called a parameter of the Boolean
function and F a parameterization of fF .

The injectivity of F is necessary and sufficient for fF to be balanced (if we relax
the condition that F is injective, then every function of Hamming weight at most
2n−1 can be obtained as fF , but its study is uneasy; in [5] is introduced the
notion of oddly parameterized function, whose support is the set of elements
matched an odd number of times by F ; then, any Boolean function of even
Hamming weight at most 2n−1 can be obtained this way). It is observed that
changing F into an affine equivalent function L ◦ F ◦ L′, where L is an affine
automorphism of Fn2 and L′ an affine automorphism of Fk2 , transforms fF into an
affine equivalent Boolean function, since the composition by L′ does not change
fF (nor does the composition by a nonlinear permutation) and:

fL◦F = fF ◦ L−1.

The cryptographic parameters of fF are studied in [5] in terms of correspond-
ing parameters of F . We shall recall below those we shall use when we need
them. Five classes of Boolean functions (three known and two new) are studied
in [5]. In the present paper, we introduce and study one more class, which pro-
vides an excellent trade-off between the cryptographic security of stream ciphers
using it as a filter function and their speed.

4 Generalization of the hidden weight bit func-
tion

It is easily seen that the HWB function (see Introduction) admits as a parame-
terization the (n−1, n)-function F1(z) =

(
z1, . . . , zwH(z), 1, zwH(z)+1, . . . , zn−1

)
,

that maps every z ∈ Fn−12 to the vector x = F1(z) coinciding with z on the
wH(z) first positions, having the coordinate of index wH(z) + 1 equal to 1, and
having each coordinate of index i > wH(z) + 1 equal to zi−1. Indeed:
- for every z, we have wH(F (z)) = wH(z) + 1;
- function F is then injective, since its image set is included in the support of
the HWB function, and any x in this set has exactly one pre-image, obtained
from x by erasing its coordinate of index wH(x);
- the image set of F equals then the whole support of the HWB function.

4.1 Principle of the generalization

Keeping the idea of the insertion of a coordinate in the input vector z ∈ Fn−12 at
the position of index wH(z) + 1 (which always correctly belongs to {1, . . . , n}),
let g be an (n− 1)-variable Boolean function, and for every z ∈ Fn−12 , let Fg(z)
be the vector x = (x1, . . . , xn) ∈ Fn2 such that xi = zi for every i ≤ wH(z),
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xwH(z)+1 = g(z) and xi = zi−1 for every i ≥ wH(z) + 2:

Fg(z) =
(
z1, . . . , zwH(z), g(z), zwH(z)+1, . . . , zn−1

)
. (10)

Function Fg is not always injective, but its restrictions to the support of g and
to its co-support are injective. Indeed, if x = Fg(z) and z ∈ supp(g), then
wH(x) = wH(z) + 1 (which allows speaking of xwH(x) since wH(x) ≥ 1) and
xwH(x) = 1; and any x ∈ Fn2 such that xwH(x) = 1, has at most one pre-image
z in the support of g, since any such z has Hamming weight xH(x) − 1, and
this z is then obtained from x by erasing its coordinate of index wH(x); and
if z 6∈ supp(g), then xwH(x)+1 = 0 (we have x 6= 1n and we can then speak of
xwH(x)+1) and any x ∈ Fn2 such that xwH(x)+1 = 0 has at most one pre-image
in the co-support of g, since any such z has Hamming weight xH(x), and this z
is then obtained from x by erasing its coordinate of index wH(x) + 1.

4.2 Condition on the initial function g

Let us search a necessary and sufficient condition on g under which Fg is injective
over Fn−12 . According to our observation above, the condition is that the images
by Fg of the support of g and of its co-support are disjoint. We shall denote
by u the vector x 6∈ {0n, 1n} deprived of its coordinates of indices wH(x) and
wH(x) + 1. Denoting by x′ the vector obtained from x by erasing its coordinate
of index wH(x)+1 and by x′′ the vector obtained from x by erasing its coordinate
of index wH(x), the condition for the injectivity of Fg writes: there does not
exist x ∈ Fn2 such that xwH(x) = 1 = g(x′′) and xwH(x)+1 = 0 = g(x′). Given x
such that xwH(x) = 1 = g(x′′) and xwH(x)+1 = 0 = g(x′), u equals x′ deprived
of its coordinate of index wH(x′) and x′′ deprived of its coordinate of index
wH(x′′) + 1. Note that we have wH(u) = wH(x) − 1, and denoting for every
j ∈ {0, 1} by u(j) the vector obtained from u by inserting a coordinate of value
j at position wH(u) + 1, we have u(0) = x′′ and u(1) = x′. Hence, a sufficient
condition for Fg to be injective writes:

@u ∈ Fn−22 ; g(u(0)) = 1 and g(u(1)) = 0.

This condition is also necessary, since if any u ∈ Fn−22 exists such that g(u(0)) =
1 and g(u(1)) = 0, then Fg(u

(0)) is obtained from u(0) by inserting 1 in u(0) at
position wH(u)+1 (the 0 and all the subsequent coordinates being moved on the
right) and Fg(u

(1)) is obtained from u(1) by inserting 0 at position wH(u) + 2,
that is, just after the 1 (all the subsequent coordinates being moved on the
right), and we have then Fg(u

(0)) = Fg(u
(1)).

Proposition 2 Let n ≥ 2 and let g be any (n − 1)-variable Boolean function.
For every z ∈ Fn−12 , let Fg(z) be the vector (x1, . . . , xn) ∈ Fn2 such that xi = zi
for every i ≤ wH(z), xwH(z)+1 = g(z) and xi = zi−1 for every i ≥ wH(z) + 2.

Then the (n − 1, n)-function Fg is injective if and only if, for every u ∈ Fn−22 ,
denoting for every j ∈ {0, 1} by u(j) the vector obtained from u by inserting a
coordinate of value j at position wH(u) + 1, we have:

g(u(0)) ≤ g(u(1)). (11)
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Notation: We denote by E the set of those (n − 1)-variable Boolean functions
satisfying Condition (11).

Remark. This generalization of the HWB function can be further generalized:
keeping the idea of an insertion of a coordinate in the input vector z, let ϕ be
any function from Fn−12 to {1, . . . , n} and g an (n−1)-variable Boolean function,
then we can define the function Fϕ,g(z) = (x1, . . . , xn) ∈ Fn2 where xi = zi for
every i < ϕ(z), xϕ(z) = g(z) and xi = zi−1 for every i > ϕ(z). It seems more
difficult to study the injectivity of such general vectorial function (in the case
of Fg, the relative simplicity of the relation between the Hamming weight of z
and that of Fg(z) has been very useful) and then the cryptographic parameters
of the corresponding parameterized Boolean function. But some simple choices
of ϕ(z) could be tried. Of course, this latter generalization can itself be gener-
alized, by inserting several binary values instead of only one. �

4.3 On the number of constructed functions and examples

The transformation g ∈ E 7→ fFg can be viewed as a secondary construc-
tion of n-variable Boolean functions from those (n − 1)-variable Boolean func-
tions belonging to E . Note that different functions g in E essentially provide
different functions fFg , since given u ∈ Fn−22 , the three possible choices of

(g(u(0)), g(u(1))) in {(0, 0), (0, 1), (1, 1)} provide different values for the ordered
pair (Fg(u

(0)), Fg(u
(1))). But the question of the injectivity of the mapping

g ∈ E 7→ fFg should be studied more rigorously, since the pairs {u(0), u(1)} do

not provide a partition of Fn−12 , because there are pairs of vectors u, u′ such

that u(0) = u′
(1)

(this happens when uwH(u) = 1, u′wH(u) = 0 and ui = u′i for

i 6= wH(u)) and there are also vectors z ∈ Fn−12 that are different from any
u(0), u(1) (and on which g can take any value): those such that zwH(z) = 0 and
zwH(z)+1 = 1.

There are roughly 23·2
n−3

functions in E , since for each of the 2n−2 pairs
(u(0), u(1)), the value of g(u(1)) is free if g(u(0)) = 0 and equals 1 otherwise,
because of Condition (11); about 2n−3 values of g are then constrained and
2n−1 − 2n−3 = 3 · 2n−3 are free. Of course, this is only a rough approximation,
since these constraints are not independent of each others. We leave open the
problems of evaluating exactly the size of E and determining the number of
distinct functions fFg .

Number 23·2
n−3

being negligible with respect to the number of all n-variable

balanced functions, whose number is
(

2n

2n−1

)
≈ 22

n+1
2√

π2n
, the functions fFg cover

then only a small part of them. But this also happens for all known non-trivial
secondary constructions having initial functions in less than n variables (see
[4]), and in fact even for those having initial functions in n variables like in
the construction without extension of the number of variables of [4, Proposition
85] (whose number and algebraic immunity of the provided balanced functions
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is not known). Compared to these constructions, the present one potentially
provides a huge number of non-trivial balanced functions.
An obvious example of functions in E is monotone Boolean functions, but many
more functions satisfying (11) with u(j) so defined exist. Indeed, a Boolean
function g is monotone if and only if it satisfies (11) for any u when u(j) is
obtained from u by inserting a coordinate of value j at any position, while here
we insert j at only one position, for each u.
The HWB function equals fF1

(i.e. corresponds to constant function g = 1,
which is a monotone function). Hence, from a constant function g (the worst
possible nonzero Boolean function from a cryptographic viewpoint), we already
obtain thanks to this secondary construction a function fFg which has rather
good cryptographic parameters as shown in [15] (the only weak point is the
nonlinearity, see below).
The simplest example of a monotone function g different from constant func-
tion 1 is the zero function (also weak, of course). The image set of F0 equals
{x ∈ Fn2 ; x 6= 1n, xwH(x)+1 = 0}. Function fF0

is the complement, not of the
HWB function, but of the HWB function composed (on the right) with the
cyclic shift (x1, . . . , xn) 7→ (x2, . . . , xn, x1). Indeed, this is true for x 6∈ {0n, 1n},
since this shift moves xwH(x)+1 to position wH(x), and it can be checked for
x ∈ {0n, 1n}.

Remark. Despite the fact that, for every z ∈ Fn−12 , g(z) can take only one
value, and despite the injectivity of Fg, there may exist pairs (x, y) of distinct
elements of supp(fFg ), which coincide at all positions except one, whose index
equals max(wH(x), wH(y)). Indeed, these two elements x and y can be the
images of different z ∈ Fn−12 by Fg. For instance, for g = 0, set x = F0(z)
where z is taken in Fn−12 , and let y be the vector obtained from x by changing
its coordinate of index i := wH(x) + 1 (which equals 0) into 1. Then if zi = 0,
we have y = F0(z′), where z′ is obtained from z by changing its coordinate
of index i into 1, since wH(z′) = i and (F0(z′))i+1 = 0 = xi+1 = yi+1 and
the coordinates of F0(z′) and y coincide at all positions. Note that we have
ywH(y) = 1 and ywH(y)+1 = 0 but this does not contradict the condition “there
does not exist x ∈ Fn2 such that xwH(x) = 1 = g(x′′) and xwH(x)+1 = 0 = g(x′)”
since g(y′′) = 0.
We see that the construction of fFg from g is not easy to apprehend. But this is
why it can reach a high complexity, while its output shall be as easy to compute
as that of g. �

4.4 The difficulty of characterizing generalized hidden weight
bit functions

Let us first give the formal definition of these functions:

Definition 2 For every n ≥ 2 and every (n−1)-variable Boolean function g in
E, we call fFg a generalized hidden weight bit (GHWB) function.
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Let us now study these functions and see if it is possible to find necessary
and sufficient conditions under which a given balanced function f is a GHWB
function. We would need to characterize, by means of supp(f) only, the existence
of a function g such that Fg is injective and onto supp(f). Since f is taken
balanced, it is enough to ensure the existence of g such that each element in
supp(f) is in the image set of Fg (the injectivity of Fg being automatically
satisfied).
Note that, given a GHWB function fFg and x ∈ supp(fFg ), only two z ∈ Fn−12

are possible candidates as pre-images of x by Fg: those obtained by erasing
from x its coordinates of indices wH(x) and wH(x) + 1, respectively. Indeed,
either the unique pre-image z of x by Fg has Hamming weight wH(x)−1, and z
is then obtained by erasing from x its coordinate of index wH(x), which equals
then 1, or it has Hamming weight wH(x) and z is then obtained by erasing from
x its coordinate of index wH(x) + 1, which equals then 0. Hence, an n-variable
balanced function f can be GHWB only if, for every x ∈ supp(f), we have
xwH(x) = 1 or xwH(x)+1 = 0, that is:

xwH(x) ≥ xwH(x)+1.

Let f be any balanced function satisfying this latter property and x be any
element of supp(f). Then:
(i) if xwH(x) = xwH(x)+1 = 0, then the unique possible pre-image z of x by Fg
satisfies zwH(z) = 0 and wH(z) = wH(x),
(ii) if xwH(x) = xwH(x)+1 = 1, then the unique possible pre-image z satisfies
zwH(z)+1 = 1 and wH(z) = wH(x)− 1,
(iii) if xwH(x) = 1 and xwH(x)+1 = 0, then there are two possible pre-images:
a first one z (denoted by x′ in Subsection 4.2) satisfying zwH(z) = 1, having
Hamming weight wH(z) = wH(x), and obtained from x by erasing xwH(x)+1,
and a second one z′ (denoted by x′′ in Subsection 4.2) satisfying z′wH(z′)+1 = 0,

having Hamming weight wH(z′) = wH(x)− 1, and obtained from x by erasing
xwH(x).
To build a function g with the desired conditions, we need a way to choose a
pre-image z for each x ∈ supp(f), in such a way that each such z corresponds
to a unique x. We need then that:
1. there do not exist two elements x and x̃ in supp(f), one being of type (i) and
the other being of type (ii), and both having the same pre-image; we observe
that these two elements have necessarily Hamming weights differing by 1, hence,
denoting by x the one of smaller weight and by x̃ the one of larger weight, we
have wH(x̃) = wH(x) + 1 and{

(xwH(x), xwH(x)+1, xwH(x)+2) = (0, 0, 1)
(x̃wH(x̃)−1, x̃wH(x̃), x̃wH(x̃)+1) = (0, 1, 1)

must be avoided

when x and x̃ coincide at the other positions,
2. there do not exist in supp(f) an element x of type (iii) and two elements
respectively of types (ii) and (i), whose pre-images coincide respectively with
those z and z′ of x. This means that there do not exist three elements x, x̃, x̃′

11



in supp(f) satisfying wH(x̃) = wH(x) + 1 and wH(x̃′) = wH(x)− 1 and
(xwH(x)−1, xwH(x), xwH(x)+1, xwH(x)+2) = (0, 1, 0, 1)
(x̃wH(x̃)−2, x̃wH(x̃)−1, x̃wH(x̃), x̃wH(x̃)+1) = (0, 1, 1, 1)

(x̃′wH(x̃′), x̃
′
wH(x̃′)+1, x̃

′
wH(x̃′)+2, x̃

′
wH(x̃′)+3) = (0, 0, 0, 1)

must be avoided

when x, x̃ and x̃′ coincide at the other positions.
But this is not sufficient. Indeed, once that z or z′ has been chosen as the pre-
image of x, this has an incidence on the other choices for other elements x of type

(iii), because situations of the type

{
(xwH(x), xwH(x)+1, xwH(x)+2) = (1, 0, 0)
(x̃wH(x̃)−1, x̃wH(x̃), x̃wH(x̃)+1) = (1, 1, 0)

may lead to a same z for two different x, x̃, and when both choices of z and z′

are possible for some x, it may even happen that the adopted choice has been
a bad one and needs to be changed in a backtracking.
We leave open the question of having a closed necessary and sufficient condition
for f to be GHWB.

Remark. The complement fFg + 1 of a GHWB function is not a GHWB func-
tion since its support contains elements x such that xwH(x) < xwH(x)+1.
As in the case of the HWB function, fFg + 1 may be affine equivalent (and pos-
sibly permutation equivalent) to a GHWB function in some cases, and therefore
have its cryptographic parameters studied as such (recall that all cryptographic
parameters of Boolean functions are affine invariant, except correlation immu-
nity and resiliency, which are permutation invariant, see [4]). We leave open the
characterizations of such cases.
Determining the largest group of transformations preserving the set of GHWB
functions (i.e. the automorphism group of GHWB functions) seems difficult.
It does not contain all the permutations of variables since there clearly ex-
ist GHWB functions and permutations such that, after the application of the
permutation to the input variables, the support of the resulting function will
contain elements x such that xwH(x) < xwH(x)+1, and then the set of GHWB
functions is not invariant under linear transformations. �

Remark. There is a way of revisiting slightly differently the observations
above. For every element x in the support of a GHWB function fFg , there
exists ε ∈ {0, 1} such that xwH(x)+ε = 1 − ε (where 1 − ε is viewed in F2).
Indeed, as we already saw, the unique pre-image z of x by Fg either satisfies
g(z) = 0, and then we have wH(x) = wH(z) and xwH(x)+1 = 0 (ε = 1 satisfies
then the condition), or g(z) = 1, and then we have wH(x) = wH(z) + 1 and
xwH(x) = 1 (ε = 0 satisfies then the condition).
• If only one value ε ∈ {0, 1} satisfies xwH(x)+ε = 1− ε, then denoting this value
by εx, we have that xwH(x)+εx = 1− εx also equals xwH(x)+1−εx (since otherwise
there would not be uniqueness of εx), and the two consecutive values xwH(x)

and xwH(x)+1 in x are then equal. Then, we are in one of the cases (i) and
(ii) above, and z can be obtained from x by erasing indifferently one of these
two coordinates (conversely, if xwH(x) = xwH(x)+1, then ε is unique and equals
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εx = 1− xwH(x); we have g(z) = xwH(x) = xwH(x)+1).
• If both values ε ∈ {0, 1} satisfy xwH(x)+ε = 1 − ε, then xwH(x) = 1 and
xwH(x)+1 = 0 and we are in case (iii). One of these two values ε, that we shall
still denote by εx, is such that z is obtained from x by erasing its coordinate
of index wH(x) + εx (whose value is 1 − εx), and we have g(z) = xwH(z)+1 =
xwH(x)+εx = 1 − εx and x = Fg(z). Due to the injectivity of Fg, we have,
denoting by z′ the vector obtained from x by erasing its coordinate of index
wH(x)+1− εx (which equals εx) that Fg(z

′) 6= x, that is, g(z′) = 1− εx and the
image x̃ of z′ by Fg can be obtained from x by complementing its coordinate
of index wH(x) + 1− εx (whose value is εx and becomes then 1− εx), and x̃ is
such that x̃wH(x) = x̃wH(x)+1. �

We see that, despite the simplicity of the definition of the GHWB functions,
their nature and specificity are not that simple to apprehend.

4.5 On the idea of using the GHWB construction recur-
sively

Notation: to ease the reading of this subsection, we shall specify the number of
variables of fFg and write then fFg,n.
Let us prove that the (n − 1)-variable HWB function g = fF1,n−1 has the
desired property (11), that is, for every u ∈ Fn−22 such that g(u(0)) = 1, we have
g(u(1)) = 1. The hypothesis g(u(0)) = fF1,n−1(u(0)) = 1 is equivalent to saying
that the coordinate of index wH(u(0)) = wH(u) of u(0) equals 1, that is:

u = (u1, . . . , uwH(u)−1, 1, uwH(u)+1, . . . , un−2),

u(0) = (u1, . . . , uwH(u)−1, 1, 0, uwH(u)+1, . . . , un−2),

u(1) = (u1, . . . , uwH(u)−1, 1, 1, uwH(u)+1, . . . , un−2).

Then u(1) also belongs to the support of fF1,n−1, since u(1) has Hamming weight
wH(u) + 1 and its coordinate of index wH(u) + 1 equals 1. Hence, the condition
of Proposition 2 is satisfied.
Note that this function is non-monotone (it is easy to find two distinct vectors
x, y such that supp(x) ⊂ supp(y) and xwH(x) = 1 and ywH(y) = 0). Unfortu-
nately we checked that the resulting GHWB function has insufficient nonlinear-
ity.
This leads to the question whether other GHWB functions can satisfy property
(11), which may, in the case of a positive answer, lead to a recursive use of the
GHWB construction. Unfortunately, the HWB function is the only one as we
shall see. Let h be a non-constant (n− 2)-variable function satisfying (11). Let
u ∈ Fn−22 be such that fFh,n−1(u(0)) = 1. We want that fFh,n−1(u(1)) = 1.
Since fFh,n−1(u(0)) = 1, there is a unique pre-image z of u(0) by Fh.
1. If h(z) = 0, then wH(z) = wH(u(0)) = wH(u) and z is obtained from u(0) by
erasing its coordinate of index wH(u) + 1, that is, 0 as it should, and we have
z = u and h(z) = h(u) = 0. Conversely, if h(u) = 0, then Fh(u) = u(0) and
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z = u. Hence we have z = u if and only if h(u) = 0.
2. If h(z) = 1 then wH(z) = wH(u(0)) − 1 = wH(u) − 1 and z is the vec-
tor u′ obtained from u(0) by erasing its coordinate of index wH(u), that is,
obtained by replacing in u the coordinate of index wH(u) by 0, and we have
h(z) = h(u′) = uwH(u) = 1. Conversely, if h(u′) = uwH(u) = 1 where u′ is

defined as above, then Fh(u′) = u(0). Hence, we have that z equals the vector
u′ obtained from u(0) by erasing its coordinate of index wH(u) if and only if
h(u′) = uwH(u) = 1.
And these are the only two possibilities.
Note that the two cases 1 and 2 are exclusive one of each other, since otherwise
h would not satisfy (11) since Fh would not be injective.
Considering now u(1), we want that a vector z′ is mapped to u(1) by Fh. De-
noting by z′ any possible pre-image of u(1) by Fh, we have again two possible
cases (which exclude each other, since h satisfies (11)) and two only:
(i) h(z′) = 0, then u 6= (1, . . . , 1) and z′ is the vector u′′ obtained from u(1) by
erasing its coordinate of index wH(u(1))+1 = wH(u)+2, which equals uwH(u)+1

(that is, u′′ is obtained from u by replacing its coordinate of index wH(u) + 1
by 1) and we must then have that h(u′′) = 0; the converse being also true, we
have then z′ = u′′ if and only if h(u′′) = uwH(u)+1 = 0, where u′′ is obtained
from u by replacing its coordinate of index wH(u) + 1 by 1,
(ii) h(z′) = 1, then z′ is obtained from u(1) by erasing its coordinate of index
wH(u(1)) = wH(u) + 1, which equals 1 as it should and then z′ equals u and
since the converse is also true, we have z′ = u if and only if h(u) = 1.
Since we want that, under the hypothesis fFh,n−1(u(0)) = 1, one of the two
latter cases happens, we deduce:

Proposition 3 Let h be any (n−2)-variable function satisfying (11). Then the
(n−1)-variable function g = fFh,n−1 satisfies (11) as well if and only if, for every
u ∈ Fn−22 , denoting by u′ the vector obtained from u by replacing its coordinate
of index wH(u) by 0 and, for u 6= (1, . . . , 1), by u′′ the vector obtained from u by
replacing its coordinate of index wH(u) + 1 by 1, both following properties are
satisfied by h:
1. if h(u) = 0, then u 6= (1, . . . , 1) and h(u′′) = uwH(u)+1 = 0,
2. if h(u′) = uwH(u) = 1, then either (u 6= (1, . . . , 1) and h(u′′) = uwH(u)+1 = 0)
or h(u) = 1.

We have confirmation with Proposition 3 that fF1,n−1 satisfies (11). And as
announced, we have:

Corollary 1 Function h = 1 is the only function satisfying the conditions of
Proposition 3.

Indeed, suppose that there is some u satisfying these conditions and such that
h(u) = 0. Then applying iteratively Proposition 3, and remembering that the
two cases in this proposition are exclusive of each other, we would have a se-
quence of vectors u′′, (u′′)′′, ((u′′)′′)′′, . . . having coordinates of indices wH(u) +
1, wH(u) + 2, wH(u) + 3, . . . all equal to 1 and such that h(u′′) = uwH(u)+1 =
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h((u′′)′′) = uwH(u)+2 = h(((u′′)′′)′′) = uwH(u)+3 = · · · = 0 and u′′, (u′′)′′, · · · 6=
(1, . . . , 1). Then, for the last element of this sequence to be different from
(1, . . . , 1), there should exist i ≤ wH(u) such that ui = 0 but since uwH(u)+1 =
uwH(u)+2 = uwH(u)+3 = · · · = 0, u could not have weight wH(u), a contradic-
tion.

5 An expression of GHWB functions

Let us now give the general expression of fFg by means of g (assuming that
g has the desired property (11)): expressing that fFg (x) = 1 if and only if

there exists z in Fn−12 such that x = Fg(z), using that such z if it exists is
unique, since Fg is injective, and distinguishing the two cases g(z) = 0 (for
which we have wH(x) = wH(z) and therefore z = x′, as defined in Subsection
4.2, and xwH(x)+1 = 0 since this 0 is at position wH(z) + 1 = wH(x) + 1) and
g(z) = 1 (for which we have wH(x) = wH(z) + 1 and therefore z = x′′ and
xwH(x) = 1, since this 1 is at position wH(z) + 1 = wH(x)), we obtain that, for
every x different from 0n (so that wH(x) ∈ {1, . . . , n}) and from 1n (so that
wH(x) + 1 ∈ {1, . . . , n}):

fFg (x) = (xwH(x)+1 + 1) (g(x′) + 1) + xwH(x) g(x′′). (12)

Indeed, according to the observations above and to the fact that the two cases
identified are exclusive of each other, if fFg (x) = 1 then either (xwH(x)+1 +
1) (g(x′) + 1) = 1 or xwH(x) g(x′′) = 1 and then (xwH(x)+1 + 1) (g(x′) + 1) +
xwH(x) g(x′′) = 1, and conversely, if (xwH(x)+1 + 1) (g(x′) + 1) = 1, then g(x′) =
xwH(x)+1 = xwH(x′)+1 = 0 and x = Fg(x

′) belongs to the support of Fg, and
if xwH(x) g(x′′) = 1, then g(x′′) = xwH(x) = xwH(x′′)+1 = 1 and x = Fg(x

′′)
belongs to the support of Fg as well, and these two cases are not possible
simultaneously.
Moreover, since if g(0n−1) = 0 then Fg(0n−1) = 0n and then fFg (0n) = 1, and
if g(0n) = 1, then 0n is not a value taken by Fg and therefore fFg (0n) = 0, we
have:

fFg (0n) = g(0n−1) + 1,

and we have also:
fFg (1n) = g(1n−1),

since if g(1n−1) = 1 then Fg(1n−1) = 1n and then fFg (1n) = 1, and if g(1n) = 0
then 1n is not a value taken by Fg and therefore fFg (1n) = 0.
Taking the double convention:

∀x ∈ Fn2 , x0 = 0 and xn+1 = 1, (13)

we have that Relation (12) is valid for every x ∈ Fn2 . In other terms:

Proposition 4 For every n ≥ 2 and every (n− 1)-variable Boolean function g
in E, we have, with the convention (13):

fFg (x) = (xwH(x)+1 + 1) (g(x′) + 1) + xwH(x) g(x′′).

= fF0
(x) (g(x′) + 1) + fF1

(x) g(x′′), (14)
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where x′ and x′′ are defined in Subsection 4.2.

We have then a fast way to compute the output of GHWB functions. Actually,
the time needed to compute the output of fFg is not significantly larger than
that for computing the output of g (unless of course computing the output of
g is so fast that computing the Hamming weight is significantly longer). In
practice, the complexity of computing fFg (x) is the maximum of the complexity
to calculate the weight and of the complexity to calculate g(z). Hence, for fast
functions g, the quality of HWB function is preserved by this generalization,
while the function has in fact a rather complex structure. Let us take for
instance for g(z) the simplest possible non-constant monotone functions (for
which Condition (11) is satisfied): monomials zI , ∅ 6= I ( {1, . . . , n− 1}. Then:

fFg (x) = (xwH(x)+1 + 1) (x′
I

+ 1) + xwH(x) x
′′I

is fast to compute and has an expression that is rather complex since x′
I

and
x′′

I
are products of coordinates of x whose choices depend on its Hamming

weight.

Remark. If a guess and determine attack guessing the Hamming weight of the
input to the filter function could be implemented against stream ciphers, the
knowledge of wH(x) would drastically reduce the increase of complexity of fFg
compared to that of g, and the attack would threaten then the stream ciphers
using it. We asked their advice to two cryptanalysts about the possibility of
such an attack and they replied it does not seem realistic. �

Remark. We can see with the change of the parameterization F of the HWB
function F1 into Fg that a slight modification of F (here, in one position of F (z)
only), may change significantly the expression of fF , and we shall see that it
also changes the values of the cryptographic parameters of fFg .
Note that changing g for an affine equivalent function g′ also satisfying Prop-
erty (11) transforms fFg into a function that is in general affine inequivalent,
because affine permutations do not preserve the Hamming weight. Looking now
more closely at the linear permutations that preserve the Hamming weight,
that is, coordinate permutations, if g′ = g ◦ σ where we denote the same way
a permutation σ of {1, . . . , n − 1} and the corresponding linear permutation
z = (z1, . . . , zn−1) 7→ (zσ(1), . . . , zσ(n−1)) over Fn−12 , then fFg′ (x) is not necessar-
ily obtained from fFg (x) by composing it by a linear permutation. Indeed, let us

view the support of fFg as the union
⋃n
i=0{Fg(z); z ∈ Fn−12 ;wH(z) = i} and the

support of fFg′ as the union
⋃n
i=0{Fg′(z); z ∈ Fn−12 ;wH(z) = i}. Since g′(z) =

g(σ(z)), the set {Fg(z); z ∈ Fn−12 ;wH(z) = i} = {Fg(σ(z)); z ∈ Fn−12 ;wH(z) =
i} is, for each i, according to (10), the image of {Fg′(z); z ∈ Fn−12 ;wH(z) = i}
by the permutation:

σi(x1, . . . , xi, xi+1, xi+2, . . . , xn) =

(xσ(1), . . . , xσ(i), xi+1, xσ(i+1)+1, . . . , xσ(n−1)+1)
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over Fn2 , but σi depends on i, as we can see. Most probably, fFg′ (x) and fFg (x)
are not affine equivalent, in general. Note that even changing g into g′ = g + 1
would not provide affine equivalent functions fFg′ (x) and fFg (x), but anyway,
changing g into g+ 1 does not preserve Property (11), except if g is constant. �

6 Algebraic normal form and algebraic degree

We have seen in [5] that if F is an injective (k, n)-function, given by its ANF,
then, denoting by fi the i-th coordinate function of F , we have from (6):

fF (x) =
∑
z∈Fk2

δ0(x+ F (z)) =
∑
z∈Fk2

( n∏
i=1

(xi + fi(z) + 1)
)

(15)

=
∑

I⊆{1,...,n}
z∈Fk2

(∏
i∈Ic

(fi(z) + 1)

)
xI =

∑
I⊆{1,...,n}

dalg(
∏
i∈Ic (fi(z)+1))=k

xI , (16)

dalg(fF ) = max
{
|I|; I ⊆ {1, . . . , n}, dalg

( ∏
i∈Ic

(fi(z) + 1)
)

= k
}

= max
{
|I|; I ⊆ {1, . . . , n}, dalg

( ∏
i∈Ic

(fi(z))
)

= k
}
.

Proposition 5 [5] Let F be any (k, n)-function. The algebraic degree of the
parameterized function fF equals n− l where l is the minimal number of coordi-
nate functions of F whose product has algebraic degree k (that is, odd Hamming
weight). In particular, we have dalg(fF ) = n−1 if and only if dalg(F ) = k, that
is,
∑
z∈Fk2

F (z) 6= 0n.

The expressions of the coordinate functions of Fg(z) deduced from the defi-
nition of GHWB functions:

fi(z) =

 zi if i ≤ wH(z)
g(z) if i = wH(z) + 1
zi−1 if i ≥ wH(z) + 2

, (17)

and the expression of fFg (x) given in (12) are not ANFs because x, respectively
z, do not intervene in them only through monomials xI , respectively zI , but
also by means of their Hamming weights. Let us then see how we can change
these expressions into the actual ANFs. We shall obtain expressions that are
complex2, but let us make this work for completeness. We need first a technical
lemma.

2Because of this complexity, the HWB function could not be used for instance in the FLIP
and FiLIP ciphers [13, 12] (which needed to use Boolean functions with very simple ANF, since
these stream ciphers were meant to work in conjunction with fully homomorphic encryption).
However, fFg is well adapted to a use where it is enough to compute its output (for instance
in a classical stream cipher).

17



Lemma 1 Given a positive integer k and i ∈ {1, . . . , k}, let σi denote the i-th
elementary symmetric Boolean function over Fk2 (equal to the sum, modulo 2,
of all the monomials of degree i in z). Then, for every j ∈ {0, . . . , k} and every
z ∈ Fk2 , we have wH(z) = j if and only if, for every i ∈ {1, . . . , k}, σi(z) equals(
j
i

)
(mod 2) =

{
1 if i � j
0 otherwise

, where i � j means that the binary expansion of

i has support included in that of j.

Proof. For every z ∈ Fk2 , we have σi(z) =
(
wH(z)
i

)
(mod 2), which equals{

1 if i � wH(z)
0 otherwise

, according to Lucas’ theorem (see e.g. [11]). For having

wH(z) = j, the condition σi(z) =
(
j
i

)
(mod 2) =

{
1 if i � j
0 otherwise

is then clearly

necessary. Let us prove that it is also sufficient. As we just showed, each
set Ej = {z ∈ Fk2 ;wH(z) = j} is included in the set E′j = {z ∈ Fk2 ;∀i ∈
{1, . . . , k}, σi(z) =

(
j
i

)
(mod 2)}. The sets Ej are disjoint. The sets E′j are dis-

joint too since the list of the values “1 if i � j, 0 otherwise” where i ranges over
{1, . . . , k} is different for different values of j. Since

⋃k
j=0Ej =

⋃k
j=0E

′
j = Fk2 ,

we have then Ej = E′j for every j and this completes the proof. 2

We deduce the ANF of fFg , using Relation (12):

Proposition 6 For every n ≥ 2 and every (n− 1)-variable Boolean function g
in E, denoting for every x ∈ Fn2 by x[j] the vector obtained from x by deleting
its coordinate of index j, the ANF of the GHWB function equals:

fFg (x) =

k∑
j=0

 ∏
i∈{1,...,k};i�j

(
σi(x)

) ∏
i∈{1,...,k};i6�j

(
σi(x) + 1

)hj(x), (18)

where hj(x) = (xj+1 + 1) (g(x[j+1]) + 1) + xj g(x[j]), with the double convention
that x0 = 0 and xn+1 = 1 for every x ∈ Fn2 .

Indeed, according to Lemma 1, the expression inside the large parenthesis in
(18) is the indicator function of the set of equation wH(x) = j, and thanks to
its presence in the formula, we can now replace in Relation (12) every occurrence
of wH(x) in indices by j. This eliminates such occurrences in the formula and
provides a valid expression of the ANF.

Addressing now the ANF of Fg(z) = (f1(z), . . . , fn(z)) ∈ Fn2 as recalled in
Relation (17) and with the same convention as above, we have:

fi(z) =

k∑
j=0

 ∏
i∈{1,...,k};i�j

(
σi(z)

) ∏
i∈{1,...,k};i6�j

(
σi(z) + 1

) hi,j(z),

where

hi,j(z) =

 zi if i ≤ j
g(z) if i = j + 1
zi−1 if i ≥ j + 2.
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We can see that g plays a role in each coordinate function of Fg. This confirms
that the resulting function fFg is rather complex3, despite the fact that it has
a fast to compute output.

Let us now determine whether fFg has optimal algebraic degree n−1. Work-
ing on the expression (18) would be a little complex. Let us rather use Propo-
sition 5. We will show that for most functions g, we have

∑
z∈Fk2

F (z) 6= 0, that

is, there exists i such that
∑
z∈Fk2

fi(z) 6= 0. Indeed, for every i ∈ {1, . . . , n}, we

have, assuming k ≥ 2: ∑
z∈Fk2

fi(z) =

( ∑
z∈Fk2 ;wH(z)≥i

zi

)
+
( ∑
z∈Fk2 ;wH(z)=i−1

g(z)
)

+
( ∑
z∈Fk2 ;wH(z)≤i−2

zi−1

)
=

 k−1∑
j=i−1

(
k − 1

j

)
+

∑
z∈Fk2 ;wH(z)=i−1

g(z) +

i−3∑
j=0

(
k − 1

j

) (mod 2) =

(k − 1

i− 2

)
+

∑
z∈Fk2 ;wH(z)=i−1

g(z)

 (mod 2).

According to Proposition 5, we have then:

Proposition 7 For every n ≥ 2 and every (n − 1)-variable Boolean function
g in E, we have dalg(fFg ) = n − 1 unless, for every i = 1, . . . , n, we have∑
z∈Fk2 ;wH(z)=i−1 g(z) =

(
k−1
i−2
)

(mod 2).

Most functions g are then such that dalg(fFg ) = n − 1, since the condition

“
((
k−1
i−2
)

+
∑
z∈Fk2 ;wH(z)=i−1 g(z)

)
(mod 2) = 0,∀i” happens seldom. In the

case of the HWB function, we have g = 1 and fFg has algebraic degree n − 1,

since there exists i such that
(
k
i−1
)
6=
(
k−1
i−2
)

(mod 2) (for instance, i = k).

7 Walsh transform, balance, nonlinearity and
resiliency

It is shown in [5] that for every injective (k, n)-function F parameterizing a
Boolean function fF , we have:

WfF (u) = 2nδ0(u)− 2WF (0k, u), (19)

and thus, for k = n− 1:

nl(fF ) = 2n−1 − max
u∈Fn2 ;u6=0n

|WF (0n−1, u)| (20)

≥ 2nl(F ), (21)

3Unless a simple expression can be found in the future of course.
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but it seems difficult to determine these two nonlinearity parameters.
We know that the nonlinearity of the HWB function fF1 equals 2n−1 −

2
( n−2
dn−2

2 e
)

(see [15]). When n is odd, nl(fF1
) equals then the nonlinearity of the

majority function, which is known to be the worst possible for a function with op-
timal algebraic immunity, according to Lobanov’s bound [10], which states that

the nonlinearity of such function is at least 2
∑dn/2e−2
i=0

(
n−1
i

)
= 2n−1−

(
n−1

(n−1)/2
)
.

When n is even, nl(fF1
) is slightly worse than the nonlinearity of the majority

function which is itself slightly above Lobanov’s bound; anyway, nl(fF1
) is weak,

despite the fact that, as the majority function, the HWB function being fast to
compute (since all the complexity of its computation lies in the computation of
the Hamming weight of the input), it can then be used in stream ciphers with
many more variables than classical functions. Indeed, the main parameter play-
ing a role in the complexity of the fast correlation attack is the nonlinearity bias
1
2 −

nl(f)
2n , whose value here is too large for being compensated by the number

of variables.
Function fF0

has the same drawback. We have seen that it is the comple-
ment of the HWB function composed with the cyclic shift s : (x1, . . . , xn) 7→
(x2, . . . , xn, x1). It has then the same nonlinearity as the HWB function.
We shall see with computer investigations that, on the contrary, some functions
g in E can provide functions fFg with much better nonlinearity. But it seems
very hard to mathematically determine the nonlinearity of general GHWB func-
tions. According to (20) and to the fact that, for a general g (satisfying (11)),
we have:

WFg (0n−1, u) =

n−1∑
i=0

∑
z∈Fn−1

2
wH (z)=i

(−1)ui+1g(z)+u
[i+1]·z, (22)

where u[i+1] is obtained from u by puncturing (i.e. deleting) its coordinate ui+1

of index i + 1, the nonlinearity of the general function fFg , where g satisfies
(11), equals:

nl(fFg ) = 2n−1 − max
u∈Fn2 ;u6=0n

∣∣∣ n−1∑
i=0

∑
z∈Fn−1

2
wH (z)=i

(−1)ui+1g(z)+u
[i+1]·z

∣∣∣. (23)

Because of this puncturing at a position depending on the Hamming weight of
z, it seems difficult to go further in the determination of nl(fFg ). As a matter
of fact, the quality of the construction, which provides complex functions whose
output is simple to compute, becomes a drawback when we want to guess and
prove general properties, in particular when dealing with the nonlinearity. Let
us make however a few observations.
• When u = 1n, the double sum in (23) equals

∑
z∈Fn−1

2
(−1)g(z)+1n−1·z =

Wg(1n−1) and g is then better chosen so that Wg(1n−1) has an absolute value
not too far from the quadratic mean of Wg deduced from the Parseval relation

(which writes
∑
v∈Fn−1

2
W 2
g (v) = 22n−2), that is: 2

n−1
2 . Note that when g
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equals 0 or 1, this is the case since Wg(1n−1) equals then 0, and the best
affine approximation of the HWB function is then clearly not by the function
1n−1 · z = wH(z) (mod 2) nor by its complement. In fact, we know from [15]
that it is by the coordinate functions or their complements, that is, when u has
Hamming weight 1. The case studied next includes this as a particular case.
• When all the “1” in u are consecutive, that is, when u equals the vector∑s
j=r ej , where 1 ≤ r ≤ s ≤ n, and ej is the j-th vector (of Hamming weight

1) of the canonical basis of Fn2 , we have:

n−1∑
i=0

∑
z∈Fn−1

2
wH (z)=i

(−1)ui+1g(z)+u
[i+1]·z =

r−2∑
i=0

∑
z∈Fn−1

2
wH (z)=i

(−1)
∑s
j=r zj−1 +

s−1∑
i=r−1

∑
z∈Fn−1

2
wH (z)=i

(−1)g(z)+
∑i
j=r zj+

∑s
j=i+2 zj−1

+

n−1∑
i=s

∑
z∈Fn−1

2
wH (z)=i

(−1)
∑s
j=r zj =

r−2∑
i=0

 ∑
0≤j≤ i

2

(
s− r + 1

2j

)(
n− s+ r − 2

i− 2j

)
−
∑

0≤j< i
2

(
s− r + 1

2j + 1

)(
n− s+ r − 2

i− 2j − 1

)
+

s−1∑
i=r−1

∑
z∈Fn−1

2
wH (z)=i

(−1)g(z)+
∑i
j=r zj+

∑s
j=i+2 zj−1

+

n−1∑
i=s

 ∑
0≤j≤ i

2

(
s− r + 1

2j

)(
n− s+ r − 2

i− 2j

)
−
∑

0≤j< i
2

(
s− r + 1

2j + 1

)(
n− s+ r − 2

i− 2j − 1

) .

We see the difficulty of calculating the Walsh transform of general functions
fFg , even at such particularly simple input u.
– When u simply equals er, that is, when s = r, this expression becomes:

r−2∑
i=0

((
n− 2

i

)
−
(
n− 2

i− 1

))
+

∑
z∈Fn−2

2
wH (z)=r−1

(−1)g(z) +

n−1∑
i=r

((
n− 2

i

)
−
(
n− 2

i− 1

))
=

(
n− 2

r − 2

)
+

∑
z∈Fn−1

2
wH (z)=r−1

(−1)g(z) −
(
n− 2

r − 1

)
. (24)

Remark. For the HWB function, we have g = 1 and (24) equals then
(
n−2
r−2
)
−(

n−1
r−1
)
−
(
n−2
r−1
)

= −2
(
n−2
r−1
)
. The maximum of the absolute value is 2

( n−2
dn−2

2 e
)

=
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2
( n−2
bn−2

2 c
)
, and this maximum is taken for r =

⌈
n
2

⌉
and r =

⌊
n
2

⌋
(which, of course,

makes two values if n is odd and one if it is even), and we have WF1

(
0, edn2 e

)
< 0

and WF1

(
0, ebn2 c

)
< 0. We have already recalled that it is proved in [15] that

the maximum absolute value of the Walsh transform of the HWB function at
nonzero inputs is taken when the input has weight 1. We know then that the
function(s) xdn2 e + 1 and xbn2 c + 1 are best affine approximations of the HWB

function.
Similarly, for g = 0, (24) equals

(
n−2
r−2
)

+
(
n−1
r−1
)
−
(
n−2
r−1
)

= 2
(
n−2
r−2
)
. The maximum

is taken for r =
⌈
n
2

⌉
+ 1 and r =

⌊
n
2

⌋
+ 1 and we have WF0

(
0, edn2 e+1

)
> 0 and

WF0

(
0, ebn2 c+1

)
> 0. We know then that the functions xdn2 e+1 and xbn2 c+1 are

best affine approximations of fF0 . This will be useful in the sequel. �

For general g, we see that if
∑

z∈Fn−1
2

wH (z)=r−1

(−1)g(z) has an absolute value signif-

icantly smaller than
(
n−1
r−1
)

for every r = 1, . . . , n, that is, if g is sufficiently

non-constant on each set of fixed Hamming weight near n
2 (for which

(
n−1
r−1
)

is
large), then the absolute value in (24) will be significantly smaller than in the

case of the HWB function, since
∣∣∣(n−2r−2

)
−
(
n−2
r−1
)∣∣∣ is small, and the nonlinearity

will have a chance, in some cases, of being better than for the HWB function.
But as we shall see when reporting computer investigations, it is actually diffi-
cult not to lose with some u of Hamming weight different from 1 what has been
gained with those u of Hamming weight 1, and actually we shall see that the
functions having better nonlinearity than the HWB function, which fortunately
exist and in some cases improve its nonlinearity in a strong way, are a small
minority.
• Although the above calculations show that it is difficult to calculate all the
values of the Walsh transform of fFg , it is however possible to derive a bound
on the nonlinearity of this function, which will imply a necessary condition for
reaching a good nonlinearity, which counterbalances a condition that we gave
above. This bound can be proved by using (24), but we shall prove it slightly
differently, for providing a complementary viewpoint:

Proposition 8 For every n ≥ 2 and every (n− 1)-variable Boolean function g
satisfying (11), we have:

nl(fFg) ≤ nl(fF0
)+

2 min
s∈{dn2 e,bn2 c}

(
|{z ∈ supp(g);wH(z) = s}| , |{z ∈ supp(g + 1);wH(z) = s− 1}|

)
.
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Proof. We have, according to Relation (20):

nl(fFg) = 2n−1 − max
u∈Fn2 ;u 6=0n

|WFg(0n−1, u)| =

2n−1− max
u∈Fn2 ;u6=0n

ε∈F2

( ∑
z∈Fn−1

2

(−1)u·F0(z)+uwH (z)+1 g(z)+ε
)

=

2 min
u∈Fn2 ;u 6=0n

ε∈F2

wH

(
z 7→ u · F0(z) + uwH(z)+1 g(z) + ε

)
.

We have seen in the remark above that wH

(
z 7→ u · F0(z) + ε

)
reaches its

minimum for u = er, r ∈ {
⌈
n
2

⌉
+ 1,

⌊
n
2

⌋
+ 1} and ε = 0; then we have, denoting

by (er)wH(z)+1 the coordinate of er of index wH(z) + 1:

2 min
u∈Fn2 ;u 6=0

ε∈F2

wH

(
z 7→ u · F0(z) + uwH(z)+1 g(z) + ε

)
≤

2wH

(
z 7→ er · F0(z) + (er)wH(z)+1 g(z)

)
≤

2wH

(
z 7→ er · F0(z)

)
+ 2wH

(
z 7→ (er)wH(z)+1 g(z)

)
=

2wH

(
z 7→ er · F0(z)

)
+ 2

∣∣{z ∈ Fn−12 ;wH(z) + 1 = r and g(z) = 1
}∣∣ =

2 min
u∈Fn2 ;u 6=0n

ε∈F2

wH

(
z 7→ u · F0(z) + ε

)
+ 2 |{z ∈ supp(g);wH(z) = r − 1}| ,

and we deduce then:

nl(fFg) ≤ nl(fF0
) + 2 |{z ∈ supp(g);wH(z) = r − 1}| .

This completes the first part of our proof. We have also:

nl(fFg) = 2n−1 − max
u∈Fn2 ;u6=0

|WFg(0n−1, u)| =

2n−1− max
u∈Fn2 ;u 6=0n

ε∈F2

( ∑
z∈Fn−1

2

(−1)u·F1(z)+uwH (z)+1 (g(z)+1)+ε
)

=

2 min
u∈Fn2 ;u 6=0n

ε∈F2

wH

(
u · F1(z) + uwH(z)+1 (g(z) + 1) + ε

)
≤

2 min
u∈Fn2 ;u 6=0n

ε∈F2

wH

(
u · F1(z) + ε

)
+ 2 |{z ∈ supp(g + 1);wH(z) = r − 2}| =

nl(fF1
) + 2 |{z ∈ supp(g + 1);wH(z) = r − 2}| ,

where the inequality is proved similarly as above, using again the remark above.
2

Remark. We saw above that to allow reaching a large nonlinearity, g should
be sufficiently non-constant on each set of fixed Hamming weight near n

2 . The
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bound of Proposition 8 shows that for allowing to reach with fFg a nonlinearity
significantly larger than the HWB function, it is better to choose functions g
which take significantly often value 1 on those inputs of Hamming weight

⌈
n
2

⌉
and significantly often value 0 on those inputs of Hamming weight

⌈
n
2

⌉
− 1.

Note that calculations similar to those in the proof of Proposition 8 can be
made for other values of r, even those not corresponding exactly to maxima of
|WF0

(0n−1, u)| and |WF1
(0n−1, u)|. 2

Computer investigation: experiments have been made with the kind help of
Stjepan Picek. Some choices of g have provided better parameters (nonlinearity
and algebraic immunity) than the HWB function. Only a minority of these
choices did so, but they were however rather numerous. We report here the
results obtained for the nonlinearity and will report in the next section those
on the algebraic immunity. We tried so far the following monotone functions
g: the majority function and the more general threshold functions, the func-
tions of supports {x ∈ Fn−12 ; supp(u) ⊆ supp(x)} for all u ∈ Fn2 , the function
x1 + x2 + x1x2 and the monomial functions of any degrees, where we saw that
degree 3 gives the best results among all tries:
- monomial function g(x) = x3x6x7 in 12 variables provides fFg in 13 variables

with nonlinearity 3284 (the nonlinearity 2n−1 − 2
( n−2
dn−2

2 e
)

of the HWB function

equals 3172), not close enough to the covering radius bound 2n−1 −
⌈
2
n
2−1

⌉
=

4064 nor to the nonlinearity 3942 of the so-called Carlet-Feng (C-F) function
(too slow to run in a practical stream cipher). This represents a step forward,
with an increase of 3.5% with respect to the HWB function (the algebraic im-
munity is the same as for the HWB function, see below).
- g(x) = x2x7x8 in 13 variables provides fFg in 14 variables with nonlinearity
6668 (the nonlinearity of the HWB function equals 6344). This is here again
still not close enough to the covering radius bound 8128 nor to the nonlinearity
8028 of the C-F function, but this represents a still larger step forward, with
an increase of 5.1%, compared to the HWB function, all the more since the
algebraic immunity is in this case also better, see below.
- g(x) = x1x7x8 in 14 variables provides fFg in 15 variables with nonlinearity
13372 (the nonlinearity of the HWB function equals 12952), not close enough
to the covering radius bound 16320 nor to the nonlinearity 16242 of the C-F
function; this is an increase of 3.2% (the algebraic immunity is the same as for
HWB).
- g(x) = x1x8x9 in 15 variables provides fFg in 16 variables with nonlinearity
27158 (the nonlinearity of the HWB function equals 25904), not close enough
to the covering radius bound 32640 nor to the nonlinearity 32530 of the C-F
function; this is an increase of 4.8%; fFg provides a good tradeoff between se-
curity and speed, since the algebraic immunity is in this case also better than
for HWB, see below.
We summarize these results in two tables, one for each parity of the number of
variables:
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n− 1 g(x) n nl(HWB) nl(f) increase nl(C-F) c. r. bound
12 x3x6x7 13 3172 3284 3.5% 3942 4064
14 x1x7x8 15 12952 13372 3.2% 16242 16320

n− 1 g(x) n nl(HWB) nl(f) increase nl(C-F) c. r. bound
13 x2x7x8 14 6344 6668 5.1% 8028 8128
15 x1x8x9 16 25904 27158 4.8% 32530 32640

Improvements: only a tiny part of all functions g satisfying (11) in such
numbers of variables can be visited. The time needed for visiting all 7-variable
functions satisfying (11) would already need thousands of centuries on a modern
computer, and each incrementation of n by 1 replaces the number of functions
to be investigated by roughly its square. We decided then to start from the
best functions obtained in the first phase of our investigation and to modify
them so that they still satisfy Condition (11); this could be easily done by
changing only the values of g taken at the inputs z such that zwH(z) = 0 and
zwH(z)+1 = 1, since such changes preserve (11), because such z cannot be equal

to any vector of the form u(0) nor to any vector of the form u(1). Unfortunately,
this only allowed to slightly improve the best obtained nonlinearities (at the
price of an increase of the complexity of the functions, providing bad trade-offs,
then). An evolutionary method was then applied with the same strategy, as
described in [7], and gave much better results. We shall call modified functions
the resulting functions. For instance, this provided a 15-variable function f ′ with
a nonlinearity of 14604 (which represents an increase of 12.7% over the HWB
function) and a 16-variable function f ′ with a nonlinearity of 29128 (which
represents an increase of 12.4% over the HWB function).

n nl(HWB) nl(f ′) increase nl(C-F) c. r. bound
15 12952 14604 12.7% 16242 16320
16 25904 29128 12.4% 32530 32640

This latter result seems quite interesting. Function g being more complex
than a simple monomial, function fFg represents a different tradeoff between se-
curity and speed, which is more in the direction of security. We expect that the
best possible nonlinearities of all balanced functions fFg are still significantly
larger than the values we obtained so far. Further theoretical and computational
work will be needed for identifying good candidates to be investigated. �

7.0.1 Resiliency

We have seen above that for g(z) equal to a coordinate function, the correspond-
ing function fFg is (at least) 1-resilient. �
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8 Algebraic immunity

Of course, as already observed in [5], an n-variable function h is an annihilator
of the n-variable fF parameterized by F if and only if the Boolean function
h ◦ F is identically zero. In the case of the GHWB function fFg , this writes:

h
(
z1, . . . , zwH(z), g(z), zwH(z)+1, . . . , zn−1

)
= 0,∀z ∈ Fn−12 .

If n is odd, then fFg has optimal algebraic immunity n+1
2 if and only if it has

no nonzero annihilator of algebraic degree at most n−1
2 (indeed, this is true for

any balanced Boolean function, see [3]).
We know from [15] that the HWB function does not have optimal algebraic

immunity but that it has algebraic immunity at least bn/3c + 1. This value is
large enough for resisting the algebraic attack, because the function being fast
to compute, it can be used with more variables than classical functions.

It seems very difficult to study mathematically the algebraic immunity of
GHWB functions in general (we shall give below computer investigation results
showing that their AI can be quite sufficient). We shall give in Corollary 3 below
a way of addressing the algebraic immunity of GHWB functions. More (hard)
work may be needed for determining the algebraic immunity more accuratey.
To prove Corollary 3, we need the preliminary result given in Corollary 2, which
has its own interest for studying algebraic immunity in general. It shows that if
we know an upper bound d on the algebraic degree of a Boolean function, then
the coefficients of the terms of degree d can be addressed not only by considering
the values of the function at those x having some specific coordinates equal to 0
like in Relation (3), but also by considering those values at inputs having some
coordinates equal to 0 and some equal to 1, with some freedom in the choice of
the positions of these 0 and 1. We first need a lemma that is a straightforward
consequence of Relation (3).

Lemma 2 Let h(x) =
∑
I⊆{1,...,n} aI x

I be any n-variable Boolean function.

Let I be a set of multi-indices in {1, . . . , n}. Then we have:∑
I∈I

aI =
∑
x∈Fn2

|{I∈I;supp(x)⊆I}|odd

h(x).

Now, let D and K be subsets of {1, . . . , n} such that D ⊆ K and let us
take I = {I ⊆ {1, . . . , n};D ⊆ I ⊆ K}. Then the set {I ∈ I; supp(x) ⊆ I} =
{I ⊆ {1, . . . , n}; supp(x) ∪ D ⊆ I ⊆ K} has an odd size if and only it is a
singleton (since its size equals zero or a power of 2), that is, supp(x) ∪D = K,
or equivalently, K \D ⊆ supp(x) ⊆ K, and we have then:

Corollary 2 Let h(x) =
∑
I⊆{1,...,n} aI x

I be any n-variable Boolean function.

Let D be any subset of {1, . . . , n} such that there does not exist in the ANF of
h a term xI with D ( I and aI 6= 0. Then for every superset K of D, we have
aD =

∑
x∈Fn2

supp(x)∪D=K

h(x).
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Note that if we know that h has algebraic degree at most d, then every D of
size d satisfies the hypothesis of Corollary 2. The condition supp(x) ∪D = K
means that all the coordinates of x whose indices lie outside K equal 0 and all
those whose indices lie inside K \D equal 1. In other words, we have a partition
of {1, . . . , n} into three sets D,K \ D and {1, . . . , n} \K, where |D| ≤ d, and
every coordinate xi of x:

1. is free if i belongs to D,

2. is fixed to 1 if i belongs to K \D,

3. is fixed to 0 if i belongs to {1, . . . , n} \K.

We have a complete freedom in the choice of the superset K of D. This gives a
tool for trying to show that any annihilator of degree bounded above by some
number m is identically zero, that is, aD = 0 when |D| ≤ m: we assume that the
annihilator is not zero, we call d its algebraic degree and we prove that aD = 0
for every D of size d, which leads to a contradiction.

Corollary 3 For every n ≥ 3, let m ≤ n−1
2 and let f be an n-variable Boolean

function such that both f and f + 1 are affine equivalent to a GHWB function
fFg where g ∈ E is such that, for every d ≤ m and every subset D of {1, . . . , n}
of size d, there exists a superset K of D such that the four following conditions
are satisfied:

1. [k − d, k] ⊆ K \D where k = |K|,

2. g equals 1 on the set {x[wH(x)];x ∈ Fn2 ;K \ D ⊆ supp(x) ( K}, where
x[wH(x)] denotes the vector equal to x deprived of its coordinate of index
wH(x),

3. if k + 1 ∈ K, then g maps to 1 the vector z ∈ Fn−12 whose support equals
(K ∩ [1, k]) ∪ ({i− 1; i ∈ K ∩ [k + 2, n]),

4. if k + 1 6∈ K, then either g maps to 0 the vector z ∈ Fn−12 whose support
equals (K ∩ [1, k]) ∪ {i − 1; i ∈ K ∩ [k + 2, n]} or g maps to 1 the vector
z ∈ Fn−12 whose support equals (K ∩ [1, k− 1])∪{i− 1; i ∈ K ∩ [k+ 2, n]},

or the two following conditions are satisfied:

i) [k − d, k + 1] ⊆ Kc where k = |K|,

ii) g equals 0 on the set {x[wH(x)];x ∈ Fn2 ;K \D ⊆ supp(x) ⊆ K},

then we have AI(fFg ) ≥ m+ 1.

Proof. According to the fact that affine equivalence preserves algebraic immu-
nity, it is enough to prove that any GHWB function satisfying the hypothesis
has no nonzero annihilator of algebraic degree at most m. Let h be such anni-
hilator of algebraic degree d ≤ m and let D be any subset of {1, . . . , n} of size
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d.
Let K satisfy Conditions 1-4. Any vector x ∈ Fn2 such that supp(x) ∪D = K
has Hamming weight between k − d and k, since K \D ⊆ supp(x) ⊆ K.
• If wH(x) < k then wH(x) and wH(x) + 1 belong to [k − d, k] and then to
K \ D, thanks to Condition 1, and therefore xwH(x) = xwH(x)+1 = 1. Then x
belongs to the support of fFg because, according to Condition 2, x is the image

of the vector z = x[wH(x)] = x[wH(x)+1] by Fg.
• If wH(x) = k, then x has support K.
- If k + 1 ∈ K then x belongs to the support of fFg , according to Condition 3.

- If k + 1 6∈ K, then according to Condition 4, either g(x[k+1]) = 0 and
x = Fg(x

[k+1]) or g(x[k]) = 1 and x = Fg(x
[k]); in both cases, x belongs to

the support of fFg . We have then aD = 0.
Let now K satisfy Conditions (i)-(ii). Condition (i) ensures that xwH(x) =
xwH(x)+1 = 0 and Condition (ii) ensures then that x belongs to the support of
fFg (note that “xwH(x) = 0 and xwH(x)+1 = 1” would always imply that x does
not belong to the support of fFg , whatever is g, and needs then to be avoided).
We have then aD = 0. This completes the proof. 2

Remark If m ≤
√
4n+1−1

2 ≈
√
n, then there always exists K satisfying Con-

dition 1, since if there did not exist in {1, . . . , n} an interval [k − d, k] disjoint
from D, each of the

⌊
n
d

⌋
disjoint intervals of this form existing in {1, . . . , n}

would have a non-empty intersection with D, and the size of D would be at

least
⌊
n
d

⌋
> n

d − 1 ≥ n
m − 1 ≥ 2n√

4n+1−1 − 1 ≥
√
4n+1−1

2 , a contradiction). The

condition for having (i) satisfied is similar. Corollary 3 is then of some help for
selecting GHWB functions having a not very low AI but does not ensure a good
AI. Further work is then needed. �

We give now the results of the computer investigation mentioned above.
The function g(x) = x3x6x7 in 12 variables provides a function fFg in 13 vari-
ables with algebraic immunity 5 while the lower bound bn/3c+ 1 for the HWB
function gives 5 too and the upper bound

⌈
n
2

⌉
gives 7.

The function x2x7x8 in 13 variables provides a function fFg in 14 variables with
algebraic immunity 6 while the lower bound bn/3c + 1 for the HWB function
gives 5 and the upper bound

⌈
n
2

⌉
gives 7. This is a good result.

The function x1x7x8 in 14 variables provides a function fFg in 15 variables with
algebraic immunity 6 and the modified function (see the “Improvements” para-
graph in the “Computer investigation” part of Section 7 for an explanation of
this term) has an algebraic immunity of 7 while the lower bound bn/3c+ 1 for
the HWB function gives 6 and the upper bound

⌈
n
2

⌉
gives 8; the latter function

is good.
The function x1x8x9 in 15 variables provides a function fFg in 16 variables with
algebraic immunity 7 and the modified function has an algebraic immunity of 7
while the lower bound bn/3c + 1 for the HWB function gives 6 and the upper
bound

⌈
n
2

⌉
gives 8. This is a good result.
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n− 1 g(x) n AI(HWB) AI(f) AI(f’)
⌈
n
2

⌉
12 x3x6x7 13 5 5 - 7
14 x1x7x8 15 6 6 7 8

n− 1 g(x) n AI(HWB) AI(f) AI(f’)
⌈
n
2

⌉
13 x2x7x8 14 5 6 - 7
15 x1x8x9 16 6 7 7 8

�

Conclusion.
We have deduced from a construction (introduced in a previous paper, that is
Ref. [5]), of n-variable Boolean functions f from vectorial (n−1, n)-functions F ,
a generalization of the hidden weight bit (HWB) function. This generalization
is a secondary construction that builds an n-variable Boolean function from an
(n−1)-variable Boolean function g, leading to functions complex enough to have
good cryptographic features (and also being rather difficult to apprehend), but
having an output very fast to compute. This provides a class of Boolean func-
tions within which good trade-offs can be searched (as the Maiorana-McFarland
class was, in a way, before the invention of algebraic attacks). We have deter-
mined the condition on g under which the resulting function F is injective and
function f is then balanced, we have shown the difficulty of characterizing all
such functions f , but provided a fast way to compute their output. We have also
studied their representation and their cryptographic parameters (except their
fast algebraic immunity, which will be studied in a further paper). More work is
needed for evaluating the exact number of distinct balanced functions fFg but it
is clear that this number is very large. A computer investigation with some par-
ticular choices of function g has provided functions in n ∈ {3, . . . , 16} variables
with much better nonlinearities than the HWB function (which is known to be
insufficiently nonlinear) and having good algebraic immunity. Only a tiny part
of all possible functions g satisfying the condition could be visited and the best
possible nonlinearities and algebraic immunities of all balanced functions fFg
is probably still significantly larger. If such highly nonlinear functions can be
found having good algebraic immunity and fast algebraic immunity, for choices
of functions g with an output fast enough to compute, the resulting functions
fFg will be by far the best possible candidates for being used in stream ciphers.
Since the corpus to be investigated is too large, theoretical work is needed in
the future for identifying good candidates to be investigated, but our results
already show that generalized HWB function offer a good trade-off between
speed (which is favored when for instance we take for g a monomial function)
and security (which is favored with the functions obtained by the evolutionary
approach, which have better nonlinearity but are also more complex). More
work (probably very difficult) is needed for mathematically evaluating the non-
linearity, the algebraic immunity and the fast algebraic immunity of general
functions fFg .
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