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Abstract

Cellular networks connect nearly every human on the planet; they consequently have visibility into location
data and voice, SMS, and data contacts and communications. Such near-universal visibility represents a
significant threat to the privacy of mobile subscribers. In 5G networks, end-user mobile device manufacturers
assign a Permanent Equipment Identifier (PEI) to every new device. Mobile operators legitimately use the
PEI to blocklist stolen devices from the network to discourage device theft, but the static PEI also provides
a mechanism to uniquely identify and track subscribers. Advertisers and data brokers have also historically
abused the PEI for data fusion of location and analytics data, including private data sold by cellular providers.

In this paper, we present a protocol that allows mobile devices to prove that they are not in the blocklist
without revealing their PEI to any entity on the network. Thus, we maintain the primary purpose of the PEI
while preventing potential privacy violations. We describe a provably-secure anonymous proof of blocklist
non-membership for cellular network, based on the RSA accumulators and zero-knowledge proofs introduced
by Camenisch and Lysyanskaya (Crypto’02) and expanded upon by Li, Li and Xue (ACNS’07). We show
experimentally that this approach is viable for cellular networks: a phone can create a blocklist non-membership
proof in only 3432 milliseconds of online computation, and the network can verify the proof in less than one
second on average. In total this adds fewer than 4.5 seconds to the rare network attach process. This work
shows that PEIs can be attested anonymously in 5G and future network generations, and it paves the way for
additional advances toward a cellular network with guaranteed privacy.

1 Introduction
Mobile networks provide reliable, high-speed data for applications such as entertainment, IoT deployments,
sensitive enterprise communications, and news. A mobile phone is the only device many people have for
Internet access, including access to sensitive content [GSM19, Han19]. Despite the need for secure and
privacy preserving mobile networks, current cellular networks cannot provide crucial privacy guarantees for
location, activity, or identity. Prior work on cellular network privacy issues has primarily focused on external
threats to the network over the air interface [DPK+14, DPW16, NSCK17] and investigating malicious external
networks [PAS+18].

Recent events have made it clear networks must be designed to provide privacy even from the subscriber’s
own network. Recent disclosures have indicated that providers give or sell location data to law enforcement
agents, private individuals, or data brokers [FCC20]. Another concern is the threat of compromised internal
infrastructure [VD07], especially by untrusworthy vendors. For example, Western governments have been
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concerned by the rising popularity of Huawei as a 5G equipment vendor because of the potential of harm by
compromised core network devices.

In 5G, two identifiers are exposed to internal entities: the Subscription Permanent Identifier (SUPI) and
the Permanent Equipment Identifier (PEI, also known as the International Mobile Equipment Identity (IMEI)
before 5G). Whereas the SUPI is usually stored on a SIM card and identifies a user, the PEI uniquely identifies a
User Equipment (UE) device such as a smart phone or cellular modem. The PEI is primarily used to ensure that
a phone has not been reported stolen at the time it connects to the network. However, for a data broker who
wants to aggregate user profiles, the PEI is ideal to consolidate identities because it is static even across device
refreshes and can unify disparate identifying information (e.g., across many email addresses).

In this paper, we present a provably-secure protocol for the mobile network operator to confirm that a
particular device is not in a global blocklist of lost or stolen devices while not learning the specific device
identifier. Our protocol ensures that no proof is linkable to the UE’s PEI or to any past or future proof from that
UE. Thus, we protect the privacy of user equipment identifiers while still enabling the network to check that only
non-blocklisted devices gain access. We demonstrate that our approach is viable by providing a proof-of-concept
implementation and reporting performances that are not prohibitive even with modest hardware.

We use cryptographic accumulators and zero-knowledge proofs [LLX07] for private set non-membership.
These techniques are well-known, but we are the first to apply them to a cellular context. We formally prove
anonymity and soundness in this specific context. We prove that neither eavesdropper nor malicious network
can track a user or share their usage data. At the same time, a malicious user cannot craft malicious proofs to
gain wrongful access to the network. We then show experimentally that, despite increased computation and
data transfer, accumulators with zero-knowledge proofs are sufficiently lightweight to be deployed in mobile
networks. Creating and verifying a proof adds in total fewer than 4.5 seconds to the already slow yet infrequent
network attach process.

1.1 Motivation
Both the PEI and SUPI are important for a user’s identity, but we focus on the PEI for several reasons. First,
unlike the SUPI and its predecessors, the PEI (and the IMEI) have historically been abused by third parties for
device authentication for advertising and tracking purposes. As a result, the PEI can easily be mapped to a
device owner’s identity [GZJS12]. Because of the PEI’s widespread visibility and linkability, it is in many ways
more sensitive than the SUPI, which is generally only known by the network. Second, the network requests the
PEI less often than the SUPI, and only for a single purpose: testing blocklist membership (elaborated in Sec 8.5).
Thus, replacing the PEI with an anonymous credential will be simpler and less performance sensitive than the
SUPI. Finally, because the SUPI is required for lawful access requirements (i.e., wiretaps), a privacy-preserving
SUPI may not be deployable without legal difficulties. Given these considerations we consider only the private
authentication of the PEI. Our work here may also be used as a building block for a privacy-preserving SUPI,
which we leave to future work.

We focus on designing our protocols in the 5G setting. We note that our techniques would be equally
applicable in earlier generations, though backward compatibility is a challenge to adoption. More importantly,
these techniques could be integrated into the next release of 5G or future network standards.

2 Background

2.1 Equipment Identifiers in Cellular Networks
User Equipment (UE): A user’s device in 5G is called User Equipment (UE). Each UE is identified by a
unique number called the Permanent Equipment Identifier (PEI), previously called the International Mobile
Equipment Identity number (IMEI) in prior cellular generations. The PEI is identical to the IMEI in devices that
also support LTE, UMTS, or GSM access.
CEIR Maintainer: Each operator maintains a blocklist of PEIs, known as an Equipment Identity Registry
(EIR). Each operator contributes their own EIR to a Central Equipment Identity Registry (CEIR) to prevent
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Figure 1: In today’s network, a user sends its PEI to the network in the clear. The network then checks if the PEI
is in the blocklist or not and authenticates the user.

stolen devices from being resold. The GSMA (a global industry trade organization) currently maintains the
CEIR. When an operator authenticates a phone and checks if the phone’s PEI is in a blocklist, they compare the
PEI to entries in the CEIR.
Network (AMF): When a UE attaches to a cellular network, it transmits messages through a base station (a
“gNodeB”) to a core network entity, the Access and Mobility Management Function (AMF). Among other tasks,
the AMF handles authenticating a UE and checking if a PEI is in a blocklist maintained by the CEIR/EIR.
Manufacturer: The UE manufacturer assigns the PEI at manufacturing time. To ensure global uniqueness,
each device model receives a unique PEI prefix, called the Type Allocation Code (TAC). TACs are assigned to
manufacturers by the GSMA.

In the current 5G-AKA protocol [3rdb], a UE sends its PEI in the clear to the AMF to prove that it is not
blocklisted (Fig. 1). The AMF checks if the PEI is in this list by checking the blocklist maintained by the CEIR.
If not, the UE has passed the authentication step.

2.2 Cryptographic Techniques
RSA Accumulator: A cryptographic accumulator represents a set L. The accumulator can be used to check if
a particular value is not in the set by computing a non-membership proof. In our construction we use an RSA
accumulator [LLX07].

To compute an RSA accumulator, the owner of a set L = { id1, . . . , idL } multiplies all the elements together
as s = ΠL

i=1idi and then takes this value to the exponent of a group element g, so the value is list-pk = gs. The
owner can publish list-pk publicly.

Assume there is a party, Alice with identity x who needs credentials to access the network. To receive
credentials, her value x is mapped into a prime number id by applying a Hash-to-Prime [GHR99, CMS99, CS00,
FT14] function1 denoted Hpr.

Later, to prove that id is not in the set, Alice must prove that id and s are co-prime, i.e., gcd(id, s) = 1. To
achieve this, Alice needs two Bézout coefficients [Béz79] a and b such that as+ bid = 1. These values a and b
can only exist if s and id are indeed co-prime.

In other words, Alice needs to prove that id is not a factor of one of the exponents of list-pk = gid1···idL = gs.
Given a and b, anyone can check if the equation as + bid = 1 holds. In the exponent, this check translates
to list-pka · gbid = g. Note that from the extended GCD algorithm, one can find the GCD and the Bézout
coefficients [Béz79].

1This is necessary since RSA accumulators work with prime numbers.
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Figure 2: In our scheme, a user sends a proof that it is not in the blocklist and a commitment to its PEI. The
network verifies the proof. The PEI is not revealed.

In [LLX07], Alice uses a and B where B = g−b. To check non-membership, any verifier given (a,B)
and list-pk just checks that the equation list-pka = Bidg is satisfied. Hence, anyone can quickly check non-
membership, without having to know the whole set.
Commitment Schemes: We use the Fujisaki-Okamoto (FO) commitment scheme [DF01]. Given two group
elements g and h, a committer picks x ∈ Z and randomness r. The commitment to x is c = gxhr. An FO
commitment is secure if given a commitment c it is infeasible to find any solution x and r that opens the
commitment, which is true if the Strong-RSA assumption [BP97] holds.
Non-interactive Zero-Knowledge Proof (NIZK): The user needs to prove properties of values (e.g., a value
is positive) without revealing the values themselves. At the same time, the user must not be able to create proofs
for false statements. A Sigma-protocol is one way to construct such a zero-knowledge (ZK) proof of knowledge.

A Sigma-protocol is a three-move interactive ZK proof scheme where (i) the prover sends a commitment,
(ii) the verifier sends a random challenge, and (iii) the prover sends a response. The verifier will compute on
the conversation transcript and decide whether to accept or reject. The commitment step “locks in” the prover,
so that he can only respond to the challenge correctly if he knows the values.

This interactive protocol can be transformed into a non-interactive with the Fiat-Shamir transform [FS86]
where the challenge is computed by the prover as the hash (modeled as a random oracle[PS96]) of the com-
mitment. In one step, the prover now sends the commitments, the computed challenge and the response to
the verifer. The verifier also computes the challenge by querying the random oracle and proceeds with the
verification as in the interactive protocol.

3 Design Goals
To connect to a cellular network, a mobile device must prove (1) it is operated by an authorized subscriber,
and (2) it is not on a blocklist of lost or stolen phones [3rdc, 3rdb]. Rather than sending the PEI to the AMF in
the clear, the UE will send a commitment C of the PEI. On each authentication, the UE sends C and a NIZK
proof π proving that C is a commitment to a PEI value that is not present in the CEIR blocklist (Fig. 2). This
high-level approach gives us the security properties of anonymity and soundness (explained in Sect. 6.1), but we
need to ensure that our solution is practical. We require the following:
The proof size must be small: The statement that a UE is proving in zero-knowledge is “PEI is not in CEIR’s
blocklist”. In a naı̈ve approach the size of the ZK proof is proportional to the size of the entire blocklist,
which can have millions of devices. Therefore, we replace the public CEIR blocklist in the current network
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with a public accumulator list-pk with the set holder as the CEIR maintainer. Accumulators are explained in
Section 2.2.
The proof must be fast: In our scheme, a UE has a credential on its PEI that it uses to prove non-membership
in an RSA accumulator. We use RSA accumulators [BDM93] and Sigma-protocols for RSA accumulators
( [LLX07]) so that both proof size and proving time are constant with respect to the size of the set. Furthermore,
the accumulator can be updated with one operation per each new element2. While there are many ways to create
non-membership proofs [Mer88, Ngu05, DT08], we choose RSA accumulators because the size of the blocklist
grows regularly, and we need to ensure that updates are efficient.
Frequent blocklist updates must not impact performance: The blocklist is updated regularly through the
combined effort of mobile network providers that share their EIRs. In our setting, the CEIR maintainer will
need to update the accumulator as well. Each update to the accumulator requires the UE to update its credential.

The UE needs to sequentially update its credentials for each addition to the blocklist because batch updates
for accumulators are impossible [CH10, BCD+17]. This may not be practical for a fast-growing blocklist. To
mitigate this issue, we partition the CEIR based on the leading digits of the PEI, which are the TAC indicating
the manufacturer and device model. The TAC is eight decimals, so only a fraction of the TAC will be used for
partitioning the blocklist. Then when a UE attempts to prove non-membership, it must also announce on which
blocklist she has a non-membership credential. This will reduce the quantity of updates done daily by a phone
but limits the anonymity set from, e.g., “all phones” to “all Samsung phones”. We present the protocol without
describing any partitions.

We expect that credential updates will be distributed over the Internet from a common source used by all
devices. Also, a UE can perform credential update calculations in the background, rather than at verification
time.
The protocol must limit replay attacks: An adversary that eavesdrops on the connection between the network
and the phone could “steal” a valid proof and then use it to create a proof that looks as though it came from her
own (blocklisted) phone.

To limit the adversary’s success of mounting the attack, we use two techniques. First, we embed the numeric
identifier for the serving cellular network and the cell ID of the gNodeB to prevent reuse of a proof in another
location in the network. Second, we introduce a window of validity for each proof. Each UE embeds a timestamp
in the proof that marks the time of proof creation. Upon receipt of an authentication request, the network checks
if the proof is in the window of validity depending on the time stamp. If not, the network rejects the proof. In
this way, we limit the power of the adversary by reducing the time over which it can perform a replay attack. As
the time stamp is embedded in the proof, a malicious UE cannot change the time stamp without invalidating the
proof.

No cryptographic solution can entirely prevent the cloning of legitimate device credentials to a stolen device,
but tamper-proof hardware could reduce the risk. Indeed, IMEI cloning is already possible in some devices, and
we do not claim that our protocol will be secure against credential cloning. A particularly strong adversary could
duplicate the credentials for a proof from a non-blocklisted phone to a modified block-listed one; depending on
the security architecture of the device, this could be very challenging. For example, Qualcomm modems have a
secure boot process requiring signed firmware. We do prove in the following sections that an attacker cannot
fabricate new credentials.

4 Zero-Knowledge Protocol
In this section, we describe each party involved in the protocol, their role, and the procedure they execute.

CEIR maintainer. The CEIR maintainer maintains the blocklist and publishes the corresponding accumu-
lator. For simplicity, in our scheme, this entity also assigns PEI to each UE. The CEIR maintainer executes
procedures Setup, Enroll, UpdBList, that we informally describe below. A formal description of these procedures
is provided in Fig. 4.

2We avoid using general accumulators (e.g., based on hash functions) and general purpose ZK proofs (e.g., SNARKs).
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Figure 3: Authentication and Verification. A user uses their pei and a timestamp tms to create a proof that they
send to the network. The network can then verify if the user has a valid pei.

Setup. The CEIR maintainer sets up the system parameters that are used by the other entities. It samples
and publishes the secure parameters for the RSA and commitment schemes. Using the RSA parameters, the
CEIR maintainer initializes the accumulator value (representing an empty blocklist) using a secret seed. The
secret seed ensures that the CEIR maintainer is the only entity who can give credentials to users in the Enroll
procedure.

Enroll. This algorithm assigns each UE an ID and a credential it can use to prove that it is not in a blocklist.
Specifically, for a UE that comes with PEI pei, the CEIR maintainer first maps pei onto a prime id. Next, it
will create non-membership credentials for the id using the current RSA accumulator. It will return the id and
credential to the UE.

Update blocklist. This algorithm updates the blocklist when a UE’s PEI has been revoked. To blocklist, the
CEIR maintainer adds an id to the accumulator and creates a signature on the updated revoked identity id∗ to
send to all the users.

User (UE). The UE receives an id and a credential from the CEIR maintainer at initialization. The UE need not
interact with CEIR maintainer afterwards. The UE runs Auth (which is randomized) to prove that it is not in the
blocklist, UpdCred to update the credential when the blocklist is updated, and VrfyUpdBList that verifies the
authenticity of the blocklist’s update. These are described in Fig. 5

Authenticate The UE authenticates its pei by calculating a ZK proof of non-membership using the id, the
non-membership credential, and the most updated accumulator. This proof shows that the UE has knowledge of
a credential that belongs to an id that has not been accumulated (i.e., not in the blocklist). The UE sends the
non-membership proof to the AMF. We illustrate the flow in Fig 3.

Update Credential This algorithm updates a UE’s credential upon receipt of a new blocklist. The CEIR maintainer
updates the blocklist (here, the accumulator list-pk) with the PEI when a UE is reported stolen. Only the
CEIR maintainer may update the blocklist which is enforced by a signature on the upd. The UE verifies this
signature and updates its credentials using the updated accumulator and its old credentials.

Network (AMF) Upon receipt of a user’s proof, the AMF executes the procedure Vrfy (Fig. 7) to see if the UE
is blocklisted using the most updated accumulated blocklist.

Verify. This algorithm authenticates a proof that the PEI is not in the blocklist. Upon receipt of the set of
commitments and a proof from a UE, the AMF will parse the commitments and proof. The AMF then verifies
the proof on the current accumulator list-pk∗ and with the time stamp tms. Specifically, the AMF checks that the
proof was received at a time within tms + Expiry. If the commitments are consistent with one another, and the
proof verifies, the AMF will accept. Else, it will reject. We note that even if the AMF is completely malicious
and colludes with the CEIR maintainer, it cannot learn the PEI of the UE that is trying to authenticate.
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Setup(1λ)

1. Select λ−bit safe primes p = 2p′ + 1, q = 2q′ + 1; let n = pq

2. Sample a←$ Z∗n
3. Set g = a2 mod n.
4. Set t = 128,m = 80

5. Sample α←$ Z∗n
6. Set h = gα

7. Define pp = (g, h, n, t,m)

8. Sample r′ ←$ {0, 1}η .
9. r = Hpr(r

′).
10. Define list-sk := (p′, q′, r)

11. Define list-pk = gr

12. Initialize L = ∅
13. Compute mpk,msk = SS.Gen(1λ)

14. Output (L,msk,mpk, list-pk, list-sk, pp)

UpdBList(pp, list-pk,L, id,msk)

1. If id ∈ L: return “Already Revoked”
2. Else:

(a) L := L ∪ {id}
(b) Update list-pk = list-pkid

(c) sigUpmsg← SS.Sign(msk, list-pk, id)

(d) Set upd := ((list-pk, id), sigUpmsg)

(e) return upd

Enroll(pp, list-sk,L, pei)

1. Parse list-sk = (p′, q′, r).
2. Sample random nonce← Zn
3. id := Hpr(pei‖nonce).
4. If id = 1 mod φ(n), then run Step 3 with nonce = nonce+ 1, else continue.
5. s∗ ← r ·

∏
s∈L s.

6. a, b← Béz(s∗, id).
7. B ← g−b

8. return id, skid = (a,B)

Figure 4: CEIR Maintainer’s Functions.
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Auth(pp, list-pkid, tms, id, skid)

1. Parse skid = (a,B).
2. Set stmt = (list-pkid, tms).
3. Wit = {id, a, B}
4. Output (stmt, proof) = ProveS(pp, stmt,Wit) (See Fig. 6)

VrfyUpdBList(mpk, list-pk, id, sigUpmsg)

1. If 1← SS.Vrfy(mpk, list-pk, id, sigUpmsg) return 1.

UpdCred(pp,mpk, list-pkid, upd, skid, id)

1. Parse upd = ((list-pk∗, id′), sigUpmsg)

2. If 1← VrfyUpdBList(mpk, list-pk∗, id′, sigUpmsg) return ⊥. Else continue.
3. Compute (a0, r0) = Béz(id′, id)
4. Set a′ = aa0 mod id

5. Compute r = (a′ · id′ − a) · id−1 mod n

6. Set B′ = list-pkrid ·B mod n

7. Return list-pk∗, sk′id = (a′, B′)
Figure 5: UE Functions

5 Session Resumption
In this section, we describe a session resumption protocol that reduces authorization latency by permitting a UE
to show proof of non-membership based on a previous execution of our zero-knowledge protocol. At a high
level, this will involve the provider issuing a token to the UE that can later be checked to confirm authorization.
In such a protocol, there are several tradeoffs. To improve performance, both the UE and the provider will want
the token to have a long period of validity to reduce the number of ZK proofs required. For security, the provider
will want to have a shorter period of validity to prevent a blocklisted device from continuing to attach to the
network. While the provider will not be able to learn the PEI, the UE will want a shorter period lifetime to
reduce linkability of behavior to a single identifier.

We now describe how the session resumption T is computed. At the end of 5G-AKA protocol, the network
and the UE have agreed on a security context that includes keys and protocols for confidentiality (kc) and
integrity, and the network has verified the ZK proofs and authorized that this UE has a valid PEI. The network
computes the token T = H(proof, salt), where H is a hash function (e.g., SHA-256) and salt is a random string.
The network also sets an expiration time RExpiry. The network will store (T, salt, proof,RExpiry) along with
other attributes of the UE.

Once a token is created, the network then sends Enc(T, salt,RExpiry) to the UE encrypted under the kc
from the AKA protocol. The UE decrypts the message and verifies that T = H(proof, salt). The UE must be
able to verify the creation of the token because if the token were opaque, a malicious network could embed
linking information in it. The UE can use the token T upon receiving a PEI request from the network. Each time
the network receives a token T , the network checks if the current time is earlier than RExpiry for the current
token, and if so, it accepts the token and authorizes the UE.

Tokens are linkable but not truly anonymous. The network can see that the same token was used for different
authorizations. However, the token reveals no further information about the PEI, so an adversary can still not
de-anonymize the user. Also, no malicious UE can create or copy an honest UE’s token because the token is
created as T = H(proof, salt). Even if an honest proof is known to a malicious UE, it cannot learn the salt
since it is encrypted using kc. The token is also encrypted using the same key. Thus, the malicious UE will need
to break session encryption to learn the token T , which is currently not known to be feasible.

We note that RExpiry is set by the network. A network could set a longer expiration than the user would
be comfortable with, or a malicious network could attempt to use expiration time as a channel to link PEI
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ProveS(pp, stmt,Wit) :

Parse pp = g, h, n, t,m, ` = |n|/2
Parse (list-pkid, tms) = stmt, (id, a, B) = Wit

Sample w, rid, ra, rw, rz, re ← {0, 1}|n|

cid = gidhrid mod n, ca = gahra mod n

cB = Bgw mod n, ce = (cB)
idhre mod n

cw = gwhrw mod n

z = id · w mod n, cz = gzhrz mod n

PoK1 ← EqCom(X = (ce, cid, cB , h, g, h,

n, n, stmt),W = (id, re, rid))

PoK2 ← AccRel(X = (ce, ca, cz, cB , g, h, n,

stmt),W = (id, re, a, ra, z, rz))

PoK3 ← ProdCom(X = (cz, cw, cid, g, h, n,

stmt),W = (rz, w, rw, id, rid))

PoK4 ← RangeProof(X = (cid, t,m, g, h, n,

stmt),W = (id, rid))

PoK5 ← RangeProof(X = (ca, t,m, g, h, n, stmt),

W = (a+ 2`, ra))

Return cid, ca, cB , cw, cz, ce,PoK2 . . .PoK5

Figure 6: Proving Algorithm (composition of Sigma-protocols described in Appendix A)

Vrfy(pp, list-pk∗, stmt, proof,Expiry)

1. Parse stmt = (list-pkid, tms)

2. if time− tms > Expiry then reject.
3. Check list-pk∗ = list-pkid

4. Return zk.Ver(pp, stmt, proof)

Figure 7: Network functions

authorizations. We require two simple mechanisms to prevent these attacks. First, we mandate that the expiration
time must be a deterministic function of the token. Second, we mandate that the protocol allow the UE to
re-attach using a full ZK proof at anytime, and that the UE should choose to re-attach at a random time before
expiration.

The protocol is stateful, but storage is feasible. 350 million subscribers (more than the population of the
United States) each with a 32-byte (length of SHA256), would require merely 11.2GB to be stored. Tokens can
be stored in the Structured Data Storage Function, a database service included in the 5G architecture.

6 Framework and Security Definitions
In this section, we define the syntax, oracles, and finally, the security definitions and games. We will first define
the syntax of our protocol for blocklist non-membership proofs. In Section 7 we prove that our protocol meets
the security goals.

Definition 1 (Anonymous blocklist non-membership protocol). An anonymous blocklist non-membership
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zk.Ver(pp, stmt, proof)

Parse stmt = (list-pkid, tms)

Parse cid, ca, cB , cw, cz, ce,PoK2 . . .PoK5 ← proof

Parse (g, h, n, t,m)← pp

Compute k = |n|
VrfyEqCom(X = (ce, cid, cB , h, g, h, n, n, stmt),PoK1)

VrfyAccRel(X = (ce, ca, cz, cB , g, h, n, stmt),PoK2)

VrfyProdCom(X = (cz, cw, cid, g, h, n, k),PoK3)

VrfyRangeProof(X = (cid, t,m, g, h, n, stmt),PoK4)

VrfyRangeProof(X = (ca, t,m, g, h, n, stmt),PoK5)

Figure 8: Verification algorithms of Sigma-protocols in Appendix A

protocol BListNM is a tuple Π = (Setup, Enroll, UpdBList, VrfyUpdBList, UpdCred,Auth,Vrfy) executed
between three parties: a CEIR maintainer, a user (UE) and a verifier (AMF).

• Setup(1λ)→ (L,msk,mpk, list-pk, list-sk, pp) On input security parameter 1λ produces a tuple where L = ∅,
msk,mpk are key pairs of the CEIR maintainer, list-pk is the public key associated to the blocklist, list-sk is
the corresponding secret key, and pp are the public parameters.

• Enroll(pp, list-sk,L, x)→ (id, skid) On input x (the PEI), the CEIR maintainer produces an identity id and
an associated secret credential skid.

• UpdBList(pp, list-pk,L, id,msk)→ (L∗, list-pk∗, upd) On input id, the CEIR maintainer updates the list-pk
to list-pk∗ and creates an upd using its secret key msk and sends to all the users.

• VrfyUpdBList(pp,L∗, list-pk∗, upd,mpk)→ 0/1 On receiving upd from the CEIR maintainer, a user verifies
that the signature of upd that was created by the CEIR maintainer using mpk.

• UpdCred(pp, list-pkid, list-pk∗, upd∗, skid, id)→ (sk∗id, list-pk
id) Upon receiving an update message upd, and

the updated public key list-pk, the user updates its credentials to get a new sk∗id. Users who have not been
revoked need to update their credentials with respect to the list-pk∗.

• Auth(pp, stmt, cred)→ proof: The user parses stmt = (list-pkid, tms) and cred = (id, skid). The user uses
his secret credentials skid and id to create a proof that he is not in the blocklist represented by list-pkid. Finally,
tms is a timestamp that is used to enforce non-replayability of the proof.

• Vrfy(pp, list-pk, stmt, proof)→ 0/1: On input statement stmt and proof proof outputs b = 1 if it is convinced
that the user who computed the proof is not in the blocklist list-pk and b = 0 otherwise.

6.1 Trust Assumptions
Adversary: We assume that the adversary can see all network messages related to the PEI authentication and
can use this information to try to link authentication requests to UEs. This strong adversary can corrupt the
AMFs and see the non-membership proofs provided by any UE in the system. We guarantee that even if an
adversarial network tries to target a UE, it cannot de-anonymize the UE.

The adversary can also corrupt the CEIR maintainer and learn all the PEIs and credentials that the CEIR
maintainer has given to the UEs. This strong adversary models the realistic scenario where the CEIR maintainer
is coerced to reveal information about a specific UE. We want to guarantee that anonymity is preserved even in
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such a case. However, we do require that the CEIR runs both the Setup algorithm and the UpdBList algorithm
honestly.

In our protocol, when a CEIR maintainer adds an ID to the blocklist, it broadcasts them. While this means
the adversary can collect a list of the blocklisted IDs (as opposed to in the current protocol where these IDs are
not broadcast, this does not affect the security of learning which PEI is authenticating.
Security Goals: In presence of this adversary, the protocol described Section 4 achieves the following security
goals: anonymity (Def. 2), soundness (Def. 3). non-replayability, and revocation unforgeability (Def. 4).
Formal Definition of the Adversarial Power: The adversary’s power is formally captured by oracles that the
adversary can query during her attack. We assume that the adversary has only these capabilities and does not
mount other attacks like blocking the network. The adversary is probabilistic polynomial time (PPT), which
means it runs in polynomial time and may use randomness.

The set of oracles is O = (Enroll, UpdBList,Corrupt,Auth). We use the notation AO to say that the
adversary has access to all the oracles. There are global sets maintained by the oracles: H: the set of honest
users, L: set of blocklisted users,M: set of users corrupt by the adversary. These are initialized to ∅.

1. Enroll(x) → id. This oracle allows the adversary to add an honest user to the system. On input x, the
adversary can learn an id. The oracle updates the set of honest users asH := H ∪ {id}.

2. UpdBList(id)→ L∗, list-pk∗, upd. This oracle allows the adversary to revoke a certain id by adding it to
the blocklist. The input to the oracle is id and the output of this oracle is the updated L∗, list-pk∗ and upd.
This oracle updates the set of revoked identities L := L ∪ {id}.

3. Corrupt(id) → skid. The oracle allows the adversary to learn a user’s secret key (if id has not been
revoked). The oracle uses Enroll to calculate the skid of the user and returns it to the adversary. The set
of corrupted usersM is updated asM := M∪ {id, skid}. The set of honest users is also updated by
removing the identity asH := H \ {id}.

4. Auth(list-pk, id)→ π. This oracle allows the adversary to get a proof on an id. If id /∈ L, id ∈ H ∪M,
then the oracle returns a proof π, otherwise returns ⊥. The requested proofs are stored in a set P . On each
request, the set is updated as P := P ∪ {(id, π)}.

Anonymity. Anonymity means that the network (AMFs) and CEIR maintainer cannot learn any information
about the PEI of a UE that provides an accepting proof. The adversary here can observe many proofs from the
UEs. Finally, they pick two ids that are not blocklisted (i.e., not in set L) and receive a proof on one of those ids
at random. The adversary wins anonymity if it can guess which id it received a proof for. Even if a malicious
network or CEIR observes all the proofs computed by the UEs and knows the PEI and secret credentials of the
UEs, it cannot link a proof to a specific PEI.

In the security game, where after observing many proofs from the UEs, the adversary picks ids of two honest
users and sends them to the challenger. The challenger selects one of the ids at random and sends the proof
corresponding to that id. The adversary A wins the game if it guesses correctly. Even if the adversary corrupted
all but two UEs, she cannot tell which of the two honest UEs the proof corresponds to with a probability better
than 1

2 . Fig 9 illustrates this definition.
Anonymity implies unlinkability of proofs. An adversary playing the anonymity game creates proofs for id0

by querying the Auth oracle before sending id0 and id1. Upon receiving πb, if the adversary can link πb with a
proof of id0 then it outputs 0, and otherwise it outputs 1. This way, the adversary wins the anonymity game if it
can link two messages.

Definition 2. (Anonymity) A BListNM protocol Π = (Setup, Enroll, UpdBList, Vrfy, UpdBList, UpdCred ,
Auth, Vrfy) satisfies anonymity if, for any PPT adversary A it holds:

Pr[GameAnonΠ
A(λ) = 1] < negl(n).

Soundness. Soundness means that a user without valid credentials cannot prove that it is not in the blocklist.
More specifically, a user cannot authenticate using blocklisted PEIs, create non-membership proofs, or generate
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Figure 9: A malicious network upon receiving a proof cannot distinguish if the proof corresponds to peiA or
peiB even when it is given the credentials and PEIs of all UEs.

Game 1: GameAnonΠ
A(λ)

(L,msk,mpk, list-pk, list-sk, pp)← Setup(1λ)

id0, id1 ← AO(L, list-pk,mpk, pp)

Compute latest list-pk∗according toL
if id0, id1 /∈ L

b← {0, 1}
πb ← Auth(pp, (list-pk∗, tms), (idb, skidb

))

b′ ← A(πb)
if b = b′, return 1

BLOCKLIST

PEIadv

𝛑adv (       ), PEIadv

REJECT
NETWORK CEIR

ADVERSARY

Figure 10: A malicious blocklisted UE cannot provide a valid proof to convince the network that it is not in the
blocklist

valid credentials without knowing a PEI, even if this user has observed and collected proofs from other UEs.
Fig 10 shows any UE whose PEI is in the blocklist will be rejected.

Definition 3. (Soundness) A BListNM protocol Π = (Setup, Enroll,UpdBList,Vrfy, UpdBList,UpdCred,Auth,Vrfy)
satisfies soundness if there exists a PPT extractor Ext such that for any PPT adversaryA participating in Game 2,
there exists a negligible function negl such that: Pr[GameSoundΠ

A(λ)→ 1] ≤ negl(λ)
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Game 2: GameSoundΠ
A(λ)

(L,msk,mpk, list-pk, list-sk, pp)← Setup(1λ)

π∗ ← AO(list-pk,mpk, pp,L)
If π∗ ∈ P return 0

If Vrfy(pp, list-pk∗, π∗) = 0, return 0

(id∗, sk∗id)← Ext(π∗)

If id∗ ∈ L or id∗ ∈ H return 1.

Non-replayability. Non-replayability requires that a malicious UE cannot pass a non-membership proof by
replaying a proof computed by an honest UE. The non-replayability game mirrors the soundness game but
considers additional application-based tags that make the proof unique. To win the game, the adversary must
provide a (potentially old) proof with respect to a fresh tag.

Revocation Unforgeability. Revocation unforgeability guarantees that only the CEIR maintainer can add users
to the blocklist.

The adversary here does not know the CEIR maintainer’s private information but can add users, corrupt
them, and see proofs from the users. The adversary then tries to create an update message that will be accepted
by a user.

Definition 4. (Revocation Unforgeability) A BListNM protocol Π = (Setup, Enroll, UpdBList, VrfyUpdBList,
UpdCred, Auth, Vrfy) satisfies revocation unforgeability if for any PPT adversary As:

Pr[GameRevForgeΠ
A(λ) = 1] < negl(n)

Game 3: GameRevForgeΠ
A(λ)

(L,msk,mpk, list-pk, list-sk, pp)← Setup(1λ)

(L∗, list-pk∗, upd∗)← AO(L∗, list-pk∗)
(if ·, ·,L∗, list-pk∗, upd∗) /∈ L∧

1← VrfyUpdBList(pp,L∗, list-pk∗, upd∗,mpk)

return 1

7 Proofs of Security
Theorem 1. If the Fujisaki-Okamoto commitment scheme is hiding, H is a random oracle, Sigma-protocols
EqCom, AccRel, ProdCom, and RangeProof (Sect. A) satisfy zero-knowledge ([BS20] Def. 19.5), then protocol
Π satisfies anonymity (Def. 2).

Intuition. Recall that in Game 1 the adversary A picks two identities id0, id1 and receives a proof πb on one of
the id’s and A wins by guessing b. We prove that when Game 1 is instantiated with protocol BListNM (Fig. 6),
the two cases π0 and π1 are indistinguishable.

We use a sequence of hybrids to switch from having the adversary receive a proof for π0 to π1 and show
each change is indistinguishable. ZK means that an honestly generated proof cannot be distinguished from a
simulated proof. Thus, we start by switching from honest proofs to simulated proofs. Next, by using the hiding
properties of commitments, we switch the commitments from b = 0 to b = 1. Finally, we switch back to using
honest proofs for b = 1. The formal proof with all hybrid arguments is provided in Appendix A.2.
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Table 1: Time for Network to Verify, Revoke, and Enroll (ms)
Name Mean Std. Dev.
Enroll3 939 2.65
Verify Time 982 85.6
Revoked Time 13 0.33

Table 2: UE Battery Use
Name Std. Dev. Charge

(mA·sec)
100 Auth 3.2 544.95
5 Update 3.2 110

Theorem 2. If the Sigma-protocols EqCom,AccRel,ProdCom, and RangeProof satisfy zero-knowledge ([BS20]
Def. 19.5) and simulation extractability (A.1), and Strong-RSA holds in QRn ([BP97]) then protocol BListNM
satisfies soundness (Def. 3).

Intuition. In Game 3 for soundness, the adversary A wins the game if he produces a proof, which, when
extracted, gives a credential id, a, B, such that either the id belongs to the blocklist, i.e., id ∈ L or id belongs to
an honest UE, i,e. id ∈ H. The probability that A wins is the sum of the probabilities of winning in each case
(the cases are independent).

To show that it is infeasible for any A to provide a proof where id ∈ L, we use the properties of the RSA
accumulator. A revoked id which verifies is not a factor of the values {id1, . . . , idn} ∈ L (so two values in the L
cancel out ) or is equal to 1 mod φ(n). Finding such an id would break the Strong-RSA assumption.

For any id ∈ H, A never learned a credential. By simulation extractability, even after seeing many proofs,
the adversary cannot extract a (new) credential. The formal proof is at Appendix A.3.

Non-replayability. By Theorem 2, even after observing many proofs from several UEs, an adversary still cannot
craft any new accepting proof without a valid credential. Even if the adversary simply copies or performs a
replay attack, it is still hard to pass the non-membership proof because each non-membership proof is associated
with a unique timestamp tms (See Fig. 5) provided by the network. Each non-membership proof is tied to a
specific tms. Thus, each proof is replayable only within a certain time window (related to the validity of each
timestamp tms), which restricts the attack surface for an adversary. This improves the current non-anonymous
proof mechanism that is trivially spoofable. Future work could investigate integrating techniques from distance
bounding to further reduce or eliminate the vulnerability window.

Theorem 3. If SS is unforgeable, then protocol BListNM satisfies revocation unforgeability (Def. 4).

Intuition. We prove revocation unforgeability by reduction to unforgeability of the signature. The idea is that
in our scheme, VerUpdBList is exactly SS.Ver. Thus, breaking revocation unforgeability immediately yields
breaking unforgeability. The formal reduction is provided in the Appendix A.4.

8 Evaluation
In this section we evaluate the performance of Enroll, Auth, Upd, UpdBList, and Vrfy functions. We consider
the amount of time to run the functions and the sizes of the outputs.

Table 3: UE Time Taken to prove
Measure (ms) Mean Std Dev.

Onl. Auth Time 3432 77
Off. Auth Time 14019 52
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Table 4: UE Credential Sizes (Bytes)
Name Mean Std. Dev.

Credentials (skid) 384 0.39
Identity (id) 194 0.41

Table 5: UE Time Taken to update credentials (ms)
Measure # of Upd Mean Std Dev.

Upd. Time 1 756 8.45
100 37896 284.23

8.1 Implementation

We build on an open source Python implementation of RSA accumulator4. We use their helper functions (e.g.
prime number generation, hash-to-prime, etc.) and their function to create non-membership credentials to
instantiate the Setup and Enroll functions. Note that this library only creates credentials and so their “proof” is
not zero-knowledge. Our implementation extends their library with instantiations of Auth and Vrfy that allow
a user to prove non-membership in zero-knowledge. More specifically, we implement the Sigma protocols
defined in Appendix A. Finally, we instantiate the UpdCred function, which also contributes to the open-source
library that currently does not have functions to update witnesses on deletions from the blocklist. There
exist implementations of the range proof[CFT98] at [Ban], proof of equality of commitments[Bou00] and
proof of product of commitments[DF02] at [XS] in Go. We anticipate that an implementation in a more
performant language than Python would likely lead to significant performance improvements, so our results are
a conservative lower bound on performance.

8.2 Experimental Setup
For our experiment testbed, the network operations (Enroll,UpdBList,Vrfy) and the UE operations (Auth,Upd)
will execute on vastly different hardware classes. We thus measured the server-side calculations on a MacBook
Pro with a 2.3GHz Dual-Core Intel Core i5 processor. The UE-side calculations were done with a Raspberry Pi
Model B1 with an ARM11 CPU (which is used also used in cellular modems from Qualcomm and Broadcom).
The Raspberry Pi serves as a reasonable, conservative, analogue for cellular modem chip capabilities. Finally,
we use the MakerHawk USB Power Meter Tester as an ammeter. We place the MakerHawk between the power
supply and Raspberry Pi. We run the UE operations and measure the average amperage.

In our experiments we run the Setup() function to set the parameters. We set our key sizes to be 3072
bits to arrive at 128-bit-equivalent security [BBB+06]. We then run tests with 1000 enrolled users and 100
revoked users. We measure the network-side protocols (Enroll,UpdBList,Vrfy) in Sec 8.3 and UE-side protocols
(Auth,Upd) in Sec 8.4.

8.3 Network Side Protocols
Our network-side experiments measure times for user enrollment, verification of a user, and revocation of a user.
We present the mean size of the credentials in Table 4 and the mean time taken to enroll a user (and thus to
create the credentials) in Table 1.
Measuring Enroll: Enrollment requires a randomized hash-to-prime (Hpr) algorithm. Hpr is quick in most cases,
with occasional larger outliers. For evaluation, we ran the full enrollment protocol 1000 times. We observed
that the distribution of results was heavily skewed (skewness = 2.65) toward lower values, implying that in
most cases the algorithm is fast. Because the distribution is skewed low, the geometric mean and standard
deviation are the most appropriate measures of central tendency. We find that the geometric mean is 939 ms
with a standard deviation of 2.65. We note that the enrollment is only a one-time cost that can be computed
offline by the CEIR maintainer.

4https://github.com/oleiba/RSA-accumulator
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Measuring Vrfy: Our next experiment has 1000 users create a proof that they are not in the blocklist. We run
the verify algorithm on these 1000 proofs and measure the average time to verify a proof in Table 1. The main
contributor here is the multi-exponentiation the verifier needs to do in each of the PoK. The number of times a
Vrfy operation is run depends on the number of times a device attaches to the network. Moreover, the AMF need
not request a PEI proof on every attach. Therefore the number of times the network needs to run Vrfy() depends
only on an attach for which the PEI is requested, thus not universally affecting the network attach process.
Measuring UpdBList: Our next experiment is to revoke 100 users and measure the average time to add a user
to the blocklist as well as the size of the update messages for each revocation update. Table 1 shows the mean
time taken to revoke a user. The average size of an update message is 524 bytes with a standard deviation of
9.29.

The CEIR maintainer runs a revoke operation. First, it computes the updated blocklist using the revoked
user’s id and signs the list and the id to authenticate itself. It then sends the revoked user’s id, the updated
blocklist and the signature to the user. We note that the number of revocations depends on the reported devices
for blocklisting.

8.4 UE-Side Protocols
For the UE side experiments we measure time taken to compute a proof and time taken to update credentials.
We also measure the size of the credentials (id, skid) that are stored in the device. In practice, the network only
requests the PEI be authenticated when the device is authenticating with a new AMF and not necessarily at every
tower.
Measuring Auth: First, we run Auth for all 1000 enrolled parties. We measure the average time taken to
compute a proof in Table 5. We measure the online and the offline part of the proof separately. The UE computes
the commitments of the secret credentials offline. Some messages of the sigma protocol include a timestamp
(tms). The UE must calculate these when attaching to a network in an online phase. By dividing proof times
into an offline and online phase we cut down on the proof creation time when a UE attaches to the network by
80%. When creating the proofs, the first round of messages of the Sigma protocol can be pre-computed as well.
Thus, offline time is the commitment time plus the time for the first step of the proof, and online time is the
remaining two steps of each sigma protocol. The total proof size is 10462 bytes on average (summing over the
offline and online parts). Times are in Table 3.
Measuring Upd: We revoke 100 parties and have the remaining 900 parties update their credentials. We
measure the time taken to update these credentials in Table 5. A user receives all the update messages for the day
(or some other regular interval) and updates its credentials. The user will update its credentials for each revoked
update message. In our implementation, updates are offline and need not happen during the attach process with
the network, so the latency of the attach protocol is not affected by the update process.

Finally, in Table 4 we measure the size of the credentials that are stored in the device. The ID is stored in the
UE and takes up 194 bytes of storage. The credentials take only about 384 bytes of space.
Battery Usage: We run Auth for the 100 enrolled parties and measure the current. Similarly, we will measure
Upd to see how much amperage is taken. The Pi takes in 5.11V (on average).

First, we run 100 authentications. Second, we add 5 PEIs to the list and then have the remaining 95 parties
run Upd. The current drawn is similar to the authentication. We multiply the average current drawn over time to
get the overall charge used. An average phone may have 2500-4000 mA·hr of charge, so authentication takes
0.006055% of the battery at most. The values are in Table 2.

8.5 Embedding to the current 5G architecture
The UE needs to update its credentials with each update to the blocklist. Of course, we cannot have the UE
update its credentials only when the network requests the PEI. This is inefficient and would be detrimental to
the quality-of-service. Instead, we envision a mechanism where the UE can download the latest updates to the
blocklist at regular intervals (e.g. everyday) and update its credentials. The UE can also do some pre-computation
for its proof and therefore the actual online time to create a proof will be small.
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Next we outline the different messages that include PEI when the network requests it in the current
implementation [3rda] and address what changes one would need to make to incorporate our protocols.
Security Mode Complete: At the end of the AKA protocol, the network asks for the PEI when it initiates a
Security Mode Procedure message. The UE responds with a Security Mode Complete command which includes
the PEI. Note that these messages are encrypted and integrity protected between the UE and the AMF (home
network). In our setting, the Security Mode Procedure message will include an updated accumulator and recently
blocklisted PEIs and the Security Mode Complete will include the proof that the UE’s PEI is not in the blocklist.
Identity Response: The Identification Procedure allows the AMF to request the UE for specific identifica-
tion parameters that include the PEI. The UE sends the response, which includes the PEI in an IDENTITY
RESPONSE message. These messages are encrypted and integrity protected as well between the UE and
the home network. Like the Security Mode Command above, the UE will send a proof instead of the PEI in
the IDENTITY RESPONSE message and the network will need to send the updated blocklist as part of the
IDENTITY REQUEST message.
Emergency Registration: This is the only case when the PEI is sent unencrypted. When the SUPI is not
available the UE registers for emergency services with a PEI. The registration process is like the initial registration
by a UE to the network, except the PEI need not be authenticated and checks for access restrictions are not done.
Thus, the UE could provide a random value for the PEI and register for the emergency services.
Other architectural changes: In our protocols, when the AMF needs to authenticate a user, it needs the most
updated accumulator. To ensure this, the AMF will need to query the 5G-EIR for the updated blocklist each
time it requests the PEI from a UE. This incurs an extra round of communication between the 5G-EIR and the
AMF. Finally, the PEI is also part of the “context” in many network flows. For example, when a UE switches
from one AMF to another, the old AMF sends the PEI along with other identifiers to the new AMF as part of a
security context. This security context is useful in the hand-off. In our setting we conjecture this can be done by
using the proof instead of the PEI in the security context.

9 Related Work
In this section, we describe work in cellular network security relevant to our problem. For a detailed treatment,
we refer the reader to a recent survey from Rupprecht et al. [RDH+18].

Most work on cellular network identifier security has focused only on IMSI catchers, devices that passively
listen or pose as a legitimate base station to enable tracking of users or interception of communications. IMSI
catchers are capable of also collecting and using the equipment identifier. Prior work has focused on detecting
active tracking and interception attacks [DPK+14, DPW16, NSCK17, LWW+17, PSB+17], or improving
cellular protocols to prevent successful attacks [KM15, vVd15, AMR+12, SHC+20]. In cellular networks, a
temporary mobile subscriber identifier (TMSI) is also used to prevent leakage of the permanent subscriber
identifier. Prior work has found that networks fail to manage these securely [DJNY12, HBK18], and even if
perfectly managed attackers can still exploit side channels to attack users [RKHP19, HEC+19]. These kinds of
attacks can be used to leak location by listening to the paging channel and stress testing the network. Our work
contributes to the growing body of literature on 5G security, which has used formal methods to audit the new
security protocols [HEK+19, BDH+18, CD19] and proposed changes to improve security [KDM18].

Our work contributes to the growing literature on anonymous telecommunication. Hauser et al. developed
a system called Phonion to enable creation of temporary, anonymous telephone numbers for untraceable
anonymous phone calls [SBP+17], but this system does not protect the identity of users from their own network,
merely the anonymous calling or called party. Camenisch et al. describe a protocol that uses anonymous
credentials to allow a phone a mobile network to collaborate to prove to a third party that a specific phone is in
an area without revealing the specific location as a secondary authentication factor [COP15]; this protocol also
provides no anonymity between the mobile user and the network.

Finally, we discuss related cryptographic constructions. Benaloh and De Mare [BDM93] introduced the
concept of an accumulator to store a set of values. Our protocol uses the RSA-based accumulators that allows
one to give zero-knowledge non-membership proofs by [LLX07, CL02]. Ghosh et al. [GOP+16] present zero-
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knowledge accumulators with a different privacy goal, where they show the protocol execution of accumulator
related operations leaks nothing to a client or an external adversary. Baldimtsi et al. [BCD+17] also propose an
RSA-based accumulator and present an anonymous revocation component.

10 Conclusion
Historically, mobile networks have required strong positive identity checks to protect the network from abuse,
but these checks came at the cost of trusting the network with the ability to monitor and track a user’s physical
location and network activities. In this work we presented a protocol that enables cellular devices to anonymously
prove that they are authorized to access the network by virtue of not being listed in the CEIR blocklist. Our
findings are that with the help of cryptographic primitives like zero-knowledge proofs and RSA accumulators
we can have practical anonymous device authorization. Our work can form the basis of future mobile network
designs that provide strong, provable privacy guarantees.
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Formal Analysis of 5G Authentication. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, New York, NY, USA, 2018. ACM.

[BDM93] Josh Benaloh and Michael De Mare. One-way accumulators: A decentralized alternative to digital
signatures. In Workshop on the Theory and Application of of Cryptographic Techniques, pages
274–285. Springer, 1993.
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[BP97] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop signature schemes with-
out trees. In International conference on the theory and applications of cryptographic techniques,
pages 480–494. Springer, 1997.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. Draft 0.5, 2020.

[CD19] Cas Cremers and Martin Dehnel-Wild. Component-Based Formal Analysis of 5G-AKA: Channel
Assumptions and Session Confusion. In Proceedings 2019 Network and Distributed System
Security Symposium, San Diego, CA, 2019. Internet Society.

19

https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/16.05.01_60/ts_124501v160501p.pdf
https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/16.05.01_60/ts_124501v160501p.pdf
http://www.3gpp.org/ftp//Specs/archive/29_series/29.511/29511-f60.zip
http://www.3gpp.org/ftp//Specs/archive/29_series/29.511/29511-f60.zip
http://www.3gpp.org/ftp//Specs/archive/33_series/33.501/33501-f80.zip
http://www.3gpp.org/ftp//Specs/archive/33_series/33.501/33501-f80.zip


[CFT98] Agnes Chan, Yair Frankel, and Yiannis Tsiounis. Easy come—easy go divisible cash. In Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages 561–575.
Springer, 1998.

[CH10] Philippe Camacho and Alejandro Hevia. On the impossibility of batch update for cryptographic
accumulators. In International Conference on Cryptology and Information Security in Latin
America, pages 178–188. Springer, 2010.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Annual International Cryptology Conference, pages
61–76. Springer, 2002.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information retrieval
with polylogarithmic communication. In International Conference on the Theory and Applications
of Cryptographic Techniques, pages 402–414. Springer, 1999.

[COP15] Jan Camenisch, Diego Alejandro Ortiz-Yepes, and Franz-Stefan Preiss. Strengthening Authentica-
tion with Privacy-Preserving Location Verification of Mobile Phones. In Proceedings of the 14th
ACM Workshop on Privacy in the Electronic Society - WPES ’15, Denver, Colorado, USA, 2015.
ACM Press.

[CS00] Ronald Cramer and Victor Shoup. Signature schemes based on the strong rsa assumption. ACM
Transactions on Information and System Security (TISSEC), 3(3):161–185, 2000.

[DF01] Ivan Damgard and Eiichiro Fujisaki. An integer commitment scheme based on groups with hidden
order. Cryptology ePrint Archive, Report 2001/064, 2001. http://eprint.iacr.org/
2001/064.
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ProveAccRel(X = (ce, ca, cz, cB , g, h, n, stmt),

W = (id, re, a, ra, z, rz))

Note: ce = (cB)
idhre , z = w · id

Parse: stmt = (list-pk, tms)

σ, τ, ε, ρa, ρz, ρe ←$ {0, 1}|n|

W1 = list-pkσgτhρe ,W2 = gσhρa

W3 = gτhρz ,W4 = (cB)
εhρe

ch2 = H(W1‖W2‖W3‖W4‖X)
E1 = σ + ch2a,E2 = τ + ch2z

E3 = ε+ ch2id, E4 = ρa + ch2ra

E5 = ρz + ch2rz, E6 = ρe + ch2re

Output (ch2, E1, E2, E3, E4, E5, E6)

VerAccRel(X = (ce, ca, cz, cB , g, h, n, stmt),

ch2, E1, E2, E3, E4, E5, E6)

Check ch2 = H(list-pkE1gE2hE6((ceg)
−ch2 ||

‖gE1hE4c−ch2
a ‖gE2hE5c−ch2

z ‖cE3
B hE6c−ch2

e ‖X))

Figure 11: Proving Relation between committed values and list-pkid

A Sigma-Protocols
In this section, we describe the Sigma-protocols that are executed by UE when computing a proof as shown in
Fig. 6.

EqCom. Protocol EqCom is used to prove that two commitments C1 and C2 are commitments to the same value
under different bases. We follow the Sigma-protocol from [Bou00]. EqCom is used to prove that cid and ce are
both commitments of the secret id under bases g, h and (cB , h).

AccRel. Protocol AccRel in Fig. 11 is used to prove that the values committed in ce, ca, cz , cB and list-pk satisfy
certain relations. The prover here wants to prove that the id is not in the accumulator, which means that the
relationship list-pka = Bidg holds. Since a,B, and id are hidden in the exponents of ca, cB , ce, to prove the
relation the prover will prove several connections about commitments.

ProdCom. Protocol ProdCom (from [DF02]) is used to prove that given 3 commitments C3, C1, C2, the secret
z committed in C3 (where C3 = gzhrz ) is the product x · y of the secrets committed in C1 and C2. The prover
blinds the id using z = id · w and must here prove that cz is a commitment to the values committed to in cw and
cid.

RangeProof. Protocol RangeProof (from [CFT98]) is used to prove that a committed value lies in a specific
range. Otherwise, it would be possible to find an id that is not a single prime number, but a composite.
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Full Security Proofs

A.1 Useful Definitions and Lemmata
A Sigma-protocol for a relation R has the properties of simulation-extractability and special honest verifier
zero-knowledge (SHVZK).

Simulation extractability. This property typically requires that even after seeing many simulated proofs,
if an adversary A produces a proof, it is possible to extract a witness from it. In this paper, we consider a
stronger definition where we allow an adversary to also see statements and witnesses of the simulated proofs.
Thus, producing a proof is trivial for an adversary. In this stronger definition, we say that an adversary breaks
simulation extractability if she can produce a proof that when extracted, it opens to a new statement and witness.
Our definition is based on definition 2.10 from Maller and Groth [GM17].

Special honest verifier zero-knowledge (SHVZK). This property requires that for a zero knowledge protocol
we are able to define a simulator such that it can output a transcript that is indistinguishable from the real
transcript without any access to the witness. For more details refer to Sec 19.1.1 of [BS20].

Definition 5 (Bézout’s Identity). If s, x ∈ Z, s, x 6= 0, then there exists a, b such that gcd(s, x) = as+ bx.

Lemma 1. Let s, x ∈ Z+. Let (a, b)← Béz(s, x) so that d = as+bx. Then by the Definition 5, d = gcd(x, s).
Furthermore, d is the minimum value that can be written as such a linear combination, i.e. d = mind∗{as+bx =
d∗|d∗ ∈ Z}. Also, all values d∗ ∈ Z that are linear combinations of s, x are multiples of d.

LR-hiding [Lin17] (Informal). Here, the adversary has access to an oracle which takes queries of two inputs
– a left input and a right input. The oracle either returns a commitment on either the left input or on the right
input in response to every query from the adversary. In the end, the adversary must decide which of the oracles
(the one that outputs left input commitments or the one that outputs right input commitments) it was instantiated
with.

A.2 Proof for Anonymity: Theorem 1

Proof. To break anonymity the adversary A needs to guess b as shown in the GameAnonΠ
A(λ) (Game 2). Our

strategy to prove that the advantage of A is negligible is to show through a series of hybrids that the transcript of
the protocol when b = 0 is indistinguishable from the case when b = 1.

Proof by hybrids

• Hyb0: Execution of Auth when b = 0. The transcript is the commitments cid = Com(id0), ca =
Com(a0), cB = Com(B0), ce = Com(id0) to base cB , cw = Com(w), cz = Com(z0) where z = id0 ·w, and
π0 = PoK1 . . .PoK5.

• Hyb1 is the same as Hyb0 except that we replace π0 with simulated zero-knowledge proofs. We prove in
Lemma 2 that Hyb1 is indistinguishable from Hyb0 due to the zero-knowledge propery of the sigma protocols.

• Hyb2 is the same as Hyb1 except that we replace ce with commitment to id1. We prove in Lemma 3 that Hyb1

and Hyb2 are indistinguishable because of the LR-hiding property of the commitment scheme.

• Hyb3 is the same as Hyb2 except that we replace cB = B0 · gw with B0 · gw. Since w is randomly sampled,
B0 · gw has a uniform distribution over Zn. Likewise, B1 · gw has a uniform distribution over Zn. Thus, we
show that Hyb3 is indistinguishable from Hyb2.

• Hyb4 is the same as Hyb3 except that we replace commitments ca, cid, cz with commitments to a1, id1 and
z1 = id1 · w. We prove in Lemma 4 that Hyb3 is indistinguishable from Hyb4 due to the LR-hiding property
of the commitment scheme.

• Hyb5 is the same as Hyb4 except that we replace simulated zero-knowledge proofs with π1 = PoK1 . . .PoK5

which are the 5 sigma protocols in the case that bit 1 was chosen. Hyb5 is the same as Hyb4 are indistinguish-
able for the same reason Hyb0 and Hyb1 are indistinguishable.
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Note that Hyb0 is the case when b = 0 is picked by the challenger of the anonymity game, and Hyb5 is the
case when b = 1 is picked by the challenger of the anonymity game. Since Hyb0 is indistinguishable from Hyb5

we prove that the advantage of A in GameAnonΠ
A(λ) is negligible.

Lemma 2. If the EqCom,AccRel,ProdCom, and RangeProof satisfy zero-knowledge, then Hyb1 is indistin-
guishable from Hyb0.

Proof. Each of the PoKi for i ∈ [1, 5] have a simulator that computes a transcript indistinguishable from the real
transcript. The technique to make the simulator is the same for every PoKi: the simulator chooses the challenge
at random, calculates the response knowing the challenge ahead of time, and reprograms the random oracle to
output the challenge based on the response. Since all values are chosen randomly in the real world and the ideal
world, the real transcript and the simulated transcript are distributed identically.

Since the proof of knowledge in the proving algorithm is an AND composition of each of these smaller
proofs of knowledge, we can say that the simulated proof of knowledge and the real world proof of knowledge
are indistinguishable. Since each simulated transcript is indistinguishable from the real transcript, we conclude
that Hyb0 is indistinguishable from Hyb1.

Lemma 3. If the Fujisaki-Okamoto scheme satisfies LR-hiding ([Lin17] Chap. 6.5.2), then Hyb2 is indistin-
guishable from Hyb1.

Proof. Suppose there exists A that wins Hyb0 and Hyb1 with non-neglible difference. We construct a reduction
B that wins the LRHiding game. B responds to A’s queries as follows:

• Corrupt(id): B calculates Bezout coefficients using r.

• Auth(list-pk, id, ·): B computes (a,B)← Béz(list-pk, id) and creates proof normally.

• UpdBList(list-pk,L, id, ·): output (L∗, list-pk∗, upd) where list-pk∗ = list-pkid, L∗ = L ∪ {id} and upd =
(id,SS.Sign(id)

At the end B will output the same as A. Now, if A wins in Hyb0 and Hyb1 with non-negligible difference,
there exists a distinguisher D that distinguishes between Hyb1 and Hyb2 with probability greater than negligible.
That is,

Pr[D(Hyb2) = 1]− Pr[D(Hyb1) = 1] > negl(n)

Observe that when b = 1 in the LR-oracle experiment, the commitments Ce are generated as if in Hyb2.
This implies :

Pr[LRHiding(1n) = 1|b = 1] = Pr[D(Hyb2) = 1]

Similarily, when b = 0 in the LR-oracle experiment, the commitments Ce are generated as if in Hyb1. This
implies :

Pr[LRHiding(1n) = 1|b = 0] = Pr[D(Hyb1) = 0]

If the distinguisher can distinguish the hybrids, it can win the LR-hiding game. This contradicts security of
the commitment scheme, since we know that Fujisaki-Okamoto scheme is LR-hiding. Thus, no adversary can
distinguish between Hyb1 and Hyb2

Lemma 4. If the FO commitment satisfies LR-hiding ([Lin17] Chap. 6.5.2), then Hyb4 is indistinguishable
from Hyb3

Proof. Similar to the proof of Lemma 3.
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A.3 Proof for Soundness: Theorem 2
Proof. In the authentication soundness game in Game 2, the adversary wins if he produces a proof which, when
extracted, gives id, a, B for which either the id belongs to the blocklist, i.e., id ∈ L or id belongs to an honest
UE, i,e. id ∈ H. We show that in the authentication soundness game instantiated with protocol BListNM,
the adversary can produce such an id with only negligible probability, so the ability to break authentication
soundness is negligible as well. The probability that the adversary wins is the sum of the probabilities of winning
in each case.

Case 1: id ∈ L. It is infeasible for an adversary to provide us with a proof that, when extracted, gives
id ∈ L. A revoked id that verifies either is not a factor of the values { id1, . . . , idn }, meaning that two values in
L cancel other out, or the adversary has found a value id which is equivalent to 1 mod φ(n) where n is the
RSA-modulus. Finding such an id breaks the Strong-RSA assumption.

For the reduction, assume for sake of contradiction that an adversary A to soundness exists. Then we can
construct an adversary B to Strong-RSA. The Proving Algorithm used in BListNM is an AND-composition of
the PoK, thus an adversary that creates a valid proof must have been able to create valid proof for each of the
PoK. With knowledge soundness, it is possible for a reduction to extract the witnesses to an adversary’s proof,
which will then allow a reduction to break Strong-RSA by leveraging the properties from the Bézout coefficients
(Def. 5) and Lemma 1.

Following the proving algorithm in Fig. 6, the witness consists the witness consists of (id, re, rid, a, ra, z, rz, w, rw, rid, a+
2`, ra). Then B can parse id and a from the witness and learn B by calculating cB/gw. Now, a revoked id∗

can only verify if id∗ = 1 mod φ(n) or if there exists another id ∈ L such that idid∗ = 1 mod φ(n). The
former case is already excluded because the output id is required to be prime. For the latter, B can go through
the list of id’s and check which pair id, id∗ have that yid = C and C id∗

= y and produce y, id as her answer, thus
breaking Strong-RSA. B can win with the same probability as A. By the hardness of strong-RSA, B has at most
a negligible probability, so A can win with no better than negligible probability as well.

Case 2: id ∈ H. This is an id for which the adversary never learned a credential. The concept of simulation
extractability captures that even after seeing many proofs, the adversary should not be able to extract a (new)
credential. We need to take two steps (by hybrid argument). The reason the hybrid step is necessary is we do not
have a single assumption or theorem from which we can reduce the soundness game, as A receives honestly
generated proofs as well as witnesses. By simulation extractability (Def. 5) one can only prove instances to which
one knows a witness, even after seeing many simulated proofs. Special-sound interactive protocols made non-
interactive by using the Fiat Shamir transform are simulation extractable. Each of EqCom,AccRel,ProdCom,
and RangeProof are such interactive protocols. We also use the ZK property to ensure that such an adversary
cannot distinguish between real proofs and simulated proofs. This allows a reduction to use an adversary to
authentication soundness, giving it many simulated proofs, and in the end, the reduction can retrieve a witness.

To prove that no adversary can produce an id ∈ H, we morph from allowing the adversary to see honest
proofs to simulated proofs, and then use this new game to show a reduction to simulation extractability.

Hyb0 to Hyb1: Hyb0 is the same as the authentication soundness game. Hyb1 is the same except for on
Authenticate queries, the adversary receives a simulated proof instead. The ZK property means that for every
PPT verifier, V, there is a PPT algorithm ZK.Sim such that the output of ZK.Sim is indistinguishable from an
honest proof. ZK.Sim itself does not use the witness, so the verifier cannot learn anything about the witness
from the output. Honest proofs must also therefore leak no information. To break the ZK property, an adversary
must be able to distinguish whether, upon requests for (polynomially many) proofs, it is receiving proofs from a
simulator or from running the proof system between the prover and verifier.

In conclusion, as an adversary can produce an id ∈ H with no better than non-negligible probability (due
to the zero-knowledge and simulation-extractability properties) and an id ∈ L with no better than negligible
probability (due to the Strong-RSA) property, no adversary can produce an id ∈ H ∪ L except with negligible
probability as well. Soundness holds.

Hyb1 to simulation extractability. Next, assuming there is an adversary who can win in the game Hyb1 with
some probability, we construct an adversary Bse for simulation extractability. Following the definition in 5, Bse
has access to oracle O which allows for proofs from NIZK.Sim and access to the oracle C which allows B to
see statements and witnesses.
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If A wins, it means that this proof verifies and that A never queried for a proof on this list-pk, id, and
never queried for a witness on this id. By the post-conditions for simulation-extractability, (id, a, B) is not
a valid witness for list-pk with only negligible probability. Thus id ∈ H with high probability and Bse can
extract a witness for a new id with high probability relative to the probability that A produces a valid proof.
However, the probability that Ase should be able to produce such a valid witness is negligible (due to simulation
extractability). Thus, A can win in Hyb1 with only negligible probability as well. Taken together with the fact
that the difference between an adversary winning in Hyb0 and Hyb1 is negligible as well, we conclude that any
adversary A can win authentication soundness with at most negligible probability and thus BListNM satisfies
authentication soundness.

By assumption, it is infeasible for any PPT adversary to break simulation-extractability and each of the steps
we took are indistinguishable from the last, meaning that it is infeasible for any adversary to break authentication
soundness as well.

A.4 Proof of Revocation Unforgeability: Theorem 3

Proof. Assume there exists an adversaryAwho wins revocation unforgeability, i.e. thatPr[GameRevForgeΠ
A(λ) =

1] = p(n) where p is non-negligible function p. We construct an adversary B for the signature scheme SS that
uses A to attack unforgeability. After activating A, B on all oracle queries from A, responds faithfully as the
challenger would. On queries to UpdBList on id,L, B will request a signature sigUpmsg← SS.Sign(list-pk, id)
from its challenger and return upd = ((list-pk, id), sigUpmsg) to A. When A returns (L, list-pk∗, upd∗), B sets
as her forgery: (list-pk∗, id∗) and upd∗.

If A wins, B wins with the same probability. First, it must be the case that (·,L∗, list-pk∗, upd∗) /∈ L
already, so A cannot have asked for this particular id to have been revoked before. The next check is that
VrfyUpdBList(mpk, list-pk, id, sigUpmsg). By definition of BListNM, 1← SS.Vrfy(mpk, list-pk, id, sigUpmsg).

This means that B has also created a forgery that verifies on a new message. Thus, B breaks the unforgeability
of SS. However, SS is a secure signature scheme, so B can break unforgeability with only negligible probability.
We conclude that A can break revocation unforgeability with only negligible probability as well.

27


	Introduction
	Motivation

	Background
	Equipment Identifiers in Cellular Networks
	Cryptographic Techniques

	Design Goals
	Zero-Knowledge Protocol
	Session Resumption
	Framework and Security Definitions
	Trust Assumptions

	Proofs of Security
	Evaluation
	Implementation
	Experimental Setup
	Network Side Protocols
	UE-Side Protocols
	Embedding to the current 5G architecture

	Related Work
	Conclusion
	Sigma-Protocols
	Useful Definitions and Lemmata
	Proof for Anonymity: Theorem 1
	Proof for Soundness: Theorem 2
	Proof of Revocation Unforgeability: Theorem 3


