
�e Boneh-Katz Transformation, Revisited:
Pseudorandom/Obliviously-Samplable PKE from Lattices and Codes

and Its Application

Keita Xagawa1

NTT Social Informatics Laboratories, keita.xagawa.zv@hco.ntt.co.jp
September 14, 2021

Abstract. �e Boneh-Katz transformation (CT-RSA 2005) converts a selectively-secure identity/tag-based
encryption scheme into a public-key encryption scheme secure against chosen-ciphertext a�acks. We show
that if the underlying primitives are pseudorandom, then the public-key encryption scheme obtained by the
Boneh-Katz transformation is also pseudorandom. A similar result holds for oblivious sampleability (Cane�i
and Fischlin (CRYPTO 2001)). As applications, we can construct
– pseudorandom and obliviously-samplable public-key encryption schemes from la�ices and codes,
– universally-composable non-interactive bit-commitment from la�ices,
– public-key steganography which is steganographically secure against adaptive chosen-covertext a�acks

and steganographic key-exchange from la�ices and codes,
– anonymous authenticated key exchange from la�ices and codes,
– public-key encryption secure against simulation-based, selective-opening chosen-ciphertext a�acks from

la�ices and codes.

Keywords: Public-Key Encryption, Tag-Based Encryption, Post-�antum Cryptography, the Boneh-Katz
Transformation, Selective-Opening Security, Anonymity

1 Introduction

Public-key encryption (PKE) is the most basic primitive in asymmetric-key cryptography since it allows us
to transmit data over the public channel securely if the receiver’s encryption key is available. �ere are
several security notions and properties of PKE and the researchers exploited those to construct interesting
primitives and protocols. One of the most basic security notions is indistinguishability (IND-security) which
means that any e�cient adversary cannot distinguish a ciphertext of a plaintext with another ciphertext of
another plaintext [GM84].

Anonymity and pseudorandomness: Although indistinguishability under chosen-plaintext/ciphertext at-
tacks (IND-CPA/CCA security) ensures the con�dentiality of contents [GM84, NY89, RS92], it does not imply
anonymity and privacy of the receiver. Bellare, Boldyreva, Desai, and Pointcheval [BBDP01] de�ned indistin-
guishability of keys under chosen-plaintext/ciphertext a�acks (IK-CPA/CCA security) to capture anonymity;
in the security game, the adversary is, given two encryption keys, asked to determine which encryption
key is used to encrypt a plaintext. �is security notion has several applications: anonymous communication,
anonymous authentication [CL01], auction [Sak00], and so on.
We also note that pseudorandom PKE is related to anonymity. We say a PKE scheme is pseudorandom (PR-
secure) if its ciphertext is indistinguishable from a random string from a set speci�ed by the security param-
eter, encryption key, and the length of the message. We also say a PKE scheme is strongly-pseudorandom
(SPR-secure) if the set is independent of an encryption key. It is easy to see that SPR-secure PKE scheme is
anonymous. Pseudorandom PKE also has applications for public-key steganography and steganographic key
exchange [vH04], and backdoored pseudorandom generators (PRG) [DGG+15]. We also note that we have
subliminal communication based on pseudorandom key-exchange [HPRV19], which can be constructed from
PR-CPA-secure PKE if its encryption key is pseudorandom.
�e constructions of SPR-CCA-secure PKE schemes from elliptic curves [Möl04] and the DDH group [Hop05]
are known. To the authors’ best knowledge, we have no explicit construction of post-quantum (S)PR-CCA-
secure ones in the standard model except one from puncturable pseudorandom function (PRF) and indistin-
guishablity obfuscation (iO) [SW14, LP15].

Oblivious sampleability: Cane�i and Fischlin [CF01] introduced oblivious sampleability (OS-security), which
is an enhancement of PR-security; oblivious sampleability requires (1) a ciphertext is indistinguishable from
a random string generated by a sampling algorithm on input the encryption key and (2) an explanation
algorithm to explain how one samples the random string, e.g., if a ciphertext consists of group elements,
then the randomness used to make the group elements are required. Combining OS-CCA-secure PKE with
trapdoor commitments, they obtain UC-secure non-interactive bit commitment against adaptive corruption
without erasure [CF01]. We do not know whether every IND-CCA-secure PKE scheme is OS-CCA-secure or
not 1.
�is security notion is strongly related to e�ciently-samplable and explainable (ESE) ciphertext space. See [FHKW10,
LP15] for its application to simulation-based, sender selective-opening security against chosen-ciphertext at-
tacks (SIM-SSO-CCA security) of PKE.
Although there are several OS-CCA-secure PKE/KEM schemes from number-theoretic assumptions (see [CF01,
FHKW10, LP15]), we have no explicit construction of post-quantumOS-CCA-secure ones in the standardmodel
except one from puncturable pseudo-random function PRF and iO [SW14, LP15].

1.1 Our Contribution

�eBoneh-Katz transformation, revisited: We revisit the Boneh-Katz (BK) transformation [BK05, BCHK07],
which obtains IND-CCA-secure PKE from selectively-secure identity-based encryption (IBE) (or tag-based en-
cryption (TBE)), weakly-secure commitment, and secure message authentication code (MAC). We show that
the BK transformation preserves pseudorandomness and oblivious sampleability: If the underlying primitives
are pseudorandom and obliviously-samplable, then the PKE scheme obtained by the transformations is also
pseudorandom and obliviously-samplable, respectively.

SPR-CCA/SOS-CCA-secure PKEs: Using the above theorem, we obtain SPR-CCA-secure and SOS-CCA-
secure PKEs from la�ices and codes with various parameter se�ings upon existing IBE/TBE schemes [CHKP12,
ABB10, MP12, BBDQ18, DMN09, DMN12, KMP14, YZ16]. As a byproduct, we show the Kiltz-Masny-Pietrzak
TBE scheme [KMP14] and the Yu-Zhang TBE scheme [YZ16] based on the LPN problems are indeed pseudo-
random and obliviously-samplable without changing the assumptions.

Applications: Employing them, we then obtain
– non-interactive bit commitment that is adaptively UC-secure in the non-erasure model under a re-usable

common reference string from la�ices through [CF01],
– public-key steganography which is steganographically secure against adaptive chosen-covertext a�acks

and steganographic key-exchange from la�ice and codes through [Hop05, BL18]
– anonymous authenticated key exchange from la�ices and codes through [FSXY15], and
– public-key encryption secure against simulation-based, selective-opening chosen-ciphertext a�acks from

la�ices and codes through [LP15].

Note on the Cane�i-Halevi-Katz (CHK) transformation: �e Cane�i-Halevi-Katz (CHK) transforma-
tion [BCHK07] allows us to obtain IND-CCA-secure PKE from selectively-secure identity-based encryption
(IBE) (or tag-based encryption (TBE)) and one-time signature. Moreover, the CHK transformation preserves
anonymity: See Paterson and Srinivasan [PS08] and Yoshida, Morozov, and Tanaka [YMT17].
Unfortunately, a PKE scheme obtained by the CHK transformation cannot be obliviously-samplable even if
the underlying IBE/TBE is obliviously-samplable, since we can verify the one-time signature in the ciphertext
of PKE. �e random string should contain the veri�cation key of one-time signature and signature on the
ciphertext of IBE/TBE. Roughly speaking, we cannot explain the randomness of the key generation of one-
time signature, because once this randomness is leaked, then we can forge any message under the veri�cation
key and may be able to mount chosen-ciphertext a�acks.2

1.2 Related Works

Anonymous PKE: Bellare et al. [BBDP01] put forth the notion of anonymity of PKE and introduced in-
distinguishability of keys (IK-security). (See also Camenisch and Lysyanskaya [CL01] and Sako [Sak00].)

1 Ishai et al. [IKOS10] refuted the hypothesis that every e�ciently-samplable distribution has an invertible-sampling al-
gorithm assuming the strong version of extractable OWF and NIWI proofs for all NP (or assuming non-interactively
extractable OWF and NIZK proofs for all NP). Although this is not applicable to PKE, this is supporting evidence.

2 If the underlying IBE/TBE is malleable, we modify the ciphertext of the IBE/TBE, sign it with the signing key of the
one-time signature, and obtain a new valid ciphertext related to the challenge ciphertext.

2

Paterson and Srinivasan [PS08] de�ned Trusted Authority’s anonymity (TA anonymity) of IBE. �ey showed
that if the underlying IBE scheme satis�es TA anonymity, then the PKE scheme obtained by the CHK trans-
formation is also key-private. As we explained, this is not pseudorandom. �ey refer to the BK transformation
but omit the detail. �is work can be considered as the follow-up of the case of the BK transformation. We
note that the anonymity of PKE is insu�cient for UC-secure commitment and SIM-SSO-CCA-secure PKE.
Yoshida et al. [YMT17] proposed two anonymous code-based PKE schemes in the standard model through
the CHK-like transformation, which are not pseudorandom.
Concurrently, Grubbs, Maram, and Paterson [GMP21] and Xagawa [Xag21] showed some KEMs of NIST PQC
Round-3 candidates lead to anonymous (and robust) PKE. We note that their works are shown secure in the
(quantum) random oracle model, while ours are in the standard model.

Obliviously-samplable PKE/KEM: Cane�i and Fischlin [CF01] introduced the notion of oblivious sam-
pleability (OS-security) and its application to UC-secure commitment. �ey showed that the Cramer-Shoup
PKE [CS98] over the subgroup G ⊆ Z∗? of prime order @ | ? − 1 satis�es their requirements because we
can explain how to generate a random element in G. As far as we know, there is no explicit construction of
post-quantum PKE scheme satisfying OS-CCA security in the standard model except one from puncturable
PRF and iO [SW14, LP15]. �us, this paper �rst gives a post-quantum OS-CCA-secure PKE scheme without
iO.

Public-key steganography: Public-key steganography is formalized by von Ahn and Hopper [vH04]. See
Berndt and Liśkiewicz [BL18] for the survey. Backes and Cachin [BC05] studied public-key steganography
against active a�acks. Hopper [Hop05] also studied it and gave a construction of public-key steganography
secure against adaptive chosen-covertext a�acks (SS-CCA-security) against a single channel from SPR-CCA-
secure PKE. Berndt and Liśkiewicz [BL18] improved the constructions to achieve SS-CCA-secure public-key
steganography against every memoryless channel from SPR-CCA-secure PKE, pseudorandom permutations
(PRPs), and collision-resistant hash functions (CRHFs).
Since there are no explicit constructions of post-quantum SPR-CCA-secure PKE in the standard model, our
result is the �rst construction of such public-key steganography in the standard model.

AnonymousAKE: We next consider anonymity of authenticated key exchange (AKE), that is, the anonymity
of the participants from the outsider: �e outsider obtains public keys of the participants and a transcript and
try to determine whether the transcript is the results of the communications between the participants or not.
In general, the signature-based AKE (e.g., the signed DH [DvW92, HC98, PQR21]), in which the messages
are signed by the sender, is not anonymous from the outsider. �is is because the outsider can verify the
signatures in the transcripts with the participants’ public keys. So, one might need to encrypt signatures to
get anonymity.
On the other hand, KEM-based AKEs [BCGNP09, FSXY13, FSXY15, SSW20] could achieve anonymity from
the outsider. Roughly speaking, in the KEM-based AKEs, the �rst message consists of pktmp and ct�→� and
the second message consists of cttmp and ct�→�, where pktmp is the encapsulation key of KEM, ct�→� is a
ciphertext of KEM under Bob’s encapsulation key, cttmp is a ciphertext of KEM under pktmp, and ct�→� is a
ciphertext of KEM under Alice’s encapsulation key. �us, it achieves anonymity if the underlying KEMs are
key-private or pseudorandom. Moreover, such KEM-based AKE can achieve weak o�ine deniability. 3

Recently, a new AKE is proposed by Hashimoto, Katsumata, Kwiatkowski, and Prest [HKKP21], which is a
hybrid of signature-based AKE and KEM-based AKE. 4 If the underlying PKEs are key-private and pseudoran-
dom, then it achieves anonymity and weak o�ine deniability. �ey discuss how to achieve ‘weak deniability’
using stronger primitives [HKKP21, Section 6].

SIM-SSO-CCA PKE: We review PKE schemes satisfying simulation-based, sender-selective-opening se-
curity against chosen-ciphertext a�ack (SIM-SSO-CCA security in short). We omit the constructions in the
(quantum) random oracle model or (quantum) ideal cipher model [HJKS15, HP16, SS19].

3 �e o�ine deniability [DGK06] requires any PPT judge cannot distinguish simulated transcripts from transcripts where
one of the parties may be malicious. Here, ‘weak’ means that any PPT judge cannot distinguish simulated transcripts from
honestly-generated transcripts.

4 Very roughly speaking, the �rst message consists of pktmp and the second message consists of ct�→�, cttmp, and 2, where
pktmp is the encapsulation key of KEM, cttmp is a ciphertext of KEM under pktmp, ct�→� is a ciphertext of KEM under
Alice’s encapsulation key, and 2 is a masked ciphertext of the signature signed by Bob.

3

Constructions from lossy primitives: Hemenway, Libert, Ostrovsky, and Vergnaud [HLOV11] proposed
lossy encryption and showed that PKE scheme satisfying indistinguishability-based, sender-selective-opening
security against chosen-ciphertext a�ack (IND-SSO-CCA security in short) can be constructed from a ‘sep-
arable’ TBE scheme satisfying a weak variant of IND-SSO-CCA security (IND-SSO-st-wCCA security) with
chameleon hash following Zhang’s T1 [Zha07] and commented that the CHK conversion fails because it uses
one-time signature. �ey constructed a ‘separable’ IND-SSO-st-wCCA-secure TBE scheme from lossy trap-
door function (LTF) and all-but-# function. Ho�eintz [Hof12] proposed all-but-many lossy trapdoor func-
tions (ABM LTFs) based on DCR or pairing and use them to construct SIM-SSO-CCA-secure PKE schemes
with compactness or tighter security, respectively. Boyen and Li [BL17] proposed ABM LTF from LWE and
constructed an IND-SSO-CCA-secure PKE scheme by using their ABM LTFs. Libert, Sakzad, Stehlé, Stein-
feld [LSSS17] also proposed ABM LTF from LWE, constructed an IND-SSO-CCA-secure PKE scheme by us-
ing their ABM LTFs, and then enhanced it into a SIM-SSO-CCA-secure PKE scheme. Lyu, Liu, Han, and
Gu [LLHG18] gave a SIM-SSO-CCA-secure PKE scheme based on the matrix DDH assumption with a tighter
security reduction. Lai, Liu, and Wang [LLW20] improved ABM LTFs with polynomial modulus from LWE.

Constructions with cross-authentication codes (XACs): Fehr, Ho�einz, Kiltz, and Wee [FHKW10] con-
structed a SIM-SSO-CCA-secure PKE by using extended hash proof systems with collision-resistant hash
functions and cross-authentication codes (XAC). As pointed out in [HLQ13, HLQC13], a stronger property of
XAC is required to make this proof rigorous. Liu and Paterson [LP15] constructed a SIM-SSO-CCA secure PKE
scheme using a special KEM scheme and strengthened XAC. �ey constructed special KEM schemes from
hash proof systems, from =-linear assumption, and from indistinguishability obfuscation (iO) and a special
puncturable PRF. Libert et al. [LSSS17] wrote “So far, the only known method [LP15] to a�ain the same security
notion under quantum-resistant assumptions was to apply a generic construction where each bit of plaintext re-
quires a full key encapsulation (KEM) using a CCA2-secure KEM.” However, there is a gap between the special
KEM in [LP15] and known post-quantum IND-CCA-secure KEM schemes, which we �ll in this paper.

Concurrent work: Leveraging key-dependent-message (KDM) security of DEM, Kitagawa, Matsuda, and
Tanaka [KMT21]5 proposed a SPR-CCA-secure KEM scheme from SPR-CPA-secure KEM, one-time key-dependent-
message secure DEM with pseudorandom ciphertext property, and target-collision-resistance hash func-
tion [KMT21, Section 6.4]. Concurrently, they also construct SIM-SSO-CCA-secure PKE scheme from it through
the framework by Liu and Paterson [LP15] as ours, whose underlying KEM, DEM, and hash function can be
constructed by either the CDH assumption, the LWE assumption, or the low-noise LPN assumption.

1.3 Organization

We review notations and cryptographic schemes in section 2. We review the Boneh-Katz transformation
and prove its pseudorandomness and oblivious sampleability in section 3. We discuss how to instantiate
applications through PR-CCA-secure/OS-CCA-secure PKE in section 4. In appendix, we review the LPN-
related assumptions section B, review the Kiltz-Masny-Pietrzak TBE scheme and the Yu-Zhang TBE scheme
and prove their PR-CCA-security in section C and section D, respectively.

2 De�nitions

Notations: A security parameter is denoted by ^. We use the standard $-notations. DPT and PPT stand
for deterministic polynomial time and probabilistic polynomial time. A function 5 (^) is said to be negligible
if 5 (^) = ^−l (1) . We denote a set of negligible functions by negl(^). For a distribution j, we o�en write
“G ← j,” which indicates that we take a sample G according to j. For a �nite set (,* (() denotes the uniform
distribution over (. We o�en write “G ← (” instead of “G ← * (().” For a set (and a deterministic algorithm
A, A(() denotes the set {A(G) | G ∈ (}. If inp is a string, then “out← A(inp)” denotes the output of algorithm
A when run on input inp. If A is deterministic, then out is a �xed value and we write “out := A(inp).” We also
use the notation “out := A(inp; A)” to make the randomness A explicit.
For a statement % (e.g., A ∈ [0, 1]), we de�ne boole(%) = 1 if % is satis�ed and 0 otherwise.

E�ciently-samplable and explainable domain: A domainD is said to be e�ciently samplable and explain-
able (ESE) [FHKW10] if there are two PPT algorithms de�ned as follows:
– Sample(D; d): On input domain D and random coins d ← R, this algorithm outputs an element G

according to the uniform distribution over D.

5 [KMT21] is Jun. 2021 version of [KMT19] on Cryptology ePrint Archive.

4

– Sample−1 (D, G): On input domain D and any G ∈ D, this algorithm outputs d that is uniformly dis-
tributed over the set {d ∈ R | Sample(D; d) = G}.

For example, D = {0, 1}^ is ESE with d = Sample(D; d) = Sample−1 (D, d). Damgård and Nielsen [DN00]
showed that any dense subset of an e�ciently samplable domain is ESE if the dense subset allows an e�cient
membership test.

2.1 Public-Key Encryption (PKE)

�e model for PKE schemes is summarized as follows:

De�nition 2.1. A PKE scheme PKE consists of the following triple of PPT algorithms (GenPKE, EncPKE,DecPKE).
– GenPKE (1^) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter,

outputs a pair of keys (ek, dk). ek and dk are called the encryption key and decryption key, respectively.
– EncPKE (ek, <) → 2: an encryption algorithm that takes as input encryption key ek and message < ∈ M

and outputs ciphertext 2 ∈ C.
– DecPKE (dk, 2) → </⊥: a decryption algorithm that takes as input decryption key dk and ciphertext 2 and

outputs message < ∈ M or a rejection symbol ⊥ ∉M.

De�nition 2.2 (Correctness). We say PKE = (GenPKE, EncPKE,DecPKE) has perfect correctness if for any
(ek, dk) generated by GenPKE and for any < ∈ M, we have

Pr[2 ← EncPKE (ek, <) : DecPKE (dk, 2) = <] = 1.

Security Notions: We review indistinguishability under chosen-ciphertext a�acks (IND-CCA) [RS92, BDPR98],
pseudorandom under chosen-ciphertext a�acks (PR-CCA) (as known as IND$-CCA) [vH04, Hop05], oblivi-
ous sampleability under chosen-ciphertext a�acks (OS-CCA) [CF01] and their strong versions (SPR-CCA and
SOS-CCA) for PKE.
In order to de�ne oblivious sampleability, we introduce two additional algorithms, RndPKE and ExplPKE:
RndPKE takes an encryption key ek, a length of message 0ℓ , and randomness d ∈ RRndPKE ,ek,ℓ and outputs
2 ∈ C; ExplPKE takes ek and 2 ∈ C and outputs a randomness d. Roughly speaking, we say a PKE scheme is
obliviously samplable if there exist RndPKE and ExplPKE that a dummy ciphertext 2 generated by RndPKE with
randomness d and a real ciphertext 2∗ of <∗ and corresponding fake randomness d∗ generated by ExplPKE
are indistinguishable.

De�nition 2.3 (Security notions for PKE). LetDM be a distribution over the message spaceM. For any adver-
saryA, we de�ne its IND-CCA, PR-CCA, andOS-CCA advantages against a PKE schemePKE = (GenPKE, EncPKE,DecPKE)
and two additional PPT algorithms RndPKE and ExplPKE as follows:

Advind-ccaPKE,A (^) :=
���Pr[Exptind-cca,0PKE,A (^) = 1] − Pr[Exptind-cca,1PKE,A (^) = 1]

���,
Advpr-ccaPKE,A (^) :=

���Pr[Exptpr-cca,0PKE,A (^) = 1] − Pr[Exptpr-cca,1PKE,A (^) = 1]
���,

Advos-ccaPKE,A (^) :=
���Pr[Exptos-cca,0PKE,A (^) = 1] − Pr[Exptos-cca,1PKE,A (^) = 1]

���,
where Exptind-cca,1PKE,A (^), Exptpr-cca,1PKE,A (^), and Exptos-cca,1PKE,A (^) are experiments described in Figure 1. We say that

PKE is IND-CCA-secure, PR-CCA-secure, andOS-CCA-secure ifAdvind-ccaPKE,A (^),Adv
pr-cca
PKE,A (^), andAdv

os-cca
PKE,A (^)

is negligible for any PPT adversary A, respectively.
We also say that PKE is SPR-CCA-secure if it is PR-CCA-secure and its ciphertext space C depends on only ^
and is independent from ek. We also say that PKE is SOS-CCA-secure if it is OS-CCA-secure and its additional
algorithms take 1^ instead of ek as a part of input.

Remark 2.1. We note that if a PKE scheme is PR-CCA-secure and its ciphertext space C is ESE, then the PKE
scheme is OS-CCA-secure.

2.2 Tag-Based Encryption (TBE)

MacKenzie, Reiter, and Yang [MRY04] introduced a notion of tag-based encryption (TBE). �ey show that
applying the CHK transformation to TBE results in IND-CCA-secure PKE independently.
�e model for TBE schemes is summarized as follows:

De�nition 2.4. A TBE scheme TBE consists of the following triple of PPT algorithms (GenTBE, EncTBE,DecTBE).

5

Exptind-cca,1PKE,A (^)

(ek, dk) ← GenPKE (1^)

(<0, <1, st) ← ADec⊥ (·)
1 (ek)

2∗ ← EncPKE (ek, <1)

1′ ← ADec2∗ (·)
2 (2∗, st)

return 1′

Dec0 (2)

if 2 = 0, return ⊥
< := DecPKE (dk, 2)
return <

Exptpr-cca,1PKE,A (^)

(ek, dk) ← GenPKE (1^)

(<, st) ← ADec⊥ (·)
1 (ek)

2∗0 ← EncPKE (ek, <)
2∗1 ← Cek

1′ ← A
Dec2∗

1
(·)

2 (2∗
1
, st)

return 1′

Exptos-cca,1PKE,A (^)

(ek, dk) ← GenPKE (1^)

(<, st) ← ADec⊥ (·)
1 (ek)

2∗0 ← EncPKE (ek, <)
d∗0 ← ExplPKE (ek, 2∗0)
d∗1 ← RRndPKE ,ek, |< |
2∗1 ← RndPKE (ek, 0 |< | ; d∗1)

1′ ← A
Dec2∗

1
(·)

2 (2∗
1
, d∗
1
, st)

return 1′

Fig. 1. Games for PKE schemes

– GenTBE (1^) → (ek, dk): a key-generation algorithm that on input 1^ , where ^ is the security parameter,
outputs a pair of keys (ek, dk). ek and dk are called the encryption key and decryption key, respectively.

– EncTBE (ek, g, <) → 2: an encryption algorithm that takes as input encryption key ek, tag g ∈ T , and
message < ∈ M and outputs ciphertext 2 ∈ C.

– DecTBE (dk, g, 2) → </⊥: a decryption algorithm that takes as input decryption key dk, tag g, and cipher-
text 2 and outputs message < ∈ M or a rejection symbol ⊥ ∉M.

De�nition 2.5 (Correctness). We say TBE = (GenTBE, EncTBE,DecTBE) has perfect correctness if for any
(ek, dk) generated by GenTBE, for any tag g ∈ T and for any < ∈ M, we have

Pr[2 ← EncTBE (ek, g, <) : DecTBE (dk, g, 2) = <] = 1.

Security Notions: We review indistinguishability under selective-tag and weak chosen-ciphertext a�acks
IND-st-wCCA [Kil06]. In addition, we de�ne PR-st-wCCA and OS-st-wCCA by using RndTBE and ExplTBE.
In order to de�ne oblivious sampleability, we introduce two additional algorithms, RndTBE and ExplTBE:
RndTBE takes an encryption key ek, a length of message 0ℓ , and randomness d ∈ RRndTBE ,ek,ℓ and outputs
2 ∈ C; ExplPKE takes ek and 2 ∈ C and outputs a randomness d.

De�nition 2.6 (Security notion for TBE). For any adversaryA, we de�ne its IND-st-wCCA andOS-st-wCCA
advantages against a TBE scheme TBE = (GenTBE, EncTBE,DecTBE) with additional PPT algorithms RndTBE
and ExplTBE as follows:

Advind-st-wccaTBE,A (^) :=
���Pr[Exptind-st-wcca,0TBE,A (^) = 1] − Pr[Exptind-st-wcca,1TBE,A (^) = 1]

���,
Advpr-st-wccaTBE,A (^) :=

���Pr[Exptpr-st-wcca,0TBE,A (^) = 1] − Pr[Exptpr-st-wcca,1TBE,A (^) = 1]
���,

Advos-st-wccaTBE,A (^) :=
���Pr[Exptos-st-wcca,0TBE,A (^) = 1] − Pr[Exptos-st-wcca,1TBE,A (^) = 1]

���,
where Exptind-st-wcca,1TBE,A (^), Exptpr-st-wcca,1TBE,A (^), and Exptos-st-wcca,1TBE,A (^) are experiments described in Figure 2.

We say that TBE is IND-st-wCCA-secure, PR-st-wCCA-secure, and OS-st-wCCA-secure if Advind-st-wccaTBE,A (^),
Advpr-st-wccaTBE,A (^), and Advos-st-wccaTBE,A (^) are negligible for any PPT adversary A, respectively.
We also say that TBE is SPR-st-wCCA-secure if it is PR-st-wCCA-secure and its ciphertext space C depends on
only ^ and is independent from ek. We also say that TBE is SOS-st-wCCA-secure if it is OS-st-wCCA-secure
and its additional algorithms take 1^ instead of ek.

Remark 2.2. Again, we note that if a TBE scheme is PR-st-wCCA-secure and its ciphertext space C is ESE,
then the TBE scheme is OS-st-wCCA-secure.

6

Exptind-st-wcca,1TBE,A (^)

(g∗, st) ← A0 (1^)
(ek, dk) ← GenTBE (1^)

(<0, <1, st) ← ADecg∗ (·)
1 (ek, st)

2∗ ← EncTBE (ek, g∗, <1)

1′ ← ADecg∗ (·)
2 (2∗, st)

return 1′

Decg∗ (g, 2)

if g = g∗, return ⊥
< := DecTBE (dk, g, 2)
return <

Exptpr-st-wcca,1TBE,A (^)

(g∗, st) ← A0 (1^)
(ek, dk) ← GenTBE (1^)

(<, st) ← ADecg∗ (·)
1 (ek, st)

2∗0 ← EncTBE (ek, g∗, <)
2∗1 ← C

1′ ← ADecg∗ (·)
2 (2∗

1
, st)

return 1′

Exptos-st-wcca,1TBE,A (^)

(g∗, st) ← A0 (1^)
(ek, dk) ← GenTBE (1^)

(<, st) ← ADecg∗ (·)
1 (ek, st)

2∗0 ← EncTBE (ek, g∗, <)
d∗0 ← ExplTBE (ek, 2∗0)
d∗1 ← RRndTBE ,ek, |< |
2∗1 ← RndTBE (ek, 0 |< | ; d∗1)

1′ ← ADecg∗ (·)
2 (2∗

1
, d∗
1
, st)

return 1′

Fig. 2. Games for TBE schemes

2.3 Weak Commitment also known as Encapsulation

Boneh et al. introduced the concept of encapsulation [BCHK07], which is a weak variant of commitment [Blu81]
and we here call it weak commitment. Weak commitment is summarized as follows:

De�nition 2.7. Aweak commitment schemewCom consists of the following triple of PPT algorithms (Init, S,R):
– Init(1^) → pp: an initialization algorithm that takes on input 1^ , where ^ is the security parameter, and

outputs a string pp.
– S(1^ , pp) → (A, com, dec): a sender algorithm that takes as input 1^ and pp and outputs (A, com, dec) with
A ∈ {0, 1}^ , where we refer to com as the commitment string and dec as the decommitment string.

– R(pp, com, dec) → A/⊥: a receiver algorithm that takes as input (pp, com, dec) and outputs A ∈ {0, 1}^ or
a rejection symbol ⊥ ∉ {0, 1}^ .

De�nition 2.8 (Correctness). We say wCom = (Init, S,R) has perfect correctness if for any pp generated by
Init, we have

Pr[(A, com, dec) ← S(1^ , pp) : R(pp, com, dec) = A] = 1.

We review the de�nitions of hiding property and binding property [BCHK07]. We here only require binding
for honestly generated commitments. In addition, we de�ne oblivious sampleability of weak commitment by
using RndwCom and ExplwCom. We also de�ne non-invertibility, which states it is hard to generate meaningful
decommitment for obliviously-sampled com and d.

De�nition 2.9. For any adversary A, we de�ne its four advantages against an encapsulation scheme wCom =

(Init, S,R) and two PPT algorithms (RndwCom, ExplwCom) as follows:

AdvhidingwCom,A (^) :=
���Pr[Expthiding,0wCom,A (^) = 1] = Pr[Expthiding,1wCom,A (^) = 1]

���,
AdvbindingwCom,A (^) := Pr[ExptbindingwCom,A (^) = 1],

AdvoswCom,A (^) :=
���Pr[Exptos,0wCom,A (^) = 1] − Pr[Exptos,1wCom,A (^) = 1]

���,
Advnon-invwCom,A (^) := Pr[Exptnon-invwCom,A (^) = 1],

where Expthiding,1wCom,A (^), Expt
binding
wCom,A (^), Expt

os,1
wCom,A (^), and Exptnon-invwCom,A (^) are experiments described in

Figure 3.

We say that wCom is secure if AdvhidingwCom,A (^) and AdvbindingwCom,A (^) are negligible for any PPT adversary A.
We also say that wCom is OS-secure if AdvoswCom,A (^) is negligible for any PPT adversaryA. We also say that

wCom is non-invertible if Advnon-invwCom,A (^) is negligible for any PPT adversary A.

7

Expthiding,1wCom,A (^)

pp← Init(1^)
(A0, com, dec) ← S(1^ , pp)
A1 ← {0, 1}^

1′ ← A(1^ , pp, com, A1)
return 1′

Exptos,1wCom,A (^)

pp← Init(1^)
(A0, com0, dec0) ← S(1^ , pp)
d0 ← ExplwCom (pp, com0)
d1 ← RRndwCom ,pp
com1 ← RndwCom (pp; d1)
1′ ← A(1^ , pp, (com1 , d1))
return 1′

ExptbindingwCom,A (^)

pp← Init(1^)
(A, com, dec) ← S(1^ , pp)
dec′ ← A(1^ , pp, com, dec)
A ′ ← R(pp, com, dec′)
return boole(A ′ ∉ {⊥, A})

Exptnon-invwCom,A (^)

pp← Init(1^)
d ← RRndwCom ,pp
com← RndwCom (pp; d)
dec ← A(1^ , pp, (com, d))
A ← R(pp, com, dec)
return boole(A ≠ ⊥)

Fig. 3. Games for weak commitment schemes

Concrete construction: Let Huow = {�B : {0, 1}:1 → {0, 1}: } be a family of universal one-way hash
function (UOWHF) and letH = {ℎ : {0, 1}:1 → {0, 1}: } be a family of pairwise-independent hash function.
Let :1 = 2: + X. Boneh and Katz [BK05] gave a concrete construction of weak commitments from them as
follows:
– Init(1^): choose �B and ℎ and output pp = (ℎ, B).
– S(pp): take G ← {0, 1}:1 and output (A, com, dec) = (ℎ(G), �B (G), G).
– R(pp, com, dec): output ℎ(dec) if �B (dec) = com and ⊥ otherwise.

We require the following properties:
– �B is universal one-way for the binding property. (See [BCHK07, �eorem 4].)
– 2 · 2

2:−:1
3 = 2−X/3+1 is negligible in the security parameter for the hiding property. (See [BCHK07,

�eorem 4].)
– �B (* ({0, 1}:1)) is pseudorandom for the OS property. See Lemma 2.1 below.
– �B (* ({0, 1}:1)) is pseudorandom and one-way for the non-invertible property. See Lemma 2.2 below.

We have several instantiating way of �B .
– �e easiest way is employing the standard hash functions, say, �B (G) = SHA3-256(B, G). �is keyed

function is collision-resistant; and it is reasonable to assume that (B, �B (D)) with D ← {0, 1}:1 is close
to uniform.

– (From la�ices:) for example, Ajtai’s hash function from la�ices is collision-resistant if SIS is hard [Ajt96,
GGH96]. �is hash function is strongly universal (see e.g., Regev [Reg09, Section 5]) and, thus, pseudo-
random.

– (From codes:) for example, we can use the Expand-then-Shrink hash function as known as FSB [AFS05,
BLVW19, YZW+19]. Let :1 = : ′1 ·F and< = : ′1 ·2

F for some F. Let e8 is the 8-th unit vector of dimension
2F . �e hash function is de�ned as ℎS (G) = S · Expand(G), where S ← Z:×<2 and Expand(G) =
eint(G1) ‖ . . . ‖eint(G:′1)

∈ Z<2 with G = G1‖ . . . ‖G:′1 for each G8 ∈ ZF2 . Brakerski et al. [BLVW19] and
Yu et al. [YZW+19] showed that their hash functions are collision-resistant assuming the extremely low-
noise LPN. We can show its pseudorandomness by assuming the hash function is one-way by applying
the result of Mol and Micciancio [MM11], which states pseudorandomness of (6,∑8 G8 ·68) with 6 ← G<
and G ← X, where X is an arbitrary distribution over {0, 1}<, if (6, 56 (G)) is one-way.

Lemma 2.1. Suppose that
(
�B , �B (G)

)
is computationally indistinguishable from (�B , D), where�B ←Huow, G ←

{0, 1}:1 , and D ← {0, 1}: .�en, the scheme is obliviously sampleable withRRndwCom ,pp = {0, 1}: ,RndwCom (pp, ·)
and ExplwCom (pp, ·) are the identity function over {0, 1}: .

Proof. We consider the following three games:
– Game 0: �B ← Huow, ℎ ← H , G ← {0, 1}:1 , com0 ← �B (G), and d0 ← ExplwCom (pp, com0) = com0.

Output 1′ ← A(1^ , (�B , ℎ), (com0, d0)).

8

– Hybrid: �B ← Huow, ℎ ← H , G ← {0, 1}:1 , com ← {0, 1}: , and d ← ExplwCom (pp, com) = com.
Output 1′ ← A(1^ , (�B , ℎ), (com, d)).

– Game 1: �B ←Huow, ℎ←H , G ← {0, 1}:1 , d1 ← {0, 1}: , and com1 ← RndwCom (pp, d1) = d1. Output
1′ ← A(1^ , (�B , ℎ), (com1, d1)).

We suppose that
(
�B , �B (G)

)
is computationally indistinguishable from (�B , D), where �B ← Huow, G ←

{0, 1}:1 , and D ← {0, 1}: . �us, it is easy to see that Game 0 and Hybrid are computationally indistinguish-
able. It is obvious that Hybrid and Game 1 are equivalent. Hence, the lemma follows. ut

Lemma 2.2. Suppose that
(
�B , �B (G)

)
is computationally indistinguishable from (�B , D), where�B ←Huow, G ←

{0, 1}:1 , and D ← {0, 1}: . Moreover, suppose that �B is one-way. �en, the scheme is non-invertible.

Proof. We consider the following two games:
– Game 0:�B ←Huow, ℎ←H , d ← {0, 1}: , and com← RndwCom (pp, d) = d. dec ← A(1^ , (�B , ℎ), (com, d)).

Output 1 if �B (dec) = com and 0 otherwise.
– Game 1: �B ← Huow, ℎ ← H , G ← {0, 1}:1 , com ← �B (G), and d ← ExplwCom (pp, com) = com.

dec ← A(1^ , (�B , ℎ), (com, d)). Output 1 if �B (dec) = com and 0 otherwise.
Game 0 is Exptnon-invwCom,A (^). In the hypothesis, we suppose that

(
�B , �B (G)

)
is computationally indistinguish-

able from (�B , D), where �B ←Huow, G ← {0, 1}:1 , and D ← {0, 1}: . �us, it is easy to see that Game 0 and
Game 1 are computationally indistinguishable. Moreover, it is easy to verify that there exists an adversary
Aow breaking one-wayness of �B whose advantage is equivalent to Pr[A wins Game 1]. Now, the lemma
follows. ut

2.4 Message Authentication Code (MAC)

�e model for MAC is summarized as follows:

De�nition 2.10. A MAC scheme MAC consists of the following pair of polynomial-time algorithms (T,V):
– T(A, `) → f: a tagging algorithm that takes on input A ∈ {0, 1}^ and a message ` ∈ {0, 1}∗, where ^ is the

security parameter, and outputs a tag f.
– V(A, `, f) → >/⊥: a veri�cation algorithm that takes as input A , `, and a tag f, and outputs > as “accep-

tance” or ⊥ as “rejection.”

De�nition 2.11 (Correctness). We say MAC = (T,V) has perfect correctness if for any A ∈ {0, 1}^ and ` ∈
{0, 1}∗, we have

Pr[f ← T(A, `) : V(A, `, f) = >] = 1.

We de�ne strong existential-unforgeability against one-time chosen-message a�ack. In addition, we de�ne
oblivious sampleability by using RndMAC and ExplMAC.

De�nition 2.12. For any adversary A, we de�ne its advantages against a MAC schemeMAC = (T,V) and two
PPT algorithms (RndMAC, ExplMAC) as follows:

Advseuf-ot-cma
MAC,A (^) := Pr[Exptseuf-ot-cma

MAC,A (^) = 1],

AdvosMAC,A (^) :=
���Pr[Exptos,0MAC,A (^) = 1] − Pr[Exptos,1MAC,A (^) = 1]

���,
where Exptseuf-ot-cma

MAC,A (^) and Exptos,1MAC,A (^), are the experiments described in Figure 4.

We say thatMAC is sEUF-ot-CMA-secure and OS-secure if Advseuf-ot-cma
MAC,A (^) and AdvosMAC,A (^) is negligible

for any PPT adversary A, respectively.

Concrete construction: It is known that the standard universal hash function provides a one-time secure
MAC as follows: Let us identify {0, 1}: with GF(2:). For 0, 1 ∈ {0, 1}: , we de�ne �0,1 : {0, 1}: → {0, 1}: :
` ↦→ 0` + 1 ∈ {0, 1}: . �us, we have an sEUF-ot-CMA-secure MAC scheme unconditionally. Combining
with collision-resistant hash function ℎ : {0, 1}∗ → {0, 1}: , we can extend the domain of the MAC as we
want. Moreover, this extended MAC is OS-secure since the distribution of f = �0,1 (ℎ(`)) is uniform over
{0, 1}: if 0, 1 ← {0, 1}: .

9

Exptseuf-ot-cma
MAC,A (^)

A ← {0, 1}^ , (`, f) ← (⊥,⊥)

(`∗, f∗) ← ATag(·) (1^)
3 ← V(A, `∗, f∗)
? ← boole((`, f) ≠ (`∗, f∗))
return ? ∧ 3

Tag(`)

if f ≠ ⊥ then return ⊥
else f ← T(A, `)
return f

Exptos,1MAC,A (^)

A ← {0, 1}^

(`∗, st) ← A0 (1^)
f0 ← T(A, `∗)
d0 ← ExplMAC (f0)
d1 ← RRndMAC

f1 ← RndMAC (1^ ; d1)
1′ ← A1 (1^ , (f1 , d1), st)
return 1′

Fig. 4. Games for MAC schemes

GenPKE (1^) → (ek, dk)

(ekTBE, dkTBE) ← GenTBE (1^)
pp← Init(1^)
ek := (ekTBE, pp)
dk := dkTBE
return (ek, dk)

EncPKE (ek, <) → ct

(A, com, dec) ← S(1^ , pp)
2 ← EncTBE (ekTBE, com, (<, dec))
f ← T(A, 2)
ct := (com, 2, f)
return ct

DecPKE (dk, ct) → </⊥

Parse ct = (com, 2, f)
(<, dec) ← DecTBE (dkTBE, com, 2)
if (<, dec) = ⊥ then return ⊥
A ← R(pp, com, dec)
if A = ⊥ then return ⊥
if V(A, 2, f) = ⊥ then return ⊥
return <

Fig. 5. �e Boneh-Katz transformation.

Table 1. Summary of Games for the Proof of �eorem 3.1: Expl implies d∗
-

is generated by Expl- . Rand implies d∗
-

is chosen
from RRand- and a part of ct is generated by Rand- .

Game com∗ 2∗ f∗ d∗wCom d∗TBE d
∗
MAC Dec When com∗ is generated

Game0 Real Real T(A∗, 2∗) Expl Expl Expl Original Original
Game1 Real Real T(A∗, 2∗) Expl Expl Expl Original At the beginning
Game2 Real Real T(A∗, 2∗) Expl Expl Expl Reject if com = com∗ At the beginning
Game3 Real Rand T(A∗, 2∗) Expl Rand Expl Reject if com = com∗ At the beginning
Game4 Real Rand T(A+, 2∗) Expl Rand Expl Reject if com = com∗ At the beginning
Game5 Real Rand Rand Expl Rand Rand Reject if com = com∗ At the beginning
Game6 Rand Rand Rand Rand Rand Rand Reject if com = com∗ At the beginning
Game7 Rand Rand Rand Rand Rand Rand Original Original

10

3 �e Boneh-Katz transformation, Revisited

Let us review the Boneh-Katz transformation [BCHK07, Section 5] for IBE, but we here adapt it for TBE.
Let TBE = (GenTBE, EncTBE,DecTBE) be a TBE scheme whose plaintext space is MTBE = M × D and
tag space is T . Let wCom = (Init, S,R) be a weak commitment scheme whose commitment space is T
and decommitment space is D. Let MAC = (T,V) be a MAC scheme. PKE = (GenPKE, EncPKE,DecPKE) =
BK[TBE,wCom,MAC] is de�ned as in Figure 5.
Adjusting the security proof in [BCHK07], we can show that PKE is IND-CCA secure if TBE is IND-sID-
CPA secure, wCom is secure, and MAC is sEUF-OT-CMA secure, as noted (but not proven) in Kiltz [Kil06,
Section 4].
We here show that PKE is OS-CCA-secure if the underlying primitives are OS-CCA-secure. �e proof is easily
adapted into the PR-CCA case.
�eorem 3.1. If TBE isOS-st-wCCA-secure,wCom is secure and OS-secure, andMAC is sEUF-ot-CMA-secure
and OS-secure, then, PKE is OS-CCA-secure.
We use the game-hopping proof. We will de�ne eight games Game0, . . . ,Game7. See Table 1 for the summary
of games. Let (8 denote the event that the adversary outputs 1′ = 1 in the 8-th game Game8 for 8 = 0, 1, . . . , 7.
Let& denote the number of decryption queries the adversary makes. �e proofs of lemmas 3.1–3.9 (the bound
between Game0 and Game4) are straightforward adaption of those in Boneh and Katz [BK05], which are in
section A for completeness.

Game0: �is is the original game for 1 = 0. �e challenge is

ct∗0 = (com
∗, 2∗, f∗) =

(
com∗, EncTBE (ekTBE, com∗, (<∗, dec∗)), T(A∗, 2∗)

)
,

d∗0 = (d∗wCom, d
∗
TBE, d

∗
MAC) =

(
ExplwCom (pp, com∗), ExplTBE (ekTBE, 2∗), ExplMAC (1^ , f∗)

)
,

where (A∗, com∗, dec∗) ← S(1^ , pp). We have Pr[(0] = Pr[Exptos-cca,0PKE,A = 1].

Game1: We modify the game as follows: In this game, the challenger generates pp← Init(1^), (A∗, com∗, dec∗) ←
S(pp), and (ekTBE, dkTBE) ← GenTBE (1^). It then runs the adversary on input ek = (ekTBE, pp).
Since, this change is just conceptual, the two games are equivalent.
Lemma 3.1. We have Pr[(0] = Pr[(1].

Game2: We modify Game1 as follows: �e decryption oracle always rejects a query ct = (com, 2, f) if
com = com∗.
We de�ne Valid as the event that A submits a query ct = (com∗, 2, f) ≠ ct∗ which is valid, that is, the
decryption result is not ⊥. Since Game1 and Game2 are equivalent until Valid occurs, we have the following
lemma.
Lemma 3.2. We have |Pr[(1] − Pr[(2] | ≤ Pr[Valid1] = Pr[Valid2].
Let us decompose Valid into two events:
– We de�ne NoBind as the event that A queries a ciphertext ct = (com∗, 2, f) such that (<′, dec′) ←

DecTBE (dkTBE, com∗, 2), A ← R(pp, com∗, dec′), and A ∉ {A∗,⊥}.
– We also de�ne Forge as the event that A queries ct = (com∗, 2, f) such that (2, f) ≠ (2∗, f∗) and

V(A∗, 2, f) = >.
Clearly, we have the following lemma:
Lemma 3.3. We have Pr[Valid2] ≤ Pr[NoBind2] + Pr[Forge2].
We show that the adversary making NoBind2 true breaks the binding property of wCom. See subsection A.1
for the proof.

Lemma 3.4. �ere exists a PPT adversary AwCom satisfying Pr[NoBind2] ≤ AdvbindingwCom,AwCom
(^).

Game3: We modify Game2 as follows: In this game, the challenge ciphertext is

ct∗ = (com∗, 2∗, f∗) =
(
com∗,RndTBE (ekTBE, 0 |< |+ |dec

∗ | ; d∗TBE), T(A
∗, 2∗)

)
,

d∗ = (d∗wCom, d
∗
TBE, d

∗
MAC) =

(
ExplwCom (com∗), d∗TBE, ExplMAC (f∗)

)
.

We have the following lemmas. See subsection A.2 and subsection A.3 for the proofs.
Lemma 3.5. �ere exists a PPT adversary ATBE satisfying |Pr[(2] − Pr[(3] | ≤ Advos-st-wccaTBE,ATBE

(^).

Lemma 3.6. �ere exists a PPT adversary A ′TBE satisfying
��Pr[Forge2] − Pr[Forge3]�� ≤ Advos-st-wccaTBE,A′TBE

(^).

11

Game4: We modify Game3 as follows: In this game, the challenge ciphertext is

ct∗ = (com∗, 2∗, f∗) =
(
com∗,RndTBE (ekTBE, 0 |< |+ |dec

∗ | ; d∗TBE), T(A
+, 2∗)

)
,

d∗ = (d∗wCom, d
∗
TBE, d

∗
MAC) =

(
ExplwCom (com∗), d∗TBE, ExplMAC (f∗)

)
,

where A+ ← {0, 1}^ .
We de�ne Forge4 as the event thatA queries ct = (com∗, 2, f) such that (2, f) ≠ (2∗, f∗) andV(A+, 2, f) = >
(instead ofV(A∗, 2, f) = >). We have the following lemmas. See subsection A.4, subsection A.5, subsection A.6
for the security proofs.

Lemma 3.7. �ere exists a PPT adversary A ′wCom satisfying |Pr[(3] − Pr[(4] | ≤ AdvhidingwCom,A′wCom
(^).

Lemma 3.8. �ere exists a PPT adversaryA ′′wCom satisfying
��Pr[Forge3] − Pr[Forge4]�� ≤ AdvhidingwCom,A′′wCom

(^).

Lemma 3.9. �ere exists a PPT adversary AMAC satisfying Pr[Forge4] ≤ & · Advseuf-ot-cma
MAC,AMAC

(^).

Game5: We modify Game4 as follows: In this game, the challenge ciphertext is

ct∗ = (com∗, 2∗, f∗) =
(
com∗,RndTBE (ekTBE, 0 |< |+ |dec

∗ | ; d∗TBE),RndMAC (1^ ; d∗MAC)
)
,

d∗ = (d∗wCom, d
∗
TBE, d

∗
MAC) =

(
ExplwCom (com∗), d∗TBE, d

∗
MAC

)
We have the following lemma.
Lemma 3.10. �ere exists a PPT adversary A ′MAC satisfying |Pr[(4] − Pr[(5] | ≤ AdvosMAC,A′MAC

(^).

Proof. We construct a PPT adversary A ′MAC as follows:
1. A ′MAC is given 1^ . It generates pp ← Init(1^), (A∗, com∗, dec∗) ← S(pp), and (ekTBE, dkTBE) ←

GenTBE (1^). It runs A on input ek := (ekTBE, pp).
2. A ′MAC simulates the decryption oracle on a query ct = (com, 2, f) as follows: If com = com∗, then it

returns ⊥. If com ≠ com∗, it decrypts 2 into (<′, dec′) ← DecTBE (dkTBE, com, 2). If the result is ⊥, then
it returns ⊥; otherwise, it computes A ′ ← R(pp, com, dec′). If A ′ = ⊥, then it returns ⊥; otherwise, it
computes 3 ← V(A ′, 2, f). If 3 = ⊥, then it returns ⊥; otherwise, it returns <′.

3. A ′MAC simulates the challenge ciphertext on input< fromA as follows: It computes 2∗ ← RndTBE (ekTBE,
0 |< |+ |dec

∗ | ; d∗TBE). It then queries 2∗ to its tagging oracle and receives fW and dW , where f0 ← T(A+, 2∗)
with random A+ ← {0, 1}^ , d0 ← ExplMAC (1^ , f0), and f1 ← RndMAC (1^ ; d1). It also generates ran-
domness d∗wCom by using ExplwCom. It sends ct∗ = (com∗, 2∗, fW) and d∗ = (d∗wCom, d

∗
W , dW) to A.

4. Eventually, A outputs its guess 1′ and halts. A ′MAC outputs 1′ as a guess of W and halts.
If W = 0, then A ′MAC perfectly simulates Game4. If W = 1, then A ′MAC perfectly simulates Game5. �us, the
lemma follows. ut

Game6: We modify Game5 as follows: In this game, the challenge ciphertext is

ct∗ = (com∗, 2∗, f∗) =
(
RndwCom (pp; d∗wCom),RndTBE (ekTBE, 0

|< |+ |dec∗ | ; d∗TBE),RndMAC (1^ ; d∗MAC)
)
,

d∗ = (d∗wCom, d
∗
TBE, d

∗
MAC).

We have the following lemma.
Lemma 3.11. �ere exists a PPT adversary A ′′′wCom satisfying |Pr[(5] − Pr[(6] | ≤ AdvoswCom,A′′′wCom

(^).

Proof. We construct a PPT adversary A ′′′wCom as follows:
1. A ′′′wCom is given 1^ , pp, and (comW , dW), where the challenger computes pp← Init(1^), (A0, com0, dec0) ←

S(1^ , pp), d0 ← ExplwCom (1^ , com0), and com1 ← RndwCom (pp; d1). It then generates (ekTBE, dkTBE) ←
GenTBE (1^) and runs A on input ek := (ekTBE, pp).

2. A ′′′wCom simulates the challenge ciphertext on input< fromA as follows: It computes 2∗ ← RndTBE (ekTBE,
0 |< |+ |dec

∗ | ; d∗TBE) andf∗ ← RndMAC (1^ ; d∗MAC). It sends ct∗ = (comW , 2∗, f∗) and d∗ = (dW , d∗TBE, d
∗
MAC)

to A.
3. A ′′′wCom simulates the decryption oracle on a query ct = (com, 2, f) as follows: If com = com∗, then

it returns ⊥. Otherwise, it decrypts 2 into (<′, dec′) ← DecTBE (dkTBE, com, 2). If the result is ⊥, then
it returns ⊥; Otherwise, it computes A ′ ← R(pp, com, dec′). If A ′ = ⊥, then it returns ⊥. Otherwise, it
computes 3 ← V(A ′, 2, f). If 3 = ⊥, then it returns ⊥; Otherwise, it returns <′.

4. Eventually, A outputs its guess 1′ and halts. A ′′′wCom outputs 1′ as its guess of W and halts.
If W = 0, then A ′′′wCom perfectly simulates Game5. If W = 1, then A ′′′wCom perfectly simulates Game6. �us,
the lemma follows. ut

12

Game7: We modifyGame6 as follows: In this game, the challenger generates (ekTBE, dkTBE) ← GenTBE (1^),
pp ← Init(1^) and runs the adversary with ek = (ekTBE, pp). It generates com∗ ← RndwCom (pp) when it
generates the challenge ciphertext as in Game0. �e decryption oracle decrypts a query ct = (com∗, 2, f) if
(2, f) ≠ (2∗, f∗) as in Game0.
By the de�nition, we have Pr[(7] = Pr[Exptos-cca,1PKE,A (^) = 1].
We again recall the event Valid that the adversary queries a valid ciphertext ct = (com∗, 2, f) with (2, f) ≠
(2∗, f∗). Since Game6 and Game7 are equivalent until Valid occurs, we have the following lemma:

Lemma 3.12. We have |Pr[(6] − Pr[(7] | ≤ Pr[Valid6] = Pr[Valid7].

Let us consider what is a valid ciphertext. If (com∗, 2, f) is valid, we have (<, dec) ← DecTBE (dkTBE, com∗, 2)
with (<, dec) ≠ ⊥, A ← R(pp, com∗, dec) with A ≠ ⊥, and V(A, 2, f) = > in decryption.
We de�ne an event Inv as the event that we have A ≠ ⊥ in decryption. Notice that if Valid occurs, then Inv
should occur internally. �us, we have Pr[Valid7] ≤ Pr[Inv7]. We also have the following lemma.

Lemma 3.13. �ere exists a PPT adversary A ′′′′wCom satisfying Pr[Valid7] ≤ Pr[Inv7] ≤ Advnon-invwCom,A′′′′wCom
(^).

Proof. We construct A ′′′′wCom as follows:
1. A ′′′′wCom is given (1^ , pp, com∗, d∗) from its challenger, where pp← Init(1^) and com∗ ← RndwCom (pp, pp; d∗wCom).

It generates (ekTBE, dkTBE) ← GenTBE (1^) and runs A on input ek := (ekTBE, pp).
2. A ′′′′wCom generates the challenge on a query< fromA as follows: It computes 2∗ ← RndTBE (ekTBE, 0 |< |+ |dec

∗ | ; d∗TBE)
and f∗ ← RndMAC (1^ ; d∗MAC). sends ct∗ = (com∗, 2∗, f∗) and d∗ = (d∗wCom, d

∗
TBE, d

∗
MAC) to A.

3. A ′′′′wCom simulates the decryption oracle in Game7 by using its decryption key dkTBE as follows: If ct =
ct∗, then return ⊥. Otherwise, it obtains (<′, dec′) ← DecTBE (dkTBE, com, 2), A ← R(pp, com, dec), and
outputs <′ if (<′, 342′) ≠ ⊥, A ≠ ⊥, and V(A, 2, f) = >. Once A ′′′′wCom detects Inv, that is, on the query
(com∗, 2, f), it obtains (<′, dec′) ← DecTBE (dkTBE, com∗, 2) and A ′ ← R(pp, com∗, dec′) with A ′ ≠ ⊥,
then A ′′′′wCom outputs dec′ and halts.

Since the simulation of Game7 is perfect, A correctly works. Once Inv occurs, A ′′′′wCom breaks the non-
invertible property. �us, the lemma holds. ut

Summary: Summing up the bounds in the previous lemmas, we obtain �eorem 3.1:

Advos-ccaPKE (^) =
��Pr[Exptos-cca,0PKE,A (^) = 1] − Pr[Exptos-cca,1PKE,A (^) = 1]

��
=

��Pr[(0] − Pr[(7]�� ≤ 6∑
8=0

��Pr[(8] − Pr[(8+1]��
≤ 0 + Pr[Valid2] + Advos-st-wccaTBE,ATBE

(^) + AdvhidingwCom,A′wCom
(^)

+ AdvosMAC,A′MAC
(^) + AdvoswCom,A′′′wCom (^) + Pr[Valid7]

≤ Pr[NoBind2] + Pr[Forge2]
+ Pr[Inv7]

+ Advos-st-wccaTBE,ATBE
(^) + AdvhidingwCom,A′wCom

(^) + AdvosMAC,A′MAC
(^) + AdvoswCom,A′′′wCom (^)

≤ AdvbindingwCom,AwCom
(^) +

��Pr[Forge2] − Pr[Forge3]�� + ��Pr[Forge3] − Pr[Forge4]�� + Pr[Forge4]
+ Advnon-invwCom,A′′′′wCom

(^)

+ Advos-st-wccaTBE,ATBE
(^) + AdvhidingwCom,A′wCom

(^) + AdvosMAC,A′MAC
(^) + AdvoswCom,A′′′wCom (^)

≤ AdvbindingwCom,AwCom
(^) + Advos-st-wccaTBE,A′TBE

(^) + AdvhidingwCom,A′′wCom
(^) +& · Advseuf-ot-cma

MAC,AMAC
(^)

+ Advnon-invwCom,A′′′′wCom
(^) + Advos-st-wccaTBE,ATBE

(^) + AdvhidingwCom,A′wCom
(^)

+ AdvosMAC,A′MAC
(^) + AdvoswCom,A′′′wCom (^).

4 Instantiations and Applications

Instantiations: We have several la�ice/code-based IBE/TBE schemes allowing us to construct OS-CCA/PR-CCA-
secure PKE schemes by combining them with an appropriate commitment scheme and MAC scheme from
symmetric-key primitives.

13

FromLa�ices: �e CHKP IBE scheme [CHKP12], the ABB IBE scheme [ABB10], and the MP TBE scheme [MP12]
(and its variant the BBDQ TBE scheme [BBDQ18]) from la�ices are PR-st-wCCA-secure under the LWE as-
sumptions with suitable parameter se�ings. Moreover, their ciphertext spaces are of the form Z:@ for positive
integers @ and : and, thus, the ciphertext spaces are ESE.

FromCodes: �e DMQN09 TBE scheme [DMN09] and the DMQN12 TBE scheme [DMN12] are also PR-st-wCCA-
secure under the assumption that their keys are pseudorandom and the LPN assumptions. �eir ciphertext
spaces are of the form F:2 for positive integer : and, thus, the ciphertext spaces are ESE.
�e KMP TBE scheme [KMP14] and the YZ TBE scheme [YZ16] are IND-st-wCCA-secure under the assump-
tion that the low-noise LPN problem is hard and the assumption that the constant-noise LPN problem is
sub-exponentially hard, respectively. Fortunately, we can show that they are PR-st-wCCA-secure under the
same assumptions. See section C and section D for the details.

Fully-equipped, UC-secure bit commitment: Cane�i and Fischlin [CF01] constructed a UC-secure non-
interactive bit commitment for adaptive corruption without erasures in the re-usable CRS model from trap-
door commitment (as known as chameleon hash function [KR00]) and OS-CCA-secure PKE.
We have a trapdoor commitment scheme from la�ices [CHKP12]. Combining it with OS-CCA-secure PKE
scheme from la�ice, we obtain fully-equipped, UC-secure bit commitment under the LWE assumption.
Unfortunately, we do not know any non-interactive trapdoor commitment scheme from codes/LPN and this
is a long-standing open problem. �e construction of fully-equipped UC-secure commitment from codes/LPN
is still an open problem, although we have interactive UC-secure commitment from LPN, for example, one
obtained by combining UC-secure commitment in the OT-hybrid model [CDD+16] and 2-round OT from
LPN [DGH+20].

Public-key steganography: Hopper [Hop05] also studied it and gave a construction of public-key steganog-
raphy secure against adaptive chosen-covertext a�acks (SS-CCA-security) against a single channel from SPR-
CCA-secure PKE [Hop05]. Berndt and Liśkiewicz [BL18] improved the constructions to achieve SS-CCA-
secure public-key steganography against every memoryless channel from SPR-CCA-secure PKE, PRPs, and
CRHFs.
Since we have SPR-CCA-secure PKE from la�ices and codes, we obtain SS-CCA-secure public-key steganog-
raphy from la�ices and codes through [Hop05, BL18].

Anonymous AKE: KEM-based AKEs [BCGNP09, FSXY13, FSXY15, SSW20] can achieve anonymity. Such
AKEs employ IND-CCA-secure KEM and IND-CPA-secure KEM. Roughly speaking, the �rst message from
Alice is pktmp, ct�→� = Enccca (pk�) and the second message from Bob is cttmp = Enccpa (pktmp), ct�→� =

Enccca (pk�). �us, if the ciphertexts of IND-CCA-secure KEM are pseudorandom, then the AKE is anony-
mous from the outsider’s view.

SIM-SSO-CCA PKE: Following and repairing Fehr, Ho�einz, Kiltz, and Wee [FHKW10], Liu and Pater-
son [LP15] constructed a SIM-SSO-CCA secure PKE scheme using a special KEM scheme, which they call
“tailored” KEM; roughly speaking, they required the following properties: 1) ESE domains: the key space and
ciphertext space are e�ciently samplable and explainable (ESE), 2) tailored decapsulation: the valid ciphertexts
should be a small subset of ciphertext space, and 3) tailored security: it should satisfy tailored, constrained
CCA security, which is weaker than IND-CCA security.
It is easy to convert OS-CCA-secure PKE scheme into OS-CCA-secure KEM scheme if the message space
is ESE; choosing a key ← M and encrypting it as � = EncPKE (ek, ; d). We note that the OS-CCA-
secure PKE scheme obtained by the BK transformation satis�es the tailored decapsulation since its ciphertext
contains a MAC tag. �us, following [LP15], OS-CCA-secure PKE (with an ESE key space) implies SIM-SSO-
CCA secure PKE. Instantiating OS-CCA-secure from la�ices and codes, we obtain SIM-SSO-CCA-secure PKEs
in the standard model from la�ice and codes, respectively.

References

ABB10. Shweta Agrawal, Dan Boneh, and Xavier Boyen. E�cient la�ice (H)IBE in the standard model.
In Gilbert [Gil10], pages 553–572. 2, 14

14

AFS05. Daniel Augot, Ma�hieu Finiasz, and Nicolas Sendrier. A family of fast syndrome based cryp-
tographic hash functions. In Ed Dawson and Serge Vaudenay, editors, Progress in Cryptology -
Mycrypt 2005, First International Conference on Cryptology in Malaysia, Kuala Lumpur, Malaysia,
September 28-30, 2005, Proceedings, volume 3715 of Lecture Notes in Computer Science, pages 64–83.
Springer, 2005. 8

Ajt96. Miklós Ajtai. Generating hard instances of la�ice problems (extended abstract). In 28th ACM
STOC, pages 99–108. ACM Press, May 1996. 8

AP12. Jacob Alperin-Sheri� and Chris Peikert. Circular and KDM security for identity-based encryp-
tion. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293
of LNCS, pages 334–352. Springer, Heidelberg, May 2012. 21

BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-privacy in public-
key encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 566–582.
Springer, Heidelberg, December 2001. 1, 2

BBDQ18. Fabrice Benhamouda, Olivier Blazy, Léo Ducas, and Willy �ach. Hash proof systems over lat-
tices revisited. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of
LNCS, pages 644–674. Springer, Heidelberg, March 2018. 2, 14

BC05. Michael Backes and Christian Cachin. Public-key steganography with active a�acks. In Joe
Kilian, editor, TCC 2005, volume 3378 of LNCS, pages 210–226. Springer, Heidelberg, February
2005. 3

BCGNP09. Colin Boyd, Yvonne Cli�, Juan Manuel González Nieto, and Kenneth G. Paterson. One-round key
exchange in the standard model. Int. J. Appl. Cryptogr., 1(3):181–199, 2009. 3, 14

BCHK07. Dan Boneh, Ran Cane�i, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput., 36(5):1301–1328, 2007. 2, 7, 8, 11

BDPR98. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions
of security for public-key encryption schemes. In Krawczyk [Kra98], pages 26–45. 5

BFKL94. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primitives
based on hard learning problems. In Douglas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS,
pages 278–291. Springer, Heidelberg, August 1994. 20

BK05. Dan Boneh and Jonathan Katz. Improved e�ciency for CCA-secure cryptosystems built using
identity-based encryption. In Alfred Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages
87–103. Springer, Heidelberg, February 2005. 2, 8, 11

BL17. Xavier Boyen and Qinyi Li. All-but-many lossy trapdoor functions from la�ices and applications.
In Katz and Shacham [KS17], pages 298–331. 4

BL18. Sebastian Berndt and Maciej Liskiewicz. On the gold standard for security of universal steganog-
raphy. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume
10820 of LNCS, pages 29–60. Springer, Heidelberg, April / May 2018. 2, 3, 14

Blu81. Manuel Blum. Coin �ipping by telephone. In Allen Gersho, editor, CRYPTO’81, volume ECE
Report 82-04, pages 11–15. U.C. Santa Barbara, Dept. of Elec. and Computer Eng., 1981. 7

BLVW19. Zvika Brakerski, Vadim Lyubashevsky, Vinod Vaikuntanathan, and Daniel Wichs. Worst-case
hardness for LPN and cryptographic hashing via code smoothing. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 619–635. Springer, Hei-
delberg, May 2019. 8

CDD+16. Ignacio Cascudo, Ivan Damgård, Bernardo David, Nico Dö�ling, and Jesper Buus Nielsen. Rate-1,
linear time and additively homomorphic UC commitments. In Ma�hew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 179–207. Springer, Heidelberg,
August 2016. 14

CF01. Ran Cane�i and Marc Fischlin. Universally composable commitments. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 19–40. Springer, Heidelberg, August 2001. 2, 3, 5, 14

CHKP12. David Cash, Dennis Ho�einz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a
la�ice basis. Journal of Cryptology, 25(4):601–639, October 2012. 2, 14

CL01. Jan Camenisch and Anna Lysyanskaya. An e�cient system for non-transferable anonymous
credentials with optional anonymity revocation. In Birgit P�tzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 93–118. Springer, Heidelberg, May 2001. 1, 2

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against
adaptive chosen ciphertext a�ack. In Krawczyk [Kra98], pages 13–25. 3

DGG+15. Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels, and �omas Ristenpart. A formal
treatment of backdoored pseudorandom generators. In Elisabeth Oswald and Marc Fischlin, ed-
itors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 101–126. Springer, Heidelberg, April
2015. 1

15

DGH+20. Nico Dö�ling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and Daniel Wichs. Two-
round oblivious transfer from CDH or LPN. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part II, volume 12106 of LNCS, pages 768–797. Springer, Heidelberg, May 2020.
14

DGK06. Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. Deniable authentication and key
exchange. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM
CCS 2006, pages 400–409. ACM Press, October / November 2006. 3

DMN09. Rafael Dowsley, Jörn Müller-�ade, and Anderson C. A. Nascimento. A CCA2 secure public key
encryption scheme based on the McEliece assumptions in the standard model. In Marc Fischlin,
editor, CT-RSA 2009, volume 5473 of LNCS, pages 240–251. Springer, Heidelberg, April 2009. 2,
14

DMN12. Nico Dö�ling, Jörn Müller-�ade, and Anderson C. A. Nascimento. IND-CCA secure cryptog-
raphy based on a variant of the LPN problem. In Xiaoyun Wang and Kazue Sako, editors, ASI-
ACRYPT 2012, volume 7658 of LNCS, pages 485–503. Springer, Heidelberg, December 2012. 2,
14

DN00. Ivan Damgård and Jesper Buus Nielsen. Improved non-commi�ing encryption schemes based on
a general complexity assumption. In Mihir Bellare, editor, CRYPTO 2000, volume 1880 of LNCS,
pages 432–450. Springer, Heidelberg, August 2000. 5

DvW92. Whit�eld Di�e, Paul C. van Oorschot, and Michael J. Wiener. Authentication and authenticated
key exchanges. Des. Codes Cryptogr., 2(2):107–125, 1992. 3

FHKW10. Serge Fehr, Dennis Ho�einz, Eike Kiltz, and Hoeteck Wee. Encryption schemes secure against
chosen-ciphertext selective opening a�acks. In Gilbert [Gil10], pages 381–402. 2, 4, 14

FSXY13. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Practical and post-
quantum authenticated key exchange from one-way secure key encapsulation mechanism. In
Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-Guey Tzeng, editors, ASIACCS 13, pages
83–94. ACM Press, May 2013. 3, 14

FSXY15. Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. Strongly secure au-
thenticated key exchange from factoring, codes, and la�ices. Des. Codes Cryptogr., 76(3):469–504,
2015. 2, 3, 14

GGH96. Oded Goldreich, Sha� Goldwasser, and Shai Halevi. Collision-free hashing from la�ice problems.
Cryptology ePrint Archive, Report 1996/009, 1996. h�ps://eprint.iacr.org/1996/009. 8

Gil10. Henri Gilbert, editor. EUROCRYPT 2010, volume 6110 of LNCS. Springer, Heidelberg, May / June
2010. 14, 16

GM84. Sha� Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299,
1984. 1

GMP21. Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, robust post-quantum public
key encryption. Cryptology ePrint Archive, Report 2021/708, 2021. h�ps://eprint.iacr.org/2021/
708. 3

HC98. Dan Harkins and Dave Carrel. �e Internet Key Exchange (IKE). IETF RFC 2409 (Proposed
Standard), 1998. 3

HJKS15. Felix Heuer, Tibor Jager, Eike Kiltz, and Sven Schäge. On the selective opening security of prac-
tical public-key encryption schemes. In Katz [Kat15], pages 27–51. 3

HKKP21. Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and �omas Prest. An e�cient and
generic construction for signal’s handshake (X3DH): post-quantum, state leakage secure, and de-
niable. In Juan A. Garay, editor, Public-Key Cryptography - PKC 2021 - 24th IACR International
Conference on Practice and �eory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Pro-
ceedings, Part II, volume 12711 of Lecture Notes in Computer Science, pages 410–440. Springer, 2021.
3

HLOV11. Bre� Hemenway, Benoı̂t Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy encryption: Con-
structions from general assumptions and e�cient selective opening chosen ciphertext security.
In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages
70–88. Springer, Heidelberg, December 2011. 4

HLQ13. Zhengan Huang, Shengli Liu, and Baodong Qin. Sender-equivocable encryption schemes secure
against chosen-ciphertext a�acks revisited. In Kaoru Kurosawa and Goichiro Hanaoka, editors,
PKC 2013, volume 7778 of LNCS, pages 369–385. Springer, Heidelberg, February / March 2013. 4

HLQC13. Zhengan Huang, Shengli Liu, Baodong Qin, and Kefei Chen. Fixing the sender-equivocable en-
cryption scheme in Eurocrypt 2010. In 2013 5th International Conference on Intelligent Networking
and Collaborative Systems, Xi’an city, Shaanxi province, China, September 9-11, 2013, pages 366–372.
IEEE, 2013. 4

Hof12. Dennis Ho�einz. All-but-many lossy trapdoor functions. In Pointcheval and Johansson [PJ12],
pages 209–227. 4

16

https://eprint.iacr.org/1996/009
https://eprint.iacr.org/2021/708
https://eprint.iacr.org/2021/708

Hop05. Nicholas Hopper. On steganographic chosen covertext security. In Luı́s Caires, Giuseppe F.
Italiano, Luı́s Monteiro, Catuscia Palamidessi, and Moti Yung, editors, ICALP 2005, volume 3580
of LNCS, pages 311–323. Springer, Heidelberg, July 2005. 1, 2, 3, 5, 14

HP16. Felix Heuer and Bertram Poe�ering. Selective opening security from simulatable data encapsu-
lation. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032
of LNCS, pages 248–277. Springer, Heidelberg, December 2016. 3

HPRV19. �ibaut Horel, Sunoo Park, Silas Richelson, and Vinod Vaikuntanathan. How to subvert back-
doored encryption: Security against adversaries that decrypt all ciphertexts. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 42:1–42:20. LIPIcs, January 2019. 1

IKOS10. Yuval Ishai, Abishek Kumarasubramanian, Claudio Orlandi, and Amit Sahai. On invertible sam-
pling and adaptive security. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 466–482. Springer, Heidelberg, December 2010. 2

Kat15. Jonathan Katz, editor. PKC 2015, volume 9020 of LNCS. Springer, Heidelberg, March / April 2015.
16, 17

Kil06. Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 581–600. Springer, Heidelberg, March 2006. 6, 11

KMP14. Eike Kiltz, Daniel Masny, and Krzysztof Pietrzak. Simple chosen-ciphertext security from low-
noise LPN. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 1–18. Springer,
Heidelberg, March 2014. 2, 14, 21, 22, 23, 24

KMT19. Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. CCA security and trapdoor functions
via key-dependent-message security. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 33–64. Springer, Heidelberg, August 2019. 4

KMT21. Fuyuki Kitagawa, Takahiro Matsuda, and Keisuke Tanaka. CCA security and trapdoor functions
via key-dependent-message security. Cryptology ePrint Archive, Report 2019/291, 2021. h�ps:
//eprint.iacr.org/2019/291. 4

KR00. Hugo Krawczyk and Tal Rabin. Chameleon signatures. In NDSS 2000. �e Internet Society,
February 2000. 14

Kra98. Hugo Krawczyk, editor. CRYPTO’98, volume 1462 of LNCS. Springer, Heidelberg, August 1998. 15
KS17. Jonathan Katz and Hovav Shacham, editors. CRYPTO 2017, Part III, volume 10403 of LNCS.

Springer, Heidelberg, August 2017. 15, 17
LLHG18. Lin Lyu, Shengli Liu, Shuai Han, and Dawu Gu. Tightly SIM-SO-CCA secure public key encryp-

tion from standard assumptions. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part I,
volume 10769 of LNCS, pages 62–92. Springer, Heidelberg, March 2018. 4

LLW20. Qiqi Lai, Feng-Hao Liu, and Zhedong Wang. Almost tight security in la�ices with polynomial
moduli - PRF, IBE, all-but-many LTF, and more. In Aggelos Kiayias, Markulf Kohlweiss, Pet-
ros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110 of LNCS, pages 652–681.
Springer, Heidelberg, May 2020. 4

LP15. Shengli Liu and Kenneth G. Paterson. Simulation-based selective opening CCA security for PKE
from key encapsulation mechanisms. In Katz [Kat15], pages 3–26. 1, 2, 3, 4, 14

LSSS17. Benoı̂t Libert, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. All-but-many lossy trapdoor
functions and selective opening chosen-ciphertext security from LWE. In Katz and Shacham
[KS17], pages 332–364. 4

MM11. Daniele Micciancio and Petros Mol. Pseudorandom knapsacks and the sample complexity of LWE
search-to-decision reductions. In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 465–484. Springer, Heidelberg, August 2011. 8, 20

Möl04. Bodo Möller. A public-key encryption scheme with pseudo-random ciphertexts. In Pierangela
Samarati, Peter Y. A. Ryan, Dieter Gollmann, and Re�k Molva, editors, ESORICS 2004, volume
3193 of LNCS, pages 335–351. Springer, Heidelberg, September 2004. 1

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for la�ices: Simpler, tighter, faster, smaller. In
Pointcheval and Johansson [PJ12], pages 700–718. 2, 14

MRY04. Philip D. MacKenzie, Michael K. Reiter, and Ke Yang. Alternatives to non-malleability: De�ni-
tions, constructions, and applications (extended abstract). In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 171–190. Springer, Heidelberg, February 2004. 5

NY89. Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic applica-
tions. In 21st ACM STOC, pages 33–43. ACM Press, May 1989. 1

PJ12. David Pointcheval and �omas Johansson, editors. EUROCRYPT 2012, volume 7237 of LNCS.
Springer, Heidelberg, April 2012. 16, 17

PQR21. Jiaxin Pan, Chen Qian, and Magnus Ringerud. Signed di�e-hellman key exchange with tight
security. In Kenneth G. Paterson, editor, Topics in Cryptology - CT-RSA 2021 - Cryptographers’
Track at the RSA Conference 2021, Virtual Event, May 17-20, 2021, Proceedings, volume 12704 of
Lecture Notes in Computer Science, pages 201–226. Springer, 2021. 3

17

https://eprint.iacr.org/2019/291
https://eprint.iacr.org/2019/291

PS08. Kenneth G. Paterson and Sriramkrishnan Srinivasan. Security and anonymity of identity-based
encryption with multiple trusted authorities. In Steven D. Galbraith and Kenneth G. Paterson,
editors, PAIRING 2008, volume 5209 of LNCS, pages 354–375. Springer, Heidelberg, September
2008. 2, 3

Reg09. Oded Regev. On la�ices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):34:1–34:40, 2009. 8

RS92. Charles Racko� and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext a�ack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages
433–444. Springer, Heidelberg, August 1992. 1, 5

Sak00. Kazue Sako. An auction protocol which hides bids of losers. In Hideki Imai and Yuliang Zheng,
editors, PKC 2000, volume 1751 of LNCS, pages 422–432. Springer, Heidelberg, January 2000. 1, 2

SS19. Shingo Sato and Junji Shikata. SO-CCA secure PKE in the quantum random oracle model or the
quantum ideal cipher model. In Martin Albrecht, editor, 17th IMA International Conference on
Cryptography and Coding, volume 11929 of LNCS, pages 317–341. Springer, Heidelberg, December
2019. 3

SSW20. Peter Schwabe, Douglas Stebila, and �om Wiggers. Post-quantum TLS without handshake sig-
natures. In Jay Liga�i, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 20,
pages 1461–1480. ACM Press, November 2020. 3, 14

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June
2014. 1, 2, 3

vH04. Luis von Ahn and Nicholas J. Hopper. Public-key steganography. In Christian Cachin and Jan Ca-
menisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 323–341. Springer, Heidelberg,
May 2004. 1, 3, 5

Xag21. Keita Xagawa. NTRU leads to anonymous, robust public-key encryption. Cryptology ePrint
Archive, Report 2021/741, 2021. h�ps://eprint.iacr.org/2021/741. 3

YMT17. Yusuke Yoshida, Kirill Morozov, and Keisuke Tanaka. CCA2 key-privacy for code-based encryp-
tion in the standard model. In Tanja Lange and Tsuyoshi Takagi, editors, Post-�antum Cryp-
tography - 8th International Workshop, PQCrypto 2017, pages 35–50. Springer, Heidelberg, 2017. 2,
3

YZ16. Yu Yu and Jiang Zhang. Cryptography with auxiliary input and trapdoor from constant-noise
LPN. In Ma�hew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 214–243. Springer, Heidelberg, August 2016. 2, 14, 27, 28, 29, 30, 31

YZW+19. Yu Yu, Jiang Zhang, Jian Weng, Chun Guo, and Xiangxue Li. Collision resistant hashing from
sub-exponential learning parity with noise. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages 3–24. Springer, Heidelberg, December 2019.
8

Zha07. Rui Zhang. Tweaking TBE/IBE to PKE transforms with chameleon hash functions. In Jonathan
Katz and Moti Yung, editors, ACNS 07, volume 4521 of LNCS, pages 323–339. Springer, Heidelberg,
June 2007. 4

A Missing Proofs

A.1 Proof of Lemma 3.4

Proof (Proof of Lemma 3.4). We construct AwCom as follows:
1. AwCom is given (1^ , pp, com∗, dec∗) from its challenger, where pp ← Init(1^) and (A∗, com∗, dec∗) ←

S(1^ , pp). It obtains A∗ ← R(pp, com∗, dec∗). It generates (ekTBE, dkTBE) ← GenTBE (1^) and runsA on
input ek := (ekTBE, pp).

2. AwCom generates the challenge on a query < fromA as follows: it computes ct∗0 = (com
∗, 2∗, f∗) with

2∗ ← EncTBE (ekTBE, com∗, (<, dec∗)) and f∗ ← T(A∗, 2∗) and generates d∗0 by randomness sampling
algorithms. It sends ct∗0 and d∗0 to A.

3. AwCom simulates the decryption oracle inGame2 by using its decryption key dkTBE as follows: it obtains
(<′, dec′) ← DecTBE (dkTBE, com, 2), A ← R(pp, com, dec′), and outputs <′ if (<′, dec′) ≠ ⊥, A ≠ ⊥, and
V(A, 2, f) = >. Once AwCom detects NoBind, that is, on the query (com∗, 2, f), it obtains (<′, dec′) ←
DecTBE (dkTBE, com∗, 2) and A ′ ← R(pp, com∗, dec′) with A ′ ∉ {A∗,⊥}, then AwCom outputs dec′ and
halts.

Since the simulation of Game2 is perfect,A correctly works. Once NoBind occurs,AwCom breaks the binding
property. �us, the lemma holds. ut

18

https://eprint.iacr.org/2021/741

A.2 Proof of Lemma 3.5

Proof (Proof of Lemma 3.5). We construct a PPT adversary ATBE as follows:

1. ATBE on input 1^ , it generates pp ← Init(1^) and (A∗, com∗, dec∗) ← S(1^ , pp). It declares com∗ as the
challenge tag.

2. �e challenger generates (ekTBE, dkTBE) ← GenTBE (1^) and ATBE receives ekTBE.
3. ATBE runs A on input ek := (ekTBE, pp).
4. ATBE simulates the challenge ciphertext on input< fromA as follows: It sends (<, dec∗) to its challenger

and receives 2∗W and d∗W , which is a real ciphertext EncTBE (ekTBE, com∗, (<, dec∗)) if W = 0 and a random
ciphertext if W = 1. It generates a tag f∗ ← T(A∗, 2∗W). It also generates randomness d∗wCom and d∗MAC
by using ExplwCom and ExplMAC. It sends ct∗ = (com∗, 2∗W , f∗) and d∗ = (d∗wCom, d

∗
W , d
∗
MAC) to A.

5. ATBE simulates the decryption oracle as follows: Upon receiving ct = (com, 2, f), if com = com∗, then
it returns ⊥. Otherwise, it queries com and 2 to its decryption oracle. If it receives ⊥, then it returns ⊥;
Otherwise, that is, it receives (<′, dec′). It computes A ′ ← R(pp, com, dec′). If A ′ = ⊥, then it returns ⊥.
Otherwise, it computes 3 ← V(A ′, 2, f). If 3 = ⊥, then it returns ⊥; Otherwise, it returns <′

6. Eventually, A outputs its guess 1′. ATBE also outputs 1′ as its guess W′.

If W = 0, then ATBE perfectly simulates Game2. If W = 1, then ATBE perfectly simulates Game3. �us, the
lemma follows. ut

A.3 Proof of Lemma 3.6

Proof (Proof of Lemma 3.6). We construct a PPT adversary A ′TBE as follows:

1. A ′TBE on input 1^ , it generates pp ← Init(1^) and (A∗, com∗, dec∗) ← S(1^ , pp). It declares com∗ as the
challenge tag.

2. �e challenger generates (ekTBE, dkTBE) ← GenTBE (1^) and ATBE receives ekTBE.
3. ATBE runs A on input ek := (ekTBE, pp).
4. ATBE simulates the challenge ciphertext on input< fromA as follows: It sends (<, dec∗) to its challenger

and receives 2∗W and d∗W , which is a real ciphertext EncTBE (ekTBE, com∗, (<, dec∗)) if W = 0 and a random
ciphertext if W = 1. It generates a tag f∗ ← T(A∗, 2∗W). It also generates randomness d∗wCom and d∗MAC
by using ExplwCom and ExplMAC. It sends ct∗ = (com∗, 2∗W , f∗) and d∗ = (d∗wCom, d

∗
W , d
∗
MAC) to A.

5. ATBE simulates the decryption oracle as follows: Upon receiving ct = (com, 2, f), if com = com∗, then
it returns ⊥; in addition, if V(A∗, 2, f) = > and (2, f) ≠ (2∗W , f∗), then it outputs 1 and halts. If com ≠

com∗, it queries com and 2 to its decryption oracle. If it receives ⊥, then it returns ⊥; Otherwise, that
is, it receives (<′, dec′). It computes A ′ ← R(pp, com, dec′). If A ′ = ⊥, then it returns ⊥. Otherwise, it
computes 3 ← V(A ′, 2, f). If 3 = ⊥, then it returns ⊥; Otherwise, it returns <′.

6. Eventually, A outputs its guess 1′ and halts. ATBE outputs 0 and halts.

If W = 0, then ATBE perfectly simulates Game2. If W = 1, then ATBE perfectly simulates Game3. Moreover,
once A makes Forge true, then ATBE outputs 1 and halts. �us, the lemma follows. ut

A.4 Proof of Lemma 3.7

Proof (Proof of Lemma 3.7). We construct a PPT adversary A ′wCom as follows:
1. A ′wCom is given 1^ and (pp, com∗, AW), where A0 is real and A1 is random. It then generates (ekTBE, dkTBE) ←

GenTBE (1^) and runs A on input ek := (ekTBE, pp).
2. A ′wCom simulates the challenge ciphertext on input< fromA as follows: It computes 2∗ ← RndTBE (ekTBE,

0 |< |+ |dec
∗ | ; d∗TBE). It also computes f∗ ← T(AW , 2∗). It also generates randomness d∗wCom and d∗MAC by

using ExplwCom and ExplMAC. It sends ct∗ = (com∗, 2∗, f∗) and d∗ = (d∗wCom, d
∗
W , d
∗
MAC) to A.

3. A ′wCom simulates the decryption oracle as follows: Upon receiving ct = (com, 2, f), if com = com∗, then
it returns ⊥; otherwise, that is, if com ≠ com∗, it decrypts 2 into (<′, dec′) ← DecTBE (dkTBE, com, 2). If
the result is ⊥, then it returns ⊥; Otherwise, it computes A ′ ← R(pp, com, dec′). If A ′ = ⊥, then it returns
⊥. Otherwise, it computes 3 ← V(A ′, 2, f). If 3 = ⊥, then it returns ⊥; Otherwise, it returns <′.

4. Eventually, A outputs its guess 1′ and halts. A ′wCom outputs 1′ as a guess of W and halts.
If W = 0, then A ′wCom perfectly simulates Game3. If W = 1, then A ′wCom perfectly simulates Game4. �us,
the lemma follows. ut

19

A.5 Proof of Lemma 3.8

Proof (Proof of Lemma 3.8). We construct a PPT adversary A ′′wCom as follows:
1. A ′′wCom is given 1^ and (pp, com∗, AW), where A0 is real and A1 is random. It then generates (ekTBE, dkTBE) ←

GenTBE (1^) and runs A on input ek := (ekTBE, pp).
2. A ′′wCom simulates the challenge ciphertext on input < as follows: It �rst computes 2∗ ← RndTBE (ekTBE,

0 |< |+ |dec
∗ | ; d∗TBE). It also computes f∗ ← T(AW , 2∗). It also generates randomness d∗wCom and d∗MAC by

using ExplwCom and ExplMAC. It sends ct∗ = (com∗, 2∗, f∗) and d∗ = (d∗wCom, d
∗
TBE, d

∗
MAC) to A.

3. A ′′wCom simulates the decryption oracle as follows: Upon receiving ct = (com, 2, f), if com = com∗, then
it returns ⊥; in addition, if V(AW , 2, f) = >, then it outputs 1 and halts. If com ≠ com∗, it decrypts 2
into (<′, dec′) ← DecTBE (dkTBE, com, 2). If the result is ⊥, then it returns ⊥; Otherwise, it computes
A ′ ← R(pp, com, dec′). If A ′ = ⊥, then it returns ⊥. Otherwise, it computes 3 ← V(A ′, 2, f). If 3 = ⊥,
then it returns ⊥; Otherwise, it returns <′.

4. Eventually, A outputs its guess 1′ and halts. A ′′wCom outputs 0 and halts.
If W = 0, thenA ′′wCom perfectly simulatesGame3. If W = 1, thenA ′′wCom perfectly simulatesGame4. Moreover,
once A makes Forge true, then A ′′wCom outputs 1 and halts. �us, the lemma follows. ut

A.6 Proof of Lemma 3.9

Proof (Proof of Lemma 3.9). We construct a PPT adversary AMAC as follows:
1. AMAC is given 1^ . It chooses a random index 8∗ ← {1, . . . , &}. It then generates pp ← Init(1^) and
(A∗, com∗, dec∗) ← S(pp). It then generates (ekTBE, dkTBE) ← GenTBE (1^) and runs A on input ek :=
(ekTBE, pp).

2. AMAC simulates the decryption oracle on a query ct = (com, 2, f) as follows: If it receives the 8∗-th
decryption query, then it outputs (2, f) as a forgery and halts. Otherwise, if com = com∗, then it returns
⊥. If com ≠ com∗, it decrypts 2 into (<′, dec′) ← DecTBE (dkTBE, com, 2). If the result is⊥, then it returns
⊥; Otherwise, it computes A ′ ← R(pp, com, dec′). If A ′ = ⊥, then it returns ⊥. Otherwise, it computes
3 ← V(A ′, 2, f). If 3 = ⊥, then it returns ⊥; Otherwise, it returns <′.

3. AMAC simulates the challenge ciphertext on input< fromA as follows: It computes 2∗ ← RndTBE (ekTBE,
0 |< |+ |dec

∗ | ; d∗TBE). It then queries 2∗ to its tagging oracle and receives f∗ ← T(A+, 2∗), where A+ ←
{0, 1}^ . It also generates randomness d∗wCom and d∗MAC by using ExplwCom and ExplMAC. It sends ct∗ =
(com∗, 2∗, f∗) and d∗ = (d∗wCom, d

∗
TBE, d

∗
MAC) to A.

AMAC perfectly simulates Game4 until Forge4 occurs. Since 8∗ is chosen uniformly at random, the success
probability that AMAC forges is at least Pr[Forge4]/&. �us, the lemma follows. ut

B Learning Parity with Noise

We review the LPN assumption [BFKL94] and its variations. In what follows, Ber? denotes the Bernoulli
distribution with parameter ? ∈ (0, 1/2), that is, Pr[G = 1 | G ← Ber?] = ? and Pr[G = 0 | G ← Ber?] = 1−?.

LPN: �e LPN[=, <, ?] assumption states that for any e�cient adversaryA its advantageAdvLPN[=,<,?],A (^)
is negligible in ^, where

AdvLPN[=,<,?],A (^) :=
����Pr[G← F<×=2 , B← F=2 , e ← Ber<? : A(G, Gs + e) = 1]

− Pr[G← F<×=2 , b ← F<2 : A(G, b) = 1]

���� .
Knapsack LPN: �e knapsack LPN distribution is considered in Micciancio and Mol [MM11] as the dual of
the LPN distribution. �e KLPN[=, <, ?]< assumption states that for any e�cient adversaryA its advantage
AdvKLPN[=,<,?]< ,A (^) is negligible in ^, where

AdvKLPN[=,<,?]< ,A (^) :=
����� Pr[G← F<×(<−=)2 , K ← Ber<×<? : A(G, KG) = 1]
− Pr[G← F<×(<−=)2 , H← F<×(<−=)2 : A(G, H) = 1]

����� .
For any algorithm A, there exists an algorithm A ′ that runs in roughly the same time as A and

AdvLPN[=,<,?]< ,A′ (^) ≥
1
<
AdvKLPN[=,<,?]< ,A′ (^).

See [MM11].

20

ExptrealGentd ,A (^)

(C, g0, g1, g′, st) ← A(1^)

(Z0,Z1, (G, H0, H1)) ← Gentd (1^ , g0, g1)
z ← Ber<? ;Z ← Ber<×<?

3 ← A(ZC , (G, H0, H1), z,Zz, st)
return 3

ExptcorrGentd ,A (^)

(C, g0, g1, g′, st) ← A(1^)
g′C := gC ; g′1−C := g

′

(Z0,Z1, (G, H0, H1)) ← Gentd (1^ , g′0, g
′
1)

z ← Ber<? ;Z := Z1−C

3 ← A(ZC , (G, H0, H1), z,Zz, st)
return 3

Fig. 6. Games for Trapdoor Generation Algorithm

Extended Knapsack LPN: �e extended knapsack LPN assumption states that for any e�cient adversary
A its advantage AdvEKLPN[=,<,?]< ,A (^) is negligible in ^, where

AdvEKLPN[=,<,?]< ,A (^) := |?0 − ?1 | ,

?0 := Pr[G← F<×(<−=)2 , K ← Ber<×<? , z ← Ber<? : A(G, KG, z, Kz) = 1],

?1 := Pr[G← F<×(<−=)2 , H← F<×(<−=)2 , K ← Ber<×<? , z ← Ber<? : A(G, H, z, Kz) = 1] .

For any algorithm A, there exists an algorithm A ′ that runs in roughly the same time as A and

AdvLPN[=,<,?]< ,A′ (^) ≥
1
2<AdvEKLPN[=,<,?]< ,A′ (^).

See [AP12, KMP14].

1-Knapsack LPN: We additionally introduce the 1-knapsack LPN assumption, in which we replace the last
column of KG of the KLPN distribution with a random one. �e 1-knapsack LPN assumption states that for
any e�cient adversary A its advantage Adv1KLPN[=,<,?]< ,A (^) is negligible in ^, where

Adv1KLPN[=,<,?]< ,A (^) := |?0 − ?1 |

?0 := Pr[[G, c] ← F<×(<−=)2 , K ← Ber<×<? , u ← F<2 : A(G, c, KG, u) = 1]

?1 := Pr[[G, c] ← F<×(<−=)2 , K ← Ber<×<? : A(G, c, KG, Kc) = 1] .
We consider the following intermediate probability:

?D := Pr[[G, c] ← F<×(<−=)2 , K ← Ber<×<? ,[← F<×(=−1)2 , u ← F<2 : A(G, c,[, u) = 1]

We have two adversaries A1 and A2 such that

Adv1KLPN[=,<,?]< ,A (^) = |?0 − ?1 | ≤ |?0 − ?D | + |?D − ?1 |
≤ AdvKLPN[=−1,<,?]< ,A1 (^) + AdvKLPN[=,<,?]< ,A2 (^).

It is easy to see that

Adv1KLPN[=,<,?]1 ,A (^) =
�����Pr[[G, c] ← F<×(<−=)2 , e ← Ber1×<? , D ← F12 : A(G, c, eG, u) = 1]
− Pr[[G, c] ← F<×(<−=)2 , e ← Ber1×<? : A(G, c, eG, ec) = 1]

�����
is related to Adv1KLPN[=,<,?]< ,A (^) by the hybrid argument.

C �e Kiltz-Masny-Pieprzak TBE

Before introduce the KMP TBE itself, we �rst review the trapdoor generation algorithm in [KMP14, Section 3].
We have �eld injective homomorphism from GF(2=) into F=×=2 . For �nite �eld elements g ∈ GF(2=), we use
its companion matrix Ng ∈ F=×=2 . Let M ∈ F<×=2 be a generator matrix for an e�ciently decodable linear
code. �e trapdoor generation algorithm is de�ned as follows:
– Gentd (1^ , g0, g1) → (Z0,Z1, (G, H0, H1)): Sample Z0,Z1 ← Ber<×<? and G ← F<×=2 . Compute H0 :=

Z0G − MNg0 and H1 := Z1G − MNg1 . Output (Z0,Z1, (G, H0, H1)).
Kiltz et al. [KMP14] showed the following lemma. We will use this lemma in the security proof.
Lemma C.1 ([KMP14, Lemma 4]). For every adversary A, there exists another adversary ALPN such that���Pr[ExptrealGentd ,A (^) = 1] − Pr[ExptcorrGentd ,A (^) = 1]

��� ≤ 3<AdvLPN[<−=,<,?],ALPN (^),

where ExptrealGentd ,A (^) and Expt
corr
Gentd ,A (^) are de�ned in Figure 6.

21

C.1 �e KMP TBE

Let us review the parameter se�ing:
– A dimension = = K(^2) and < ≥ 2=.
– a constant 2 ∈ (0, 1/4): We set ? =

√
2/< and V = 2

√
2<, and a binary linear error correcting code

M : F=2 → F
<
2 , which corrects up to U< errors for some U ∈ (42, 1).

– An e�cient error correcting code with generator matrix M2 : M → Fℓ2 , where the parameter ℓ ≥ < is
adjusted as we can correct up to 2ℓ

√
2/
√
< = 2ℓ? errors.

We consider a tag spaceT = GF(2=)\{0}. Now, we review the KMP TBE scheme (GenKMP, EncKMP,DecKMP):
– GenKMP (1^) → (ek, dk): Generate (Z0,Z1, (G, H0, H1)) ← Gentd (1^ , 0, 0) and choose I ← Fℓ×=2 .

Output

dk = (0,Z0) ∈ GF(2=) × F<×<2 ,

ek = (G, H0, H1,I) ∈ (F<×=2)3 × Fℓ×=2 .

– EncKMP (ek, g, `) → ct = (c, c0, c1, c2): Sample e1 ← Ber<? , e2 ← Berℓ? , Z ′0,Z
′
1 ← Ber<×<? , and

s← F=2 . Compute

c := Gs + e1
c0 := (MNg + H0)s + Z ′0e1
c1 := (MNg + H1)s + Z ′1e1
c2 := Is + e2 + M2 (`)

and output ct = (c, c0, c1, c2) ∈ F<2 × F
<
2 × F

<
2 × F

ℓ
2 .

– DecKMP (dk, g, ct) → `/⊥: Parse dk = (g1 ,Z1) for 1 = 0 or 1 and compute

2̃1 := (Z1 O) ·
(
−c
c1

)
(= MNg−g1 s + (Z ′1 − Z1)e1).

Reconstruct Ng−g1 s with error (Z ′
1
−Z1)e1 by using the decoding algorithm of M. Compute s = N−1g−g1 ·

Ng−g1 s. If

HW(c − Gs) ≤ V ∧ HW(c0 − (MNg + H0)s) ≤ U</2 ∧ HW(c1 − (MNg + H1)s) ≤ U</2

hold, then compute c2 −Is = M2 (`) + e2 and reconstruct ` by using the decoding algorithm of M2 and
output it. Otherwise, output ⊥.

�is scheme is statistically correct. Kiltz et al. showed the next lemma, which states that we cannot distinguish
the decryption oracles implemented with Z0 or Z1.

Lemma C.2 ([KMP14, Lemma 5]). s. Let (Z0,Z1, (G, H0, H1)) ← Gentd (1^ , g0, g1), dk0 = (g0,Z0), dk1 =

(g1,Z1), and ek := (G, H0, H1,I) with I ← Fℓ×=2 . With overwhelming probability over the choice of the
encryption and decryption keys, DecKMP with dk0 and dk1 and DecKMP1 have the same output distribution;
that is, we have

Pr
ek,dk0 ,dk1

[∀g0, g1, g ∉ {g0, g1}, ct, [DecKMP (dk0, g, ct) = DecKMP (dk1, g, ct)]] ≥ 1 − 2−K (<) .

Kiltz et al. showed that their TBE is IND-st-wCCA-secure assuming LPN[< − =, <, ?] and LPN[=, < + ℓ, ?]
is hard [KMP14, �eorem 2]. In the �nal game of their proof, the key is generated as (Z∗0,Z

∗
1, (G, H0, H1)) ←

Gen(1=, g∗, g∗), the decryption key is (g∗,Z∗1), and the challenge ciphertext is generated as c∗ ← F<2 , c∗0 ←
Z∗0c
∗, c∗1 ← Z∗1c

∗ and c∗2 ← F
ℓ
2 . We notice that c∗0 and c∗1 are still correlated to H0 = Z∗0G and H1 = Z∗1G.

�us, we should continue to modify the security game in order to cut o� the correlation between keys and
ciphertexts. In order to do so, we have introduced 1KLPN assumption, which hold if KLPN holds.

�eorem C.1. TBEKMP is OS-st-wCCA-secure if the LPN/KLPN/EKLPN/1KLPN assumptions hold.

We mainly follow the de�nitions of games in the original paper. We summarize games in Table 2.

22

Table 2. Summary of Games for the Proof of �eorem C.1:

Game Gentd dk c∗ c∗0 c∗1 c∗2
Game0 (0, 0) (0,Z0) Gs∗ + e∗ (MNg∗ + H0)s∗ + Z∗0e

∗ (MNg∗ + H1)s∗ + Z∗1e
∗ Is∗ + e∗2M2 (`)

Game1 (0, g∗) (0,Z0) Gs∗ + e∗ (MNg∗ + H0)s∗ + Z∗0e
∗ Z1c∗ Is∗ + e∗2M2 (`)

Game2 (0, g∗) (g∗,Z1) Gs∗ + e∗ (MNg∗ + H0)s∗ + Z∗0e
∗ Z1c∗ Is∗ + e∗2M2 (`)

Game3 (g∗, g∗) (g∗,Z1) Gs∗ + e∗ Z0c∗ Z1c∗ Is∗ + e∗2M2 (`)
Game4 (g∗, g∗) (g∗,Z1) * (F<2) Z0c∗ Z1c∗ * (Fℓ2)
Game5 (g∗, g∗) (g∗,Z1) * (F<2) * (F<2) Z1c∗ * (Fℓ2)
Game6 (0, g∗) (g∗,Z1) * (F<2) * (F<2) Z1c∗ * (Fℓ2)
Game7 (0, g∗) (0,Z0) * (F<2) * (F<2) Z1c∗ * (Fℓ2)
Game8 (0, g∗) (0,Z0) * (F<2) * (F<2) * (F<2) * (Fℓ2)
Game9 (0, 0) (0,Z0) * (F<2) * (F<2) * (F<2) * (Fℓ2)

Game0: �is is the original game with 1 = 0 expanded as follows:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, 0, 0)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (0,Z0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– s∗ ← F=2 , e∗ ← Ber<? , e∗2 ← Berℓ? , Z∗0 ← Ber<×<? , Z∗1 ← Ber<×<?

– c∗ := Gs∗ + e∗
– c∗0 := (MNg∗ + H0)s∗ + Z∗0e

∗

– c∗1 := (MNg∗ + H1)s∗ + Z∗1e
∗

– c∗2 := Is∗ + e∗2 + M2 (`)
and returns ct∗ = (c∗, c∗0, c

∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

We have
Pr[(0] = Pr[Exptpr-st-wcca,0TBEKMP ,A (^) = 1] .

Game1: We next change how to generate Z∗1 and c∗1:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, 0, g∗)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (0,Z0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– s∗ ← F=2 , e∗ ← Ber<? , e∗2 ← Berℓ? , Z∗0 ← Ber<×<?

– c∗ := Gs∗ + e∗
– c∗0 := (MNg∗ + H0)s∗ + Z∗0e

∗

– c∗1 := Z1c∗ (= (MNg∗ + H1)s∗ + Z1e∗)
– c∗2 := Is∗ + e∗2 + M2 (`)

and returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma C.3 ([KMP14, Lemma 6]).�ere exists an adversary A01 satisfying

|Pr[(0] − Pr[(1] | ≤
���Pr[ExptrealGentd ,A01

(^) = 1] − Pr[ExptcorrGentd ,A01
(^) = 1]

��� .
�e proof of lemma invokes Lemma C.1.

Game2: We change how to generate Z∗1 and c∗1:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, 0, g∗)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (g∗,Z1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– s∗ ← F=2 , e∗ ← Ber<? , e∗2 ← Berℓ? , Z∗0 ← Ber<×<?

23

– c∗ := Gs∗ + e∗
– c∗0 := (MNg∗ + H0)s∗ + Z∗0e

∗

– c∗1 := Z1c∗

– c∗2 := Is∗ + e∗2 + M2 (`)
and returns ct∗ = (c∗, c∗0, c

∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma C.4 ([KMP14, Lemma 7]).
|Pr[(1] − Pr[(2] | ≤ negl(^).

�is lemma follows from Lemma C.2.

Game3: We change how to generate Z∗0 and c∗0:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, g∗, g∗)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (g∗,Z1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– s∗ ← F=2 , e∗ ← Ber<? , e∗2 ← Berℓ?
– c∗ := Gs∗ + e∗
– c∗0 := Z0c∗ (= (MNg∗ + H0)s∗ + Z0e∗)
– c∗1 := Z1c∗

– c∗2 := Is∗ + e∗2 + M2 (`)
and returns ct∗ = (c∗, c∗0, c

∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma C.5 ([KMP14, Lemma 8]).�ere exists an adversary A23 satisfying

|Pr[(2] − Pr[(3] | ≤
���Pr[ExptrealGentd ,A23

(^) = 1] − Pr[ExptcorrGentd ,A23
(^) = 1]

��� .
�is lemma invokes Lemma C.1.

Game4: We change how to generate c∗ and c∗2:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, g∗, g∗)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (g∗,Z1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– c∗ ← F<2
– c∗0 := Z0c∗

– c∗1 := Z1c∗

– c∗2 ← F
ℓ
2

and returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma C.6 ([KMP14, Lemma 9]).We have an adversary A34 satisfying

|Pr[(3] − Pr[(4] | ≤ AdvLPN[=,<+ℓ, ?],A34 (^).

In the original IND-security proof, this is the �nal game. We continue the modi�cation of games, since we
want to modify c∗0 and c∗1 further.

24

Game5: We modify the game to make c∗0 random.
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, g∗, g∗)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (g∗,Z1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– c∗ ← F<2
– c∗0 ← F

<
2

– c∗1 := Z1c∗

– c∗2 ← F
ℓ
2

and returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

In this game, the adversary is given

G, H0 = Z0G − MNg∗ , c
∗, and c∗0 = Z0c

∗ or random.

We use the 1KLPN assumption here.
Lemma C.7. �ere exists a PPT adversary A45 satisfying

|Pr[(4] − Pr[(5] | ≤ Adv1KLPN[=−1,<,?]< ,A45 (^).

Proof. We construct A45 as follows:
1. A45 is given (G, c∗,Z0G, x), where x is Z0c∗ or random u.
2. A45 runs A on input 1^ and receives g∗.
3. A45 generates keys as follows: Z1 ← Ber<×<? , H0 := Z0G−MNg∗ , H1 := Z1G−MNg∗ , and I ← Fℓ×=2 .

It sets dk = (g∗,Z1) and ek = (G, H0, H1,I). It runs A on input ek.
4. A45 simulates the decryption oracle using dk.
5. A45 generates the challenge on a query ` from A as follows: It generates c∗0 := x and c∗1 := Z1c∗. It

chooses c∗2 ← F
ℓ
2 and returns ct∗ := (c∗, c∗0, c

∗
1, c
∗
2).

6. A45 outputs 1′ if A �nally outputs 1′.
If x = Z0c∗, then A45 perfectly simulates Game4. On the other hand, if x is uniformly at random, then A45
perfectly simulates Game5. �us, the lemma holds. ut

Game6: We change how to generate keys:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, 0, g∗)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (g∗,Z1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– c∗ ← F<2
– c∗0 ← F

<
2

– c∗1 := Z1c∗

– c∗2 ← F
ℓ
2

and returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma C.8. �ere exists an adversary A56 satisfying

|Pr[(5] − Pr[(6] | ≤
���Pr[ExptrealGentd ,A56

(^) = 1] − Pr[ExptcorrGentd ,A56
(^) = 1]

��� .
Proof. We construct A56 that distinguishes real and corr games as follows:

1. Given 1^ , A56 runs A on input 1^ and receives g∗.
2. It sends (1, g∗, g∗, 0) to its challenger and receives (Z1, G, H0, H1, z,Zz). It chooses I ← Fℓ×=2 . It sets

ek = (G, H0, H1,I) and dk = (g∗,Z1, ek). It runs A on input ek.
3. A56 simulates the decryption oracle using dk.
4. A56 generates the challenge on a query ` from A as follows: It generates c∗ ← F<2 , c∗0 ← F

<
2 , and

c∗1 := Z1c∗. It also chooses c∗2 ← F
ℓ
2 and returns ct∗ := (c∗, c∗0, c

∗
1, c
∗
2).

5. A56 outputs 1′ if A �nally outputs 1′.
Notice that if the game is real and corr, then the keys are generated by Gentd (1^ , g∗, g∗) and Gentd (1^ , 0, g∗),
respectively. �us, if the game is real and the keys are generated by Gentd (1^ , g∗, g∗), then A56 perfectly
simulates Game5. If the game is corr and keys are generated by Gentd (1^ , 0, g∗), thenA56 perfectly simulates
Game6. �is completes the proof. ut

25

Game7: We change the decryption key.
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, 0, g∗)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (0,Z0, dk). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– c∗ ← F<2
– c∗0 ← F

<
2

– c∗1 := Z1c∗

– c∗2 ← F
ℓ
2

and returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Following Lemma C.4, we can switch decryption key:

Lemma C.9. We have
|Pr[(6] − Pr[(7] | ≤ negl(^).

Game8: We change how to generate c∗2:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, 0, g∗)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (0,Z0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– c∗ ← F<2
– c∗0 ← F

<
2

– c∗1 ← F
<
2

– c∗2 ← F
ℓ
2

and returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma C.10. �ere exists a PPT adversary A78 satisfying

|Pr[(7] − Pr[(8] | ≤ Adv1KLPN[=−1,<,?]< ,A78 (^).

Proof. We construct A78 as follows:
1. A78 is given (G, c∗,Z1G, x), where x is Z1c∗ or random u.
2. A78 runs A on input 1^ and receives g∗.
3. A78 generates keys as follows: Z0 ← Ber<×<? , H0 := Z0G−MNg∗ , H1 := Z1G−MNg∗ , and I ← Fℓ×=2 .

It sets ek = (G, H0, H1,I) and dk = (0,Z0, ek). It runs A on input ek.
4. A78 simulates the decryption oracle using dk.
5. A78 generates the challenge on a query ` from A as follows: It generates c∗0 ← F

<
2 and c∗1 := x. It also

chooses c∗2 ← F
ℓ
2 and returns ct∗ := (c∗, c∗0, c

∗
1, c
∗
2).

6. A78 outputs 1′ if A �nally outputs 1′.
If x = Z1c∗, then A78 perfectly simulates Game7. On the other hand, if x is uniformly at random, then A78
perfectly simulates Game8. �us, the lemma holds. ut

Game9: We modify how to generate keys. �is is the original game with 1 = 1:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Z0,Z1, (G, H0, H1)) ← Gentd (1=, 0, 0)

and I ← Fℓ×=2 . It sets ek = (G, H0, H1,I) and dk = (0,Z0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It computes
– c∗ ← F<2
– c∗0 ← F

<
2

– c∗1 ← F
<
2

– c∗2 ← F
ℓ
2

and returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle

by using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

26

Lemma C.11. �ere exists an adversary A89 satisfying

|Pr[(8] − Pr[(9] | ≤
���Pr[ExptrealGentd ,A89

(^) = 1] − Pr[ExptcorrGentd ,A89
(^) = 1]

��� .
Proof. We construct A89 that distinguishes real and corr games as follows:

1. Given 1^ , A89 runs A on input 1^ and receives g∗.
2. It sends (0, 0, g∗, 0) to its challenger and receives (Z0, G, H0, H1, z,Zz). It chooses I ← Fℓ×=2 . It sets

dk = (0,Z0) and ek = (G, H0, H1,I). It runs A on input ek.
3. A89 simulates the decryption oracle using dk.
4. A89 generates the challenge on a query ` fromA as follows: It generates c∗ ← F<2 , c∗0 ← F

<
2 , c∗1 ← F

<
2 .

It chooses c∗2 ← F
ℓ
2 and returns ct∗ := (c∗, c∗0, c

∗
1, c
∗
2).

5. A89 outputs 1′ if A �nally outputs 1′.
Notice that if the game is real and corr, then the keys are generated by Gentd (1^ , 0, g∗) and Gentd (1^ , 0, 0),
respectively. �us, if the game is real and the keys are generated by Gentd (1^ , 0, g∗), then A89 perfectly
simulates Game8. If the game is corr and keys are generated by Gentd (1^ , 0, 0), thenA89 perfectly simulates
Game9. �is completes the proof. ut

We have
Pr[(9] = Pr[Exptpr-st-wcca,1TBEKMP ,A (^) = 1] .

�is completes the proof. ut

D �e Yu-Zhang TBE

Yu and Zhang [YZ16] also proposed tag-based encryption whose IND-st-wCCA security is based on the sub-
exponential hardness of constant-rate LPN. We here show its PR-st-wCCA security without changing the
assumptions.

Preliminaries: D=1×=
_

denotes a matrix distribution induced by multiplying two random matrices chosen
from * (F=1×_2) and * (F_×=2). B̃er=`1 is a distribution Ber=`1 conditioned on (1 −

√
6/3)`1= ≤ HW(Ber=`1) ≤

2`1=. �is is e�ciently samplable, because Pr[(1 −
√
6/3)`1= ≤ HW(4) ≤ 2`1= | 4 ← B̃er

=
`1] is noticeable.

Yu and Zhang showed that for `1 = S(lg(=)/=), B̃er=`1 has the min-entropy S(lg2 (=)). B̃er@×=`1 denotes a
matrix distribution whose each row is chosen from B̃er

=
`1 .

Yu and Zhang showed the following lemma, which states that if constant-rate LPN is sub-exponentially hard,
then ‘leaky’ LPN is computationally hard.

Lemma D.1 ([YZ16, Corollary .5.1]). Let = be a security parameter and let ` ∈ (0, 1/2) be any constant. Suppose
that LPN`,= problem is 2l (=1/2) -hard (for any super-constant hidden by l(·)). �en, for every `1 = S(lg =/=)
and _ = K(lg2 =) such that 2_ ≤ �∞ (B̃er

=
`1), and every @ = poly(=), we have

((Y0e, K0s), e, s, G, Y0G + K0) ≈2 ((Y0e, K0s), e, s, G, H) ,

where the probability is take over Y0 ← B̃er
@×=
`1 , K0 ← Ber@×=` , G ← D=×=

_
, H ← *@×=, s ← B̃er

=
`1 , e ←

Ber=` and internal coins of the distinguisher.

As the 1KLPN assumption in the KMP-TBE case, we need 1-leaky LPN version of the above lemma.

Lemma D.2. Let = be a security parameter and let ` ∈ (0, 1/2) be any constant. Suppose that LPN`,= problem

is 2l (=1/2) -hard (for any super-constant hidden by l(·).). �en, for every `1 = S(lg =/=) and _ = K(lg2 =) such
that 2_ ≤ �∞ (B̃er

=
`1), and every @ = poly(=), we have

(Y0c, c, G, Y0G + K0) ≈2 (r, c, G, Y0G + K0) ,

where the probability is take over Y0 ← B̃er
@×=
`1 , K0 ← Ber@×=` , G ← D=×=

_
, c ← F=2 , r ← F

@
2 and internal

coins of the distinguisher.

Proof. We have

(Y0c, c, G, Y0G + K0) ≈2 (Y0c, c, G, H)
≈2 (r, c, G, H)
≈2 (r, c, G, Y0G + K0) .

27

�e �rst transition follows from the proof of Lemma D.1 (Please see the original proof.) �e third transition is
justi�ed by ignoring leaky part ((Y0e, K0s), e, s) in Lemma D.1. In order to show the second one, we consider
(Y0c, c) and (r, c). Recall that each row of Y0 is chosen from B̃er

=
`1 whose minimum entropy is at least 2_.

Notice that H := {ℎc : F=2 → F2 | c ∈ F2, ℎc (x) = x · c} is universal. �us, the le�over hash lemma shows
that the statistical distance between (ℎc (s), c) and (D, c) is 2−S (_) , which is negligible in ^. Since the le�over
hash lemma close the composition, the statistical distance between (Y0c, c) and (r, c) is still negligible in ^.
�is completes the proof. ut

D.1 �e YZ TBE

Let us review the parameter se�ing:
– A dimension = and < ≥ 2=.
– A constant ` ∈ (0, 1/10].
– A constant U > 0.
– Let `1 = U lg(=)/=, V = 1/2 = 1/=3U , and W = 1/2 − 1/(2=3U/2) and choose _ = K(lg2 =) such that

2_ ≤ �∞ (B̃er
=
`1).

– Two e�cient error-correcting codes with generator matrices M ∈ F@×=2 and M2 ∈ Fℓ×=2 , where the
parameters @ = $ (=6U+1) and ℓ = $ (=) are adjusted as we can correct up to V@ and 2`ℓ errors, respec-
tively.

– a tag space T = GF(2=) \ {0}.
Before giving the YZ TBE scheme, we review its trapdoor generation algorithm and discuss their property,
which is similar to that of the KMP TBE scheme. We have �eld injective homomorphism from GF(2=) into
F=×=2 . For �nite �eld elements g ∈ GF(2=), we use its companion matrix Ng ∈ F=×=2 . Let M ∈ F<×=2 be a
generator matrix for an e�ciently decodable linear code. �e trapdoor generation algorithm is de�ned as
follows:
– Gentd ′(1^ , g0, g1) → (Y0, K0, Y1, K1, (G, H0, H1,I)): G ← D=×=_

, Y0, Y1 ← B̃er
@×=
`1 , and K0, K1 ←

Ber@×=` . Compute H0 = Y0G + K0 − MNg0 ∈ F
@×=
2 and H1 = Y1G + K1 − MNg1 ∈ F

@×=
2 . Output

(Y0, K0, Y1, K1, (G, H0, H1))

ExptrealGentd′,A
(^)

(C, g0, g1, g′, st) ← A(1^)

(Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd
′(1^ , g0, g1)

e ← Ber=? ; Y← B̃er
@×=
`1

s← B̃er
=
`1 ; K ← Ber@×=?

3 ← A(YC , KC , (G, H0, H1), e, Ye, s, Ks, st)
return 3

ExptcorrGentd′,A
(^)

(C, g0, g1, g′, st) ← A(1^)
g′C := gC ; g′1−C := g

′

(Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd
′(1^ , g′0, g

′
1)

e ← Ber=? ; Y← Y1−C

s← B̃er
=
`1 ; K ← K1−C

3 ← A(YC , KC , (G, H0, H1), e, Ye, s, Ks, st)
return 3

Fig. 7. Games for Trapdoor Generation Algorithm

Yu and Zhang [YZ16] showed the following lemma which is similar to Lemma C.1 by invoking Lemma D.1
twice. We will use this lemma in the security proof.

Lemma D.3 (Adapted, [YZ16, Lemmas 5.3, 5.4, and 5.5]). For every adversary A, there exists two adversaries
A0 and A1 such that���Pr[ExptrealGentd′,A (^) = 1] − Pr[ExptcorrGentd′,A (^) = 1]

��� ≤ AdvleakyLPN,A0 (^) + AdvleakyLPN,A1 (^),

where ExptrealGentd′,A
(^) and ExptcorrGentd′,A

(^) are de�ned in Figure 7.

�e YZ TBE scheme (GenYZ, EncYZ,DecYZ) is de�ned as follows:
– GenYZ (1^) → (ek, dk): (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , 0, 0). (We note that H8 = Y8G+K8 ∈
F
@×=
2 .) I ← Dℓ×=

_
. Output

ek = (G, H0, H1,I) ∈ (F<×=2)3 × Fℓ×=2 ,

dk = (0, Y0, ek) ∈ GF(2=) × F@×=2 × {0, 1}∗.

28

Table 3. Summary of Games for the Proof of �eorem D.1:

Game Gentd dk c∗ c∗0 c∗1 c∗2
Game0 (0, 0) (0, Y0) Gs∗ + e∗ (MNg∗ + H0)s∗ + Y∗0e

∗
1 − K∗0s

∗ (MNg∗ + H1)s∗ + Y∗1e
∗
1 − K∗1s

∗ Is∗ + e∗2M2 (`)
Game1 (0, g∗) (0, Y0) Gs∗ + e∗ (MNg∗ + H0)s∗ + Y∗0e

∗
1 − K∗0s

∗ Y1c∗ Is∗ + e∗2M2 (`)
Game2 (0, g∗) (g∗, Y1) Gs∗ + e∗ (MNg∗ + H0)s∗ + Y∗0e

∗
1 − K∗0s

∗ Y1c∗ Is∗ + e∗2M2 (`)
Game3 (g∗, g∗) (g∗, Y1) Gs∗ + e∗ Y0c∗ Y1c∗ Is∗ + e∗2M2 (`)
Game4 (g∗, g∗) (g∗, Y1) * (F=2) Y0c∗ Y1c∗ * (Fℓ2)
Game5 (g∗, g∗) (g∗, Y1) * (F=2) * (F@2) Y1c∗ * (Fℓ2)
Game6 (0, g∗) (g∗, Y1) * (F=2) * (F@2) Y1c∗ * (Fℓ2)
Game7 (0, g∗) (0, Y0) * (F=2) * (F@2) Y1c∗ * (Fℓ2)
Game8 (0, g∗) (0, Y0) * (F=2) * (F@2) * (F@2) * (Fℓ2)
Game9 (0, 0) (0, Y0) * (F=2) * (F@2) * (F@2) * (Fℓ2)

– EncYZ (ek, g, `) → ct = (c, c0, c1, c2): Generate s ← B̃er
=
`1 , e1 ← Ber=` , e2 ← Berℓ` , Y′0, Y

′
1 ← B̃er

@×=
`1 ,

and K ′0, K
′
1 ← Ber@×=` . Compute

c := Gs + e1
c0 := (MNg + H0)s + Y′0e1 − K ′0s

c1 := (MNg + H1)s + Y′1e1 − K ′1s

c2 := Is + e2 + M2 (`)

and output ct = (c, c0, c1, c2) ∈ F<2 × F
<
2 × F

<
2 × F

ℓ
2 .

– DecYZ (dk, g, ct) → `/⊥: Parse dk = (g1 , Y1 , ek) and compute

2̃1 := c1 − Y1c,

which is MNg−g1 s + (Y′1 − Y1)e1 + (K1 − K ′
1
)s if the ciphertext is correctly computed. Reconstruct

b = Ng−g1 s from 2̃1 with error (Y′
1
− Y1)e1 + (K1 − K1)s by using the decoding algorithm of M .

Compute s = N−1g−g1 · b. If

HW(c − Gs) ≤ 2`= ∧ HW(c0 − (MNg + H0)s) ≤ W@ ∧ HW(c1 − (MNg + H1)s) ≤ W@

hold, then compute c2 −Is = M2 (`) + e2 and reconstruct ` by using the decoding algorithm of M2 and
output it. Otherwise, output ⊥.

As Kiltz et al. showed the key-switching lemma, Yu and Zhang also showed their key-switching lemma as
follows:
Lemma D.4 ([YZ16, Section 5.2.1]). LetDecYZ0 beDecYZ that uses c0 to extract s and let andDecYZ1 beDecYZ
that uses c1 to extract s. �en, with overwhelming probability over the choice of the encryption and decryption
keys, DecYZ0 and DecYZ1 have the same output distribution.

Now, we are ready to show that TBEYZ is OS-st-wCCA-secure as follows:
�eorem D.1. TBEYZ is OS-st-wCCA-secure if LPN`,= is 2l (2

1/2) -hard.

We mainly follow the de�nitions of games in the original paper but we adopt the notions in KMP. We sum-
marize the games in Table 3

Game0: �is is the original game with 1 = 0 expanded as follows:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , 0, 0)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (0, Y0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– s∗ ← B̃er

=
`1 , e∗1 ← Ber=` , e∗2 ← Berℓ` , Y∗0 ← B̃er

@×=
`1 , K∗0 ← Ber@×=` , Y∗1 ← B̃er

@×=
`1 , K∗1 ← Ber@×=`

– c∗ := Gs∗ + e∗1
– c∗0 := (MNg∗ + H0)s∗ + Y∗0e

∗
1 − K∗0s

∗

– c∗1 := (MNg∗ + H1)s∗ + Y∗1e
∗
1 − K∗1s

∗

– c∗2 := Is∗ + e∗2 + M2 (`).
It returns ct∗ = (c∗, c∗0, c

∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

We have
Pr[(0] = Pr[Exptpr-st-wcca,0TBEYZ ,A (^) = 1] .

29

Game1: �is is the original game with 1 = 0 expanded as follows:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , 0, g∗)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (0, Y0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– s∗ ← B̃er

=
`1 , e∗1 ← Ber=` , e∗2 ← Berℓ` , Y∗0 ← B̃er

@×=
`1 , K∗0 ← Ber@×=`

– c∗ := Gs∗ + e∗1
– c∗0 := (MNg∗ + H0)s∗ + Y∗0e

∗
1 − K∗0s

∗

– c∗1 := Y1c∗ (= (MNg∗ + H′1)s
∗ + Y1e∗1 − K1s∗)

– c∗2 := Is∗ + e∗2 + M2 (`).
It returns ct∗ = (c∗, c∗0, c

∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

We can use Lemma D.3 to bound the distance between Game0 and Game1.

Lemma D.5 (Adapted, [YZ16, Lemmas 5.3, 5.4, and 5.5]).�ere exists an adversary A01 satisfying

|Pr[(0] − Pr[(1] | ≤
���Pr[ExptrealGentd′,A01

(^) = 1] − Pr[ExptcorrGentd′,A01
(^) = 1]

��� .
Game2: We next switch the decryption key from (0, Y0) to (g∗, Y1).

1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , 0, g∗)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (g∗, Y1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– s∗ ← B̃er

=
`1 , e∗1 ← Ber=` , e∗2 ← Berℓ` , Y∗0 ← B̃er

@×=
`1 , K∗0 ← Ber@×=`

– c∗ := Gs∗ + e∗1
– c∗0 := (MNg∗ + H0)s∗ + Y∗0e

∗
1 − K∗0s

∗

– c∗1 := Y1c∗

– c∗2 := Is∗ + e∗2 + M2 (`).
It returns ct∗ = (c∗, c∗0, c

∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Yu and Zhang showed the following lemma by using the key-switching lemma Lemma D.4:

Lemma D.6 (Adapted, [YZ16, Lemma 5.6]).We have

|Pr[(1] − Pr[(2] | ≤ negl(^).

Game3: We next modify c∗0:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , g∗, g∗)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (g∗, Y1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– s∗ ← B̃er

=
`1 , e∗1 ← Ber=` , e∗2 ← Berℓ`

– c∗ := Gs∗ + e∗1
– c∗0 := Y0c∗ (=(MNg∗ + H0)s∗ + Y∗0e

∗
1 − K∗0s

∗)
– c∗1 := Y1c∗

– c∗2 := Is∗ + e∗2 + M2 (`).
It returns ct∗ = (c∗, c∗0, c

∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

We can use Lemma D.3 to bound the distance between Game2 and Game3.

Lemma D.7 (Adapted, [YZ16, Lemma 5.7]).�ere exists an adversary A23 satisfying

|Pr[(2] − Pr[(3] | ≤
���Pr[ExptrealGentd′,A23

(^) = 1] − Pr[ExptcorrGentd′,A23
(^) = 1]

��� .
30

Game4: We next replace two components c∗ and c∗2 of the challenge ciphertext with random ones:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , g∗, g∗)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (g∗, Y1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– c∗ ← F=2
– c∗0 := Y0c∗

– c∗1 := Y1c∗

– c∗2 ← F
ℓ
2 .

It returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Using Lemma D.1, Yu and Zhang showed the following lemma.

Lemma D.8 (Adapted, [YZ16, Lemma 5.8]).�ere exists an adversary A34 satisfying

|Pr[(3] − Pr[(4] | ≤ AdvleakyLPN,A34 (^).

�is is the �nal game of the original proof. We continue modifying the games in order to make c∗0 and c∗1
random.

Game5: We next replace c∗0 with random one:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , g∗, g∗)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (g∗, Y1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– c∗ ← F=2
– c0 ← F@2
– c∗1 := Y1c∗

– c∗2 ← F
ℓ
2 .

It returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk = (g∗, Y1, ek).
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma D.9. �ere exists an adversary A45 satisfying

|Pr[(4] − Pr[(5] | ≤ Adv1leakyLPN,A45 (^).

�e proof is very similar to Lemma C.8.

Proof. We construct A45 as follows:
1. A45 is given (z, c, G, Y0G + K0), where z = Y0c or r ← F@2 . It then invokesA on input 1^ and receives
g∗. It generates
– H0 := Y0G + K0 − MNg∗

– Y1 ← B̃er
@×=
`1 , K1 ← Ber@×=` , H1 := Y1G + K1 − MNg∗

– I ← Dℓ×=
_

.
It sets dk = (g∗, Y1, ek) and ek = (G, H0, H1,I). It runs the adversary on input ek and simulates the
decryption oracle by using dk.

2. �e adversary outputs `. A45 generates the challenge ciphertext as follows: It generates
– c∗ := c, c∗0 := z, c∗1 := Y1c∗, and c∗2 ← F

ℓ
2 .

It returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk = (g∗, Y1, ek).
3. Finally, the adversary outputs its guess 1′ and A45 outputs 1′.

If z = Y0c, then A45 perfectly simulates Game4. If z = r ← F@2 , then A45 perfectly simulates Game5. �us,
the lemma follows. ut

31

Game6: We next change how to generate trapdoor:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , 0, g∗)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (g∗, Y1, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– c∗ ← F=2
– c0 ← F@2
– c∗1 := Y1c∗

– c∗2 ← F
ℓ
2 .

It returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma D.10. �ere exists an adversary A56 satisfying

|Pr[(5] − Pr[(6] | ≤
���Pr[ExptrealGentd′,A56

(^) = 1] − Pr[ExptcorrGentd′,A56
(^) = 1]

��� .
Proof. We construct A56 that distinguishes real and corr games as follows:

1. Given 1^ , A56 runs A on input 1^ and receives g∗.
2. It sends (1, g∗, g∗, 0) to its challenger and receives (Y1, K1, G, H0, H1, e, Ye, s, Ks). It chooses I ←
Dℓ×=
_

. It sets dk = (g∗, Y1) and ek = (G, H0, H1,I). It runs A on input ek.
3. A56 simulates the decryption oracle using dk.
4. A56 generates the challenge on a query ` from A as follows: It generates c∗ ← F=2 , c∗0 ← F

@
2 , and

c∗1 := Y1c∗. It chooses c∗2 ← F
ℓ
2 and returns ct∗ := (c∗, c∗0, c

∗
1, c
∗
2).

5. A ′Gentd outputs 1′ if A �nally outputs 1′.
Notice that if the game is real and corr, then the keys are generated by Gentd (1^ , g∗, g∗) and Gentd (1^ , 0, g∗),
respectively. �us, if the game is real and the keys are generated by Gentd (1^ , g∗, g∗), then A56 perfectly
simulates Game5. If the game is corr and keys are generated by Gentd (1^ , 0, g∗), thenA56 perfectly simulates
Game6. �is completes the proof. ut

Game7: We then switch the decapsulation key.
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , 0, g∗)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (0, Y0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– c∗ ← F=2
– c0 ← F@2
– c∗1 := Y1c∗

– c∗2 ← F
ℓ
2 .

It returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Following the key-switching lemma Lemma D.4, we have the following lemma as Lemma D.6:

Lemma D.11. We have
|Pr[(6] − Pr[(7] | ≤ negl(^).

Game8: We then replace c∗1 := Y1c∗ with c∗1 ← F
@
2 :

1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , 0, g∗)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (0, Y0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– c∗ ← F=2
– c∗0 ← F

@
2

– c∗1 ← F
@
2

– c∗2 ← F
ℓ
2 .

32

It returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

Lemma D.12. �ere exists an adversary A78 satisfying

|Pr[(7] − Pr[(8] | ≤ Adv1leakyLPN,A78 (^).

�e proof is similar to Lemma D.9.

Proof. We construct A78 as follows:
1. A78 is given (z, c, G, Y1G + K1), where z = Y1c or r ← F@2 . It then invokesA on input 1^ and receives
g∗. It generates
– Y0 ← B̃er

@×=
`1 , K0 ← Ber@×=` , H0 := Y0G + K0

– H1 := Y1G + K1 − MNg∗

– I ← Dℓ×=
_

.
It sets dk = (0, Y0, ek) and ek = (G, H0, H1,I). It runs the adversary on input ek and simulates the
decryption oracle by using dk.

2. �e adversary outputs `. A45 generates the challenge ciphertext as follows: It generates
– c∗ := c, c∗0 :← F

@
2 , c∗1 := z, and c∗2 ← F

ℓ
2 .

It returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk = (0, Y0, ek).
3. Finally, the adversary outputs its guess 1′ and A78 outputs 1′.

If z = Y1c, then A78 perfectly simulates Game7. If z = r ← F@2 , then A78 perfectly simulates Game8. �us,
the lemma follows. ut

Game9: We again modify how to generate key:
1. �e challenger runs the adversary on input 1^ .
2. �e adversary outputs g∗. �e challenger generates keys by (Y0, K0, Y1, K1, (G, H0, H1)) ← Gentd ′(1^ , 0, 0)

and I ← Dℓ×=
_

. It sets ek = (G, H0, H1,I) and dk = (0, Y0, ek). It runs the adversary on input ek and
simulates the decryption oracle by using dk.

3. �e adversary outputs `. �e challenger generates the challenge ciphertext as follows: It generates
– c∗ ← F=2
– c∗0 ← F

@
2

– c∗1 ← F
@
2

– c∗2 ← F
ℓ
2 .

It returns ct∗ = (c∗, c∗0, c
∗
1, c
∗
2). It runs the adversary on input ct∗ and simulates the decryption oracle by

using dk.
4. Finally, the adversary outputs its guess 1′ and the challenger outputs 1′.

We have
Pr[(9] = Pr[Exptpr-st-wcca,1TBEYZ ,A (^) = 1] .

Lemma D.13. �ere exists an adversary A89 satisfying

|Pr[(8] − Pr[(9] | ≤
���Pr[ExptrealGentd′,A89

(^) = 1] − Pr[ExptcorrGentd′,A89
(^) = 1]

��� .
Proof. We construct A89 that distinguishes real and corr games as follows:

1. Given 1^ , A89 runs A on input 1^ and receives g∗.
2. It sends (0, 0, g∗, 0) to its challenger and receives (Y0, K0, G, H0, H1, e, Ye, s, Ks). It choosesI ← Dℓ×=

_
.

It sets dk = (0, Y0) and ek = (G, H0, H1,I). It runs A on input ek.
3. A89 simulates the decryption oracle using dk.
4. A89 generates the challenge on a query ` from A as follows: It generates c∗ ← F=2 , c∗0 ← F

@
2 , and

c∗1 ← F
@
2 . It chooses c∗2 ← F

ℓ
2 and returns ct∗ := (c∗, c∗0, c

∗
1, c
∗
2).

5. A ′Gentd outputs 1′ if A �nally outputs 1′.
Notice that if the game is real and corr, then the keys are generated by Gentd (1^ , 0, g∗) and Gentd (1^ , 0, 0),
respectively. �us, if the game is real and the keys are generated by Gentd (1^ , 0, g∗), then A89 perfectly
simulates Game8. If the game is corr and keys are generated by Gentd (1^ , 0, 0), thenA89 perfectly simulates
Game9. �is completes the proof. ut

33

	 The Boneh-Katz Transformation, Revisited: Pseudorandom/Obliviously-Samplable PKE from Lattices and Codes and Its Application

