
Preimage Attacks on 4-round Keccak by Solving
Multivariate Quadratic Systems

Congming Wei1, Chenhao Wu3, Ximing Fu2,3, Xiaoyang Dong1, Kai He4, Jue
Hong4 and Xiaoyun Wang1

1 Institute for Advanced Study, BNRist, Tsinghua University, Beijing, China
2 University of Science and Technology of China, Hefei, Anhui, China
3 The Chinese University of Hong Kong, Shenzhen, Shenzhen, China

4 Baidu Inc., Beijing, China

Abstract. In this paper, we present preimage attacks on 4-round Keccak-224/256
as well as 4-round Keccak[r = 640, c = 160, l = 80] in the preimage challenges. We
revisit the Crossbred algorithm for solving the Boolean multivariate quadratic (MQ)
system, propose a new view for the case D = 2 and elaborate the computational
complexity. The result shows that the Crossbred algorithm outperforms brute force
theoretically and practically with feasible memory costs. In our attacks, we construct
Boolean MQ systems in order to make full use of variables. With the help of
solving MQ systems, we successfully improve preimage attacks on Keccak-224/256
reduced to 4 rounds. Moreover, we implement the preimage attack on 4-round
Keccak[r = 640, c = 160, l = 80], an instance in the Keccak preimage challenges, and
find 78-bit matched near preimages. Due to the fundamental rule of solving MQ
systems, the complexity elaboration of Crossbred algorithm is of independent interest.

Keywords: Keccak · Preimage attack · Multivariate quadratic systems

1 Introduction
Due to the breakthrough attacks on hash functions [WLF+05, WY05, WYY05b, WYY05a],
the National Institute of Standards and Technology (NIST) started new standardization
of hash functions. The Keccak sponge function [BDPAa] won the competition and became
the new generation of Secure Hash Algorithm, known as SHA-3. Since its publication in
2008, Keccak has been widely studied. Both the keyed modes and the unkeyed modes of
Keccak have made some progress in cryptanalysis.

For the keyed modes of Keccak, most of security analysis was based on the cube attack.
In 2014, Dinur et al. [DMP+14] proposed a cube attack against stream cipher and MAC
modes of Keccak. Later, in EUROCRYPT 2015, they proposed an attack combining cube
attacks and structural properties of Keccak [DMP+15]. Huang et al. [HWX+17] introduced
a new analysis model in 2017, called the conditional cube distinguisher and improved
key recovery attacks reduced to 7 rounds. After that, some methods [LBDW17, SGSL18,
LDB+19] were proposed to improve it. For collision attacks, Dinur et al. [DDS12] combined
the low Hamming weight differential characteristic with algebraic techniques and gave
actual collisions on 4-round Keccak-256. Besides, they put forward actual collision attacks
on Keccak-384 and Keccak-512 up to 3 rounds based on internal differentials [DDS13].
Following the framework in [DDS12], Qiao et al. [QSLG17] implemented collision attacks
of several 5-round Keccak instances and Song et al. [SLG17] further gave an actual collision
on 5-round Keccak-224 as well as the 6-round collision challenge.

2 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

This paper is focused on the preimage attack. Morawiecki et al. [MS13] gave the exper-
iment of preimage attack with SAT solver, illustrating that using SAT solver outperforms
exhaustive search when Keccak is reduced to 3 rounds. Then in 2013, rotational cryptanaly-
sis [MPS13] was applied to the preimage attack on 4-round Keccak[r = 1024, c = 576] with
complexity 2506. After that, a breakthrough in the preimage attack occurred in 2016. Guo
et al. proposed a new linear structure of Keccak [GLS16]. They introduced linearization
of 3-round Keccak permutation functions and showed 3/4-round preimage attacks with
the linear structure. After that, some improved attack methods have been proposed. Li
et al. [LSLW17] constructed a new structure called cross-linear structure, and improved
preimage attacks on several 3-round Keccak instances. A two-block method [LS19] was
proposed to attack 3/4-round Keccak-224/256, such that the constraints could be allocated
to two blocks and the complexity was lowered. Besides, Rajasree [Raj19] proposed a
nonlinear structure, focusing on Keccak-384/512 reduced to 2, 3 and 4 rounds. Later, He
et al. [HLY21] developed the linearization method of [LS19] to save degrees of freedom
and improved the preimage attacks on 4-round Keccak-224/256.

Apart from solving linear systems, methods for solving nonlinear systems have been
applied such that more degrees of freedom could be saved. Liu et al. [LIMY20] made full
use of equations derived from the hash value by constructing Boolean quadratic systems.
They used relinearization techniques to solve quadratic systems and improved the attacks
on Keccak-384/512. After that, Dinur [Din21] gave the concrete complexity of polynomial
method [LPT+17] for solving multivariate equation systems and applied it to preimage
attacks on Keccak. The polynomial method can achieve exponential speedup as the number
of variables goes to infinity. The new method successfully improved preimage attacks on
Keccak-384/512 but did not outperform attacks on Keccak-224/256 in [HLY21].

Our Contributions. In this paper, we draw our attention on preimage attacks
and present several results of attacks on 4-round Keccak-224/256 as well as 4-round
Keccak[r = 640, c = 160, l = 80].

One key technique in our attacks is to solve multivariate quadratic (MQ) polynomial
systems. We present a new observation on MQ polynomials and elaborate the complexity
of solving an MQ system, which is equivalent to the D = 2 case of Crossbred algorithm.
Our elaboration shows that the Crossbred algorithm outperforms the brute force even
in the worst case, improving the complexity analysis in [Dua20]. More impressively, the
algorithm uses feasible memory in a wide range of parameters and is easy to implement.

For the attack on Keccak, we propose a new 2-round linear structure with one round
backward and one round forward. We exploit the output of the inverse χ−1 and carefully
select constant values to linearize the one round backward with more arbitrary constants
than in [LS19, HLY21]. According to our structure, all input bits of χ in the 4th round
are quadratic. In our attacks, we construct MQ systems in order to fully utilize degrees of
freedom and derived equations. Combined with solving MQ systems, we give preimage
attack on 4-round Keccak[r = 640, c = 160, l = 80] using one message block and preimage
attacks on 4-round Keccak-224/256 using two message blocks.

To the best of our knowledge, we propose the first analysis of 4-round Keccak[r =
640, c = 160, l = 80] in the Keccak preimage challenges and give several 78-bit matched
preimages. Besides, we improve complexities of preimage attacks on 4-round Keccak-224
and Keccak-256. Table 1 lists the results of this paper compared with the previous ones.
The complexity in list is the times of 4-round Keccak permutation.

The rest of this paper is organized as follows. Section 2 shows notations and preliminaries
of Keccak as well as the properties of the nonlinear layer χ, followed by the complexity
elaboration of solving a Boolean Multivariate Quadratic system. Preimage attacks on
4-round Keccak-224 and Keccak-256 are present in Section 3. And the preimage attack
on the challenge with implementation details is shown in Section 4. Finally, Section 5
concludes this paper.

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 3

Table 1: Comparison of preimage attacks on 4-round Keccak.

Digest Instances Guessing Solving Total Ref
length times Complexity Complexity

224 Keccak-224

2213 26 2219 [GLS16]
2207 28 2215 [LS19]
− − a2202 [Din21]

2192 28 2200 [HLY21]
2164 218 b2182 Subsection 3.1

256 Keccak-256

2251 23 2254 [GLS16]
2239 28 2247 [LS19]
− − c2231 [Din21]

2218 28 2226 [HLY21]
2196 218 d2214 Subsection 3.2

80 Keccak[r = 640, 239 219 258 Subsection 4.1
c = 160, l = 80]

aThe complexity is equal to 2217 bit operations. bThe complexity is equal to 2197 bit operations.
cThe complexity is equal to 2246 bit operations. dThe complexity is equal to 2229 bit operations.

2 Preliminaries and Main Techniques
In this section, we will give the notation and the introduction to Keccak with some
properties of the nonlinear layer χ. Then we elaborate the complexity of solving a Boolean
Multivariate Quadratic (MQ) system.

2.1 Notation
r Rate of a sponge function
c Capacity of a sponge function
b Bit width of a permutation, b = r + c
nr Number of rounds.
R The round function of Keccak permutation
θ, ρ, π, χ, ι The five mapping steps of R. A subscript i denotes the mapping step in

the i-th round, e.g., χi denotes χ in the i-th round for i = 0, 1, 2,
L Composition of θ, ρ and π and its inverse denoted by L−1

M Input message
Ai Input of the i-th round function, Ai+1 = χ(Bi), i = 0, 1, 2, . . .
A′i Input of ρ in the i-th round, A′i = θ(Ai), i = 0, 1, 2, . . .
Bi Input of χ in the i-th round, Bi = L(Ai), i = 0, 1, 2, . . .

2.2 The sponge function
The sponge construction is a framework used in Keccak. As illustrated in Figure 1, the
sponge function has two phases, absorbing phase and squeezing phase. In the absorbing
phase, an arbitrary number of input bits are first padded and then absorbed into the state
of the permutation f . After that, the construction produces an arbitrary number of output
bits in the squeezing phase.

The function f maps strings of b bits to strings of the same length. The b-bit initial
state (IV) is set to be all 0’s. In the absorbing phase, padded message is divided into
blocks with length of r which is a positive integer and less than b. The capacity, denoted
by c, equals to b− r. The first r-bit of IV is XORed with the first block and then is sent
to f . Again, the first r-bit of output is XORed with the second block and computed in f .

4 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

0

0

pad

f f f fff

c

   r

   

M hash value

absorbing squeezing

sponge

Figure 1: Sponge Construction

Figure 2: State of Keccak

This procedure is repeated until all the blocks are absorbed. After that, a l-bit digest is
obtained in the squeezing phase. If l is less than r, the first l-bit output of the absorbing
phase is the output string. Otherwise, if l is more than r, another function f is applied to
produce r more bits. This procedure is repeated until we obtain enough output strings.
Then the output strings are truncated to a l-bit digest of the sponge construction.

2.3 Keccak-f PERMUTATIONS

In the Keccak hash function, the Keccak-f permutation with width b is denoted by
Keccak-f [b], where b ∈ {25, 50, 100, 200, 400, 800, 1600}. The state for Keccak-f [b] can be
represented as 5× 5 w-bit lanes as depicted in Figure 2. For the Keccak-f permutation, w
is chosen as b/25. A[x, y] denotes a lane in the state, where x, y are in {0, 1, 2, 3, 4}. Each
bit in A[x, y] is denoted as A[x, y, z] with 0 ≤ z < w.

Keccak-f [b] consists of nr = 12 + 2log2(b/25) rounds permutation R. Each round R
consists of five steps, denoted by θ, ρ, π, χ and ι. R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 5

Table 2: Offsets of ρ

x = 3 x = 4 x = 0 x = 1 x = 2
y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

θ :A[x, y, z] = A[x, y, z]⊕
4∑

y=0
A[x− 1, y, z]⊕

4∑
y=0

A[x+ 1, y, z − 1],

ρ :A[x, y, z] = A[x, y, z] ≪ T [x, y],
π :A[y, 2x+ 3y, z] = A[x, y, z],
χ :A[x, y, z] = A[x, y, z]⊕ (A[x+ 1, y, z]⊕ 1) ·A[x+ 2, y, z],
ι :A[0, 0, z] = A[0, 0, z]⊕RCi[z].

Here "⊕" and "·" are additions and multiplications over F2. T [x, y] are offsets listed in
Table 2 and RCi are constants for round i. Since ι has no influence on our attacks, we
ignore it in the rest of the paper.

2.4 The Keccak Hash Function
The Keccak hash function is the family of sponge functions with Keccak-f [b] permutation.
The function is parameterized by the rate r, capacity c, and output length l which satisfies
r + c = b, and denoted as Keccak[r,c,l]. The standard Keccak functions restricted to Kec-
cak[1152,448,224], Keccak[1088,512,256], Keccak[832,768,384], and Keccak[576,1024,512]
are called Keccak-224, Keccak-256, Keccak-384 and Keccak-512 respectively. The padding
rule for Keccak, named multi-rate padding, extends message M to be a message of the
form M10∗1. That is, message M is first padded with a single bit ”1” and then with a
smallest non-negative number of ”0” and finally with a single bit ”1” in order to produce a
padded message whose bit length becomes multiple of r.

The SHA-3 family adopts standard Keccak functions except that it applies a different
padding rule of the form M0110∗1, i.e., it first pads a message with two bits ”01”, then
followed by the multi-rate padding rule in Keccak. Moreover, the two extendable-output
functions (XOFs), SHAKE128 and SHAKE256, are introduced in the SHA-3 family.
SHAKE128(M, l) and SHAKE256(M, l) are defined as Keccak[r = 1344, c = 256] and
Keccak[r = 1088, c = 512] with a four-bit suffix ’1111’ to M . We refer the readers to
[BDPAa] for more details.

2.5 Properties of Step χ
Before introducing attacks on Keccak functions, we first show some properties of the
nonlinear step χ and its inverse χ−1.

For the 5-bit input a = a0a1a2a3a4 of χ, the output b = b0b1b2b3b4 can be expressed
as bi = ai ⊕ (ai+1 ⊕ 1)ai+2.

Property 1. [GLS16] Given two consecutive bits bi, bi+1 of the output of χ, a linear
equation can be set up on the input bits as bi = ai ⊕ (bi+1 ⊕ 1) · ai+2. Specifically, the
equation turns to be ai = bi in the case of bi+1 = 1.

6 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

Table 3: Inputs and their corresponding outputs of χ−1 for the ‘xcxcc’ input pattern

Inputs x0x00 x0x01 x0x10 x0x11 x1x00 x1x01 x1x10 x1x11
Outputs xx2xx0 x0x01 xx2xxx2 xxx1x2 xx2xxx x1x0x xx2xxx2 xxx1x2

#Linear 3 2 3 3 4 3 3 3
#Quadratic 1 0 2 1 1 0 2 1

The inverse operation χ−1 has algebraic degree 3, and its algebraic normal form can
be written as

ai = bi ⊕ (bi+1 ⊕ 1) · (bi+2 ⊕ (bi+3 ⊕ 1) · bi+4). (1)

To reduce algebraic degrees of the output, the input must not have consecutive variables.
Let x and c stand for the variable and constant, respectively. Each constant c could be 1
or 0. Table 3 lists the inputs ’xcxcc’ and their corresponding outputs of χ−1.

According to Table 3, we find that the outputs of χ−1 for ‘xcxcc’ are linear only when
the inputs are ’x0x01’ or ’x1x01’ as described in Property 2.

Property 2. [GLS16] When bi+3 = 0, bi+4 = 1 and bi+1 is known, then all input bits aj ’s
can be written as linear combinations of bj ’s, for all i ∈ {0, 1, 2, 3, 4}.

From (1), when bi+3 = 0, bi+4 = 1, we have

bi+1 ai ai+1 ai+2 ai+3 ai+4

0 bi ⊕ bi+2 ⊕ 1 0 bi+2 ⊕ 1 0 1
1 bi 1 bi ⊕ bi+2 0 bi

2.6 On the Concrete Complexity of Crossbred Algorithm with D = 2
In this section, we propose a algorithm, equivalent to the Crossbred algorithm [JV17] with
D = 2 case, and elaborate the concrete complexity for solving a Boolean Multivariate
Quadratic (MQ) system. The subsequent attacks on 4-round Keccak are based on this
algorithm.

An MQ polynomial of n Boolean variables x1, x2, . . . , xn over binary field F2 is defined
as

z(x1, . . . xn) =
∑

1≤i<j≤n

ai,jxixj +
∑

1≤i≤n

bixi + c, (2)

where ai,j ∈ F2, bi ∈ F2 and c ∈ F2. Then an MQ system of m equations and n variables,
called an (m,n) MQ system, is given by

z1(x1, . . . , xn) = 0,
z2(x1, . . . , xn) = 0,

...
zm(x1, . . . , xn) = 0.

where zi(x1, . . . , xn) are MQ polynomials for i = 1, 2, . . . ,m.
The MQ polynomial z in (2) can be written in the residual form

z(x1, . . . xn) = x1f1 + · · ·+ xnfn + L+ c (3)

where fi is a linear combination of variables xi+1, . . . , xn and L is a linear combination of
x1, . . . , xn. According to (3), an (m,n) MQ system can be transformed to the following

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 7

form 

z1 = x1f
1
1 + x2f

1
2 + · · ·+ xnf

1
n + L1 + c1 = 0,

z2 = x1f
2
1 + x2f

2
2 + · · ·+ xnf

2
n + L2 + c2 = 0,

...
zm = x1f

m
1 + x2f

m
2 + · · ·+ xnf

m
n + Lm + cm = 0

(4)

Next, we aim to find linear combinations α = (α1, . . . , αm) such that
∑m

j=1 αjf
j
i = 0

for each i = n− t, n− t+ 1, . . . , n− 1 with a given 1 < t < n. Then we obtain the following
remainder equation

m∑
i=1

αizi =
n−t−1∑

i=1
xi

m∑
j=1

αjf
j
i +

m∑
j=1

αjLj +
m∑

j=1
αjcj = 0. (5)

Now we discuss the number of solutions of α, which determines the number of remainder
equations we have. Let f j

i = vj
i (xi+1, . . . , xn)>, where vj

i is an (n− i) dimensional binary
row vector. Then α satisfies the condition αM = 0, where

M =


v1

n−t v1
n−t+1 · · · v1

n−1
v2

n−t v2
n−t+1 · · · v2

n−1
...

...
. . .

...
vm

n−t v1
n−t+1 · · · vm

n−1


and is of dimension m× t(t+1)

2 . There are at least m− t(t+1)
2 independent solutions of α,

and hence m− t(t+1)
2 remainder equations can be derived. It is obvious that for each guess

of x1, . . . , xn−t−1, each remainder equation (5) is reduced to a linear equation. Then a
linear system of m− t(t+1)

2 equations over t+ 1 variables can be derived for each guess
and can be solved by Gaussian elimination. If the system is solvable, the solution can
be verified by substituting it into the MQ system of equations. If the solution is verified
correct, we find the solution for the MQ equations, otherwise, the corresponding guess is
wrong. In order to guarantee that there is no more than one solution on average for each
guess, choose t such that m− t(t+1)

2 ≥ t+ 1.
Complexity Analysis: The computational complexity involves three parts, of which the

first is for computing the remainder equations, the second is for solving the remainder
equations and the third is for verifying the survived solutions.

The remainder equations can be obtained by Gaussian elimination on an m× t(t+1)
2

binary matrix with the complexity of m2 · t(t+1)
2 bit operations. The memory cost is

m× t(t+1)
2 < m2 bits.

For solving the remainder equations, guess n−t−1 bits and solve a derived linear system
of m− t(t+1)

2 equations over t+ 1 variables. With gray code guess, each equation update
needs only t+ 1 bit operations and totally (m− t(t+1)

2)(t+ 1) bit operations are needed to
update a linear system. Then the linear system can be solved by Gaussian elimination with
(m− t(t+1)

2)2(t+ 1) bit operations. On average, there are 2t+1−(m− t(t+1)
2) = 2

(t+1)(t+2)
2 −m

solutions for each linear system. Here, we use two binary matrices of size (m− t(t+1)
2)×(t+1)

in the memory, one for storing the iterated system and the other for solving the linear
system. This memory cost can be shared by all guesses.

In order to verify the solutions, the solution is substituted into the MQ equations.
Assume that each solution is verified correct for each equation with the probability 1/2,
then verifying a solution needs to compute

∑m
i=1 i (1/2)i ≈ 2 equations. Computing each

equation needs at most
(

n
2
)
AND operations and

(
n
2
)

+ n XOR operations. And hence,

8 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

verifying a solution needs about 2n(n + 1) ≈ 2n2 bit operations. In order to store the
(m,n) MQ equations, the memory cost is at most m

((
n
2
)

+ n+ 1
)

= m
(

n(n+1)
2 + 1

)
bits.

Let T and M denote the computational cost in terms of bit operations and memory
cost in terms of bits for solving an (m,n) MQ system, then we have

T = m2 · t(t+ 1)
2 + 2n−t−1

(
(m− t(t+ 1)

2)(t+ 1) + (m− t(t+ 1)
2)2(t+ 1) + 2

(t+1)(t+2)
2 −m2n2

)
≈ 2n−t−1

(
m− t(t+ 1)

2

)2
(t+ 1) + 2n−m+ t(t+1)

2 2n2

and

M = m× t(t+ 1)
2 + 2

(
m− t(t+ 1)

2

)
(t+ 1) +m

(
n(n+ 1)

2 + 1
)

< m

(
(t+ 1)(t+ 5)

2 + n(n+ 1)
2

)
.

For the worst case m = n,

T ≈ 2n−t−1
(
n− t(t+ 1)

2

)2
(t+ 1) + 2

t(t+1)
2 2n2.

Choose t such that n− t(t+1)
2 ≥ t+1 and n− (t+1)(t+2)

2 < t+2, i.e.,
√

2n−3 < t <
√

2n−1.
Then we have n− t(t+1)

2 = n− (t+1)(t+2)
2 + t < 2t+ 3 and t(t+1)

2 ≤ n− t− 1. Consequently,
T < 2n−t−1 · (2t+ 3)2 (t+ 1) + 2n−t−1 · 2n2 < 2n+2−

√
2n ·

(
2n2 + 8n

√
2n+ 8n+

√
2n
)
. In

order to compare the complexity with that of the fast exhaustive search (FES), which
is 2n+2 logn, we just need to compare C(n) = 2−

√
2n ·

(
2n2 + 8n

√
2n+ 8n+

√
2n
)
with

logn. Intuitively, C(n) decreases subexponentially to zero as n and hence is smaller than
logn asymptotically. More precisely, when n ≥ 64, C(n) < logn, then Crossbred algorithm
has lower complexity than FES in terms of bit operations.

Here, we list the comparison of our algorithm with fast exhaustive search [BCC+10]
and polynomial method [Din21] in Table 4 for some practical parameters.

The results in Table 4 show that the Crossbred algorithm needs more bit operations
than polynomial method when n becomes larger and m is close to n. When n is small
and m outperforms n, our method needs lower computational costs. In addition, our
method needs much less memory cost. When used in security analysis of cryptosystems,
the memory cost is within the ability of a single PC. By this algorithm, solving an MQ
problem can be reduced to calls to solving linear systems, which are easy to parallelize
using single instruction multiple data (SIMD) speedup. More details about implementation
are discussed in Subsection 4.2. Take an example to show the efficiency of this method.
For example, an (m = 4n, n = 80) MQ instance can be solved by solving 245 linear systems
of 45 equations of 35 variables with memory cost 220 bits, which are feasible on modern
microprocessors.

3 Preimage Attacks on 4-Round Keccak
In this section, we introduce preimage attacks on 4-round Keccak via solving systems of
quadratic Boolean equations. Given a hash value, we improve the structure in [GLS16]
and derive an algebraic system such that the output bits after 3 rounds of degree at most
2. Then we solve this algebraic system using the algorithm in Subsection 2.6.

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 9

Table 4: Comparison of concrete complexities in terms of bit operations and memory costs
in terms of bits. The memory cost of exhaustive search is small and omitted here.

variables Complexity Memory Algorithm
n (bit operations) (bits)

80

284 − Exhaustive Search [BCC+10]
277 260 Polynomial Method [Din21]
280 218 Ours(m = n, t = 11)
276 219 Ours(m = 2n, t = 16)

128

2133 − Exhaustive Search [BCC+10]
2117 291 Polynomial Method [Din21]
2126 220 Ours(m = n, t = 14)
2120 221 Ours(m = 2n, t = 21)

192

2197 − Exhaustive Search [BCC+10]
2170 2132 Polynomial Method [Din21]
2188 222 Ours(m = n, t = 18)
2180 223 Ours(m = 2n, t = 26)

256

2261 − Exhaustive Search [BCC+10]
2223 2173 Polynomial Method [Din21]
2249 223 Ours(m = n, t = 21)
2241 224 Ours(m = 2n, t = 30)

3.1 Preimage Attack on 4-round Keccak-224

In the following, we give an introduction to attacks on 4-round Keccak-224, namely, 4-round
Keccak[r = 1152, c = 448, l = 224]. In [GLS16], Guo et al. proposed a linear structure for
up to 3 round by setting some bits in the middle state as constants. In this section, we
extend this structure to the preimage attack on 4-round Keccak-224, where two message
blocks are used.

Our structure, applied on the second block, consists of one backward round A0 =
R−1(A1) and two forward rounds A2 = R(A1), A3 = R(A2). Here, A0 is the XOR of the
output of the first message block with the second message block. Figure 3 shows one
backward round for 4-round Keccak-224. The bits of lanes in green boxes are of degree
1. The lanes in light gray(resp. dark gray) boxes are set to constants 0’s(resp. 1’s). And
those in white boxes represent arbitrary constants. We set 10 lanes of state A1[0, y] and
A1[2, y], y ∈ {0, . . . , 4} as variables, i.e., there are totally 10 × 64 = 640 variables. The
other bits in A1 are set to constants. For constant bits in A1, we have

A1[1, y] = 0, y ∈ {0, 1, 3},
A1[3, y] = 0, y ∈ {0, . . . , 4},
A1[4, y] = 0xFFFF FFFF FFFF FFFF, y ∈ {0, . . . , 4}.

Then all bits in B0 are linear over A1 according to Property 2. Especially, bits in
B0[3, y], y ∈ {0, 1, · · · , 4} are set to 0 and bits in B0[4, 0], B0[4, 1] and B0[4, 3] are set to
1. Furthermore, we have A′0[x, 3]⊕A′0[x, 4] = 0xFFFF FFFF FFFF FFFF, x ∈ {2, 3, 4}. When
using only one message block, the last 449 bits of A0 are set to 0 or 1 as the capacity or
padding bits. Instead of setting 449 constraints directly, we add another message block to
reduce the number of constraints on A0. Denote the output state of the first block as C.
According to the capacity and the padding rule, we have the relations between C and A0

10 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

ι •χ
-1 -1

π •ρ
-1 -1

θ
-1

XOR with the 2nd
block

A1 B0 A0' A0

Output of the
1st block

C

Figure 3: The one backward round of Keccak-224

as
A0[x, 3] = C[x, 3], x = 3, 4,
A0[x, 4] = C[x, 4], x ∈ {0, 1, · · · , 4},
A0[2, 3, 63] = C[2, 3, 63]⊕ 1.

(6)

Due to step θ, A0[x, 3, z] ⊕ A0[x, 4, z] = A′0[x, 3, z] ⊕ A′0[x, 4, z] = 1, x ∈ {2, 3, 4}, z ∈
{0, 1, · · · , 63}. Hence, C should satisfy

C[3, 3]⊕ C[3, 4] = 0xFFFF FFFF FFFF FFFF,

C[4, 3]⊕ C[4, 4] = 0xFFFF FFFF FFFF FFFF,

C[2, 3, 63] = C[2, 4, 63].
(7)

Since output bits of a hash function can be considered to be uniformly distributed, the
complexity of finding a preimage satisfying (7) via brute force is 264+64+1 = 2129. Once
getting the first message block and its output C, A0 can meet the requirement of (6) with
only 5× 64 = 320 constraints as follows

A0[x, 4] = C[x, 4], x ∈ {0, 1, · · · , 4}. (8)

Then we linearize bits in A2 as illustrated in Figure 4. To avoid the propagation by θ,
the following 2× 64 = 128 constraints are added

4∑
y=0

A1[0, y] = α,

4∑
y=0

A1[2, y] = β, (9)

where α, β are 64-bit constants. In this way, the bits in A2 keep linear. After a round of
R, the bits in A3 are of degree 2, which are indicated in orange in Figure 4. Since L is a
linear operation, bits in B3 are also quadratic.

Due to Property 1, given two consecutive bits bi, bi+1 of the output of χ, we have
bi = ai ⊕ (bi+1 ⊕ 1) · ai+2 for input bits ai and ai+1. When bi+1 = 1, it turns to be ai = bi.
Then we obtain 2× 64 + 32 = 160 quadratic equations from 224-bit hash value, i.e.,

B3[0, 0, z]⊕ (A4[1, 0, z]⊕ 1) ·B3[2, 0, z] = A4[0, 0, z], z = 0, 1, · · · , 63,
B3[1, 0, z]⊕ (A4[2, 0, z]⊕ 1) ·B3[3, 0, z] = A4[1, 0, z], z = 0, 1, · · · , 63,
B3[2, 0, z]⊕ (A4[3, 0, z]⊕ 1) ·B3[4, 0, z] = A4[2, 0, z], z = 0, 1, · · · , 31.

(10)

Assuming that 0s and 1s appear equally in A4, about half of equations are in the form
of B3[x, y, z] = A4[x, y, z]. Furthermore, the equations of the form B3[x, y, z] = A4[x, y, z]
can be linearized by adding extra constraints as follows.

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 11

θ π•ρ

θ

π•ρ ι•χ

ι•χ

A1 A1' B1 A2

A2' B2 A3

Figure 4: The 2 forward rounds of Keccak-224

By Guo et al.’s study [GLS16], a quadratic bit in B3 can be linearized by guessing
10 values of linear polynomials, which is called the first linearization method. Figure 5
illustrates how to linearize a bit B3[x, y, z]. Since both ρ and π are permutation steps, we
can get the corresponding bit in A′3. According to

A′3[x, y, z] = A3[x, y, z]⊕
4∑

y=0
A3[x− 1, y, z]⊕

4∑
y=0

A3[x+ 1, y, z − 1],

the corresponding bit is the XORed sum of 11 bits in A3, as shown in Figure 5. Thus
linearizing the corresponding bit is equivalent to linearizing those 11 bits. It is depicted
that all bits in B2 are linearized. According to the equation

A3[x, y, z] = B2[x, y, z]⊕ (B2[x+ 1, y, z]⊕ 1) ·B2[x+ 2, y, z],

it is obvious that the only quadratic term in A3[x, y, z] is generated by B2[x + 1, y, z]
and B2[x + 2, y, z]. Hence we can linearize A3[x, y, z] by guessing values of either one.
Note that A3[x, y, z] and A3[x− 1, y, z] share a common operand B2[x+ 1, y, z] in their
quadratic terms. By guessing B2[x+ 1, y, z], A3[x, y, z] and A3[x− 1, y, z] are linearized
as well. Thus the 11 bits in A3 can be linearized by guessing only 10 bits, i.e.,

B2[x+ 1, y, z], B2[x+ 3, y, z − 1], y ∈ {0, · · · , 4}. (11)

Equivalently, the bit B3[x, y, z] is linearized and the corresponding equation B3[x, y, z] =
A4[x, y, z] turns to be linear one.

Furthermore, 2 quadratic bits can be linearized by guessing 11 values of linear polyno-
mials [GLS16]. We call it the second linearization. Figure 6 illustrates how to linearize two
bits at the same time. For bits B3[0, 0, z] and B3[1, 0, z+ 44], linearizing the corresponding
bits in A′3 requires 21 linearized bits in A3, i.e.,

A3[4, y, z], A3[0, y, z], A3[1, 1, z], A3[1, y, z − 1], A3[2, y, z − 1], y ∈ {0, · · · , 4}. (12)

Again, we can achieve it by guessing values of bits in B2. Since A3[x, y, z] and A3[x−1, y, z]
share a common operand B2[x+ 1, y, z] in their quadratic terms, by guessing 11 bits

B2[3, 1, z], B2[3, y, z − 1], B2[1, y, z], y ∈ {0, · · · , 4}, (13)

12 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

ι•χ

θ π•ρ

ι•χ

Slice z Slice z

Slice z-1 Slice z-1

Slice z Slice z

B2 A3

A3' B3

Figure 5: The first quadratic bit linearization. We illustrate how to linearize a quadratic bit
in B3. In the figure, bits in green boxes are linear and bits in orange boxes are quadratic.

the 21 bits in (12) are linear. Hence the bits in A′3 are linearized and the corresponding
ones in B3 turn to be linear ones. Similarly, two equations B3[1, 0, z + 1] = A4[1, 0, z + 1]
and B3[2, 0, z] = A4[2, 0, z] can be linearized at the same time by guessing 11 values of
linear polynomials.

According to (8), (9), (10), we have 160 quadratic equations over 640−(5+2)×64 = 192
variables. After linearizing 2m equations by guessing 11m bits and n equations by guessing
10n bits, there remain M = 160− 2m− n quadratic equations over N = 192− 13m− 11n
variables. To deal with the rest equations, we use the method of solving MQ systems
as shown in Subsection 2.6. The MQ system has a solution with the probability 2N−M .
With t chosen as b

√
2M + 1

4 −
3
2c, totally, we need to solve 2224−160−(N−M)+(N−t−1) =

2223−2m−n−t linear systems. Note that we use the second linearization method first as it
can linearize bits with less equations. Since the hash value can be regarded as random
values, about 24 pairs from 160 quadratic equations can be used in the second linearization.
When m = 12, n = 01, an MQ problem with 136 equations over 36 variables is constructed.

Complexity Analysis: The MQ system has a solution with the probability 2−100. Let
t be 15, according to Subsection 2.6, the computing complexity is 232 + 231.3 ≈ 233 bit
operations, which is equivalent to 218 calls to the 4-round Keccak permutation. The
memory complexity for solving the MQ system is 217 bits. Compared with solving the MQ
system, the computational cost of performing Gaussian Elimination on linear constraints
can be omitted while the memory cost is 219 bits for storing the linear system. In this case,
the time complexity of this attack is 2129 + 264+100+18 = 2182 and the memory complexity
is 219 bits, which are shared by different MQ systems. Since A[1, 2], A[1, 4], α, β and
linearizing bits in the 3rd round are series of arbitrary constants, we can get 264+100 = 2164

messages that satisfy the conditions by guessing the value of constants and thus our attack
is feasible. For SHA3-224, the time complexity of the preimage attack is 2182 while the
padding rule changes.

1When m > 12, computing the remainder equations and verifying solutions cost more time than solving
the remainder equations during the MQ system solving process, which increases the whole computing
complexity.

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 13

ι•χ

θ π•ρ

ι•χ

Slice z Slice z

Slice z-1 Slice z-1

Slice z

Slice z

B2 A3 A3' B3

Slice z+44

Figure 6: The second quadratic bit linearization of two quadratic bits in B3. In the figure,
up diagonal slash presents bits related to the first bit and down diagonal slash presents
those related to the second bit. Besides, bits in green boxes are linear and bits in orange
boxes are quadratic.

3.2 Preimage Attack on 4-round Keccak-256
The attack on 4-round Keccak-256 works similarly, where two message blocks are applied.
Figure 7 shows one backward round for 4-round Keccak-256. We set 10 lanes of state
A1[0, y] and A1[2, y], y ∈ {0, . . . , 4} as variables, i.e., there are totally 10 × 64 = 640
variables. Other bits in A1 are set to constants. For constant bits in A1, we have

A1[1, y] = 0, y ∈ {0, 1, 3, 4},
A1[3, y] = 0, y ∈ {0, . . . , 4},
A1[4, y] = 0xFFFF FFFF FFFF FFFF, y ∈ {0, . . . , 4}.

Then all bits in B0 keep linear according to Property 2. Further, we have A′0[x, 3] ⊕
A′0[x, 4] = 0xFFFF FFFF FFFF FFFF, x ∈ {1, 2, 3, 4}. According to the capacity and the
padding rule, the output C of the first block and A0 should satisfy

A0[x, 3] = C[x, 3], x = 2, 3, 4,
A0[x, 4] = C[x, 4], x ∈ {0, 1, · · · , 4},
A0[1, 3, 63] = C[1, 3, 63]⊕ 1.

Due to step θ, A0[x, 3, z] = A0[x, 4, z] ⊕ 1, x ∈ {1, 2, 3, 4}, z ∈ {0, 1, · · · , 63}. Hence C
should satisfy

C[2, 3]⊕ C[2, 4] = 0xFFFF FFFF FFFF FFFF,

C[3, 3]⊕ C[3, 4] = 0xFFFF FFFF FFFF FFFF,

C[4, 3]⊕ C[4, 4] = 0xFFFF FFFF FFFF FFFF,

C[1, 3, 63] = C[1, 4, 63].

(14)

The complexity of finding a preimage whose 4-round output satisfy (14) by brute force is
23×64+1 = 2193. Once obtaining the first message block, we set 5× 64 = 320 constraints
on A0 as follows

A0[x, 4] = C[x, 4], x ∈ {0, 1, · · · , 4}. (15)

14 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

ι •χ
-1 -1

π •ρ
-1 -1

θ
-1

XOR with the 2nd
block

A1 B0 A0' A0

Output of the
1st block

C

Figure 7: The one backward round of Keccak-256

Thus A0 meets the requirement of the capacity and the padding rule.
The two rounds forward for Keccak-256 is similar with Keccak-224 except that

A[1, 4, z] = 0, z = 0, 1, . . . , 63. To avoid the propagation by θ, we add 2 × 64 = 128
constraints

4∑
y=0

A1[0, y] = α,

4∑
y=0

A1[2, y] = β, (16)

where α and β are 64-bit constants. Totally, there are (5 + 2)× 64 = 448 constraints on
640 variables. Similar to Keccak-224, the bits in A3 are quadratic. Since L is a linear
operation, bits in B3 are also quadratic.

Due to Property 1, we have 3× 64 = 192 quadratic equations from 256-bit hash value.

B3[0, 0, z]⊕ (A4[1, 0, z]⊕ 1) ·B3[2, 0, z] = A4[0, 0, z], z = 0, 1, · · · , 63,
B3[1, 0, z]⊕ (A4[2, 0, z]⊕ 1) ·B3[3, 0, z] = A4[1, 0, z], z = 0, 1, · · · , 63,
B3[2, 0, z]⊕ (A4[3, 0, z]⊕ 1) ·B3[4, 0, z] = A4[2, 0, z], z = 0, 1, · · · , 63.

(17)

Assuming that 0s and 1s appear equally in the states, half of equations are in the form of
B3[x, y, z] = A4[x, y, z] on average. Similar to the preimage attack on 4-round Keccak-224,
quadratic bits can be linearized by guessing values of linear polynomials.

According to (15), (16), (17), we have 192 quadratic equations and 640− 448 = 192
variables. We use the second linearization method as it can linearize bits with less equations.
Among 192 quadratic equations 32 pairs meet the requirement for the second linearization
on average. When using m = 12 pairs of equations2, an MQ problem with 168 equations
over 36 variables is constructed and has a solution with the probability 2−132. Let t = 16,
the computing complexity is 233.1 + 215.3 ≈ 233 which is equivalent to 218 calls to the
4-round Keccak permutation. The memory complexity for solving the MQ system and
the constraint system are 217 and 219 bits. Totally, the time complexity of this attack
is 2193 + 264+132+18 = 2214 and the memory cost is 219 bits. We can get 2196 two-block
messages which satisfy the conditions by guessing the value of constants A[1, 2], α, β as
well as linearizing bits in the 3rd round and thus our attack is feasible. For SHA3-256 and
SHAKE256, in despite of different padding rules, the time complexities are also 2214.

4 Application to Keccak Challenge
In this section, we implement the preimage attack on Keccak[r = 640, c = 160, l = 80] in
the Keccak challenges.

2When m > 12, computing the remainder equations and verifying solutions cost more time than solving
the remainder equations during the MQ system solving process, which increases the whole computation
costs.

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 15

θ π•ρ

θ

π•ρ ι•χ

ι•χ

A1 A1' B1 A2

A2' B2 A3

π •ρ
-1 -1

θ
-1

B0A0 A1’ι •χ
-1 -1

Figure 8: The linear structure of Keccak[r = 640, c = 160, n = 4]

4.1 Preimage Attack on 4 round Keccak[r = 640, c = 160, l = 80]
4-round Keccak[r = 640, c = 160, l = 80] is an instance of Keccak with the width 800 in
the Keccak Crunchy Crypto Collision and Preimage Contest [BDPAb]. In this section, we
apply our structure to the preimage attack on 4 round Keccak[r = 640, c = 160, l = 80]
with only one message block.

The structure consists of one backward round A0 = R−1(A1) and two forward rounds
A2 = R(A1), A3 = R(A2), as illustrated in Figure 8. We set 10 lanes of state A1[0, y] and
A1[2, y], y ∈ {0, . . . , 4} as variables, i.e., there are totally 10 × 32 = 320 variables. For
constant bits in A1, we have

A1[1, 0] = 0xFFFF FFFF,

A1[3, y] = 0, y ∈ {0, . . . , 4},
A1[4, y] = 0xFFFF FFFF, y ∈ {0, . . . , 4}.

Thus B0 = χ−1(A1) are linearized according to Property 2. Since L−1 consists of several
linear steps, all bits in A0 are linearized. Note that the last 162 bits are set to 0 or 1 such
that A0 satisfies the padding rule.

A0[3, 4, 30] = 1, A0[3, 4, 31] = 1,
A0[x, 4, z] = 0, x ∈ {0, . . . , 4}, z ∈ {0, . . . , 31}.

(18)

To avoid the propagation by θ, extra constraints are added to set the sums of columns
as constants.

4∑
y=0

A1[0, y] = α,

4∑
y=0

A1[2, y] = β, (19)

where α, β are 32-bit constants. Totally, there are 2 × 32 = 64 constraints. Figure 8
presents how variables propagate in 2 forward rounds. In the structure, the bits keep linear
in A2. And bits in A3 are quadratic, which are indicated in orange in Figure 8.

Bits in B3 = L(A3) keep quadratic as L is linear. According to Property 1, from 80-bit

16 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

hash value in A4, we get 32 + 16 = 48 quadratic equations of B3.

B3[0, 0, z]⊕ (A4[1, 0, z]⊕ 1) ·B3[2, 0, z] = A4[0, 0, z], z = 0, 1, · · · , 31,
B3[1, 0, z]⊕ (A4[2, 0, z]⊕ 1) ·B3[3, 0, z] = A4[1, 0, z], z = 0, 1, · · · , 15.

(20)

About half of them are in the form of B3[x, y, z] = A4[x, y, z] due to that bits in the hash
value can be considered as random values. We aim to linearize some equations in the
form of B3[x, y, z] = A4[x, y, z]. Similar to the preimage attack on 4-round Keccak-224,
a quadratic bit can be linearized by adding 10 equations and two equations satisfying
B3[0, 0, z] = A4[0, 0, z] and B3[1, 0, z+ 12] = A4[1, 0, z+ 12] can be linearized by adding 11
equations.

According to (18), (19), (20), we have 48 quadratic equations and 320− 162− 64 = 94
variables. After linearizing some equations we use the method of solving MQ systems in
Subsection 2.6 to deal with the rest ones.

In the Keccak preimage challenge, the given hash value of 4-round Keccak[r = 640, c =
160, l = 80] is

75 1a 16 e5 e4 95 e1 e2 ff 22

and its bit representation is shown below.

H[0] = 10101110 01011000 01101000 10100111

H[1] = 00100111 10101001 10000111 01000111

H[2] = 11111111 01000100

Due to Property 1, we obtained 48 quadratic equations from H[i] and 26 equations are in
the form of B3[x, y, z] = A4[x, y, z] which can be used in linearization. We underlined those
bits that can derive such equations and found that there are totally 5 pairs of bits satisfying
the second linearization, namely, (H[0][21], H[1][1]), (H[0][22], H[1][2]), (H[0][23], H[1][3]),
(H[0][25], H[1][5]), (H[0][29], H[1][9]). Hence in the experiment, according to (13), 2× 5
equations are linearized by imposing linear conditions on bits as follows:

B2[3, 1, 21], B2[3, y, 20], B2[1, y, 21], y ∈ {0, · · · , 4},
B2[3, 1, 22], B2[3, y, 21], B2[1, y, 22], y ∈ {0, · · · , 4},
B2[3, 1, 23], B2[3, y, 22], B2[1, y, 23], y ∈ {0, · · · , 4},
B2[3, 1, 25], B2[3, y, 24], B2[1, y, 25], y ∈ {0, · · · , 4},
B2[3, 1, 29], B2[3, y, 28], B2[1, y, 29], y ∈ {0, · · · , 4}.

Note that there are 2 repetitive conditions so the number of extra equations is 53 rather
than 55. After that, there remain 38 quadratic equations over 31 variables. The MQ
system has a solution with the probability 2−7. Let t = 7, according to Subsection 2.6,
solving this MQ system needs to solve 223 linear systems of 10 equations over 8 variables.
The computing complexity is 232.6 + 231.9 ≈ 233 bit operations if the system is solvable,
which is equivalent to 219 calls to the 4-round Keccak permutation. And the memory
complexity is 214 bits. The memory cost of performing Gaussian Elimination on linear
constraints is 217 bits while the time cost can be omitted. Our attack obtains a preimage
with the computing complexity 232+7+19 = 258 and the memory complexity 217. We give
78-bit matched preimages of 4-round Keccak[r = 640, c = 160, l = 80] in Subsection 4.3.

4.2 Implementation Details
Our target platform for implementing attack towards 4-round Keccak[r = 640, c = 160, l =
80] preimage challenge is a hybrid cluster equipped with 50 GPUs and 20 CPUs. The
model of equipped GPUs is NVIDIA Tesla V100 (Volta micro-architecture) with 32 GB
configuration and the model of equipped CPUs is Intel Xeon E5-2699@2.2GHz.

Our program consists of four steps:

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 17

1. Extract linear representation from linear constraints.

2. Iterate linear constraints and update MQ systems.

3. Solve MQ systems.

4. Substitute MQ solution into original input and verify the hash result.

As described in Section 4.1, the original Keccak system consists of 800 free bits, represented
by A[5][5][32]. With groups of constraints being imposed to the system, the number of
free bits is reduced and finally yields an MQ problem with n = 31, m = 38. Among all the
involved constraints, we simply categorize them into three different types,

• Unchanging Linear Constraints: constraints that the coefficient of each variable and
the right-hand-side constants stay unchanged throughout the program execution.
Specifically, we impose 706 unchanging linear constraints, which consists of 162
constraints to satisfy the padding rule, 480 constraints given by Property 2, and 64
constraints to avoid propagation by θ.

• Iterating Linear Constraints: constraints that the coefficient of each variable is fixed
but the right-hand-side constant is being iterated during the program execution.
Specifically, 53 iterating linear constraints are imposed to linearlize the quadratic
equations.

• Quadratic Constraints: constraints that originally include quadratic terms before
the attack starts. For this type of constraints, when the iterating constraints are
set, all the quadratic terms can be linearlized. Specifically, we impose 10 quadratic
constraints in our attack.

To obtain a possible preimage of given hash, we first impose 706 unchanging linear
constraints to the 800-variable system. Next, we iterate and impose all the possible settings
of 53 iterating constraints, and then eliminate quadratic terms in 10 quadratic constraints
and impose these quadratic constraints to the system. Finally, we solve the yielded MQ
problems. If the MQ problem is solvable, we then use the solution of the MQ problem to
produce all the other bits in the input message according to all the constraints imposed in
the previous steps. The program will terminate and return the produced message if it is
verified as the preimage of the given hash, otherwise, the program will keep trying new
settings of the iterating constraints. The overall procedure is shown as Figure 9.

Figure 9: Four Main Routines towards Keccak Preimage Challenge

Since the program of solving MQ problems is easy to parallelize and suitable to use
GPU, we program the MQ solving routine on GPU and deploy the remaining subroutines
on CPU.

18 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

4.2.1 Linear Representation Extraction

An important subroutine in our program is to handle all the linear constraints. Because
the linear constraints are imposed in several groups, in general we handle linear constraints
by uniting one group of constraints into one constraint system and consider only one
constraint system at a time.

Assume that there are k linear constraints over n variables, composing to a constraint
system [Sn,k|c], such that

Sn,k · x =

a11 a12 . . . a1n

...
...

. . .
...

ak1 ak2 . . . akn


x1

...
xn

 = c

If constraints in [Sn,k|c] have no linear dependency with each other, imposing [Sn,k|c] will
have n− k variables in the system be free variables and the other k variables be dependent
variables. A simple method to extract the linear representations among variables is to
perform Gaussian Elimination on the constraint system [Sn,k|c], which will yield a row
echelon form matrix [Ŝn,k|ĉ] after the back substitution step. According to the definition
of Gaussian Elimination, the index of pivot columns in [Ŝn,k|ĉ] correspond to the index of
dependent variables and the index of non-pivot columns correspond to the index of free
variables. For each time a new constraint system [Sn,k|c] is imposed, we apply Gaussian
Elimination to extract the linear representations of dependent variables. As the Gaussian
Elimination finishes, the yielded row echelon form matrix [Ŝn,k|ĉ] is stored and in the
verification step the program will backward reproduce the complete message using the
value of free variables and stored [Ŝn,k|ĉ].

According to Section 4.1, there are 706 unchanging linear constraints set in the first
and the second round. Because they are unchanging constraints, we could unite these
constraints as [S800,706|c] and extract [Ŝ800,706|ĉ] in advance of the main iteration. By
this preprocessing, the entire Keccak system can be represented by the remaining 94 free
variables and the computation complexity in further steps can be therefore reduced.

4.2.2 Iterate Constraints and Update MQ Systems

In the main iteration, the program guesses on the possible settings of right-hand-side
constants of the 53 iterating linear constraints. A complete iteration generates 253 possible
outputs of A3, and consequently, the iteration is equivalent to have total 53 bits in the
4th round hash being guessed in a bruteforce manner. Before the main iteration starts,
the program stores a 94-variable MQ problem in memory. In every single iteration,
after the right-hand-side constants of the 53 iterating constraints are set, the program
extracts the linear representation of 53 dependent variables. Together with 10 linearlized
quadratic constraints, the program substitutes these constraints into the 94-variables MQ
problem, resulting in a 31-variable MQ problem with 38 equations. Subsequently, these
MQ problems are copied to GPUs for the next solving process. To accelerate the MQ
problem updating, we parallelize this procedure using POSIX Thread API such that the
workloads are distributed to multiple CPU cores.

4.2.3 The Crossbred Algorithm

In our implementation, we employ the Crossbred Algorithm to solve the MQ problems.
The Crossbred Algorithm first extends the original MQ problem into its degree-D Macaulay
matrixMD and then extract k equations fromMD in which all the non-linear monomials
of the leading k variables are eliminated. After the assignment of remaining n−k variables,
a solution candidate that satisfies the extracted k equations can be obtained by solving a

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 19

linear system with Gaussian Elimination. After a complete iteration on the assignments
of n− k remaining variables, all the solution candidates can be collected. To effectively
iterate the assignment of n− k remaining variables, we employ the gray-code to evaluate
the non-linear polynomials. After a solution candidate has been collected, the remaining
m− k equations will be used to verify the correctness of the candidate. If the MQ problem
is solvable, a complete iteration on the remaining n− k variables will finally give a solution
of the MQ problem.

4.2.4 Verify Message Candidates

By the last step, all 800 variables in the Keccak system can be linearly represented by
31 variables in the MQ problem. Using the solution obtained from the last step and all
the constraints imposed in the previous steps, a message candidate with complete 800-bit
content can be reproduced. Since 53 bits in the hash are randomly guessed, we still need
to compare the 4-round hash of the reproduced message with the target hash. In practice,
the execution time of this verification process is negligible compared with that of updating
and solving MQ problems.

4.2.5 Benchmarks

To inspect the practical performance of each subroutine in terms of the execution time, in
this section, we present a benchmark on our implementation towards the preimage attack
of 4-round Keccak[r = 640, c = 160, l = 80]. All the subroutines are implemented using
CUDA and C++. The computation time of each subroutine is shown in Table 5.

As described in Section 4.2.1, the subroutine to preprocess on constant linear constraints
is invoked at the beginning of the program and it will be executed only once. Need to
mention that, the subroutine to set iterating constraints, update MQ problems, and verify
produced hashes are multithreaded and the program would process on a batch (214) of guess
candidates, thus for these subroutines the execution time is measured as the elapsed time
to process one batch of guess candidates. Also note that, three subroutines are executed
on CPU, i.e., the subroutine to preprocess constant linear constraints, the subroutine
to set iterating constraints and update MQ problems, and the subroutine to verify the
reproduced message. When a new batch of MQ problems is updated, it is copied to the
off-chip memory of GPU for solving process. In practice, the GPU program to solve MQ
problems can be pipelined with the subroutine to update the MQ problems.

Table 5: Preimage attack on 4-round Keccak[r = 640, c = 160, l = 80] with 4 CPU cores
and a single Tesla V100 GPU card.

MQ Solving Method D

Runtime
of preprocessing
constant linear
constraints
(seconds)

Runtime
of setting
iterating

constraints
and updating

MQ
problems
(seconds)

Runtime
of solving

MQ
problems
(seconds)

Runtime
of

verification
(seconds)

Estimate
runtime
to obtain
a preimage
(GPU Year)

Crossbred 2
7.76 21.21

183.89
4.43

223
Crossbred 3 263.94 308

Fast Exhaustive
Search

N/A 212.13 253

In the Crossbred Algorithm, the performance of MQ problem solving is impacted by
the setting of Macaulay matrix degree D and the number of equations and variables. We
perform several experiments to determine the best choice of degree D among D = 2, 3. The
result in Table 5 shows that setting D = 2 has the best practical performance. According

20 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

to Table 5, the entire search space is 239 and the program takes 209.53 seconds to process
on 214 guess candidates. Given the probability to have a solvable MQ system(n = 31,
m = 38) is 2−7, we estimate one preimage can be found in 223 GPU years.

4.3 Results

As described in Subsection 4.1, the target hash value of 4-round Keccak[r = 640, c =
160, l = 80] preimage challenge is

75 1a 16 e5 e4 95 e1 e2 ff 22

We executed our program on the GPU cluster consisting of 50 NVIDIA Tesla V100 GPUs
for a total of 45 days and 7 hours, and obtained 2 message candidates which could produce
hashes with 2 bit differentials.

The message and corresponding result hash of the first candidate are:

A = d7 c4 77 ec e8 22 18 ca 80 90 8a 29 7d 39 78 fc 10 93 1c 97
2e 42 88 81 f8 21 45 4e 04 8f d8 cd 74 27 c9 67 00 00 00 00
e2 7d d6 d0 c4 26 8d c2 19 23 07 6f 16 03 21 61 99 26 41 f8
d1 bd 77 7e 07 de ba b1 fb 70 27 32 8b d8 36 98 01 48 1a e4
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00,

H = 75 1a 16 e5 e4 95 c1 e2 f7 22,

where the differences are highlighted red.

The message and result hash of the second candidate are:

A = 61 47 20 d5 57 c0 64 06 62 ef 6d 7c f1 b3 38 2a cb 8c 48 b6
ff 01 e4 e4 9f 09 9b 05 92 76 dd 25 d5 5e 82 61 11 c7 78 1a
f8 9d 2c b7 82 52 7b 9f 1e f9 59 b0 2d 3e a6 0b 60 57 6c 9f
00 fe 1b 1b 60 f6 64 fa 6d 89 22 da 2a a1 7d 9e ee 38 87 e5
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00,

H = 75 1a 16 e5 e4 95 e1 e2 f7 32.

Along with the obtained 2-bit differential candidates, the frequencies of hamming
distance between candidates’ hash and target hash are counted in Table 6.

5 Conclusion

In this paper, improved preimage attacks are proposed on 4-round Keccak-224 and
Keccak-256. We extend the attacks to the Keccak preimage challenge, implemented on a
GPU cluster. Preimages of two-bit differentials with the target hashing value are found.
Specifically, our attacks are based on the complexity elaboration of solving Boolean MQ
systems, which is a foundamental tool in solving cryptographic problems and hence of
independent interest.

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 21

Table 6: Number of candidates with respect to the hamming distance from the target
hash.

Hamming Distance Number Hamming Distance Number
2 2 13 78146
3 7 14 97193
4 28 15 95992
5 115 16 69338
6 389 17 33109
7 1136 18 10398
8 2883 19 1866
9 7223 20 175
10 15155 21 11
11 30203 22 1
12 52239

Total 425279

References
[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben

Niederhagen, Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for poly-
nomial systems in F2. In Stefan Mangard and François-Xavier Standaert,
editors, Cryptographic Hardware and Embedded Systems, CHES 2010, 12th
International Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Pro-
ceedings, volume 6225 of Lecture Notes in Computer Science, pages 203–218.
Springer, 2010.

[BDPAa] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. The keccak reference,
version 3.0. Submission to NIST (Round 3), 2011. http://keccak.noekeon.
org/Keccak-reference-3.0.pdf.

[BDPAb] G. Bertoni, J. Daemen, M. Peeters, and G. V. Asscher. The keccak crunchy
crypto collision and preimage contest. https://keccak.team/crunchy_
contest.html.

[DDS12] Itai Dinur, Orr Dunkelman, and Adi Shamir. New attacks on keccak-224
and keccak-256. In Anne Canteaut, editor, Fast Software Encryption - 19th
International Workshop, FSE 2012, Washington, DC, USA, March 19-21,
2012. Revised Selected Papers, volume 7549 of Lecture Notes in Computer
Science, pages 442–461. Springer, 2012.

[DDS13] Itai Dinur, Orr Dunkelman, and Adi Shamir. Collision attacks on up to 5
rounds of SHA-3 using generalized internal differentials. In Shiho Moriai,
editor, Fast Software Encryption - 20th International Workshop, FSE 2013,
Singapore, March 11-13, 2013. Revised Selected Papers, volume 8424 of Lecture
Notes in Computer Science, pages 219–240. Springer, 2013.

[Din21] Itai Dinur. Cryptanalytic applications of the polynomial method for solving
multivariate equation systems over GF(2). Cryptology ePrint Archive, Report
2021/578, 2021. https://eprint.iacr.org/2021/578.

[DMP+14] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Practical complexity cube attacks on round-reduced keccak sponge
function. IACR Cryptol. ePrint Arch., 2014:259, 2014.

[DMP+15] Itai Dinur, Pawel Morawiecki, Josef Pieprzyk, Marian Srebrny, and Michal
Straus. Cube attacks and cube-attack-like cryptanalysis on the round-reduced

http: //keccak.noekeon.org/Keccak-reference-3.0.pdf
http: //keccak.noekeon.org/Keccak-reference-3.0.pdf
https://keccak.team/crunchy_contest.html
https://keccak.team/crunchy_contest.html
https://eprint.iacr.org/2021/578

22 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

keccak sponge function. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Sofia,
Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 733–761. Springer, 2015.

[Dua20] João Diogo Duarte. On the complexity of the crossbred algorithm. IACR
Cryptol. ePrint Arch., 2020:1058, 2020.

[GLS16] Jian Guo, Meicheng Liu, and Ling Song. Linear structures: Applications to
cryptanalysis of round-reduced keccak. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, volume
10031 of Lecture Notes in Computer Science, pages 249–274, 2016.

[HLY21] Le He, Xiaoen Lin, and Hongbo Yu. Improved preimage attacks on 4-round
keccak-224/256. IACR Transactions on Symmetric Cryptology, 2021, Issue
1:217–238, 2021.

[HWX+17] Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan
Zhao. Conditional cube attack on reduced-round keccak sponge function. In
Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology
- EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May
4, 2017, Proceedings, Part II, volume 10211 of Lecture Notes in Computer
Science, pages 259–288, 2017.

[JV17] Antoine Joux and Vanessa Vitse. A crossbred algorithm for solving boolean
polynomial systems. In Jerzy Kaczorowski, Josef Pieprzyk, and Jacek
Pomykala, editors, Number-Theoretic Methods in Cryptology - First Interna-
tional Conference, NuTMiC 2017, Warsaw, Poland, September 11-13, 2017,
Revised Selected Papers, volume 10737 of Lecture Notes in Computer Science,
pages 3–21. Springer, 2017.

[LBDW17] Zheng Li, Wenquan Bi, Xiaoyang Dong, and Xiaoyun Wang. Improved condi-
tional cube attacks on keccak keyed modes with MILP method. In Tsuyoshi
Takagi and Thomas Peyrin, editors, Advances in Cryptology - ASIACRYPT
2017 - 23rd International Conference on the Theory and Applications of Cryp-
tology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science, pages
99–127. Springer, 2017.

[LDB+19] Zheng Li, Xiaoyang Dong, Wenquan Bi, Keting Jia, Xiaoyun Wang, and Willi
Meier. New conditional cube attack on keccak keyed modes. IACR Trans.
Symmetric Cryptol., 2019(2):94–124, 2019.

[LIMY20] Fukang Liu, Takanori Isobe, Willi Meier, and Zhonghao Yang. Algebraic at-
tacks on round-reduced keccak/xoodoo. IACR Cryptol. ePrint Arch., 2020:346,
2020.

[LPT+17] Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams,
and Huacheng Yu. Beating brute force for systems of polynomial equations
over finite fields. In Philip N. Klein, editor, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–2202. SIAM,
2017.

Congming Wei , Chenhao Wu , Ximing Fu , Xiaoyang Dong , Kai He , Jue Hong and
Xiaoyun Wang 23

[LS19] Ting Li and Yao Sun. Preimage attacks on round-reduced keccak-224/256 via
an allocating approach. In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Darmstadt,
Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture
Notes in Computer Science, pages 556–584. Springer, 2019.

[LSLW17] Ting Li, Yao Sun, Maodong Liao, and Dingkang Wang. Preimage attacks on
the round-reduced keccak with cross-linear structures. IACR Trans. Symmetric
Cryptol., 2017(4):39–57, 2017.

[MPS13] Pawel Morawiecki, Josef Pieprzyk, and Marian Srebrny. Rotational cryptanaly-
sis of round-reduced keccak. In Shiho Moriai, editor, Fast Software Encryption
- 20th International Workshop, FSE 2013, Singapore, March 11-13, 2013.
Revised Selected Papers, volume 8424 of Lecture Notes in Computer Science,
pages 241–262. Springer, 2013.

[MS13] Pawel Morawiecki and Marian Srebrny. A sat-based preimage analysis of
reduced keccak hash functions. Inf. Process. Lett., 113(10-11):392–397, 2013.

[QSLG17] Kexin Qiao, Ling Song, Meicheng Liu, and Jian Guo. New collision attacks
on round-reduced keccak. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part III, volume 10212 of
Lecture Notes in Computer Science, pages 216–243, 2017.

[Raj19] Mahesh Sreekumar Rajasree. Cryptanalysis of round-reduced KECCAK using
non-linear structures. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta,
editors, Progress in Cryptology - INDOCRYPT 2019 - 20th International
Conference on Cryptology in India, Hyderabad, India, December 15-18, 2019,
Proceedings, volume 11898 of Lecture Notes in Computer Science, pages 175–
192. Springer, 2019.

[SGSL18] Ling Song, Jian Guo, Danping Shi, and San Ling. New MILP modeling:
Improved conditional cube attacks on keccak-based constructions. In Thomas
Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASI-
ACRYPT 2018 - 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December
2-6, 2018, Proceedings, Part II, volume 11273 of Lecture Notes in Computer
Science, pages 65–95. Springer, 2018.

[SLG17] Ling Song, Guohong Liao, and Jian Guo. Non-full sbox linearization: Ap-
plications to collision attacks on round-reduced keccak. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part II, volume 10402 of Lecture Notes in Computer
Science, pages 428–451. Springer, 2017.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions MD4 and RIPEMD. In Ronald Cramer, editor,
Advances in Cryptology - EUROCRYPT 2005, 24th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in
Computer Science, pages 1–18. Springer, 2005.

24 Preimage Attacks on 4-round Keccak by Solving Multivariate Quadratic Systems

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, Advances in Cryptology - EUROCRYPT 2005,
24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings,
volume 3494 of Lecture Notes in Computer Science, pages 19–35. Springer,
2005.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full
SHA-1. In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer
Science, pages 17–36. Springer, 2005.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Victor Shoup, editor, Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes
in Computer Science, pages 1–16. Springer, 2005.

	Introduction
	Preliminaries and Main Techniques
	Notation
	The sponge function
	Keccak-f PERMUTATIONS
	The Keccak Hash Function
	Properties of Step
	On the Concrete Complexity of Crossbred Algorithm with D=2

	Preimage Attacks on 4-Round Keccak
	Preimage Attack on 4-round Keccak-224
	Preimage Attack on 4-round Keccak-256

	Application to Keccak Challenge
	Preimage Attack on 4 round Keccak[r=640,c=160, l=80]
	Implementation Details
	Results

	Conclusion

