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Abstract. The idea of hybrid homomorphic encryption (HHE) is to drastically reduce
bandwidth requirements when using homomorphic encryption (HE) at the cost of
more expensive computations in the encrypted domain. To this end, various dedicated
schemes for symmetric encryption have already been proposed. However, it is still
unclear if those ideas are already practically useful, because (1) no cost-benefit analysis
was done for use cases and (2) very few implementations are publicly available. We
address this situation in several ways. We build an open-source benchmarking
framework involving several use cases covering three popular libraries. Using this
framework, we explore properties of the respective HHE proposals. It turns out
that even medium-sized use cases are infeasible, especially when involving integer
arithmetic. Next, we propose PASTA, a cipher thoroughly optimized for integer
HHE use cases. PASTA is designed to minimize the multiplicative depth, while also
leveraging the structure of two state-of-the-art integer HE schemes (BFV and BGV)
to minimize the homomorphic evaluation latency. Using our new benchmarking
environment, we extensively evaluate PASTA in SEAL and HElib and compare its
properties to 8 existing ciphers in two use cases. Our evaluations show that PAsTA
outperforms its competitors for HHE both in terms of homomorphic evaluation time
and noise consumption, showing its efficiency for applications in real-world HE use
cases. Concretely, PASTA outperforms AGRASTA by a factor of up to 82, MASTA by a
factor of up to 6 and HERA up to a factor of 11 when applied to the two use cases.

Keywords: homomorphic encryption - hybrid homomorphic encryption - Pasta -
SEAL - HElib - TFHE

1 Introduction

In recent years, people have become increasingly concerned about the privacy of their data,
and new regulations like the General Data Protection Regulation (GDPR)! forbid sharing
and processing sensitive data. However, many applications, such as machine learning and
statistics, require a vast amount of data to be as accurate as possible. With GDPR and
similar regulations it is therefore difficult or even impossible to gather enough data to create
useful and accurate models. One solution to this problem is employing privacy-preserving
cryptographic protocols and primitives, such as secure multi-party computation (MPC)
or homomorphic encryption (HE). Homomorphic encryption schemes allow performing
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computations on encrypted data without having access to the secret decryption key. Many
privacy-preserving applications which employ homomorphic encryption use the following
design principle: First, the data holder encrypts their dataset using a homomorphic
encryption scheme and sends the ciphertexts to a server. The server then performs the
computations on the ciphertexts and produces an encrypted result. Only the data holder
knows the secret decryption key, so the server has to send the encrypted result to the
data holder who can then decrypt it to get the final result of the computation. While
this approach protects both the privacy of the input data and the secrecy of the applied
computations, it comes with several drawbacks: First, applying homomorphic encryption
results in a drastic performance penalty. Secondly, HE schemes suffer from ciphertext
expansion. This means that the ciphertexts in HE schemes are several orders of magnitude
larger than the corresponding plaintexts. This expansion negatively impacts the amount of
data which has to be transferred from the data holder to the server. Especially when the
client is an embedded device with limited bandwidth, memory, and computing power, this
expansion can have a considerable impact on the overall performance of the application.
The academic literature proposes two orthogonal solutions to this ciphertext expansion:
Using symmetric ciphers in hybrid homomorphic encryption, or using LWE encryption and
efficient conversion algorithms [CDKS21]. In this paper we focus on hybrid homomorphic
encryption, its effect on integer HE use cases, and consequences of the chosen symmetric
cipher.

1.1 Hybrid Homomorphic Encryption (HHE)

Hybrid homomorphic encryption was first mentioned in [NLV11]. The main idea behind
HHE is the following: Instead of encrypting the data with HE schemes, encrypt the data
with a symmetric cipher (expansion factor of 1) and send the symmetric ciphertexts to the
server. The server then first homomorphically performs the symmetric decryption circuit
to transform the symmetric ciphertext into a homomorphic ciphertext and then proceeds
with performing the actual computations. This procedure trades bandwidth requirements
with a more expensive computation on the server and requires that the data holder first
sends the symmetric key encrypted under homomorphic encryption.

HE Schemes and HE-Friendly Symmetric Ciphers. Today, many HE schemes exist,
such as BFV [Bral2, FV12] and BGV [BGV12] which allow for integer plaintexts in
Zq with ¢ > 2, CKKS [CKKS17] which allows HE for real numbers, the original TFHE
scheme [CGGI20] allowing only boolean plaintext, as well as the optimized TFHE version
working over low-precision integers [CJP21]. These different schemes come with vastly
different advantages and disadvantages and have diverging optimization criteria, such
as minimizing the multiplicative depth in BFV/BGV/CKKS and minimizing the total
number of gates when using the gate-bootstrapping mode of TFHE.

At first, researchers tried to evaluate existing ciphers, like AES [DR00, DR02], with
homomorphic encryption [GHS12, CCK™13, CLT14]. However, despite their plain effi-
ciency, existing ciphers were not well-suited for HHE. Especially their large multiplicative
depth deemed to be incompatible with modern HE schemes. As a consequence, researchers
came up with symmetric cipher designs with different optimization criteria compared to,
e.g., AES, mainly minimizing the multiplicative depth to be efficiently computable un-
der HE. Many proposed HE-friendly symmetric ciphers, such as LowMC [ARST15],
RasTAa [DEGT18], AGrasTA [DEGT18], Dasta [HL20], KrREYVIUM [CCFT16], and
FILIP [MCJS19], are defined over Zs, i.e., plaintexts are binary values. Consequently,
they can be used to combat ciphertext expansion in the original TFHE scheme, as well as
in BFV/BGV when instantiated with ¢ = 2. Follow-up work then also introduced efficient
ciphers for the requirements of the updated TFHE scheme (e.g., ELISABETH [CHMS22)),
as well as ciphers tailored to CKKS, such as RuBato [HKL*"22].
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Open Problem. However, despite there being a vast number of symmetric ciphers
proposed in the literature, the real ramifications of applying HHE to any use case are not
yet understood so far. This is a direct consequence of a lack of benchmark comparisons of
different symmetric ciphers in different HE libraries when applied to different use cases.
As a result, the inefficiency of existing symmetric ciphers when applied to BEV/BGV with
q > 2 (which is required for many use cases involving statistics or integer arithmetic in
general, e.g., [JVC18, CMdG™21, BBHT22]) was not yet realized so far: Once ¢ is chosen
for BGV/BFV, it cannot be changed without knowledge of the secret decryption key or
without bootstrapping which is still not supported by many major HE libraries. Thus, if
one wants to use one of the vast ciphers over Zs, one needs to instantiate BGV/BFV with
q = 2 to be able to evaluate the boolean decryption circuit of these ciphers. This, however,
results in also having to evaluate the use case in Zy which requires to build binary circuits
with significantly larger multiplicative depth to realize integer arithmetic. For this reason,
using HHE in use cases over integers already implies a heavy performance loss compared
to just implementing the use case with homomorphic encryption.

1.2 Contribution

Having said that, in this paper we tackle these problems and close the gap by implementing
a benchmarking framework comparing multiple symmetric ciphers in three HE libraries
and two use cases. We then also introduce the novel family of stream ciphers (dubbed
PASTA) which are defined over F),. More specifically, our contributions are the following:

Extensive HHE Benchmarking Framework. To the best of our knowledge, we are the
first to provide an extensive comparison of different symmetric ciphers in the context of
hybrid homomorphic encryption spanning over several libraries. Notably, this increases the
number of publicly implemented HHE schemes from only one to a total of 17, aiding public
verifiability.2 We come to the conclusion that most existing designs are not well-suited for
large classes of use cases.

Designing an Efficient Cipher for HHE. Based on the conclusions of our benchmarking
framework, we explore the design space for efficient ciphers for HHE over F,,. Starting
from the cost metrics in BFV/BGV and the RASTA design strategy, we compare several
different proposal for efficient S-box implementations and show how to instantiate the
slowest part of the cipher — the linear layer — in an efficient way by splitting the design in
two parallel branches.

Pasta. Based on the analysis just described, we propose a new symmetric cipher, dubbed
PASTA, optimized for integer HHE use cases. PASTA is defined to operate on plaintexts in
IF;,, greatly increasing the performance compared to most previously proposed symmetric
ciphers which are defined over Zs. Further, PASTA is designed to make use of the structure
of two state-of-the-art integer HE cryptosystems (BFV and BGV) to minimize HHE
decompression latency while still maintaining a small number of rounds and multiplicative
depth. Our extensive benchmarks in our newly created framework confirm the advantage of
PASTA compared to all other symmetric ciphers for HHE. Concretely, PASTA outperforms
AcrAsTA [DEGT18], the currently fastest Zs cipher for HHE, by a factor of 82 when applied
to a small use case in HElib, and it outperforms MasTA [HKC"20] and HERA [CHK*21],
the two ]F;7 contenders, by a factor of up to 6 and 11 respectively when applied to a larger
use case in SEAL.

2All our implementations are open source and available at https://github.com/IAIK/
hybrid-HE-framework.git.
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Follow-Up Works. Since we initially made our paper publicly available, our implemen-
tation framework has been used as a baseline for benchmarks in the followup designs
proposed in [CIR22] and [CHMS22]. Furthermore, the RUBATO cipher [HKL*22] directly
uses the Feistel S-box (proposed in Section 6.4) as its non-linear layer.

1.3 OQOutline

The remaining paper is structured as follows. We first start with a small introduction to
homomorphic encryption in Section 2, before we discuss related work to combat ciphertext
expansion in different HE libraries in Section 3. Then we proceed by showing the effect
of HHE on the server and client side when applied to a specific use case in Section 4.
This section concludes with the statement, that the choice of symmetric cipher mostly
effects the server side, which is why we proceed investigating the server side when using
Zs ciphers in Section 5. Since these ciphers are not suited for integer HE use cases, we
design a new cipher in Section 6 and give the complete specification of the result, dubbed
PASTA, in Section 7. We continue by analyzing the security of PASTA in Section 8 and
finally benchmark it against its competitors in Section 9.

About Benchmarks. Throughout the paper, we run all benchmarks on a Linux server
with an Intel Xeon E5-2699 v4 CPU (2.2 GHz, turboboost up to 3.6 GHz) and 512 GB
RAM. Each individual benchmark only has access to one thread.

1.4 Notation

Let t > 1. For each vector ¥ € Fff we denote T := ZL||Zr where Zr,Tg € IF; are
respectively the left and the right ¢ words. Further, we write rot;(%) to indicate a rotation
of the vector ¥ € ]F; by i steps to the left. With ¢ © 7 we denote the element-wise product
(Hadamard product) between two vectors g, m € ng.

2 Homomorphic Encryption

Homomorphic encryption has often been labeled the holy grail of cryptography, since it
allows to perform any computation on encrypted data without knowledge of the secret
decryption key. The concept of HE was introduced by Rivest et al. [RAD78], but the
first schemes were only capable of performing one specific operation on encrypted data
(e.g., multiplication with RSA [RSAT78], addition with Paillier [Pai99]). The breakthrough
came with Gentry’s work from 2009 [Gen09], showing the first fully homomorphic en-
cryption (FHE) scheme which in theory can perform any computation on encrypted data.
Although deemed impractical, this work led the way for many improvements and follow-up
publications [Bral2, FV12, BGV12, CGGI20, CKKS17].

Today’s HE schemes base their security on the learning with errors (LWE) hard-
ness assumption [Reg05], and its optimization over polynomial rings (Ring-LWE, or R-
LWE) [LPR10]. In these schemes, random Gaussian noise is added during the encryption
process. A homomorphic operation then increases this noise, negligible for homomorphic
addition, but significant for homomorphic multiplication. Once the noise exceeds a specific
threshold, the decryption will fail. The resulting schemes, therefore, allow the evaluation of
arbitrary circuits over encrypted data up to a specific multiplicative depth which depends
on the encryption parameters. Such a scheme is called a somewhat homomorphic encryption
(SHE) scheme. In general, increasing the parameters to support a bigger circuit depth
comes with a great performance penalty. In [Gen09], Gentry introduced the bootstrapping
technique, a method to reset the noise in a homomorphic ciphertext. Bootstrapping allows
to evaluate circuits of arbitrary depth on encrypted data and turns a (bootstrappable) SHE
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scheme into an FHE scheme. However, bootstrapping comes with a significant performance
overhead, which is why it is often faster to choose an SHE scheme with sufficiently large
parameters.

2.1 Packing

Many modern HE schemes allow to encode a vector of n plaintexts into only one polynomial,
and therefore, encrypt a vector into only one ciphertext [SV14]. Thereby, the size of the
ciphertext does not depend on the exact number of slots (< n) of the vector filled during
encryption. Homomorphic operations on the ciphertexts then correspond to element-wise
operations on the encrypted vector. This packing is similar to single-instruction-multiple-
data (SIMD) instructions on modern CPUs and can be used to massively increase the
throughput and decrease the ciphertext expansion of HE applications. Operations supported
by this packing include addition, subtraction, multiplication, and slot rotation. However,
once encrypted, one cannot directly access individual slots of the encrypted vector. The
available number of slots n depends on the parameters of the HE scheme and can range up
to several thousand slots. Slot rotation is implemented by evaluating Galois automorphisms
7i : a(X) — a(X*) on encoded polynomials.

2.2 HE Schemes and Libraries

In this paper, we consider three HE schemes and their implementation in three libraries.
We discuss the BFV [Bral2, FV12] scheme (and its implementation in SEAL [SEA20])
in this section and for the sake of conciseness refer to Appendix A for a discussion of
BGV [BGV12] in HEIlib [HS20] and TFHE [CGGI20] in the TFHE library [CGGI16].
Furthermore, benchmarks in HElib and TFHE are later discussed in the appendix as well.

BFV [Bral2, FV12] in SEAL [SEA20]. In BFV in SEAL plaintexts are elements in Z,.
However, to support the packing described in the previous section, g has to be a prime
p and packing is not supported for ¢ = 2, i.e., one can not pack boolean plaintexts. We
use SEAL version 3.6.2 in the paper. The runtime and added noise by homomorphic
additions is negligible, which is why additions are considered free in the BFV cryptosystem.
Therefore, the most relevant performance metric is the multiplicative depth of the evaluated
circuit.

3 Related Work

In this paper we focus on HHE for the BFV and BGV HE schemes, and also discuss the
application to the gate-bootstrapping mode of the original TFHE library. Hence, we
include the boolean ciphers LowMC [ARST15], RAsTA [DEGT 18], AGRASTA [DEGT18§]
(which is the “aggressive” version of RASTA, recently broken in [LSMI21]), DAasTa [HL20],
KREYVIUM [CCFT16], and FILIP [MCJS19], alongside the F,, competitors MAsTA [HKC*20]
and HERA [CHK21], in our comparison. However, other proposals for different HE schemes,
such as CKKS and the Concrete library, exist which we shortly discuss in Section 3.1
and Section 3.2. Finally, in Section 3.3, we discuss an alternative approach to reducing
bandwidth requirements for HE applications which does not involve symmetric encryption
schemes.

3.1 HHE for CKKS

The CKKS [CKKS17] homomorphic encryption scheme is another HE scheme which is
relevant for private statistics and machine learning [VJH21, DSC*19, WSH*22, CGL™*20].
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However, the scheme includes approximation errors, which makes it incompatible with
directly evaluating symmetric ciphers under a CKKS encryption. In [CHK™21] the authors
mitigate this problem by proposing a framework (alongside the stream cipher HERA),
where the symmetric cipher is first evaluated under a BFV encryption, before it gets
translated to a CKKS ciphertext. The currently fastest symmetric cipher proposed for this
framework is RuBaTo [HKL*22]. Similar to CKKS, this cipher includes approximation
errors, which allows it to greatly reduces the number of rounds. Consequently, it is very
fast when used with CKKS, but incompatible with BFV and BGV. To highlight the impact
of PASTA we want to mention that the S-Box used in RUBATO is directly taken from
PASTA as proposed in Section 6.4.

3.2 HHE for Concrete

Recently, a new HE library, dubbed Concrete [CJL"20], has emerged, which implements a
newer variant of TFHE as proposed in [CJP21]. This library is vastly different compared
to SEAL/HELib: it allows to perform HE on plaintexts in the ring Zaq for small ¢, supports
bootstrapping and evaluating lookup tables during bootstrapping. Packing, however, is
not supported. In [CHMS22], the authors introduce ELISABETH-4, a Zyq variant of FILIP
which is optimized for HHE using Concrete, and evaluate its performance when classifying
the FMNIST dataset using a deep neural network with HHE. Using ELISABETH-4 (and
consequently Concrete) leads to different tradeoffs compared to PASTA: On one hand HE
use cases are not bound by the depth due to bootstrapping, on the other hand, it only allows
small precision integers (¢ = 4) potentially limiting its applicability to high-precision use
cases. Directly comparing ELISABETH and PASTA is difficult due to their different design
criteria and optimizations for vastly different HE libraries. Nonetheless, in [CHMS22] the
authors compare ELISABETH to PASTA using our implementation framework, showing that
a singlethreaded evaluation of PASTA-4 in HElib has a 1.26 times higher throughput than
a multithreaded ELISABETH-4 in Concrete even though it is evaluated with 48 threads.

3.3 LWE-Native Encryption

In [CDKS21], the authors describe efficient algorithms to convert many LWE ciphertexts
into a packed (see Section 2.1) R-LWE one. These algorithms can also be used to reduce
ciphertext expansion of homomorphic encryption. Their approach works as follows: First,
they encrypt each plaintext m; € F, under a secret key 5 € Z" using basic LWE encryption

by sampling a random vector d; ﬁ Zfzv and calculating b; = —(d;,, 5) + ;, where p; € Zg

is a randomized encoding of m; (with Gaussian noise). The LWE ciphertext then is
(b;,d;) € Zflv 1. To further reduce the size of the ciphertexts, one can use a random seed
se and generate d; using a pseudo-random number generator (PRNG) f. The seed can
be reused to generate the random part of each ciphertext as @; = f(se;?). The resulting
ciphertexts are semantically secure in the random oracle model. The client then transmits
all b; alongside the seed se to the server, which then transforms all LWE ciphertexts into
a packed HE one using the algorithms described in [CDKS21]. The total communication
cost for this approach is one Z, element for each plaintext m; € F,,, plus one seed se to
generate the random part of the ciphertexts.

According to the benchmarks in [CDKS21], the LWE encryption approach has a smaller
multiplicative depth, and thus, less noise consumption compared to HHE.? Depending
on the actually evaluated use case, this smaller noise consumption can lead to requiring
smaller HE parameters with less noise budget, and thus, a runtime advantage. However,

3The source code is not public at the time of writing and their benchmarks are missing the final
transformation to get a packed HE ciphertext. However, our own implementation verifies the statements
in this paragraph (see Section 4).
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their algorithms do not achieve a ciphertext expansion factor of 1, but a factor of iggg +|se|.
For many HE applications, the plaintext space defined by p is in the range of 16 to 60 bit

and the size of ¢ can easily exceed 800 bits, resulting in big expansion factors.

4 A first look at HHE

The performance, advantages, and disadvantages of HHE are not so well understood so far.
Therefore, we start with an high-level investigation of the effects on both the client and
server when applying HHE to a real use case before we investigate the choice of symmetric
cipher in the next sections.

Benchmarking a Generic Use Case. Matrix multiplications over integers are a basic
building block in many applications involving statistics or machine learning. Hence, for our
first look we choose to apply HE and HHE to a use case involving three affine transformations
to a secret vector Zy. In other words, the layers have the form &, = M, - &; + l;i, where
T, T, l_);' € F§007 M; € FI%OOXQOO, and p is a 60-bit prime. To make the use case more generic,
we elementwise square the output vector after the first two affine transformations. The final
use case has a multiplicative depth of 3 plaintext-ciphertext and 2 ciphertext-ciphertext
multiplications and can be seen as, e.g., a small 3-layer neural network with squaring
activation functions. We benchmark this use case after the initial setup phase, i.e., the
server knows an HE encryption of the symmetric key and all HE evaluation keys. Further,
we repeat this 1000 times, and the server aggregates the final results before sending them
back to the client. In a real-world scenario, this would be equivalent to, e.g., a sensor
device sending measurements in fixed intervals to a server.

In Table 1, we give results for evaluating this use case in the SEAL library, first by
just using HE, then by applying HHE with 3 different ciphers, and finally by applying the
alternative approach using LWE-native encryption [CDKS21] (i.e., transmitted ciphertext
are essentially seeded LWE ciphertexts). To better show the effects of HHE, we instantiate
the HHE benchmark once with a generic symmetric cipher (AES), once with a fast boolean
HHE optimized cipher (AGRASTA), and once with a HHE optimized cipher defined over
F, (PASTA-3 as defined in Section 7 — since we aim to investigate the general effects of
applying HHE to a use case in this section, details on PASTA-3 are not important at this
point).

Table 1: Comparison of a use case with HHE to only using HE in SEAL.

Client Server

Random Enc. RAM Comm. Runtime RAM Response

Words s GB kB s GB kB
HE 65 536 000 59  0.550 7404 700 61 900 2.24 987.3
HHE (Pasta-3) 0 16 0.005 1500 | 669 400 23.0 2 097.3
HHE (AGRASTA) 0 2200 0.004 1 500 72 22 > 12 000 000P
HHE (AES) 0 0.040 0.003 1 500 72 22 > 12 000 000P
LWE [CDKS21] 200 000 4229 0.361 22 025 165 900 28.1 987.3

a Multiplicative depth of binary circuit (> 400) far too large for feasible HE parameters.
b No packing in SEAL for Zs plaintexts, i.e., one HE ciphertext per bit.

HHE Results. As Table 1 shows, using HHE reduces the total client-to-server communi-
cation from 7.4 GB to 1.5 MB, the exact size of sending the input vector consisting of 200
60-bit field elements 1000 times. Furthermore, data encryption is also faster and requires
less RAM, with the traditional cipher AES being the fastest option. However, to support
the homomorphic evaluation of the HHE decompression circuit (i.e., homomorphically
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computing the symmetric decryption), the server-side requires larger HE parameters with
higher noise budget, increasing the server-side runtime and RAM requirements. For HHE
using the [, cipher (i.e., PASTA-3), the server-side runtime increases by a factor of 10.
However, using HHE with Z, ciphers (e.g., AGRASTA or AES) requires to implement
binary circuits for the use case, resulting in a significant multiplicative depth requiring
huge HE parameters, and thus in infeasibly long server runtimes.

Remark 1. As discussed in Section 2, one can use bootstrapping to reset the noise in a
homomorphic ciphertext to allow the evaluation of circuits with arbitrary multiplicative
depth. However, SEAL does not support bootstrapping, and it is still very inefficient in
HEIlib and does not result in faster runtimes for the Zs ciphers compared to PASTA in
HHE. Thus, we omit explicit bootstrapping benchmarks in this paper.

LWE Results. As discussed in Section 3.3, LWE-native encryption [CDKS21] has larger
ciphertext expansion than HHE (Concretely an expansion factor of % = 14.68 for the
used parameter set). However, its smaller multiplicative depth allows it to use the same HE
parameters as just using homomorphic encryption, resulting in a smaller runtime overhead.
Both using HE and using LWE-native encryption require sampling Gaussian noise during
encryption. Constrained devices, however, often do not have access to a reliable source of
randomness. Therefore, we also list the number of random Gaussian words required on the
client side to perform the encryption in Table 1. HHE does not require sampling random
values during encryption, which is why using HHE is the preferable choice on constrained
devices without a reliable source of randomness. Consequently, the first benchmarks show
that HHE has the preferable effect on the client side due to not requiring sampling Gaussian
randomness, having faster plain performance, and requiring less communication. The
LWE-native encryption approach, however, leads to a faster server side evaluation due to
having a smaller multiplicative depth.

Client Side Performance. Table 1 clearly shows that just using homomorphic encryption
would result in unnecessarily large client-to-server communication. To further demonstrate
the performance loss, we show the combined client timings (for encryption and client-to-
server communication) for different network speeds in Figure 1. We depict timings for
using only HE, HHE using PASTA-3, and for the LWE-native approach. We omit HHE
using Zs ciphers, since they result in infeasible server runtimes. Figure 1 shows that using
HHE always results in the fastest client-side latencies, especially for network speeds below
1 Gbps (the average LTE upload speed in the USA is 5 Mbps?) where HE runtime is fully
dominated by the data transmission.

Conclusion. To summarize, if the encryption time on a client is the bottleneck, then
using HHE with an F,, cipher (in this case PASTA-3) is the preferred choice. Only HHE
using traditional Zy ciphers (e.g., AES) is faster, but using them results in infeasibly
long server-side computations. Furthermore, if the client bandwidth is the bottleneck,
then HHE has a considerable advantage. The concrete communication advantage depends
on the HE parameters. For our example use case HE requires a factor of 4936x more
communication than HHE, the LWE-native approach a factor of 14.86x. Since HHE has
the largest server-side runtime overhead, using HHE has the best effect on constrained
clients or in slow network settings. The choice of the symmetric cipher used in HHE has
similar effects on the client side (all have ciphertext expansion of 1), but severely affects
the server-side runtime. Consequently, we investigate the server-side computation using
different symmetric ciphers in the remainder of the paper, starting with the inefficiency of
Zs ciphers.

4nttps://www.verizon.com/articles/4g-1te-speeds-vs-your-home-network/
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Figure 1: Encryption + upload time of HE, HHE with PASTA, and LWE-native encryp-
tion [CDKS21] depending on network speed.

We further want to note, that for sake of simplicity we assume plaintexts to have the
exact size of the used prime p (i.e., 60 bit) in this first example of HHE. In practice, the
exact plaintext space might be smaller to prevent overflows in [, during homomorphic
computations. Thus, while still instantiating the symmetric cipher and HE scheme with a
60 bit plaintext prime p, the actually used plaintexts might be significantly smaller. Since
the size of HE and LWE ciphertexts in Table 1 do not depend on p but on a ciphertext
modulus ¢, the size of the used plaintext being undetectable once encrypted, and the need
to instantiate I, ciphers with the same prime to allow decryption under HE, the values in
Table 1 do not change for HE, LWE and HHE with the ), cipher PASTA-3. Only the Zy
ciphers will benefit from the smaller plaintexts with smaller client to server communication.
However, since the server side computation with its too large multiplicative depth is
infeasibly long due to the need for binary circuits, this small advantage on the client side
plays no role in practice.

5 Inefficiency of Z, Ciphers

In this section, we evaluate the usability of proposed symmetric ciphers for HHE. We focus
on boolean ciphers with plaintexts in Zs since these are the majority of ciphers proposed
for HHE. The main design criterion of all these ciphers is to reduce the AND depth of the
decryption circuit.

Hybrid homomorphic encryption aims to reduce the communication overhead for
outsourcing computations to a cloud. Therefore, we investigate not only the performance
of the decryption circuit of each cipher under homomorphic encryption, but also the
performance of the cipher in a complete HHE use case. The use case we benchmark in this
section is very small, concretely a server which computes ¥ = M - ¥+ l_;, where 7, T, be Zgw
and M € ngﬁf’, i.e., a b x b matrix-vector multiplication of 16-bit integers. The matrix M
and the vector b are private and owned by the server, whereas & is a private vector owned
by the client. The client uses HHE to send & in encrypted form to the server, and will
get 7 in encrypted form as a result. As described above, the choice of a cipher over Zs
also requires that we compute the integer matrix multiplication over Z,. This requires
the implementation of binary circuits for addition® and multiplication, which have a much
higher AND depth than performing the same operations over F,. Despite being only a

5We implemented depth-optimized carry-lookahead adders (CLA) in HElib and SEAL, and standard
ripple carry adders (RCA) in TFHE.
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very small matrix multiplication (5 x 5 with 16-bit integers), our benchmarks (given later
in this section) show that the evaluation is already very slow, making it infeasible for Zs
ciphers to be applied to real-world statistics or machine learning use cases with multiple
chained matrix multiplications of larger integers with matrices consisting of hundreds of
entries.

5.1 A Zoo of Z, Ciphers

In this paper, we benchmark 128-bit security instances of the ciphers LowMC [ARS™15],
RasTA [DEGT18], AGRASTA [DEG™ 18], DAsTA [HL20], KREYVIUM [CCF16] (as stream
cipher and in depth-bounded CTR mode), and FILIP [MCJS19]. In Table 2 we summarize
the parameters of the ciphers in their respective modes of operation.b

Table 2: Parameters of the benchmarked Zs, ciphers in their respective modes of operations
in bits.

Cipher Blocksize Keysize Rounds AND-depth
LowMC 256 128 14 14
RASTA-5 525 525 5 5
RASTA-6 351 351 6 6
DAsTA-5 525 525 5 5
DASTA-6 351 351 6 6
AGRASTA 129 129 4 4
KREYVIUM - 128 - -
KREYVIUM-12 46 128 - 12
KREYVIUM-13 125 128 - 13
FILIP-1216 - 16384 - 3
FILIP-1280 - 4096 - 4

We start this section by first introducing RASTA, which is the baseline for many
other proposals, before we discuss some followup-ciphers not included in our benchmark
comparisons.

Rasta. RASTA is a family of stream ciphers, in which a permutation is applied to the secret
key to produce the keystream. The permutation consists of several rounds of affine layers
and an S-box instantiated with the x-transformation [Dae95]. The main design criteria of
RASTA is that each affine layer is pseudorandomly generated from an extendable-output
function (XOF) [NIS15] seeded with a nonce N and the block counter . This essentially
prevents all attacks which require multiple plaintext/ciphertext pairs and allows to build a
cipher with a low number of rounds. We depict the RASTA permutation in Figure 2.

Fasta. Shortly after first releasing our paper to the public the cipher FasTa [CIR22]
was published. FASTA is an optimization of RASTA in which the linear layer is adapted
for faster packed evaluation for specific HElib parameters. However, since not every HE
library (such as SEAL) allows packing for Zs ciphers, and FASTA’s optimization directly
benefits from very specific HElib parameters and does not translate to every use case or
library, we do not include it in our comparisons. For benchmarks comparing RASTA to
FASTA using our implementation framework we refer to [CTR22].

SKRrEYVIUM, FILIP-1216, and FILIP-1280 are stream ciphers without defined block size. In our
benchmarks, we therefore define one block to be 46 bits for KREYVIUM and 64 bits for both FILIP instances
since we believe just benchmarking one bit is not representitive.
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N,i — XOF

key dependent

A Y
K"A(),N,iAl,N,i% AH Ky

Figure 2: The r-round RASTA construction to generate the keystream Ky ; for block i
under nonce N with affine layers A; n ;. The picture is taken from [DEG'18].

Chaghri. Very recently, another boolean ciphers, namely CHAGHRI [AMT22], was pro-
posed in the literature. Following the Marvelous [AAB™20] design strategy, each round of
CHAGHRI has a AND-depth of 2. Together with its comparably high number of rounds,
CHAGHRIs total depth is 16, making it significantly deeper then any other symmetric cipher
over Zs discussed in our work. Furthermore, this design is heavily optimized for using a
special type of packing, where each slot encodes polynomials in Foes. While this allows
them to use Frobenius automorphisms to evaluate 22" for free, it also has the disadvantage
that no technique (to the best of our knowledge) is known to homomorphically extract
bits from these polynomials. Consequently, one either has to pack only one bit into these
polynomials severely limiting throughput, or CHAGHRI can only be applied to very specific
use cases using this packing. Furthermore, this type of packing is not available in some
libraries, such as SEAL. Finally, each CHAGHRI round consists of two multiplications with
3 x 3 MDS matrices, which have to be implemented over polynomials with 63 elements,
which is very expensive without this packing.

Besides, CHAGHRI was broken shortly after publication, which is also confirmed by
the authors [AMT22]. The attack [LAW™22] works in practical time and increases the
number of rounds from 8 to at least 14. Based on the benchmarks given in [AMT22],
this increase by 75 % would result in a performance close to AES (i.e., the only other
cipher they consider in their paper), which is severely outperformed by any other Zs cipher
proposed for HHE. However, the authors of [LAW™22] propose a modification of CHAGHRI,
which allows to keep the 8 rounds while maintaining roughly the same efficiency, which
was then later adopted by the authors of CHAGHRI [AMT22].

For all these reasons, CHAGHRI does not provide better performances than any other
cipher considered in this paper, and we do not include it in our performance evaluation.

5.2 SEAL Benchmarks

In this section we discuss the benchmarks for the Zsy ciphers in SEAL, for benchmarks in
HElib and TFHE we refer to Appendix B.2.1 and Appendix B.1 respectively. In SEAL,
the available noise budget (i.e., how much further noise can be introduced until decryption
will fail) depends on the ciphertext modulus q. However, big moduli g require a big degree
N of the cyclotomic reduction polynomial for security. N, which is always a power of two,
has a severe impact on the performance of the HE scheme. While a larger NV allows for
larger ¢ to increase the noise budget, it significantly increases the runtime of homomorphic
operations.

In Table 3 we present the benchmarks for the SEAL library, for homomorphically
decrypting only one block, and for the small HHE use case, i.e., the 16-bit 5 x 5 affine
transformation. For both benchmarks we give timings for homomorphically encrypting
the symmetric key and homomorphically decrypting the symmetric ciphertexts (i.e.,
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decompressing the HHE ciphertext) for the smallest N allowing enough noise budget for
correct evaluation. We parameterize ¢ such that the HE scheme has a security of 128
bits. For the HHE use case we additionally give the runtime for the affine transformation.
Since SEAL does not allow to use packing with plaintexts in Zs, all implementations are
bitsliced (i.e., one HE ciphertext per bit).

Table 3: Benchmarks of the Zo ciphers in the SEAL library (security level A = 128 bit).

1 Block Small HHE use case
Cipher N Enc. Key | Decomp. N Enc. Key | Decomp. | Use Case
s s s s s

LowMC 16384 1.75 613.9 | 32768 6.12 2 702.7 1202.1
RASTA-5 8192 2.12 135.9 | 32768 25.4 2 618.5 1 201.8
RASTA-6 8192 1.42 88.5 | 32768 17.1 1 802.0 1 199.6
DASTA-5 8192 2.20 134.1 | 32768 25.4 2 594.0 1 209.2
DASTA-6 8192 1.49 88.7 | 32768 17.2 1811.8 1 209.8
AGRASTA 8192 0.534 16.3 | 16384 1.76 76.2 241.0
KREYVIUM 16384 1.84 412.8 | 32768 6.17 2 028.5 1 210.7
KREYVIUM-12 | 16384 1.75 414.8 | 32768 6.30 3 925.8 1217.9
KREYVIUM-13 | 16384 1.83 442.1 | 32768 6.18 1 999.0 1199.3
FILIP-1216 8192 66.1 1 064.7 | 16384 223.9 6 619.0 244.5
FILIP-1280 8192 16.7 1251.6 | 16384 56.0 7 783.2 242.0

5.3 Discussion

Our benchmarks show that the runtime of the whole HHE use case (including cipher
evaluation) using the Zy ciphers is high, despite the tested use case being small. This
emphasizes the requirement of F, ciphers for HHE with integer use cases. In SEAL and
HElib, the fastest ciphers are the ciphers based on the RASTA design strategy (RASTA,
DASTA, AGRASTA), with AGRASTA being the fastest due to its small multiplicative depth.
Only FILIP has better noise propagation. However, due to its large symmetric key and
long evaluation time, it is not competitive in the libraries we benchmarked. For figures
comparing the runtime of HHE in SEAL and HElib and a comparison to [, ciphers, we
refer to Section 9.1.

6 Designing an Efficient Cipher for HHE over F,

Following the results from the previous section, we now want to design an efficient cipher for
HHE for integer use cases. We will first have a look at existing related work (Section 6.1),
before we identify the cost metric of the HE schemes in more detail (Section 6.2) and
design a cipher accordingly.

6.1 Related Work

Masta. In an independent and concurrent work another symmetric cipher over IF; created
for HHE use cases is introduced, namely MAsTA [HKC*20]. In their work, the F,, cipher
MaAsTA is proposed to increase throughput compared to boolean ciphers when evaluated
under HE and its decryption runtime under HE is compared to RASTA when implemented
in the HElib library.”

"We suspect that in [HKC™20] the authors only benchmark a word-sliced HE implementation of MASTA,
which is why our packed implementation of MASTA is significantly faster.
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MASTA can be seen as a direct translation of RASTA (Figure 2) to Iy, with the exception
of a different strategy in sampling random invertible matrices. Their approach involves
sampling a random polynomial m € Z,[X]/(X" — «) and translating m into a matrix M.
This matrix is then invertible by design and they only have to sample s field elements
€ F,,. Even though the S-box used in RASTA is in general not a permutation over ]F;, and
therefore limits the possible outputs of the S-box layer in MASTA,® the designers did not
consider any additional changes to the baseline design and do not leverage any advantages
of HE over fields IF,,. In this paper we consider the two 128-bit security instances of MASTA
with the lowest depth and use SHAKE128 to pseudorandomly generate all affine layers.

Since MASTA does not consider any additional changes to RASTA based on the properties
of BGV/BFV, and the S-box is not a permutation in F,, we aim to design a more optimized
cipher in the next sections.

Hera. Another F, cipher, namely HErRA [CHK'21], was proposed in the literature
alongside a framework for applying HHE to CKKS. Contrary to RUBATO, HERA can also
be applied to BFV and BGV which is why we also consider it in our comparisons.

The main design rationale behind HERA is to apply the RASTA design strategy in a
different way to also benefit from the prevention of statistical attacks by randomizing
the cipher, but with less preprocessing cost. They do this by fixing the affine layers
and randomizing the key schedule by multiplying the key elements with pseudorandomly
sampled IF,, elements. They also fix a small statesize of just 16 words and a round number
of 5 for 128 bit security and instantiate their linear layers with efficient AES-like matrices.
As nonlinear layer they use the well-known cubing layer (see Section 6.4).

6.2 Cost Metrics

The goal is to design an efficient cipher for HHE over IF; with 216 < p < 2699 Since
in both BGV and BFV (and their respective implementations in SEAL and HElib) the
most significant performance metric is the multiplicative depth due to the absence of an
efficient bootstrapping operation, our main goal is to reduce this metric. Since every round
contributes to the multiplicative depth, and therefore to the overall noise consumption
during a homomorphic evaluation of the cipher, we aim to design a secure cipher with a
minimal number of rounds. Further, high-degree polynomials have a large multiplicative
depth, and hence we consider low-degree S-boxes. Meeting both of these requirements
usually requires a large state size for security. However, large state sizes lead to a high
runtime of the cipher evaluation, especially in the linear layers. Therefore, our design
will have to balance noise consumption and runtime to be efficiently usable in HHE.
Furthermore, most HE applications leverage packing (Section 2.1) to increase performance,
which is why we also aim to design a packing-friendly cipher which produces packed
homomorphically encrypted ciphertexts. For a comparison of a word-sliced implementation
of our final design to a packed implementation we refer to Appendix C. There we also
compare a word-sliced implementation of HERA to PASTA.

Cost of HE Operations. In Table 4 we summarize the cost of each HE operation in
SEAL and HElib. Note that the key switching operation is free in terms of noise in
SEAL, whereas it adds noise to the ciphertext in HElib. Key switching is required after
a ciphertext-ciphertext multiplication and after an homomorphic Galois automorphism
(required for rotation), which is why these operations require more noise in HElib. For

8While a concrete attack is not known, reducing the output entropy of an internal component may lead
to unwanted effects in the final output of the function, and thus reduce the security against still unknown
attacks. Therefore, most ciphers known in the literature rely on permutations and do not restrict the
output entropy.

9SEAL does not allow larger field sizes.
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both libraries the noise consumption depends on the size of the prime p, with larger p
implying higher noise consumption, especially in pt-ct and ct-ct multiplications. Therefore,
one cannot consider plaintext-ciphertext multiplications as negligible when working over IF,,
and we also have to consider the plaintext-ciphertext multiplicative depth when designing
an efficient cipher over [Fp,.

Table 4: Cost of HE operations in SEAL and HElib.

SEAL HElib
Operation Noise Runtime Noise Runtime

pt-ct Add negligible cheap negligible cheap
ct-ct Add negligible cheap negligible cheap
pt-ct Mul moderate cheap moderate cheap
ct-ct Mul expensive expensive expensive expensive
Automorphism negligible expensive moderate expensive

Remark 2. In the future, more efficient bootstrapping implementations might become
available e.g. due to efficient HE hardware accelerators which implement this feature.
Depending on the concrete efficiency of bootstrapping, the optimization angle of HE might
shift from minimizing the multiplicative depth to minimizing the most expensive HE
operations, such as multiplications. In this case, symmetric ciphers optimized for HHE
will be allowed to have more rounds with higher degree S-Boxes and will more closely look
like some ciphers optimized for e.g. MPC where the total number of multiplications is the
main bottleneck.

6.3 Design Basis

Since our Zy benchmarks indicate that designs based on RASTA are the preferred choice,
we first consider an Fz version of RASTA with equal text/key size, and then modify it
for security and efficiency. In the following, we analyze several candidates for each of
the operations defining the cipher, and we also determine their implementation efficiency.
Based on these results, we then design PASTA in Section 7.

6.4 S-Box

The original RASTA design uses the y-transformation [Dae95] over Z4 as a single nonlinear
layer. However, the x-function is in general not a permutation when working over IF;, which
is why we consider alternative building blocks. Since the affine layers in a RASTA-based
permutation are pseudorandomly generated for each new block, many attacks (mainly
statistical attacks) are already prevented. Hence, the main goal of the S-box in this setting
is to provide a sufficiently high degree to prevent algebraic attacks — the concrete structure
of the S-box plays a comparably minor role. Consequently, we propose invertible low-
degree S-boxes, describe how they can be efficiently implemented in a packed homomorphic
evaluation, and compare their efficiency. Despite not being a permutation, MASTA still
uses the y-function naturally defined over IF;, which is why we include it in our comparison.

x-S-box. The x-S-box is defined as
X(@)]i = @ + Tigo + Tig1 - Tiyo = T + Tigo - (1 + 2i41).

The indices in the x-S-box are taken modulo ¢, which is why x can be efficiently evaluated
using rotations, i.e.,
X(Z) = T + rota(Z) © (1 + rot1(F)).
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This works if the rotation is cyclic for the vector of size t. However, once encrypted,
homomorphic rotations are cyclic over a larger vector of size n. Hence, we need to simulate
cyclic rotation by preprocessing the state first. However, the resulting vector has more
than ¢ elements, which can influence further homomorphic operations. Thus, one has to
apply a masking multiplication afterwards with a mask m = Te IF;:

=T+ I‘Ot(_t)(f)

= x(%) = (& + rota(¥) © (I + roty())) @ .

Cube S-box. Given a prime p, ged(p — 1,3) = 1, let

[S(@)]i = (2:)°
We recall that the cube S-box is the invertible power map with the smallest degree, and it

can be efficiently evaluated by simply applying two homomorphic multiplications which
affect the state elementwise, i.e., S(¥) =Z O Z O Z.

Feistel-Like S-Box (via a Quadratic Function).
R ZT; if i = O,
[S"(@)): = ) iy
x; + (zi—1) otherwise,
The Feistel-like S-box can also efficiently be implemented using rotations, i.e.,
S'(#) = F+ (rot(_y) (&) ©11)°,

where m € ]F; is a masking vector m = [0,1,...,1]%.

Alternative Feistel-Like S-Box (via the x-Function).

. z; ifi<1,
[S'@))i=14" :
r; +x;_1-T;_o otherwise,
The alternative Feistel-like S-box can also efficiently be implemented using rotations, i.e.,
S”(f) = I‘Ot(_l)(f) O rot(_g (f) Om+ T,

where m € F; is a masking vector m = [0,0,1,..., 7.

6.4.1 S-Box Cost Comparison

All S-box designs can efficiently be implemented on packed HE ciphertexts and require only
a constant number of homomorphic operations independent of the state size. A summary
of required homomorphic operations as well as the multiplicative depths of the different
S-boxes is given in Table 5.

Table 5: HE operations and depth of different S-boxes.
S-box pt-ct Add ct-ct Add pt-ct Mul ct-ct Mul Rot pt-ct Depth ct-ct Depth

X 1 2 1 1 3 1 1
S - - - 2 - - 2
S’ - 1 1 1 1 1 1
S - 1 1 1 2 1 1

Based on Table 5, we decide to choose the Feistel S-box S’ as the main S-box for
our nonlinear layers, and to use the cube S-box S to increase the degree of our cipher to
combat linearization attacks and reduce the state size of the cipher. We further explore
the choice of the two different S-boxes in Section 8.4.
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6.5 Linear Layer

In RASTA, the homomorphic runtime is dominated by the linear layer. In this section we
discuss how to efficiently implement matrix-vector multiplications on packed homomorphic
ciphertexts and introduce optimizations to reduce the homomorphic evaluation time.

6.5.1 Choice of Random Matrices

In the original RASTA design, each random t x ¢ matrix is directly sampled and checked
for invertibility. However, doing the invertibility check is expensive in ), in terms of
computational complexity. Therefore, in PASTA we choose a different approach and generate
each matrix as a sequential matrix [GPP11, GPPR11] (Section 7). These matrices are
invertible by design and only require to sample ¢ field elements and performing ¢ - (¢ — 1)
field multiplications and (¢ — 1) - (¢t — 1) field additions. Compared to sampling polynomials
m; € Z,[X]/(X" — a) and translating them to matrices M; (like in MASTA), sequential
matrices require to sample equally many field elements, but need more field additions and
multiplications. Sampling sequential matrices is thus slower with respect to the method
used in MASTA, but it comes with the cryptographic advantage of having less structure (see
Section 8). Contrary to HERA, we do not fix the matrices and randomize key schedules due
to the fact that in a packed implementation one can not leverage advantages of specially
chosen matrices, such as implementation via only additions, and plain performance is
insignificant compared to HE evaluation runtime.

6.5.2 Babystep-Giantstep Matrix-Vector Multiplication

The most efficient way of evaluating the product between a plain matrix and an encrypted
packed vector in HE is using the babystep-giantstep optimized diagonal method [HS14,
HS15, HS18]:

to—1 t1—1
ME =" 1oty | Y diagiy, (M) @ rot;(7) |, (1)
k=0 j=0

where t = t1 - to, diagi(M) = rot(_|;/, |.+,) (diag;(M)), and diag;(M) expresses the i-th
diagonal of a matrix M in a vector of size ¢, with ¢ = 0 being the main diagonal. Note that
rot;(Z) only has to be computed once for each j < t1. Therefore, a matrix multiplication
requires t1 + to — 2 rotations, t plaintext-ciphertext multiplications, and ¢ — 1 additions,
and the total depth is 1 plaintext-ciphertext multiplication. Thus, we add words to the
final state size of our design for efficiency if ¢ does not nicely split into ¢ = ¢1 - t2. Compared
to the number of homomorphic operations required to evaluate the S-boxes (Table 5), it is
clear that the runtime of the homomorphic evaluation of our cipher is dominated by the
linear layer.

6.5.3 Splitting the State

The babystep-giantstep algorithm dominates the runtime of the homomorphic PASTA
evaluation and scales with the state size. Therefore, we propose to evaluate two individual
instances of our cipher with state size ¢ in parallel, with an efficient mixing step after each
affine layer, allowing for an overall smaller state size. The final output of the design is then
the output of the first half, and the second half is discarded. The result is a cipher with the
following properties: (1) The state size s = 2-t is an even number and we truncate ¢ words
at the end. (2) Instead of evaluating one large s X s matrix multiplication we perform two
smaller ¢ x ¢ matrix multiplications. (3) The S-box is applied on both branches individually.
(4) The key has now double the size of the keystream. The latter has no effect on the
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HHE use case, since a packed homomorphic design still requires only one homomorphic
ciphertext, with a size independent to the number of encoded words. However, we can
use the inner structure of homomorphic ciphertexts to parallelize both cipher evaluations,
cutting the runtime down to an evaluation of one cipher instance of state size t.

Inner Structure of HE ciphertexts. In R-LWE based homomorphic encryption schemes
(like BFV and BGV) the plaintexts are polynomials € R, = F,[X]/®,,(X), with ®,,(X)
being the m-th cyclotomic polynomial. Using packing (Section 2.1) one can encode
a vector of integers into one polynomial, homomorphic additions and multiplications
then affect these vectors element-wise. Further, one can use Galois automorphisms to
permute the encoded vector. Thus, the encoded vector can be seen as a hypercube [HS14]
and an automorphism rotates the data along one dimension. The precise structure of
this hypercube depends on the choice of ®,,(X). In general, it is possible to use these
automorphisms to create linear rotations over the encrypted vector, but this requires
masking multiplications [HS14], which when evaluated homomorphically require noise
budget. In terms of implementation efficiency, ®2,(X) = X™ + 1, for n being a power
of two, is a good choice. This polynomial is negacyclic and allows efficient polynomial
multiplications via a negacyclic number theoretic transformation (NTT). For this reason,
the homomorphic encryption standardization project'® recommends using these power-
of-two cyclotomic rings. Consequently, SEAL only implements HE with those rings and
MASTA is defined to use these rings as well [HKC™20]. The hypercube generated by such
rings also has a nice structure: It corresponds to a matrix of two rows, each of size @
Galois automorphisms can then directly be used to either linearly rotate both rows at once
or rotate all columns simultaneously, i.e.,

) s )
m e i [“ l(ﬂ L () e {“‘R] ,
R

for the Galois automorphism 7; : a(X) — a(X?).

Parallelizing Two Cipher Evaluations. In two state-of-the-art integer HE cryptosystems
(BFV and BGV) we can use this inner structure of power-of-two homomorphic ciphertexts
to parallelize both branches of our cipher. When encrypting the secret key and encoding
vectors in the affine layer, one has to encode the vectors affecting the first branch of the
cipher into the first row of the homomorphic ciphertext, and vectors affecting the second
branch into the second row. As a result, all homomorphic operations are applied in parallel
to both branches.

Efficient Linear Layer. For security, we have to mix both branches of our cipher after each
affine transformation. An efficiently implementable linear layer, which is also invertible, is
the following matrix multiplication:

L 2.1 I Zr Zr Zr TR
27 = A== =
YR I 2.1 TR TR TR Xy,
where I is the t x t identity matrix. This can be implemented by two homomorphic
additions and a homomorphic rotation.
In Table 6 we compare the cost of the new linear layer (two parallel instances of state
size t) to the cost of one larger linear layer of size s = 2-¢. The new linear layer effectively

requires half the homomorphic additions and multiplications, and choosing t such that it
splits nicely into ¢t = ¢ - to the number of rotations is also halved.

Ohttps://homomorphicencryption.org/
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Table 6: Homomorphic operations and multiplicative depth of the linear layers, with
t:t1't2 and2-t:sl-32.

Linear Layer  pt-ct Add ct-ct Add pt-ct Mul  ct-ct Mul Rot pt-ct Depth  ct-ct Depth
Split and Mix 1 t+2 t - t1 + to 1 -
No Splitting 1 2.t 2.t - 51+ s3—1 1 -

6.6 Total Homomorphic Operations and Multiplicative Depth

In Table 7 we summarize the number of homomorphic operations and the multiplicative
depth of each individual part of our resulting new cipher, dubbed PASTA, as well as the
total count for PASTA-3 (3 rounds) and PASTA-4 (4 rounds). The table also highlights
that the multiplicative depth of PASTA, and therefore its noise consumption, only depends
on the number of rounds. Further, the runtime of homomorphically evaluating PASTA is
dominated by the affine layer and scales with the state size and the number of rounds.

Table 7: Homomorphic operations and multiplicative depth of PASTA, with ¢t = ¢; - t5.

pt-ct Add ct-ct Add pt-ct Mul ct-ct Mul Rot pt-ct Depth  ct-ct Depth
Afﬁno 1 t t - tl + tg -1 1 -
Mix - 2 - - 1 - -
S’ - 1 1 1 1 1 1
S - - - 2 - - 2
Round 1 t+3 t+1 1 ty +to+1 2 1
Last Round 1 t+2 t 2 t1 + to 1 2
PAsTA-3 4 4t + 10 4t +2 4 Aty +t2) +2 6 4
PasTa-4 5 5t + 13 S5t +3 5 5(t1+t2)+3 8 5

7 Pasta Specification

Here we provide the full PASTA specification. PASTA is a family of stream ciphers which
applies the PASTA-7 permutation under a nonce N and a block counter ¢ to the secret key,
followed by a truncation, to produce the final keystream. Keystream generation is shown
in Figure 3. For a prime p s.t. ged(p — 1,3) = 1,1 a PASTA encryption is defined as

. KGen(): sk & F2!
e Encg(m, N): To encrypt the message m € IF; under the secret key sk and nonce
N, parse m = migl||miq]|...|[m; with m; € F. and return ¢ = &l|c1]|...||¢;, where

¢; = my; + left, (PASTA-7(sk, N, 1)), where left;(-) returns the first ¢ words.

o Decy (¢ N): To decrypt the ciphertext ¢ € ]FﬁJ using the secret key sk and nonce

N, parse ¢ = cl|é|]...||¢; with & € F., and return 7 = ||y ]]...| |75, where

m; = ¢; — lefty(PASTA-7(sk, N, 7)), where left;(-) returns the first ¢ words.

The permutation PASTA-m(Z, N, i) on a vector & € F2', thereby, is defined as

PASTA—ﬂ'(f, N, Z) = Ar,N,i O Ocube © Arfl,N,i o Sfeistel (2)
0A;_9 N0 A1 N O Skeistel © Ao N,i(Z),

where r > 1 is the number of rounds and where

e recall that the S-box S(z) = z¢ for d > 2 is invertible over F,, if and only if gcd(p — 1,d) = 1.
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key dependent
Ky ———» Ao e —
i public :

: : ! ! o 1 o 1
H .\'I—E)r : K = KillKn {1 21} {1 21}
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Figure 3: The truncated r-round PASTA-7 permutation to generate the keystream Ky ;
for block 4 under nonce N with affine layers A; ; v,;.

2 1
I 21

o Steistel 18 an S-box layer defined as Steistel(¥) = S'(Z1)]|S"(ZRr), where S’ over IF;, is a
Feistel structure defined as

. Yl if 1 =0,
Vie{01,....t—1}: S"(P =
{ } S0l {yl + (yl—1)2 otherwise,
where § = yolly1 - - [lye—1 € Fy,
e Secube is an S-box defined as Scupe(Z) = 23|23 -+ - ||23_4,
o foreach j € {0,...,r}, A, v, is an affine layer

o (20 T | [ My pon(TL) + 6L
Ajnai(@) = { I 2.]] [M17R7N7i(fR) @ RN

where I € F.*' is the identity matrix and where M; 1 N, Mjr N € Fy<" and
Cj.L.N,i,Cj,R.N,i € IF; are generated for each round from an XOF seeded with a nonce
N and a counter 1.

To efficiently sample each invertible matrix M, n; € F;Xt, we sample sequential ma-
trices following [GPP11, GPPRI11]. For each k € {L, R}, we define M; j n,; := (]\Zl'j’k’]\m-)t7
where MLk,Nﬂv € F;,Xt is defined as

0 1 0 0
0o 0 1 0
Mj N =
0O 0 0 1
a1 O Qa3 - O
for a1,...,a; € Fy \ {0}. M; x n,; is an invertible matrix which can be built by sampling ¢

random elements and performing ¢ - (¢ — 1) multiplications and (¢ — 1) - (t — 1) additions.

7.1 Concrete Instances

We propose a 3-round instance PASTA-3 as well as a 4-round instance PASTA-4 using
SHAKE128 [NIS15] as XOF. These instances provide at least 128 bits of security for the
prime fields F,, with log,(p) > 16 and ged(p — 1,3) = 1. Table 8 shows the block and key
sizes and compares them to MASTA and HERA.

Security Margin. In all cases, we add a security margin to our construction. Concretely,
we take the largest number of words s needed for security, we multiply this number by 1.2
for a 20% security margin, and we then take the smallest even integer larger than or equal
to that.
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Table 8: 128 bit security instances of PASTA, MASTA, and HERA.
Instance  Rounds # Key Words # Plain Words # Cipher Words XOF

PasTa-3 3 256 128 128 SHAKE128
PasTa-4 4 64 32 32 SHAKE128
MAsTaA-4 4 128 128 128 SHAKE128
MASTA-5 5 64 64 64 SHAKE128
HERA 5 16 16 16 SHAKE128

7.2 Comparison to Previous Designs

In this section we summarize PASTA by comparing it to previous designs. Furthermore, in
Section 9.3 we discuss IF,, primitives for different use cases and compare them to PASTA.

S-box. RAsTA and DASTA use the y-transformation as single nonlinear layer. MASTA
uses a translation of y to ]F; as nonlinear layer, despite it being no permutation, and HERA
uses the cubing layer. In PASTA we introduce and use two different, bijective S-boxes. This
is motivated by the desire of reducing the number of rounds while maintaining a reasonable
state size. Having r — 1 Feistel S-boxes and a final cube S-box with higher degree and
depth allows us to build PASTA instances with comparable number of plain/cipher words
as MASTA with one round less. This implies both, a faster homomorphic evaluation time,
as well as less noise consumption compared to MASTA. We further explore the choice of
two different S-boxes in Section 8.4.

Linear-Layer. PASTA, RASTA, DASTA, and MASTA use randomly generated linear layers to
mitigate statistical attacks, and HERA has a randomized key schedule for the same reason.
While RASTA just samples random invertible matrices, DASTA uses random permutations
of the same fixed matrix. MASTA on the other hand samples random polynomials and
translates them to matrices (which have lots of structure). These methods, however, all
just differ in how the matrices are generated and do not effect the homomorphic evaluation
time. Contrary, PASTA’s linear layer is thoroughly optimized for efficient evaluation
in HE. Indeed, instead of generating a 2t x 2¢ random invertible matrix directly, we
pick up 2t random elements and construct two sequential matrices M; € F,*" as given
in [GPP11, GPPR11]. These two matrices are then combined into one 2t x 2¢ matrix via
a cheap mixing operation, effectively cutting HE runtime in half.

Truncation vs. Feed-Forward. PAsTA discards the feed-forward addition of the secret
key (as done in RASTA, DASTA, and MASTA) in favor of a truncation. This allows to
prevent MITM attack in a more efficient way, at the cost of using a larger state. In the
packed HE evaluation the truncated words, however, do not influence the runtime since
they can be evaluated simultaneously to the non-truncated part of the state.

8 Pasta Security Analysis

Given a certain number of rounds (fixed in advance), our goal is to find the minimum
number of key words s = 2t for which we can guarantee security of at least x bits. If not
specified otherwise, k & log,(p®). This is slightly different from what is usually done in
traditional symmetric cryptanalysis. Indeed, in general, given a state F;, and a security
level k, one looks for the minimum number of rounds which provide a security level of at
least k bits. Here we modify the approach since one of our main goals is to keep the depth
as low as possible, focusing on 3 and 4 rounds.
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Remark 3. The design approach of PASTA is analogous to the one originally proposed for
RaAsTA. For this reason, in many cases we limit ourselves to adapt the security argument
proposed for RASTA to PASTA.

8.1 Truncation versus Feed-Forward

Consider a permutation F' : F; — F,, and assume it can be split as F(-) = Fy o Fy().
The advantage of a truncation with respect to a feed-forward operation is that it prevents
attacks using the backward direction without requiring a high degree of the inverse round
function. Indeed, in the feed-forward case, given y = F(z) + x, one can set up a system
of equations of the form F(z) = Fy '(y — z). In order to prevent the possibility to solve
it using algebraic techniques (e.g., Grobner bases), we need that both Fy and Fy ! have
a high degree. In the case of truncation, given y = left;(F(z)), the system of equations
becomes Fy(x) = Fy *(y || ') for a certain unknown ¢’ € F}. If t is large enough, the cost
of solving it exceeds the security level. However, the overall size of the state must be larger
than in the feed-forward case due to losing part of the state.

8.2 Security against Statistical Attacks: Properties of the Linear Layer

Asin RASTA, the security against statistical attacks as differential [BS90] and linear [Mat93]
ones (besides all their variants, as the truncated differential [Knu94], zero—correlation
linear [BW12], impossible differential [BBS99], and so on) is achieved by changing the
linear layers at every encryption. In a statistical attack, the attacker makes a statistical
analysis of the ciphertexts generated by a set of chosen/known plaintexts in order to break
the scheme. This strategy works under the assumption that the ciphertexts are generated
via the same encryption scheme. By construction, this is not the case for Rasta-like
designs as PASTA, which implies that statistical attacks are not a threat for our design.

Having said that, it is important that the linear layers that instantiate PASTA do not
have any weakness that could be exploited for an attack, and that full diffusion is achieved
over the entire scheme. For this reason, we study the linear branch number of the random
matrices that instantiate PASTA, and we show that it is sufficiently high in general. We
recall that the branch number of a matrix is defined as the minimum number of non-zero
entries that two t-element mask vectors o and § that satisfy « = M7 x 8 could have — we
refer to [DGGK21] for an overview of correlation analysis in F,.

Since PASTA’s linear layer is defined as

fL 2.1 I Mj,L,N,inL
|:ij| = |: I 2_[:| x |:Mi,R,N,inR ’
we have the following scenario:

o the fixed matrix circ(2,1) € IE‘%XQ is MDS, which implies that full diffusion among the
I-th element of Zy, and the I-th element of Zg is achieved for each [ € {0,1,...,t—1};

o the invertible matrices M;  n; and M; r n; are randomly generated for each new
encryption, hence, we cannot guarantee a certain branch number a priori.

For this reason, we estimate a lower bound of the probability that a randomly picked
matrix M € IFZ” allows for transitions on the t-element mask vectors a to 8, « = M7 x 8,
where « and 8 have many zeros (which corresponds to the best scenario for an attacker).

Proposition 1. Let M € ]F;Xt be a random invertible matrix. Its branch number satisfies
the following for p >t > 6:

2

Pr[branch number > t/2] > 1 — P
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Proof. By definition:

Za,,ﬁ s.t. #(a)+#(B)<z ‘xﬂé»ﬁ|

Pr{branch number > z] = 1 — Pr[branch number < z] =1 — ]

where

o #(7) denotes the number of non-zero entries of the vector ~;
o X, s denotes the set of invertible matrices that satisfy o = M7 3;

¢ J denotes the set of invertible matrices.

First of all, we are interested in the number |J| of all possible bijective matrices M. A
matrix M is bijective, if all its row vectors are linearly independent and different from the
all 0 vector. So, for the first row, we have p' — 1 possibilities to choose a row vector. For
the second row, we have p’ possibilities to choose the coefficients minus p choices that is
just are linear combination of the first row. In the third row, we now have p* — p? choices,
and so on. So we finally end up with

t—1
ol=1] 6" 1) .

i=0
Next, we consider the number of matrices M, that allow a transition o = M7 3 for fixed
non-zero « and §. For our goal, we are interested in an upper bound of such a number.
Hence, we limit ourselves to consider a weaker condition, namely, that (i) 8 maps to the
first coordinate of o and that (ii) the matrix is invertible. It is simple to observe that the
first condition is satisfied by at most p'~! choices of the coefficients of the first row (note
that if g = 0, then we exclude the zero-vector as first row of M). By combining this fact
with the requirement that M is bijective, we get the number of matrices M that map « to
[ is upper bounded by

t—1
Xapl<  pt 0 L@ -0) =p-]] @ -1)
| a,6| H ( 1:12
due to a:MTB Z =
for invertibility

Finally, we have a look at how many different masks a and § exist, which have together 4
non-zero entries. This number is simply given by (p — 1)* - (2;)

Now we have all ingredients we need to bound the probability that a randomly selected
matrix M has a branch number smaller than z

2|Xao,pl =206 ut. errhr<s ]
2t
P H p' =) Z(( -1 <l)>
Pr[branch number < z| < 1 =
H (pt _ pz)
= =7
(=D ) e

P-DE-T-10) T E-DETT -0 T e -DE =17

where (Qt) — M < (;t_)lt = 2 t! since t! > 2!71. We now set z = ¢/2 and

assume that p > ¢ > 6 we get

Cmt/2 ot 16 - 3t/2+1 292
p-pt?p p <2

Pr[b h b t/2] <
r[branch number < ¢/2] < G DL -1) = 9. p21 = 2
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where (2! —1) > 3/4- 2" for z > 3 and t > 2, which means that

2

Pr[branch number > ¢/2] > 1 — W

for p>1t>6. O

Thus, Pr[branch number > ¢/2] ~ 1 for p >t > 6.

However, in our case, the total number of sequential matrices that we can generate is
limited by the ¢ elements a; we can choose. Hence, in total we can generate & = (p — 1)*
invertible matrices. Considering this special case, we get that

2.z-p* -t 2.zt

Pr|branch number > 2] > 1 — >1- ,
| 2AR Ty 2 e

where 2(p — 1) > p. It follows that

t [ 262 \"?
Pr[branch number > ¢/2] > 1 — 3 ( 1) ,
D

i.e., Pr[branch number > t/2] ~ 1 for p > 2t?, as in our case.

8.3 Security against Algebraic Attacks

To describe our analysis, we focus on PASTA-3. Our input & consists of s = 2¢ unknown key
elements and the output ¢ consists of ¢ elements (after truncation). Hence, for a known
nonce N and block counter ¢ we have

=kl ko[l - ks,
g = lefty(PASTA-7(Z, N,0)) =vy1 || y2 || - || v -

8.3.1 Linearization

In a linearization approach, the attacker replaces all monomials of degrees greater than 1 by
new variables, and finally tries to solve the resulting system of linear equations. Assuming
n, variables and a maximum degree of d, the number of possible monomials is

- zd: <n +iz' - 1>' -

=1

For PASTA-3 we have d = 12, and hence s input words with degree 12 after one function
call. Further, we obtain ¢ equations with each call. In order to get as many equations
ne as variables n, for our equation system, we can simply request more data, which
eventually results in n. = n, after s/t = 2 blocks (this has no effect on the efficiency of the
linearization). Due to the complexity of solving a linear equation system in n,, variables,
we target logy(n,,) > 64. Hence, s > 207 input words for a security of 128 bits. Following
the same analysis, we need s > 51 for PASTA-4 and s > 101 for a MASTA-like 4-round
instance using only degree-2 Feistel-like S-boxes.

In this analysis, we assume that almost all monomials appear in the final representations,
since our design provides strong diffusion in half of the state by using dense invertible
matrices, and full diffusion after two full linear layers. In order to get more confidence in
our design, we also did some practical tests and show the results in Figure 4. To avoid the
effect of cancellations, we used prime numbers of sizes larger than 2'6. We observe that
for the state sizes we tested, the actual number of monomials in the output word with the
smallest number of monomials is always very close to the upper bound for the number of
monomials given in Eq. (3).
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Figure 4: Comparison of the estimated number of monomials in each of the output words
according to Eq. (3) and the lowest number of monomials found in a practical evaluation.

8.3.2 Grobner Basis Attacks

Here we determine how large our key s has to be in order to provide security with respect
to Grobner basis attacks up to a complexity of 2'2® function calls. As was the case above,
we can simply generate sufficiently many equations by requesting at least s/t = 2 blocks.
Hence, n, = n., and we can estimate the complexity of solving such a system of equations
by using theoretical bounds. However, these bounds assume a regular system of equations,
and in practical tests we quickly observed that this is not the case for PASTA. Indeed,
when building more full-round equations and hence an overdetermined system, we can
force the degree of regularity to reach a minimum of 12. By reusing the estimate for the
complexity of computing a Grobuner basis [BFSY05] we need s > 207. Similar results can
be obtained by assuming d = 24 for PASTA-4.

There is also a different way to argue the number of words to use. From the linearization
analysis we know that there will be roughly 264 different monomials in each of the resulting
equations. Due to the internals of Grobner basis algorithms, this results in around (264)“)
operations being necessary to compute a basis.!'? We pessimistically (from a designer’s
point of view) set w = 2 and thus have (264)* = 2128,

Additional Strategies. The strategy presented above is only one way to attack the system
using Grobner bases. It is common to also consider approaches which introduce new
variables in each state. The main idea of this technique is to reduce the degrees of the
equations at the expense of more variables, which is particularly useful when trying to
represent high-degree equations in a more efficient way. In more detail, we may introduce a
new variable after each nonlinear operation. Considering a total state size of s = 2t words,
we need to introduce 2s(r — 1) new variables for an r-round construction (note that no new
variables are needed after the final round, since the stream output added to a plaintext is a
degree-3 combination of the previous variables). Using this many variables and equations
of a degree larger than or equal to 2 results in a high solving complexity when assuming
nontrivial (i.e., dense) equations (we refer to [JV17, NNY18], in which degree-2 equation
systems over Zs are considered). We therefore conjecture that introducing intermediate
variables will only increase the complexity needed to solve the final system when compared
to using full-round equations.

12For example, the F5 algorithm [Fau99] uses Gaussian elimination on a Macaulay matrix, whose rows
indicate the equations in the system and whose columns are indexed by the monomials in these equations.
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8.3.3 Other Algebraic Attacks

Many other known attacks (including e.g. higher-order differential attack [Lai94, Knu94],
interpolation attack [JK97], and so on) are prevented by our random linear layers which
are different in each PASTA-7 evaluation. This is the same strategy as used by e.g. RASTA
and MASTA. We shortly discuss these attacks in this section. Furthermore, the recent
attack proposed on AGRASTA [LSMI21] does not apply to PASTA, since it directly exploits
the x-layer which is not present in PASTA, and it works differently over large prime fields.

Higher-Order Differential Attacks. Higher-order differential attacks [Lai94, Knu94] are
essentially prevented by the fact that the attacker is only allowed to evaluate a single
instance once due to the different linear layers. Moreover, the only subspaces of a finite field
[F,, with prime characteristic are {0} and [, itself, which makes higher-order differential
attacks even harder (however, there have been variations of this attack vector which also
work over F,, [BCD*20]). This also includes higher-order differential distinguishers and
attacks based on higher-order differential properties (e.g., cube attacks [Vie07, DS09]).

Interpolation Attacks. In an interpolation attack [JK97], the attacker tries to build an
interpolation polynomial mapping an input to the corresponding output. This polynomial
can then be used to recover the secret key. However, interpolation attacks need multiple
evaluations of a fixed permutation, which is not possible when considering PASTA and its
varying linear layers.

Guessing Attacks. Guessing (or guess-and-determine) attacks combine the guessing of
one or more variables with other attack strategies, potentially decreasing their complexities
by fixing parts of the secret. However, due to the large number of state words and a
minimum size of 17 bits for each of them, it is unlikely that guessing any of the state words
(or even multiple of them) leads to an advantage. Indeed, using our analysis, guessing
from 1 to [127/17] words does not lead to any improvement, but even makes the attacks
worse. In more detail, we would need to improve the attack itself by a factor of at least
217" when guessing w input words, which for all configurations we tested (1,...,|128/17]
guesses) is not possible with our analysis. For example, in the 17-bit case with s = 51 and
when considering the linearization approach, the complexity is reduced by less than one bit
when guessing a single variable. When assuming s = 44 (guessing the maximum feasible
number of variables), the complexity of the attack is still around 120 bits, which is much
more than the allowed 128 — 7-17 = 9 bits. We remark that this is the “weakest” instance
from the attacker’s perspective, and for all larger primes we would need an even higher
performance increase for the actual attack. Further, given the density of the algebraic
representation, we do not expect that the equation systems get significantly easier to solve
by guessing any small number of variables.

8.4 On Using Two Different S-Boxes

To be optimized for HHE, we designed PASTA to have a small number of rounds (implying
less noise consumption) and a small state size (implying fast homomorphic evaluation
time). Therefore, we make use of a Feistel S-box of degree 2 and a cube S-box of degree 3.
Using only Feistel S-boxes would result in a design with worse performance: A 3-round
design using only Feistel S-boxes would require ¢ & 500 plain/cipher words (based on the
security analysis in Section 8), which results in significantly longer homomorphic evaluation
times. A 4-round design would have the same multiplicative depth as MASTA-4, leading
to the same HE parameters and noise consumption as MASTA-4. Therefore, this design
would be faster then MASTA due to the smaller size ¢ (¢ = 55 as shown in Section 8) in
one evaluation branch. However, it would not have a noise advantage. PASTA-3, on the
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other hand, has both a runtime and a noise advantage due to requiring fewer rounds by
having the same size t as M ASTA-4.

The diffusion of a 2-round cipher based only on cube S-boxes would largely rely only on
the single layer between the matrix multiplication. Thus the resulting diffusion is likely bad
potentially allowing to separate the cipher [CDK™18]. Therefore, we chose to instantiate
PASTA-3 by using the smallest depth which allows a 3-round cipher with approximately
the same number of plain/cipher words ¢ as MASTA-4, which is using two Feistel S-boxes
and one cube S-box.

9 Pasta Benchmarks

In this section, we benchmark a packed implementation of our PASTA design in both SEAL
and HElib. We also reimplemented a packed version of MASTA and HERA, using the same
algorithms to generate random field elements and homomorphic matrix multiplications
as in PASTA to compare these ciphers in a fair setting. Similar as in Section 5, we also
benchmark the ciphers in a real HHE use case.

9.1 Comparing Pasta to Z, Ciphers

We first compare PASTA, MASTA, and HERA to the Zs benchmarks from Section 5. There-
fore, we instantiate these ciphers with a 17-bit prime and benchmark their performance
for the small use case from Section 5.' The resulting benchmarks can be seen in Table 9
where we depict both runtime and remaining noise budget after each step of the HHE use
case for SEAL. For benchmarks in HElib we refer to Appendix B.2.2.

Table 9: Runtime and noise budget of the small HHE use case in the SEAL library (security
level A = 128 bit).

Cipher N Enc. Key Decomp. Small Use Case
runtime noise | runtime noise | runtime noise
s bit s bit s bit

p = 65537 (17 bit):
PASTA-3 | 16384 | 0.017 364 9.28 95| 0.197 51

Pasta-4 | 32768 0.059 800 21.0 451 1.11 406
MAsTA-4 | 32768 0.058 800 54.2 460 1.11 415
MASTA-5 | 32768 0.057 800 39.2 386 1.13 341
HERA 32768 0.051 800 16.6 333 1.12 287

9.1.1 Discussion

In the following, we compare the runtime and noise consumption of all Zy and F,, (with
p = 65537) ciphers, namely in Figure 5 for homomorphically decrypting one block in
SEAL (FF,, values from Section 9.2), and in Figure 6 for the HHE use case (including HHE
decompression) in SEAL. For HElib benchmarks we refer to Appendix B.2.2.

Our figures indicate that PASTA is always the fastest cipher — mainly PASTA-4 due
to the small number of encrypted words. However, PASTA-3 is faster when evaluating
the whole HHE use case in SEAL due to the small multiplicative depth requiring smaller
HE parameters for security. Comparing PASTA to the Zs ciphers, one can observe that
homomorphically decrypting one block requires less noise budget for the Z, ciphers.

13For sake of simplicity we do not consider plaintext overflows in this example, so no mod p operation is
part of the binary circuits and no mod 216 is part of the F), benchmarks.
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However, PASTA has (besides the runtime advantage) a noise advantage over the Zy ciphers
when considering the HHE use case due to the significantly larger multiplicative depth
of the binary circuits for integer arithmetic. Concretely, decompression and use case
evaluation is 33x faster in SEAL using PASTA-3 and 82x faster in HElib using PAsTA-4
compared to AGRASTA. Using TFHE in gate-bootstrapping mode for Zs ciphers instead
of e.g. SEAL does not help the Zs ciphers either, since PASTA-3 in SEAL is 47x faster
than using KREYVIUM in TFHE for the small HHE use case. Increasing the bitsize of the
encrypted integers or chaining multiple matrix multiplications would further demonstrate
the advantage of PASTA over Zs ciphers, since the drastic increase in the multiplicative
depth of the use case would make using the Zs ciphers infeasible.
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Figure 5: Runtime and noise comparison of Zs ciphers for homomorphically decrypting 1
Block in SEAL (security level A = 128 bit).
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Figure 6: Runtime and noise comparison for the small HHE use case in SEAL (security
level A\ = 128 bit).

9.2 Pasta versus Masta and Hera

Since all I, ciphers outperform the Z; ciphers for HHE, we continue with comparing these
ciphers. Similar to the Zs benchmarks, we also compare PASTA, MASTA, and HERA in a
real HHE use case. However, to further demonstrate the advantage of the I, ciphers in
HHE, we benchmark a more extensive use case with a significantly higher multiplicative
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depth. We reuse the same use case as in Section 4, i.e., three affine layers interleaved with
squarings on a vector I € Fgoo' We benchmark the use case for 3 different primes p.

9.2.1 SEAL Benchmarks

In this section we discuss the benchmarks for the F,, ciphers in SEAL, for benchmarks in
HEIib we refer to Appendix B.2.3. Furthermore, we provide CPU cycle counts for plain
encryption with PASTA, MASTA, and HERA in Appendix B.3. In Table 10 we present
the benchmarks for the packed implementation of PASTA, MASTA, and HERA in the
SEAL library. We give timings for homomorphically decrypting one block and additionally
timings for the bigger HHE use case. We parameterize SEAL to provide 128 bits of security
and use the smallest N allowing enough noise budget for correct evaluation.

Table 10: F,, benchmarks for the SEAL library (security level A = 128 bit).

1 Block Bigger HHE use case
Cipher N Enc. Key | Decomp. N Enc. Key | Decomp. | Use Case
S S S S S

p = 65537 (17 bit):
PAsTA-3 16384 0.016 9.22 | 32768 0.056 86.2 43.9
PaAsTA-4 16384 0.016 4.19 | 32768 0.057 147.8 43.8
MasTa-4 | 16384 0.016 11.6 | 32768 0.058 108.7 43.9
MASTA-5 | 32768 0.062 39.6 | 32768 0.056 157.0 43.9
HERA 32768 0.052 16.6 | 32768 0.051 215.4 43.9
p = 8088322049 (33 bit):
PAsTA-3 32768 0.057 43.1 | 32768 0.055 86.3 43.9
Pasta-4 | 32768 0.057 21.2 | 65536 0.216 833.4 220.8
MAsSTA-4 | 32768 0.058 54.4 | 65536 0.215 568.5 221.3
MASTA-5 | 32768 0.055 39.3 | 65536 0.215 852.6 220.7
HERA 32768 0.051 16.6 | 65536 0.196 1227.7 220.7
p = 1096486890805657601 (60 bit):
PAsTA-3 32768 0.055 58.3 | 65536 0.212 448.6 220.8
Pasta-4 65536 0.220 119.2 | 65536 0.212 833.6 221.0
MAsTA-4 | 65536 0.220 284.3 | 65536 0.212 571.9 223.1
MASTA-5 | 65536 0.219 213.3 | 65536 0.212 853.3 220.9
HERA 65536 0.200 94.6 | 65536* 0.193 1228.3 221.0
2 Noise budget did not suffice and bigger parameters are not available in SEAL. Thus, bootstrapping is

required.

9.2.2 Discussion

In the following figures we compare the runtime and noise consumption of PASTA, MASTA,
and HERA for 3 different prime fields F,, in Figure 7 for homomorphically decrypting one
block in SEAL, and in Figure 8 for the HHE use case (including HHE decompression) in
SEAL. For HEIlib benchmarks we refer to Appendix B.2.3.

The figures show the advantage of PASTA compared to its competitors. In all figures,
PASTA-3 has a smaller runtime and noise consumption then MASTA, especially when
the smaller multiplicative depth allows for smaller HE parameters (compare, e.g., 33-bit
prime fields in Figure 8, where PASTA-3 is 6x faster than MASTA-4). PASTA-3 is only
outperformed by PAsTA-4 and HERA for a small number of encrypted words (e.g., only
encrypting one block as for the 33-bit prime for SEAL where HERA is slightly faster then
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PASTA-4, or the small HHE use case from Section 9.1 in HElib where PASTA-4 is 2.7x
faster then MASTA-4) if the overall multiplicative depth allows PAsTA-4 or HERA to use
the same HE parameters as PASTA-3. Hence, we propose using PASTA-4 for HHE use cases
with a small number of encrypted words, and PASTA-3 everywhere else.
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Figure 7: Runtime and noise comparison of I, ciphers for homomorphically decrypting 1
Block in SEAL (security level A = 128 bit).
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Figure 8: Runtime and noise comparison for the bigger HHE use case in SEAL (security
level A\ = 128 bit). Ciphers marked with a * did not have enough noise budget.

9.3 Pasta in Different Use Cases

In recent years, many symmetric primitives defined over F},, such as GMiMC [AGP*19],
HADESMIMC [GLR"20], PoseiDON [GKR'21], Rescue [AAB*20], CiMiNION [DGGK21],
GRIFFIN [GHR*22], Reinforced Concrete [GKLT22], and HYDRA [GOSW22], have been
proposed in the literature. However, contrary to PASTA, these primitives were not designed
for HHE, but for MPC and zk-SNARK/STARK use cases, which is why they were optimized
for different metrics. While having a low multiplicative depth is the most important design
criterion for use cases involving homomorphic encryption, the other use cases usually
just require a small total number of multiplications. Therefore, these afromentioned
symmetric primitives have a significant larger number of rounds and, consequently, a
large multiplicative depth which makes them infeasible for HE use cases. PASTA on the
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other hand has a very small depth, but the significantly larger statesize results in a
large total number of multiplications. In HE use cases many of these multiplications
are performed in parallel using packing, but this large number of multiplications makes
PasTA worse for MPC and zk-SNARK /STARK applications. In some MPC scenarios (e.g.,
scenarios with a very high-delay, low bandwidth WAN connection between the parties),
the low multiplicative depth of Pasta may, however, give it an advantage over the other
constructions.

Conclusion

In this paper, we investigated hybrid homomorphic encryption, a technique to combat
ciphertext expansion in homomorphic encryption applications at the cost of more expensive
computations in the encrypted domain. Since HHE was first mentioned in [NLV11], many
symmetric ciphers for HHE have been proposed in the literature. However, the effects
of applying HHE to any use case were not really understood so far. In our work, we
tackled this issue in several ways: First, we for the first time investigate the high-level
impact on the server and client when applying HHE to a practical use case in Section 4.
Secondly, we implement a framework which for the first time compares many different
symmetric ciphers when used with HHE in three popular HE libraries. Finally, to improve
the performance of HHE, we propose a new symmetric cipher, dubbed PASTA, which
outperforms the state-of-the-art for integer use cases over [Fp,.

The main take-aways of this paper are the following: Our investigations show, that HHE
achieves the best results when the clients are embedded devices with limited computational
power and bandwidth. Furthermore, many state-of-the-art ciphers are not well suited
for many HHE applications due to being defined over Zs. Finally, while HHE is very
beneficial for clients, the actual computation in the encrypted domain suffers. This is
due to first having to decrypt the symmetric ciphertexts under homomorphic encryption
before computing the actual use case. While this extra work naturally contributes to
the computation runtime, it also contributes to the multiplicative depth of the whole
HE computation. Since an efficient bootstrapping operation is still missing from most
state-of-the-art HE libraries (such as the ones considered in this paper), this additional
multiplicative depth significantly contributes to the whole computaiton runtime. As a
consequence, we show that only evaluating a cipher under HE is not enough to estimate
its performance in HHE, one has to consider the whole HHE use case instead.
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A HE Schemes and Libraries (cont.)

BGV [BGV12] in HEIlib [HS20]. The BGV scheme, and its implementation in HEIib,
allows plaintexts in Z,» and offers more flexibility for choosing HE parameters than SEAL.
It allows arbitrary cyclotomic reduction polynomials and it is possible to find parameters
which allow packing for Zs plaintexts. However, this flexibility comes with the drawback
that parameterizing for HElib is more difficult than finding parameters in SEAL, and the
limited parameter sets in SEAL allow for more optimized implementations. In this paper
we use the HElib version 2.1.0. Similar to BFV in SEAL, additions are considered free in
BGYV, and the multiplicative depth of the circuit is the most relevant performance metric.

TFHE [CGGI20] in TFHE [CGGI16]. The TFHE library, more concretely the gate-
bootstrapping version of the original TFHE library which we use in this paper, is vastly
different from SEAL and HEIlib. It only allows the encryption of boolean values (i.e.,
plaintexts are in Zs), but it is optimized for fast gate bootstrapping. This basically means
that after the evaluation of a homomorphic gate the noise in the ciphertext is reset. As
a consequence, contrary to most other modern homomorphic encryption schemes, the
multiplicative depth of a circuit is no relevant metric there. However, each homomorphically
evaluated gate requires the same computational effort, thus additions are not considered
to be free as in the BFV or BGV cryptosystems. The most relevant metric for TFHE in
gate-bootstrapping mode is, therefore, the total number of gates. Furthermore, SIMD style
packing is not supported in TFHE. Since TFHE only allows to encrypt boolean values, we
do not implement and consider F, ciphers in this library.

B Additional Benchmarks

In this section we give the benchmarks of all the ciphers in the original TFHE library
(Appendix B.1), and in HElib (Appendix B.2). Finally, we compare the plain performance
of PAsTA and MASTA in Appendix B.3.

B.1 TFHE Benchmarks of Z, Ciphers

Since the noise in the ciphertexts is reset after every homomorphic operation due to
gate-bootstrapping in TFHE, we do not have to choose any parameters for the benchmarks
(except the security level, which we set to 128 bits). In Table 11 we present the benchmarks
for the TFHE library for homomorphically decrypting only one block, and for the small
HHE use case from Section 5. We give timings for homomorphically encrypting the
symmetric key, homomorphically decrypting one block, and for the small HHE use case.
Since TFHE does not support packing all implementations are bitsliced (i.e., one HE
ciphertext per bit).
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Table 11: Benchmarks for the TFHE library (security level A = 128 bit).

1 Block | Small HHE use case
Cipher Enc. Key | Decomp. | Decomp. | Use Case
s s s s

LowMC 0.003 6 120.5 6 310.6 175.6
RAsSTA-5 0.013 5 728.8 5 807.8 164.0
RASTA-6 0.009 3 275.0 3 293.6 162.2
DASTA-5 0.013 5 642.6 5 664.7 165.2
DAsTA-6 0.009 3272.7 3 293.0 162.0
AGRASTA 0.003 407.1 408.4 164.4
KREYVIUM 0.003 284.1 290.4 162.6
KREYVIUM-12 0.003 284.1 559.7 162.6
KREYVIUM-13 0.003 310.1 290.4 162.6
FiLIP-1216 0.442 1 504.6 1 886.9 164.3
F1LIP-1280 0.107 1594.5 1 981.8 162.8

Discussion. In Figure 9 we compare the runtime of homomorphically decrypting one
block and the whole HHE use case (including homomorphic decryption) of the Zy ciphers
in TFHE. In the gate-bootstrapping version of TFHE the main performance metric is the
total gate count, which is why KREYVIUM is the fastest choice. Since the TFHE library
only allows plaintexts in Zo we do not implement and compare IF,, ciphers in TFHE.
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Figure 9: Runtime comparison of homomorphically decrypting one block and the small
HHE use case (including HHE decompression) of Zs ciphers in TFHE (security level A = 128
bit).

B.2 HEIlib Benchmarks

In this section, we give all the benchmarks in the HEIlib. First, we benchmark the Zo
ciphers, before we compare them to the F, ciphers. Finally, we benchmark PASTA, MASTA,
and HERA in a more extensive use case.
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B.2.1 HEIlib Benchmarks of Z5 Ciphers

In HEIlib, the security and available noise budget mainly depend on the choice of the
cyclotomic reduction polynomial, as well as the size of the ciphertext modulus. A bigger
modulus provides a bigger noise budget at the cost of less security. A bigger cyclotomic
polynomial provides more security, but is bad for performance. In our benchmarks, we use
the tool provided by HEIib to find suitable parameters given a target security level of 128
bits and a target noise budget which we gathered from the experiments. The resulting
parameter sets provide X' ~ 128 bits of security with the majority of sets providing slightly
less.

In Table 12 we present the benchmarks for the HElib library, for homomorphically

decrypting only one block, and for the small HHE use case from Section 5. For both
benchmarks we give timings alongside the chosen m-th cyclotomic reduction polynomial
(chosen by HElib) and the estimated security A’ (estimated by HElib). For the HHE use
case we additionally give the runtime for the affine transformation use case. To compare the
benchmarks to SEAL and TFHE, all implementations are bitsliced (i.e., one HE ciphertext
per bit).
Remark 4. HEIlib supports packing for Zs plaintexts. Even though a packed implementa-
tion of the symmetric ciphers will increase their overall performance, it complicates the
evaluation of an integer matrix-vector multiplication based on binary circuits. Therefore,
packed implementations do not fix the main issue of Zs ciphers for HHE, which is sup-
porting integer arithmetic over F,,. For this reason, we do not provide explicit packed
benchmarks for the ciphers in the paper.

Table 12: Benchmarks of the Z, ciphers in the HEIlib library.

1 Block Small HHE use case
Cipher m X' | Enc. Key | Decomp. m X | Enc. Key | Decomp. | Use Case
bit S s bit s s s

LowMC 23377 | 110 9.22 1132.4 | 43691 | 108 27.5 3 708.8 1618.8
RAsTA-5 11441 | 111 11.7 284.2 | 31609 | 118 57.7 1 666.9 922.4
RASTA-6 11441 | 111 7.79 207.7 | 31609 | 108 41.8 1 401.0 1037.2
DAsTA-5 11441 | 111 11.8 276.7 | 31609 | 118 57.9 1 608.4 922.0
DASTA-6 11441 | 111 7.87 201.7 | 31609 | 108 41.6 1357.3 1 042.6
AGRASTA 10261 | 117 2.38 38.3 | 32767 | 108 13.7 276.9 853.6
KREYVIUM 14351 | 108 3.97 497.0 | 43691 | 144 22.0 3 392.6 1431.9
KREYVIUM-12 | 14351 | 108 4.06 498.3 | 43691 | 147 22.0 6 657.1 1 392.6
KRrREYVIUM-13 | 15709 | 113 4.38 577.1 | 43691 | 144 21.7 3 407.3 1 420.9
FIiLIP-1216 5461 | 113 131.4 1357.5 | 23311 | 108 1010.0 | 17 919.7 566.6
FiLIP-1280 8435 | 119 47.3 2197.4 | 24929 | 105 337.2 | 27 613.9 745.2

B.2.2 Comparing Pasta to Z, Ciphers in HElib

The benchmarks for HElib can be seen in Table 13 where we depict both runtime and
remaining noise budget after each step of the HHE use case from Section 5. In the following,
we compare the runtime and noise consumption of all Zy and F,, (with p = 65537) ciphers,
namely in Figure 10 for homomorphically decrypting one block in HEIlib (F,, values from
Appendix B.2.3), and in Figure 11 for the HHE use case (including HHE decompression) in
HEIlib. Since MASTA and PASTA require to use the m-th cyclotomic reduction polynomial
(X m/2 1), where m is a power-of-two, we chose parameters differently compared to
Appendix B.2.1: We parameterize ¢ to provide enough noise budget to evaluate the
benchmark and chose the m to be the smallest power-of-two such that the parameters
provide > 128 bits security. Thereby, for a fixed m, a smaller ¢ provides both, larger
security and faster performance. Consequently, greater A’ in Table 13 also lead to faster
runtimes compared to instantiating the same benchmark with exactly 128 bits of security.
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Table 13: Runtime and noise budget of the small HHE use case in the HElib library.

Cipher m N Enc. Key Decomp. Small Use Case
runtime noise | runtime noise | runtime noise
bit s bit S bit s bit
p = 65537 (17 bit):
PAsTA-3 65536 | 173 0.054 410 26.0 74 0.754 23
PasTa-4 65536 | 142 0.054 475 13.0 56 0.737 6
MAsTA-4 65536 | 133 0.054 502 36.7 86 0.740 36
MasTA-5 | 131072 | 254 0.116 566 55.4 56 1.71 5
HERA 131072 | 234 0.124 632 20.9 69 1.74 19
[ T i
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Figure 10: Runtime and noise comparison of Z, ciphers for homomorphically decrypting 1
Block in HEIlib (HE security level \').

B.2.3 HEIlib Benchmarks of F,, Ciphers

In Table 14 we present the benchmarks for the packed implementation of PASTA, MASTA,
and HERA in the HEIlib library. We give timings for homomorphically decrypting one block
and additionally timings for the bigger HHE use case (Section 9.2). We chose parameters
in the same fashion as in Appendix B.2.2, i.e., choosing ¢ to provide enough noise budget
to evaluate the benchmark, and choose the m-th cyclotomic reduction polynomial, with m
being a power of two, such that the HE scheme provides > 128 bits security.

Remark 5. In Table 14, some benchmarks were run with A < 128 bits security. The reason
for that is that m = 262144 unfortunately lead to infeasible runtimes. Consequently,
m = 131072 seems to be an upper limit for feasible runtimes in HElib, and use cases
requiring larger amounts of noise than can be provided by m = 131072 and A > 128 would
inevitably require an efficient bootstrapping operation.

In the following figures we compare the runtime and noise consumption of the ciphers
for 3 different prime fields F,, in Figure 12 for homomorphically decrypting one block in
HElib, and in Figure 13 for the HHE use case (including HHE decompression) in HElib.
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Figure 11: Runtime and noise comparison for the small HHE use case in HElib (HE security
level \').

B.3 Plain Benchmarks of Pasta, Masta and Hera

In Table 15 we compare the number of CPU cycles of the encryption circuit of PASTA
to the encryption circuit of MASTA and HERA. Since these ciphers generate random
matrices and/or round constants independent of the secret key, which can be precomputed
before encryption, we additionally give CPU cycles for generating these affine layers and
keys schedules and the encryption circuit with precomputed randomness. Table 15 shows
that HERA, with its small block size and fixed matrices which can be evaluated purely
by additions, is the fastest cipher in plain. However, this advantage comes at the cost
of higher number of rounds, which worsenes homomorphic performance. Comparing
PASTA to MASTA, one can observe that PASTA-4, due to its small state size, requires
the smallest number of cycles to encrypt one block. PASTA-3, on the other hand, due to
sampling sequential matrices instead of polynomials m € Z,[X]/(X" — «) (as in MASTA)
and requiring twice as many matrices per round, is the slowest cipher to encrypt one
block in plain. However, the difference to MASTA-4 is only a factor of 3, which in practice
corresponds to latencies in the order of milliseconds.

C Packed vs. Word-Sliced Implementation of Pasta

In Section 6, we describe efficient SIMD algorithms to evaluate PASTA on a packed HE
ciphertext. In this section, we want to compare them to a word-sliced implementation
where one would encrypt only one field element € F, into one HE ciphertext. A word-
sliced implementation has several disadvantages. First, the homomorphic evaluation
time of PASTA would be much slower. In a packed implementation, the S-boxes can be
evaluated with O(1) homomorphic operations, and with O(t) HE operations in a word-
sliced implementation. The word-sliced affine layer requires O(t?) HE operations compared
to O(t) operations when using packing. Secondly, the initial setup in the HHE use case
requires the transmission of the HE encrypted symmetric key. In a packed implementation,
this is always only one HE ciphertext. However, in a word-sliced implementation, one has
to transmit 2 - ¢ HE ciphertexts, drastically increasing the communication cost of this setup
phase. Finally, if the HHE use case leverages packing, one has to reconstruct a packed
ciphertext from its word-sliced state using many rotations on the server.
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Table 14: F,, benchmarks for the HEIib library.

1 Block Bigger HHE use case
Cipher m X' | Enc. Key | Decomp. m A | Enc. Key | Decomp. | Use Case
bit s s bit s s s

p = 65537 (17bit):
PASTA-3 65536 | 184 0.052 24.7 65536 | 128 0.064 57.6 19.9
PAsTA-4 65536 | 163 0.052 11.7 | 131072 | 229 0.124 210.8 38.6
MasTa-4 | 65536 | 163 0.062 33.1 | 131072 | 229 0.131 157.3 454
MaASTA-5 | 65536 | 133 0.064 27.1 | 131072 | 199 0.135 252.8 48.4
HERA 131072 | 254 0.116 19.7 | 131072 | 189 0.121 315.1 48.0
p = 8088322049 (33 bit):
PASTA-3 65536 | 128 0.057 28.7 | 131072 | 162 0.166 187.7 60.5
PAsTA-4 131072 | 204 0.166 35.3 | 131072 | 144 0.190 320.5 57.8
MAsTA-4 | 131072 | 196 0.165 101.3 | 131072 | 144 0.166 256.2 69.5
MAsTA-5 | 131072 | 166 0.168 82.4 | 131072%| 117 0.242 427.8 80.0
HERA 131072 | 150 0.179 29.6 | 131072*| 110 0.239 526.1 82.4
p = 1096486890805657601 (60 bit):
PASTA-3 131072 | 162 0.185 94.1 | 131072%| 97 0.285 268.8 84.4
PAsTA-4 131072 | 129 0.183 50.5 | 131072*| 83 0.310 486.7 84.2
MasTA-4 | 131072 | 129 0.208 144.7 | 131072*] 83 0.289 387.4 101.6
MAsSTA-5 | 1310722 99 0.233 122.1 | 131072 70 0.300 635.5 111.9
HERA 131072*| 89 0.249 44.2 | 131072*| 60 0.318 816.3 124.1

& Further increasing m for security resulted in infeasibly long runtimes.

However, word-sliced implementations have an advantage as well. They do not require
homomorphic rotations (and, therefore, no Galois keys) and one can access each word
of the state individually. This is why one can implement the S-boxes from Section 6.4
without requiring masking multiplications. As a consequence, word-sliced implementations
have less noise consumption. Splitting the state in our PASTA design is also beneficial for
word-sliced implementations, since it reduces the number of homomorphic multiplications
from (2-¢)? to 2 - t? per affine layer, reducing the runtime.

C.1 About a Word-Sliced Hera Implementation

Since HERA has a small statesize (16) and a larger round number (5), it might be beneficial
to have a word-sliced implementation instead of a packed one. Indeed, since the linear layers
can purely be implemented by additions, the multiplicative depth gets reduced from 10 ct-ct
multipliations and 7 pt-ct multiplications to a depth of 10 and 1 multiplications respectively.
Comparing a word-sliced implementation to a packed PASTA-3 implementation, one can
observe that PASTA-3 still is preferable. On one hand, PASTA-3 has a smaller depth (4 ct-ct
and 6 pt-ct Multiplications) implying less noise consumption and smaller HE parameters.
On the other hand, comparing the number of HE operations involved (96 pt-ct and 160
ct-ct multiplications for HERA and 514 pt-ct multiplications, 4 ct-ct multiplications and
98 rotations for PASTA-3) one can see that PASTA-3 requires significantly less of the more
expensive rotations and ct-ct multiplications at the cost of more pt-ct multiplications.
Thus, if there is a small advantage of HERA when evaluating one block with 16 output
words (PAsTA-3 has 128), then this advantage is already gone when evaluating two or
more blocks. Consequently, we conjecture that PASTA-3 is still more beneficial in most use
cases than a wordsliced HERA implementation.
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Figure 12: Runtime and noise comparison of I, ciphers for homomorphically decrypting 1
Block in HElib (HE security level A'). Ciphers marked with a * were evaluated with less
than 128 bit HE security.
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Table 15: Cycles for encrypting one block in plain, averaged over 1000 executions.

Cipher Total ‘ Affine Generation Encrypting
p = 65537 (17 bit):
PasTA-3 17 041 380 9 196 314 7 845 066
Pasta-4 1 363 339 825 067 538 272
MasTa-4 6 535 937 2 164 002 4 371 935
MASTA-5 2 105 628 752 374 1 353 254
HERA 60 391 30 615 29 776
p = 8088322049 (33 bit):
Pasta-3 22 429 444 11 637 800 10 791 644
Pasta-4 1 750 420 973 205 777 215
MASTA-4 8 427 384 1 975 522 6 451 862
MASTA-5 2 690 636 674 201 2 016 435
HERA 54 567 17 350 37 217
p = 1096486890805657601 (60 bit):
Pasta-3 31 053 515 16 067 138 14 986 377
PasTa-4 2 458 680 1315 770 1 142 910
MasTta-4 11 405 862 1 968 100 9 437 762
MASTA-5 3 542 410 669 220 2 873 190
HERA 61 360 16 873 44 487
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