
KEMTLS with Delayed Forward Identity
Protection in (Almost) a Single Round Trip

Felix Günther1, Simon Rastikian1,2,?, Patrick Towa1 and Thom Wiggers3

1 ETH Zurich, Zurich, Switzerland
mail@felixguenther.info, patrick.towa@inf.ethz.ch

2 IBM Research Europe, Zurich, Switzerland
sra@zurich.ibm.com

3 Radboud University, Nijmegen, Netherlands
thom@thomwiggers.nl

Abstract. The recent KEMTLS protocol (Schwabe, Stebila and Wig-
gers, CCS’20) is a promising design for a quantum-safe TLS handshake
protocol. Focused on the web setting, wherein clients learn server public-
key certificates only during connection establishment, a drawback of
KEMTLS compared to TLS 1.3 is that it introduces an additional round
trip before the server can send data, and an extra one for the client
as well in the case of mutual authentication. In many scenarios, includ-
ing IoT and embedded settings, client devices may however have the
targeted server certificate pre-loaded, so that such performance penalty
seems unnecessarily restrictive.
This work proposes a variant of KEMTLS tailored to such scenarios. Our
protocol leverages the fact that clients know the server public keys in ad-
vance to decrease handshake latency while protecting client identities. It
combines medium-lived with long-term server public keys to enable a
delayed form of forward secrecy even from the first data flow on, and full
forward secrecy upon the first round trip. The new protocol is proved to
achieve strong security guarantees, based on the security of the under-
lying building blocks, in a new model for multi-stage key exchange with
medium-lived keys.

Keywords: Key Exchange, Post-Quantum, Identity Protection, KEMTLS

1 Introduction

The Transport Layer Security (TLS) protocol is among the most widely de-
ployed cryptographic protocols. It is used to securely access web pages, email
servers, Internet-of-Things (IoT) gateways or even servers in Cooperative Intel-
ligent Transport Systems [48] (C-ITSs). In the TLS handshake sub-protocol, a
client and a server authenticate each other (at least the server to the client) and
? Part of the work was completed while the second author was affiliated with DIENS,
École Normale Supérieure, PSL University, Paris, France.

jointly establish a symmetric key that is then used in the record sub-protocol to
privately communicate authenticated application data. The latest version of the
protocol, standardized in 2018, is TLS 1.3 [43] and uses an ephemeral Diffie–
Hellman key exchange to establish keys that remain secure even after a poten-
tial compromise of the parties’ long-term keys, i.e., enabling so-called forward
secrecy.

Post-Quantum TLS. In anticipation of large-scale quantum computers, sev-
eral candidates for a post-quantum version of the TLS handshake protocol have
emerged. These for instance include the CECPQ2 experiment [36,38] by Google
that combines X25519 ECDH with the NTRU-HRSS lattice-based key exchange
in the TLS 1.3 handshake, or the Open Quantum Safe initiative [50] with proto-
type integrations in the OpenSSL library of TLS 1.3 key exchange with hybrid
security.

A promising candidate in this area is the KEMTLS protocol recently pro-
posed by Schwabe, Stebila, and Wiggers [46]. It is free of handshake signatures
and only relies on key encapsulation to provide both key establishment and au-
thentication in a quantum-safe way. The main idea is reminiscent of the OPTLS
protocol [34] (which in turn inspired the TLS 1.3 handshake design): at its core
are encapsulations against the respective partner’s public key, using the result-
ing secrets to establish a shared key. As the resulting shared key can only be
recovered with the partner’s secret key, this approach implicitly authenticates the
partner. Besides, to enable forward secrecy, the client also sends at the beginning
of the protocol an ephemeral public key that the server encapsulates against to
obtain an ephemeral contribution. The prototype implementation of KEMTLS
showed that its bandwidth was over 50% lighter than that of a size-optimized
post-quantum instantiation of TLS 1.3, and that it reduces the amount of CPU
cycles by almost 90% compared to a speed-optimized post-quantum instantiation
of TLS 1.3.

However, the KEMTLS protocol only treats the classical web scenario in
which the client has no prior knowledge of the server public key, although the
client could in practice cache the server certificate during an initial handshake. In
IoT or embedded-device settings, the server public key is often even hardcoded,
e.g., in firmware. The client therefore knows the server public key ahead of time
in many practical scenarios. This knowledge not only has the benefit of allowing
the client to verify the server certificate only once before any handshake (thereby
speeding handshakes and saving power for IoT devices), but could potentially
lead to a protocol with fewer message round trips, which is in practice crucial
to reduce network latency (also in the web setting) and power consumption.

Indeed, in the KEMTLS protocol, the server cannot send application data
before the client does, and the client can only send data after two round trips in
the case of mutual authentication, i.e., it is a two-Round-Trip-Time or 2-RTT
protocol. This contrasts with TLS 1.3, where the server can send data (e.g., a
server banner or an IoT-hub certificate) from its first message flow and the client
can do so after a single round trip even in the case of mutual authentication.

2

Client Server

cert[pkc], skc, cert[pks] sks

(pke, ske)←$ KEMe.KeyGen
(
1λ
)

(Ks, Cs)←$ KEMs.Encaps(pks)
K1 ← KDF (Ks)

pke, Cs, AEADK1 (cert[pkc])

Ks ← KEMs.Decaps (sks, Cs)
K1 ← KDF (Ks)

(Ke, Ce)←$ KEMe.Encaps (pke) ; (Kc, Cc)←$ KEMc.Encaps (pkc)
K2,c, K′2,c, K2,s, K′2,s ← KDF (Ks, Ke, Kc)

Ce, Cc, AEADK2,s(key confirmation), AEADK′
2,s

(app. data)

Ke ← KEMe.Decaps (ske, Ce) ; Kc ← KEMc.Decaps (skc, Cc)
K2,c, K′2,c, K2,s, K′2,s ← KDF (Ks, Ke, Kc)

AEADK2,c(key confirmation), AEADK′
2,c

(app. data)

Fig. 1: A 1-RTT protocol without forward identity protection.

The underlying reason is that each party must wait for the other’s public key
to then encapsulate against it, thereby implicitly authenticating the latter, since
there are no handshake signatures as in TLS 1.3. Scenarios in which the client
knows the server public key from the beginning of the protocol hence promise
to enable substantial performance improvements.

No Forward Identity Protection in 1-RTT. In case the client must also
authenticate herself to the server, as it is for instance necessary for IoT devices
or vehicles in C-ITSs, the TLS protocol is expected to also provide identity
protection [32], namely that the client’s identity should only be recoverable by
a server that is already authenticated. The client can of course leverage the
server public key that it already knows to encrypt her certificate (as illustrated
in Figure 1), but since there is no ephemeral contribution from the server yet, an
adversary that compromises the server’s key could recover the client’s identity
even after the handshake completed. In other words, there would be no forward(-
secure) identity protection.

Despite the efficiency benefits of a 1-RTT protocol, forgoing forward iden-
tity protection altogether might be too great of a compromise, especially when
privacy is a primary concern. For instance, the European Telecommunications
Standards Institute identifies the high risk of user profiling as a main privacy
challenge in IoT [21]. The US National Institute of Standards and Technology
considers as a high-level risk mitigation “safeguarding the confidentiality [. . .]
of data [. . .] collected by, stored on, processed by, or transmitted to or from

3

Client Server

cert[pkc], skc, cert[pks] sks

(pke, ske)←$ KEMe.KeyGen
(
1λ
)

(Ks, Cs)←$ KEMs.Encaps(pks)
pke, Cs

Ks ← KEMs.Decaps (sks, Cs)
(Ke, Ce)←$ KEMe.Encaps (pke)

Ce

Ke ← KEMe.Decaps (ske, Ce)
K1 ← KDF(Ks, Ke)

AEADK1 (cert[pkc])

K1 ← KDF(Ks, Ke)
(Kc, Cc)←$ KEMc.Encaps(pkc)

K2,c, K′2,c, K2,s, K′2,s ← KDF (Ks, Ke, Kc)
Cc, AEADK2,s(key confirmation), AEADK′

2,s
(app. data)

K2,c, K′2,c, K2,s, K′2,s ← KDF (Ks, Ke, Kc)
AEADK2,c(key confirmation), AEADK′

2,c
(app. data)

Fig. 2: A 2-RTT protocol with forward identity protection.

the IoT device” [22] and stated that an IoT device should have “the ability to
use demonstrably secure cryptographic modules for standardized cryptographic
algorithms [. . .] to prevent the confidentiality [. . .] of the device’s stored and
transmitted data from being compromised” [23]; here, the client identity belongs
to such transmitted data.

Nevertheless, to maintain client privacy (in a protocol using only key en-
capsulation) even if the server long-term keys are later compromised, the client
cannot send her certificate before the server has made an ephemeral contribution
in a first round trip. This means the client cannot be authenticated before the
server encapsulates against her public key in a second round trip (see Figure 2).
There seems to be no way of fully leveraging the knowledge of the server public
key to have a 1-RTT protocol while maintaining forward identity protection.

1.1 Contributions

The core contribution of this paper is a protocol (in Section 3) that bridges
the gap between forward identity protection and a 1-RTT protocol solely based

4

Client Server

(pke, ske)←$ KEMe.KeyGen
(
1λ
)

(Ks, Cs)←$ KEMs.Encaps(pks);
(
Kt
s, C t

s

)
←$ KEMs.Encaps

(
pkts
)

K0 ← KDF
(
Kt
s

)
K1, K′1, K2 ← KDF

(
Ks, Kt

s

)
pke, AEADK0 (Cs), C t

s , AEADK1 (cert[pkc]), AEADK′
1
(opt. 0-RTTdata)

Kt
s ← KEMs.Decaps

(
skts, C t

s

)
K0 ← KDF(Kt

s)
Ks ← KEMs.Decaps (sks, Cs)
K1, K′1, K2 ← KDF

(
Ks, Kt

s

)
(Ke, Ce)←$ KEMe.Encaps (pke) ; (Kc, Cc)←$ KEMc.Encaps (pkc)

K3,c, K′3,c, K3,s, K′3,s ← KDF
(
Ks, Kt

s, Ke, Kc

)
Ce, AEADK2 (Cc), AEADK3,s(key confirmation), AEADK′

3,s
(app. data)

Ke ← KEMe.Decaps (ske, Ce) ; Kc ← KEMc.Decaps (skc, Cc)
K3,c, K′3,c, K3,s, K′3,s ← KDF

(
Ks, Kt

s, Ke, Kc

)
AEADK3,c(key confirmation), AEADK′

3,c
(app. data)

Fig. 3: Sketch of the main protocol.

on key encapsulation, under the assumption that the client knows the server
public key at the start of the protocol (see Figure 3 for a sketch). The main
idea is to introduce semi-static public keys on the server side which the client
also knows at the start of the protocol. These semi-static keys are periodically
refreshed (e.g., once every other day), and if the corresponding secret key is not
compromised before it expires, the client’s identity can no longer be recovered,
even if the server long-term secret key is later compromised. In this sense, the
protocol satisfies a delayed form of forward identity protection [9] without any
extra round compared to a 1-RTT protocol without forward identity protection.
As a side-effect, the protocol also allows for optional zero round-trip time (0-
RTT) data with the same delayed forward secrecy, which the client can already
send within its first flight without having to wait for the server. Since the semi-
static keys are not assumed to be certified (the protocol would otherwise be
impractical), they must be transmitted during an initial handshake that then
consists of two round trips. The protocol takes care of this mechanism, and
allows for semi-static keys to roll over between two time periods, so that servers
can serve clients using both the key for the current and the next time periods.

Section 4 presents a model that formalizes the properties expected from a
protocol involving semi-static keys, and Section 5 proves (in the reductionist
framework and in exact-security terms) that the protocol does satisfy them under
standard assumptions. The model in Section 4 is closely related to the multi-stage

5

key exchange model [24] proposed for TLS 1.3 [18,19] and that for KEMTLS [46],
but it also accounts for the semi-static keys and their lifetime. Section 5 then
shows that the protocol achieves the intended security levels across the various
stages of the handshake, relying only on standard-model assumptions. Section 6
compares the protocol to alternative approaches and highlights its advantages.
Section 7 discusses implementation choices as well as a prototype implementation
and Section 8 discusses benchmarking results. As expected, caching certificates
incurs significant performance gains as it reduces the handshake time by at least
44%, and the privacy gains from semi-static keys come at negligible performance
costs.

Concurrent work. In concurrent work, Schwabe, Stebila, and Wiggers [47] also
consider a variant of the KEMTLS protocol, called KEMTLS-PDK, that lever-
ages prior knowledge of peer public keys. Similarly to this work, they show
how pre-distributed public keys can lead to reduced round trips and bandwidth
for the handshake (as on Figure 1). Their work further explores the perfor-
mance characteristics for various NIST post-quantum KEM candidates. This
work in contrast focuses on identity privacy and forward secrecy: beyond lever-
aging pre-distributed long-term keys, our protocol additionally employs in-band-
distributed, semi-static keys to achieve (delayed) forward secrecy for the first
data flow including the client’s identity and, optionally, 0-RTT data.

2 Preliminaries

This section introduces the notation used throughout the paper and the crypto-
graphic primitives on which the protocols herein rely.

2.1 Notation

The security parameter is denoted λ and is encoded in unary when given as
input to algorithms. For an integer n ≥ 1, JnK denotes the set {1, . . . , n}. The
notation y ← A(x) or A(x)→ y means that a deterministic algorithm A runs on
input x and returns y; for probabilistic algorithms the notation ←$ resp. →$ is
used instead.

2.2 Hash Functions

A hash function H : X → {0, 1}` is a map from a potentially infinite set X to the
set of bit strings of a fixed length `(λ). The advantage of an adversary A in find-
ing a collision for H is defined as Pr

[
x 6= y ∧H(x) = H(y) : (x, y)←$ A

(
1λ
)]
.

2.3 Pseudorandom Functions

A pseudorandom function (PRF) [26] is an efficiently computable function with
values computationally indistinguishable from uniformly random values.

6

Formally, a function PRF : K×X → Y is a (T, q, ε)-secure PRF with key space
K, input space X and range Y (all assumed to be finite and of size depending
on a security parameter λ) if the advantage∣∣∣Pr

[
1← A PRF(K,·) : K ←$ K

]
− Pr

[
1← A R(·) : R←$ YX

]∣∣∣
of every adversary A that runs in time at most T (λ) and makes at most q(λ)
queries is at most ε(λ).

A function PRF is a (T, q, ε)-secure dual PRF [3] if PRF′ : (x, y) 7→ PRF(y, x)
is a (T, q, ε)-secure PRF.

2.4 Key Derivation Functions

A key derivation function (KDF) is an algorithm which computes pseudorandom
keys of appropriate length from a source key material which is not necessarily
uniformly distributed, but still has high entropy despite potential partial adver-
sarial knowledge. The results can then be used as secret keys for cryptosystems.

Syntax. A key derivation function [33] KDF(XTS ,SKM ,CTX , L)→ K takes as
input an extractor-salt value XTS , a source key material SKM , some context
information CTX and a length L, and returns an L-bit string K.

Hash-Based Key Derivation. Krawczyk [33] proposed a hash-bashed KDF, de-
noted HKDF, that follows the extract-then-expand paradigm. It consists of two
functionalities, namely an Extract(XTS ,SKM)→ PRK algorithm that computes
a key for pseudo-random evaluation from the salt and the source key material,
and an Expand(PRK,CTX , L) → K algorithm that computes an L-bit key via
successive pseudo-random evaluations from the pseudo-random key and the con-
text information.

2.5 Message Authentication Codes

Amessage authentication code (MAC) is a primitive that attests the authenticity
of a message using a private key. It consists of an algorithm KeyGen

(
1λ
)
→$ K

that generates a private key and an algorithm MAC(K,M)→ τ that computes a
tag τ on a messageM using a key K. A MAC is considered (T, q, ε)-Existentially
UnForgeable under Chosen-Message Attacks (EUF-CMA) if for every algorithm
A that runs in time at most T (λ) and makes at most q(λ) oracle queries,

Pr
[

MAC (K,µ) = τ
∧µ /∈ Q : K ←$ KeyGen

(
1λ
)

;Q← ∅
(µ, τ)←$ A O(K,·)

]
≤ ε(λ),

with O an oracle which, on input K, replies to a query on a message M by
computing and returning MAC (K,M) and adding M to Q.

7

2.6 Key Encapsulation Mechanisms

The protocol further relies on key encapsulation mechanisms (KEMs), a public-
key primitive which allows a party to send a symmetric key to another party
encrypted under the public key of the latter. It consists of a key generation algo-
rithm KeyGen

(
1λ
)
→$ (pk, sk) that generates a pair of public and secret keys, an

encapsulation algorithm Encaps(pk)→$ (K,C) which computes a symmetric key
in a set K and a ciphertext, and a decapsulation algorithm Decaps(sk,C)→ K
that computes a symmetric key on the input of a secret key and a ciphertext.

A KEM is deemed δ-correct [29] if

Pr
[
K 6= Decaps(sk,C) : (pk, sk)←$ KeyGen

(
1λ
)

(K,C)←$ Encaps(pk)

]
≤ δ(λ).

The security of a KEM requires the keys it generates to be indistinguishable
from uniformly random values in K, and in certain cases even if an adversary
is given access to a decapsulation oracle. If the adversary is given access to
such an oracle, the security notion is referred to as INDistinguishability under
Chosen-Ciphertext Attacks (or IND-CCA security), and otherwise as INDistin-
guishability under Chosen-Plaintext Attacks (or IND-CPA security).

Formally, for atk ∈ {CPA,CCA}, a KEM satisfies (T, q, ε)-IND-atk security
if for every adversary A that runs in time at most T (λ) and makes at most q(λ)
oracle queries,∣∣∣∣∣∣∣∣∣∣

Pr

b = b′ :

(pk?, sk?)←$ KeyGen
(
1λ
)

b←$ {0, 1}
(K?

0 ,C ?)←$ Encaps (pk?)
K?

1 ←$ K
b′ ←$ A Oatk(sk?,C?,·) (pk?,C ?,K?

b)

− 1/2

∣∣∣∣∣∣∣∣∣∣
≤ ε(λ),

with Oatk an oracle which, on input C ?, to replies to a decapsulation query on
a ciphertext C with

– Decaps (sk?,C) if C 6= C ? and atk = CCA,
– ⊥ otherwise.

(T, ε)-IND-1CCA security refers to (T, 1, ε)-IND-CCA security, i.e., a security
notion in which the adversary makes at most one decapsulation query.

3 Protocol

This section presents a key-exchange protocol, specified in Figure 4, with mutual
authentication that solely relies on KEMs for key establishment and authenti-
cation between a client and a server. The protocol assumes the client to have
prior knowledge of the server certificate, as it is often the case for embedded or
IoT devices and other applications of TLS. This, together with novel insights,
allows the client to send forward-secret and fully authenticated application data

8

after a single round trip, and the server from its first flow, as in TLS 1.3. It also
allows (optional) zero round-trip time (0-RTT) to be send by the client along
with its first flight of messages. In comparison, in the KEMTLS protocol [46] the
client can only send application data after two round trips in the case of mutual
authentication, and the server can only do so from its second flow regardless of
client authentication.

3.1 Protocol Description

Building Blocks. The protocol involves three KEMs:

– KEMe for establishing ephemeral secrets and enabling forward secrecy,
– KEMc for implicit client authentication, and
– KEMs for implicit server authentication.

All three could be instantiated with the same scheme or be chosen differently
depending on various optimization factors. For instance, KEMe could be chosen
so as to minimize the key-generation time and alleviate client computation,
whereas KEMc and KEMs could be selected as schemes with fast encapsulation
even though key generation might be long, with an even stronger computational-
efficiency requirement for the client than for the server.

Besides, the protocol also uses

– Krawczyk’s hash-based key derivation function HKDF [33] as keystone of
the key schedule to extract randomness from the KEM-generated secrets
and derive stage keys,

– HMAC [5] as message authentication code for explicit party authentication,
and

– a hash function H, e.g., SHA-256, to compute expansion labels for HKDF as
well as compress the handshake messages before explicit authentication.

Outline. The protocol shares similarities with the KEMTLS protocol, which is
itself modeled after the OPTLS protocol [34]. However, it goes beyond prior work
to reconcile client privacy (even if server long-term keys are later compromised)
and a 1-RTT handshake: it leverages server semi-static KEM keys which the
client encapsulates against and mixes the result into the key schedule at the
beginning of the protocol, so that only a party privy to the semi-static secret
key can decipher the client identity.

Key Lifetime. A pair of semi-static keys is only to be used in a given time period,
e.g., a duration of two days, after which the server refreshes the pair. Though
the privacy guarantees are not as strong as those of a 2-RTT handshake which
uses fully ephemeral secrets to protect client certificates, they are still relevant
in practice and it is a fair compromise for the efficiency benefits.

9

Clocks. The server keeps track of time periods with an integer counter. Only
the server must maintain a clock, just to know when to refresh the keys. The
client need only store the latest semi-static public key it received from the server
along with the corresponding time period, which is indicated by the server. This
means that the protocol can even be used with clients that may not have a clock
as it is the case for some IoT devices.

Time-Period Transition. The server generates the keys for a time period before
its beginning and sends the public key to the client as part of a handshake during
a transition phase from the previous time period, e.g., the last hour. During this
transition phase, the server not only accepts handshake requests with the current
key, but also with the next one, so that the client can use the next key as soon
as it receives it.

In case the client does not connect to the server during this transition phase,
the client simply initiates the protocol with the latest known key (if any) in
addition to the server long-term key. The server then just rejects the ciphertext
encrypting the client certificate and returns the current public key; following
in spirit the HelloRetryRequest message sent in a TLS 1.3 handshake upon
configuration mismatch [43, Section 4.1.4]. The client can now send its certifi-
cate anew, encrypted under a mixture of ephemeral KEM secret (instead of the
skipped semi-static secret) and long-term KEM secret. The two parties other-
wise follow essentially the same flow as in Figure 4, leading to only a one-time
delay by one round trip to re-synchronize.

Protocol Notation. Table 1 summarizes the notation used for the protocol secrets.
In Figures 4 and 5,

– MSG : M denotes that message MSG is sent and contains M .
– {MSG}stagek

: M denotes the AEAD encryption of a message MSG con-
taining M under an AEAD key derived from the secret accepted at stage k
(the derivation is not made explicit on the figures). A star (*) as superscript
indicates that the message is only sent the during the transition from the
current server time period to the next.

Inputs. At the beginning of the protocol, in addition to its certificate cert[pkc]
and secret key skc, the client holds a server long-term certificate cert[pks] and
the latest server semi-static key pkts,cs known to the client in a time period ts,c.
By convention, pkts,cs := ⊥ and ts,c := −∞ if the client has never obtained a
semi-static key from the intended partner server. As for the server, it is given
as input a long-term secret key sks and a semi-static secret sktss corresponding
to the current server time period ts. Note that the long-term public keys are
certificated out of band by an external certification authority. In constrast, the
semi-static public keys are not assumed to be certified.

10

Client Server

cert[pkc], skc, cert[pks], ts,c, pkts,cs sks, ts, sktss
(pke, ske)←$ KEMe.KeyGen

(
1λ
)

CH := ClientHello : nc ←$ {0, 1}256, pke, supported algs.(
K
ts,c
s , C ts,c

s

)
←$ KEMs.Encaps

(
pkts,cs

)
SSKC := SemiStaticKEMCiphertext ts,c, C ts,c

s

ts,c = ts =: t

Kt
s ← KEMs.Decaps

(
skts, C t

s

)
ES← HKDF.Extract

(
0, Kt

s

)
accept EHTS← HKDF.Expand (ES, "e hs traffic"‖H(CH, SSKC)) stage 1

(Ks, Cs)←$ KEMs.Encaps(pks)

{CKC := ClientKEMCiphertext}stage1 : Cs

dES← HKDF.Expand (ES, "derived")
Ks ← KEMs.Decaps (sks, Cs)

HS← HKDF.Extract (dES, Ks)
accept SHTS← HKDF.Expand (HS, "s hs traffic"‖H(CH, . . . , CKC)) stage 2accept CHTS← HKDF.Expand (HS, "c hs traffic"‖H(CH, . . . , CKC)) stage 3accept ETS← HKDF.Expand (HS, "c e traffic"‖H(CH, . . . , CKC)) stage 4

{CC := ClientCertificate}stage3
: cert[pkc]

record layer, AEAD-encrypted with key derived from ETS

dHS← HKDF.Expand (HS, "derived")
(Ke, Ce)←$ KEMe.Encaps (pke)

SH := ServerHello : ns ←$ {0, 1}256, Ce, selected algs.

(Kc, Cc)←$ KEMc.Encaps (pkc)
{SKC := ServerKEMCiphertext}stage2 : Cc

Ke ← KEMe.Decaps(ske, Ce)
Kc ← KEMc.Decaps(skc, Cc)

IMS← HKDF.Extract (dHS, Ke)
dIMS← HKDF.Expand (IMS, "derived")

MS← HKDF.Extract (dIMS, Kc)
accept SAHTS← HKDF.Expand (MS, "s ahs traffic"‖H(CH, . . . , SKC)) stage 5accept CAHTS← HKDF.Expand (MS, "c ahs traffic"‖H(CH, . . . , SKC)) stage 6

fks ← HKDF.Expand (MS, "s finished")

{SPK := ServerPublicKey}∗stage5
: t + 1, pkt+1

s

{EE := EncryptedExtensions}stage5

{ServerFinished}stage5
: SF← HMAC (fks, H(CH, . . . , EE))

abort if SF 6= HMAC (fks, H(CH, . . . , EE))
accept SATS← HKDF.Expand (MS, "s app traffic"‖H(CH, . . . , SF)) stage 7(

ts,c + 1, pkts,c+1
s

)
←
(
t + 1, pkt+1

s

)
record layer, AEAD-encrypted with key derived from SATS

fkc ← HKDF.Expand (MS, "c finished")

{ClientFinished}stage6
: CF← HMAC (fkc, H(CH, . . . , SF))

abort if CF 6= HMAC (fkc, H(CH, . . . , SF))
accept CATS← HKDF.Expand (MS, "c app traffic"‖H(CH, . . . , CF)) stage 8

record layer, AEAD-encrypted with key derived from CATS

Fig. 4: Protocol in the case of matching time periods.

11

Client Server

cert[pkc], skc, cert[pks], ts,c, pkts,cs sks, ts, sktss
(pke, ske)←$ KEMe.KeyGen

(
1λ
)

CH := ClientHello : nc ←$ {0, 1}256, pke, supported algs.

(Ks, Cs)←$ KEMs.Encaps(pks)(
K
ts,c
s , C ts,c

s

)
←$ KEMs.Encaps

(
pkts,cs

)
SSKC := SemiStaticKEMCiphertext ts,c, C ts,c

s

ts,c 6= ts

ES′ ← HKDF.Extract
(
0, K

ts,c
s

)
accept EHTS′ ← HKDF.Expand (ES′, "e hs traffic"‖H(CH, SSKC)) reject stage 1’
dES′ ← HKDF.Expand (ES′, "derived")

{CKC′ := ClientKEMCiphertext′}stage1′ : Cs

HS′ ← HKDF.Extract (dES, Ks)
accept SHTS′ ← HKDF.Expand (HS′, "s hs traffic"‖H(CH, . . . , CKC′)) reject stage 2’accept CHTS′ ← HKDF.Expand (HS′, "c hs traffic"‖H(CH, . . . , CKC′)) reject stage 3’accept ETS′ ← HKDF.Expand (HS′, "c e traffic"‖H(CH, . . . , CKC′)) reject stage 4’
{CC′ := ClientCertificate′}stage3′

: cert[pkc]
record layer, AEAD-encrypted with key derived from ETS′

dHS′ ← HKDF.Expand (HS′, "derived")
(Ke, Ce)←$ KEMe.Encaps (pke)

SH := ServerHello : ns ←$ {0, 1}256, Ce, selected algs.

Ke ← KEMe.Decaps(ske, Ce)
ES← HKDF.Extract (0, Ke)

accept EHTS← HKDF.Expand (ES, "e hs traffic"‖H(CH, SSKC, SH)) stage 1
{CKC := ClientKEMCiphertext}stage1 : Cs

dES← HKDF.Expand (ES, "derived")
Ks ← KEMs.Decaps (sks, Cs)

HS← HKDF.Extract (dES, Ks)
accept SHTS← HKDF.Expand (HS, "s hs traffic"‖H(CH, SSKC, SH, CKC)) stage 2accept CHTS← HKDF.Expand (HS, "c hs traffic"‖H(CH, SSKC, SH, CKC)) stage 3accept ETS← HKDF.Expand (HS, "c e traffic"‖H(CH, SSKC, SH, CKC)) stage 4

{CC := ClientCertificate}stage3
: cert[pkc]

record layer, AEAD-encrypted with key derived from ETS

dHS← HKDF.Expand (HS, "derived")
(Kc, Cc)←$ KEMc.Encaps(pkc)

{SKC := ServerKEMCiphertext}stage2
: Cc

Kc ← KEMc.Decaps(skc, Cc)
MS← HKDF.Extract (dHS, Kc)

accept SAHTS← HKDF.Expand (MS, "s ahs traffic"‖H(CH, SSKC, SH, . . . , SKC)) stage 5accept CAHTS← HKDF.Expand (MS, "c ahs traffic"‖H(CH, SSKC, SH, . . . , SKC)) stage 6
fks ← HKDF.Expand (MS, "s finished")

{SPK := ServerPublicKey}stage5
: ts, pktss

{EE := EncryptedExtensions}stage5
{ServerFinished}stage5

: SF← HMAC (fks, H(CH, SSKC, SH, . . . , SKC))

abort if SF 6= HMAC (fks, H(CH, SSKC, SH, . . . , SKC))
accept SATS← HKDF.Expand (MS, "s app traffic"‖H(CH, SSKC, SH, . . . , SF)) stage 7(

ts,c, pkts,cs

)
←
(
ts, pktss

)
record layer, AEAD-encrypted with key derived from SATS

fkc ← HKDF.Expand (MS, "c finished")

{ClientFinished}stage6
: CF← HMAC (fkc, H(CH, SSKC, SH, . . . , SF))

abort if CF 6= HMAC (fkc, H(CH, SSKC, SH, . . . , SF))
accept CATS← HKDF.Expand (MS, "c app traffic"‖H(CH, SSKC, SH, . . . , CF)) stage 8

record layer, AEAD-encrypted with key derived from CATS

Fig. 5: Protocol in the case of unmatching time periods.
12

Protocol Steps. The main protocol steps are as follows.

– The client first generates a pair (pke, ske) of ephemeral keys, and sends the
public key with a fresh nonce nc and the list of algorithms it supports in a
ClientHello message.

– The client then encapsulates against the server semi-static key and sends
the resulting ciphertext C ts,c

s together with its time period ts,c within a
SemiStaticKEMCiphertext message. It uses the resulting semi-static secret
K
ts,c
s to compute an early secret ES, and from that derive a first stage key,

the early handshake traffic secret EHTS.
– The client next encapsulates against the server long-term key, sending the

resulting ciphertext Cs AEAD-encrypted under EHTS. (This protects the
certified identity of the server from an active adversary with delayed forward
secrecy, in case Cs may leak such information.) The resulting keyKs is mixed
into the key schedule to obtain a handshake secret HS, which implicitly
authenticates the server.

– The handshake secret HS is used to compute server and client handshake
traffic secrets SHTS and CHTS. The client uses CHTS to AEAD-encrypt
its certificate in a ClientCertificate message. (This ensures that only a
party knowing both the server long-term and semi-static secret keys used
can infer information about the client’s identity.)
Additionally, an early traffic secret ETS is derived to optionally send pro-
tected 0-RTT application data.

– When the server receives the ClientHello, SemiStaticKEMCiphertext and
ClientCertificate messages from the client, two cases arise: either the
client time period ts,c matches the current server time period ts or not.
Matching time periods. If ts,c = ts =: t (or ts,c = ts + 1 during the tran-
sition from ts to ts + 1) as in Figure 4, the server has the semi-static secret
key skts and can thus compute EHTS, SHTS, CHTS, and ETS, and recover
Cs, the client certificate and potential early application data.
∗ The server encapsulates against pke and sends in a ServerHello mes-
sage the resulting ciphertext Ce, together with a fresh nonce and the
algorithms selected from the algorithms that the client supports.

∗ Next, the server encapsulates against the client public key pkc and en-
crypts the resulting ciphertext Cc under SHTS. (This prevents informa-
tion about the client’s identity to leak through Cc.)

∗ Both parties now compute a master secret by mixing in the ephemeral
and client long-term KEM secrets Ke and Kc. Secret Ke enables forward
secrecy, Kc implicitly authenticates the client.

∗ From MS, both parties compute (mutually) authenticated handshake
traffic secrets SAHTS and CAHTS for the server and the client, used to
derive AEAD keys to encrypt the remaining handshake.

∗ From MS, MAC “finished” keys fks and fkc are further derived for explicit
authentication as well as application transport secrets SATS and CATS
for application data encryption.

13

∗ The server explicitly authenticates by sending a “finished” message, a
MAC over the transcript under key fks and can then send application
data.
During a transition phase to the next time period, it also sends the
public key pkt+1

s for the next time period.4 The client saves this key
(and discards pkts) only after verifying the server MAC.

∗ Upon receiving the server “finished” message, the client explicitly au-
thenticates by also sending a MAC over the transcript under key fkc,
and can then send application data.

Unmatching time periods. If ts,c 6= ts (and ts,c 6= ts + 1 during the tran-
sition from ts to ts + 1) as in Figure 5, the server does not hold skts,cs and
cannot compute the early handshake-traffic, the server/client handshake traf-
fic or the early traffic secrets (denoted EHTS′, SHTS′, CHTS′, and ETS′),
and therefore cannot recover Ks, the client certificate or any potential early
application data. The server thus rejects the first four stages.
The main idea in this case is close to that of a HelloRetryRequest in
TLS 1.3 [43]. The server’s response to the client does not contain a KEMc

ciphertext, indicating that their time periods did not match, but however
contains an ephemeral KEM ciphertext. The client can then decapsulate the
ciphertext, recover an ephemeral secret, and restart as in the case of match-
ing time periods; the now-established ephemeral secret essentially takes the
place of the semi-static one. The protocol is thereby delayed by a single
round trip. The details are given in Figure 5 in the appendix.

Discussion. In case an adversary were to change ts,c, the parties would not
execute the correct branch of the protocol. However, the handshake secrets they
would compute would simply differ without their secrecy being threatened, and
the confirmation messages would not pass verification, i.e., both parties would
be aware that the ClientHello message was tampered with.

Note also that it is important for the client to only use authentic semi-static
keys (i.e., obtained from a previous handshake in which the server was explicitly
authenticated), as otherwise an adversary could send the client a semi-static key
it generated itself and later recover the client’s identity in a past handshake by
only corrupting the server long-term key.

Lastly, exporter and resumption secrets could also be derived from the master
secret as in TLS 1.3. Though omitted from the protocol description, they can be
readily added to the key schedule and would satisfy the same security properties
as the application transport secrets.

Application to KEMTLS with Client Authentication. The idea of intro-
ducing semi-static keys to shorten the handshakes by a full round trip (while
maintaining forward identity protection) can also be applied to the KEMTLS
4 The server does so once per client; the client will then switch to the next key for
subsequent handshakes.

14

CAHTS/SAHTS Client/Server Auth. Handshake Traffic Secret
CATS/SATS Client/Server Application Transport Secret
CHTS/SHTS Client/Server Handshake-Traffic Secret
dES/dHS/dIMS Derived Early/Handshake/Intermediate Master Secret
ES/HS/(I)MS Early/Handshake/(Intermediate) Master Secret
fkc/fks Client/Server Finished Key

Table 1: Glossary of values derived in the protocol.

protocol (without pre-loaded certificates) with client authentication [46, Ap-
pendix C.1]: it suffices to run the full protocol for the first handshake in a time
period and have the server send the current semi-static public key along with the
server certificate. The client can then save the long-term and semi-static public
keys and for subsequent handshakes in the time period run the protocol from
this section.

4 Security Model

This section introduces the model to capture security of the key-exchange pro-
tocol presented in Section 3. It is close to the model for authenticated key ex-
change proposed by Dowling, Fischlin, Günther and Stebila [18, 19] and that
for KEMTLS by Schwabe, Stebila, and Wiggers [46]. Their models follow a line
of work [24, 28] concerned with multi-stage key exchange protocols in which
keys are computed at multiple stages of each single protocol execution. It orig-
inated from Bellare and Rogaway’s model [6] that introduced the paradigm of
session-key indistinguishability, and for which Brzuska et al. [10, 11] formalized
the composability with arbitrary protocols based on symmetrically distributed
keys.

In the security model, the adversary controls the network and can passively
eavesdrop, modify and orchestrate the communication across several concurrent
sessions of the protocol. The adversary can further expose long-term and semi-
static secrets of honest parties as well as the keys established during protocol
runs (individually per stage). The protocol is then deemed multi-stage secure
if such an adversary cannot distinguish a key established at a stage of a non-
compromised (“fresh”) session from a uniformly random key.

Authentication. The model supports mutual authentication, as required in the
scenario of IoT or embedded devices. For the authentication of each stage key,
implicit and explicit authentication are distinguished. Implicit authentication
refers to the property that the stage key can only be recovered by the intended
partner, whereas explicit authentication guarantees that the partner actively
participated in the protocol and also established a stage key. The authentication
of a stage key can further be lifted from unauthenticated or implicit to explicit
once a later stage of the protocol is accepted: a stage key can be retroactively
explicitly authenticated.

15

Forward Secrecy. The model further covers forward secrecy, the notion that
stage keys remain secret even if the long-term keys involved in its computation
are later compromised. As the protocol in Section 3 introduces server semi-static
keys (i.e., keys that are periodically refreshed) for servers in addition to long-term
keys, the notion of forward secrecy is here refined to also take the compromise
of such keys into account.

More precisely, the model considers two types of forward secrecy determined
by whether the semi-static key used to compute a stage key may be corrupted.

– A stage key satisfies (full) forward secrecy if the adversary remained pas-
sive until the session accepted the stage or did not corrupt the long-term
key of the intended communication partner before the latter was explicitly
authenticated. The semi-static key used to compute the stage key may be
corrupted at any time.

– A stage key satisfies delayed forward secrecy if, in addition to the previous
conditions, the adversary did not corrupt the semi-static key used to compute
the stage key. In particular, if the long-term key of the intended partner is
not corrupted before the semi-static key expires, the secrecy of the stage key
is equivalent to that of a key satisfying full forward secrecy. This (informal)
definition of delayed forward secrecy is in this sense related to Boyd and
Gellert’s [9].

Key Usage. The use of stage keys is also specified, i.e., whether a key is meant
to be used internally within the protocol (e.g., to encrypt handshake traffic) or
externally (for example to protect application messages).

Replays. The model further captures that the initial, first-flight keys are re-
playable: an attacker may copy the client’s initial messages and send them to
the server (again), leading to multiple server sessions sharing the same keys with
that one original client. This is due to the key being derived without interac-
tion (in zero round-trip time) and hence with no active contribution from the
server side. Following [19, 25], the model distinguishes between replayable and
non-replayable stages, catering for this situation (which would otherwise lead to
a violation of partnering uniqueness), while still demanding that keys remain
indistinguishable from random, even when replayable.

4.1 Syntax

Similarly to the model for TLS 1.3 proposed by Dowling et al. [18, 19], a multi-
stage key-exchange protocol is characterized by a set of values. In the present
case, these are as follows.

– M ∈ N : the number of protocol stages, i.e., the number of keys derived in a
session.

– FS ∈ {dfs, fs}M : for i ∈ JMK, FS i specifies the type of forward secrecy
expected from the key computed at stage i.

16

– iauths ∈ {1, . . . ,M} : a variable indicating the stage from which the server
is implicitly authenticated.

– iauthc ∈ {iauths, . . . ,M} : a variable that specifies the stage from which the
client is implicitly authenticated. It is here assumed that the server is always
the first party to be authenticated, which is in line with identity protection.

– eauth = ((u1,m1), . . . , (u1,mM)) with ui ≤ mi ∈ {i, . . . ,M,∞} for all
i ∈ JMK : a pair tuple encoding the intended explicit-authentication pat-
tern. For example, the i-th pair (ui,mi) means that the key computed at
stage i reaches explicit server authentication once stage ui ≥ i is accepted
and explicit client and server (i.e., mutual) authentication once stage mi

is accepted5. The value ∞ indicates that unilateral (ui = ∞) or mutual
(mi =∞) authentication is never reached for the corresponding stage.

– use ∈ {internal, external}M : the usage indicator for each stage key, with
usei denoting the usage of the key established at stage i. An internal key
may be used in the key exchange protocol (and also externally), whereas an
external key is not to be used in the protocol in order to allow for generic
composition.

– replay ∈ {replayable,nonreplayable}M : the replayability indicator for each
stage, with replayi indicating whether the key established at stage i can be
replayed. A replayable key may be derived non-uniquely in more than one
responder session.

The set of participants is denoted ID = Γ ∪ Σ, with Γ the set of clients
and Σ the set of servers (the union need not be disjoint). Each identity id ∈ ID
is associated with a certified long-term public key pkid and a corresponding
secret key skid . The root certificate of the certificate authority is assumed to
be pre-distributed to all parties. The clients are also assumed to be given the
certificates of the servers to which they may connect, prior to any handshake
request. In addition to long-term keys, each server participant s ∈ Σ also holds
a pair of semi-static keys

(
pktss , sktss

)
for each local time period ts ∈ N (the pair

is generated shortly before the beginning of period ts), and these are erased
when the next period begins. The semi-static public keys are not assumed to be
given to the clients out of band; the servers must transmit them during protocol
executions.

Each participant (client or server) can run several concurrent instances of
the protocol, with each local instance referred to as a session, and each session
consisting of multiple stages, i.e., computation steps at which keys are derived.
A session is identified with a pair σ = (id, n) ∈ ID × N which denotes the n-th
local session of participant id. A participant running a session locally maintains
the session-specific information below.
– id : the identity of the session owner.
– pid ∈ ID ∪ {∗} : the identity of the intended partner. In case6 id ∈ Σ and

the identity of the intended partner client is currently unknown, the special
6 Post-specified peers are only considered for server sessions as client sessions must be
given from the beginning of the execution the server identity for which they use the
semi-static public key.

17

symbol ∗ is used, and it may later be updated to a specific identity once by
the protocol. That is to say, the identity of the communication partner may
only be known during the execution of the protocol (e.g., through exchanged
certificates), capturing post-specified peers [13].

– role ∈ {initiator , responder} : the role of the session.
– status ∈ {⊥, running, accepted, rejected}M : the status of each stage. It is

initially set to (running,⊥, . . . ,⊥). statusi ← accepted once the stage i is
accepted. statusi ← rejected if the stage i is rejected.

– stage ∈ {0, . . . ,M} : indicates the last completed stage. This variable is
initially set to 0, and stage ← i if statusi is updated to accepted or rejected.

– cid ∈ ({0, 1}∗ ∪ {⊥})M : records the contributive identifier at each stage.
For all i ∈ JMK, cidi is initially set to ⊥ and may be updated until the stage
is either accepted or rejected.

– sid ∈ ({0, 1}∗ ∪ {⊥})M : holds the session identifier at each stage. For all
i ∈ JMK, sidi is initially set to ⊥ and is updated (only) once upon acceptance
of stage i.

– key ∈ ({0, 1}∗ ∪ {⊥})M : holds the key established at each stage. For all
i ∈ JMK, keyi is initially set to ⊥ and is set upon acceptance of stage i.

A variable, e.g., id, pertaining to a particular session σ is denoted σ.id.

Partnering. Two sessions σ and σ′ are considered partnered at stage i if they
are distinct and share the same session identifier at that stage, i.e., σ 6= σ′ and
σ.sidi = σ′.sidi 6= ⊥.

4.2 Security Definitions

As in the work of Brzuska et al. [11], the security of key-exchange protocols is
here defined via two notions: multi-stage security (which here combines session-
key indistinguishability and explicit authentication) and match security. Session-
key indistinguishability ensures that keys computed at non-compromised stages
are indistinguishable from uniformly random keys. Explicit authentication cap-
tures the idea that no session stage expecting an explicitly authenticated peer
maliciously accepts without such. Match security finally guarantees that in a
multi-stage setting, session identifiers correctly identify sessions that are part-
nered in effect. These two notions are formalized via respective security games in
which an adversary interacts with a challenger. The adversary is given access to
challenger-controlled oracles through which it can initiate concurrent protocol
executions, interact with honest participants (run by the challenger), and con-
trol the messages they send, i.e., forward, delay, modify, drop or even change the
order of the messages. At the end of the interaction, the challenger returns a bit
indicating whether conditions that contradict the security notion being defined
are fulfilled. The advantage of the adversary in the game is then defined as the
probability of this event.

18

Game Variables. Throughout the interaction with the adversary, the chal-
lenger maintains the following variables for each server identity s ∈ Σ.

– ts ∈ N : the current time period of server s, initialized to 0.
– (pk ′s, sk ′s) : the pair of keys for the current time period, initialized during the

game setup. The value of sk ′s while variable ts holds a value t ∈ N is denoted
skts in Definition 4.2.

–
(
pk ′′s , sk ′′s

)
: the pair of keys for the next time period, initialized to (⊥,⊥).

For each client identityc ∈ Γ , the challenger maintains

– a pair (ts,c, pk ′s,c) of time period and semi-static key for each server iden-
tity s ∈ Σ. Each such pair is initialized to (−∞,⊥) and may be updated
throughout the game.

The challenger additionally maintains the following game variables for each
session σ that it runs.

– period ∈ N ∪ {−∞} : records the time period of the server semi-static key
used by the session. If σ.role = initiator , then period ← tσ.pid,σ.id and cannot
be updated. If σ.role = responder , then period ← tσ.id and may be updated
once to period + 1 once by the protocol (during the transition from a period
to another).

– revealed ∈ {TRUE,FALSE}M : a vector recording the stage keys that were
revealed to the adversary. All entries are initially set to FALSE.

– tested ∈ {TRUE,FALSE}M : a vector recording which stage keys were tested
by the adversary, i.e., for which the adversary was returned either the stage
key or a random key. All entries are initially set to FALSE.

Game Oracles. The adversary is given access to the following oracles in the
security games.

– NewSession(p, q, role) : creates a new session σ with owner σ.id ← p, intended
peer σ.pid ← q and role σ.role ← role. If role = responder , the identity q
may be unspecified, i.e., set to ∗. The oracle returns σ.

– Send(σ,m) : returns ⊥ if session σ does not exist (i.e., was not started by
a query to oracle NewSession), otherwise runs the protocol algorithm of the
participant with the current state on input m, updates the state and returns
the response (if any) and (σ.stage, σ.statusσ.stage). To initiate a session in case
σ.role = initiator , the adversary may submit the special message m := init.
If σ.statusσ.stage is updated to accepted, then the execution is halted. This
allows the adversary to test an internal key before it is used in the protocol,
which is forbidden at a later point in the execution to prevent trivial wins (see
oracle Test below). Once the execution is halted, the adversary may perform
operations on other sessions, test the stage key (i.e., submit a Test(σ, σ.stage)
query) or submit a Send(σ, continue) query to resume the computation.
∗ If there exists a distinct session σ′ 6= σ such that σ.sidσ.stage = σ′.sidσ.stage
and σ′.testedσ.stage = TRUE, then

19

. the challenger sets σ.testedσ.stage ← TRUE. This ensures that if a
partnered session was already tested, then subsequent test queries
are appropriately answered.

. if useσ.stage = internal, then σ.keyσ.stage ← σ′.keyσ.stage. That is, if
the key is internal, then it is set consistently with the key from the
partnered session. (This assumes the property that if two partnered
sessions accept a stage key, then these are equal, i.e., a guarantee of
match security to be formally defined later.)

∗ If the adversary resumes the computation and σ.stage < M , then the
challenger sets σ.statusσ.stage+1 ← running and the oracle returns the
next protocol message and (σ.stage + 1, σ.statusσ.stage+1).

– Reveal(σ, i) : returns ⊥ if session σ does not exist or if σ.statusi 6= accepted,
otherwise returns σ.keyi. The challenger then sets σ.revealedi ← TRUE.

– NextPeriod(s ∈ Σ) : if
(
pk ′′s , sk ′′s

)
6= (⊥,⊥), i.e., if server s is transitioning

from ts to ts + 1, then the oracle returns ⊥, otherwise the oracle overwrites(
pk ′′s , sk ′′s

)
with a fresh pair of keys and returns pk ′′s .

– EndCurrentPeriod(s ∈ Σ) : sets ts ← ts + 1,
(
pk ′s, sk ′s

)
←
(
pk ′′s , sk ′′s

)
and(

pk ′′s , sk ′′s
)
← (⊥,⊥).

– Corrupt(id) : returns the long-term secret key skid of participant id.
– SemiStaticCorrupt(s ∈ Σ, d ∈ {0, 1}) : returns sk ′s if d = 0; the key in period
ts is now considered corrupt. If d = 1, returns sk ′′s ; if sk ′′s 6= ⊥, the key in
period ts + 1 is now considered corrupt.

– Test(σ, i) : based on a bit b fixed throughout the game, this oracle returns
either the key that σ computed at stage i if b = 0 or a uniformly random key
if b = 1, unless σ does not exist or conditions which prevent the adversary
from readily distinguishing the two cases are not met.

∗ If σ does not exist, then return ⊥.
∗ If σ.statusi 6= accepted or there exists a session σ′ (not necessarily dis-
tinct) such that σ.sidi = σ′.sidi and σ′.testedi = TRUE, then the oracle
returns ⊥. In other words, a stage key is tested at most once.

∗ If σ.usei = internal and there exists a session σ′ (not necessarily distinct)
such that σ.sidi = σ′.sidi and σ′.statusi+1 6= ⊥, then the oracle returns
⊥. This guarantees that a potential partnered session, which may have
already established this internal key, has not already used it.

∗ The challenger sets σ.testedi ← TRUE.
∗ K ← σ.keyi if b = 0, otherwise K is drawn uniformly at random from
the key space.

∗ If σ.usei = internal, the challenger sets σ.keyi ← K to remain consistent
with later use of the key.

∗ For any session σ′ 6= σ such that σ.sidi = σ′.sidi and σ′.statusi ←
accepted, the challenger sets σ′.testedi ← TRUE, and if additionally
σ.usei = internal, then the challenger sets σ′.keyi ← K.

∗ The oracle ultimately returns K to the adversary.

20

Remark. Although the adversary can reveal session keys and corrupt long-term
and semi-static keys, the model does not go as far as capturing leakage of vari-
ables internal to a session as in other models [12,37]. In particular, the adversary
is not given access to any potential ephemeral values. These are assumed to be
in practice erased as soon as they are no longer needed, which is crucial to allow
for forward secrecy.

Match Security. A key-exchange protocol satisfies the match property if ses-
sion identifiers properly determine which sessions are effectively partnered, in
the sense expressed by the winning conditions of the following security game.

Definition 4.1 (Match Security). Let KE be a multi-stage key-exchange pro-
tocol characterized by a tuple (M,FS , iauths, iauthc, eauth, use, replay), and ID
be a set of participants. Consider an adversary A which interacts with the chal-
lenger of the game defined below and further denoted GMatch

KE,A .

Setup. The challenger generates a pair of long-term keys (pkid , skid) for each
participant identity id ∈ ID. For each server identity s ∈ Σ, the challenger
generates a fresh pair of semi-static keys

(
pk ′s, sk ′s

)
(for the initial time pe-

riod). The challenger samples a uniformly random bit b ←$ {0, 1} for the
test oracle.

Query. A is given access to all the oracles specified above (b parametrizes the
test oracle).

Stop. A ultimately terminates its computation with no output.

GMatch
KE,A returns 1 (i.e., A wins the game) if at least one of the following condi-

tions holds.

1. More than two sessions share the same identifier at some non-replayable
stage, i.e., three pairwise distinct sessions σ, σ′ and σ′′ and a stage i ∈ JMK
such that σ.sidi = σ′.sidi = σ′′.sidi 6= ⊥ and replayi = nonreplayable.

2. Two sessions share the same identifier at some stage but have non-opposite
roles (except for potential multiple responders in replayable stages), i.e., two
distinct sessions σ and σ′ and a stage i ∈ JMK such that σ.sidi = σ′.sid 6= ⊥,
and σ.role = σ′.role and replayi = nonreplayable, or σ.role = σ′.role =
initiator .

3. Two sessions share the same identifier at some stage but computed different
stage keys,i.e., two sessions σ and σ′ and a stage i ∈ JMK such that σ.sidi =
σ′.sidi 6= ⊥ and σ.keyi 6= σ′.keyi.

4. Two sessions share the same identifier but have distinct or unspecified con-
tributive identifiers at some stage, i.e., two distinct sessions σ and σ′ and a
stage i ∈ JMK such that σ.sidi = σ′.sidi 6= ⊥ and either σ.cidi 6= σ′.cidi or
σ.cidi = σ′.cidi = ⊥.

5. Two distinct stages share the same session identifier, i.e., two sessions σ
and σ′ (not necessarily distinct) and two stages i 6= j ∈ JMK such that
σ.sidi = σ′.sidj 6= ⊥.

21

6. A stage has (retroactively) reached explicit authentication, but the partnered
session does not belong to the intended peer. Formally, there exist two distinct
sessions σ and σ′ with σ.role = initiator and σ′.role = responder as well as
two stages j ≤ i ∈ JMK such that σ.sidi = σ′.sidi 6= ⊥ and σ.sidj = σ′.sidj 6=
⊥, and either
– σ.eauthj,1 ≤ i and σ.pid 6= σ′.id, or
– σ′.eauthj,2 ≤ i and σ′.pid 6= σ.id.

Protocol KE satisfies (T, qO , ε)-match security for

O ∈ {NewSession,Send,Reveal,NextPeriod,
EndCurrentPeriod,Corrupt,SemiStaticCorrupt,Test}

if for any adversary A that runs in time at most T (λ) and makes at most qO(λ)
queries, the advantage Pr

[
GMatch

KE,A → 1
]
of A in the game is at most ε(λ).

Multi-Stage Security. The notion of multi-stage security captures the idea
that keys computed at non-compromised stages should be indistinguishable from
uniformly random keys, and it includes aspects such as forward secrecy and im-
plicit authentication. Non-compromised stages are formally defined through the
sub-notion of freshness. Multi-stage security also covers explicit authentication,
which is formalized via the sub-notion of malicious acceptance. The latter re-
quires a partnered session to exist once a stage has (retroactively) reached ex-
plicit authentication, provided that the adversary did not corrupt the secret keys
of the partner up to that computation step.

Definition 4.2 (Freshness). The i-th stage of a session σ is considered fresh
if all of the conditions hereafter hold.

1. The key session σ or a potential partner computed at stage i was not revealed,
i.e., for any session σ′ such that σ.sidi = σ′.sidi, σ′.revealedi = FALSE.

2. If σ.FS i = fs, then
(a) (Honest contributive partner) there exists a session σ′ 6= σ such that

σ.cidi = σ′.cidi and σ.role 6= σ′.role, or
(b) (Implicit authentication) the partner is implicitly authenticated from a

stage at most i (σ.iauths ≤ i if σ.role = initiator and σ.iauthc ≤ i
otherwise) and skσ.pid is not corrupt, or

(c) (Forward secrecy) stage i reached explicit partner authentication (that is,
σ.statusσ.eauthi,1 = accepted if σ.role = initiator and σ.statusσ.eauthi,2 =
accepted otherwise) and the adversary did not corrupt skσ.pid before σ
accepted the corresponding stage.

3. If σ.FS i = dfs, then
(a) (Server implicit authentication) σ.role = initiator and either skσ.period

σ.pid
is not corrupt or the server is implicitly authenticated from a stage at
most i (σ.iauths ≤ i) and skσ.pid is not corrupt, or

(b) σ.role = responder and

22

i. (Honest contributive initiator) there exists a session σ′ 6= σ such that
σ.cidi = σ′.cidi and σ.role 6= σ′.role, and skσ.period

σ.id is not corrupt,
or

ii. (Client implicit authentication) the client is implicitly authenticated
from a stage at most i (σ.iauthc ≤ i) and skσ.pid is not corrupt, or

iii. (Delayed forward secrecy) stage i reached explicit mutual authentica-
tion (σ.statusσ.eauthi,2 = accepted), skσ.pid was not corrupted before
σ accepted stage eauthi,2 and skσ.period

σ.id is not corrupt.

On Freshness. Beyond ruling out the trivial attack of both revealing and testing
a session key (within the same or a partnered session7), the above definition
distinguishes two main cases depending on the expected forward secrecy of the
considered stage key.

In the case of (full) forward secrecy (i.e., σ.FS i = fs), the rationale behind
the freshness conditions is that ephemeral values are used in the computation of
these stage keys and are erased once the session is terminated. The conditions
then exclude situations in which the adversary has access to both the ephemeral
values and the long-term key of the intended partner and could thus reconstruct
the stage key. For instance, if the adversary did not corrupt the long-term key
of the partner before the latter was explicitly authenticated, it is guaranteed
that the honest intended partner participated in the protocol and the ephemeral
values are therefore unknown to the adversary.

For stage keys that rather satisfy delayed forward secrecy (i.e., σ.FS i =
dfs), no fully ephemeral values are involved in their computation. The closest
equivalent in this case are semi-static values that are generated by the client
and are recoverable with the secret semi-static keys. However, since servers have
semi-static keys but clients do not, there is an asymmetry in the conditions on
client sessions and those on server sessions. As for clients, once a client session is
closed and the internal values are erased, the semi-static KEM encapsulation can
only be recovered with the semi-static secret key. This means that the adversary
cannot distinguish from random such a client stage key if it does not corrupt
the semi-static secret key used to compute it; the servers are in a sense also
authenticated through their semi-static keys. Note that the freshness conditions
do not involve the stage from which the server is explicitly authenticated as there
is no fresh semi-static contribution from the server (because clients do not have
semi-static keys). The guarantee that the honest intended partner server was
live is therefore irrelevant. For server keys, the conditions are closer to those of
full forward secrecy, except that when the corruption of the partner client key is
allowed, the corruption of the semi-static key is not. In case there is an honest
contributive identifier, the adversary could otherwise compute all stage keys by
also corrupting the long-term keys of both parties. In case the client is explicitly
7 Note that in replayable stages more than two sessions maybe be partnered due
potential non-unique responder sessions. Multi-stage key indistinguishability still
requires that as long as the key in none of these partnered sessions is trivially
revealed, it remains indistinguishable in all of these partnered sessions.

23

authenticated and her long-term key was not corrupted before that, it is indeed
guaranteed that there is a fresh honest semi-static contribution from the client,
but corrupting of the corresponding semi-static key would allow the adversary
to recover it.

Definition 4.3 (Malicious Acceptance). A session σ is said to have ma-
liciously accepted a stage i if the latter (retroactively) reached explicit partner
authentication (i.e., stage σ.eauthi,1 if σ.role = initiator and stage σ.eauthi,2
otherwise), the adversary did not corrupt skσ.pid before σ accepted the corre-
sponding stage and there is no session σ′ 6= σ such that σ.sidi = σ′.sidi.

Definition 4.4 (Multi-Stage Security). Let KE be a multi-stage key-exchange
protocol characterized by a tuple (M,FS , iauths, iauthc, eauth, use, replay), and
ID a set of participants. Consider an adversary A interacting with the chal-
lenger of the game defined below and further denoted GMulti−Stage

KE,A .

Setup. The challenger generates a pair of long-term keys (pkid , skid) for each
participant identity id ∈ ID. For each server identity s ∈ Σ, the challenger
generates a fresh pair of semi-static keys

(
pk ′s, sk ′s

)
(for the initial time pe-

riod). The challenger samples a uniformly random bit b ←$ {0, 1} for the
test oracle.

Query. A is given access to all the oracles defined above (b parametrizes the
test oracle).

Stop. A ultimately terminates its computation and returns a bit b′.
Finalize. – b′ ←$ {0, 1} if a tested stage is not fresh.

– b′ ← b if a session maliciously accepts a stage.
GMulti−Stage

KE,A returns 1 if b = b′ and otherwise 0.

Protocol KE satisfies (T, qO , ε)-multi-stage security for

O ∈ {NewSession,Send,Reveal,NextPeriod,
EndCurrentPeriod,Corrupt,SemiStaticCorrupt,Test}

if for any adversary A that runs in time at most T (λ) and makes at most qO(λ)
queries, the advantage

∣∣∣Pr
[
GMulti−Stage

KE,A → 1
]
− 1/2

∣∣∣ of A in the game is at most
ε(λ).

Comparison with Existing Models. A major difference from existing models
is the introduction of time periods. Semi-static keys have been introduced in the
original multi-stage model to analyze the QUIC protocol [24] and have also been
used to study the later-deprecated Diffie–Hellman-based 0-RTT mode in early
TLS 1.3 drafts [25] based on the OPTLS design [35]. The model handles these
via the time-related identity and session game variables, the oracles that give
the adversary full control over time periods as well as the oracle to corrupt semi-
static keys, and a refinement of forward secrecy that takes semi-static keys into
account. These considerations naturally impact the freshness predicate, which is
crucial to the formal definition of key indistinguishability.

24

Apart from these aspects, the present model is closest to the model for TLS
1.3 due to Dowling et al. [18,19] but it still departs from it in several ways. First,
it covers explicit authentication through the notion of malicious acceptance (in-
spired by the definition in the KEMTLS model [46]), in contrast to the model
from [18,19] which only formalizes implicit authentication. The model also con-
siders a single authentication mode (i.e., mutual) per protocol instead of several
ones as in the TLS 1.3 model [18,19]. This simplification is possible because both
parties always authenticate themselves in the protocol from Section 3. Besides,
the model in [18,19] also deals with cases in which parties share symmetric keys
obtained from previous sessions (i.e., so-called pre-shared keys) and resumption
mechanisms, but these are not considered in this paper. Similarly to the re-
playable 0-RTT keys derived in TLS 1.3 pre-shared key handshake, the model
captures the replayability of the initial keys in the protocol from Section 3 that
are derived without active server contribution.

Another major technical difference from the model by Dowling et al. [18,19]
is in the definition of the freshness predicate. Indeed, Definition 4.2 involves the
stages from which the parties are explicitly authenticated whereas key indistin-
guishability in their model is only concerned with implicit authentication. They
can do so because implicit and explicit authentication happen simultaneously
in the TLS 1.3 protocol. It thereby naturally excludes the attack in which an
adversary impersonates the intended partner up to the stage of implicit authen-
tication, halts the protocol execution before reaching explicit authentication and
later corrupts the long-term key of the intended partner. However, this attack is
clearly possible in the protocol from Section 3, and that is why the conditions
of forward secrecy enforce that if the adversary ever corrupts the long-term key
of the intended partner, then it must be after the intended partner is explicitly
authenticated, which ensures that the adversary does not have access to the
ephemeral values of the execution. This concern also arises in the analysis of
KEMTLS protocol [46] which introduces several levels of forward secrecy that
tacitly integrate different levels of authentication. Although forward secrecy and
authentication are related, the above model syntactically disentangles the two
properties for clarity and remains in this sense closer to the one in [18,19].

5 Security Analysis

This section specifies the syntactic values of the Section 3 protocol and then
discusses the security properties that it satisfies in the model from Section 4.

5.1 Properties

The characteristic values of the protocol and the session-specific values are here
defined, in both the cases of matching and unmatching time periods.

Matching Time Periods. In this case, the properties the protocol aims to
satisfy are as follows.

25

– M = 8: the protocol has eight stages as shown in Figure 4.
– FS = (dfs, dfs, dfs, dfs, fs, fs, fs, fs): the first four keys satisfies delayed for-

ward secrecy, the others full forward secrecy.
– iauths = 2, iauthc = 5: the server is implicitly authenticated from stage 2

on, the client from stage 5 on.
– eauth = ((7, 8), (7, 8), (7, 8), (7, 8), (7, 8), (7, 8), (7, 8), (8, 8)): The server is ex-

plicitly authenticated from stage 7 on, the client from stage 8 on.
– use = (internal : {1, 2, 3, 5, 6}, external : {4, 7, 8}): The keys derived at stages

1–3 and 5–6 are used to encrypt handshake traffic, i.e., for internal use.
– replay = (replayable : {1, 2, 3, 4},nonreplayable : {5, 6, 7, 8}): The first four

stage keys, without active server contribution, are replayable; all other keys
are not.

Session and Contributive Identifiers. Recall that each instance of a protocol
algorithm maintains a set of session identifiers and contributive identifiers. The
session identifier at each stage is computed once the stage is accepted, and
it consists of all the handshake messages up to the acceptance of the stage
(excluding the final finished messages). It the present case, denoting by SC :=
ServerCertificate the server certificate cert[pks], the session identifiers are

sid1 = (“EHTS”, SC, CH, SSKC),
sid2 = (“SHTS”, SC, CH, SSKC, CKC),
sid3 = (“CHTS”, SC, CH, SSKC, CKC),
sid4 = (“ETS”, SC, CH, SSKC, CKC),
sid5 = (“SAHTS”, SC, CH, SSKC, CKC, CC, SH, SKC),
sid6 = (“CAHTS”, SC, CH, SSKC, CKC, CC, SH, SKC),
sid7 = (“SATS”, SC, CH, SSKC, CKC, CC, SH, SKC, SPK∗, EE),
sid8 = (“CATS”, SC, CH, SSKC, CKC, CC, SH, SKC, SPK∗, EE, SF).

The contributive identifiers should capture when a session is fresh due to
an honest contribution by a party. Here, this honest contribution refers to the
ephemeral key share Ke, the relevant messages are CH and SH. The parties hence
compute the contributive identifiers as follows.

– Upon sending (resp. receiving) the SemiStaticKEMCiphertext message, the
client (resp. server) sets cid1 ← sid1.

– Upon sending (resp. receiving) the ClientKEMCiphertext message, the client
(resp. server) sets cid2 ← sid2, cid3 ← sid3, and cid4 ← sid4.

– Upon sending (resp. receiving) the ClientCertificate message, the client
(resp. server) sets cid5 ← (“SAHTS”, SC, CH, SSKC, CKC, CC), cid6 ← (“CAHTS”,
SC, CH, SSKC, CKC, CC), and cid7 ← (“SATS”, SC, CH, SSKC, CKC, CC).

– After computing stages 5, 6 and 7, both the client and the server up-
date cid5 ← (“SAHTS”, SC, CH, SSKC, CKC, CC, SH), cid6 ← (“CAHTS”, SC,
CH, SSKC, CKC, CC, SH), and cid7 ← (“SATS”, SC, CH, SSKC, CKC, CC, SH).

– Client and server set cid8 ← (“CATS”, SC, CH, CC, SH) after they compute
stage 8.

26

Unmatching Time Periods. In case the time periods of the client and of the
server do not match, the protocol targets the following properties.

– M = 12 stages as in Figure 5.
– FS = (dfs, dfs, dfs, dfs, fs, fs, fs, fs, fs, fs, fs, fs): the first four stage keys (stages

1’–4’), only accepted by the client, satisfy delayed forward secrecy and all
the others full forward secrecy.

– iauths = 2, iauthc = 5: the server is implicitly authenticated from stage 2
on8, the client from stage 5 on.

– eauth = (∞,∞), (∞,∞), (∞,∞), (∞,∞), (7, 8), (7, 8), (7, 8), (7, 8), (7, 8), (7, 8),
(7, 8), (8, 8): the server is explicit authenticated from stage 7 on, the client
from stage 8 on. The rejected initial four keys are never explicitly authenti-
cated.

– use = (internal : {1′, 2′, 3′, 1, 2, 3, 5, 6}, external : {4′, 4, 7, 8}): the keys com-
puted at stages 1’–3’, 1–3, and 5–6 are used to encrypt handshake traffic,
i.e., for internal use.

– replay = (nonreplayable : {1′, 2′, 3′, 4′, 1, 2, 3, 4, 5, 6, 7, 8}): None of the keys
is replayable. (Note that in contrast to the protocol with matching time
periods, the server here rejects the initial four keys, making stages 1’–4’
technically non-replayable.)

Session and Contributive Identifiers. Recall that SC := ServerCertificate
denotes the server certificate cert[pks]. The session identifiers are

sid1′ =
{

(“EHTS′”, SC, CH, SSKC) if σ.role = initiator
⊥ otherwise,

sid2′ =
{

(“SHTS′”, SC, CH, SSKC, CKC′) if σ.role = initiator
⊥ otherwise,

sid3′ =
{

(“CHTS′”, SC, CH, SSKC, CKC′) if σ.role = initiator
⊥ otherwise,

sid4′ =
{

(“ETS′”, SC, CH, SSKC, CKC′) if σ.role = initiator
⊥ otherwise,

sid1 = (“EHTS”, SC, CH, SSKC, SH),
sid2 = (“SHTS”, SC, CH, SSKC, SH, CKC),
sid3 = (“CHTS”, SC, CH, SSKC, SH, CKC),
sid4 = (“ETS”, SC, CH, SSKC, SH, CKC),
sid5 = (“SAHTS”, SC, CH, SSKC, SH, CKC, CC, SKC),
sid6 = (“CAHTS”, SC, CH, SSKC, SH, CKC, CC, SKC),
sid7 = (“SATS”, SC, CH, SSKC, SH, CKC, CC, SKC, SPK∗, EE),
sid8 = (“CATS”, SC, CH, SSKC, SH, CKC, CC, SKC, SPK∗, EE, SF).

8 Note that Stages 2’–4’, rejected by the server, are also implicitly server-
authenticated. The focus is however on the stages that are accepted by both parties.

27

The parties set the contributive identifiers as follows.

– Upon sending the SemiStaticKEMCiphertext and ClientKEMCiphertext′

message, the client sets cidi ← sidi for i = 1′ resp. i ∈ {2′, 3′, 4′}. Upon send-
ing (resp. receiving) SemiStaticKEMCiphertext, the client (resp. server) sets
cid1 ← (“EHTS”, SC, CH, SSKC).

– Upon receiving the SemiStaticKEMCiphertext message, since the time pe-
riods do not match, the server sets cidi ← sidi ← ⊥ for i ∈ {1′, 2′, 3′, 4′}.

– Upon sending (resp. receiving) the ServerHello message, the server (resp.
client) sets cid1 ← sid1.

– All other contributive identifiers are set as cidi ← (“label”, SC, CH, SSKC, SH)
when the corresponding session identifier sidi is set (where “label” is the
label string from sidi.

Remark. The fact that the contributive identifiers at all stages only include
messages up to SH (in both the cases of matching and unmatching time periods)
means that it is enough for messages up to SH to be honestly delivered to prove
the secrecy of forward-secret stage keys (cf. Case (2) (a) in Definition 4.2), and
also of delayed forward-secret keys if the adversary does not corrupt the server
semi-static key (cf. Case (3) (b) (i) in Definition 4.2).

5.2 Security Proofs

This section proves the security of the Section 3 protocol in the model presented
in Section 4.

Match Security. The following theorem formalizes the match security of the
protocol.

Theorem 5.1 (Match Security). Assuming KEMs, KEMe and KEMc to re-
spectively be δs, δe and δc-correct, the advantage of any adversary that makes at
most nσ := qNewSession queries to oracle NewSession in the match security game
for the Section 3 protocol (in both the cases of matching and unmatching periods)
is at most (2δs + δe + δc)nσ + 2−257n2

σ.

Proof. It suffices to bound the probability that each of the winning conditions
is satisfied. Note that the theorem statement does not impose any restriction on
the computational power of the adversary; the match security of the protocol is
thereby information theoretic.

1. More than two sessions share the same identifier at some non-replayable
stage. At each non-replayable stage accepted by both parties, the session
identifier includes the session’s own random nonce (within the ClientHello
or ServerHello message). So three pairwise distinct sessions can share the
same identifier only if at least two of them sample the same nonce. By the
birthday bound, the probability of this event is at most

(
nσ
2
)
2−256 ≤ 2−257n2

σ.

28

2. Two sessions share the same identifier at some stage but have non-opposite
roles (except for potential multiple responders in replayable stages). For non-
replayable stages, assuming that at most two accepting sessions can share the
same identifier (which is the case except with the above probability), no two
responders or initiators can hold the same identifier since they never accept
ClientHello and ServerHello messages typed with a non-opposite role. For
the replayable stages (stages 1–4 in the matching period case), two initiators
similarly share the same identifier only upon nonce collisions, bounded by the
probability above. (There might be multiple responder sessions partnered in
these stages 1–4, though, as the client’s first flight of messages can indeed
be replayed to several server sessions.)

3. Two sessions share the same identifier at some stage but computed different
stage keys. The key a session computes at any stage is entirely determined by
the messages it received up to the stage, and these are included in the session
identifier. It follows that two partnered sessions can compute different keys
only if the correctness of one of the KEMs fails. In a protocol execution, the
participants together decapsulate one KEMe ciphertext, one KEMc ciphertext
and either two KEMs ciphertexts in the case of matching time periods or one
in the case of unmatching time periods. The probability that two partnered
sessions compute different stage keys is thus at most (2δs + δe + δc)nσ.

4. Two sessions share the same identifier but have distinct or unspecified con-
tributive identifiers at some stage. By construction of the protocol, the final
contributive identifier at any stage is always a substring to the session iden-
tifier once the session accepts the stage, so this cannot happen.

5. Two distinct stages share the same session identifier. This event cannot occur
as each session identifier carries a unique label.

6. A stage has (retroactively) reached explicit authentication, but the partnered
session does not belong to the intended peer. A server sessions learns the iden-
tity of the partner client through the ClientCertificate message which is
included in the session identifier of the stage from which the server is ex-
plicitly authenticated. It thus guarantees that honest sessions with matching
session identifiers agree on the client identity.
A client session learns the server identity via the preloaded server certificate
which is in all session identifiers. Partnered session identifiers thereby agree
on the server identity. ut

Multi-Stage Security. The following two theorems capture the multi-stage
security of the protocol with matching and unmatching time periods.
Theorem 5.2 (Multi-Stage Security – Matching Time Periods). Sup-
pose that for

(S,A) ∈

(KEMc, IND-CCA), (KEMs, IND-CCA), (KEMe, IND-1CCA),
(HKDF.Extract,PRF), (HKDF.Extract,dual-PRF),
(HKDF.Expand,PRF), (HMAC,EUF-CMA)

S is

(
TA

S , q
A
S , ε

A
S
)
-A-secure. Let A be an algorithm that runs in time at most

TA and makes at most qO oracle queries for O ∈ {NewSession,Send,Reveal,

29

NextPeriod,EndCurrentPeriod,Corrupt,SemiStaticCorrupt,Test}. There exists a real
constant κ ≤ 1 such that if TA + qSend + qTest ≤ κmin

(S,A)

(
TA

S
)
and if nσ :=

qNewSession ≤ min
(S,A)

(
qA

S
)
, then there exist (explicit) reduction algorithms to the

respective
(
TA

S , q
A
S , ε

A
S
)
-A security of S such that the advantage of A in the multi-

stage security game in the case of matching time periods is at most

2−257n2
σ + εColl

H + (2δs + δe + δc)nσ

+ 8nσ

nid

 εIND-CCA
KEMc

+ εIND-CCA
KEMs

+ 3εPRF
HKDF.Extract + εdual-PRF

HKDF.Extract

+ 4εPRF
HKDF.Expand + εEUF-CMA

HMAC

+nid · nperiod · nσ

 εIND-CCA
KEMs

+ 3εPRF
HKDF.Extract

+ εdual-PRF
HKDF.Extract + 4εPRF

HKDF.Expand

+ εEUF-CMA
HMAC

+nσ · εIND-1CCA

KEMe

,

with nid := |ID|, nperiod := qNextPeriod + 1, εColl
H the probability that an algorithm

given in the proof finds a collision for H by running A as subroutine, and KEMs,
KEMe, and KEMc being δs-, δe-, and δc-correct, respectively.
Proof. The proof consists in a sequence of games that starts with the multi-stage
security game and which are indistinguishable under the theorem assumptions.
In the last game, the stage keys are uniformly random values and no session can
maliciously accept a stage, i.e., the advantage of the adversary is nil.

Game 0. This is the multi-stage security game as in Definition 4.4.
Game 1. The challenger of this games returns 1 (i.e., the adversary wins the

game) if there exist two distinct honest sessions with the same role that
pick the same nonce. The advantage in distinguishing this game from the
previous one is at most

(
nσ
2
)
2−256 ≤ 2−257n2

σ.
Game 2. In this game, the challenger returns 1 if any two honest sessions com-

pute the same hash value on different inputs to the hash function H. The
advantage in distinguishing this game from the previous one is at most the
probability that the challenger, with the adversary as subroutine, computes a
collision for H. This collision can then be used by an algorithm that reduces
the problem of distinguishing the two games to finding a collision for H.

Game 3. In this game, the challenger returns 1 if encapsulation and decap-
sulation between any two honest sessions yields a correctness error (as per
Section 2.6). Assuming KEMs, KEMe, and KEMc to be respectively δs-, δe-,
and δc-correct, a KEM correctness error during the interaction with the ad-
versary occurs with probability at most (2δs + δe + δc)nσ.

Focusing on a Single Target Session and Stage (σ, i). The next step
restricts the adversary to target a single session σ in stage i, be it via a (sin-
gle) Test query or via making that session maliciously accepts. These are later

30

referred to as the target session and stage (σ, i). This induces a loss of 8nσ (ac-
counting for the maximum number of stages across all sessions), though via two
different arguments: restricting the adversary to a single Test query requires a
hybrid argument following that of Dowling et al. [19], which is summarized in
the following paragraphs. For malicious acceptance, this is a mere guessing step
on (at least) one session and stage maliciously accepting, which succeeds with
probability 1/8nσ. To enhance readability, both variants are treated as a com-
bined game change, as the overall bound will coincide and the subsequent proof
steps will argue along the same lines for either case.

The Hybrid Argument. For the hybrid argument, restricting the adversary to a
single Test query, we follow [19, Appendix A]. More precisely, for an algorithm
A as in the theorem statement, let B be an algorithm that interacts with the
challenger of Game 2 and runs A as a subroutine. B chooses an integer t ∈ J8nσK
uniformly at random at the beginning of the game; the range accounts for the
maximum total number of stages across all sessions. For the first t − 1 Test
queries A makes, algorithm B returns the key computed by the tested session
at the stage of the query. B forwards the t-th query from A to the challenger
and for the remaining queries, B returns uniformly random keys. Dowling et al.
showed [19, Appendix A] that (in their model,) the advantage of B is at least a
fraction 8nσ of the advantage of A via a standard hybrid argument.

However, the proof is not entirely trivial because oracles Send and Test over-
write the internal keys computed by sessions partnered at a tested stage, and
session identifiers are defined by handshake messages in clear text. It means that
B must be able to decrypt handshake messages to determine which sessions are
partnered and properly emulate the game to A , i.e., take into account the Test
queries that B does not forward. To decrypt handshake traffic and identify po-
tential partnered sessions, B submits additional Reveal queries for the internal
keys of the session involved in the Send or Test query. Denoting byMi the number
of internal keys, that means at most Mi (qSend + qTest) additional Reveal queries
are made. The crux of the matter is then to show that these additional Reveal
queries do not cause the only Test query forwarded by B to be rejected when
it would have otherwise been replied to. Although the model from Section 4
differs from the model of Dowling et al., the Send, Reveal and Test oracles are
very similarly defined in the two models and the other oracles do not impact
Test queries. The arguments of Dowling et al. thereby also apply in the present
context.

In summary, B makes at most one Test query, at most qReveal+Mi (qSend + qTest)
Reveal queries and the same amount of queries as A to the remaining oracles,
and the advantage of B is at least a fraction qTest of the advantage of A . Be-
sides, considering AEAD encryption and decryption operations to be constant
time, the runtime of B is of order TA + O (qSend + qTest). On this account, the
advantage of the adversary can first be analyzed in a game restricted to a single
Test query and then later extrapolated to a game with multiple queries.

31

Game 4. The adversary is restricted to a single target session and stage (σ, i),
guessed at the outset of the game, and made to lose if it would otherwise
win the game via (1) testing and distinguishing another session/stage key or
(2) malicious acceptance of another session/stage.
By the hybrid argument above, for part (1), there exists an algorithm that
runs the adversary as subroutine and has an advantage of at least a 8nσ
fraction of the advantage of A in the previous game by making at most one
Test query, qReveal + Mi (qSend + qTest) Reveal queries and the same amount
of queries as A for the other oracles. Besides, the algorithm runs in time
TA +O (qSend + qTest).
Similarly, for the case of malicious acceptance, (σ, i) coincides with the (at
least) one maliciously accepting session with probability at least 1/8nσ.
Overall, this hence introduces a factor of 8nσ.

Case Distinction Based on Freshness. For the now unique session (σ, i)
targeted by the adversary (via Test or malicious acceptance), which now is known
at the outset of the game, two main cases are distinguished next:

A. i ≤ 4, i.e., the adversary targets a stage key that achieves delayed forward
secrecy, and

B. i ≥ 5, i.e., the adversary targets a stage key that achieves forward secrecy.

These cases are further subdivided into the following sub-cases, closely corre-
sponding to the conditions for the targeted session to be fresh, cf. Definition 4.2.
(Note that while freshness is a prerequisite only for testing a session, ruling out
malicious acceptance of the targeted session will follow almost identical argu-
ments.)

A.I. Server implicit authentication:
(a) σ.role = initiator , i ≥ 2, and skσ.pid is not corrupt (recall that the

server is implicitly authenticated from stage 2 on).
(b) σ.role = initiator and skσ.period

σ.pid is not corrupt.
A.II. (a) Honest contributive initiator: σ.role = responder and there exists a ses-

sion σ′ 6= σ such that σ.cidi = σ′.cidi and σ.role 6= σ′.role, and skσ.period
σ.id

is not corrupt.
(b) Delayed forward secrecy: σ.role = responder , σ.status8 = accepted, the

adversary did not corrupt skσ.pid before σ accepted stage 8 and skσ.period
σ.id

is not corrupt.

B.I. Honest contributive partner: There exists a session σ′ 6= σ such that σ.cidi =
σ′.cidi and σ.role 6= σ′.role.

B.II. Implicit authentication:
(a) σ.role = initiator , skσ.pid is not corrupt (recall that i ≥ 2 = σ.iauths in

case B), and σ.status7 6= accepted.
(b) σ.role = responder and skσ.pid is not corrupt (recall that i ≥ 5 =

σ.iauthc in case B) and σ.status8 6= accepted.

32

B.III. Forward secrecy: There is no session σ′ 6= σ such that σ.cidi = σ′.cidi and
σ.role 6= σ′.role, and
(a) σ.role = initiator , σ.status7 = accepted and the adversary did not cor-

rupt skσ.pid before σ accepted stage 7.
(b) σ.role = responder , σ.status8 = accepted and the adversary did not

corrupt skσ.pid before σ accepted stage 8.

Note that Case A.II omits client implicit authentication from Definition 4.2
since the client is not yet implicitly authenticated at stages 1–4. Besides, the
sub-cases of Case B.II exclude that the stage reached explicit partner authen-
tication, although the corresponding sub-cases in Definition 4.2 do not. This
is simply because Case B.III already handles the situation in which a stage
reached explicit partner authentication but the adversary never corrupted the
partner’s long-term key throughout the interaction (and a fortiori not before
the stage reached explicit partner authentication). Avoiding this overlap be-
tween Cases B.II and B.III eases the argumentation, and a consequence is that
Case B.II need not consider malicious acceptance in the analysis.

Case A.I.a: Targeted Client with Non-compromised Partner Long-
Term Key

This case is limited to the target stages 2–4. The secrecy of the client stage key
relies on the indistinguishability of the KEMs ciphertext Cs since the server is
implicitly authenticated from stage 2 on.

Game A.I.a.1 (Guess Partner Identity). The challenger guesses at the be-
ginning of the game the identity of the intended partner of the target session
and aborts and returns 0 if the guess is incorrect. This decreases the advan-
tage of the adversary by a factor at most nid .

Game A.I.a.2 (Server Long-Term KEM). In this game, Ks is replaced in
σ with a uniformly random value. In any session of σ.pid that receives the
client ciphertext, Ks is replaced with the same value (no KEM correctness
error occurs by Game 3). (Note that this includes potential responder ses-
sions of σ.pid receiving replayed copies of the initial messages of σ.)
Distinguishing this game from the previous one can be reduced to the IND-
CCA security of KEMs as follows. The reduction algorithm, upon receiving
the challenge tuple (pk?,C ?,K?), first sets pk? as the server public key of
σ.pid. Then, it sets C ? as the ciphertext Cs in the ClientKEMCiphertext
message of the target session and uses K? as Ks. For any session of σ.pid, if
it receives Cs then K? is used as Ks. If it receives any other ciphertext, then
the reduction algorithm makes a decapsulation query and uses the returned
value as KS for that session. The reduction algorithm eventually forwards
the decision bit of the adversary to the IND-CCA challenger.

Game A.I.a.3 (HS). The handshake secret HS in σ is now replaced with a
uniformly random value. In any session of σ.pid that received the ciphertext
Cs sent by σ (possibly via a full replay of the client’s initial messages), the

33

handshake secret HS is consistently replaced with uniformly random values.
We maintain consistency across all the sessions that share the same derived
early secret dES.
Distinguishing this game from the previous is reducible to the dual PRF
security of HKDF.Extract. It suffices for the reduction algorithm to make
oracle queries on PRF labels dES (Ks is tacitly set as the key of the dual
PRF challenger) to compute HS for σ and any session of σ.pid that received
the Cs sent by σ, and forward the decision bit of the adversary.
Note that if a session is not partnered at stage i but did receive the ciphertext
Cs send by σ, then even though the key is computed at stage i can be tested,
the latter is independent from the one computed by σ.

Game A.I.a.4 (SHTS, CHTS, ETS and dHS). In σ and any session of σ.pid
that received Cs, the derivation of the handshake-traffic secrets SHTS and
CHTS, early-traffic secret ETS, and derived handshake secret dHS from the
now-random HS in σ is replaced by a random function. This in particular
replaces SHTS, CHTS, ETS and dHS in σ with independent, uniformly ran-
dom values. If the σ’s initial messages were not altered, then these secrets are
the same in matching responder sessions (possibly several, through replays)
as the ones used in σ, otherwise they are independent random values (recall
that the game halts if the hashes of two distinct values collide).
Distinguishing this game change can be reduced to the PRF security of
HKDF.Expand, keyed with the previously replaced HS value.

Game A.I.a.5 (IMS). In σ and any session of σ.pid that received Cs, the
derivation of the intermediate master secret IMS from the now-random dHS
in σ is replaced by a random function. This in particular replaces IMS in σ
with a uniformly random value. The PRF security of HKDF.Extract allows
to argue for the indistinguishability between this game and the previous one.

Game A.I.a.6 (dIMS). In σ and any session of σ.pid that received Cs, the
derivation of the derived intermediate master secret dIMS from the now-
random IMS in σ is replaced by a random function. This in particular re-
places dIMS in σ with a uniformly random value. The indistinguishabilty
from the previous game relies again on the PRF security of HKDF.Expand.

Game A.I.a.7 (MS). In σ and any session of σ.pid that received Cs, the deriva-
tion of the master secret MS from the now-random dIMS in σ is replaced
by a random function. This in particular replaces MS in σ with a uniformly
random value. The PRF security of HKDF.Extract is once again invoked to
argue that this game is indistinguishable from the previous one.

Game A.I.a.8 (SAHTS, CAHTS, fks, SATS, fkc and CATS). In σ and any
session of σ.pid that received Cs, the derivation of the values SAHTS, CAHTS,
fks, SATS, fkc and CATS from the now-random master secret MS in σ is
replaced by a random function. This in particular replaces all these val-
ues in σ with independent, uniformly random values. The PRF security of
HKDF.Expand implies the indistinguishability between this game and the
previous.

Game A.I.a.9 (MAC Forgery). The challenger of this game, running the
targeted client session σ, rejects the ServerFinished message in case σ

34

has no partner session at stage i. The fact that there is no partner session
at stage i implies that no honest session computed a MAC tag on the tran-
script of the targeted client session (of which sidi is a part). In other words,
the adversary forged a MAC value and distinguishing this game from the
previous one is therefore reducible to the EUF-CMA security of HMAC.

Note that since the challenger rejects the ServerFinished message in case σ
has no partner at stage i, the event of malicious acceptance in which the client
session accepts stage i without a partner session never occurs. Besides, all stage
keys in the target session σ are uniformly random and independent from any
non-partnered session, making them non-exposable via Reveal oracle queries.
The advantage of the adversary in the last game is therefore nil.

It follows that the advantage of the adversary in Game 4 is in this case at
most

nid
(
εIND-CCA

KEMs
+ εdual-PRF

HKDF.Extract + 2εPRF
HKDF.Extract + 3εPRF

HKDF.Expand + εEUF-CMA
HMAC

)
.

Case A.I.b: Targeted Client with Non-compromised Partner Semi-
static Key

This case is fairly similar to the previous one, except that the secrecy of the
stage keys now flows from the semi-static key contribution Kts,c

s .

Game A.I.b.1 (Guess Partner Identity and Time Period). At the begin-
ning of the game, the challenger guesses the partner identity σ.pid of the
target session σ as well as the time period σ.period (of the semi-static key)
used in that session and aborts and returns 0 if any of these guesses is in-
correct. This decreases the advantage of the adversary by a factor at most
nid · nperiod .

Game A.I.b.2 (Semi-static KEM). Similar to Game A.I.a.2, the encapsu-
lated KEM key in σ is replaced with a uniformly random value, this time
targeting C ts,c

s and K
ts,c
s instead of Cs and KS . The reduction algorithm

here sets the challenge KEM public key pk? as the semi-static key of σ.pid
in σ.period (which it knows at the outset of the game based on the guesses
above).
Note: A client session saves pk ′σ.pid,σ.id received in a SPK message (during the
transition from σ.period to σ.period + 1) only after accepting stage 7. The
server at this point is explicitly authenticated, and so the public semi-static
key is guaranteed to come from an honest partner session. This is important
for the protocol’s security. Indeed, if the client were ever to use a semi-
static key that was saved before verifying the ServerFinished message, an
attacker could inject its own semi-static key, and later compute all stage keys
by corrupting the long-term secret key of the server.

Game A.I.b.3 (ES). The early secret ES is now replaced in σ with a uniformly
random value. The same value is used in any session of σ.pid that received

35

the ciphertext C ts,c
s sent by σ (possibly via a full replay of the client’s initial

messages).
Distinguishing this game from the previous is reducible to the dual PRF
security of HKDF.Extract. It suffices for the reduction algorithm to make one
oracle query on 0 (with Kt

s as the key of the dual PRF challenger), set the
value as ES in σ and any session of σ.pid that received C ts,c

s , and forward
the decision bit of the adversary.

Game A.I.b.4 (EHTS, dES). The challenger replaces the early handshake traf-
fic secret EHTS and the derived early secret dES in σ with uniformly random
values. The same values are used in any session of σ.pid that received the
ciphertext C ts,c

s sent by σ and is hence using the same value ES. Distin-
guishing this game from the previous can be reduced to the PRF security of
HKDF.Expand.

Game A.I.b.5 (HS). In σ and any session of σ.pid that received C ts,c
s , the

derivation of the handshake secret HS from the now-random dES in σ is
replaced by a random function. This in particular replaces HS in σ with a
uniformly random value. Now the PRF security of HKDF.Extract serves as
argument for the indistinguishability from the previous game.

Games A.I.b.6–A.I.b.11. Analogous to Games A.I.a.4–A.I.a.9, maintaining
consistency in sessions of σ.pid that received C ts,c

s .

In Case A.I.b, the advantage of the adversary in Game 4 is therefore at most

nid · nperiod
(
εIND-CCA

KEMs
+ εdual-PRF

HKDF.Extract+ 3εPRF
HKDF.Extract+ 4εPRF

HKDF.Expand+ εEUF-CMA
HMAC

)
.

Case A.II.a: Targeted Server with Honest Contributive Partner and
Non-compromised Semi-static Key

The existence of an honest contributive partner and the fact that the server
semi-static key is not compromised ensure that the adversary cannot recover the
semi-static value used in the computation of the key.

Note that since, by Game 1, no two sessions with the same role can share
the same nonce, there is exactly one initiator session that shares the same con-
tributive identifier at stage i.9 Denote this session by σ′.

Game A.II.a.1 (Guess Server Identity, Period, Contributive Partner).
The challenger guesses at the beginning of the game the owner identity σ.id
of the target session σ, the time period σ.period (of the semi-static key)
used in that session, as well as the contributive partner session σ′ of σ and
aborts and returns 0 if any of these guesses is incorrect. This decreases the
advantage of the adversary by a factor at most nid · nperiod · nσ.

Game A.II.a.2 (Semi-static KEM). In this game, the challenger replaces
the semi-static value Kts,c

s encapsulated in ciphertext C ts,c
s in both σ and σ′

9 While replays at stage i ≤ 4 are possible on the responder side, initiator sessions are
unique (cf. Match security, Definiton 4.1, condition 2).

36

with a uniformly random value (the same); the same value is used in other
sessions of σ.id in time period σ.period receiving the same ciphertext C ts,c

s

– no KEM correctness error occurs by assumption.
Distinguishing this game to the previous one can be reduced to the IND-
CCA security of KEMs as follows. The reduction algorithm, upon receiving
the challenge tuple (pk?,C ?,K?), first sets pk? as the server semi-static
public key of σ.id in σ.period. Then, it sets C ? as the ciphertext C ts,c

s in the
ClientHello messages of σ′. Since σ.cidi = σ′.cidi, the ciphertext received
by σ is the same as the one σ′ sent. The reduction algorithm can thus replace
K
ts,c
s with K? in both σ and σ′, as well as any other sessions of σ.id in time

period σ.period receiving the same ciphertext C ?. It uses its decapsulation
oracle to decapsulate any other ciphertexts for the public key pk? of σ.id in
period σ.period. The reduction algorithm eventually forwards the decision
bit of the adversary to the IND-CCA challenger.

Games A.II.a.3–A.II.a.10. Similar to Games A.I.b.3–A.I.b.10.
Game A.II.a.11 (MAC Forgery). The challenger of this game, running the

targeted server session, rejects the ClientFinished message in case there is
no partner session at stage 8. The fact that there is no partner session at
stage 8 implies that no honest session computed a MAC tag on the tran-
script of the targeted server session. In other words, the adversary forged a
MAC value and distinguishing this game from the previous one is therefore
reducible to the EUF-CMA security of HMAC.

The advantage of the adversary in Game 4 is in this case at most

nid ·nperiod ·nσ
(
εIND-CCA

KEMs
+εdual-PRF

HKDF.Extract+3εPRF
HKDF.Extract+4εPRF

HKDF.Expand+εEUF-CMA
HMAC

)
.

Case A.II.b: Targeted Server with Explicitly Authenticated Client and
Non-compromised Semi-static Key

The fact that the client’s secret key is not compromised before stage 7 is accepted
allows to distinguish two cases: either the targeted session accepts at stage 7
with an honest partner, in which case the conditions for the prior Case A.II.a
are satisfied; or the targeted session accepts without an honest partner, in which
case up to this point, the MAC key of the client, used to compute the CF message
that made the target session accept, is secret. For the latter case, the secrecy
of the MAC key is established similar to Case A.I.a, but is based on the client
long-term KEM key Kc, the subsequent sequence (Kc → MS → fkc) of key
derivations and the unforgeability of the MAC.

Game A.II.b.1 (Guess Partner Identity). Identical to Game A.I.a.0.
Game A.II.b.2 (Client KEM). Similar to Game A.I.a.1, but with Kc and

Cc instead of Ks and Cs. With Kc now replaced by a uniformly random
value, the next step is the derivation of the master secret.

37

Game A.II.b.3 (MS). In σ and any session of σ.pid that received Cc, the
derivation of the master secret MS from the now-random Kc in σ is re-
placed by a random function. This in particular replaces MS in σ with a
uniformly random value.
Distinguishing this game from the previous is reducible to the dual PRF
security of HKDF.Extract. It suffices for the reduction algorithm to make
oracle queries on the with labels dIMS (Kc is tacitly set as the key of the
dual PRF challenger) to compute MS for σ and any session of σ.pid that
received the Cc sent by σ, and forward the decision bit of the adversary.
Note that if a session is not partnered at stage i but did receive the ciphertext
Cc send by σ, then even though the key is computed at stage i can be tested,
the latter is independent from the one compute by σ.

Game A.II.b.4 (SAHTS, CAHTS, fks, SATS, fkc and CATS). In σ and any
session of σ.pid that received Cc, the derivation of the values SAHTS, CAHTS,
fks, SATS, fkc and CATS from the now-random master secret MS in σ is
replaced by a random function. This in particular replaces all these values in
σ with independent, uniformly random values. The same values as in σ are
used for such sessions if they are partnered at stage i, and they are otherwise
replaced with independent uniformly random values.
The PRF security of HKDF.Expand guarantees that this game is indistin-
guishable from the previous.

Game A.II.b.5 (MAC Forgery). The challenger of this game, running the
targeted server session, rejects the ClientFinished message in case there is
no partner session at stage 8. The fact that there is no partner session at
stage 8 implies that no honest session computed a MAC tag on the tran-
script of the targeted server session. In other words, the adversary forged a
MAC value and distinguishing this game from the previous one is therefore
reducible to the EUF-CMA security of HMAC.

In the second sub-case, the advantage of the adversary in Game 4 is hence
at most

nid
(
εIND-CCA

KEMc
+ εdual-PRF

HKDF.Extract + εPRF
HKDF.Expand + εEUF-CMA

HMAC
)
.

Case B.I: Honest Contributive Partner

For keys with expected forward secrecy, the existence of an honest contributive
partner at the targeted stage i guarantees that the adversary does not have access
to the ephemeral value generated by the server. The secrecy of these stage keys
therefore mainly relies on the indistinguishability of the ephemeral KEM.

As no two honest sessions with the same role share the same nonce, there
exists exactly one contributive partner at stage i when σ accepts.10 Denote it by
10 As i ≥ 5, the targeted stage is non-replayable. Furthermore, a targeted server session

always has a unique initiator partner, even if the clients’ message are replayed,
and a targeted client has a unique responder partner due to the inclusion of the
ServerHello message in the contributive identifiers.

38

σ′. Let σc ∈ {σ, σ′} be such that σc.role = initiator and σs ∈ {σ, σ′} such that
σs.role = responder .

Game B.I.1 (Guess Contributive Session). The challenger guesses at the
beginning of the game the contributive partner session σ′ of the target ses-
sion σ and aborts and returns 0 if the guess is incorrect. This decreases the
advantage of the adversary by a factor at most nσ.

Game B.I.2 (Ephemeral KEM) The challenger of this game replaces the
ephemeral secret value Ke in σs with a uniformly random value, and uses
the same value in σc if the latter receives the ciphertext Ce that σs sent (no
KEM correctness error occurs by assumption).
Distinguishing this game from the previous one can be reduced to the IND-
1CCA security of KEMe as follows. Upon receiving the challenge tuple (pk?,
C ?,K?), the reduction algorithm sends pk? as the ephemeral public key pke
in the ClientHello message. Since σc and σs are contributively partnered,
they agree on ClientHello and this ephemeral public key is thus delivered to
σs. The reduction algorithm then uses C ? as the ephemeral ciphertext Ce in
the ServerHello message and K? as the ephemeral secret Ke in σs. If C ? is
delivered to σc, then the reduction algorithm also uses K? in σc, otherwise
it makes a (single) decapsulation query to the IND-1CCA challenger on
the received ciphertext and uses the returned value as ephemeral secret.
The decision bit of the adversary is ultimately forwarded to the IND-1CCA
challenger.

Game B.I.3 (IMS). In σs (and σc if it received the ciphertext Ce computed
by σs), the derivation of the intermediate master secret IMS from the now-
random Ke in σs is replaced by a random function. This in particular re-
places IMS in σs with a uniformly random value. The indistinguishability
of this game from the previous can be reduced to the dual PRF security
of HKDF.Extract where the key of the dual PRF challenger is implicitly set
as Ke.

Game B.I.4 (dIMS). In σs (and σc if it received the ciphertext Ce computed by
σs), the derivation of the derived intermediate master secret dIMS from the
now-random IMS in σs is replaced by a random function. This in particular
replaces dIMS in σs with a uniformly random value. The PRF security of
HKDF.Expand substantiates the indistinguishability of this game from the
previous one.

Game B.I.5 (MS). In σs (and σc if it received σs’s ciphertext Ce), the deriva-
tion of the master secret IMS from the now-random dIMS in σs is replaced
by a random function. This in particular replaces MS in σs with a uniformly
random value. The PRF security of HKDF.Extract justifies the indistinguisha-
bility from the previous game.

Game B.I.6 (SAHTS, CAHTS, fks, SATS, fkc and CATS). In σs (and σc if
it received the ciphertext Ce computed by σs), the derivation of the values
SAHTS, CAHTS, fks, SATS, fkc and CATS from the now-random master
secret MS in σs is replaced by a random function. This in particular replaces
all these values in σs with independent and uniformly uniformly random

39

values. Note that if σc and σs are not partnered, then the adversary may
query the stage keys computed by σc, but these keys are independent from
those computed by σs due to the (hashed) session identifiers entering the
key derivation. The indistinguishability from the previous game follows from
the PRF security of HKDF.Expand.

Game B.I.7 (MAC Forgery). The challenger of this game rejects the re-
ceived finished message in the target session in case there is no partner
session at the stage of explicit authentication (7 if σ.role = initiator and 8
if σ.role = responder). The fact that there is no partner session at the latter
stage implies that no honest session computed a MAC tag on the transcript
of the targeted session. In other words, the adversary forged a MAC value
and distinguishing this game from the previous one is therefore reducible to
the EUF-CMA security of HMAC.

The advantage of the adversary in Game 4 is thus in this case at most

nσ
(
εIND-1CCA

KEMe
+ εdual-PRF

HKDF.Extract + εPRF
HKDF.Extract + 2εPRF

HKDF.Expand + εEUF-CMA
HMAC

)
.

Case B.II.a: Targeted Client with Implicitly Authenticated Server

The secrecy of these keys rely on the indistinguishability of the KEMs ciphertext
Cs encapsulating the server long-term secret. This case is handled identically to
the case A.I.a with the exception that malicious acceptance is not a concern in
this case since the targeted session did not accept stage 4, i.e., Games B.II.a.1–
B.II.a.8 are identical to Game A.I.a.1–A.I.a.8.

In this case, the advantage of the adversary in Game 4 is at most

nid
(
εIND-CCA

KEMs
+ εdual-PRF

HKDF.Extract + 2εPRF
HKDF.Extract + 3εPRF

HKDF.Expand
)
.

Case B.II.b: Targeted Server with Implicitly Authenticated Client

The security of the KEMc ciphertext Cc supports the secrecy of the stage keys in
this case. This case is similar to Case A.II.b, except that malicious acceptance
can once again not occur. The advantage of the adversary in Game 4 is in this
case at most

nid
(
εIND-CCA

KEMc
+ εdual-PRF

HKDF.Extract + εPRF
HKDF.Expand

)
.

Case B.III.a: Targeted Client with Explicitly Authenticated Server,
No Contributive Partner

A crucial difference between this case and case B.II.a is that the adversary may
now corrupt the server long-term key after the server is explicitly authenticated.

40

This a priori raises an issue in the replacement of the server long-term KEM since
the reduction would not be able to return the challenge secret key corresponding
to the public key that it set as the server public key.

The main idea is now to show that the adversary cannot make the client
maliciously accept stage 7 without having first corrupted the server long-term
key if the MAC used to compute the ServerFinished message is secure. In other
words, if the client accepts stage 7 (which is an assumption of Case B.III.a),
only one of two things can occur: either there exists an honest contributive
partner (which is excluded in Case B.III.a and was dealt with in Case B.I) or
the adversary computed a valid MAC forgery. As this case excludes the existence
of an honest contributive partner, it suffices to bound by above the probability
that the targeted client maliciously accepts stage 7.

Games B.III.a.1–B.III.a.11. Game B.III.a.1 is identical to Game B.II.a.1
and Games B.III.a.2–B.III.a.10 are defined similarly to Games B.II.a.2–
B.II.a.10, except that the challenger aborts the interaction with the adver-
sary and returns 1 (i.e., the adversary wins) if the targeted client session
accepts stage 7 without a partner session. The reason behind this abort is
that the adversary could corrupt the server long-term key in Game B.III.a.1,
which was not possible in Game B.II.a.1, but the reduction algorithm would
not be able to return the KEM long-term key to the adversary. However, the
corruption of the server long-term key cannot occur before the target client
session accepts stage 7 by definition of Case B.III.a, which means that the
adversary would first have to send a valid MAC forgery.
Game B.III.a.11 is identical to Game A.I.a.11. In the last game, the client
session never accepts stage 7 without a partner session.

The adversary can thus make the targeted client maliciously accept with
probability at most

nid
(
εIND-CCA

KEMs
+ εdual-PRF

HKDF.Extract + 3εPRF
HKDF.Extract + 4εPRF

HKDF.Expand + εEUF-CMA
HMAC

)
.

Therefore, if the targeted client session accepts stage 7, it is guaranteed that
except with the above probability, it has an honest partner at that stage (and
only that partner could recover the ephemeral value), and thus also at all prior
stages given how session identifiers are defined. A consequence is that stages
from 1 to 7 are all explicitly authenticated (retroactively for stages 1 to 6), and
the keys computed at these stages are indistinguishable from random (even if
the server long-term key is compromised after explicit authentication) according
to the analysis of case B.I.

Case B.III.b: Targeted Server with Explicitly Authenticated Client,
No Contributive Partner

The same reasoning as for client sessions applies here, except that the client
is explicitly authenticated from stage 8 and that the parallel is now with Case
B.II.b. The advantage of the adversary in Game 4 is in this case at most

41

nid
(
εIND-CCA

KEMc
+ εdual-PRF

HKDF.Extract + εPRF
HKDF.Expand + εEUF-CMA

HMAC
)
.

Overall Advantage

The advantage of the adversary in Game 4 is the maximum of its advantage in
each of the cases, which is upper-bounded by

nid

 εIND-CCA
KEMc

+ εIND-CCA
KEMs

+ 3εPRF
HKDF.Extract + εdual-PRF

HKDF.Extract

+ 4εPRF
HKDF.Expand + εEUF-CMA

HMAC

+nid · nperiod · nσ

 εIND-CCA
KEMs

+ 3εPRF
HKDF.Extract

+ εdual-PRF
HKDF.Extract + 4εPRF

HKDF.Expand

+ εEUF-CMA
HMAC

+nσ · εIND-1CCA

KEMe
.

Therefore, the advantage of the adversary in the multi-stage security game
(Game 0) is at most

2−257n2
σ + εColl

H + (2δs + δe + δc)nσ

+ 8nσ

nid

 εIND-CCA
KEMc

+ εIND-CCA
KEMs

+ 3εPRF
HKDF.Extract + εdual-PRF

HKDF.Extract

+ 4εPRF
HKDF.Expand + εEUF-CMA

HMAC

+nid · nperiod · nσ

 εIND-CCA
KEMs

+ 2εPRF
HKDF.Extract

+ εdual-PRF
HKDF.Extract + 3εPRF

HKDF.Expand

+ εEUF-CMA
HMAC

+nσ · εIND-1CCA

KEMe

.

, ut

Theorem 5.3 (Multi-Stage Security – Unmatching Time Periods). Sup-
pose that for

(S,A) ∈

(KEMc, IND-CCA), (KEMs, IND-CCA), (KEMe, IND-1CCA),
(HKDF.Extract,PRF), (HKDF.Extract,dual-PRF),
(HKDF.Expand,PRF), (HMAC,EUF-CMA)

S is

(
TA

S , q
A
S , ε

A
S
)
-A-secure. Let A be an algorithm that runs in time at most

TA and makes at most qO oracle queries for O ∈ {NewSession,Send,Reveal,
NextPeriod,EndCurrentPeriod,Corrupt,SemiStaticCorrupt,Test}. There exists a real
constant κ ≤ 1 such that if TA + qSend + qTest ≤ κmin

(S,A)

(
TA

S
)
and if nσ :=

42

qNewSession ≤ min
(S,A)

(
qA

S
)
, then there exist (explicit) reduction algorithms to the

respective
(
TA

S , q
A
S , ε

A
S
)
-A security of S such that the advantage of A in the multi-

stage security game in the case of matching time periods is at most

2−257n2
σ + εColl

H + (2δs + δe + δc)nσ

+ 12nσ

nid

 εIND-CCA
KEMc

+ εIND-CCA
KEMs

+ 3εPRF
HKDF.Extract + εdual-PRF

HKDF.Extract

+ 4εPRF
HKDF.Expand + εEUF-CMA

HMAC

+nid · nperiod · nσ

 εIND-CCA
KEMs

+ εPRF
HKDF.Extract

+ εdual-PRF
HKDF.Extract + 3εPRF

HKDF.Expand

+ εEUF-CMA
HMAC

+nσ · εIND-1CCA

KEMe

,

with nid := |ID|, nperiod := qNextPeriod + 1, εColl
H the probability that an algorithm

given in the proof finds a collision for H by running A as subroutine, and KEMs,
KEMe, and KEMc being δs-, δe-, and δc-correct, respectively.

Proof. The proof is similar to the proof of Theorem 5.2, except that there
are twelve stages, i.e., four more stage keys due to rejecting EHTS′, SHTS′,
CHTS′, ETS′, hence the factor 12nσ when focusing on a single target session
and stage (σ, i).

Compared to the case of matching time periods, there is one less call to
HKDF.Extract and to HKDF.Expand in the key schedule for the keys that satisfy
full forward secrecy. This however does not affect the overall upper bound as
stages 1’–4’, rejected by the server but accepted by the client, must still be
accounted for. Note also that SHTS and CHTS are expanded from HS like dHS,
so no additional hop must be introduced for those and the rest of the bound
remains unaffected. ut

6 Discussion

Identity Protection. TLS 1.3 protects parties’ identities by following the SIGMA-I
key exchange pattern of Krawczyk [32]. More specifically, it protects the server
identity against passive attackers and the client identity against active attackers,
the latter identity being revealed only after having seen a valid server signature.
The KEMTLS protocol [46] carefully mimics these properties, achieving identity
protection for the server against passive attackers and for the client against ac-
tive attackers. Client identity protection in KEMTLS comes with an additional
half or full round trip (depending on the targeted authentication properties).
The KEMTLS-PDK protocol [47], in reducing roundtrips, sends the KEM en-
capsulation against the server’s static key in cleartext. Unless an anonymous
KEM [4,27,40] is deployed, this value might leak information about the server’s
identity.

43

Our protocol leverages the pre-loaded server certificate to reduce handshake
round trips while achieving stronger identity protection: it protects both server
and client identities against active attackers, both with delayed forward secrecy
through encrypting the client certificate and ClientKEMCiphertext Cs under
the server’s semi-static key (authenticated in a previous handshake).

On the Security Proofs. The security proofs are similar to those of the KEMTLS
protocol, are given in the standard model and do not rely on any form of ad-
versary rewinding. Existing techniques in the literature (e.g., Song’s “lifting
lemma” [49]) can thus be used to prove the protocol secure against quantum
adversaries as long as the underlying primitives are.

However, the proofs are non-tight (with the precise losses spelled out in exact-
security terms) as they require to guess the test session as well as, depending
on the proof case, the contributive session or the identity of the intended peer.
The proofs can thus be understood as heuristic arguments for the soundness
of the protocol design. It is worth noting that except for very recent work on
TLS 1.3 [16, 17], most proofs of deployed authenticated key-exchange protocols
are also non-tight.

Downgrade Resilience. The model in Section 4 does not capture algorithm nego-
tiation although any practical deployment of the protocol would support multiple
instantiations for each primitive. However, one can still informally argue that the
downgrade resilience properties of the protocol in Section 3 are similar to those
of the KEMTLS protocol. More precisely, an active adversary could in principle
make a party choose an algorithm other than the one it would have used if the
adversary were passive, but the adversary cannot make a party use an unsup-
ported algorithm. Moreover, assuming that the security of the building blocks is
not breached before the confirmation messages are received, the client and the
server are guaranteed to share the same transcript which includes negotiation
messages. In other words, full downgrade resilience [7, 20] is satisfied once the
other party is explicitly authenticated.

Comparison with KEMTLS. The assumption that the client knows the server
public key from the onset of the protocol is precisely what allows to have the
server send application data from its first message flow and to reduce the hand-
shake by a full round-trip compared to the KEMTLS protocol. It also implies
that the client need not verify the server certificate during the handshake, which
speeds up the handshake even further and reduces power consumption.

However, as explained in the introduction, in a KEM-based protocol that
achieves mutual authentication in a single round trip (see Figure 1), an adversary
could a priori recover the client’s identity by corrupting the long-term key of the
server even after the handshake is completed (no forward identity protection),
as it is for instance the case of the KEMTLS-PDK protocol [47]. The semi-static
keys introduced in this paper mitigate this privacy loss and ensure, without
extra round trip, that the client’s identity cannot be recovered once the semi-
static keys have expired. The lifetime of the semi-static keys now depends on

44

the desired trade-off between efficiency and privacy: the shorter the lifetime
is, the stronger the privacy guarantees are for the client and the heavier the
computational burden is on (mainly) the server.

Comparison with Session Resumption and Forward-Secret 0-RTT. TLS 1.3 spec-
ifies a session resumption (pre-shared key / “PSK”) handshake, bootstrapping
from symmetric secret keys that have been established in a prior connection
and also enabling a 0-RTT mode. As also discussed in [47], the PSK handshake
has efficiency advantages (e.g., for relying purely on symmetric cryptography)
but also downsides wrt. key management of symmetric keys which need to be
frequently changed (requiring additional communication) and stored securely in
clients’ memory. Our approach in contrast only stores (semi-static and long-
term) public keys of the server at the client, reducing the risk for compromise as
well as communication overhead.

The 0-RTT mode of TLS 1.3 enables clients to send application data in the
first message flow, and thus reduce the handshake by a round trip compared to
the standard mode. This requires servers to reconstruct secrets from previous
sessions when receiving the clients’ first messages, i.e., the 0-RTT mode is a
resumption mechanism.

The standard resumption technique to achieve forward-secrecy and resilience
to replay attacks consists in having servers store session caches (resumption
secrets from all recent sessions) in local databases and issuing clients unique
lookup keys that they use for their next connections. Similar techniques could
a priori be used to reduce the KEMTLS handshake while maintaining forward
identity protection, provided that the resumption handshake uses a KEM to
achieve post-quantum security. The presented approach with semi-static keys in
contrast obviates the need for extra secure updatable storage on the client side
for resumption keys. It also allows the server to save storage by re-using sktss
with many clients; session caches can easily grow huge.

Aviram, Gellert, and Jager [1, 2] proposed a different approach to forward
secrecy based on puncturing techniques, improving over session caches in terms
of server storage. Yet, at a 128-bit security level this easily requires tens of MB
of server storage, compared to , e.g., a 2.342 kB single Kyber key pair with our
protocol.

The main benefits of our protocol over forward-secret session resumption
are therefore in small storage overhead (mainly on the server side), not needing
(expensive) updatable secure client storage, and reliance on standardized post-
quantum KEM components.

7 Implementation

This section discusses the implementation choices for the handshake protocol in
Section 3. Since certificates are pre-distributed and need not be verified during
handshakes, the main performance bottleneck depends on the choice of underly-
ing KEMs. The main protocol is subsequently denoted PDK-SS (pre-distributed
keys with semi-static contributions) for simpler referencing.

45

7.1 Choice of Primitives

The KEMs considered for implementation are among the finalists and alternates
in the third round of the NIST Post-Quantum Standardization Process [41],
with parameters chosen at security level 1 (roughly equivalent to the security of
AES-128). The criteria of particular relevance in the IoT use case include the
speed of cryptographic operations, the size of ciphertexts that may impact the
handshake latency, and the size of the keys stored on devices and transmitted
during the handshake.

We compare three of the NIST Round 3 finalist KEMs that rely on hard-
ness assumptions over structured lattices and achieve good performance in terms
of speed and size. These are Kyber512 [45] with security relying on the Module
Learning with Errors (MLWE) problem, LightSABER [15] relying on the Module
Learning with Rounding (MLWR) problem and NTRU-HPS-2048-509 [14] with
security relying on the NTRU problem. We also include Round 3 Alternate can-
didate SIKE [30] which is based on supersingular isogeny Diffie–Hellman, using
parameter set SIKEp434-compressed. Despite slower operations compared to its
lattice-based counterparts, SIKE benefits from the smallest key and ciphertext
sizes of remaining candidates in the NIST process.

To verify (client) certificates, we combined these KEMs with Dilithium-II [39]
(with Kyber512 and LightSABER) and Falcon512 [42] (with NTRU) based on
the similar assumptions. For the smallest size instantiation based on SIKE, we
used Falcon, which has the smallest signatures of the Finalists.

7.2 Prototype Implementation

To experimentally evaluate PDK-SS, we implemented it by modifying the pro-
totype implementation of the KEMTLS protocols [46, 47] based on Rustls [8], a
TLS library written in Rust. The prototype integrates implementations of the
post-quantum primitives from PQClean [31] and the Open Quantum Safe (OQS)
library [50]. For all implementations we used AVX2-accelerated code.

The implementation is available under permissive licenses at https://github.
com/AbuLSim/1RTT-KEMTLS.

8 Benchmarking

Table 2 compares the main protocol with other mutually authenticated hand-
shake protocols, some of which also leverage cached leaf certificates. Even though
these experiments were run on a powerful server and not on IoT devices, they
clearly demonstrate the performance benefits of the main protocol.

8.1 Methodology

We compare PDK-SS to TLS with cached certificates [44] (both TLS 1.3 using
X25519/RSA2048 and post-quantum variants), and to KEMTLS, with [47] and

46

https://github.com/AbuLSim/1RTT-KEMTLS
https://github.com/AbuLSim/1RTT-KEMTLS

Table 2: Average time in ms for mutually authenticated handshakes with cached
leaf certificates.
Mutually
authenticated

30.9 ms RTT, 1000 Mbps 195.5 ms RTT, 10 Mbps
Client
send req.

Client
recv. resp.

Server
expl.
auth.

Server
recv
CFIN.

Client
send req.

Client
recv. resp.

Server
expl.
auth.

Server
recv
CFIN.

ke
m

tl
s SIKE-c 196.8 228.0 228.0 165.9 697.0 893.3 893.2 500.9

MLWE/MSIS 95.0 126.2 126.2 64.1 598.1 794.2 794.2 401.6
NTRU 95.1 126.3 126.2 64.2 594.8 791.0 790.9 398.4

C
ac

h
ed

T
L

S TLS 1.3 68.8 100.3 66.0 38.2 399.2 596.6 396.5 204.6
SIKE-c 103.0 134.8 101.6 72.8 431.7 630.5 430.3 238.1
MLWE/MSIS 64.3 95.9 63.7 33.8 400.3 619.4 399.7 224.7
NTRU 66.0 97.8 64.6 35.7 397.9 596.7 396.5 204.2

PD
K

SIKE-c 130.6 161.7 130.5 99.7 466.6 662.7 466.5 269.3
Kyber 63.3 94.4 63.2 32.3 400.5 596.5 400.4 200.6
NTRU 63.3 94.5 63.3 32.4 396.7 592.7 396.6 198.8
SABER 63.4 94.5 63.3 32.5 399.3 595.3 399.2 200.4

PD
K

-S
S

SIKE-c 126.8 157.8 126.7 91.9 474.1 670.2 474.0 276.5
Kyber 63.5 94.6 63.4 32.5 402.0 598.3 401.9 201.5
NTRU 63.5 94.7 63.5 32.6 397.6 593.6 397.5 199.4
SABER 63.6 94.7 63.5 32.7 401.5 597.7 401.5 201.1

PD
K

-S
S

as
yn

c SIKE-c 170.6 201.7 170.6 129.7 672.6 868.7 672.5 475.1
Kyber 94.7 125.9 94.7 63.8 614.7 810.8 614.7 403.0
NTRU 94.8 125.9 94.7 63.8 597.5 793.5 597.5 398.0
SABER 94.9 126.0 94.8 63.9 604.0 800.0 603.9 401.1

PD
K

-S
S

up
da

te SIKE-c 127.5 158.5 127.4 92.5 474.1 670.2 474.0 276.5
Kyber 63.5 94.7 63.5 32.6 402.1 598.4 402.0 202.2
NTRU 63.6 94.7 63.5 32.6 398.1 594.1 398.1 200.0
SABER 63.7 94.8 63.6 32.7 401.5 597.7 401.5 201.7

without [46] pre-distributed keys (the former is denoted PDK in Table 2). Cached
TLS is included for the sake of comparison to a real-world Internet protocol.

We analyze the performance of the PDK-SS protocol in three cases:

– the synchronized case PDK-SS, where the client and server share the same
semi-static key;

– the asychronized case PDK-SS async, where the client and server have out-
of-sync copies of the semi-static key and so the server must send its key to
the client;

– the PDK-SS update case, where the client and server share the same semi-
static server key but an update to the next semi-static epoch key is available.

The numbers in each column of Table 2 represent the average time to reach
the corresponding stage of the protocol, measured in milliseconds over 60,000
handshakes for each scheme and each set of network parameters. The hand-
shakes were performed on an emulated network; the experiment code is in-
cluded in the source code repository. The server running the simulations was
equipped with two Intel Xeon Gold 6230 CPUs, each with 20 cores. The left
hand columns were computed over a low-latency, high-bandwidth (30.9ms round

47

trip and 1000Mbps) connection, with the right hand over a high-latency, low-
bandwidth (195.5ms round trip and 10Mbps) connection. For each handshake,
we measured the time taken for the client to send its first request in the form
of application data, the client to receive the server response, the server to be
explicitly authenticated, and finally the server to receive the client finished mes-
sage. The time taken for the server to be explicitly authenticated is in bold font
as we view it as the most important metric for our use case.

8.2 Analysis

Table 2 shows that the performances of PDK-SS (in the synchronized case),
PDK and cached TLS are similar. That is because they are all 1-RTT, and the
handshake time is dominated by the number of round trips since computation
and transmission times are dwarfed by the network latency. The only exception
is with SIKE as KEM, as its operations are an order of magnitude (milliseconds
versus microseconds) slower than those of the other KEMs.

As for the asynchronized case, PDK-SS async compares most closely with
the original KEMTLS handshake (PDK-SS async is somewhat faster as clients
do not verify server certificates); their additional round trip clearly impacts the
overall handshake time as expected. More precisely, PDK-SS is 44 to 49% faster
than KEMTLS in the low-latency setup, and 46 to 49% faster in the high-latency
setup.

Overall, our experiments confirm that the privacy benefits of introducing
semi-static keys come at a negligible performance cost.

Acknowledgments. The authors thank Kenny Paterson and Cédric Four-
net for helpful discussions. This work was supported by the Eurostars ZERO-
TOUCH Project (E113920) and the European Research Council under Grant
Agreement No. 805031 (EPOQUE). Felix Günther was supported in part by
German Research Foundation (DFG) Research Fellowship grant GU 1859/1-1.

References

1. N. Aviram, K. Gellert, and T. Jager. Session resumption protocols and efficient
forward security for TLS 1.3 0-RTT. In Y. Ishai and V. Rijmen, editors, EURO-
CRYPT 2019, Part II, volume 11477 of LNCS, pages 117–150. Springer, Heidel-
berg, May 2019.

2. N. Aviram, K. Gellert, and T. Jager. Session resumption protocols and efficient
forward security for TLS 1.3 0-RTT. Journal of Cryptology, 34(3):20, July 2021.

3. M. Bellare. New proofs for NMAC and HMAC: Security without collision-
resistance. In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
602–619. Springer, Heidelberg, Aug. 2006.

4. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. In C. Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
566–582. Springer, Heidelberg, Dec. 2001.

48

5. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In N. Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages
1–15. Springer, Heidelberg, Aug. 1996.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. R.
Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 232–249. Springer, Hei-
delberg, Aug. 1994.

7. K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, and S. Zanella-
Béguelin. Downgrade resilience in key-exchange protocols. In 2016 IEEE Sympo-
sium on Security and Privacy, pages 506–525. IEEE Computer Society Press, May
2016.

8. J. Birr-Pixton. A modern TLS library in rust. https://github.com/ctz/rustls.
9. C. Boyd and K. Gellert. A modern view on forward security. Cryptology ePrint

Archive, Report 2019/1362, 2019. https://eprint.iacr.org/2019/1362.
10. C. Brzuska. On the Foundations of Key Exchange. PhD thesis, Technische Uni-

versität, Darmstadt, 2013.
11. C. Brzuska, M. Fischlin, B. Warinschi, and S. C. Williams. Composability

of Bellare-Rogaway key exchange protocols. In Y. Chen, G. Danezis, and
V. Shmatikov, editors, ACM CCS 2011, pages 51–62. ACM Press, Oct. 2011.

12. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In B. Pfitzmann, editor, EUROCRYPT 2001, volume
2045 of LNCS, pages 453–474. Springer, Heidelberg, May 2001.

13. R. Canetti and H. Krawczyk. Security analysis of IKE’s signature-based key-
exchange protocol. In M. Yung, editor, CRYPTO 2002, volume 2442 of LNCS,
pages 143–161. Springer, Heidelberg, Aug. 2002. https://eprint.iacr.org/2002/
120/.

14. C. Chen, O. Danba, J. Hoffstein, A. Hulsing, J. Rijneveld, J. M. Schanck,
P. Schwabe, W. Whyte, Z. Zhang, T. Saito, T. Yamakawa, and K. Xagawa.
NTRU. Technical report, National Institute of Standards and Technology, 2020.
available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

15. J.-P. D’Anvers, A. Karmakar, S. S. Roy, F. Vercauteren, J. M. B. Mera, M. V.
Beirendonck, and A. Basso. SABER. Technical report, National Institute of
Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

16. H. Davis and F. Günther. Tighter proofs for the SIGMA and TLS 1.3 key exchange
protocols. Cryptology ePrint Archive, Report 2020/1029, 2020. https://eprint.
iacr.org/2020/1029.

17. D. Diemert and T. Jager. On the tight security of TLS 1.3: Theoretically-sound
cryptographic parameters for real-world deployments. Cryptology ePrint Archive,
Report 2020/726, 2020. https://eprint.iacr.org/2020/726.

18. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis
of the TLS 1.3 handshake protocol candidates. In I. Ray, N. Li, and C. Kruegel,
editors, ACM CCS 2015, pages 1197–1210. ACM Press, Oct. 2015.

19. B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A cryptographic analysis of
the TLS 1.3 handshake protocol. Journal of Cryptology, 34(4):37, Oct. 2021.

20. B. Dowling and D. Stebila. Modelling ciphersuite and version negotiation in the
TLS protocol. In E. Foo and D. Stebila, editors, ACISP 15, volume 9144 of LNCS,
pages 270–288. Springer, Heidelberg, June / July 2015.

21. Smartm2m; guidelines for security, privacy and interoperability in iot system defi-
nition; a concrete approach. Technical Report ETSI SR 003 680, ETSI, 2020.

49

https://github.com/ctz/rustls
https://eprint.iacr.org/2019/1362
https://eprint.iacr.org/2002/120/
https://eprint.iacr.org/2002/120/
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/1029
https://eprint.iacr.org/2020/726

22. M. Fagan, K. Megas, K. Scarfone, and M. Smith. Foundational cybersecurity
activities for iot device manufacturers. Technical Report NISTIR 8259, NIST,
2020.

23. M. Fagan, K. Megas, K. Scarfone, and M. Smith. Iot device cybersecurity capability
core baseline. Technical Report NISTIR 8259A, NIST, 2020.

24. M. Fischlin and F. Günther. Multi-stage key exchange and the case of Google’s
QUIC protocol. In G.-J. Ahn, M. Yung, and N. Li, editors, ACM CCS 2014, pages
1193–1204. ACM Press, Nov. 2014.

25. M. Fischlin and F. Günther. Replay attacks on zero round-trip time: The case
of the TLS 1.3 handshake candidates. In 2017 IEEE European Symposium on
Security and Privacy, EuroS&P 2017, pages 60–75. IEEE, Apr. 2017.

26. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions
(extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society Press,
Oct. 1984.

27. P. Grubbs, V. Maram, and K. G. Paterson. Anonymous, robust post-quantum
public key encryption. Cryptology ePrint Archive, Report 2021/708, 2021. https:
//eprint.iacr.org/2021/708.

28. F. Günther. Modeling Advanced Security Aspects of Key Exchange and Secure
Channel Protocols. PhD thesis, Technische Universität, Darmstadt, 2018.

29. D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 341–371. Springer, Heidelberg, Nov. 2017.

30. D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Jalali,
B. Koziel, B. LaMacchia, P. Longa, M. Naehrig, J. Renes, V. Soukharev, D. Ur-
banik, G. Pereira, K. Karabina, and A. Hutchinson. SIKE. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions.

31. M. Kannwischer, J. Rijneveld, P. Schwabe, D. Stebila, and T. Wiggers. PQClean:
Clean, portable, tested implementations of post quantum cryptography. https:
//github.com/pqclean/pqclean.

32. H. Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In D. Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 400–425. Springer, Heidelberg, Aug. 2003.

33. H. Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In
T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 631–648. Springer,
Heidelberg, Aug. 2010.

34. H. Krawczyk and H. Wee. The OPTLS protocol and TLS 1.3. Cryptology ePrint
Archive, Report 2015/978, 2015. https://eprint.iacr.org/2015/978.

35. H. Krawczyk and H. Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE
European Symposium on Security and Privacy, EuroS&P 2016, pages 81–96. IEEE,
Mar. 2016.

36. K. Kwiatkowski and L. Valenta. The tls post-quantum experiment.
https://blog.cloudflare.com/the-tls-post-quantum-experiment/, 2019.

37. B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated
key exchange. In W. Susilo, J. K. Liu, and Y. Mu, editors, ProvSec 2007, volume
4784 of LNCS, pages 1–16. Springer, Heidelberg, Nov. 2007.

38. A. Langley. Cecpq2. https://www.imperialviolet.org/2018/12/12/cecpq2.html,
2018.

39. V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler, D. Stehlé,
and S. Bai. CRYSTALS-DILITHIUM. Technical report, National Institute of

50

https://eprint.iacr.org/2021/708
https://eprint.iacr.org/2021/708
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://github.com/pqclean/pqclean
https://github.com/pqclean/pqclean
https://eprint.iacr.org/2015/978

Standards and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

40. P. Mohassel. A closer look at anonymity and robustness in encryption schemes.
In M. Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 501–518.
Springer, Heidelberg, Dec. 2010.

41. NIST. Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process. Technical report, 2016.

42. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. FALCON. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions.

43. E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Proposed Standard), Aug. 2018.

44. S. Santesson and H. Tschofenig. Transport Layer Security (TLS) Cached Informa-
tion Extension. RFC 7924, July 2016.

45. P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, G. Seiler, and D. Stehlé. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2020. available at https://csrc.
nist.gov/projects/post-quantum-cryptography/round-3-submissions.

46. P. Schwabe, D. Stebila, and T. Wiggers. Post-quantum TLS without handshake
signatures. In J. Ligatti, X. Ou, J. Katz, and G. Vigna, editors, ACM CCS 2020,
pages 1461–1480. ACM Press, Nov. 2020.

47. P. Schwabe, D. Stebila, and T. Wiggers. More efficient post-quantum KEMTLS
with pre-distributed public keys. In ESORICS 2021, volume 12972 of LNCS, pages
3–22. Springer, Oct. 2021.

48. K. Sjöberg, P. Andres, T. Buburuzan, and A. Brakemeier. C-ITS deployment in
europe - current status and outlook. CoRR, abs/1609.03876, 2016.

49. F. Song. A note on quantum security for post-quantum cryptography. In M. Mosca,
editor, Post-Quantum Cryptography - 6th International Workshop, PQCrypto 2014,
pages 246–265. Springer, Heidelberg, Oct. 2014.

50. D. Stebila and M. Mosca. Post-quantum key exchange for the internet and the
open quantum safe project. In R. Avanzi and H. M. Heys, editors, SAC 2016,
volume 10532 of LNCS, pages 14–37. Springer, Heidelberg, Aug. 2016.

51

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

	 KEMTLS with Delayed Forward Identity Protection in (Almost) a Single Round Trip
	Introduction
	Contributions

	Preliminaries
	Notation
	Hash Functions
	Pseudorandom Functions
	Key Derivation Functions
	Message Authentication Codes
	Key Encapsulation Mechanisms

	Protocol
	Protocol Description

	Security Model
	Syntax
	Security Definitions

	Security Analysis
	Properties
	Security Proofs

	Discussion
	Implementation
	Choice of Primitives
	Prototype Implementation

	Benchmarking
	Methodology
	Analysis

