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Abstract: In distributed computations and cryptography, it is desirable to record events on a public ledger, such
that later alterations are computationally infeasible. An implementation of this idea is called blockchain, which is a
distributed protocol that allows the creation of an immutable ledger. While such an idea is very appealing, the ledger
may be contaminated with incorrect, illegal, or even dangerous data, and everyone running the blockchain protocol has
no option but to store and propagate the unwanted data. The ledger is bloated over time, and it is not possible to
remove redundant information. Finally, missing data cannot be inserted later. Redactable blockchains were invented to
allow the ledger to be mutated in a controlled manner. To date, redactable blockchains support at most two types of
redactions: block modification and removal. The next logical step is to support block insertions. However, we show that
this seemingly innocuous enhancement renders all previous constructs insecure. We put forward a model for blockchains
supporting all three redaction operations and construct a blockchain that is provably secure under this formal definition.
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1. Introduction
A traditional problem in distributed computing and cryptography is joint agreement: A set of parties wants
to reach an agreement (consensus) over a noisy channel, while some parties may cooperate and deliberately
act maliciously [1]. Nakamoto [2] proposed a solution in the context of cryptocurrencies, called Bitcoin. The
goal was a decentralized digital currency, where the peers jointly agree on performing financial transactions
and register them in a distributed ledger. Since the transactions were grouped to form blocks and blocks were
chained together, the protocol is called the blockchain. Blockchain provides a mechanism to append any data
type to the ledger. It can be seen as a protocol to agree on events jointly and register them irrevocably on a
distributed ledger.

In general, a blockchain can be permissionless or permissioned [3]. Bitcoin is permissionless, as the parties
do not need authentication to join the protocol. Permissioned blockchains, on the other hand, require a party
to authenticate first before being able to take part in the protocol. The latter is quite common in exclusive
environments, such as corporate applications (e.g., [4]). Due to the identifiability of parties and the possibility of
removing the malicious ones, permissioned blockchains can simplify assumptions to achieve higher performance.
However, they are not viable in environments without central trust.
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Regardless of the permission model of a blockchain, several researchers noted some issues with its
immutability: The ledger can record unwanted data (including child pornography1 or malware2. Therefore,
participants have no choice but to save and propagate the unwanted data. In some jurisdictions, the propagator
of such illegal content is considered complicit [5]. However, the participants cannot remove the unlawful content
or stop propagating it with an immutable ledger. Another possible issue with immutability is the lack of privacy.
Once private information is recorded in an immutable ledger, there is no way to remove it. Therefore, immutable
blockchains cannot observe the “right to be forgotten” endowed to users by privacy laws such as the EU General
Data Protection Regulation (GDPR). Protocol or implementation flaws pose another threat to immutability.
In one famous case, the Ethereum cryptocurrency had an implementation flaw that made the DAO Attack3

possible. As a result, malicious transactions were recorded in the immutable ledger of Ethereum. The only
viable solution was for the majority of participants to upgrade their software. The new software resolved the
flaw, effectively invalidating the malicious transactions. This solution is called a hard fork, and it is the last
line of defense against such influential attacks on immutable blockchains. Immutability has other drawbacks:
The size of the ledger increases over time and storing and processing it becomes increasingly resource-intensive.
There is no possibility to reduce the size of the ledger by removing redundant information from it. Furthermore,
there is no option to insert a block within the ledger, even if the participants later note that a block is mistakenly
not registered (due to protocol issues, implementation mistakes, or oversight).

For these reasons, some researchers proposed the concept of redactable blockchains. A redactable
blockchain allows the ledger to be controllably mutated once the need arises. In [8], two types of redactable
blockchains were identified: (1) Moderated: In protocols of this type [6–9], a centralized authority (one or
more administrators) has a secret redaction key. Once a redaction request is approved, it performs the required
changes to the ledger using the secret key. The changes can be verified by all participants using the associated
public key. (2) Unmoderated: In protocols of this type [10, 11], the parties vote on redaction requests. Once
a certain quorum of votes is attained, the redaction is applied. The votes are added to the ledger as evidence.

A critical remark is distinguishing these concepts with permissioned or permissionless blockchains, as
moderation has nothing to do with user authentication. Moderation authority only controls the redaction
operations; it has nothing to do with permitting who can join the system. A blockchain can be both permissioned
and moderated. Still, even in that case, it is possible to have two sets of authorities: one for authorizing users
to join the blockchain and one for authorizing the redactions. We opted for the moderated setting in this work,
since there are some serious attacks [8, 11] against the existing unmoderated protocols.

Contributions. We propose the first model and security definition for redactable blockchains that support
three redaction operations: block change (chg), block insertion (ins), and block removal (rem). All previous
redactable blockchains supported block change. Removal is previously used in one work [6] to shrink the
ledger. To the best of our knowledge, we initiate the support for block insertion. Interestingly, we show that
naively incorporating the seemingly innocuous insert operation renders the previous constructs insecure. We
demonstrate this by what we call a “twin-block attack” on [6, 7, 9], and a “change-of-operation attack” on [8].
We then create a secure construct, and prove its security under our improved model. The construct alleviates all

1Hargreaves S, Cowley S. (2013). How porn links and Ben Bernanke snuck into Bitcoin’s code [online]. Website https:
//tinyurl.com/bitcoin-snuck [accessed 19 April 2021].

2Pearson, J. (2015). The Bitcoin blockchain could be used to spread malware, INTERPOL Says [online]. Website https:
//tinyurl.com/bitcoin-malware [accessed 2021 Apr 19].

3CoinDesk (2016). Understanding the DAO attack [online]. Website https://tinyurl.com/dao-attack [accessed 19 April 2021].
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previous issues by introducing the concept of triple versioning, where each block holds three types of “versions”:
A globally unique version number, the type of operation based on which the block is created, and the intended
index of the block. Our construct uses a single digital signature per redaction, and is thus very efficient.
Furthermore, it does not require any nonstandard assumptions.

2. Background

2.1. Related work in the moderated setting

The concept of redactable blockchains was pioneered by Ateniese et al. [6]. Their main idea was to construct
a protocol on top of Bitcoin, and therefore had to cope with the limitations posed by Bitcoin. The resulting
construct was therefore complicated: They introduced a primitive called enhanced chameleon hash function,
in which collisions are hard to find except for an entity owning a secret key. The suggested construction of
such hash functions required nonstandard assumptions and a large redaction witness (e.g., under the DLIN
assumption, it required 39 group elements). Derler et al. [7] show how this idea can be further fine tuned to
make the primitive policy based: Any entity that has enough privileges to satisfy a policy can find collisions.
The idea is implemented by incorporating another primitive called a ciphertext-policy attribute-based encryption.

Grigoriev and Shpilrain [9] suggested a simple and efficient solution based on RSA, but their construct is
insecure [8]. Dousti and Küpçü [8] provided another simple solution based on any strongly unforgeable digital
signature. The efficiency of their protocol is a result of completely departing from Bitcoin, and not being
restricted to its data structures and verification algorithms.

Except for [6], all previous work [7–11] (both moderated and unmoderated) support only one type of
redaction: Changing blocks. In [6], the authors show how block removals can be supported as well. Attacks
against various types of redactable blockchains are presented in [8, 11].

2.2. Preliminaries
Notation. Deterministic assignments are denoted by z := 9 , while probabilistic assignments are denoted by
an arrow: z ← B(n) for the output of a probabilistic algorithm B , or z ← S for uniformly random selection
from a finite set S . The symbol x = y is used for checking/asserting equality. Let L = [B0, . . . , Bℓ] be a list.
Note that we use 0 and ℓ as the indices of the first and the last element of the list, respectively. The list may
grow arbitrarily, but ℓ is always updated accordingly to be the index of the last element. The elements of the
list can be addressed by their index: L[i] = Bi for 0 ≤ i ≤ ℓ . For integers i, j with 0 ≤ i ≤ j ≤ ℓ , define

L[i : j] def
= [Bi, . . . , Bj ] . If j < i , then L[i : j] = [ ] by definition. If L1 and L2 are two lists, their concatenation

is denoted by L1+L2 . A function negl : N→ [0, 1] is called negligible if it decays faster than the inverse of any
positive polynomial. Formally, for any c ∈ N , there exists n0 ∈ N , such that for all integers n > n0 we have
negl(n) < n−c .

Definition 1 (Strongly unforgeable signature scheme) Consider a signature scheme (GenSig,Sign,VerifySig)

where GenSig generates a pair of public and secret keys, Sign generates a signature given the secret key and
a message, and VerifySig verifies a signature on some message using the public key. The signature scheme is
called strongly unforgeable under chosen-message attack (sUF-CMA), if for any efficient adversary taking part
in the following game, there exists a negligible function negl , such that the probability of the adversary winning
is at most negl(λ) , where λ is the security parameter.
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• GenSig(1λ) generates a pair of public and secret keys (pk, sk) .
• The adversary is given pk , as well as access to the signing oracle Signsk(·) . The signing oracle receives a

message, and returns a valid signature on it. The adversary may interact with the oracle polynomially many
times.

• The adversary outputs a pair (m∗, σ∗) . She is said to win the game if VerifySig(pk,m∗, σ∗) = 1 , and σ∗ is
never returned by the signing oracle on input m∗ .

Our construction assumes the existence of sUF-CMA signature schemes. The assumption is equivalent to the
existence of ordinary (i.e. not necessarily strong) UF-CMA signature schemes [12], which can be constructed
from one-way functions [13]. However, very efficient constructs of sUF-CMA signature schemes exist [14, p.
230].

3. Blockchain operations

This section illustrates the ways a ledger can be modified using diagrams in Figure 1. To this end, let us first
fix the block structure. The most important part of a block is the block content C . Blocks must also contain
a witness W supporting the validity of redactions. Other information, such as block prefix, version number,
randomness and so on are immaterial to the discussion of this section. We simply use an ellipsis ( · · · ) to show
the omission of such extra information.

The first type of blockchain operation is appending a block. It does not require access to the secret key.
Here, we define the pivot block as the block being appended. All other operations that can be performed on the
ledger are redactions. They require access to the secret key. For each redaction operation, we define one block
as the pivot block: It is the block for which a new witness is computed (using the secret key). The specifics for
each operation is explained next:

Append operation apd (Figure 1a): Consider the appending request (apd, i, B) , asking to append the
block B at location i . When the last block of the ledger is at location ℓ , the operation is only successful for
i = ℓ+ 1 . Here, the pivot block is the block being appended (B ).

Change operation chg (Figure 1b): Consider the redaction request (chg, i, C ′) , asking to change the
content of the ith block to C ′ . Here, the pivot block is the block being changed (the ith block). The administrator
uses the secret key sk to find a proper witness W ′

i so that the redaction is valid.

Insertion operation ins (Figure 1c): Consider the redaction request (ins, i, C ′) , asking to insert a block
with content C ′ at index i . Here, the pivot block is the block being inserted (the ith block). The administrator
uses the secret key sk to find a proper witness W ′

i .

Removal operation rem (Figure 1d): Consider the redaction request (rem, i) , asking to remove the block
at index i . Here, the pivot block is the block preceding the block being removed (the block with index i− 1).
The administrator uses the secret key sk to find a proper witness W ′

i−1 .

Table 1 summarizes the operations, as well as utility functions Ind , Prev , Next , and Pivot . These utility
functions are used in later sections of the paper to simplify definitions. Ind gives the set of valid indices for an
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· · · B` (apd, i, B)

i = `+ 1

B = (· · · , C,W )

· · · B`

W

C

· · ·

Bi: Pivot Block

(a) Append operation (apd, i, B) . The pivot block is the one being appended.

Bi−1

Prev = i− 1

Wi

Ci

· · ·

Bi

Bi+1

Next = i+ 1

(chg, i, C) Bi−1

W ′i

C ′i := C

· · ·

B′i: Pivot Block

Bi+1

(b) Redaction operation (chg, i, C) . The pivot block is the one being changed.

Bi−1

Prev = i− 1

Bi

Next = i

(ins, i, C) Bi−1

W ′i

C ′i := C ′

· · ·

B′i: Pivot Block

B′i+1 = Bi

(c) Redaction operation (ins, i, C) . The pivot block is the one being inserted.

Bi−2

Prev = i− 2

Wi−1

Ci−1

· · ·

Bi−1

Bi Bi+1

Next = i + 1

(rem, i, C) Bi−2

W ′i−1

C ′i−1 := C

· · ·

B′i−1: Pivot Block

B′i
=

Bi+1

(d) Redaction operation (rem, i, C) . The pivot block is the one preceding the block being removed.

Figure 1. Illustration of various block redaction operations. The grayed fields of the pivot block are affected by the
corresponding operation.

operation. Pivot returns the index of the pivot block for each operation, while Prev and Next return the index
of the previous and next blocks. Notice that all indices refer to the locations in the ledger prior to performing
the operation.
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Table 1. Various operations for a redactable blockchain. Indℓ(op) denotes the set of valid indices i for operation op on
a ledger whose last index is ℓ . For each operation, previous and next indices are listed. Note that they refer to block
indices in the ledger prior to performing the operation.

Operation Name Redaction? Indℓ(op) Prev(op, i) Next(op, i) Pivot(op, i)

apd Append 2 {ℓ+ 1} i− 1 i+ 1 i

chg Change 4 {1, . . . , ℓ} i− 1 i+ 1 i

ins Insert 4 {1, . . . , ℓ} i− 1 i i

rem Remove 4 {1, . . . , ℓ} i− 2 i+ 1 i− 1

4. The tri-op model

Our model augments that of [8] with two types of new redactions: Block removal and block insertion. The
model is described as a game between a challenger and an adversary. The challenger generates a pair of keys
and initializes the ledger. The public key is handed over to the adversary. She also receives read-only access
to the ledger, as well as oracle access to the challenger. The adversary can make two types of queries to the
challenger:

1. Installation query: The adversary asks the challenger to install a block at a specific location in the
ledger while performing one of the four types of operations (append, change, remove, or insert). The
challenger verifies the request and performs it in case it is valid.

2. Redaction query: The adversary asks the challenger to redact a block using one of three redaction
operations (change, remove, or insert). The challenger verifies the request. If the operation is valid, the
challenger uses the secret key to perform the operation and returns a block that can later be installed by
the adversary in the ledger using an installation query.

This model abstracts out the distributed nature of a blockchain. As a result, it does not capture all
real-world attacks. For instance, the adversary does not get the option to change multiple blocks at once.
Therefore, as shown in the next section, the constructs need not worry about chaining the blocks together. In
some sense, it is an ideal-world model of redactions. When used with real-world constructs, it should somehow
be composed with a blockchain model that captures attacks against ordinary blockchains. Our model is simple
enough and is suitable for proof-reading constructs against nondistributed attacks. In Section 7, we discuss
possible extensions to capture a distributed model.

We next provide a definition of tri-op redactable blockchains, which as the name suggests, support three
types of redaction operations. The definition uses the following useful function:

Transform(L, (op, i, B))
def
= L

[
0 : Prev(op, i)

]
+ [B] + L

[
Next(op, i) : ℓ

]
(1)

It defines the transformation performed on ledger L when performing an installation of block B at location i

using operation op ∈ {apd, chg, rem, ins} . It is assumed that i ∈ Indℓ(op) , as otherwise it will be rejected.

Definition 2 A quintuple of efficient algorithms 3RBC = (Gen,Create,Redact,Verify, Install) is called a tri-op
redactable blockchain scheme if:

1. Algorithm Gen takes the security parameter 1λ in unary and generates a pair of public and private keys
(pk, sk) , along with the initialized ledger L .
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2. Algorithm Create creates a new block B , when executed on input the public key pk , the ledger L , and some
block content C .

3. Algorithm Redact generates a redacted block using the secret key. More specifically, Redact(sk,L, (op, i, C))
outputs a redacted block B for operation op ∈ {chg, ins, rem} at index i of ledger L , where sk is the
secret key and C is some block content.

4. Algorithm Verify verifies the validity of an operation on the ledger. More specifically, let (op, i, B) denote
putting block B at index i of the ledger by performing operation op ∈ {apd, chg, ins, rem} . Then, Verify(pk,
L, (op, i, B)) returns 1 if and only if this operation is valid.
We observed that splitting the verification algorithm into two separate checks makes it much more flexible,
as one part can be independent of the history of ledger transforms: The first part (algorithm Φ) verifies
whether the operation is valid on the current ledger. The second part (algorithm Ψ) verifies whether the
(resulting) ledger is valid, regardless of the operation. For the first part, the blockchain designer should
decide what part of each block is involved in the verification. We call that part the “version of the (pivot)
block”:

V := Version(L[Pivot(op, i)]) . (2)

We also extract the version of all existing blocks in the ledger prior to the operation:

V⃗ := [Version(L[0]), . . . ,Version(L[ℓ])] . (3)

Algorithm Φ then compares the new version information against the existing ones, when op is the operation
and i is the index: Φ(V⃗ , op, i, V ) . It returns 1 if and only if the operation is deemed valid.
The second algorithm Ψ(pk,L∗) checks the consistency of the whole ledger assuming the transformation is
done:

L∗ := Transform(L, (op, i, B)) . (4)

In one sense, Ψ performs a static check on the ledger, while Φ performs a dynamic check on the operation.
The verification algorithm returns 1 if and only if both Φ(V⃗ , op, i, V ) and Ψ(pk,L∗) return 1.

5. Algorithm Install modifies the ledger according to the requested operation. More specifically, when executed
as Install(pk,L, (op, i, B)) , the algorithm first performs Verify(pk,L, i, B) , and returns 0 if the verification
fails. Otherwise, it performs L = Transform(L, (op, i, B)) , and returns 1 .

Any tri-op redactable blockchain 3RBC should be correct, meaning that when the algorithms Create and
Redact are executed on valid inputs, their output must satisfy the verification algorithm:

Definition 3 Let λ be any security parameter, and 3RBC = (Gen,Create,Redact,Verify, Install) be as in
Definition 2. Let (pk, sk,L) ← Gen(1λ) , and assume that L is transformed any number of times by applying
the Install algorithm. The following correctness conditions should hold:

1. Algorithm Create is correct: Let B be generated by Create(pk,L, C) . Then

Content(B) = C ∧ Verify(pk,L, (apd, ℓ+ 1, B)) = 1 . (5)
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1. Let (pk, sk,L)← Gen(1λ) . The set of query-responses Hist is initialized to the empty set ∅ .

2. Adversary A is given pk and a read-only access to the ledger L . She can query two oracles REDCsk,L(·, ·, ·)
and INSTpk,L(·, ·, ·) , which operate as explained below.

3. Upon receiving (op, i, C) where op ∈ {chg, ins, rem} , the redaction oracle REDC generates B by running
Redact(sk,L, (op, i, C)) . If B ̸= ⊥ , it adds (op, i, B) to Hist . Finally B is returned.

4. Upon receiving (op, i, B) , the installation oracle INST executes Install(pk,L, (op, i, B)) . Let b be the
output of the installation algorithm. If b = 0 , the experiment ends by returning 0 . Otherwise,

• If: op ̸= apd and (op, i, B) /∈ Hist : The adversary A succeeds.
The experiment ends by returning 1 .

• Else: In case (op, i, B) ∈ Hist , the installation oracle sets Hist := ∅ .
The adversary receives 1 , and the experiment continues.

Experiment. The redaction experiment RedactA,3RBC(λ) .

2. Algorithm Redact is correct: For any op ∈ {chg, ins, rem} and i ∈ Indℓ(op) , let B be generated by
Redact(sk,L, (op, i, C)) . Then

Content(B) = C ∧ Verify(pk,L, (op, i, B)) = 1 . (6)

We can now give the security definition for a tri-op redactable blockchain, which is based on Section 4.
The experiment uses a set Hist to keep track of queries made to the redaction oracle: when a valid query
(op, i, C) is made to this oracle and a block B is returned as a response, the element (op, i, B) is added to Hist .
The adversary wins if she performs a valid install query for a redacted block not in Hist .

It is noteworthy that once a valid installation query is processed, the experiment empties the set Hist .
This provides the adversary with a great opportunity: she can win even if she can get two redacted blocks
from the administrator, and install both of them. In other words, for a secure 3RBC , once a redacted block is
installed, all previously obtained redacted blocks must be rendered invalid.

The above definition is very strict. Alternatively, we could have kept all previously obtained blocks in
Hist to relax the definition. However, since the insertion and removal of blocks relocate all succeeding blocks,
the index i in corresponding elements of Hist must be readjusted: a block insertion should add 1 to the index of
triplets in Hist , whose index is after the installation location. Similarly, a block removal should subtract 1 from
those indices. While the relaxation in security definition is perceivable, we did not incorporate it in Section 4,
as otherwise, it would unnecessarily complicate the experiment. Surprisingly, this stricter model simplified our
construction and security proof (next section) compared to the alternative.

Definition 4 A tri-op redactable blockchain scheme 3RBC is secureif for all efficient adversaries A who takes
part in Section 4, there exists a negligible function negl such that Pr

[
RedactA,3RBC(λ) = 1

]
≤ negl(λ) .

5. Attacks on previous work
In this section, we show how adding support for block insertion renders previous moderated blockchains insecure.
Most previous constructs succumb to what we call a “twin-block attack” (Section 5.1), while one construct is
susceptible to a “change-of-operation attack” (Section 5.2).
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5.1. Twin-block attack
Most of the previous redactable blockchains in the moderated setting [6, 7, 9] follow the following structure:
Blocks contain a prefix P , some content C , and a witness W . The witness is computed by the administrator
when redacting a block. The prefix of a block is computed as a function of the previous block: Pi+1 := f(Bi) ,
where f is some deterministic function.

Once insertion is recognized as an operation, the deterministic nature of f becomes an issue: when a
block is inserted between two blocks, its prefix equals to that of the next block: see Figure 2, and read on for a
formal proof. We refer to two consecutive blocks with the same prefixes as twin blocks. Next, it is shown how
the adversary can create and exploit such blocks to make some arbitrary modifications to the ledger, without
consulting the administrator first.

Consider a “toy” ledger L = [B0, B1] . By definition, P1 is a deterministic function of the previous block:

P1 := f(B0) . (7)

B0

P1 := f(B0)

B1

(ins, i, C)

B0

P := f(B0)

C

W

B

P1 := f(B0)

B1

Figure 2. Illustration of how twin blocks are created.

Two-step setup: The adversary A performs the following:
1. A queries Redact on (ins, 1, C) , and receives block B = (P,C,W ) . In particular, W is set in such a way

that the prefix of the next block B1 remains valid: in the context of enhanced chameleon hash functions
introduced in Section 2.1, the administrator uses its secret key to find W such that B and B0 form a
collision for f .

2. A queries Install on (ins, 1, B) . The resulting ledger is L = [B0, B,B1] .
The following identities hold in the ledger:

P = f(B0), (8)

P1 = f(B) . (9)

Equation (8) holds since B is a valid next block of B0 , and Equation (9) holds because B1 is a valid next block
of B . Together with Equation (7) we get:

P = P1 = f(B0) = f(B) . (10)

Attack 1: Without any other Redact queries, adversary can ask Install on (ins, 1, B) , resulting in the valid
ledger L = [B0, B,B,B1] . The ledger is valid because B is a valid next block of B0 (as was the case before),
and B is a valid next block of itself: P = f(B) as per Equation (10). Therefore, the adversary can insert B in
the ledger indefinitely by querying Install on (ins, 1, B) an arbitrary number of times.
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Attack 2: Starting with L = [B0, B,B,B1] obtained in the previous attack, A can ask the redaction oracle
to change the block B at index 1, but apply it to its “twin block” B at index 2:

1. A queries Redact on (chg, 1, C̃) , and receives block B̃ = (P̃ , C̃, W̃ ) , satisfying the following identities:

P̃ = f(B0), P = f(B̃) . (11)

2. A queries Install on (chg, 2, B̃) , resulting in the valid ledger L = [B0, B, B̃, B1] . This is because combining
Equations (10) and (11), we get:

P̃ = f(B), P1 = f(B̃) . (12)

Therefore B̃ is a valid next block of B , and B1 is a valid next block of B̃ .

5.2. Change-of-operation attack

The construct of [8] has the block structure B = (C, V,W ) , where C is the block content, V is the block
version number, and W is a witness to be provided whenever a block is redacted. Notice that blocks do not
have a prefix, as the model is abstract, and chaining blocks occurs at a lower level.

• The versioning scheme is global, meaning that each block will have a unique version number. In other
words, with each installation (be it an append or a redaction), a new version number is introduced.

• The witness for a nonredacted block is the empty string ε . Once a block is redacted, the witness becomes
a digital signature on a value specified below. The signing secret key is only known to the administrator.

Let L = [(C1, 1, ε), (C2, 2, ε), (C3, 3, ε)] be the current ledger, and assume we want to append a block
whose content is C4 . The version number of this block must be unique in the ledger, so we set it to 4 . The
witness is set to the empty string. Therefore, the forth block is B4 = (C4, 4, ε) , and the updated ledger becomes
L = [(C1, 1, ε), (C2, 2, ε), (C3, 3, ε), (C4, 4, ε)] .

Now assume the administrator wants to approve a change to the second block so that its new content
becomes C ′

2 . The new block must have a unique version in the ledger, so the version is set to 5 . Finally, the
witness of the redacted block must be set. The signature is computed on the concatenation of three items: (1)
the content of the redacted block, (2) the version of the redacted block, and (3) the version of the next block.
The first two components are there to ensure that the adversary does not change the block content or version
after she received a signed redacted block from the administrator. The third component is there to prevent
an adversary to relocate a signed redacted block (i.e. receive a redaction for location i , but later install it at
location i′ ). In our example, the current version of the redacted block is 5 , and the version of the next block
in the ledger is 3 . Therefore, W ′

2 is the administrator’s signature on the following string: C ′
2 || 5 || 3 , and the

ledger after installation of this block becomes L = [(C1, 1, ε), (C
′
2, 5,W

′
2), (C3, 3, ε), (C4, 4, ε)] .

Let us exemplify one last modification to our example ledger. To change the content of the third block
to C ′

3 , its version is set to 6 , and its witness W ′
3 is set to a signature on C ′

3 || 6 || 4 . The ledger is updated to
L = [(C1, 1, ε), (C

′
2, 5,W

′
2), (C

′
3, 6,W

′
3), (C4, 4, ε)] .

The issue here is that W ′
2 is no longer a valid signature since the version number on the next block is

changed. The construct resolved this issue by defining a conditional signature checking algorithm: the signature
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is only checked if the version of the current block is less than that of the next block (i.e. the next block is not

changed after the current block). The algorithm Ψ is defined as the logical AND:
∧ℓ

i=1 ψ(pk,L[i − 1],L[i]) ,
where ψ is defined as follows for any two blocks B = (C, V,W ) and B′ = (C ′, V ′,W ′) :

ψ(pk,B,B′)
def
=

{
1 if V ′ > V ,
VerifySig(pk, C || V || V ′,W ) if V ′ < V .

(13)

While the above construct is provably secure in the single-operation model, it suffers from a simple
change-of-operation attack. Consider a toy example ledger L = [(C1, 1, ε), (C2, 2, ε)] . The adversary requests
the redaction (chg, 1, C ′

1) , and receives the block B′
1 = (C ′

1, 3,W
′
1) , where W ′

1 is a signature on C ′
1 || 3 || 2 .

However, instead of installing (chg, 1, B′
1) , the adversary requests to install (ins, 2, B′

1) . Notice that the
requested operation is changed from chg to ins , and the location is changed from 1 to 2. If succeeds, the
ledger will become L = [(C1, 1, ε), (C

′
1, 3,W

′
1), (C2, 2, ε)] , while the administrator’s approved redaction was

L = [(C ′
1, 3,W

′
1), (C2, 2, ε)] .

The above attack succeeds because the construct checks two conditions: (1) the redacted block version
is globally unique. In this case, the version is 3 and satisfies this condition. (2) the condition in Equation (13),
which also passes: W ′

1 is a valid signature on its own block content and version, as well as the version of the
next block.

The reason why the above attack works is that the construct does not readily generalize to the tri-op
settings: the adversary can always request a redaction using one operation, and install it at the proper location
with another operation. As the above example shows, the result can be catastrophic: the adversary can make
structural changes to the ledger that are not approved by the administrator. In the next section, we make some
changes and suggest a new construct that is provably secure under the tri-op model.

6. Construction

In this section, we construct a tri-op redactable blockchain (Section 6.1) based on the idea of triple versioning.
We then prove its security (Section 6.2) according to our proposed model and security definition. We finalize
with experimental evaluation (Section 6.3).

6.1. A secure construct based on triple versioning

For a secure tri-op redactable blockchain, we improve the construct described in Section 5.2. The idea is to
change the block structure to carry extra information regarding the operation and location for which the block
is generated. In Definition 2, the only part of the verification algorithm that has access to this information is
Φ(V⃗ , op, i, V ) . Therefore, the appropriate place to add the operation and location of the block is its version
element. Accordingly, the version of each block becomes a triplet V = (Vme, Vop, Vidx) , where:

• Vme is the actual version of the current block, and should be globally unique.
• Vop ∈ {apd, chg, ins, rem} is the operator for which the block is generated.
• Vidx is the location for which the block is generated.
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We then define the following verification algorithms ( V⃗ is as defined in Equation (3)):

MaxV(V⃗ )
def
= 1 + max

0≤i≤ℓ
V⃗me[i] , (14)

Φ(V⃗ , op, i, V )
def
=

(
op ∈ {apd, chg, ins, rem}

)
∧
(
i ∈ Ind|V⃗ |(op)

)
(
Vop = op

)
∧
(
Vidx = i

)
∧
(
Vme = MaxV(V⃗ )

)
, (15)

ψ(pk,B)
def
=

{
1 if Vop = apd,
VerifySig(pk, C || V,W ) otherwise.

, (16)

Ψ(pk,L) def
=

∧
0≤i≤ℓ

ψ(pk,L[i]) . (17)

Algorithm MaxV(V⃗ ) finds the maximum Vme in the ledger and adds 1 to it. Algorithm Φ ensures that the block
being installed is valid: it has the proper operation, the location at which it is installed matches the operation,
and its version triplet is correct. Algorithm ψ checks whether the block is installed using a redaction operation,
and if so the witness W is a valid signature on C || V . Finally, Ψ applies ψ to all blocks in the ledger and
returns 1 if all of them return 1.

Construct 1 Let 3RBCtv be a tri-op redactable blockchain, defined as follows. Each block is structured as a
triple B = (C, V,W ) , where C is the block content, V is the block version and W is a redaction witness. The
block version is a triplet V = (Vme, Vop, Vidx) .

• Gen(1λ) calls the generator of some signature scheme to generate a key pair: (pk, sk)← GenSig(1λ) . It
then initializes the ledger as list containing a single element B0 :=

(
ε, (1, apd, 0), ε

)
.

• Create(pk,L, C) generates B :=
(
C, (Vme, apd, ℓ+ 1), ε

)
, where Vme = MaxV(V⃗ ) as per Equation (14).

• Redact(sk,L, (op, i, C)) : If op /∈ {chg, ins, rem} or i /∈ Indℓ(op) , it returns ⊥ . Otherwise, it creates a
block B := (C, V,W ) using content C , where V = (Vme, Vop, Vidx) = (MaxV(V⃗ ), op, i) and:

W ← Signsk
(
C || V

)
. (18)

• Verify(pk,L, (op, i, B)) : Let algorithms Φ and Ψ be as in Equation (15) and Equation (17), respectively.
The verification algorithm sets L∗ := Transform(L, (op, i, B)) , executes Φ(V⃗ , op, i, V ) and Ψ(pk,L∗) ,
and returns 1 if and only if both return 1.

• Install(pk,L, (op, i, B)) : Operates in the same manner defined in Definition 2.

6.2. Security proof

We now prove that Construct 1 satisfies the correctness and security requirements of Section 4.

Theorem 1 (Correctness) The tri-op redactable blockchain 3RBCtv is correct per Definition 3.

Proof We prove that both correctness conditions hold.
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Condition (1): Algorithm Create(pk,L, C) generates a block B :=
(
C, (MaxV(V⃗ ), apd, ℓ + 1), ε

)
. The block

content of B is C . Furthermore, the version of B is correctly computed as required by Φ : The version
triplet includes a globally unique version number, the operation is valid, and the index is in Indℓ(apd) .
Finally, if L is already a valid chain, so is L∗ := L + [B] . This is because ψ returns 1 on all blocks in
L∗ prior to the last block (due to the validity of L). For the last block B , since Versionop(B) = apd , the
return value of ψ(pk,B) is trivially 1 . As a result, all blocks verify, and Ψ returns 1 as well.

Condition (2): Algorithm Redact(sk,L, (op, i, C)) generates ⊥ if op /∈ {chg, rem, ins} or op /∈ Indℓ(op) .
Otherwise, it returns B :=

(
C, (MaxV(V⃗ ), op, i),W

)
. The block content of B is C . Furthermore, the

version of B is correctly computed as required by Φ : The version triplet includes a globally unique version
number, the operation is a valid redaction, and index is in Indℓ(apd) . Finally, if L is already a valid chain,
so is L∗ := Transform(L, (op, i, B)) . This is because ψ returns 1 on all blocks in L∗ prior to the last
block (due to the validity of L). For the last block B , due to Equation (18), W is a valid signature on
C || V . Hence, the return value of ψ(pk,B) is 1 , as per Equation (17).

2
Theorem 2 (Security) 3RBCtv is secure per Definition 4, assuming (GenSig,Sign,VerifySig) is an sUF-CMA
signature scheme as defined in Definition 1.

Proof For any (efficient) adversary A , who wins in Section 4 with probability ϵ , we construct an efficient
forger F , who forges a signature with the same probability.

The forger F is given as input the public key pk of the signature scheme, and can query the signing
oracle Signsk(·) polynomially many times. It initializes the set Hist to empty, and the ledger L as specified
by Construct 1. It then executes the adversary A(pk,L) as a subroutine. Whenever the adversary makes an
oracle request, the forger responds as specified next:

• Queries to the redaction oracle REDC(op, i, C) : If either op /∈ {chg, ins, rem} or i /∈ Indℓ(op) , the
forger F returns 0 and halts. Otherwise, F creates a new block B :=

(
C, V,W

)
with content C , version

triplet V := (MaxV(V⃗ ), op, i) and witness W . To compute the witness, F sends the query (C || V ) to
the signing oracle. It then sets Hist := Hist∪{(op, i, B)} , and finally returns B to the adversary A for
further processing.

• Queries to the installation oracle INST(op, i, B) : The forger F acts exactly as in Step 4 of Section 4.
That is, it calls the underlying Install operation, and returns 0 and halts if the installation fails. If the
installation succeeds on an append or a nonfresh redaction, Hist is cleared and the game continues.
Otherwise, the adversary is successful in the game. In this case, the forger F parses B as the triple
(C, V,W ) . Since the installation algorithm returns 1 , we know that B is a valid block. In particular, W

is a valid signature on the message m def
= (C || V ) . In this case, F returns (m,W ) as a valid forgery.

It remains to show that the returned pair is fresh, meaning that the signing oracle has never returned
the signature W when queried on input m . The forger has already checked that (op, i, B) is not in the set Hist

(as in Step 4 of Section 4). Therefore, we consider all the remaining cases:
1. B was returned at some point by the REDC oracle but was removed from Hist by a subsequent

call to INST : This is impossible because once INST is called, the maximum version in the ledger is
increased. Therefore, no previously obtained B remains valid.
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2. (op′, i′, B) ∈ Hist , where (op′, i′) ̸= (op, i) : This is impossible, as B includes as part of its version both
the operation and the location. Changing any of those causes Φ to return 0 .

3. (op, i, B′) ∈ Hist for some block B′ = (C, V,W ′) : In this case, both blocks B and B′ have the same
content and version, but differ in their witnesses. As a result, both W and W ′ verify as signatures on
the message m

def
= (C || V ) . This constitutes a strong signature forgery, and therefore (m,W ) is a valid

strong forgery on the underlying signature scheme.
4. None of the above: In this case, m def

= (C ||V ) is new, and W is a valid signature on it. This constitutes
a normal signature forgery, and F can output (m,W ) as a valid forgery.

As explained above, cases 1 and 2 are impossible: the adversary never wins the game in these cases, because
her output is simply invalid. In plausible cases 3 and 4, the forger generates a valid signature whenever the
adversary succeeds. Subsequently, F generates a valid signature forgery with the same probability that A
succeeds in Section 4, and the theorem follows. 2

6.3. Experiments

It is noteworthy that redaction operations should occur rather infrequently, as the need for correcting issues in
the ledger should rarely occur. That said, it is interesting to show how simple and efficient our construct is. For
this reason, we implemented the protocol in the Java programming language. The source code is available on
GitHub.4 It incorporates 18 unit tests that perform the correctness checks (e.g., an administrator can always
perform redactions) and security checks (e.g., an invalid or an old redaction cannot be installed). It uses the
Java Microbenchmark Harness (JMH) framework to measure the throughput of various operations (sign, verify,
and redaction with or without installation). We assume the administrator has local access to the ledger and
a long queue of operations to be performed. That is, no network delay is incurred. The implementation uses
Edwards-curve Digital Signature Algorithm (Ed25519). Section 8.4 of the RFC 8032 explains why the signature
is strongly unforgeable. We performed the operations on blocks of size 10, 000 bytes, and a ledger with 100,

000 blocks. Each benchmark is run for 2 min, for a total of 16 min for all 8 benchmarks. Table 2 shows the
benchmark results and the efficiency of our solution.

Table 2. The score (average throughput) for various operations, as well as the error, measured in terms of operations
per second. The error represents the confidence interval with 99.9% confidence level, assuming a normal distribution.
The benchmarks are performed on an Apple 2020 laptop with M1 chip and 16 GB of memory.

Operation Score (ops/s) Error (ops/s)
Sign 1993.868 ±62.613
Verify 2154.005 ±66.021
Change 1984.024 ±7.232
Insert 1976.893 ±20.512
Remove 1958.584 ±68.914
Change & install 1031.999 ±7.846
Insert & install 1011.839 ±4.798
Remove & install 1023.124 ±4.398

4https://github.com/msdousti/TriOpRedactableBlockchain
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7. Summary and future work
In this paper, we defined a model for redactable blockchains that, for the first time, incorporated all three
types of redactions: block change, block removal, and block insertion. We showed that enabling block insertions
renders previous constructs susceptible to either “twin-block attack” or “change-of-operation attack”. We then
proposed a new construct that is proved secure in this tri-op model.

While our model is simple enough to capture many types of attacks, it is still an abstraction of the real
world. In particular, it does not capture the distributed nature of blockchains: the model is designed as a game
between an adversary and a challenger. It is a first step toward understanding the diversity of attacks and
proofreading existing constructs. However, a distributed model would better capture all types of real-world
attacks, such as the case where a new party joins the network and receives contradicting versions of the ledger
from existing parties. For further discussions on the choice of model, the reader is referred to [8]. Therefore,
the next logical step is to cast our model in a multiparty setting similar to [15]. Only then can one be sure that
the constructs proven secure can in fact be used in the real-world setting.
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