
Chosen Ciphertext Secure Keyed Two-Level Homomorphic

Encryption∗

Yusaku Maeda1 Koji Nuida23

1 The University of Tokyo, Japan†

yusaku.maeda1996@gmail.com
2 Institute of Mathematics for Industry (IMI), Kyushu University, Japan

nuida@imi.kyushu-u.ac.jp
3 National Institute of Advanced Industrial Science and Technology (AIST), Japan

Abstract

Homomorphic encryption (HE) is a useful variant of public key encryption (PKE), but it has a
drawback that HE cannot fully achieve IND-CCA2 security, which is a standard security notion for PKE.
Beyond existing HE schemes achieving weaker IND-CCA1 security, Emura et al. (PKC 2013) proposed
the notion of “keyed” version of HE, called KH-PKE, which introduces an evaluation key controlling the
functionality of homomorphic operations and achieves security stronger than IND-CCA1 and as close to
IND-CCA2 as possible. After Emura et al.’s scheme which can evaluate linear polynomials only, Lai et al.
(PKC 2016) proposed a fully homomorphic KH-PKE, but it requires indistinguishability obfuscation and
hence has a drawback in practical feasibility. In this paper, we propose a “two-level” KH-PKE scheme
for evaluating degree-two polynomials, by cleverly combining Emura et al.’s generic framework with a
recent efficient two-level HE by Attrapadung et al. (ASIACCS 2018). Our scheme is the first KH-PKE
that can handle non-linear polynomials while keeping practical efficiency.

1 Introduction

1.1 Background

Homomorphic Encryption (HE) is a cryptographic primitive first introduced by Rivest et al. [19], which
allows one to compute on encrypted data without a secret key. It has been extensively studied since its
introduction, and many applications have also been proposed.

There are several different types of HE depending on the operations it can handle. The most basic ones
are Additively Homomorphic Encryption (AHE), which only allows addition between ciphertexts, and Mul-
tiplicative Homomorphic Encryption (MHE), which only allows multiplication. Although the applications
of these schemes are limited due to their simple functionality, they generally are known to have a compar-
atively low computation cost. On the other hand, Fully Homomorphic Encryption (FHE) can carry out
arbitrary computations on encrypted data. Especially when the message space is a finite field, FHE can
be constructed by enabling (unlimited number of) both addition and multiplication between ciphertexts.
Despite its strong functionality, efficiency of FHE is still not sufficiently practical, and improvement on its
efficiency is one of the most intensely studied topics in cryptography. To take the advantages of both types
of HE, another type of HE called Somewhat Homomorphic Encryption (SHE) is also studied. SHE allows
one to compute unlimited number of addition and a limited number of multiplication. Among SHE schemes,
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Two-Level Homomorphic Encryption (2LHE) schemes [3, 5, 14], which enables a single multiplication (as
well as unlimited number of addition) over ciphertexts, have significantly better efficiency than the other
SHE schemes. In those schemes, the ciphertexts are classified into “level-1” and “level-2” ciphertexts, and
ciphertext addition is allowed within the same level, while ciphertext multiplication with two level-1 cipher-
texts results in a level-2 ciphertext. The state-of-the-art 2LHE scheme at the present is the scheme proposed
by Attrapadung et al. in 2018 [3], which is based on prime-order pairing group and practical computational
assumption (SXDH assumption) and has simpler structure than the previous schemes.

As mentioned above, HE is a highly useful primitive and is expected to be applied to various fields.
However, it has a drawback that its security is weaker than non-homomorphic encryption schemes. Let us
explain this in details. The most common security notions for public key encryption are IND-CPA, IND-
CCA1, and IND-CCA2 security. Among them, IND-CCA2 security is the strongest, and IND-CPA security
is the weakest. Today, IND-CCA2 security is thought to be the preferable security for public key encryption.
However, it is well-known that a homomorphic encryption scheme cannot satisfy IND-CCA2 security in
principle. Roughly speaking, this is due to the fact that enabling computation over ciphertexts is equivalent
to allowing alteration of ciphertexts, the latter being contradictory to IND-CCA2 security.

To overcome this issue, Emura et al. pointed out that the property that anyone could perform homomor-
phic operation was the main obstacle for achieving IND-CCA2 security, and proposed Keyed-Homomorphic
Public Key Encryption (KH-PKE) in 2013 [12, 13]1. In KH-PKE, the functionality to perform homomor-
phic operations is administrated by an evaluation key ek. They also proposed a new security notion called
KH-CCA security for KH-PKE schemes. KH-CCA security achieves IND-CCA1 security against adversaries
possessing ek from the beginning, and IND-CCA2 security against adversaries not possessing ek at all. More-
over, as an intermediate situation, it also deals with the leakage of the ek during the security game. Based
on the security notion, they proposed a concrete construction of KH-PKE schemes using a cryptographic
primitive called Hash Proof System (HPS). Here, their KH-PKE scheme is practically efficient, but on the
other hand, it realizes the functionality of AHE only. There are no existing studies in the literature to realize
stronger types of HE functionality while keeping the practical efficiency (see Section 1.3 below for details).

1.2 Our Contributions

In this paper, we introduce new type of KH-PKE named Keyed Two-Level Homomorphic Encryption (Keyed-
2LHE ), which can handle unlimited number of addition and a single multiplication over ciphertexts admin-
istrated by an evaluation key. We also give a concrete construction of Keyed-2LHE schemes. Although our
Keyed-2LHE scheme has some overhead compared to the KH-PKE scheme by Emura et al. [12, 13] and to
the 2LHE scheme by Attrapadung et al. [3], the underlying setting (prime-order pairing groups and SXDH
assumption) is the same as [3] and the overhead is within a feasible range (e.g., our public key and ciphertext
sizes are only up to four times larger than those of [3]). This is the first KH-PKE that allows both addition
and multiplication with practical efficiency.

The very first idea for constructing our Keyed-2LHE scheme is simple; it is a kind of abstraction of
Attrapadung et al.’s 2LHE scheme that can then be interpreted in the context of Emura et al.’s generic
framework for realizing KH-PKE. We emphasize, however, that it was never a straightforward task to
successfully combine Emura et al.’s and Attrapadung et al.’s schemes. In detail, the generic construction
by Emura et al. uses three kinds of HPSs P , P̂ , and P̃ . Here P is for masking the plaintext, and P̃ is
for achieving IND-CCA2 security when the evaluation key is not used. The role of P̂ is most complicated;
it should simultaneously take care of having (additive) homomorphic property and achieving IND-CCA1
security when the evaluation key is available. In our proposed scheme, there are two levels of ciphertexts,
and hence 3×2 = 6 HPSs are used in total. Among them, the constructions of five HPSs except P̂ for level-2
ciphertexts are relatively simple; these are, in some sense, direct products of HPSs where the underlying
HPSs follow known constructions already used by Emura et al. [12]. On the other hand, for the P̂ in
level-2 part, it is not sufficient to take care of additive homomorphic property and IND-CCA1 security; it

1The notion of KH-PKE was proposed in 2013 [13]. A construction for concrete KH-PKE schemes was also given in that
paper, but its security proof was not correct and their scheme was actually not secure. The issue was then fixed in 2018 [12] by
modifying the construction as well as the security proof.
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should also be related in an appropriate manner to the HPSs in level-1 part in order to realize multiplicative
homomorphic property. For simultaneously achieving these three requirements, the known construction of
HPSs used in [12] was not enough, and we had to develop a new tailor-made HPS to fill in the last piece of
our construction. We also note that our resulting scheme fortunately shares a key property (called source
ciphertext hiding property) with Emura et al.’s construction, which makes the security proof of our proposed
scheme just analogous to the proof in [12].

It is also worth noting that in our scheme, it is possible to permit only a certain type of homomorphic
operation by distributing ek partially. This is a new feature of our scheme that the previous schemes did
not have. More precisely, in our scheme, only a part of ek is sufficient to perform level-1 homomorphic
addition, while the remaining part of ek (as well as the former part) is used by the other operations, i.e.,
level-2 homomorphic addition and homomorphic multiplication. It is expected that the administration of
homomorphic operations can be made hierarchical by such a way, though we do not study the corresponding
security formulation nor security proof in this paper (for the sake of simplicity) and leave them as future
research topics.

1.3 Related Work

1.3.1 Researches Related to KH-PKE

After the introduction of KH-PKE by Emura et al. [12, 13], several schemes based on different security
assumptions were proposed. Libert et al. [17] proposed a KH-PKE scheme based on DLIN/SXDH assump-
tions, and Jutla et al. [15] proposed a scheme based on SXDH assumption. Each of their schemes has an
additional property such as threshold decryption or public verifiability, but their efficiency is worse com-
pared to [12, 13]. Also, in comparison to our scheme, their schemes only allow a single type of homomorphic
operation. On the other hand, Lai et al. [16] proposed a Keyed-FHE scheme, that is, a KH-PKE scheme
that can carry out any operation over ciphertexts. However, their construction has a drawback that it uses
a cryptographic primitive called indistinguishability obfuscation (iO). Since a practical construction of iO
is still not established, their scheme is more of a theoretical result rather than a practical one. Also, unlike
our scheme, their scheme does not allow partial permission of homomorphic operations.

There are also several researches on achieving security close to IND-CCA2 while allowing computation
over ciphertexts [2, 7, 18]. However, they differ from KH-PKE in that they are not equipped with an
evaluation key and they only achieve security strictly weaker than IND-CCA2 (in contrast to our scheme
achieving IND-CCA2 security against adversaries not possessing the evaluation key).

1.3.2 Researches Related to SHE

Our Keyed-2LHE scheme is constructed based on a 2LHE scheme of Attrapadung et al. [3] which uses
pairings. There are other pairing-based 2LHE schemes such as ones by Boneh et al. [5] and Freeman [14].
Also, Catalano and Fiore proposed a method for converting an AHE scheme to a 2LHE scheme [8]. However,
all these schemes have lower efficiency compared to the scheme in [3]. In more details, the scheme in [5] uses
expensive composite-order pairing groups instead of prime-order ones as in [3], and the scheme in [8] has a
drawback that homomorphic addition over level-2 ciphertexts increases the ciphertext size. The scheme in
[14] uses prime-order pairing groups and is fairly efficient, but the scheme in [3] is even more efficient than
that in [14]. We also note that (lattice-based) SHE/FHE schemes (e.g., [6]) are superior to 2LHE schemes
in terms of functionality, but their efficiency is significantly worse than the scheme in [3].

1.4 Organization of the Paper

In Section 2, we will review some basic notions on mathematics and cryptography required. In Section 3,
we will describe Hash Proof System (HPS), a main tool for constructing our scheme. Then we will explain
definitions and construction of KH-PKE proposed by Emura et al. [12, 13] in Section 4. We will give a
concrete description of our proposed scheme in Section 5; its detailed security proof is not included in the
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main text and is described in Appendix as it is basically analogous to the original security proof in [12].
Finally, we will evaluate the performance of our scheme in Section 6.

2 Preliminaries

In this section, we review basic notions on mathematics and cryptography. Throughout the paper, we refer
to a probabilistic polynomial-time algorithm as a PPT algorithm. For a probabilistic algorithm A, we write
a← A to represent that a is obtained as an output of A. Similarly, for a set A, we write a← A to represent
that a is obtained by uniformly and randomly choosing an element of A.

Definition 1 (negligible function). A function f : N→ R is said to be negligible, when for any polynomial
poly(n), there exists N > 0 such that for any n > N , we have f(n) < 1/poly(n).

Definition 2 (statistical indistinguishability). Let {Xn}n∈N and {Yn}n∈N be families of random variables
defined on a finite set Ω. {Xn}n∈N and {Yn}n∈N are said to be ε-close, when the statistical distance

∆(Xn, Yn) =
1

2

∑
ω∈Ω

|Pr[Xn = ω]− Pr[Yn = ω]|

is less than or equal to ε. Furthermore, when ε = ε(n) is negligible in n, we say {Xn}n∈N and {Yn}n∈N are

statistically indistinguishable, denoted by {Xn}n∈N
s
≈ {Yn}n∈N.

Definition 3 (computational indistinguishability). Let {Xn}n∈N and {Yn}n∈N be families of random vari-

ables. {Xn}n∈N and {Yn}n∈N are said to be computationally indistinguishable, denoted by {Xn}n∈N
c
≈

{Yn}n∈N, when for any PPT algorithm A, we have

|Pr[A(Xn) = 1]− Pr[A(Yn) = 1]| = negl(n)

where negl(n) denotes a negligible function in n.

Definition 4 (approximate samplability). For a finite set Bn and its subset B′n indexed by n ∈ N, we say
B′n is approximately samplable relative to Bn when there exists a sequence of random variables on Bn that
is statistically indistinguishable from the uniform distribution on B′n and polynomial-time samplable.

We also recall basic properties of hash functions.

Definition 5 (collision resistant hash function). Let {fi}i∈I be a family of hash functions indexed by i ∈ I,
which is specified by the security parameter 1`. {fi}i∈I is said to be collision resistant (CR), when for any
PPT algorithm A, the probability

Pr[x 6= x∗ ∧ fi(x) = fi(x
∗) | i← I; (x, x∗)← A(1`, i)]

is negligible in `.

The following well-known lemma is used in the security proof of our proposed scheme.

Lemma 1 (difference lemma). Assuming that three events A,B,C satisfy Pr[A ∧ ¬C] = Pr[B ∧ ¬C], we
have |Pr[A]− Pr[B]| ≤ Pr[C].

2.1 Pairings

Definition 6 (bilinear group generation algorithm). A bilinear group generation algorithm GenBG takes a
security parameter 1` as an input, and outputs (p,G1,G2,GT , g1, g2, e). Here, G1,G2, and GT are cyclic
groups of prime order p = Θ(2`), while g1, g2 are generators of G1,G2, respectively, and e : G1 × G2 → GT
is a non-degenerate bilinear map called pairing.
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Pairings are classified into three types depending on the relationship between G1 an G2.

• Type-1: the case when G1 = G2.

• Type-2: the case when G1 6= G2 and there exists an efficiently computable homomorphism G1 → G2.

• Type-3: the case when G1 6= G2 and there exists no efficiently computable homomorphism G1 → G2.

In this paper, we only deal with Type-3 pairings.

Definition 7 (SXDH assumption). We say that Symmetric External Diffie–Hellman (SXDH) assumption
holds in GenBG, when for pp = (p,G1,G2,GT , g1, g2, e)← GenBG(1`) and i = 1, 2, two distributions

{(pp, gαi , g
β
i , g

αβ
i ) | α, β ← Zp}, {(pp, gαi , g

β
i , g

γ
i ) | α, β, γ ← Zp}

are computationally indistinguishable.

Roughly speaking, SXDH assumption states that DDH assumption holds in both G1 and G2.

2.2 Notation

From now on, all operations on cyclic groups will be written additively, unless otherwise noted. Also for
simplicity, we will use a symbol for tensor product to represent pairings: i.e., for x ∈ G1 and y ∈ G2, we
write x⊗ y to represent e(x, y). We will extend this notation to matrices in the following manner. We define
the tensor product between x ∈ G1 and a matrix Y = (yij) ∈ Gk×`2 as

x⊗ Y :=

x⊗ y11 . . . x⊗ y1`

...
. . .

...
x⊗ yk1 . . . x⊗ yk`

 ∈ Gk×`T

and for a matrix X = (xij) ∈ Gm×n1 , we define the tensor product between X and Y as

X ⊗ Y :=

x11 ⊗ Y . . . x1n ⊗ Y
...

. . .
...

xm1 ⊗ Y . . . xmn ⊗ Y

 ∈ Gmk×n`T .

Note that this definition satisfies (X ⊗ Y )> = X> ⊗ Y >, where > represents the trasposition of a matrix.
Furthermore, we define the tensor product between two elements a, b ∈ Zp as a ⊗ b := ab, and extend

it to matrices over Zp in a similar manner as above. Also, multiplication of a matrix over Zp to a matrix
with components in G1, G2, or GT is defined in the same way as the usual matrix multiplication where the
scalar multiplication to group elements plays the role of multiplication between matrix components. Note
that these definitions satisfy (AX)⊗ (BY ) = (A⊗B)(X⊗Y ) (assuming that the matrix sizes are consistent
to multiplication), where A and B are matrices over Zp, X is a matrix over G1, and Y is a matrix over G2.

When we apply this notation, SXDH assumption can be rewritten in the following way.

Proposition 1. SXDH assumption is equivalent to the following statement: for pp = (p,G1,G2,GT , g1, g2, e)←
GenBG(1`), g′1 ← G1, g′2 ← G2, g1 = (g1, g

′
1) ∈ G2

1, and g2 = (g2, g
′
2) ∈ G2

2, two distributions

{(pp, gi,x) | x← 〈gi〉}, {(pp, gi,x) | x← G2
i }

are computationally indistiguishable for both i = 1, 2.

Proof. Two distributions in the statement can be rewritten as

{(pp, gi,x) | x← 〈gi〉} = {(pp, (gi, αgi), (βgi, αβgi)) | α, β ← Zp} ,

{(pp, gi,x) | x← G2
i } = {(pp, (gi, αgi), (βgi, γgi)) | α, β, γ ← Zp} ,

which are obviously equivalent to the distributions in Definition 7. Hence the proposition holds.
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3 Hash Proof System (HPS)

Hash Proof System (HPS), or Smooth Projective Hash Function (SPHF), is a cryptographic primitive,
originally introduced by Cramer and Shoup [10, 11] for constructing IND-CCA2 secure cryptosystem. Since
then, it has been extensively studied and wide applications are known such as password-authenticated
key exchange (PAKE) [1, 4], key-dependent message (KDM)-secure encryption [20], and oblivious transfer
(OT) [9]. Keyed-2LHE proposed in this paper is also constructed using HPS. In this section, we introduce
definitions, properties, and constructions of HPS.

3.1 Definitions for HPS

Definition 8 (hash proof system). Let X,Π be finite sets and L ⊂ X be a non-empty subset. We assume
that any element x ∈ L has a witness w to ensure that x belongs to L, and that a random element of L can
be efficiently sampled together with its witness. Then Hash Proof System (HPS) P = (X,L,Π) is defined by
specifying the following five algorithms.

• SetUp(1`) takes security parameter 1` as an input and outputs public parameter pp, which includes
descriptions of sets X and L.

• HashKG(pp) takes pp as an input and outputs a secret key hk.

• ProjKG(hk) takes hk as an input and outputs the corresponding public key hp.

• Hash(hk, x) takes hk and x ∈ X as inputs and outputs the corresponding hash value π ∈ Π.

• ProjHash(hp, x, w) takes hp, x ∈ L, and its witness w as inputs and outputs the corresponding hash
value π ∈ Π.

We define W , K, S to be the sets consisting of all the possible values of witness w, secret keys hk, and public
keys hp, respectively.

We may omit input hk in the algorithm Hash or inputs hp, w in ProjHash when they are obvious from the
context. Also, when we give concrete constructions of the above algorithms, we may omit the description on
SetUp if it is obvious.

HPS is required to satisfy the correctness as follows.

Definition 9 (correctness of HPS). We say that HPS is correct, when for pp← SetUp(1`), hk← HashKG(pp),
hp← ProjKG(hk), and for any x ∈ L and its witness w, we have Hash(hk, x) = ProjHash(hp, x, w).

Definition 10 (homomorphic HPS). We say that HPS is homomorphic, when X,Π are abelian groups and
Hash(hk, x) + Hash(hk, x′) = Hash(hk, x+ x′) holds for any hk ∈ K and x, x′ ∈ X.

3.2 Properties of HPS

Here, we introduce several properties of HPS, required to construct our Keyed-2LHE.

3.2.1 Smoothness

Definition 11 (smoothness). HPS is said to be ε-smooth relative to X ′ ⊂ X, when for pp ← SetUp(1`),
hk← HashKG(pp), and hp← ProjKG(hk), the following two distributions

{(hp, x,Hash(x)) | x← X ′ \ L}, {(hp, x, π) | x← X ′ \ L, π ← Π}

are ε-close. In particular, when ε is negligible in `, we simply say that the HPS is smooth.

The smoothness of HPS intuitively means that a hash value of an element in X ′ \ L is indistinguishable
from a uniformly random value, even if the public key is given.
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3.2.2 Universality

Definition 12 (universal1). HPS is said to be ε-universal1, when for any hp ∈ S, x ∈ X \ L, and π ∈ Π,

Pr
hk←K

[Hash(hk, x) = π ∧ ProjKG(hk) = hp] ≤ ε · Pr
hk←K

[ProjKG(hk) = hp]

holds. In particular, when ε is negligible in `, we simply say that the HPS is universal1.

The universal1 property intuitively means that the probability for correctly guessing a hash value corre-
sponding to an element in X \ L is negligible, even if the public key is given.

Definition 13 (universal2). HPS is said to be ε-universal2, when for any hp ∈ S, x, x∗ ∈ X \ L (x 6= x∗),
and π, π∗ ∈ Π,

Pr
hk←K

[Hash(hk, x) = π ∧ Hash(hk, x∗) = π∗ ∧ ProjKG(hk) = hp]

≤ ε · Pr
hk←K

[Hash(hk, x∗) = π∗ ∧ ProjKG(hk) = hp]

holds. In particular, when ε is negligible in `, we simply say that the HPS is universal2.

The universal2 property intuitively means that the probability for correctly guessing a hash value corre-
sponding to an element in X \ L is negligible even if the public key and an extra “hint” (a pair of another
element of X \ L and the corresponding hash value) were given.

Next, we introduce a computational variant of the universal2 property proposed in [12].

Definition 14 (first-adaptive computationally universal2). Let P be a HPS. We define the following game
between a challenger and an adversary A:

1. The challenger randomly picks pp ← SetUp(1`) and hk ← K, computes hp ← ProjKG(hk), and sends
pp, hp to A.

2. A queries to Hash oracle. Hash oracle takes x ∈ X as an input and returns Hash(hk, x) if x ∈ L, and
returns ⊥ otherwise.

3. At an arbitrary point of the game, A submits x∗ ∈ X to the challenger. The challenger responds by
sending π∗ = Hash(hk, x∗) back to A. A is allowed to continue Hash queries even after the submission.

4. A outputs x ∈ X \ L and π ∈ Π .

A wins the game if the output of the game satisfies x 6= x∗ and Hash(hk, x) = π. We say that P is first-
adaptive computationally universal2, if the probability for winning the game is negligible in ` for any PPT
algorithm A.

There is a weaker variant of computational universal2 property called first-uniform computationally
universal2 property [12]. To emphasize the difference from a computational definition, we may refer to the
original universal2 property as information-thoretically universal2.

3.2.3 Subset Membership Problem

Definition 15 (hardness of a subset membership problem). We say that subset membership problem of the
HPS is hard relative to X ′ ⊂ X, when for pp← SetUp(1`), two distributions

{(pp, x) | x← L}, {(pp, x) | x← X ′ \ L}

are computationally indistinguishable.

The hardness of a subset membership problem intuitively means that an element of L and an element of
X ′ \L cannot be distinguished in polynomial time. We note that there are cases where distinction is possible
given an additional information. This situation is formalized in the definition below.
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Definition 16 (trapdoor subset membership problem). When HPS has the following two PPT algorithms
in addition to the five algorithms in Definition 8, we say that the subset membership problem associated to
the HPS has a trapdoor:

• TrapdoorSetUp(1`) takes security parameter 1` as an input, and outputs public parameter pp together
with a trapdoor τ .

• Distinguish(x, τ) takes x ∈ X and a trapdoor τ as inputs and decides whether x ∈ L or not.

3.2.4 Relationships between the Properties of HPS

The smoothness and the universal1 peoperty satisfy the following relationship.

Proposition 2. If an HPS is ε-universal1, then it is ((ε|Π| − 1)(|Π| − 1)/2)-smooth. Moreover, if the HPS
is 0-smooth, then it is (1/|Π|)-universal1.

Proof. The statement follows immediately from Lemmas 1 and 2 of [12].

Also, there are the following relationships between different versions of universality.

Proposition 3. 1. If an HPS is universal2, then it is universal1.

2. If an HPS is universal2, then it is first-adaptive computationally universal2.

3. If an HPS is first-adaptive computationally universal2 and X ′ \ L is approximately samplable relative
to X, then it is also first-uniform computationally universal2 relative to X ′.

Proof. The Part 1 follows immediately from the definitions of universal1 and universal2 properties. The
Parts 2 and 3 follow from Lemmas 4 and 5 in [12].

3.3 Construction of HPS based on Diverse Vector Space

As a generic construction of HPS, a construction based on a diverse group system is proposed in [11].
However, since we only deal with the construction based on cyclic groups, it is more convenient to think
about the special case of diverse group system called diverse vector space [1, 4]. All the HPSs used for our
proposed scheme are based on this framework.

The definition of a diverse vector space is given below. Note that this definition is slightly modified from
the definition in [1] in order to make our argument simpler.

Definition 17 (diverse vector space). Let G be a cyclic group of prime order p, X = Gn, and L =
〈g1, . . . , gd〉 ⊂ X. In this situation, any homomorphism φ from X to Π = G can be represented as φ(x) =
k>x for some k ∈ Znp . Therefore, Hom(X,Π) can be identified with K = Znp . We call the tuple (K,X,L,Π)
a diverse vector space.

We will mostly handle the case with d = 1, i.e., X = Gn and L = 〈g〉. In the remaining part of this
section, we assume that d = 1 unless otherwise noted.

Given a diverse vector space (K,X,L,Π), we can construct an HPS by defining the algorithms as follows.
Note that the witness for x ∈ L can be set as w ∈ Zp that satisfies x = wg.

• HashKG(pp) takes the public parameter pp as an input and outputs hk = k← K.

• ProjKG(hk) takes the secret key hk = k as an input and outputs a public key hp = s := k>g.

• Hash(hk,x) takes hk = k and x ∈ X as inputs and outputs a hash value π = k>x.

• ProjHash(hp,x, w) takes a public key hp = s and x ∈ L as inputs together with its witness w, and
outputs a hash value π = ws.
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The correctness of the above construction can be shown by checking

Hash(x) = k>x = k>(wg) = w(k>g) = ws = ProjHash(x, w) .

Moreover, the above HPS satisfies the following properties.

Proposition 4. The above HPS is 0-smooth and (1/p)-universal1. Also, the subset membership problem
associated to the HPS has a trapdoor.

Proof. The smoothness and the universal1 property follow from Example 1 in Section 7.4.1 of [11].
We can check that the subset membership problem has a trapdoor, by giving two algorithms in Definition

16 as follows:

• TrapdoorSetUp(1`) generates a generator g of L by calculating

g = (g, τ1 · g, τ2 · g, . . . , τn−1 · g) where g ← G \ {0}, τ1, . . . , τn−1 ← Zp

and outputs τ := (τ1, . . . , τn−1) as a trapdoor.

• Distinguish(x, τ) takes x = (x0, . . . , xn−1) ∈ X and τ = (τ1, . . . , τn−1) as inputs, and check if xi = τi ·x0

holds for i = 1, . . . , n−1. If all the conditions are satisfied, the algorithm decides x ∈ L, and otherwise
decides x /∈ L.

Hence the claim holds.

Also, we can construct universal2 HPS by combining the above construction with a hash function. Let
E be a finite set, and modify the definitions of X and L by X = Gn × E, L = 〈g〉 × E. In addition, let
Γ: X → Zmp be a hash function.

• HashKG(pp) outputs hk = (k0, . . . ,km)← (Znp )m+1.

• ProjKG(hk) takes hk as an input and outputs hp = (s0, . . . , sm) := (k>0 g, . . . ,k>mg).

• Hash(hk,x) takes hk and (x, e) ∈ X as inputs, calculates Γ(x, e) = (γ1, . . . , γm), then outputs

π = k>0 x +

m∑
i=1

γik
>
i x

as a hash value.

• ProjHash(hp,x, w) takes hp, (x, e) ∈ L, and the corresponding witness w as inputs, calculates Γ(x, e) =
(γ1, . . . , γm), and outputs

π = ws0 +

m∑
i=1

γiwsi

as a hash value.

Proposition 5. The above construction of HPS satisfies the following:

1. If Γ is injective, then the HPS is information-theoretically universal2.

2. If Γ is sampled from a family of collision resistant hash functions, then the HPS is first-adaptive
computationally universal2.

Proof. The statement follows immediately from Proposition 1 of [12].

Also, we note that when Γ is sampled from a family of target collision resistant hash functions, the above
HPS satisfies first-uniform computationally universal2 property (see [12] for the detail).
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3.4 Direct Product of HPS

In this section, we define direct product of HPS, and describe some properties. We note that a notion of
direct product of HPS is also defined in [1], but their definition slightly differs from ours.

Suppose that two HPSs P1 = (X1, L1,Π1), P2 = (X2, L2,Π2) are given. We denote algorithms and sets
related to each HPS by putting the corresponding subscript. In this situation, we can construct a new HPS
P = (X1 ×X2, L1 × L2,Π1 ×Π2) by defining the algorithms in the following manner.

• HashKG(pp) calculates hki ← HashKGi(pp) (i = 1, 2), and outputs hk = (hk1, hk2).

• ProjKG(hk) takes hk = (hk1, hk2) as an input, calculates hpi ← ProjKGi(hki) (i = 1, 2), and outputs
hp = (hp1, hp2).

• Hash(hk, x) takes hk = (hk1, hk2) and x = (x1, x2) ∈ X1 ×X2 as inputs, calculates πi ← Hashi(hki, xi)
(i = 1, 2), and outputs π = (π1, π2).

• ProjHash(hp, x, w) takes hp = (hp1, hp2), x = (x1, x2) ∈ L1 × L2 and the pair of the corresponding
witnesses w = (w1, w2) as inputs, calculates πi ← ProjHashi(hpi, xi, wi) (i = 1, 2), and outputs π =
(π1, π2).

Proposition 6. The HPS P constructed as above satisfies the following:

1. If P1 is ε1-smooth and P2 is ε2-smooth, then P is (ε1+ε2)-smooth relative to X ′ = (X1\L1)×(X2\L2).

2. If P1 is ε1-universal1 and P2 is ε2-universal1, then P is (max{ε1, ε2})-universal1.

3. If P1 is ε1-universal2 and P2 is ε2-universal2, then P is (max{ε1, ε2})-universal2.

Proof. For Part 1, first, it can be shown that for pp← SetUp(1`), hk← HashKG(pp), and hp← ProjKG(hk),

{(hp, x,Hash(x)) | x← X ′ \ L}
= {((hp1, hp2), (x1, x2), (Hash1(x1),Hash2(x2))) | xi ← Xi \ Li}
s
≈ {((hp1, hp2), (x1, x2), (π1,Hash2(x2))) | xi ← Xi \ Li, π1 ← Π1}
s
≈ {((hp1, hp2), (x1, x2), (π1, π2)) | xi ← Xi \ Li, πi ← Πi}
= {(hp, x, π) | x← X ′ \ L, π ← Π}

holds, by using smoothness of P1 between the second and the third lines and the smoothness of P2 between
the third and the fourth lines, respectively. Since the statistical distance between the second and the third
lines is at most ε1 and the statistical distance between the third and the fourth lines is at most ε2, the
statement holds.

For Part 2, let hp = (hp1, hp2) ∈ S, x = (x1, x2) ∈ X \ L, and π = (π1, π2) ∈ Π. Since (x1, x2) ∈ X \ L,
at least one of x1 ∈ X1 \ L1 and x2 ∈ X2 \ L2 holds. When the former condition is satisfied,

Pr
hk1←K1

[Hash1(hk1, x1) = π1 ∧ ProjKG1(hk1) = hp1] ≤ ε1 · Pr
hk1←K1

[ProjKG1(hk1) = hp1]

holds from the universal1 property of P1. Therefore, we obtain

Pr
hk←K

[Hash(hk, x) = π ∧ ProjKG(hk) = hp]

= Pr
hk1←K1

[Hash1(hk1, x1) = π1 ∧ ProjKG1(hk1) = hp1]

· Pr
hk2←K2

[Hash2(hk2, x2) = π2 ∧ ProjKG2(hk2) = hp2]

≤ ε1 · Pr
hk1←K1

[ProjKG1(hk1) = hp1] · Pr
hk2←K2

[ProjKG2(hk2) = hp2]

= ε1 · Pr
hk←K

[ProjKG(hk) = hp] ,
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and the ε1-universal1 property of P follows. Similarly, when the latter condition holds, we can show ε2-
universal1 property of P from the universal1 property of P2. Combining the discussions above, the statement
follows. Part 3 can be shown in the same manner as Part 2.

Proposition 7. If both P1 and P2 are first-adaptive computationally universal2 and the subset membership
problem for each of P1 and P2 has a trapdoor, then P is first-adaptive computationally universal2 and its
subset membership problem also has a trapdoor.

Proof. The statement for the existence of a trapdoor for P holds obviously. Let A be an adversary in
the first-adaptive computationally universal2 game for P (denoted here by G). Then for each i = 1, 2, we
construct an adversary Bi in the first-adaptive computationally universal2 game for Pi (denoted here by Gi)
as follows:

1. Bi receives ppi and hpi for Pi from the challenger in the game Gi, while Bi generates pp3−i, hk3−i, and
a trapdoor τ3−i for P3−i. Then Bi sends pp = (pp1, pp2) and hp = (hp1, hp2) to A.

2. Bi simulates the game G for A. During the game, when A makes a Hash query with input x = (x1, x2) ∈
X, Bi makes Hash query in the game Gi with input xi and obtains the response ρi. On the other hand,
Bi decides, by using the trapdoor τ3−i, whether x3−i ∈ L3−i or not. If x3−i ∈ L3−i, then Bi computes
ρ3−i ← Hash3−i(hk3−i, x3−i); while if x3−i 6∈ L3−i, then Bi sets ρ3−i = ⊥. Finally, Bi sends (ρ1, ρ2)
back to A if ρ1 6= ⊥ and ρ2 6= ⊥, while otherwise Bi sends ⊥ back to A.

3. When A submits x∗ = (x∗1, x
∗
2) to Bi, Bi submits x∗i to the challenger in Gi and obtains the response

π∗i , while Bi computes π∗3−i ← Hash3−i(hk3−i, x
∗
3−i). Then Bi sends π∗ = (π∗1 , π

∗
2) back to A.

4. When Bi receives x = (x1, x2) and π = (π1, π2) as outputs of A, Bi outputs (xi, πi) as an output of
the game Gi.

The distribution of A’s output (x, π) above is identical to the real game G by the property of the trapdoor
τ3−i for P3−i.

Let C be the event that A wins the game G, and for i = 1, 2, let Ci be the event that Bi wins the game
Gi. Now when the event C occurs, we have x 6= x∗, therefore we have x1 6= x∗1 or x2 6= x∗2. Hence Pr[C] ≤
Pr[C ∧ x1 6= x∗1] + Pr[C ∧ x2 6= x∗2]. Moreover, by the definition of Bi, if C occurs and xi 6= x∗i , then Bi wins
the game Gi. Therefore we have Pr[C ∧ xi 6= x∗i ] ≤ Pr[Ci]. Summarizing, we have Pr[C] ≤ Pr[C1] + Pr[C2].
If A is PPT, then both B1 and B2 are also PPT. Hence Pr[C1] and Pr[C2] are negligible by the assumption,
therefore Pr[C] is also negligible, as desired. Hence the statement holds.

4 Keyed-Homomorphic Public Key Encryption (KH-PKE)

4.1 Definition of KH-PKE

Definition 18 (syntax of KH-PKE). Let M be a message space. KH-PKE is defined by five algorithms
below.

• ParamGen(1`) takes security paramater 1` as an input and outputs public parameter pp.

• KeyGen(pp) takes pp as an input and outputs three keys (pk, sk, ek).

• Enc(pk,m) takes public key pk and a message m ∈M as inputs and outputs ciphertext C.

• Dec(sk, C) takes secret key sk and a ciphertext C as inputs and outputs plaintext m ∈ M or ⊥, which
represents a failure of decryption.

• Eval(ek, f, C,C ′) takes evaluation key ek, operation f : M2 →M and two ciphertexts C,C ′ as inputs
and outputs a ciphertext C ′′ or ⊥, which represents a failure of evaluation.
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KH-PKE is required to fulfill correctness.

Definition 19 (correctness of KH-PKE). Let pp ← ParamGen(1`) and (pk, sk, ek) ← KeyGen(pp). We say
that KH-PKE is correct, when it satisfies the following:

• (Correctness of Dec) For any m ∈M and C ← Enc(pk,m), Dec(sk, C) = m holds.

• (Correctness of Eval) For any m,m′ ∈ M, operation f , C ← Enc(pk,m), C ′ ← Enc(pk,m′), and
C ′′ ← Eval(ek, f, C,C ′), Dec(sk, C ′′) = f(m,m′) holds.

The notion of KH-CCA security is defined as follows.

Definition 20 (KH-CCA security). We say that KH-PKE scheme is KH-CCA secure, when for any PPT
adversary A, its advantage∣∣∣∣∣Pr[pp← ParamGen(1`); (pk, sk, ek)← KeyGen(pp); (m∗0,m

∗
1, st)← AO(find, pk);

b← {0, 1};C∗ ← Enc(pk,m∗b); b
′ ← AO(guess, st, C∗) : b = b′]− 1

2

∣∣∣∣∣
is negligible in `. Here O denotes oracles that the adversary can use, which consists of three oracles RevEK,
Dec, Eval. The details of these oracles are given below. Also, we suppose that a list List of ciphertexts is used
throughout the KH-CCA game, which is set to ∅ in the find stage and set to List = (C∗) at the beginning of
the guess stage.

• RevEK returns evaluation key ek.

• Dec takes a ciphertext C as input and returns ⊥ if C ∈ List, and Dec(sk, C) if C /∈ List.

• Eval takes two ciphertexts C,C ′ and an operation f as inputs and returns C ′′ = Eval(ek, f, C,C ′). If
C ′′ 6= ⊥ and either C or C ′ is in List, Eval appends C ′′ to List.

We also have the following constraints about oracle queries: RevEK can be queried only once; Eval cannot
be queried after RevEK has been queried; and Dec cannot be queried if RevEK is already queried and A has
already received C∗ from the challenger.

Let us give some supplement about the List in the definition above. In the KH-CCA game, if the adversary
queries the challenge ciphertext C∗ to Eval oracle and queries its result to Dec oracle, it is obvious that the
adversary can always win the game (this is essentially the same reason as the fact that HE cannot achieve
IND-CCA2 security). To avoid this trivial attack, ciphertexts evaluated from C∗ is recorded in the List, and
ciphertext in the List are forbidden to be queried to the Dec oracle.

We note that KH-CCA security satisfies IND-CCA1 security against an adversary who has ek at the
beginning of the game, and IND-CCA2 security against an adversary who never obtains ek.

4.2 Generic Construcion of KH-PKE

Emura et al. [12] gave a generic construction of KH-PKE equipped with KH-CCA security, using HPS as a
building block. We review their construction briefly in this section.

To construct KH-PKE, three HPSs P , P̂ , P̃ are required. They are supposed to satisfy the following
properties:

• P = (X,L,Π) is homomorphic and smooth, and its subset membership problem is hard.

• P̂ = (X,L, Π̂) is homomorphic and universal1.

• P̃ = (X ×Π× Π̂, L×Π× Π̂, Π̃) is universal2.
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KeyGen(1`): Dec(sk, C) : C = (x, e, π̂, π̃)

hk← HashKG(pp), hp← ProjKG(hk) If π̂ 6= Ĥash(x) or π̃ 6= H̃ash(x, e, π̂), output ⊥
ĥk← ĤashKG(pp), ĥp← P̂rojKG(ĥk) Output m← e− Hash(hk, x)

h̃k← H̃ashKG(pp), h̃p← P̃rojKG(h̃k)

Output pk = (hp, ĥp, h̃p), sk = (hk, ĥk, h̃k), ek = h̃k Eval(ek, C, C ′) : C = (x, e, π̂, π̃), C ′ = (x′, e′, π̂′, π̃′)

If π̃ 6= H̃ash(x, e, π̂), output ⊥
Enc(pk,m): If π̃′ 6= H̃ash(x′, e′, π̂′), output ⊥

Sample x ∈ L together with its witness w Sample x0 ∈ L together with its witness w0

e← m+ ProjHash(x,w) x′′ ← x+ x′ + x0, e′′ ← e+ e′ + ProjHash(x0, w0)

π̂ ← ̂ProjHash(x,w) π̂′′ ← π̂ + π̂′ + ̂ProjHash(x0, w0)

π̃ ← ˜ProjHash((x, e, π̂), w) π̃′′ ← H̃ash(x′′, e′′, π̂′′)
Output C = (x, e, π̂, π̃) Output C ′′ = (x′′, e′′, π̂′′, π̃′′)

Figure 1: Generic construction of KH-PKE based on HPS

For P̂ , P̃ , we indicate their sets and algorithms by putting hat and tilde, respectively.
Using above three HPSs, we can construct KH-PKE with plaintext space M = Π, as in Figure 1. Note

that in Eval, x0 ← L and its hash values are added to calculate x′′, e′′, π̂′′. This corresponds to the operation
of “adding ciphertext of 0” and therefore it does not affect correctness; this is important for the security.
We refer to this operation as rerandomization, from now on.

The correctness of the construction follows immediately from the correctness and the homomorphic
property of HPS.

Theorem 1. KH-PKE constructed above satisfies KH-CCA security.

Proof. It follows immediately from Theorem 1 of [12].

Intuitively, P is used to hide information of the plaintext. The smoothness and the hardness of the subset
membership problem of P guarantee that the hash value used to mask the plaintext is indistinguishable from
a uniformly random value. Also, P̂ guarantees security against an adversary who has ek, and P̃ guarantees
security against an adversary who does not have ek. The universal property of P̂ and P̃ means that the
adversary cannot forge a hash value for a ciphertext calculated in a correct manner.

We required information-theoretic universal2 property for P̃ , but it can be weakened to computational
one in the following manner while retaining KH-CCA security.

• P̃ is first-adaptive computationally universal2 and X ′ \ L is approximately samplable relative to X.

Also, by assuming some more conditions, we can further weaken universal2 property of P̃ to first-uniform
computationally universal2 property. See [12] for the details.

5 Keyed Two-Level Homomorphic Encryption (Keyed-2LHE)

5.1 Syntax of Keyed-2LHE

The syntax of Keyed-2LHE is formalized as follows.

Definition 21 (syntax of Keyed-2LHE). When a KH-PKE scheme satisfies the following conditions, we
call it Keyed-2LHE.

• The message space is M = {(i,m) | i ∈ {1, 2},m ∈M′}, where M′ is a ring. We set Mi = {i} ×M′
for i = 1, 2.
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• An operation f is one of Add(1) : M2
1 → M1, Add(2) : M2

2 → M2, and Mult : M2
1 → M2, which

represent the following operations:

Add(1) : (1,m), (1,m′) 7→ (1,m+m′) ,

Add(2) : (2,m), (2,m′) 7→ (2,m+m′) ,

Mult : (1,m), (1,m′) 7→ (2,mm′) .

In a Keyed-2LHE scheme, we refer to a ciphertext corresponding to a plaintext with i = 1 as level-1
ciphertext. Level-2 ciphertext is defined similarly.

KH-CCA security for a Keyed-2LHE scheme is defined in the following manner.

Definition 22 (KH-CCA secure Keyed-2LHE). We say that a Keyed-2LHE scheme is KH-CCA secure,
when for any PPT adversary A, its advantage given by∣∣∣∣∣Pr[pp← ParamGen(1`); (pk, sk, ek)← KeyGen(pp); (i∗,m∗0,m

∗
1, st)← AO(find, pk);

b← {0, 1};C∗ ← Enc(pk, (i∗,m∗b)); b
′ ← AO(guess, st, C∗) : b = b′]− 1

2

∣∣∣∣∣
is negligible in `. Here O represents the oracles available to the adversary, which is given in the same manner
as the original KH-CCA security.

We note that the adversary specifies the level of the challenge ciphertext in the KH-CCA game for
Keyed-2LHE.

5.2 Overview of Our Construction

When focusing on each level, our scheme mostly follows the generic construction in Section 4.2, i.e., there
are three HPSs (corresponding to P , P̂ , P̃ in Section 4.2) for each level. Therefore, we require six HPSs in
total to construct our scheme.

One of the differences from the construction in [12] is that the message space in our scheme is changed to
M′ = Zp, and the construction of the ciphertext is slightly modified. (This is similar to the modification from
ElGamal cryptosystem to so-called lifted-ElGamal cryptosystem.) To apply this modification, a restriction
on the message space is required. We will discuss the details in Section 6. Another difference is that for
HPSs P and P̂ , key generation algorithms HashKG,ProjKG are common in both levels, and a hash value for
the level-2 HPS can be calculated from those for the level-1 HPS by applying pairings. These properties are
necessary for computing multiplications.

From now on, when we want to specify levels of HPS or the corresponding sets and algorithms, we denote
this by using superscripts “(1)” and “(2)”.

5.3 Construction of Hash Proof System

In this section, we give concrete constructions of HPSs for the proposed scheme.
All the HPSs described here computes (p,G1,G2,GT , g1, g2, e)← GenBG(1`), chooses g′1 ← G1, g′2 ← G2

and sets g1 := (g1, g
′
1) ∈ G2

1, g2 := (g2, g
′
2) ∈ G2

2. Then, as pp, SetUp(1`) outputs these together with
gT := g1 ⊗ g2, h1 := g1 ⊗ g2, h2 := g1 ⊗ g2, and h3 := g1 ⊗ g2. For universal2 HPSs, we assume that the
setup algorithm also outputs hash functions necessary for the construction.

5.3.1 HPS for Level-1 Ciphertexts

Let X = G2
1 × G2

2 and L = 〈g1〉 × 〈g2〉. The witness for x = (x1,x2) ∈ L is w = (w1, w2) ∈ Z2
p that

satisfies (x1,x2) = (w1g1, w2g2). Furthermore, let X ′ = (G2
1 \ 〈g1〉) × (G2

2 \ 〈g2〉), Π = Π̂ = Π̃ = G1 × G2.
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P (1) P̂ (1) P̃ (1)

HashKG(pp): ĤashKG(pp): H̃ashKG(pp):

ki ← Z2
p (i = 1, 2) k̂i ← Z2

p (i = 1, 2) (k̃ij)
n
j=0 ← (Z2

p)
n+1 (i = 1, 2)

Output hk = (k1,k2) Output ĥk = (k̂1, k̂2) Output h̃k = ((k̃1j)
n
j=0, (k̃2j)

n
j=0)

ProjKG(hk): P̂rojKG(ĥk): P̃rojKG(h̃k):

si = k>i gi (i = 1, 2) ŝi = k̂>i gi (i = 1, 2) s̃ij = k̃>ijgi (i = 1, 2, j = 0, . . . , n)

Output hp = (s1, s2) Output ĥp = (ŝ1, ŝ2) Output h̃p = ((s̃1j)
n
j=0, (s̃2j)

n
j=0)

Hash(hk, x): Ĥash(ĥk, x): H̃ash(h̃k, (x, e, π̂)):

πi = k>i xi (i = 1, 2) π̂i = k̂>i xi (i = 1, 2) (γij)
n
j=1 = Γi(xi, ei, π̂i) (i = 1, 2)

Output π = (π1, π2) Output π̂ = (π̂1, π̂2) π̃i = k̃>i0xi +
∑n
j=1 γijk̃

>
ijxi (i = 1, 2)

Output π̃ = (π̃1, π̃2)

ProjHash(hp, x, w): ̂ProjHash(ĥp, x, w): ˜ProjHash(h̃p, (x, e, π̂), w):

πi = wisi (i = 1, 2) π̂i = wiŝi (i = 1, 2) (γij)
n
j=1 = Γi(xi, ei, π̂i) (i = 1, 2)

Output π = (π1, π2) Output π̂ = (π̂1, π̂2) π̃i = wis̃i0 + wi
∑n
j=1 γij s̃ij (i = 1, 2)

Output π̃ = (π̃1, π̃2)

Figure 2: HPSs for level-1 ciphertexts, where Γ1 : G4
1 → Znp and Γ2 : G4

2 → Znp are hash functions

In this situation, we define three HPSs for level-1 ciphertexts P (1) = (X,L,Π), P̂ (1) = (X,L, Π̂), P̃ (1) =

(X ×Π× Π̂, L×Π× Π̂, Π̃) as in Figure 2.
We prove some properties of those HPSs.

Proposition 8. P (1) satisfies the following:

1. P (1) is smooth relative to X ′.

2. Under SXDH assumption, the subset membership problem of P (1) is hard relative to X ′ and has a
trapdoor.

3. X ′ \ L is approximately samplable relative to X.

Proof. Since P (1) can be interpreted as the direct product of two HPSs constructed by applying generic
construction based on a diverse vector space, the smoothness follows from Proposition 6.

Furthermore, the hardness of the subset membership problem and the fact that it has a trapdoor follow
from Propositions 1 and 4, respectively.

The approximate samplability can be deduced from the fact that the uniform distribution on X ′ \ L is
statistically indistinguishable from the uniform distribution on X, as |X ′ \L| = p2(p−1)2 and |X| = p4.

Proposition 9. P̂ (1) is universal1.

Proof. Since P̂ (1) can be interpreted as the direct product of two (1/p)-universal1 HPSs constructed by
applying generic construction based on a diverse vector space, the statement follows from Proposition 6.

Proposition 10. P̃ (1) satisfies the following:

1. If Γ1 and Γ2 are injective, then P̃ (1) is information-theoretically universal2.
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P (2) P̂ (2) P̃ (2)

HashKG(pp): ĤashKG(pp): H̃ashKG(pp):

ki ← Z2
p (i = 1, 2) k̂i ← Z2

p (i = 1, 2) (k̃1j)
n
j=0 ← (Z4

p)
n+1,

Output hk = (k1,k2) Output ĥk = (k̂1, k̂2) (k̃2j)
n
j=0, (k̃3j)

n
j=0 ← (Z2

p)
n+1

Output h̃k = ((k̃1j)
n
j=0, (k̃2j)

n
j=0, (k̃3j)

n
j=0)

ProjKG(hk): P̂rojKG(ĥk):

si = k>i gi (i = 1, 2) ŝi = k̂>i gi (i = 1, 2) P̃rojKG(h̃k):

Output hp = (s1, s2) Output ĥp = (ŝ1, ŝ2) s̃ij = k̃>ijhi (i = 1, 2, 3, j = 0, . . . , n)

Output h̃p = ((s̃1j)
n
j=0, (s̃2j)

n
j=0, (s̃3j)

n
j=0)

Hash(hk, x): Ĥash(ĥk, x):

π1 = (k1 ⊗ k2)>x1 π̂1 = (k̂1 ⊗ k̂2)>x1 H̃ash(h̃k, (x, e, π̂)):

π2 = k>1 x2, π3 = k>2 x3 π̂2 = k̂>1 x2, π̂3 = k̂>2 x3 (γij)
n
j=1 = Γi(xi, e, π̂i) (i = 1, 2, 3)

Output π = −π1 + π2 + π3 Output π̂ = (π̂1, π̂2, π̂3) π̃i = k̃>i0xi +
∑n
j=1 γijk̃

>
ijxi (i = 1, 2, 3)

Output π̃ = (π̃1, π̃2, π̃3)

ProjHash(hp, x, w): ̂ProjHash(ĥp, x, w):

π1 = w1(s1 ⊗ s2) π̂1 = w1(ŝ1 ⊗ ŝ2) ˜ProjHash(h̃p, (x, e, π̂), w):

π2 = w2(s1 ⊗ g2) π̂2 = w2(ŝ1 ⊗ g2) (γij)
n
j=1 = Γi(xi, e, π̂i) (i = 1, 2, 3)

π3 = w3(g1 ⊗ s2) π̂3 = w3(g1 ⊗ ŝ2) π̃i = wis̃i0 + wi
∑n
j=1 γij s̃ij (i = 1, 2, 3)

Output π = −π1 + π2 + π3 Output π̂ = (π̂1, π̂2, π̂3) Output π̃ = (π̃1, π̃2, π̃3)

Figure 3: HPSs for level-2 ciphertexts, where Γ1 : G6
T → Znp , Γ2 : G4

T → Znp , and Γ3 : G4
T → Znp are hash

functions

2. If Γ1 and Γ2 are sampled from a family of collision resistant hash functions, then P̃ (1) is first-adaptive
computationally universal2.

Proof. Since P̃ (1) can be interpreted as the direct product of two HPSs constructed by applying generic
construction based on a diverse vector space, the statement follows from Propositions 6 and 7.

5.3.2 HPS for Level-2 Ciphertexts

Let X = G4
T × G2

T × G2
T and L = 〈h1〉 × 〈h2〉 × 〈h3〉. A witness for x = (x1,x2,x3) ∈ L is w =

(w1, w2, w3) ∈ Z3
p satisfying (x1,x2,x3) = (w1h1, w2h2, w3h3). Moreover, let X ′ = 〈h1〉 × 〈h2〉 ×G2

T ⊂ X,

Π = GT , Π̂ = Π̃ = G3
T . In this situation, we define three HPSs for level-2 ciphertexts P (2) = (X,L,Π),

P̂ (2) = (X,L, Π̂), P̃ (2) = (X ×Π× Π̂, L×Π× Π̂, Π̃) as in Figure 3.

Proposition 11. P (2) satisfies the following:

1. P (2) is smooth relative to X ′.

2. Under SXDH assumption, the subset membership problem of P (2) is hard relative to X ′ and has a
trapdoor.

3. X ′ \ L is approximately samplable relative to X.
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Proof. Smoothness: For pp← SetUp(1`), hk← HashKG(pp), and hp← ProjKG(hk), we have

{(hp, x,Hash(hk, x)) | x← X ′ \ L}
= {((s1, s2), (x1,x2,x3),−(k1 ⊗ k2)>x1 + k>1 x2 + k>2 x3) | x1 ← 〈h1〉,x2 ← 〈h2〉,x3 ← G2

T \ 〈h3〉}
= {((s1, s2), (w1h1, w2h2, g1 ⊗ x′2),−w1(s1 ⊗ s2) + w2(s1 ⊗ g2) + (g1 ⊗ k>2 x′2))

| w1, w2 ← Zp,x′2 ← G2
2 \ 〈g2〉}

= {((s1, s2), (w1h1, w2h2, g1 ⊗ x′2),−w1(s1 ⊗ s2) + w2(s1 ⊗ g2) + (g1 ⊗ π′2))

| w1, w2 ← Zp,x′2 ← G2
2 \ 〈g2〉, π′2 ← G2}

= {((s1, s2), (x1,x2,x3), π) | x1 ← 〈h1〉,x2 ← 〈h2〉,x3 ← G2
T \ 〈h3〉, π ← GT }

= {(hp, x, π) | x← X ′ \ L, π ← Π}

and hence the smoothness holds. Here, at the third equality, we utilized the fact that the conditional
distribution of k>2 x′2 conditioned on a given s2 = k>2 g2 is uniformly random over G2, which follows from the
linear independence of g2 and x′2.

Hardness of the Subset Membership Problem: For pp← SetUp(1`), we have

{(pp, x) | x← L}
= {pp, (x1,x2,x3) | x1 ← 〈h1〉,x2 ← 〈h2〉,x3 ← 〈h3〉}
= {pp, (x1,x2, g1 ⊗ x′2) | x1 ← 〈h1〉,x2 ← 〈h2〉,x′2 ← 〈g2〉}
c
≈ {pp, (x1,x2, g1 ⊗ x′2) | x1 ← 〈h1〉,x2 ← 〈h2〉,x′2 ← G2

2 \ 〈g2〉}
= {pp, (x1,x2,x3) | x1 ← 〈h1〉,x2 ← 〈h2〉,x3 ← G2

T \ 〈h3〉}
= {(pp, x) | x← X ′ \ L}

and hence the hardness of the subset membership problem holds. Here, for the relation
c
≈ above, we used

the SXDH assumption (or more specifically, DDH assumption on G2).
Trapdoor of the Subset Membership Problem: We can show that the subset membership problem

has a trapdoor, by defining two algorithms in Definition 16 in the following manner:

• TrapdoorSetUp(1`) chooses g1, g2 in the SetUp by computing

g1 = (g1, τ1 · g1), g2 = (g2, τ2 · g2) where τ1, τ2 ← Zp

and outputs τ = (τ1, τ2) as a trapdoor.

• Distinguish(x, τ) takes x = (x1,x2,x3) ∈ X and τ = (τ1, τ2) as inputs. For x1 = (x11, x12, x13, x14),
x2 = (x21, x22), and x3 = (x31, x32), if all of

x12 = τ2 · x11, x13 = τ1 · x11, x14 = τ1τ2 · x11, x22 = τ1 · x21, x32 = τ2 · x31

hold, then the algorithm decides that x ∈ L; and otherwise decides that x /∈ L.

Approximate Samplability: The approximate samplability immediately follows from the fact that the
uniform distribution over X ′ \L and the uniform distribution over X ′ are statistically indistinguishable, and
the fact that the elements of X ′ are efficiently samplable.

Proposition 12. P̃ (2) satisfies the following:

1. If Γ1, Γ2, and Γ3 are injective, then P̃ (2) is information-theoretically universal2.

2. If Γ1, Γ2, and Γ3 are sampled from a family of collision resistant hash functions, then P̃ (2) is first-
adaptive computationally universal2.
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Proof. P̃ (2) can be represented as the direct product of three HPSs based on diverse vector spaces (except
that the finite set E are common in all three HPSs). Hence the universal2 property can be shown in the
same manner as Propositions 6 and 7.

Proposition 13. P̂ (2) is ((2p− 1)/p2)-universal1.

Proof. Let ĥp = (ŝ1, ŝ2) ∈ G1×G2, x = (x1,x2,x3) ∈ X \L, and π̂ = (π̂1, π̂2, π̂3) ∈ G3
T be chosen randomly.

The goal of the proof is to show that

Pr
ĥk←K̂

[Ĥash(x) = π̂ | P̂rojKG(ĥk) = ĥp]

is at most (2p− 1)/p2. Here, x can be represented as

x1 = w1(g1 ⊗ g2) + w′1(g1 ⊗ g′2) + w′′1 (g′1 ⊗ g2) + w′′′1 (g′1 ⊗ g′2) ,

x2 = w2(g1 ⊗ g2) + w′2(g′1 ⊗ g2) ,

x3 = w3(g1 ⊗ g2) + w′3(g1 ⊗ g′2) ,

where elements g′1 and g′2 are linearly independent from g1 and g2, respectively. We note that at least one
of w′1, w′′1 , w′′′1 , w′2, and w′3 is non-zero, since x ∈ X \ L.

Under the condition that P̂rojKG(ĥk) = ĥp, i.e., (k̂>1 g1, k̂
>
2 g2) = (ŝ1, ŝ2), the condition Ĥash(x) = π̂ is

equivalent to

w1(ŝ1 ⊗ ŝ2) + w′1(ŝ1 ⊗ k̂>2 g′2) + w′′1 (k̂>1 g′1 ⊗ ŝ2) + w′′′1 (k̂>1 g′1 ⊗ k̂>2 g′2) = π̂1 ,

w2(ŝ1 ⊗ g2) + w′2(k̂>1 g′1 ⊗ g2) = π̂2 ,

w3(g1 ⊗ ŝ2) + w′3(g1 ⊗ k̂>2 g′2) = π̂3 .

Moreover, since g′1, g
′
2 are linearly independent from g1, g2, respectively, k̂>1 g′1 and k̂>2 g′2 take uniformly

random values over G1 and G2 independently from ŝ1 and ŝ2, respectively, assuming k̂1, k̂2 ← Z2
p. If we

write these values as π′1, π
′
2, the conditions above can be rewritten as

w1(ŝ1 ⊗ ŝ2) + w′1(ŝ1 ⊗ π′2) + w′′1 (π′1 ⊗ ŝ2) + w′′′1 (π′1 ⊗ π′2) = π̂1 , (1)

w2(ŝ1 ⊗ g2) + w′2(π′1 ⊗ g2) = π̂2 , (2)

w3(g1 ⊗ ŝ2) + w′3(g1 ⊗ π′2) = π̂3 . (3)

From now on, we discuss the probabilities for these conditions to hold.
First, let us consider the case with w′2 6= 0. In this case, since π′1 is uniformly random, the whole of the

left-hand side of Equation (2) takes a uniformly random value. Therefore, the probability that Equation
(2) holds is 1/p. Thus the probability that the whole condition above holds is at most 1/p, and from
1/p ≤ (2p− 1)/p2, the statement follows. For the case with w′3 6= 0, we can show the statement by applying
the same discussion to Equation (3). We discuss the other case w′2 = w′3 = 0 from now.

If w′′′1 = 0, then either w′1 or w′′1 is non-zero. Now we also have that the left-hand side of Equation (1)
takes a uniformly random value, therefore the probability for the above condition to hold is at most 1/p.
Finally, we consider the remaining case with w′′′1 6= 0. In this case, Equation (1) can be rewritten as

(π′1 + v′1ŝ1)⊗ (π′2 + v′′1 ŝ2) = π̂′1 ,

where v′1 := w′1w
′′′−1
1 , v′′1 := w′′1w

′′′−1
1 , and π̂′1 := w′′′−1

1 (π̂1 − w1(ŝ1 ⊗ ŝ2)) + v′1v
′′
1 (ŝ1 ⊗ ŝ2). Furthermore, as

π′1, π
′
2 are uniformly random, π′1 + v′1ŝ1 and π′2 + v′1ŝ2 are also uniformly random; we denote them as π′′1 and

π′′2 . Under these notations, the given condition is equivalent to

π′′1 ⊗ π′′2 = π̂′1 .

This condition holds with probability at most 1/p when π̂′1 6= 0, and with probability (2p − 1)/p2 when
π̂′1 = 0. Hence the statement also holds in this case.
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KeyGen(1`): Dec(sk, C): C = (i, x, e, π̂, π̃)

hk← HashKG(pp), hp← ProjKG(hk) If π̂ 6= Ĥash
(i)

(x), output ⊥
ĥk← ĤashKG(pp), ĥp← P̂rojKG(ĥk) If π̃ 6= H̃ash

(i)
(x, e, π̂), output ⊥

h̃k
(i)
← H̃ashKG

(i)

(pp) (i = 1, 2) π ← Hash(i)(x)

h̃p
(i)
← P̃rojKG

(i)

(h̃k
(i)

) (i = 1, 2) When i = 1, output m = (e1 − π1)/g1

pk = (hp, ĥp, h̃p
(1)
, h̃p

(2)
) When i = 2, output m = (e− π)/gT

sk = (hk, ĥk, h̃k
(1)
, h̃k

(2)
), ek = (h̃k

(1)
, h̃k

(2)
)

Output (pk, sk, ek) Eval(ek,Add(i∗), C, C ′):
C = (i, x, e, π̂, π̃), C ′ = (i′, x′, e′, π̂′, π̃′)

Enc(pk, (i,m)): If not i = i′ = i∗, output ⊥
Sample x ∈ L(i) together with its witness w If π̃ 6= H̃ash

(i)
(x, e, π̂), output ⊥

π ← ProjHash(i)(x,w) If π̃′ 6= H̃ash
(i)

(x′, e′, π̂′), output ⊥
When i = 1, e = (mg1,mg2) + π Sample x0 ∈ L(i) together with its witness w0

When i = 2, e = mgT + π x′′ = x+ x′ + x0, e′′ = e+ e′ + ProjHash(i)(x0, w0)

π̂ ← ̂ProjHash
(i)

(x,w) π̂′′ = π̂ + π̂′ + ̂ProjHash
(i)

(x0, w0)

π̃ ← ˜ProjHash
(i)

((x, e, π̂), w) π̃′′ ← H̃ash
(i)

(x′′, e′′, π̂′′)
Output C = (i, x, e, π̂, π̃) Output C ′′ = (i, x′′, e′′, π̂′′, π̃′′)

Figure 4: Proposed Keyed-2LHE scheme (except homomorphic multiplication)

5.4 Concrete Construction of the Proposed Scheme

We describe the concrete construction of our proposed scheme in this section. As explained in Section 5.2,
our scheme (except the multiplication between ciphertexts) mostly follows the generic construction of Section
4.2. Our scheme except the multiplication is given in Figure 4.

Next, we give an explanation for the multiplication algorithm. When Eval takes ek, f = Mult, and level-1
ciphertexts C = (1, x, e, π̂, π̃), C ′ = (1, x′, e′, π̂′, π̃′) as inputs, it computes the following:

1. If π̃ 6= H̃ash
(1)

(x, e, π̂) or π̃′ 6= H̃ash
(1)

(x′, e′, π̂′), output ⊥.

2. Sample x0 ∈ L(2) together with its witness w0.

3. Set x′′ = (x1 ⊗ x′2,x1 ⊗ e′2, e1 ⊗ x′2) + x0.

4. Set e′′ ← e1 ⊗ e′2 + ProjHash(2)(x0, w0).

5. Set π̂′′ ← (π̂1 ⊗ π̂′2, π̂1 ⊗ e′2, e1 ⊗ π̂′2) + ̂ProjHash
(2)

(x0, w0).

6. Set π̃′′ ← H̃ash
(2)

(x′′, e′′, π̂′′) .

7. Output (2, x′′, e′′, π̂′′, π̃′′).

Let us confirm the correctness of the multiplication. Let C and C ′ be level-1 ciphertexts of plaintexts
m and m′, respectively. The operation of adding x0 or its hash values does not affect correctness (since it
is just for rerandomization), therefore we ignore it here. In Steps 3 and 4 of Mult, the second and the third
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components of x′′ and the value of e′′ can be represented as

x1 ⊗ e′2 = x1 ⊗ (m′g2 + k>2 x′2) ,

e1 ⊗ x′2 = (mg1 + k>1 x1)⊗ x′2 ,

e1 ⊗ e′2 = (mg1 + k>1 x1)⊗ (m′g2 + k>2 x′2) .

Hence, when we apply Dec to the evaluated ciphertext, we indeed obtain

(e′′ − Hash(2)(x1 ⊗ x′2,x1 ⊗ e′2, e1 ⊗ x′2))/gT

= (e1 ⊗ e′2 + (k1 ⊗ k2)>(x1 ⊗ x′2)− k>1 (x1 ⊗ e′2)− k>2 (e1 ⊗ x′2))/gT

= ((mg1 + k>1 x1)⊗ (m′g2 + k>2 x′2) + (k>1 x1)⊗ (k>2 x′2)

− (k>1 x1)⊗ (m′g2 + k>2 x′2)− (mg1 + k>1 x1)⊗ (k>2 x′2))/gT

= ((mg1)⊗ (m′g2))/gT = mm′ .

The remaining task is to see that π̂′′ is a correct hash value, and this can be checked from

π̂1 ⊗ π̂′2 = (k̂>1 x1)⊗ (k̂>2 x′2) = (k̂1 ⊗ k̂2)>(x1 ⊗ x′2) ,

π̂1 ⊗ e′2 = (k̂>1 x1)⊗ e′2 = k̂>1 (x1 ⊗ e′2) ,

e1 ⊗ π̂′2 = e1 ⊗ (k̂>2 x′2) = k̂>2 (e1 ⊗ x′2) .

Summarizing, the correctness of the multiplication holds.
We have the following theorem for the security of our proposed scheme. As it can be proved in almost

the same manner as the original security proof of the KH-PKE scheme in [12], we describe the detailed proof
of the theorem in Appendix A.

Theorem 2. The Keyed-2LHE scheme constructed above is KH-CCA secure under SXDH assumption.

6 Efficiency Evaluations

In this section, we evaluate the efficiency of our proposed scheme. All the evaluations given in this section
are based on the case where hash functions Γ in the construction of P̃ (1) and P̃ (2) are collision resistant (i.e.,

the case where P̃ is first-adaptive computationally universal2), and the case where n = 1 in the construction

of P̃ (1) and P̃ (2) (similarly to the DDH-based instantiation of KH-PKE in [12]). Also, we assume that all the
necessary values of pairings between secret keys, public keys, or public parameters are computed in advance
during the key generation, and the resulting values are involved in secret keys or public keys.

6.1 Size of Keys and Ciphertexts

A comparison of key and ciphertext sizes among our scheme, the state-of-the-art 2LHE scheme [3], and the
original KH-PKE scheme [12] is shown in Table 1. The four numbers in each cell denote the numbers of
elements in Zp, G1, G2, and GT , respectively. Here the KH-PKE scheme means its instantiation based on
DDH assumption shown in Section 5.3 of [12]. It is natural that our scheme is less efficient than the other
two schemes as shown in the table, since our scheme achieves stronger security than [3] and realizes stronger
functionality than [12]. We expect that the overhead of our scheme compared to the other two schemes is
within an acceptable range from practical viewpoints.
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Table 1: Comparison of key and ciphertext sizes (numbers of elements in Zp, G1, G2, GT in this order)
Ours 2LHE [3] KH-PKE [12]

sk 32, 0, 0, 0 2, 0, 0, 0 8, 0, 0, 0
pk 0, 4, 4, 9 0, 2, 2, 4 0, 4, -, -
ek 0, 2, 2, 6 — 0, 2, -, -

Level-1 Ciphertext 0, 5, 5, 0 0, 2, 2, 0 0, 5, -, -
Level-2 Ciphertext 0, 0, 0, 15 0, 0, 0, 4 —

Table 2: Numbers of operations in our proposed scheme; here “Op” and “Exp” denote addition and scalar
multiplication, respectively, over G1, G2, GT in this order (note that now G1, G2, and GT are regarded as
additive groups), “P” denotes pairing, and “DL” denotes computation of discrete logarithm (with restricted
exponent)

Op Exp P DL

KeyGen 4, 4, 15 8, 8, 24 0 0
Enc Level-1 2, 2, 0 7, 7, 0 0 0

Level-2 0, 0, 6 0, 0, 21 0 0
Dec Level-1 4, 2, 0 6, 4, 0 0 1

Level-2 0, 0, 18 0, 0, 24 0 1

Eval Add(1) 11, 11, 0 10, 10, 0 0 0

Add(2) 0, 0, 41 0, 0, 38 0 0
Mult 2, 2, 19 4, 4, 22 12 0

6.2 Computational Costs

Table 2 shows the numbers of addition and scalar multiplication (note that now the groups G1, G2, and GT
are regarded as additive groups), pairing, and computation of discrete logarithm (with restricted exponent;
see Section 6.3 for the details) performed in each algorithm for our proposed scheme. Here the three numbers
in each cell for “Op” and “Exp” are those for G1, G2, and GT . Note that operations on Zp are omitted here,
since they are much faster compared to the operations over the groups G1, G2, and GT .

Table 3 shows a comparison of roughly estimated computation times for each algorithms in our proposed
scheme with the 2LHE scheme [3] and the KH-PKE scheme [12]. In the time estimate, we started with the
benchmark result in [3] using the Barreto–Naehrig (BN) curves over 462-bit prime field. Then by comparing
the numbers of operations (such as ones in Table 2) among the three schemes, we calculated the running
times estimated from the result of [3]. Although the estimated times are deduced in such a rough manner (for

example, it does not include computation times for hash functions Γ in P̃ , discrete logarithms for decryption,
and operations on Zp; and it does not take into consideration that the underlying group for the KH-PKE
scheme in [12] can be more efficient than the other two schemes as it does not require pairings), it still
suggests that our proposed scheme would be feasible in practical implementation. On the other hand, some
algorithms in our scheme related to the group GT (namely, Dec for level-2 ciphertexts, Add(2), and Mult) are
particularly less efficient than the others, which is a major point to be improved in future research.

6.3 Remarks

In Dec algorithm of our proposed scheme, we need to compute division by group element g1 or gT , which
corresponds to computing the discrete logarithm when the groups are written multiplicatively. Therefore,
to execute decryption efficiently, restriction of the plaintext space for input ciphertexts is essential (which
also was the case with the previous schemes, i.e., 2LHE in [3] and DDH-based KH-PKE in [12]). For the
concrete method regarding the discrete logarithm computation, we refer to the previous paper [3].

On the other hand, it is worth noting that our scheme has the following feature; if a party has only the
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Table 3: Comparison of roughly estimated computation times (ms)
Ours 2LHE [3] KH-PKE [12]

KeyGen 7.968 0.983 0.378
Enc Level-1 1.346 0.577 0.330

Level-2 5.578 1.326 —
Dec Level-1 5.950 0.416 2.494

Level-2 30.343 3.797 —

Eval Add(1) 8.481 0.402 2.688

Add(2) 34.170 1.107 —
Mult 48.163 10.799 —

part h̃k
(1)

of the evaluation key ek = (h̃k
(1)
, h̃k

(2)
), then the party can only compute addition between level-1

ciphertexts but not addition between level-2 ciphertexts nor multiplication. This feature to only allow some
subclass of operations by giving the evaluation key partially is a new feature that previous schemes did not
possess, though we are leaving the formal definition for security with such partial exposure of the evaluation
key as a future research topic.
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A Proof of Theorem 2

In this appendix, we give a proof of Theorem 2. Before starting the proof, let us define some terminology to
make the argument simpler. For a ciphertext C = (i, x, e, π̂, π̃), we say:

• C is i-regular, if x ∈ L(i).

• C is P̃ (i)-consistent, if π̃ = H̃ash
(i)

(x, e, π̂) holds. (Similarly for P̂ (i).)

• C is P̃ (i)-forging, if it is P̃ (i)-consistent but not i-regular. (Similarly for P̂ (i).)

To deal with both levels of ciphertexts at the same time, we just say “C is regular”, “C is P̃ -consistent”,
and “C is P̃ -forging”, omitting the level of the ciphertext.

Let us prove an important lemma in the security proof:

Lemma 2 (source ciphertext hiding property). Let i ∈ {1, 2}. Assume that level-i ciphertexts C =
(i, x, e, π̂, π̃) and C ′ = (i, x′, e′, π̂′, π̃′) satisfy the following:

(*) C and C ′ are P̂ (i)-consistent and P̃ (i)-consistent ciphertexts for the same plaintext, and the distributions
of C and C ′ are identical and independent with each other.

Moreover, let C ′′ = (i, x′′, e′′, π̂′′, π̃′′) be a P̂ (i)-consistent and P̃ (i)-consistent level-i ciphertext. Under these

assumptions, for any operation f ∈ {Add(1),Add(2),Mult}, the outputs of Eval(f, C,C ′′) and Eval(f, C ′, C ′′)
satisfy the condition (∗) (unless the evaluation is not rejected).
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Proof. The P̂ -consistency and the fact that the outputs of the Eval are ciphertexts for the same plaintext
follow immediately from the correctness of Eval. Also, since π̃ in the output of Eval is calculated using ek,
P̃ -consistency holds. Therefore, it suffices to prove that the two outputs of Eval in the statement follow
identical and independent distributions.

First, let us consider the case with i = 1 and f = Add(1). In this case, the second component of
Eval(f, C,C ′′) and Eval(f, C ′, C ′′) can be represented as x + x′′ + r and x′ + x′′ + r′, respectively, where
r, r′ ← L(1) are the random values sampled for the rerandomization. From the assumption in the statement,
x and x′ follow identical and independent distributions. Hence, the results of the operations follow identical
and independent distributions as well. The same argument holds for the case with i = 2 and f = Add(2).

Finally, let us consider the case with i = 1 and f = Mult. Let x = (x1,x2), e = (e1, e2), x′ = (x′1,x
′
2),

and e′ = (e′1, e
′
2). In this case, the second component of Eval(f, C,C ′′) and Eval(f, C ′, C ′′) can be represented

as
(x1 ⊗ x′′2 + r1,x1 ⊗ e′′2 + r2, e1 ⊗ x′′2 + r3) ,

(x′1 ⊗ x′′2 + r′1,x
′
1 ⊗ e′′2 + r′2, e

′
1 ⊗ x′′2 + r′3) ,

respectively, where r1, r2, r3, r′1, r2, and r′3 are random values sampled from L(2) for the rerandomization.
From the assumption of the statement, x and x′ follow identical and independent distributions. Hence the
two values above follow identical and independent distributions. Furthermore, since C and C ′ have the same
plaintext, e and e′ follow identical and independent distributions. Hence, the results of the operations follow
identical and independent distributions as well.

Combining the discussions for all the cases, the statement holds.

From now on, we prove Theorem 2 by game-hopping. The idea for the game-hopping is almost identical
to the security proof in [12]. Note that since we only deal with prime-order groups, some part of the proof
can be simplified compared to [12]; in detail, a critical integer (in the sense of Definition 7 in [12]) does not
exist in our case. Let Ti be the event that the adversary wins the game i.

A.1 Preliminary Part

We start the security proof with a preliminary game-hopping.

Game pre-0 This is the original KH-CCA game.

Game pre-1 In this game, we prepare another list List′ at the beginning of the guess stage. This list will
record the history of evaluations. When the List consists of κ+1 elements List = (C0, C1, . . . , Cκ) (C0 = C∗),
List′ will have κ elements ((D1, D

′
1, f1), . . . , (Dκ, D

′
κ, fκ)). Here, each of Di and D′i is either a ciphertext or

an index in {0, . . . , i− 1}, and fi is one of the operations Add(1), Add(2), and Mult. The tuple (Di, D
′
i, fi) in

the List′ means that the ciphertext Ci was obtained by applying the operation fi to the ciphertexts Di and
D′i (where, if Di or D′i is an index j ∈ {0, . . . , i− 1}, then it represents the ciphertext Cj in List).

In the situation above, let us assume that ciphertexts C,C ′ and an operation f are queried to Eval oracle.
If this query is not rejected and if at least one of C and C ′ is already in the List, we modify the behavior of
the Eval oracle in the following manner. First, we discuss the case with C ∈ List and C ′ /∈ List. In this case,
Eval oracle works as follows assuming that i is the smallest index satisfying Ci = C.

1. Instead of the challenge ciphertext C∗, Eval oracle computes a new ciphertext C∗ = Enc(i∗,m∗b). Note
that C∗ has the same plaintext as the actual challenge ciphertext C∗. We call this new ciphertext a
source ciphertext.

2. Eval oracle re-calculates all elements of List according to the information recorded in List′, using source
ciphertext C∗ instead of challenge ciphertext C∗. Let us denote re-calculated elements of List as
C0, . . . , Cκ (C0 = C∗).

3. Since C = Ci ∈ List, C is also re-calculated in the previous step. Eval oracle evaluates f between Ci
(instead of C) and C ′, and obtains the result C ′′.
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4. Eval oracle appends Cκ+1 := C ′′ to the List and (Dκ+1, D
′
κ+1, fκ+1) := (i, C ′, f) to the List′, and

outputs C ′′ as the response to Eval query.

For the case with C /∈ List and C ′ ∈ List, Eval oracle executes the same procedure where the role of C
and C ′ are exchanged. When C,C ′ ∈ List, Eval oracle executes the above procedure where both C and C ′

are re-calculated during the procedure (and both Dκ+1 and D′κ+1 will be indices). We refer to the above
process as the (κ + 1)-th refreshing process, and the corresponding query as the (κ + 1)-th refreshing
query.

Game pre-2 In this game, the challenger computes the hash values for P , P̂ , P̃ using Hash instead of
ProjHash. Note that this modification is possible due to the fact that the challenger owns the secret key sk.

We evaluate the differences between the winning probability of the adversary for each game.
In Game pre-1, since the challenge ciphertext C∗ and the source ciphertext C∗ have the same plaintext,

their distributions are identical, while being independent. Hence, by applying the source ciphertext hiding
property recursively, it can be shown that the output distribution of the refreshing query does not differ
from that of Game pre-0. Moreover, since the output distributions of Hash and ProjHash are identical, the
challenge ciphertext computed in Game pre-2 has exactly the same distribution as that of Game pre-1.

Therefore, the winning probability of the adversary does not change in the preliminary game-hopping,
that is, we have

Pr[Tpre-0] = Pr[Tpre-1] = Pr[Tpre-2] .

A.2 Main Part

We move to the main part of the game-hopping. Let Qref denote the number of refreshing queries that the
adversary asks. Note that Qref = O(poly(`)), since the adversary is a PPT algorithm. The outline of the
game-hopping is given as follows:

Game 0 This game is identical to the Game pre-2.

Game 1 In this game, the third element e∗ of the source ciphertext C∗ is replaced with a uniformly random
element of Π(i∗), in the first refreshing query.

Game 2 In this game, the third element e∗ of the source ciphertext C∗ is replaced with a uniformly random
element of Π(i∗), in the second refreshing query.
...

Game Qref In this game, the third element e∗ of the source ciphertext C∗ is replaced with a uniformly
random element of Π(i∗), in the Qref -th refreshing query.

Game (Qref + 1) In this game, the third element e∗ of the challenge ciphertext C∗ is replaced with a
uniformly random element of Π(i∗).

In Game (Qref + 1), it is obvious that the adversary wins with the probability Pr[TQref+1] = 1/2, since all the
information of the plaintext m∗b (hence the information on b) are removed.

To evaluate the differences between adversary’s winning probability, we consider a further game-hopping
between Game (κ− 1) and Game κ (1 ≤ κ ≤ Qref) as follows:

SubGame κ.0 This is identical to Game (κ− 1).

SubGame κ.1 In this game, the second component x∗ of the source ciphertext C∗ is chosen uniformly at
random from X ′(i

∗) \ L(i∗) instead of L(i∗), in the κ-th refreshing process.

SubGame κ.2 In this game, the challenger computes the hash values for the regular inputs using ProjHash
instead of Hash in Enc, Dec, and Eval. Here the challenger obtains the corresponding witness by an
exhaustive search. (Note that now the challenger becomes not PPT, but this does not affect the
following game-hopping.)
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SubGame κ.3 In this game, Eval and Dec oracles also rejects inputs that are irregular and not in the List.
We refer to this modified rule as an enhanced rejection rule, and the original rule as an original
rejection rule.

SubGame κ.4 In this game, the third element of the source ciphertext is calculated by e∗ ← Π(i∗), during
the κ-th refreshing process.

SubGame κ.5 In this game, the modification made in SubGame κ.3 is restored, i.e., we change the rejection
rule from enhanced to original.

SubGame κ.6 In this game, the modification made in SubGame κ.2 is restored, i.e., all the hash values in
Enc, Dec, and Eval are computed using Hash (and now the challenger becomes PPT again).

SubGame κ.7 In this game, the modification made in SubGame κ.1 is restored, i.e., this game is identical
to Game κ.

Moreover, we also consider the game-hopping from SubGame (Qref +1).0 to SubGame (Qref +1).7 in a similar
manner. In these subgames, the elements of the challenge ciphertext C∗ are replaced instead of the source
ciphertext.

Let us evaluate the differences between the adversary’s winning probability. It is obvious that the
probability does not change in the modification from SubGame κ.1 to SubGame κ.2 and from SubGame κ.5
to SubGame κ.6, since the output distributions of Enc, Dec, and Eval in those games are identical. Therefore,
from the triangle inequality, we have

|Pr[T0]− Pr[TQref+1]| =

∣∣∣∣∣
Qref+1∑
κ=1

(Pr[Tκ−1]− Pr[Tκ])

∣∣∣∣∣
=

∣∣∣∣∣
Qref+1∑
κ=1

7∑
i=1

(Pr[Tκ.i−1]− Pr[Tκ.i])

∣∣∣∣∣
= |δ1 + δ′1 + δ2 + δ′2 + δ3|
≤ |δ1|+ |δ′1|+ |δ2|+ |δ′2|+ |δ3| , (4)

where δ1, δ′1, δ2, δ′2, and δ3 are defined as

δ1 =

Qref+1∑
κ=1

(Pr[Tκ.0]− Pr[Tκ.1]) , δ′1 =

Qref+1∑
κ=1

(Pr[Tκ.6]− Pr[Tκ.7]) ,

δ2 =

Qref+1∑
κ=1

(Pr[Tκ.2]− Pr[Tκ.3]) , δ′2 =

Qref+1∑
κ=1

(Pr[Tκ.4]− Pr[Tκ.5]) ,

δ3 =

Qref+1∑
κ=1

(Pr[Tκ.3]− Pr[Tκ.4]) .

From now on, we evaluate each term in the right-hand side of the inequality (4).

A.3 Evaluation of δ1 and δ′1

To evaluate δ1, we construct an algorithm B against the hardness of the subset membership problem of P (i∗),
using the adversary A for the KH-CCA game as a black box. B takes x∗ as an input, and works as follows:

1. B chooses κ uniformly at random from 1 ≤ κ ≤ Qref + 1.

2. B simulates the KH-CCA game against A where, for the κ chosen above, it does the following.
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• Case with κ 6= Qref + 1: Until the (κ − 1)-th refreshing query, B chooses the third element e∗ of
the source ciphertext uniformly at random from Π(i∗). In the κ-th refreshing process, B sets its
input x∗ as the second component of the source ciphertext.

• Case with κ = Qref + 1: In all the refreshing queries, B chooses the third element e∗ of the source
ciphertext uniformly at random from Π(i∗). Then B sets its input x∗ as the second component of
the challenge ciphertext.

3. B outputs 1 if the bit it chose as the challenger for the KH-CCA game coincides with A’s output, and
outputs 0 otherwise.

If B’s input x∗ was an element of L(i∗), the simulated game is identical to SubGame κ.0. On the other
hand, if x∗ was an element of X ′(i

∗) \ L(i∗), the simulated game is identical to SubGame κ.1. Therefore, we
have

Pr[B(x∗) = 1 | x∗ ← L(i∗)] =
1

Qref + 1

Qref+1∑
κ=1

Pr[Tκ.0] ,

Pr[B(x∗) = 1 | x∗ ← X ′(i
∗) \ L(i∗)] =

1

Qref + 1

Qref+1∑
κ=1

Pr[Tκ.1] ,

and hence

|δ1| =

∣∣∣∣∣
Qref+1∑
κ=1

(Pr[Tκ.0]− Pr[Tκ.1])

∣∣∣∣∣
= (Qref + 1)

∣∣∣Pr[B(x∗) = 1 | x∗ ← L(i∗)]− Pr[B(x∗) = 1 | x∗ ← X ′(i
∗) \ L(i∗)]

∣∣∣ .
Since the subset membership problem of P (i∗) is hard relative to X ′(i

∗),∣∣∣Pr[B(x∗) = 1 | x∗ ← L(i∗)]− Pr[B(x∗) = 1 | x∗ ← X ′(i
∗) \ L(i∗)]

∣∣∣
is negligible. Furthermore, from the fact that Qref = poly(`), it holds that |δ1| is negligible in `.

Also, |δ′1| can be shown to be negligible in a similar manner. To conclude, it is shown that both |δ1| and
|δ′1| are negligible.

A.4 Evaluation of δ2 and δ′2

We give evaluation for δ2 and δ′2 in this section. For simplicity, here we only deal with the case where both

P̃ (1) and P̃ (2) are information-theoretically universal2. For the evaluation for the case where P̃ (1) and P̃ (2)

only have first-adaptive computationally universal2 property, see Appendix B.
To evaluate δ2, let us consider another game-hopping between SubGame κ.2 and SubGame κ.3. Let Q

be a number of Dec or Eval queries that the adversary makes.

SubSubGame κ.3.0 This game is identical to SubGame κ.2.

SubSubGame κ.3.1 In this game, we apply the enhanced rejection rule up to the first Dec or Eval query.
...

SubSubGame κ.3.Q In this game, we apply the enhanced rejection rule up to the Q-th Dec or Eval query,
i.e., this game is identical to SubGame κ.3.
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For 1 ≤ ρ ≤ Q, let R(κ.3.ρ) be an event that the ρ-th query is not rejected in the original rejection rule but
is rejected in the enhanced rejection rule in the SubSubGame κ.3.ρ. By applying triangle inequality and
Lemma 1, δ2 can be evaluated as

|δ2| =

∣∣∣∣∣
Qref+1∑
κ=1

(Pr[Tκ.2]− Pr[Tκ.3])

∣∣∣∣∣
=

∣∣∣∣∣
Qref+1∑
κ=1

Q∑
ρ=1

(Pr[Tκ.3.(ρ−1)]− Pr[Tκ.3.ρ])

∣∣∣∣∣
≤
Qref+1∑
κ=1

Q∑
ρ=1

∣∣Pr[Tκ.3.(ρ−1)]− Pr[Tκ.3.ρ]
∣∣

≤
Qref+1∑
κ=1

Q∑
ρ=1

Pr[R(κ.3.ρ)] . (5)

We evaluate the right-hand side of the inequality (5) from now on.
First, let us assume 1 ≤ κ ≤ Qref . We divide R(κ.3.ρ) into several cases depending on the situation where

the ρ-th query was made. When the ρ-th query was a Dec query (we denote its input as C), we consider

the following four cases. Note that for all the cases, the input C is P̂ -forging and P̃ -forging, C /∈ List, and
if the query is a Dec query in the guess stage, RevEK is not queried before.

• R(κ.3.ρ)
Dec.1 : The case where the ρ-th query was a Dec query in the find stage.

• R(κ.3.ρ)
Dec.2 : The case where the ρ-th query was a Dec query made in the guess stage, before the κ-th

refreshing query.

• R(κ.3.ρ)
Dec.3 : The case where the ρ-th query was a Dec query made in the guess stage, after the κ-th

refreshing query, and the reply to the κ-th refreshing query was regular.

• R(κ.3.ρ)
Dec.4 : The case where the ρ-th query was a Dec query made in the guess stage, after the κ-th

refreshing query, and the reply to the κ-th refreshing query was irregular.

When the ρ-th query was an Eval query (we denote its input as C,C ′), we consider the following three cases.

Note that for all the cases, the inputs C and C ′ are both P̂ -consistent, and at least one of C and C ′ is
irregular and not in the List. Also note that the RevEK has not been queried yet.

• R(κ.3.ρ)
Eval.1 : The case where the ρ-th query was a κ-th refreshing query or an Eval query made before the

κ-th refreshing query.

• R(κ.3.ρ)
Eval.2 : The case where the ρ-th query was an Eval query made after the κ-th refreshing query, and

the reply to the κ-th refreshing query was regular.

• R(κ.3.ρ)
Eval.3 : The case where the ρ-th query was an Eval query made after the κ-th refreshing query, and

the reply to the κ-th refreshing query was irregular.

Since all the cases above are disjoint, we have

Pr[R(κ.3.ρ)] =

4∑
i=1

Pr[R
(κ.3.ρ)
Dec.i ] +

3∑
i=i

Pr[R
(κ.3.ρ)
Eval.i ] . (6)

From now on, we evaluate the right-hand side of this equation more precisely. Note that in SubSubGame
κ.3.ρ, replies of Eval oracles before the ρ-th query are always regular, except for the κ-th refreshing query.

When the ρ-th query is a Dec query, the probability for the rejection can be evaluated as follows:
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• Pr[R
(κ.3.ρ)
Dec.1 ] : Just before making this query, the only information related to the secret key ĥk that the

adversary has gained is the public key ĥp. Therefore, since P̂ is universal1, the probability that the
adversary calculates the correct value of π̂ corresponding to an irregular ciphertext is negligible.

• Pr[R
(κ.3.ρ)
Dec.2 ] : Since this query is made before the κ-th refreshing query, the only information related to

the secret key ĥk that the adversary has gained is the public key ĥp just before this query. Therefore,
since P̂ is universal1, the probability that the adversary calculates the correct value of π̂ corresponding
to an irregular ciphertext is negligible.

• Pr[R
(κ.3.ρ)
Dec.3 ] : Although this query was made after the κ-th refreshing query, since the reply to the κ-th

refreshing query was regular, the only information related to the secret key ĥk that the adversary has

gained is the public key ĥp just before this query. Therefore, since P̂ is universal1, the probability that
the adversary calculates the correct value of π̂ corresponding to an irregular ciphertext is negligible.

• Pr[R
(κ.3.ρ)
Dec.4 ] : Just before this query, the information related to the secret key h̃k that the adversary has

gained is the public key h̃p and the reply to the κ-th refreshing query, which is a P̃ -forging ciphertext.
Therefore, since P̃ is universal2, the probability that the adversary calculates the correct value of π̃
corresponding to an irregular ciphertext is negligible.

When the ρ-th query is an Eval query, the probability for the rejection can be evaluated as follows:

• Pr[R
(κ.3.ρ)
Eval.1 ] : Just before making this query, the only information related to the secret key h̃k that the

adversary has gained is the public key h̃p. Therefore, since P̃ is universal1, the probability that the
adversary calculates the correct value of π̃ corresponding to an irregular ciphertext is negligible.

• Pr[R
(κ.3.ρ)
Eval.2 ] : Although this query was made after the κ-th refreshing query, since the reply to the κ-th

refreshing query was regular, the only information related to the secret key h̃k that the adversary has

gained is the public key h̃p just before this query. Therefore, since P̃ is universal1, the probability that
the adversary calculates the correct value of π̃ corresponding to an irregular ciphertext is negligible.

• Pr[R
(κ.3.ρ)
Eval.3 ] : Just before this query, the information related to the secret key h̃k that the adversary has

gained is the public key h̃p and the reply to the κ-th refreshing query, which is a P̃ -forging ciphertext.
Therefore, since P̃ is universal2, the probability that the adversary calculates the correct value of π̃
corresponding to an irregular ciphertext is negligible.

As a conclusion, it has been shown that the right-hand side of the equation (6) can be bounded using the
same negligible function for all values of κ and ρ.

Next, for the case with κ = Qref + 1, the event R(κ.3.ρ) can be divided into four cases below:

• R(κ.3.ρ)
Dec.1 : The case whete the ρ-th query is a Dec query in the find stage.

• R(κ.3.ρ)
Dec.2 : The case whete the ρ-th query is a Dec query in the guess stage.

• R(κ.3.ρ)
Eval.1 : The case whete the ρ-th query is an Eval query in the find stage.

• R(κ.3.ρ)
Eval.2 : The case whete the ρ-th query is an Eval query in the guess stage.

The probability for these events can be shown to be negligible in the same manner as the case with 1 ≤ κ ≤
Qref . Hence the right-hand side of the equation (6) is also negligible in this case.

Combining the above discussion and the fact that Q and Qref are both O(poly(`)), the whole of the
right-hand side of (5) is negligible, which implies that |δ2| is negligible. The negligibility of |δ′2| can be shown
in a similar manner.
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A.5 Evaluation of δ3

We evaluate δ3 in this section. First, let us consider the case with 1 ≤ κ ≤ Qref . During the κ-th refreshing
query in the SubGame κ.3, the third component of the source ciphertext is computed as e∗ ← m∗b+Hash(x∗),
where x∗ is a random element from X ′(i

∗) \L(i∗). Since the only information related to the secret key hk that
the adversary has gained just before this query is the public key hp, from the smoothness of P (i) relative to
X ′(i

∗) \L(i∗), the adversary’s winning probability changes only negligibly even if we replace Hash(x∗) with a
uniformly random element of Π(i∗) in the computation of e∗. After applying this modification, e∗ itself is a
uniformly random element of Π(i∗). Therefore, |Pr[Tκ.3]−Pr[Tκ.4]| can be bounded using common negligible
function for all values of κ. By considering the same modification for the case with κ = Qref + 1, we obtain

|δ3| ≤
Qref+1∑
κ=1

|Pr[Tκ.3]− Pr[Tκ.4]| = negl(`) .

A.6 Conclusion of the Security Proof

We have shown in the previous subsections that |δ1|, |δ′1|, |δ2|, |δ′2|, and |δ3| are all negligible. Hence, from
the inequality (4), we have

|Pr[T0]− Pr[TQref+1]| = negl(`) .

Moreover, since Pr[T0] = Pr[Tpre-0] and Pr[TQref+1] = 1/2, we have

|Pr[Tpre-0]− 1/2| = negl(`) .

This completes the proof of Theorem 2.

B Evaluation of δ2 and δ′2 for the Case with Computational Universal2
Property

In this section, we give an evalution of δ2 and δ′2 for the case where P̃ (1) and P̃ (2) only satisfy first-adaptive
computationally universal2 property.

Even in this case, we can evaluate δ2 and δ′2 by a game-hopping from SubGame κ.2 to SubGame κ.3,
similar to the one in Section A.4. From the equations (5) and (6), we have

|δ2| ≤
Qref+1∑
κ=1

Q∑
ρ=1

(
4∑
i=1

Pr[R
(κ.3.ρ)
Dec.i ] +

3∑
i=i

Pr[R
(κ.3.ρ)
Eval.i ]

)
. (7)

The term
∑Qref+1
κ=1

∑Q
ρ=1 Pr[R

(κ.3.ρ)
Dec.i ] (i = 1, 2, 3) in the right-hand side of the inequality can be evaluated in

exactly the same way as the argument in Section A.4, by applying universal1 property of P̂ . From now on,
we evaluate the rest of the terms by applying first-adaptive computationally universal2 property of P̃ .

B.1 Evaluation of R
(κ.3.ρ)
Dec.4 and R

(κ.3.ρ)
Eval.3

To evaluate
∑Qref+1
κ=1

∑Q
ρ=1 Pr[R

(κ.3.ρ)
Dec.4 ], we construct an adversary B against first-adaptive computationally

universal2 property of P̃ in the following manner:

1. B receives the public key h̃p from the challenger of the first-adaptive computationally universal2 game.

Then B generates public and secret key pairs (hp, hk) and (ĥp, ĥk) using the key generation algorithm
of each HPS.

2. B chooses κ and ρ uniformly at random from the range 1 ≤ κ ≤ Qref + 1 and 1 ≤ ρ ≤ Q, respectively.
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3. B simulates SubSubGame κ.3.ρ up to ρ-th query. If 1 ≤ κ ≤ Qref , B simulates the κ-th refreshing
query as follows:

(a) B chooses the second component x∗ of the source ciphertext uniformly at random from X ′(i
∗) \

L(i∗), and computes the components (x, e, π̂) in the output of the refreshing query using x∗ (in
the same way as an ordinary refreshing query).

(b) B queries (x, e, π̂) to Hash oracle and checks if the oracle returns ⊥. If not, B aborts. (This
operation is for checking that the reply to the refreshing query is irregular, since this has to be

the case with the event R
(κ.3.ρ)
Dec.4 .)

(c) B submits (x, e, π̂) to the challenger of the first-adaptive computationally universal2 game, and
receives π̃ as the reply. Then B sends back (x, e, π̂, π̃) as the reply to the refreshing query.

Furthermore, if κ = Qref + 1, B computes the challenge ciphertext in the following manner:

(a) B chooses the second component x∗ of the challenge ciphertext uniformly at random from X ′(i
∗) \

L(i∗), and uses it to compute the third and the fourth components e∗, π̂∗.

(b) B submits (x∗, e∗, π̂∗) to the challenger of the first-adaptive computationally universal2 game and
receives π̃∗ as its reply. Then B sets (x∗, e∗, π̂∗, π̃∗) as the challenge ciphertext.

4. Finally, B works as follows to the ρ-th query:

(a) B aborts if the ρ-th query is not a Dec query. We assume that the ρ-th query was a Dec query
with input C = (i, x, e, π̂, π̃) from now on.

(b) If the input C of the query was already in the List, B aborts.

(c) B outputs the second, the third, and the fourth components (x, e, π̂) of C and the fifth component
π̃ of C as the output of the first-adaptive computationally universal2 game.

We also assume that B aborts if the event R
(κ.3.ρ)
Dec.4 becomes impossible to achieve during the simulation.

It is obvious that the simulation above is correct. In this situation, B wins the first-adaptive computa-

tionally universal2 game if and only if the event R
(κ.3.ρ)
Dec.4 happens. Therefore, the value

1

Q(Qref + 1)

Qref+1∑
κ=1

Q∑
ρ=1

Pr[R
(κ.3.ρ)
Dec.4 ]

and the winning probability in the first-adaptive computationally universal2 game are exactly the same.
Moreover, let B′ be the algorithm that is obtained by modifying B in the following manner: in Step 3 of B,

B′ chooses the second component of the source ciphertxt (or a challenge ciphertext) from the distribution over
X that is indistinguishable from the uniform distribution over X ′(i

∗)\L(i∗) , instead of directly sampling from
X ′(i

∗)\L(i∗). The difference between the winning probabilities of B and B′ is negligible due to the approximate

samplability. Also, the winning probability of B′ is negligible, since P̃ is first-adaptive computationally

universal2. Therefore, it follows that
∑Qref+1
κ=1

∑Q
ρ=1 Pr[R

(κ.3.ρ)
Dec.4 ] is negligible.

We can evaluate
∑Qref+1
κ=1

∑Q
ρ=1 Pr[R

(κ.3.ρ)
Eval.3 ] in almost the same manner. We only need to modify Step 4

in B as follows:

4. Finally, B works as follows to the ρ-th query:

(a) B aborts if the ρ-th query is not an Eval query. We assume that the ρ-th query was an Eval query
with inputs C = (i, x, e, π̂, π̃) and C ′ = (i′, x′, e′, π̂′, π̃′), from now on.

(b) If both C and C ′ are already involved in the List, B aborts. We assume that C /∈ List, without
loss of generality.

(c) B outputs (x, e, π̂) in the input of the query and π̃ as the outputs of first-adaptive computationally
universal2 game.
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B.2 Evaluation of R
(κ.3.ρ)
Eval.1 and R

(κ.3.ρ)
Eval.2

To evaluate
∑Qref+1
κ=1

∑Q
ρ=1 Pr[R

(κ.3.ρ)
Eval.1 ] and

∑Qref+1
κ=1

∑Q
ρ=1 Pr[R

(κ.3.ρ)
Eval.2 ], we construct an adversary B against

first-adaptive computationally universal2 property of P̃ , as in the previous section. The description of B is
given below.

1. B receives the public key h̃p from the challenger of the first-adaptive computationally universal2 game.

Then B generates public and secret key pairs (hp, hk) and (ĥp, ĥk) using the key generation algorithm
of each HPS.

2. B chooses κ and ρ uniformly at random from the range 1 ≤ κ ≤ Qref + 1 and 1 ≤ ρ ≤ Q, respectively.

3. B simulates SubSubGame κ.3.ρ up to ρ-th query. If 1 ≤ κ ≤ Qref , B simulates the κ-th refreshing
query as follows:

(a) B chooses the second component x∗ of the source ciphertext uniformly at random from X ′(i
∗) \

L(i∗), and computes the components (x, e, π̂) in the output of the refreshing query using x∗ (in
the same way as an ordinary refreshing query).

(b) B queries (x, e, π̂) to Hash oracle and aborts if the oracle returns ⊥. Otherwise, B answers the
refreshing query with (x, e, π̂, π̃), where π̃ is the reply to the Hash query that B made.

4. B chooses a tuple (x, e, π̂) uniformly at random, and submits it to the challenger of the first-adaptive
computationally universal2 game.

5. Finally, B works as follows to the ρ-th query:

(a) B aborts if the ρ-th query is not an Eval query. We assume that the ρ-th query was an Eval query
with inputs C = (i, x, e, π̂, π̃) and C ′ = (i′, x′, e′, π̂′, π̃′), from now on.

(b) If both C and C ′ are already involved in the List, B aborts. We assume that C /∈ List, without
loss of generality.

(c) B outputs (x, e, π̂) in the input of the query and π̃ as the outputs of first-adaptive computationally
universal2 game.

We also assume that B aborts if the event R
(κ.3.ρ)
Eval.1 or R

(κ.3.ρ)
Eval.2 becomes impossible to achieve during the

simulation.
It is obvious that the above simulation is correct. In this situation, B wins the first-adaptive compu-

tationally universal2 game if and only if the event R
(κ.3.ρ)
Eval.1 or R

(κ.3.ρ)
Eval.2 happens, except for the case where

the random value that B submits coincides with the value that B outputs (which happens with a negligible
probability). Therefore, the value

1

Q(Qref + 1)

Qref+1∑
κ=1

Q∑
ρ=1

(Pr[R
(κ.3.ρ)
Eval.1 ] + Pr[R

(κ.3.ρ)
Eval.2 ])

and B’s winning probability in the first-adaptive computationally universal2 game have only negligible differ-
ence. Thus, by applying approximate samplability of X ′(i

∗)\L(i∗) in the same manner as Section B.1, the fact

that
∑Qref+1
κ=1

∑Q
ρ=1(Pr[R

(κ.3.ρ)
Eval.1 ] + Pr[R

(κ.3.ρ)
Eval.2 ]) is negligible follows from the first-adaptive computationally

universal2 property of P̃ .

B.3 Conclusion of the Proof

From the above arguments, it follows that the right-hand side of the inequality (7) is negligible. Hence, |δ2|
is also negligible in this case. The negligibility of |δ′2| can be shown in a similar manner.

33


