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Abstract. In this work, we propose generic and novel side-channel assisted chosen-
ciphertext attacks on NTRU-based key encapsulation mechanisms (KEMs). These
KEMs are IND-CCA secure, that is, they are secure in the chosen-ciphertext model.
Our attacks involve the construction of malformed ciphertexts. When decapsulated
by the target device, these ciphertexts ensure that a targeted intermediate variable
becomes very closely related to the secret key. An attacker, who can obtain information
about the secret-dependent variable through side-channels, can subsequently recover
the full secret key. We propose several novel CCAs which can be carried through by
using side-channel leakage from the decapsulation procedure. The attacks instantiate
three different types of oracles, namely a plaintext-checking oracle, a decryption-
failure oracle, and a full-decryption oracle, and are applicable to two NTRU-based
schemes, which are NTRU and NTRU Prime. The two schemes are candidates in the
ongoing NIST standardization process for post-quantum cryptography. We perform
experimental validation of the attacks on optimized and unprotected implementations
of NTRU-based schemes, taken from the open-source pqm4 library, using the EM-based
side-channel on the 32-bit ARM Cortex-M4 microcontroller. All of our proposed
attacks are capable of recovering the full secret key in only a few thousand chosen
ciphertext queries on all parameter sets of NTRU and NTRU Prime. Our attacks,
therefore, stress on the need for concrete side-channel protection strategies for NTRU-
based KEMs.
Keywords: lattice-based cryptography · electromagnetic-based side-channel attack ·
learning with error · learning with rounding · chosen ciphertext attack · public
key encryption · key encapsulation mechanism

1 Introduction
The NIST standardization process for post-quantum cryptography is currently in the
third round with seven finalists and eight alternates for public key encryption (PKE),
key encapsulation mechanisms (KEMs), and digital signatures (DS) [AASA+20]. For this
round, NIST has made it clear that resistance to side-channel attacks (SCAs) and fault
injection attacks (FIAs) is an important criteria in the standardization process, especially
amongst schemes with tightly matched security and efficiency [AH21].

Three out of the four finalists for PKE/KEMs are schemes from lattice-based cryptogra-
phy. Lattice-based PKE/KEMs can be broadly classified into two categories. Schemes based
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on the learning with errors (LWE) [Reg09] and learning with rounding (LWR) [BPR12]
problems are in the first category. The second category collects schemes that are based on
the N th order truncated polynomial ring unit (NTRU) problem [HPS98]. The security of
IND-CPA secure lattice-based schemes in a static key setting, that is, when the secret key
is reused, has been studied for a long time. Several works have proposed efficient chosen-
ciphertext attacks (CCAs) on both LWE/LWR-based schemes as well as on NTRU-based
schemes [DCQ19,QCD19,BDHD+19,BGRR19,Flu16]. These attacks rely on the assumed
presence of an oracle that provides some information about the decrypted message.

Depending on the setting, at least three types of oracles can be instantiated when using
an IND-CPA secure scheme. These are the key-mismatch or plaintext-checking (PC) oracle,
the decryption-failure (DF) oracle, and the full-decryption (FD) oracle. The PC oracle
typically provides a binary response, either correct or wrong, about the attacker’s guess
of the decrypted message (resp., shared secret key) of a PKE (resp., KEM) for a chosen
ciphertext. In the presence of a DF oracle, an attacker can infer whether or not a given
ciphertext results in a decryption failure. While both the PC and DF oracles only provide
binary information, an FD oracle provides information about the complete message for
the chosen ciphertexts. Based on the available oracle, an attacker carefully chooses query
ciphertexts so that the corresponding oracle’s responses reveal the secret key.

All finalists and alternates for PKE/KEMs apply well-known CCA conversions to
achieve IND-CCA security against adaptive CCAs. These IND-CCA secure schemes detect
invalid/malformed ciphertexts with a very high probability and, upon detection, return
failure or a pseudo-random output as a concrete protection against CCAs. The schemes
remove the presence of all three aforementioned oracles in an ideal classical black-box setting.
Any cryptographic algorithm implemented on a real device, however, leaks information
about some intermediate values through side-channels. Examples include timing, power
consumption, and electromagnetic (EM) emanation.

Following this line of thought, several side-channel assisted CCAs on LWE/LWR-
based PKE/KEMs have been proposed. They instantiate different types of oracles to
gain information about the decryption output to facilitate secret key recovery in several
LWE/LWR-based candidates, including the finalists Kyber [ABD+20b], Saber [DKSRV20],
and Frodo [ABD+20a]. A similar analysis is, however, lacking for schemes based on
the NTRU problem, including the finalist NTRU [CDH+19] and the alternate NTRU
Prime [BBC+20]. Extending such attacks to NTRU-based schemes is nontrivial. The
framework and the arithmetic behind NTRU-based schemes are vastly different from those
based on the LWE/LWR paradigm. Mounting successful side-channel assisted CCAs on
NTRU-based schemes has remained an open challenge.

There are known CCAs on NTRU-based schemes that work in a classical black-box
setting [JJ00,HGNP+03,DDSV19]. Most existing CCAs have targeted older variants of
NTRU. Adapting them to the newer variants requires a significant effort due to differences
in the underlying arithmetic and finer technical details. Let us consider the work of Zhang
et al. in [ZCD21], for example. It presents an attack on the NTRU-HPS variant with
a 100% success rate. The attack fails to achieve the same success rate when targeting
the NTRU-HRSS variant. NTRU Prime incorporates several optimizations, including the
use of rounded ciphertexts. Its arithmetic, over a noncyclotomic field, throws significant
challenges to attackers that perform CCAs in either a black-box or a side-channel setting.

Thus, a gap persists in our theoretical understanding on how to mount CCAs over the
newer variants of NTRU-based schemes. Can such attacks be carried out successfully? If
the answer is yes, then another question naturally arises. Are there significant differences
in costs between attacking NTRU-based schemes and LWE/LWR-based schemes?

To address these critical questions, we propose the first practical side-channel assisted
CCAs on IND-CCA secure NTRU-based schemes, including NTRU and NTRU Prime
KEMs. We attempt to traverse the landscape by demonstrating attacks that instantiate
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the three types of oracles on all parameter sets of NTRU and NTRU Prime. The key idea
is to construct ciphertexts that can instantiate the oracles. The early inspiration comes
from the work of Jaulmes and Joux in [JJ00]. They proposed the first CCA that works in
a black-box setting on the original NTRU PKE scheme from 1998. Our novel and generic
adaptations of their attack achieve full key recovery on unprotected implementations of
NTRU and NTRU Prime, with only a few thousand chosen-ciphertext queries to the target
device, without the need for offline analysis (or brute forcing).

Assuming the presence of a plaintext-checking oracle for key recovery, we come up with
an attack that works with perfect success rate on the NTRU-HRSS variant of NTRU and
Streamlined NTRU Prime. We devise novel techniques to surmount the challenges posed
by the use of rounded ciphertexts in NTRU Prime and the deployment of arbitrary-weight
secrets in the NTRU-HRSS.

We formulate approaches to accomplish three important tasks. The first task is to utilize
side-channel leakage from the decapsulation procedure. The next task is to realize practical
oracles for plaintext-checking and decryption-failure. The final task is to efficiently recover
the keys. Since these oracles only provide binary information, the side-channel analysis
relies on simple techniques and can be performed with minimal knowledge about the target
implementation. Our claims are experimentally validated by exploiting electromagnetic
emanation (EM) side-channel on optimized implementations of NTRU and NTRU Prime
KEM, taken from the pqm4 library [KRSS19], running on the 32-bit ARM Cortex-M4
microcontroller.

Please note that all our attacks are demonstrated on unprotected implementations
of NTRU-based schemes. Masking in the first or higher order serves as a concrete
countermeasure against our attacks. While there are several masking strategies for
LWE/LWR-based schemes [BDK+21,BGR+21,OSPG18], we are unaware of a concrete
masking scheme for NTRU-based schemes. Thus, our work stresses on the need for concrete
masking countermeasures for NTRU-based PKE/KEMs to protect against side-channel
assisted CCAs.

Availability of software

For scrutiny and reproducibility, we have made our implementation softwares available at
https://github.com/PRASANNA-RAVI/SCA_Assisted_CCA_on_NTRU.

Organization of the Paper

Section 2 provides the necessary background by introducing the required notation and
concepts as well as useful known results. Sections 3 and 4 present our proposed PC
oracle-based attack. The discussion covers the attack routes on NTRU Prime and on
NTRU, respectively. Sections 5 and 6 discuss our DF oracle-based and FD oracle-based
SCAs, in that order. Section 7 contains concluding remarks, including a brief discussion
on potential countermeasures.

2 Lattice Preliminaries
2.1 Notation
We denote by Z/qZ or Zq, the ring of integers modulo an integer q. The elements are
zero-centered in [−q/2, q/2− 1]∩Z when q is even and in [−(q− 1)/2, (q− 1)/2]∩Z when
q is odd. For brevity, the threshold is q/2 throughout, irrespective of the parity of q. Let
Zq[x]/〈φ(x)〉 denote the polynomial ring whose reduction polynomial is φ(x). Its elements
are polynomials whose coefficients come from Zq. We use Rq to denote a polynomial ring.
Polynomials in Rq are written in bold lower case letters. The ith coefficient of a polynomial

https://github.com/PRASANNA-RAVI/SCA_Assisted_CCA_on_NTRU


4 Generic Side-Channel Assisted CCAs on NTRU-based KEMs

a ∈ Rq is denoted by a[i]. The product of polynomials a and b is written as a · b. A
polynomial is small if its coefficients are in Z3 := {−1, 0, 1}. A polynomial is of weight w
if exactly w of its coefficients are nonzero. An element x ∈ Rq which is sampled from a
distribution D with standard deviation σ is denoted by x← Dσ(Rq).

An array of bytes of an arbitrary length is denoted by B∗. Byte arrays of length n are
written as Bn. The ith bit in an element x ∈ Zq is denoted by xi. The acquisition of a
side-channel trace t corresponding to a particular operation X on an input p is denoted by
t⇐= X (p).

2.2 NTRU One-Way Function
In 1998, Hoffstein, Pipher, and Silverman proposed the original NTRU PKE in [HPS98]. Its
security relies on a conjectured circular security assumption called the NTRU assumption
or the NTRU one-way function (OWF).

Definition 1 (NTRU OWF). Given RNTRU := Zq[x]/〈xN − 1〉, a small invertible poly-
nomial p ← Dσ(RNTRU), and another small polynomial g ← Dσ(RNTRU), distinguish
structured samples g · p−1 ∈ RNTRU from uniformly random samples in U(RNTRU).

The problem is reducible to a shortest vector problem (SVP) over a special class of
lattices known as the NTRU lattices [CS97]. The NTRU cryptosystem has survived
cryptanalysis for almost 24 years now. This instills confidence in its security claims, despite
the lack of provable security guarantees. To distinguish the original NTRU PKE from the
finalist NTRU and the alternate NTRU Prime, we call the original scheme NTRU-1998.

2.3 NTRU Prime
NTRU Prime is a suite of two IND-CCA secure KEMs, namely Streamlined NTRU Prime
and NTRU LPRime. The former is based on the NTRU paradigm. The latter is based
upon the LPR Encrypt paradigm [BBC+20]. We focus on the Streamlined NTRU Prime
variant and, henceforth, refer to it as NTRU Prime. At its core is a perfectly correct and
deterministic IND-CPA secure PKE. It is defined by the tuple (n, q, w), where n and q are
prime numbers and w is a positive integer with the restrictions

2n ≥ 3w, q ≥ 16w + 1, xn − x− 1 is irreducible in Zq[x].

Unlike NTRU-1998, which operates in a cyclotomic ring (Z/qZ)[x]/〈xn − 1〉, with n = 2k,
NTRU Prime operates in the field Rq := Zq[x]/〈xn − x− 1〉, which is not cyclotomic. The
choice is motivated by the need to protect against potential attacks, e.g., those discussed
in [KEF20], that exploit the cyclotomic structure.

Algorithm 1 describes the NTRU Prime PKE. GenSmall() takes in a seed ρ ∈ B∗ and
samples for small polynomials in R3. GenShort uses ρ ∈ B∗ to sample for polynomials of
small weight w from the space Rsh. Round rounds every coefficient of a given polynomial
to its nearest multiple of 3.

The key generation NTRU_PRIME_PKE.KeyGen produces an NTRU instance h =
g/(3f) ∈ Rq with g ∈ R3 and f ∈ Rsh. The secret key is formed by f and g. The
public key is h ∈ Rq. The encryption NTRU_PRIME_PKE.Encrypt takes as input the
message polynomial r ∈ Rsh and generates the ciphertext c = Round(r · h) ∈ Rq. Its
coefficients are multiples of 3. The decryption NTRU_Prime_PKE.Decrypt takes c to
compute a = 3f · c ∈ Rq. The parameters are chosen to ensure that the true, that
is the nonreduced, value of every coefficient a[i] for i ∈ [0, p − 1] always lies in the
zero-centered range (−q/2, q/2]. A suitable choice for the parameters, leading to the
a in line 3, is key to the correctness of the decryption procedure. The resulting a is
then reduced modulo 3 to yield e = g · r ∈ R3. The latter, upon multiplication with
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Algorithm 1: Streamlined NTRU Prime PKE Core
1 Procedure NTRU_PRIME_PKE.KeyGen()
2 while g is not invertible in R3 do
3 ρ← U(B∗), g← GenSmall(ρ) ∈ R
4 end
5 ĝ = 1/g ∈ R3
6 ρ← U(B∗), f ← GenShort(ρ) ∈ Rsh
7 h = g/(3f) ∈ Rq
8 return (pk = h, sk = (ĝ, f))
9

1 Procedure NTRU_PRIME_PKE.Encrypt(pk, r ∈ Rsh)
2 d = h · r ∈ Rq
3 c = Round(d) ∈ Rq
4 ct = Encode(c)
5 return (ct)
6

1 Procedure NTRU_PRIME_PKE.Decrypt(ct, sk)
2 c = Decode(ct) ∈ Rq
3 a = 3f · c ∈ Rq
4 e = a modR3
5 b′ = e · ĝ ∈ R3
6 if Weight(b′) = w then
7 return r′ = b′
8 end
9 else

10 return r′ = (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ Rsh
11 end

ĝ ∈ R3, results in b′. Subsequently, the weight of b′ is checked. If Weight(b′) = w, then
r′ = b′ is the valid decryption output. Otherwise, the decryption output is fixed to be
(1, 1, . . . , 1, 0, 0, . . . , 0) ∈ R3.

The NTRU Prime PKE core is only IND-CPA secure and, hence, is susceptible
to CCAs. The well-known Fujisaki Okamoto (FO) transform [FO99] can convert it
into an IND-CCA secure KEM. The transform instantiates NTRU_PRIME_PKE.Encrypt,
NTRU_PRIME_PKE.Decrypt, and several instances of hash functions in the IND-CCA
secure encapsulation and decapsulation procedures. Algorithm 2 supplies the details. In
theory, the FO transform helps check the validity of ciphertexts through a re-encryption
procedure after decryption in line 5 of NTRU_Prime_KEM.Decaps. Thus, the attacker
only sees, with a very high probability, decapsulation failures for invalid ciphertexts. This
provides strong theoretical security guarantees against CCAs.

2.4 NTRU
NTRU provides a suite of IND-CCA secure KEMs. Similar to NTRU Prime, NTRU’s core
contains a perfectly correct and deterministic IND-CPA secure PKE. It is parameterized
by pairwise coprime integers n, p, q, sample spaces Lf ,Lg,Lr,Lm, and an injection lift
operation Lift : Lm → Zx, p = 3 and q is a power of 2. Let k ∈ Z+, φ1 = (x − 1), and
φn = (xn−1 + xn−2 + . . .+ 1). We note that φ1 · φn = (xn − 1).

NTRU computes over two polynomial rings Sk := Zk[x]/〈φn〉 and Tk := Zk[x]/〈φ1 ·φn〉.
It offers parameter sets that fall into two broad categories, namely, NTRU-HPS and
NTRU-HRSS. While they share several unified design choices, there are notable differences.
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Algorithm 2: The FO transform from IND-CPA into IND-CCA secure KEM
1 Procedure NTRU_Prime_KEM.Encaps(pk)
2 ρ← U(B∗)
3 r = GenShort(ρ) ∈ Rsh
4 c = NTRU_PRIME_PKE.Encrypt(pk, r)
5 d = H(r, pk)
6 ct = (c,d), K = G(1, r, ct)
7 return ct,K

8

1 Procedure KEM.Decaps(sk, pk, ct)
2 ct = (c,d)
3 r′ = NTRU_PRIME_PKE.Decrypt(ct, sk)
4 d′ = H(r′, pk)
5 c′ = NTRU_PRIME_PKE.Encrypt(pk, r′)
6 ct′ = (c′, d′)
7 if ct′ = ct then
8 return K = G(1, r′, ct′)
9 end

10 else
11 return K = G(1, ρ′, ct′) /* ρ′ ∈ B32 is a random secret */
12 end

NTRU-HPS, like NTRU-1998, selects coefficients from fixed-weight sample spaces. NTRU-
HRSS selects coefficients from an arbitrary-weight sample space. We refer the reader
to [CDH+19] for the respective details of both variants.

Without loss of generality, we use the NTRU-HPS PKE to describe the procedures of
the NTRU PKE core in Algorithm 3. Sample_fg() takes in a seed ρ ∈ B∗ and samples the
secret polynomials f ,g ∈ R3. The key generation procedure NTRU_PKE.KeyGen produces
an instance h = 3g/f ∈ Tq, with (f ,g) forming the secret key and h ∈ Tq forming the
public key. We highlight here the change in position of the multiplier 3 in h compared to
its position in NTRU Prime, where h = g/(3f) ∈ Rq.

The encryption NTRU_PKE.Encrypt takes a random r ∈ Lr and a message m ∈ Lm
to generate the ciphertext c as h · r + Lift(m) ∈ Tq, as shown in line 3. The decryption
NTRU_PKE.Decrypt uses c to compute a ∈ f · c ∈ Tq in line 7. Just like in NTRU Prime,
the true value of every coefficient of a is in Zq. This is the key to the perfect correctness
of the NTRU PKE. Subsequently, a ∈ Tq is reduced modulo S3 and multiplied with fp to
form the message polynomial m′, which is then used to recover the random polynomial r′
in lines 10 and 11. Line 12 says that the decryption procedure returns the polynomial pair
(r′,m′) as the decryption output only if (r′,m′) ∈ (Lr × Lm). Otherwise, it returns the
fixed value (1, 1). The decryption procedure also generates a single bit called fail, with
fail= 0 denoting success and fail= 1 denoting failure.

Unlike NTRU Prime KEM and several other LWE/LWR-based KEMs, NTRU KEM
achieves IND-CCA security without re-encryption, since the underlying NTRU PKE core
achieves the Bernstein-Persichetti rigidity [BP18]. This makes the decapsulation procedure
of NTRU among the fastest compared to other lattice-based KEMs. Algorithm 4 gives the
encapsulation and decapsulation procedures of NTRU KEM.

2.5 Side-Channel assisted CCAs on LWE/LWR-based schemes
While IND-CCA secure KEMs are theoretically secure against CCAs, their security
properties are only valid as long as an attacker is unable to obtain any information about
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Algorithm 3: NTRU PKE Core
1 Procedure NTRU_PKE.KeyGen()
2 ρ← U(B∗)
3 (f ,g)← Sample_fg(ρ) ∈ (Lf ,Lg)
4 fq = (1/f) ∈ Sq
5 h = (3 · g · fq) ∈ Tq
6 hq = (1/h) ∈ Sq
7 fp = (1/f) ∈ S3
8 return (pk = (h,hq), sk = (f , fp))
9

1 Procedure NTRU_PKE.Encrypt(pk, (r,m) ∈ (Lr × Lm))
2 m̄ = Lift(m) ∈ S3
3 c = h · r + m̄ ∈ Tq
4 ct = Encode(c)
5 return (ct)
6

1 Procedure NTRU_PKE.Decrypt(ct, sk)
2 c = Decode(ct) ∈ Tq
3 if c 6≡ 0 mod (q, φ1) then
4 fail= 1
5 return (0, 0, fail)
6 end
7 a = f · c ∈ Tq
8 e = a mod S3
9 m′ = e · fp ∈ S3

10 m̄′ = Lift(m′)
11 r′ = (c− m̄′) · hq ∈ Sq
12 if r′,m′ ∈ (Lr × Lm) then
13 fail= 0
14 return (r′,m′, fail)
15 end
16 else
17 fail= 1
18 return (0, 0, fail)
19 end

the intermediate variables in the decapsulation procedure. Side-channel leakage that
reveals sensitive information about any of the variables can lead to serious security flaws.
The most severe outcome is a complete recovery of the secret key.

KEMs based on the LWE/LWR problem have been subjected to several side-channel
assisted CCAs [DTVV19,RRCB20,GJN20]. Their modus operandi starts with the at-
tacker constructing specially structured ciphertexts. When decrypted/decapsulated, the
ciphertexts ensure that a certain intermediate variable, referred to as the anchor variable,
is very closely related to a targeted portion or, in the best scenario for the attacker, the
complete secret key. CCAs on IND-CPA secure LWE/LWR-based schemes have revealed
the efficacy of specially constructed ciphertexts to turn the decrypted message into an
anchor variable. Once the attacker recovers the value of the anchor variable for the chosen
ciphertexts using side-channels, the full secret key can be recovered. Based on the type
and amount of side-channel information available, existing attacks on LWE/LWR-based
schemes fall into the following three categories.
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Algorithm 4: IND-CCA secure NTRU KEM
1 Procedure NTRU_KEM.Encaps(pk)
2 ρ← U(B∗)
3 (r,m) = Sample_rm(ρ)
4 c = NTRU_PKE.Encrypt(pk, r,m)
5 k = H(r,m)
6 ct = c
7 return (ct, k)
8

1 Procedure NTRU_KEM.Decaps(sk, pk, ct)
2 ct = (c,d)
3 (r′,m′, fail) = NTRU_PKE.Decrypt(sk, ct)
4 k1 = H(r′,m′)
5 k2 = G(s, c)

/* s ∈ B32 is a random secret */
6 if fail = 0 then
7 return k1
8 end
9 else

10 return k2
11 end

2.5.1 Plaintext-Checking Oracle-Based SCA

The attacker constructs chosen ciphertexts such that the anchor variable only assumes a
very small number of possible values known to the attacker. Each possible value exclusively
depends on a targeted portion of the secret key. An attacker who can utilize side-channels
to retrieve the value of the anchor variable realizes an artificial plaintext-checking (PC)
oracle. Its responses can then be used to recover the full secret key.

For LWE/LWR-based schemes such as Kyber and Saber, the decrypted messages for
chosen ciphertexts can be restricted to two values. These are m = 0, on the occurrence of
the all-zero bit string m0, and m = 1, on the occurrence of the string m1 whose entries
are all 0 except at the least significant bit, where the entry is 1. Side-channels such as
timing and electromagnetic emanation have been shown to be efficiently exploitable to
realize a PC oracle in IND-CCA secure schemes. The binary responses, each in the form
of m ∈ {0, 1}, can recover the full secret key in a few thousand chosen-ciphertext queries
to the target decapsulation device [DTVV19,RRCB20].

2.5.2 Decryption-Failure Oracle-Based SCA

The second class of attacks performs key recovery by exploiting side-channels to obtain
information about decryption failures for the attacker’s chosen ciphertexts. Crafted errors
are added to a valid ciphertext to trigger decryption failures. Whether m = mvalid or
minvalid depends upon a targeted portion of the secret key. Similar to the PC oracle-based
SCA, side-channels can detect decryption failures. This realizes a decryption-failure (DF)
oracle whose responses can recover the full secret key. Guo, Johansson, and Nilsson
in [GJN20] exploited timing side-channel information from nonconstant time ciphertext
comparison in Frodo KEM to detect decryption failures. Subsequently, Bhasin et al.
in [BDH+21] exploited EM side-channel vulnerabilities in several masked ciphertext
comparison approaches to realize a DF oracle in Kyber KEM. Both attacks could perform
a full key recovery with several thousand chosen ciphertext queries to the target device.
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Table 1: Classification of side-channel assisted CCAs on IND-CCA secure LWE/LWR-
based schemes according to oracle type. The anchor variable is denoted by anchor and mx,
with or without subscript, is the decrypted message.

Type of Oracle Oracle Response

plaintext-checking (PC) anchor ∈ {m0,m1}
decryption-failure (DF) anchor ∈ {mvalid,minvalid}
full-decryption (FD) anchor = m

Both PC oracle and DF oracle-based SCA only extract binary information about the
anchor variable through side-channels. Thus, these attacks can be carried out with a
relatively simple attack setup. They do not pose stringent requirements on the signal to
noise ratio (SNR) for trace acquisition. The analysis is fairly simple and can be performed
with very limited knowledge of the target implementation.

2.5.3 Full-Decryption Oracle-Based SCA

The PC oracle and DF oracle attacks only extract one bit of information about the anchor
variable through side-channel traces. They typically require a few thousand queries for full
key recovery, especially given the size of secrets used in lattice-based KEMs. This raises
a natural question about the possibility of more efficient attacks with a more powerful
oracle to gather more than just binary information about the decrypted message. In
this direction, Xu et al. [XPRO20] showed that an attacker who can obtain a complete
knowledge of the decrypted message m for chosen ciphertexts can effectively run the CCA
in parallel mode, resulting in full key recovery after only a handful of queries. The authors
demonstrated full key recovery using only 8 to 16 in LWE/LWR-based KEMs such as
Kyber and Saber. They exploited vulnerabilities in the message encoding as treated, for
examples, in Amiet et al. [ACLZ20] and Sim et al. [SKL+20], and in the decoding procedure
that leaks the complete message as discussed, for examples, by Ravi et al. in [RBRC20]
and Ngo et al. in [NDGJ21]. Table 1 lists side-channel assisted CCAs on IND-CCA secure
LWE/LWR-based schemes by their oracle types.

While the above attacks work on IND-CCA secure LWE/LWR-based KEMs, they do
not extend trivially to NTRU-based KEMs. This is because the underlying arithmetic
of schemes based on the LWE/LWR paradigm is vastly different compared with schemes
in the NTRU paradigm. Mounting similar side-channel attacks in a chosen-ciphertext
setting on NTRU-based schemes has been an open problem. Even if nontrivial extension

Side-Channel Assisted CCAs 
on Lattice-based KEMs

NTRU-basedLWE/LWR-based

PC Oracle-based
D’Anvers et al. [DTVV19]

Ravi et al. [RRBC20]

FD Oracle-based
Xu et al. [XPRO20]

Ravi et al. [RBRC20]
Ngo et al. [NDGJ21]

DF Oracle-based
Guo et al. [GJN20]

Bhasin et al. [BDH+21]

PC Oracle-based
[This Work]

DF Oracle-based
[This Work]

FD Oracle-based
[This Work]

Figure 1: Classification of various side-channel assisted CCAs on lattice-based KEMs.
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of such attacks can be carried out, the comparative cost of attacking NTRU-based KEMs
in a chosen-ciphertext setting is previously unknown. To address these two questions we
exhibit the first side-channel assisted CCAs on NTRU-based schemes. Our attacks are
practical, generic, and capable of exploiting all three types of oracles for full key recovery.
The attacks apply to all variants of the NTRU-based KEMs in the final round of the NIST
PQC process. Figure 1 gives a classification of the various side-channel assisted CCAs
attacks on lattice-based KEMs. Ours are highlighted in red.

2.6 CCAs on NTRU-based schemes
Several CCAs have been proposed on different variants of the NTRU PKE cryptosystem.
Jaulmes and Joux [JJ00] presented the first CCA on the unpadded version of NTRU-1998.
Their attack requires knowledge of the full decryption output and can recover the full
secret key with a handful of ciphertexts. They also gave an adaptation of their attack
to the padding scheme, which was akin to the optimal asymmetric encryption padding.
The adapted variant only needs the DF oracle for key recovery. Similarly, Hoffstein and
Silverman used the DF oracle on the unpadded NTRU-1998 in their CCAs [HS99].

Han et al. [HHHK03] subsequently came up with very efficient CCAs, based on the
FD oracle, on optimized variants of unpadded NTRU-1998. Their attacks utilize chosen
ciphertexts that are completely precomputed offline, independent of the previous outputs.
While the aforementioned attacks utilize invalid or maliciously crafted ciphertexts, another
class of CCAs exploits decryption failures for valid ciphertexts [HGNP+03,GN07]. While
these attacks apply to variants of NTRU cryptosystem with nonnegligible decryption
failure rate, they are not relevant for NTRU and NTRU Prime.

More recently, Ding et al. [DDSV19] formulated a novel CCA on NTRU-1998 using
the DF oracle. This attack, with trivial modifications, can be adapted to the NTRU-HPS
parameter set, assuming a PC oracle. Zhang et al. [ZCD21] showed that the attack fails
on NTRU-HRSS, due to the use of secrets with arbitary weight. Although they managed
to modify the attack to work on NTRU-HRSS, the improved technique can only recover
93.6% of the keys. Thus, there is no known CCA against NTRU-HRSS that works with a
100% success rate. To the best of our knowledge, there is no CCA on NTRU Prime.

We will soon show that mounting CCAs on NTRU Prime is particularly challenging
since the scheme uses rounded ciphertexts as well as conditional checks on the decrypted
message. In this work, we improve on the CCA of Jaulmes and Joux and propose generic
and novel adaptations to NTRU and NTRU Prime. Ours perform full key recovery with
perfect success rate on all parameter sets, assuming the presence of a suitable oracle.

2.7 Test Vector Leakage Assessment
The test vector leakage assessment (TVLA) from [GJJR11] is a popular conformance-based
methodology in side-channel analysis. It has been widely used in both academia and indus-
try to evaluate cryptographic implementations. TVLA computes the univariate Welch’s
t-test over two given sets of side-channel measurements to identify their differentiating
features. By testing for a null hypothesis that the mean of the two sets is identical, a
PASS/FAIL decision is made. TVLA is formulated over measurement sets Tr and Tf by

TVLA := µr − µf√
σ2

r

mr
+ σ2

f

mf

, (1)

where µr, σr, and mr (resp. µf , σf , and mf ) are the mean, standard deviation and
cardinality of the trace set Tr (resp. Tf ). The null hypothesis is rejected with a confidence
of 99.9999% only if the absolute value of the t-test score is > 4.5. A rejected null hypothesis
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implies that the two sets of measurements are different. It might leak some side-channel
information and, hence, is considered a FAIL test. The threshold was later shown to
depend on the length of the side-channel trace [DZD+17]. We choose 5 as the threshold
based on experimental settings.

While TVLA is mainly used as a metric for side-channel evaluation, it has also been
used as a tool for feature selection in multiple cryptanalytic efforts [RJJ+18]. Here we use
TVLA as a tool for feature selection from side-channel measurements [GLRP06].

3 Plaintext-Checking Oracle-Based SCA
We primarily use NTRU Prime, instead of NTRU, to describe our PC-oracle attack. The
former comes with complications that arise due to the use of rounded ciphertexts. Once
we have described the attack on NTRU Prime, we adapt it to NTRU. Our attack works
in two phases. We construct malicious ciphertexts and, subsequently, utilize side-channel
information from the decryption of these malicious ciphertexts to perform key recovery.

1. Preprocessing Phase: We search for a ciphertext that, when decrypted, leads to
what we refer to as a single collision event. We query the decapsulation device with
specially crafted ciphertexts and analyze their side-channel leakage to detect the
event. Such a ciphertext is called a base ciphertext, denoted by cbase. We use it to
infer crucial information about the secret polynomials f and g.

2. Key Recovery Phase: We use cbase to construct new attack ciphertexts. They are
built in such a way that, upon decryption, their corresponding internal variable e, in
line 4 of NTRU_Prime_PKE.Decrypt procedure in Algorithm 1, can only belong to
either one of two exclusive classes, namely e = 0 and e 6= 0, with a single nonzero
coefficient. Moreover, the value of e depends on a targeted portion of the secret key.
We exploit side-channel leakage from the operations that manipulate e to obtain
information about its value and devise a practical PC oracle. The oracle’s responses,
consisting of e = 0 or e 6= 0, obtained for several attack ciphertexts, are used to
recover the full secret key.

Figure 2 describes our PC oracle-based SCA on the decryption procedure of Streamlined
NTRU Prime KEM. The next two subsections describe the phases in our attack.

Reduce
Mod 3

3f

xcattack
3f . cattack x

g-1

r’
e = ±1 . xi

(Class X)

Weight
Check

Secret Key (sk) = (f,g)
Ciphertext (ct) = cattack
Message (r’) = r’

Decrypt(sk, ct) = r’

Class O/X

Side-Channel based 
PC oracle

e = 0
(Class O)

Figure 2: A pictorial illustration of our PC oracle-based SCA on NTRU Prime

3.1 Preprocessing Phase: Retrieving the Base Ciphertext
We start with an intuition for the approach before proposing a concrete methodology. The
notation used is from Algorithm 1.
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3.1.1 Intuition

We first analyze the effect of decrypting c = k+k ·h, where k ∈ Z+, by looking at a = 3f ·c
in line 3 of NTRU_Prime_PKE.Decrypt procedure as

a = 3f · c = k · 3f + k · 3f · h = k · 3f + k · 3f · (g/3f) = 3k · f + k · g. (2)

The coefficients of both f and g are in {−1, 0, 1}. Thus, the largest absolute value of any
coefficient a[i] is obtained when the corresponding f [i] and g[i] simultaneously take their
absolute maximum values, that is, when f [i] = g[i] = ±1. We call the event when the
corresponding coefficients of two or more polynomials attain their maximum absolute value
a collision. Thus, a[i] = 4k (resp. −4k) when f [i] = g[i] = +1 (resp. −1). We now choose
a suitable positive integer k, with 3 | k, based on the conditions

4k > q/2 and s · k < q/2 for s ∈ [0, 3]. (3)

For the sake of explanation, let f and g only collide at the the ith coefficient with the value
of +1. Hence, a has the coefficients

a[j] > q/2 if j = i and a[j] < q/2 if j 6= i. (4)

Since 3 | k, it is clear that 3 | a[i], for i ∈ [0, n − 1]. When a is reduced modulo q and
zero-centered in (−q/2, q/2], all coefficients, except for a[i], retain their true value and
remain a multiple of 3. This is because every time a[i] crosses the q/2 threshold, that is,
whenever a[i] > q/2, and upon subsequent reduction modulo q, we subtract the prime q
from a[i]. More explicitly,

a mod q = a − q · xi. (5)

Hence, e = a mod 3 ∈ R3 is nothing but

e = (−q mod 3) · xi. (6)

The approach ensures that a[i] crosses the q/2 threshold only during a collision. When
there is no collision, a[i] < q/2. Thus, for a choice of k in Equation (3), e[i] 6= 0 signifies a
collision at i, while all other coefficients remain zero.

The same scenario applies when the collision value is −1. Subsequently, a[i] <
−(q/2) and, hence, when q is added to a[i] to zero-center it in the range [−q/2, q/2], the
corresponding e[i] 6= 0, implying a collision at i. Henceforth, to avoid repetitions, we focus
only on collision with the highest positive value of +1. The same analysis holds for the
lowest negative value of −1.

In our attack, it would be ideal to have a single collision between f and g, resulting in
an e that has a single nonzero coefficient. For illustration we use one particular parameter
set of NTRU Prime. Our choice falls on sntrup761 whose (n, q, w) = (761, 4591, 286). We
denote by ρsingle the probability of a single collision between f and g. The probability of a
collision at any given coefficient is ρ. Letting ρx, for x ∈ {−1, 1}, be the probability of a
collision between f and g with a matching coefficient of either −1 or 1, we define

ρmatch := ρ1 + ρ−1.

For f ∈ Rsh and g ∈ R3, we have ρmatch := (w/3n). Hence, for sntrup761, ρmatch ≈ 0.125
and ρsingle = n · ρmatch · (1− ρmatch)n−1, which is impractically low at 8 · 10−43. We require
better choices for the ciphertexts to limit the number of collisions and, thus, the number
of nonzero coefficients in e.
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3.1.2 Constructing Ciphertexts for Single Collision

We split the value of a in Equation (2) into

a = 3k · f + k · g = 3k · t1 + k · t2, (7)

where t1 = f and t2 = g. To limit the number of collisions between t1 and t2 we make a
generic choice for c. This choice is

c = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h = k1 · d1 + k2 · d2 · h, (8)

where both d1 and d2 are polynomials with, respectively, m and n nonzero coefficients ±1.
The corresponding a = 3f · c is given by

a = k1 · d1 · 3f + k2 · d2 · h · 3f = 3k1 · d1 · f + k2 · d2 · g = 3k1 · t1 + k2 · t2, (9)

where t1 = d1 · f and t2 = d2 · g. The product of d with xi modulo (xn − x− 1) is

(d · xi) mod (xn − x− 1) = dn−i + (dn−i + dn−i−1) x+ . . .

+ (dn−1 + d0)xi + d1x
i+1 + . . .+ dn−i−1x

n−1, (10)

with all coefficients in {−2,−1, 0, 1, 2}. We denote the resulting product by RotpR(d, i)
and refer to it informally as the rotation of d by i degrees. Thus,

t1 = d1 · f = (xi1 + xi2 + . . .+ xim) · f = f · xi1 + f · xi2 + . . .+ f · xim

= RotpR(f , i1) + RotpR(f , i2) + . . .+ RotpR(f , im) (11)

is the sum of rotations of f by varying degrees, governed by {i1, i2, . . . , im}. Similarly,
t2 is the sum of rotations of g by the degrees in {j1, j2, . . . , jn}. A collision occurs at
index i only if all the corresponding coefficients of RotpR(f , u), for u ∈ {i1, i2, . . . , im}, and
RotpR(g, v), for v ∈ {j1, j2, . . . , jn}, are either +2 or −2. In other words, a collision occurs
at any given coefficient i, if all the m random rotations of f and n random rotations of
g simultaneously have a value of +2 or −2. We observe that the probability of number
of collisions between the rotations of f and g quickly degrades as (m,n) increase. It is
possible to choose (m,n) for the chosen-ciphertexts such that, either one of m or n is zero.
If m = 0, then we only consider rotations of g for the attack analysis, while n = 0 means,
we only consider rotations of f . However, both m and n cannot simultaneously take a
value of 0 for the chosen-ciphertexts, since the resulting chosen-cipherext is zero.

For the choice of c in Equation (8), the maximum possible value for a[i] in Equation
(9) is 3k1 · 2m+ k2 · 2n, which is obtained upon a collision. We therefore choose (k1, k2)
that satisfy three conditions:

3 | k1, 3 | k2, 3k1 · r + k2 · s

{
> q/2, if r = 2m, s = 2n,
< q/2, otherwise,

(12)

with 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n. In other words, we choose (k1, k2) such that a[i] > q/2
only when there is a collision at i, while a[i] < q/2, otherwise. Thus, e[i] 6= 0 for a collision
at i and e[i] = 0, otherwise.

In summary, we select values for (m,n) and (k1, k2) for our chosen ciphertexts in the
form of Equation (8). The choice for (m,n) should ensure that a single collision can be
obtained with a high probability. Given (m,n), we then choose (k1, k2) which satisfies the
conditions in Equation (12) such that e[i] 6= 0 indicates a collision at the ith coefficient.
Thus, we use the term true single collision to refer to the scenario where there is only a
single collision at index say i which results in e[i] 6= 0 while all other coefficients of e are
zero. We use the term multiple collisions to denote the scenario where there are collisions
at more than one index, resulting in two or more coefficients of the corresponding e to be
nonzero. Thus, a true single collision is a favourable case for our attack, while multiple
collisions is an unfavourable case.
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Figure 3: Distribution of the coefficients of the noise n := 3f ·m′ for sntrup761. It has
mean 0 and standard deviation σ ≈ 57.

3.1.3 Additional Challenge: Use of Rounded Ciphertexts

NTRU Prime’s encryption procedure generates ciphertexts whose coefficients are rounded to
multiples of 3. This rounding is done in line 3 of NTRU_Prime_PKE.Encrypt. The scheme
sends only the quotient of each coefficient upon division by 3, reducing the ciphertext
size. Thus, every coefficient of the received ciphertext is multiplied by 3 in the decryption.
However, our chosen ciphertexts in Equation (8) do not yield exact multiples of 3 and,
hence, must be rounded. This introduces a rounding noise m′ ∈ R3. The actual value of
our chosen-ciphertext in the decryption is

c = Round(k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h)
= k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h + m′

= k1 · d1 + k2 · d2 · h + m′ (13)

The corresponding a = 3f · c becomes

a = k1 · d1 · 3f + k2 · d2 · h · 3f + m′ · 3f
= (3k1 · d1 · f) + (k2 · d2 · g) + (3f ·m′) = s + n, (14)

where s := 3k1 · d1 · f + k2 · d2 · g is the signal component while n := 3f ·m′ is the noise
component. Since m′ ∈ R3 and f ∈ Rsh are small polynomials, the size of the noise is much
smaller in comparison to the range q.

Figure 3 shows the distribution of the coefficients n[j] of sntrup761. It is Gaussian with
mean 0 and σ ≈ 57, which is much less than q = 4591. The noise polynomial n = 3f ·m′
is a multiple of 3 and gets rounded to 0 when a is reduced modulo 3. When n is added to
coefficients of a near q/2, however, the noise is capable of giving rise to a false positive
or a false negative collision. For a given choice of (m,n) and (k1, k2), the largest possible
coefficient of a is m1 := 3k1 · 2m+ k2 · 2n. The second largest possible coefficient is called
m2. As stated in Equation (12), we choose values for (k1, k2) such that m1 > q/2 and
m2 < q/2. Let 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n. Let

dm1 = ‖(3k1 · 2m+ k2 · 2n)− q/2‖ and

dm2 =
∥∥∥∥( max

(r,s) 6=(2m,2n)
(3k1 · r + k2 · s)

)
− q/2

∥∥∥∥ (15)

denote the distance between m1 and m2, respectively, from q/2.
We use the term false positive collision to denote the scenario when e[i] 6= 0 even when

there is no collision at i (i.e.) s[i] < q/2. For instance, if s[i] = m2 and the corresponding
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Table 2: Concrete values used to build chosen ciphertexts in the two phases of our PC
Oracle-based SCA for the stated parameters of NTRU Prime.

Scheme (m,n) Preprocessing Phase Key Recovery Phase
(k1, k2) (dm1, dm2) (`11, `12, `13) (dm1, dm2) (`21, `22, `23) (dm1, dm2)

sntrup653 (0, 4) (0, 309) (162, 147) (0, 279, 48) (66, 69) (0, 243, 81) (120, 123)
sntrup761 (0, 4) (0, 306) (153, 153) (0, 279, 42) (63, 63) (0, 237, 84) (105, 132)
sntrup857 (0, 4) (0, 342) (153, 189) (0, 312, 54) (75, 75) (0, 270, 93) (135, 135)
sntrup953 (0, 4) (0, 414) (141, 273) (0, 384, 60) (81, 99) (0, 327, 120) (165, 162)
sntrup1013 (0, 4) (0, 465) (132, 333) (0, 435, 72) (108, 108) (0, 375, 129) (186, 189)
sntrup1277 (0, 4) (0, 510) (141, 369) (0, 477, 78) (111, 123) (0, 414, 138) (201, 213)

coefficient of the noise component n[i] > dm2, this leads to a[i] = s[i] + n[i] > q/2 and
thus e[i] 6= 0. Similarly, we use the term false negative collision to denote the scenario
when e[i] = 0 even when there is a collision at i. This is possible when s[i] = m1 due to a
valid collision, but if the corresponding noise coefficient n[i] < −dm1, then s[i] +n[i] < q/2
and e[i] = 0, which suppresses the collision. Both the false positive and false negative
scenarios are unfavourable cases, useless for key recovery.

Although the rounding noise n cannot be removed, the possible occurrence of a false
positive or negative collision can be minimized by placing additional constraints in choosing
(k1, k2). Along with the constraints on (k1, k2) in Equation (12), we choose the tuple that
maximizes dm1 for m1 and dm2 for m2 to prevent n[j] from growing large enough to push
a[j] to the other side of q/2, which would occasion an error in e. As long as n[j] does not
push a[j] to the other side of q/2, e remains error-free. In other words, m1 and m2 should
lie as far as possible on either side of the threshold q/2.

Table 2 lists concrete values of (m,n), (k1, k2), and the distance tuple (dm1, dm2) for
different parameter sets of NTRU Prime. These values can be chosen beforehand. Other
choices can also be used, albeit with appropriate adjustment in the trace complexity.
Table 3 lists the probability of obtaining the ciphertexts corresponding to the different
types of collisions, for the chosen parameters. The numbers were empirically obtained
through simulations over 1000 attack trials (1000 secret keys) for each parameter set of
NTRU Prime. For each secret key, we try with different random chosen ciphertexts until
we obtain a true single collision.

We classify the collisions into four types: (1) true single collision (2) multiple collisions
(3) false positive collision and (4) false negative collision. The probability to obtain a
true single collision, that is, the favourable case, is in the range of 0.032 to 0.064. This
indicates the need for between 15 to 32 trials to obtain a true single collision as we
go over all parameters. The probability for multiple collisions are roughly an order of
magnitude lesser, however nonnegligible. The probabilities for false positive and false
collision are much lower than multiple collisions for all parameter sets of NTRU Prime.
The base ciphertexts corresponding to the unfavourable cases (multiple, false positive and
false negative collisions) do not lead to key recovery. We will explain in Subsection 3.2.3
that instances of unfavourable cases increase the trace complexity without preventing the
eventual key recovery.

For all parameter sets of NTRU Prime, we chose (m,n) = (0, 4) since it yields the best
trace complexity for key recovery. The tuple provides a nice balance of the favourable and
unfavourable cases. Choosing m = 0 means that the base ciphertext is built by considering
only n rotations of the secret polynomial g. Irrespective of the value of the chosen (m,n),
the key recovery phase remains the same and always involves the recovery of the secret
polynomial f .
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Table 3: The probability of obtaining each type of collisions for the chosen ciphertexts
across all parameters of NTRU Prime. The numbers were empirically obtained from 1000
attack trials (1000 secret keys) for each parameter set.

Scheme Collision Probability
True Single Multiple False Positive False Negative

sntrup653 0.0324 0.0016 0.0003 0.0005
sntrup761 0.0372 0.0018 0.0002 0.0015
sntrup857 0.0445 0.0026 0.0003 0.0004
sntrup953 0.0477 0.0032 0.0010 ≈ 0
sntrup1013 0.0495 0.0033 0.0019 ≈ 0
sntrup1277 0.0642 0.0051 0.0026 ≈ 0

3.1.4 Detecting Collision through Side-Channels

Given (m,n) and (k1, k2), we randomly select polynomials d1 and d2 in Equation (8) until
we arrive at a ciphertext c that has a single nonzero coefficient for e. Since e is an internal
variable, it is impossible to classically obtain information about its value. Hence, we utilize
side-channel to identify e 6= 0. This leads to a classification problem with two classes,
namely e = 0 and e 6= 0.

For e = 0, line 5 of NTRU_Prime_PKE.Decrypt implies b′ = e · ĝ = 0. Hence,
Weight(b′) = wb′ = 0. For e 6= 0 with a single nonzero coefficient, however, b′ 6= 0 with
uniformly random coefficients in {−1, 0, 1} and, hence, wb′ 6= 0. Although the exact value
depends on the secret polynomial g, the average value of wb′ is 500 for sntrup761. The
large weight difference between the two classes should be easily distinguishable through
the EM side-channel. The same applies to the other parameter sets.

We ran the optimized implementation of sntrup761 from the open-source pqm4 li-
brary [KRSS] on the STM32F4DISCOVERY board (DUT) housing the STM32F407, ARM
Cortex-M4 microcontroller. The implementation, compiled with the options -O3 -mthumb
-mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16, was clocked at the maximum
clock frequency of 168 MHz. EM measurements were observed from the DUT using a
near-field probe and processed using a Lecroy HD6104 oscilloscope at a sampling rate of
500MSam/sec. We adopt the Welch’s t-test to detect a collision for a chosen ciphertext.

0 1000 2000 3000 4000 5000
Time Index

30

20

10

0

10

20

30

40

50

t-t
es

t

t-test threshold

0 1000 2000 3000 4000 5000
Time Index

30

20

10

0

10

20

30

40

50

t-t
es

t

t-test threshold

(a) e = 0 (b) e 6= 0

Figure 4: The t-test plots between TO and TX for sntrup761.

Welch’s t-test for Collision Detection: Due to the large weight difference, we fo-
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cus on capturing the EM signals from the weight calculation operation in line 6 of
NTRU_Prime_PKE.Decrypt. We first obtain T replicated measurements from the decryp-
tion of c = 0, which corresponds to e = 0. The trace set is denoted by TO. To test if a
given ciphertext c′ results in a collision, we similarly collect T replicated measurements
from the decryption of c′ to form the set TX. Let T = TO ∪ TX. The Welch’s t-test is
performed on TO and TX.

• We center each trace ti ∈ T by removing the mean and dividing by its standard
deviation to obtain t′i.

• We compute the Welch’s t-test between the normalized traces in TO and TX based on
Equation (1). Figure 4(a) and 4(b) depict the t-test plot if e = 0 and e 6= 0 on T = 10
replicated measurements. When e = 0 for c′, we do not see any significant peak
above and below the ±5 threshold indicating similarity in both the computations.
However for e 6= 0, we can clearly identify several well above the t-test threshold,
which clearly denote a collision for c′.

For c′ whose e = 0 in Figure 4(a), there are very few points which border the threshold
or marginally exceed it, indicating a relatively minor difference compared with when c = 0.
We have examined the internal registers and the control flow to identify any change in
behaviour that could result in the t-test values bordering the threshold. We found no
discernible change in the state of the device between cases. We hypothesize that computing
over an all zero ciphertext c = 0 introduces an inconsequential bias in comparison to
a nonzero ciphertext c′. This difference is much smaller compared with the difference
between c′ with a single collision and c = 0, as can be seen from the very high t-test peaks
in Figure 4(b). Thus, the minor difference has a negligible impact on the identification of
the base ciphertext and on the success rate of the classification in the key recovery phase,
which we will show in Subsection 3.2.2. Instead of using c = 0, we have verified that the
usage of chosen-ciphertexts with guaranteed no collision, that is, with high (m,n), also
results in a perfect classification with the added benefit of a reduced t-test bias.

It is evident that leakage detection to identify e 6= 0 does not assume any knowledge
about the implementation of the decapsulation procedure. In the worst case, the attacker
only needs to know the location of the targeted operations within the decryption procedure.
Previous works in [ACLZ20, NDGJ21] have shown that visual inspection can identify
operations within the decapsulation procedure.

We repeat the test for different choices of (d1,d2) until we obtain one for which e 6= 0,
indicating a possible collision. There is a chance that this collision, instead of being a valid
one, is a false positive. Moreover, our technique only realizes a binary oracle that can distin-
guish between e = 0 and e 6= 0. Thus, we do not know the number of nonzero coefficients in
e. If we identify a tuple (d1,d2) that corresponds to e 6= 0, the corresponding ciphertext is
considered to be the base ciphertext cbase, and we simply proceed to the key recovery phase.

Note on False Positive and Multiple Collisions: At this point in the attack, we
do not know whether the identified cbase corresponds to a true single collision. Having
e 6= 0 is possible in three different scenarios: (1) true single collision (2) false positive
collision or (3) multiple collisions. If cbase corresponds to a true single collision, then the
attack ciphertexts, built using the valid cbase, yield the correct secret key. In the other
two scenarios, the attack ciphertexts fail to yield the secret key. When this happens, we
simply restart the attack with the search for a new base ciphertext that corresponds to a
true single collision.

As shown in Table 3, the parameters to build the ciphertexts are chosen such that a
ciphertext that corresponds to true single collision can be identified with a high probability.
For analytical purposes, we assume that the cbase that corresponds to e 6= 0 has a single
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nonzero coefficient at index i. We use (d1att,d2att) to denote the tuple (d1,d2), with m
and n nonzero coefficients, respectively, that corresponds to

cbase = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) · h
= k1 · d1att + k2 · d2att · h. (16)

Upon the retrieval of cbase, we proceed to the key recovery phase.

3.2 Key Recovery Phase
Overview: The key recovery phase works by constructing new attack ciphertexts based
on (d1att,d2att). When decrypted, they result in only two possible values e = 0 and e 6= 0
with e[i] 6= 0, where i is the index of the single collision. The value of e depends on the
value of a targeted coefficient of f . This binary information obtained using side-channels
over several chosen ciphertexts leads to a complete recovery of f one coefficient at a time.

3.2.1 Attack Methodology

We build, using (d1att,d2att), the attack ciphertext

catt = `1 · d1att + `2 · d2att · h + `3 · xu = cbase + `3 · xu, (17)

where `1, `2, `3 ∈ Z+, u ∈ [0, n − 1], and cbase = `1 · d1att + `2 · d2att · h. Let the error
introduced due to rounding be m′ ∈ R3. Thus, a = 3f · catt is given by

a = 3f · catt = 3`1 · d1att · f + `2 · d2att · h · 3f + `3 · 3f · xu + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · f · xu + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · RotpR(f , u) + n,

where n = 3f ·m′ is the noise term. Please note that this noise term n is different from the
noise term of cbase. For the sake of explanation, we assume that d1att and d2att collide at
i with a value of +2. Thus, the coefficients of a can be expressed as

a[j] =
{

3`1 · 2m+ `2 · 2n+ 3`3 · RotpR(f , u)[j] + n[j], if j = i,

3`1 · r + `2 · s+ 3`3 · RotpR(f , u)[j] + n[j], if j 6= i and (r, s) 6= (2m, 2n).
(18)

In particular, given a constant δ := 3`1 · 2m+ `2 · 2n+ n[i], we can represent the coefficient
of a at the colliding index i as

a[i] = δ + 3`3 · RotpR(f , u)[i]. (19)

Thus, a[i] is linearly dependent on RotpR(f , u)[i].
Let βu denote RotpR(f , u)[i]. Based on the rotational property of polynomial multipli-

cation mod (xn − x− 1) in Equation (10), we know that

βu := RotpR(f , u)[i] =


f [i− u], for 0 ≤ u < i,

f [0] + f [n− 1], if u = i,

f [n− 1 + i− u] + f [n+ i− u], for i < u < n.

(20)

By simply changing the rotation index u we can ensure the dependency of a[i], that is,
the colliding index i, with different coefficients of the secret polynomial f . For a given u,
the five values in {−2,−1, 0, 1, 2} are possible candidates for βu. Our task is, therefore, to
select values for (`1, `2, `3) such that the occurrence of a[i] > q/2 and therefore e[i] 6= 0,
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acts as a binary distinguisher capable of identifying every candidate for βu. To distinguish
βu = +2, for example, we choose integers `1, `2, `3 multiples of 3, that satisfy the condition

3`1 · r + `2 · s+ 3`3 · βu

{
> q/2, if r = 2m, s = 2n, and βu = 2,
< q/2, otherwise,

(21)

with 0 ≤ r ≤ 2m and 0 ≤ s ≤ 2n. This ensures that a[i] > q/2 and e[i] 6= 0 at the colliding
index i when βu = +2, while a[i] < q/2 and e[i] = 0 otherwise. For j 6= i, the coefficients
are a[j] < q/2 and e[j] = 0, since there is no other collision than at index i. Similarly,
we can identify βu = −2 by simply changing the sign of `3, that is, by using (`1, `2,−`3).
If, however, e = 0 for both ciphertexts, then βu ∈ {−1, 0, 1}. Let O denote the e = 0
event and X denote the e 6= 0 event. This binary information serves as a distinguisher
for every candidate for βu. An attacker who can realize a PC oracle to extract the binary
information is therefore capable of distinguishing all candidates for βu.

Effect of Rounding Error: Some rounding error n is present on a. Adopting a similar
strategy to the one in Section 3.1.3, we select a tuple (`1, `2, `3) that minimizes the
possibility of a false positive or a false negative in the collision. To distinguish βu = 2, the
tuple must satisfy Equation (21). At the colliding index when βu = 2, the largest possible
coefficient of a is m1 := 3`1 · 2m+ `2 · 2n+ 3`3 · 2 > q/2. Let us call the second largest
coefficient m2 < q/2. A good choice of (`1, `2, `3) maximizes the distances

dm1 = ‖(3`1 · 2m+ `2 · 2n+ 3`3 · 2)− q/2‖ and

dm2 =
∥∥∥∥ max

(r,s,t) 6=(2m,2n,2)
(3`1 · r + `2 · s+ 3`3 · t)− q/2

∥∥∥∥ ,
with 0 ≤ r ≤ 2m, 0 ≤ s ≤ 2n, and 0 ≤ t ≤ 2. In other words, we should give enough
leeway to ensure that the possible error n[i] does not push a[i] to tho other side of q/2.
The same must be done for all choices of (`1, `2, `3) that are used to distinguish every
other candidate for βu. Similar to (m,n) and (k1, k2) in Subsection 3.2, (`1, `2, `3) can be
chosen ahead and fixed.

Table 4 is the decision table for the sntrup761 parameter set. Assuming a collision
with a value of +2, the table shows unique distinguishability for every candidate for
βu ∈ {−2,−1, 0, 1, 2}, based on O or X for chosen ciphertexts constructed using concrete
values for (`1, `2, `3). If the collision value is −2 instead, we swap the responses for βu = +1
(resp. +2) with those for βu = −1 (resp. −2). Every candidate for βu = RotpR(f , u)[i] can
be uniquely identified based on the information about O or X from no more than four
chosen ciphertext queries. Certain candidates, such as +1 and +2, only require 2 queries
to be identified when going from left to right, 0 can be uniquely identified in 3 queries,
while −1 and −2 require all 4 queries. We can thus deploy such a greedy approach to
identify the value of βu faster.

Going back to Table 2, we see the concrete values of (`1, `2, `3) and the corresponding
distance tuple (dm1, dm2) that work on different parameter sets of NTRU Prime. The
notation (`x1, `x2, `x3) refers to the tuple that we use to distinguish x ∈ {1, 2}. We
emphasize that there are several other values for (`1, `2, `3) which can also be chosen to
construct attack ciphertexts for key recovery.

Since e is an internal variable, we use side-channel information to distinguish between
the classes O and X. In Subsection 3.1.4, we used the Welch’s t-test to identify if e 6= 0
to retrieve cbase. The peaks in the t-test plot exceeding the pass/fail threshold of ±5 in
Figure 4(b) are precisely the features that identify e 6= 0. In the following discussion,
we demonstrate techniques to leverage the identified features in the t-test plot to build
templates for the two classes O and X. The templates will then be used to classify a given
single trace into either of the two classes.
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Table 4: Unique distinguishability of every candidate for βu ∈ [−2, 2] depending on e = 0
(O) or e 6= 0 (X) for sntrup761. We assume that the collision value is +2.

Either e = 0 or e 6= 0
Secret Coeffs. (`1, `2, `3)

(0, 279, 42) (0, 237, 84) (0, 279,−42) (0, 237,−84)

−2 O O X X
−1 O O X O
0 O O O O
1 X O O O
2 X X O O

3.2.2 Classification using Reduced Templates

We select features of the t-test plot between TO and TX whose absolute t-test value is greater
than a certain chosen threshold Tselect as our set P of points of interest (PoI). A reduced
trace set T ′O or T ′X is constructed by using points in P . We choose a greater threshold than
±5 for better distinguishability. For the t-test results in Figure 4, we set ±7 as the larger
threshold. This threshold is a parameter of the attack setup. We subsequently calculate
the respective means mO,P and mX,P of T ′O and T ′X to use as the reduced templates for
each class. We do not utilize a covariance matrix for template construction as we only
exploit univariate leakage.

A single trace t for classification is normalized to t′ = t− t to obtain a reduced trace t′P .
The sum-of-squared difference Γ∗ of the trace is computed with each reduced template as

ΓO = (t′P −mO,P)> · (t′P −mO,P) and ΓX = (t′P −mX,P)> · (t′P −mX,P). (22)

The trace t falls into the class that corresponds to the least sum-of-squared difference.
Given a single power/EM trace of the targeted operation, this is sufficient to distinguish
between X or O. Thus, single side-channel traces from the decryption of chosen ciphertexts
constructed according to Equation (17) can recover βu = RotpR(f , u)[i]. Figure 5 visualizes
the matching of a section of the reduced trace tr with the reduced templates of the
respective classes O and X. There is a clear distinguishability between the reduced
templates of the two classes, leading to a classification with 100% success rate.
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Figure 5: Matching the reduced template tr of a given attack trace with the respective
reduced templates of the two classes O and X.
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3.2.3 Recovering the Full Secret Key

We have, thus far, demonstrated the recovery of a single coefficient βu = RotpR(f , u)[i].
Simply by changing the rotation index u, we can recover RotpR(f , u)[i] for all u ∈ [0, n− 1].
However, recovering the exact value of the secret polynomial f requires knowing both
the colliding index i and the collision value (either +2 or −2). Neither of which can be
inferred through side-channels by using our technique. Thus, we need to try out all n
possible colliding indices i ∈ [0, n− 1] as well as the two possible collision values ±2. This
amounts to 2n choices for f . For sntrup761, 2n = 1, 522. For each choice, we compute the
secret key f ′ and check if f ′ ∈ Rsh and also attempt to decrypt known ciphertexts. We
empirically verified, for all parameter sets, that the search space is reduced drastically to
only a handful, ≈ 10, of possibilities, up to a certain rotation of f .

On Repeated Attack Iterations for Key Recovery: It is possible that none of
the guessed f ′ recovered from the key recovery phase is correct. This could be due to
two reasons. First, the base ciphertext from the preprocessing phase itself could have
come from a multiple collisions or a false positive collision, leading to erroneous oracle
responses. Second, even if the base ciphertext corresponds to a true single collision, the
rounding noise n within the attack ciphertexts catt could be too large, yielding erroneous
oracle’s responses. In both cases, we simply reject the current (d1att,d2att) and initiate
a search for a new base ciphertext to repeat the attack until the correct f is recovered.
We reiterate that, if the secret key obtained after the key recovery phase is incorrect, it
does not mean that our key recovery has failed. We may need to perform several attack
iterations until the correct secret key is recovered. We recall that the correct key can be
identified by validating the distribution of coefficients of the recovered secret polynomial
or by attempting to decrypt known valid ciphertexts. Figure 6 summarizes the attack flow
of our PC oracle-based SCA on NTRU Prime.

On Reducing the Impact of Failed Attack Iterations: Failed attack iterations
significantly impact the trace complexity. We can adopt a few optimization approaches
to lessen the impact. If the side-channel oracle’s responses do not match the expected
responses in the decision table, we immediately abort the key recovery phase and restart
the preprocessing phase for a fresh base ciphertext. We similarly abort and start afresh
if the recovered values of βu for u ∈ [0, n− 1] appear very skewed and fail to follow the
expected distribution.

3.2.4 Experimental Results

We implemented our PC oracle-based SCA on sntrup761. The preprocessing phase to
identify cbase took, on average, 39 attempts. The number of attempts, denoted by A,
includes failed attack iterations. Each attempt requires the capture of N = 10 traces to
carry out the Welch’s t-test for leakage detection. Thus, it takes tbase := A · N ≈ 390
traces to identify cbase. The attack phase requires up to 4 chosen-ciphertext queries to
recover one coefficient. The secret f has n = 761 coefficients. The number of traces needed
in the attack phase is denoted by tattack. Thus, we require ttotal = tbase + tattack ≈ 3269
traces for a complete recovery of f . Our attack works with a success rate of about 100% in
recovering the secret key. No additional brute force or offline analysis is necessary.

The same attack works on all other parameter sets of NTRU Prime. Table 5 gives the
estimated trace complexity. The numbers are estimated with N = 10 in the preprocessing
phase. It suffices to use 4700 traces for full key recovery across all parameter sets of NTRU
Prime, confirming the efficacy of our attack.
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Table 5: The trace complexity of our PC oracle-based SCA on different variants of NTRU
Prime. We use tbase to denote the number of traces used in the preprocessing phase, for
N = 10 repeated measurements, and ttotal to denote the number of traces required for full
key recovery.

Scheme tbase ttotal Scheme tbase ttotal

sntrup653 420 3005 sntrup953 270 3601
sntrup761 390 3269 sntrup1013 320 4026
sntrup857 420 3731 sntrup1277 240 4688

4 PC Oracle-based SCA on NTRU
We now adapt our PC oracle-based SCA, that we have implemented successfully on NTRU
Prime KEM, to NTRU KEM. We keep to the notation in Algorithm 3. Since our attack
applies in the same manner to both NTRU-HPS and NTRU-HRSS, we use NTRU-HPS
in the attack description, with details on aspects that differ from those in NTRU-HRSS
supplied whenever necessary.

4.1 Preprocessing Phase

Let k1, k2 ∈ Z+. We construct the chosen ciphertext c as

c = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) ·h = k1 ·d1 + k2 ·d2 ·h, (23)

Construct cbase and perform 
Welch’s t-test based Leakage Detection

If (Leakage Present)

If (Weight Check(s) == Pass)

Yes

No

Yes

No

Success

Construct Reduced Templates 
RTO (Class O) , RTX (Class X)

Query Attack ciphertexts cattack
and classify as Class O/X

Pre-processing Phase

Key Recovery Phase
Use Binary distinguisher table to 

recover secret key s

(RTO, RTX)

Classify(cattack)

Figure 6: The attack flow diagram of our PC oracle-based SCA on NTRU Prime
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where 3 | ki for i ∈ {1, 2} and d1 and d2 are polynomials with, respectively, m and n
nonzero coefficients taking the value of +1. The corresponding a = f · c ∈ Tq in line 7 of
NTRU_PKE.Decrypt is

a = k1 · d1 · f + k2 · d2 · h · f = k1 · d1 · f + k2 · d2 · 3g = k1 · t1 + 3k2 · t2, (24)

where t1 = d1 · f and t2 = d2 · g ∈ Tq. The polynomial t1 (resp. t2) in the cyclotomic
ring T = Z[x]/〈xn − 1〉 is the sum of exact rotations of the secret polynomial f by varying
degrees, that is, for u ∈ {i1, i2, . . . , im} (resp. v ∈ {j1, j2, . . . , jn}). Thus, a collision at
index i occurs when all the corresponding coefficients of the rotations of f and g have a
value of +1 or −1.

We choose (m,n) to maximize the probability of a single collision and, then, proceed to
choose (k1, k2) such that a collision at index i results in a[i] > q/2 while keeping a[i] < q/2
when there is no collision. From Equation (24), we observe that the absolute maximum
value of a coefficient of a upon collision is a[i] = k1 ·m+ 3k2 · n. Thus, we choose (k1, k2)
such that

3 | k1, 3 | k2, k1 · r + 3k2 · s

{
> q/2, if r = m and s = n,

< q/2, otherwise,
(25)

with 0 ≤ r ≤ m and 0 ≤ s ≤ n. If there is a collision at i, then the corresponding coefficient
of e = a mod S3 in line 8 of NTRU_PKE.Decrypt is e[i] 6= 0. Otherwise, we have e[i] = 0.

NTRU-HRSS uses g = g′ · φ1 with the coefficients of g′ coming from {−1, 0, 1}. Hence,
the coefficients of the secret polynomial g are elements in {−2,−1, 0, 1, 2}. The absolute
maximum value possible for a coefficient of a is a[i] = k1 ·m+3k2 ·2n and, hence, Equation
(25) is adjusted accordingly.

4.1.1 Additional Challenge: Ciphertext Compression

Similar to the use of rounded ciphertexts in NTRU Prime to reduce ciphertext size, NTRU
uses compression to exploit the inherent property of valid ciphertexts. The decryption
procedure of NTRU expects valid ciphertexts to be a multiple of φ1 modulo q. In other
words, the sum of coefficients of a valid ciphertext is expected to be 0 modulo q as is evident
in the conditional check in line 3 of NTRU_PKE.Decrypt. Thus, the scheme proposes to
only send the first n− 1 coefficients of c, while the last coefficient c[n− 1] is computed
within the decryption procedure as

c[n− 1] = −
i=n−2∑
i=0

c[i] (26)

Although the c in Equation (23) is not a multiple of φ1 modulo q, it can be modified to
satisfy the requirement as

c = k1·(xi1−xi2 +xi3−. . .+xim)+k2·(xj1 +xj2 +xj3 +. . .+xjn)·h = k1·d1+k2·d2·h, (27)

where m is even and the polynomial d1 having an equal number of positive and negative
nonzero coefficients. It has m/2 coefficients +1 and m/2 coefficients −1. This ensures that
its coefficients sum to 0. The same is not required for d2 since h is already a multiple of
φ1. The c in Equation (27) is processed without any errors in the decryption procedure.
Unlike the chosen ciphertexts for NTRU Prime which inherently contain rounding error,
chosen ciphertexts for NTRU do not contain any error. This significantly simplifies our
attack on both NTRU-HPS and NTRU-HRSS.

Table 6 lists the concrete values of (m,n) and (k1, k2) used in constructing chosen
ciphertexts for single collision for the indicated parameter sets of NTRU. Table 7 lists
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Table 6: Concrete values for the various parameters used to build chosen ciphertexts for
both attack phases of our PC oracle-based SCA for different variants of NTRU.

Scheme (m,n) Preprocessing Phase Key Recovery Phase
(k1, k2) (`11, `12, `13) (`21, `22, `23)

ntruhps2048509 (4, 3) (147, 51) (144, 45, 66) (114, 39, 120)
ntruhps2048677 (4, 3) (147, 51) (144, 45, 66) (114, 39, 120)
ntruhps4096821 (4, 3) (288, 102) (273, 93, 141) (228, 78, 228)

ntruhrss701 (4, 2) (492, 180) (483, 162, 243) (411, 138, 411)

Table 7: The probability of obtaining each type of collision for the chosen ciphertexts
across all parameters of NTRU. The numbers were empirically obtained from 1000 attack
trials (1000 secret keys) for each parameter set.

Scheme Collision Probability Scheme Collision Probability
True Single Multiple True Single Multiple

ntruhps2048509 0.1533 0.0145 ntruhps4096821 0.3381 0.1148
ntruhps2048677 0.0944 0.0047 ntruhrss701 0.1475 0.0160

the probability of obtaining true single collisions and multiple collisions for the chosen
parameters. A single true collision could be obtained between 7-10 trials, while the
proabability of occurence of multiple collisions is a factor of 3− 10 times lower across all
parameters of NTRU.

4.1.2 Detecting Collision through Side-Channels

Given (m,n) and (k1, k2), we construct several chosen ciphertexts c based on Equation
(27) until we identify cbase whose e 6= 0. This identification is done through side-channel
leakage in a similar manner to our attack on NTRU Prime. If e = 0, then m′ = e · fp = 0
as in line 9 of NTRU_PKE.Decrypt. If e = ±xi, however, m′ contains uniformly random
coefficients in {−1, 0, 1}. This large difference in the value of m′ can be easily identified
through side-channels to distinguish between the two classes e = 0 (the class O) and e 6= 0
with e[i] 6= 0 (the class X).

We performed experiments on ntruhps2048677. Side-channel measurements were ac-
quired from the same target platform and experimental setup described in Subsection
3.1.4. The Welch’s t-test was used to identify leakage corresponding to e 6= 0. Figure 7(a)
depicts the t-test plots for several ciphertexts c′ whose e = 0. We see no significant peaks
about the threshold, which indicates e = 0. Figure 7(b) corresponds to e 6= 0 for c′, where
we can clearly identify several peaks, well beyond the threshold, confirming e 6= 0.

The identified ciphertext is called cbase and its corresponding tuple (d1,d2) according
to Equation (27) is marked as (d1att,d2att), to be used in creating the attack ciphertexts
for key recovery. Since we can only differentiate between e = 0 and e 6= 0, it is possible
that e contains multiple non-zero coefficients. In such a case, key recovery cannot be
performed correctly and thus the search for cbase has to be repeated until the correct key
is recovered.

4.2 Key Recovery Phase
We use (d1att,d2att) to build the attack ciphertext

catt = `1 · d1att + `2 · d2att · h + `3 · (x− 1) · xu = cbase + `3 · (x− 1) · xu, (28)
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Table 8: Unique distinguishability of every candidate for βu ∈ [−2, 2] depending on e = 0
(the event O) or e 6= 0 (the event X) for ntruhps2048677

Either e = 0 or e 6= 0
Secret Coeffs. (`1, `2, `3)

(144, 66, 45) (114, 120, 39) (144, 66,−45) (114, 120,−39)

−2 O O X X
−1 O O X O
0 O O O O
1 X O O O
2 X X O O

where `1, `2, `3 ∈ Z+ and u ∈ [0, n − 1]. The term `3 · (x − 1) · xu ensures that catt is a
multiple of φ1 modulo q. Let RotpT(f , j) denote the product of f with xj in the ring T . If
we assume d1att and d2att collide at i with a value of +1, then

a[j] =


`1 ·m+ 3`2 · n+ `3 · (RotpT(f , u+ 1)[j]− RotpT(f , u)[j]), if j = i

`1 · r + 3`2 · s+ `3 · (RotpT(f , u+ 1)[j]− RotpT(f , u)[j]), if
{

(j 6= i) and
(r, s) 6= (m,n).

(29)
Letting δ := `1 ·m+ 3`2 · n gives us

a[i] = δ + `3 · (RotpT(f , u+ 1)[i]− RotpT(f , u)[i]). (30)

Thus, a[i] is linearly dependent on βu = (RotpT(f , u)[i] − RotpT(f , u + 1)[i]), which, in
turn, depends on two coefficients of f . For a given u ∈ [0, n− 1], the possible candidates
for βu are {−2,−1, 0, 1, 2}. We choose (`1, `2, `3) such that a[i] > q/2. Hence, e[i] 6= 0
(Class X) acts as a binary distinguisher for βu. We choose (`1, `2, `3) for NTRU in the
same manner as for NTRU Prime in Subsection 3.2.1 without the additional constraints
placed to deal with the rounding error.

Table 8 is the decision table for ntruhps2048677. It demonstrates unique distinguisha-
bility for every candidate for βu ∈ {−2,−1, 0, 1, 2} based on O or X. Every candidate
for βu = (RotpT(f , u)[i] − RotpT(f , u + 1)[i]) can be uniquely identified in no more than
four chosen ciphertext queries. Table 6 gives the concrete (`1, `2, `3) values for different
parameter sets of NTRU. We write (`x1, `x2, `x3) to denote the tuple used to distinguish
x ∈ {1, 2}.
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Figure 7: The t-test plots for chosen ciphertexts for ntruhps2048677.
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Figure 8: Matching the reduced template tr of a given attack trace with the reduced
templates of the two classes O and X.

4.2.1 Classification using Reduced Templates

We have seen in Subsection 3.2.2 how side-channel leakage from the decryption of catt
classifies a given ciphertext as either O of X to realize a PC oracle. We use the distinguishing
features of the t-test plot in Figure 7 to construct reduced templates for both classes O
and X. We then use the templates for classification based on a simple least squared (LSQ)
difference test. Figure 8 visualizes the matching of a section of the attack trace with
the reduced templates of the respective classes O and X. Here, again, we observe clear
distinguishability between the two classes. We experimentally obtained 100% success rate
in classification, demonstrating that the realized PC oracle is highly accurate.

4.2.2 Recovering the Full Secret Key

The realized PC oracle can uniquely recover the value of βu in up to four traces in obtaining
information about two coefficients of f . The same can be repeated for indices u ∈ [0, n− 1]
to build a well-defined linear system. The system can be trivially solved to recover all
n coefficients of the f . We recover f ′ = f · xi, which is the secret up to a rotation of i
indices. The attacker does not know the collision index i. The multiplication of f by xi in
the ring Tq, however, does not change the coefficients of f . Since the decryption involves
multiplication and division by f , the rotated secret f ′ can already be used to decrypt any
message encrypted with the secret polynomial f .

As before, the secret key might not be recovered correctly if there are multiple colliding
indices in cbase. We simply repeat the attack until the complete key is recovered correctly.

4.2.3 Experimental Results

On ntruhps2048677, retrieving cbase required, on average, only 10 attempts. For N = 10
replicated measurements, the tbase is ≈ 100 traces. The attack phase requires no more
than 4 chosen-ciphertext queries to recover one coefficient. There are n = 677 coefficients.
Altogether, including failed attack iterations, the complete secret polynomial f can be
recovered in ttotal ≈ 2364 traces. Our attack works with a success rate very close to 100%.
Neither brute force nor offline analysis is necessary.

We successfully verified our attack using a simulated PC oracle on the remaining
parameter sets of NTRU. Table 9 presents the estimated trace complexity. The numbers
are estimated with N = 10 in the preprocessing phase. We find that 2900 traces is enough
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Table 9: Trace Complexity of our proposed PC oracle-based SCA on the indicated variants.
We use tbase to denote the number of traces needed to retrieve the base ciphertext and
ttotal to denote the number of traces required for full key recovery.

Scheme tbase ttotal Scheme tbase ttotal

ntruhps2048509 70 1791 ntruhps4096821 30 2911
ntruhps2048677 100 2364 ntruhrss701 70 2447

for full key recovery across all parameter sets of NTRU. This demonstrates that our attack
is effective.

The attack complexity of NTRU is less than that of NTRU Prime by a factor of
≈ 1.5 for comparable secret polynomials. This can be attributed mainly to the absence of
rounding noise in NTRU. The attack analysis is simpler. It allows for more relaxed choices
of attack parameters, reducing the number of attempts to identify the base ciphertext as
well as the number of failed attack iterations.

4.2.4 Comparison with PC Oracle-based SCA on LWE/LWR-based schemes

There are a few subtle but critical differences between our PC oracle-based SCA on NTRU-
based schemes and similar attacks on LWE/LWR-based schemes. The main difference lies
in the anchor variable whose value is controlled carefully through the chosen ciphertexts for
key recovery. On NTRU and NTRU Prime, the internal variable e within the decryption
procedure serves as the anchor variable. The underlying arithmetic of LWE/LWR-based
schemes allows for a direct control over the output of the decryption procedure. There,
the decrypted message m of the chosen ciphertexts serves as the anchor variable for key
recovery.

Another differing aspect lies on the ability to control the value of the anchor variable.
While our attacks can restrict e to two classes O and X, the value of e in class X cannot
be controlled. Our preprocessing phase involves a search for a base ciphertext whose
e = ±1 · xi. The attacker can neither control nor know the colliding index i, since it
depends on the secret key. In LWE/LWR-based schemes, the two classes m = 0 (the class
O) and m = 1 (the class X) are fixed irrespective of the secret key. It is possible to build
attack ciphertexts to exactly restrict m to either 0 or 1. Since the decrypted message m is
the anchor variable, an attacker can also easily construct ciphertexts for m = 0 and m = 1
to build side-channel templates. Thus, the search for a base ciphertext is not necessary,
which heavily simplifies the PC oracle-based SCA on LWE/LWR-based schemes.

Though the attack seems to be more involved in NTRU-based schemes, we do not
observe a significant difference in the attacker’s cost, that is, the trace complexity, to
perform full key recovery. For comparison, we use the experimental results reported in
the work of Ravi et al. in [RRCB20] on PC oracle-based SCA on LWE/LWR-based
schemes, using the same target platform and attack setup. Their attack on Kyber512
required ≈ 7700 traces for full key recovery. The dimension is n = 512 with coefficients in
{−2,−1, 0, 1, 2}. The count corresponds to three attack iterations to improve the success
rate through majority voting. A single attack iteration, therefore, takes ≈ 2560 traces.
Thus, the trace complexity of our proposed attack is comparable to the reported attack on
LWE/LWR-based schemes.

4.3 Limitations of the PC Oracle-Based SCA
Our PC oracle-based SCA can perform full key recovery on all parameter sets of NTRU
and NTRU Prime KEMs. We observe, however, that side-channel leakage from only a few
operations within the decryption procedure can be used to obtain information about the
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anchor variable e for key recovery. The attacker has a narrow scope to obtain side-channel
leakage to instantiate a PC oracle for key recovery.

This is particularly true for NTRU Prime and we refer to NTRU_Prime_PKE.Decrypt
in Algorithm 1. The attack ciphertexts result in e = 0 or e = ±1 · xi. If e = 0, then b′ = 0
by line 5. If e = ±1 · xi, then b′ has uniformly random coefficients in {−1, 0, 1} and its
exact value depends on the secret polynomial g. In both cases, the weight of b′ is not
equal to w, which is a requirement to be satisfied by the decrypted message. Thus, by line
10, the decryption procedure only returns a fixed value of (1, 1, . . . , 1, 0, 0, . . . , 0) for all
attack ciphertexts.

The effect of the anchor variable e for the attack ciphertexts does not propagate
beyond the decryption procedure. The PC oracle attack can only be carried out using
side-channel information from operations that manipulate e and other dependent variables
within the decryption procedure. This restricts an attacker from utilizing side-channel
information from operations performed after decryption. These operations take place
within the re-encryption procedure from line 5 of KEM.Decaps in Algorithm 2.

In the next section, we improve upon the PC oracle-based SCA by proposing a novel
DF oracle-based SCA. The improved attack widens the scope of the attacker to obtain
side-channel leakage from several other operations, which aids in key recovery, within the
decapsulation procedure.

5 Decryption-Failure Oracle-Based SCA
We start by providing some intuition for the decryption-failure (DF) oracle attack. We
demonstrate our attack on NTRU Prime only since the same approach extends trivially to
NTRU. The main idea is to carefully perturb valid ciphertexts, followed by observing the
effect of perturbation on the decrypted message. The perturbations are similar to those
used in the PC oracle-based attack.

Let cvalid be a valid ciphertext whose anchor variable e is denoted by evalid. Let c′ be
an element in a set of specially crafted ciphertexts. These are similar to those used for the
PC oracle-based attack. Upon decryption of c′, the corresponding e′ can only have two
possible values, namely e′ = 0 and e′ = ±1 · xi. We add the perturbation ciphertext c′
to the valid ciphertext cvalid to obtain a perturbed ciphertext cpert. Perturbing cvalid in
this manner, in turn, perturbs evalid so that the corresponding epert for cpert admits two
possible values, namely epert = evalid (the class O) or evalid with a single coefficient error
at i, that is, epert = evalid ± 1 · xi, denoted as einvalid (the class X).

Decryption never fails for the class of valid ciphertexts. The decryption procedure
returns r′valid. For the second class of ciphertexts, however, there is a single coefficient
error in the anchor variable e, with einvalid = evalid ± 1 · xi. This triggers a decryption
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Figure 9: A pictorial illustration of our DF oracle-based SCA on NTRU Prime. The
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failure and, hence, r′invalid = (1, 1, . . . , 1, 0, 0, . . . , 0) is returned as the decrypted message.
Here, the perturbed ciphertext cpert restricts the decrypted message r′ to two possibilities,
namely r′valid and r′invalid. There, the decrypted message always takes the form of r′invalid.
The success or failure of decryption for the perturbed ciphertexts depends upon a targeted
portion of the secret key. Thus, an attacker who can obtain information about the
decryption outcomes through a decryption-failure (DF) oracle can fully recover the secret
key. At this point, we have ensured that the effect of the anchor variable e propagates to
the decrypted message r′. This was not the case with the PC oracle-based attack where
the decrypted message always takes the form of r′invalid. Figure 9 illustrates the attack
targeting leakage from the decryption procedure. We can also rely on leakage from the
re-encryption procedure to instantiate the DF oracle.

A decryption failure can be identified through side-channel leakage from two sets
of operations. The first one consists of operations that manipulate the anchor variable
e. The second one includes operations that manipulate the decrypted message r′ in
the re-encryption procedure. Thus, an attacker enjoys a wider scope to obtain side-
channel information from several operations in the decapsulation procedure, including the
re-encryption operation, toward a key recovery.
Remark 1. We observe that the DF oracle-based attack works with information about the
decrypted message r′. This can be used to perform key recovery over the IND-CPA secure
NTRU Prime PKE, even without the requirement of side-channels. Thus, our proposed DF
oracle-based attack on NTRU Prime is also the first theoretical chosen-ciphertext attack
against the IND-CPA secure NTRU Prime PKE.

Similar to the PC oracle-based SCA, our DF oracle-based attack also works in two
phases, namely the preprocessing phase and the key recovery phase.

5.1 Preprocessing Phase
As in line 3 of NTRU_PRIME_PKE.Encrypt in Algorithm 1, we construct a valid ciphertext
cvalid = Round(h · r). Its corresponding a = 3f · cvalid is

avalid = g · r + 3f ·m, (31)

where m is the rounding error. We then construct perturbations using the methodology
that was used to build the ciphertexts to obtain a single collision for NTRU Prime in
Subsection 3.1.2. Such a perturbation c′ is given by

c′ = k1 · (xi1 + xi2 + . . .+ xim) + k2 · (xj1 + xj2 + . . .+ xjn) ·h = k1 ·d1 + k2 ·d2 ·h, (32)

with 3 | k1, 3 | k2, and d1 and d2 having, respectively, m and n nonzero coefficients +1.
The corresponding a′ = 3f · c′ is

a′ = k1 · d1 · 3f + k2 · d2 · g + 3f ·m′′. (33)

We use c′ to perturb cvalid as

cpert = Round(h·r+c′) = Round(h·r+k1·d1+k2·d2·h) = h·r+k1·d1+k2·d2·h+m′, (34)

where m′ is the rounding error. Upon decrypting c′, we express apert = 3f · cpert as

apert = g · r + k1 · d1 · 3f + k2 · d2 · g + 3f ·m′, (35)

Thus, apert ≈ avalid + a′. Let s := k1 · d1 · 3f + k2 · d2 · g be the signal component of apert.
The noise n comprises of the rounding noise 3f ·m′ acting together with g · r, written as
gr, from avalid. For simplicity, we denote variables apert and epert corresponding to the
perturbed ciphertext cpert by a and e, respectively.
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To induce a decryption failure, that is, to perturb a single coefficient of e = a mod 3, we
need a single coefficient of a, say a[i], to be greater than q/2. This is achieved by choosing
(m,n) for the polynomials (d1,d2) in Equation (32) to maximize the probability of a single
collision. If there is a collision at i, then s[i] should be large enough to push a[i] beyond
the q/2 threshold. The coefficient s[i] at the colliding index is m1 := 3k1 · 2m+ k2 · 2n.
Let m2 denote the next largest possible value. We thus choose (k1, k2) such that m1 > q/2
and m2 < q/2.

The noise component n = g · r + 3f ·m′ in a, however, contributes to crossovers near
the q/2 threshold for coefficients of a, resulting in false positives and false negatives in
decryption failures. For sntrup761, the distribution of n′ is Gaussian with mean 0 and
a slightly larger standard deviation of σ ≈ 53 than σ = 50 for n in the PC oracle-based
attack. Though the increase is insignificant, we will soon see in Section 5.3 that the noise
term gr in n is also present as a constant bias in the attack ciphertexts used for key
recovery, along with the inherent rounding error. This additional bias poses challenges
and, thus, requires a slightly different approach to construct chosen ciphertexts.

5.1.1 Additional Challenge: Dealing with Bias

To negate the effect of gr, we slightly modify the constraints in choosing (k1, k2) so as to
obtain a single collision at the index where the corresponding coefficient gr[i] of gr has a
high absolute value. We choose (k1, k2) such that

3 | k1, 3 | k2, (q/2− ε1) < m1 < (q/2− ε2), m2 < q/2, (36)

with ε1, ε2 > 0. This way, even if there is a collision at i, we keep s[i] = m1 < q/2 in the
range [(q/2− ε1), (q/2− ε2)]. Such a constraint for (k1, k2) gives us several advantages.

The main advantage is that a[i] > q/2 only when two conditions, namely a collision at
i and n[i] > ε2, hold simultaneously. In allowing the noise coefficient to have a large value,
we increase the chances of gr[i] to also have a large value at the colliding index. Instead of
simply identifying a collision at any index, we increase the chances of achieving collision at
an index where gr[i] has a large value. Thus, even if a′[i] = m1 and is close to q/2, it gets
pushed further away from q/2 by gr[i]. This has a positive influence on the key recovery
as it decreases the chance of a false negative for decryption failure in the key recovery
phase. With m1 chosen to be < q/2 by ε2 < dm1 < ε1, there is a leeway to increase dm2.
This reduces the chances of false positives at the other indices j 6= i where no collisions
occur. In short, the modified constraints for choosing (k1, k2) reduce the chance of false
positives and false negatives.

The tuples (m,n) and (k1, k2) are chosen to identify ciphertexts with a single collision.
Table 10 presents concrete values used in our attack on the specified parameter sets of
NTRU Prime. Table 11 lists the probability of obtaining ciphertexts corresponding to
different types of collisions, for the chosen parameters. The numbers were empirically

Table 10: Concrete values used to construct chosen ciphertexts for both phases of our DF
oracle-based SCA on NTRU Prime.

Scheme (m,n) Preprocessing Phase Key Recovery Phase
(k1, k2) (dm1, dm2) (`11, `12, `13) (dm1, dm2) (`21, `22, `23) (dm1, dm2)

sntrup653 (0, 4) (0, 285) (30, 315) (0, 279, 48) (66, 69) (0, 243, 81) (120, 123)
sntrup761 (0, 4) (0, 282) (39, 321) (0, 279, 42) (63, 63) (0, 237, 84) (105, 132)
sntrup857 (0, 4) (0, 318) (39, 357) (0, 312, 54) (75, 75) (0, 270, 93) (135, 135)
sntrup953 (0, 4) (0, 393) (27, 420) (0, 384, 60) (81, 99) (0, 327, 120) (165, 162)
sntrup1013 (0, 4) (0, 444) (36, 480) (0, 435, 72) (108, 108) (0, 375, 129) (186, 189)
sntrup1277 (0, 4) (0, 489) (27, 516) (0, 477, 78) (111, 123) (0, 414, 138) (201, 213)
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Table 11: The probability of obtaining each type of collisions for the chosen ciphertexts
on NTRU Prime. The numbers were obtained from 1000 attack trials (1000 secret keys)
for each parameter set.

Scheme Collision Probability
True Single Multiple False Positive False Negative

sntrup653 0.0099 0.0008 ≈ 0 0.0228
sntrup761 0.0095 0.0009 ≈ 0 0.0287
sntrup857 0.0111 0.0010 ≈ 0 0.0315
sntrup953 0.0177 0.0018 ≈ 0 0.0305
sntrup1013 0.0151 0.0017 ≈ 0 0.0342
sntrup1277 0.0213 0.0036 ≈ 0 0.0393

obtained through simulations from 1000 attack trials (1000 secret keys) for each parameter
set. We observe that a true single collision can be obtained anywhere between 47 to 111
trials across all parameters of NTRU Prime, while the probability of multiple collision is
generally an order of magnitude lower across all parameters. Since the parameters were
chosen to particularly minimize false positive collisions to deal with the constant bias, we
do not observe any false positive collisions in our experiments. However, this leads to
a significant increase in false negative in collisions (suppression of true single collisions),
which are more likely to occur than true single collisions across all parameters of NTRU
Prime. This leads to a slight increase in the number of traces required in the preprocessing
phase, as we show in the experimental results in Table 12.

Given (m,n) and (k1, k2), we randomly select d1 and d2 to construct perturbations c′
based on Equation (32). The aim is to identify a perturbation which, when added to a
valid ciphertext cvalid, induces a single coefficient error in the corresponding variable e by
producing einvalid = evalid ± xi. This results in a decryption failure by yielding r′invalid.

5.2 Detecting Decryption Failure through Side-Channels
Decryption failures can be identified by obtaining information, through side-channels,
about either the anchor variable e′ within the decryption procedure or the decrypted
message r′ used in the re-encryption procedure. We can, therefore, utilize side-channel
leakage from two sources. The first source consists of operations that manipulate e′ within
the decryption procedure in lines 5 to 6 of NTRU_PRIME_PKE.Decrypt in Algorithm 1.
Operations within the re-encryption procedure in line 5 of NTRU_Prime_KEM.Decaps in
Algorithm 2 form the second source.

When experimenting on sntrup761, we keep the same target platform and experimental
setup used to perform the PC oracle-based attack to take measurements. In particular, we
obtained side-channel leakage from the encoding of the decrypted message r′ just after the
decryption procedure. Other operations within the re-encryption can also be deployed to
infer information on r′.

We used the Welch’s t-test described in Subsection 3.1.4 to identify leakage that
differentiates r′invalid (decryption failure) from r′valid (decryption success). Figure 10(a)
depicts the t-test plot for several perturbed ciphertexts cpert whose decryption does not
trigger any error. One sees no significant peaks beyond the threshold, which indicates
r′ = r′valid. Figure 10(b), however, exhibits the t-test plot when the decryption fails for
the perturbed ciphertext. One can clearly identify several peaks, well above the threshold,
indicating r′ = r′invalid. The ciphertext which successfully induces a decryption failure is
called cbase. Its corresponding polynomials d1 and d2 are labelled d1att and d2att, with
m and n terms, respectively.
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Figure 10: The t-test plots used to identify decryption failure for sntrup761.

5.3 Key Recovery Phase
We now use the polynomials d1att and d2att of cbase to build new perturbed attack
ciphertexts. Side-channel leakage from their decapsulation is used to identify decryption
failures, which subsequently leads to full recovery of the secret polynomial f .

5.3.1 Attack Methodology

Our approach here very closely resembles the one used in the PC oracle-based attack
on NTRU Prime in Section 3.2. We first build the perturbation ciphertext c′, using
(d1att,d2att) of cbase, as

c′ = `1 · d1att + `2 · d2att · h + `3 · xu, (37)

with `1, `2, `3 ∈ Z+ and u ∈ [0, n− 1]. We add c′ to the term h · r of cvalid and generate
the invalid perturbed ciphertext cpert as in Equation (34). The corresponding a = 3f ·cpert
is given by

a = 3f · cpert = 3`1 · d1att · f + `2 · d2att · h · 3f + `3 · 3f · xu + gr + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · RotpR(f , u) + gr + 3f ·m′

= 3`1 · d1att · f + `2 · d2att · g + 3`3 · RotpR(f , u) + n, (38)

where n = 3f ·m′ + gr. If d1att and d2att collide at i, then we can write

a[j] =
{

3`1 · 2m+ `2 · 2n+ 3`3 · RotpR(f , u)[j] + n[j], if j = i

3`1 · r + `2 · s+ 3`3 · RotpR(f , u)[j] + n[j], if j 6= i and (r, s) 6= (2m, 2n).
(39)

As in the PC oracle-based attack, we choose (`1, `2, `3) to ensure that the following
conditions are met. First, a[j] < (q/2), for j 6= i, and, thus, e[j] = evalid[j]. Second,
the coefficients of a near the threshold q/2 are as far as possible from the threshold to
avoid accidental crossovers due to n. Third, the occurrence of a[i] > q/2 and, therefore,
e[i] 6= evalid[i], depends on a single coefficient βu ∈ {−2,−1, 0, 1, 2} of the rotated secret
polynomial RotpR(f , u)[i]. Thus, e = evalid (the class O) or e = einvalid (the class X) can
act as a binary distinguisher for every candidate of βu. These constraints used to select
(`1, `2, `3) are the same as that used for the PC oracle-based SCA for NTRU Prime. We
arrive at the values used for the PC oracle-based SCA as listed in Table 10. Our decision
table for unique distinguishability here is, therefore, Table 4 in Subsection 3.2.1.
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5.3.2 Classification using Reduced Templates

We utilize the differentiating features in the t-test plot in Figure 10(b) to build the reduced
templates for classes O and X. Subsequently, they can be used to classify any given trace
corresponding to the decapsulation of an attack ciphertext into either class. This was
treated earlier in Subsection 3.2.2. Figure 11 visualizes the matching of a small section of
an attack trace tr with the reduced templates of the respective classes O and X, showing
a clear distinguishability. This enables us to correctly classify a given single trace with a
100% success rate.
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Figure 11: Matching the reduced template tr of a given attack trace with the reduced
templates of classes O and X.

5.3.3 Recovering the Full Secret Key

So far, we have demonstrated the recovery of a single coefficient βu of the rotated secret
polynomial RotpR(f , u). By changing the rotation index u, we can recover Rotp(f , u)[i] for
all u ∈ [0, n− 1]. In line with the PC oracle attack, recovering the exact secret polynomial
f requires knowing the colliding index i and the value, either +2 or −2, of the collision.
By trying out all possible choices for i ∈ [0, n − 1] and the colliding values +2 and −2,
we check, for each choice, if f ′ ∈ Rsh and attempt to decrypt known ciphertexts. We
empirically verified that the search space is drastically reduced to ≈ 10, up to a certain
rotation of f . It is also possible that the secret is not recovered correctly, due to a bad
choice of cbase or large rounding noise in the attack ciphertexts. When this happens, we
simply rerun the attack until the correct key is recovered, similar to the PC oracle-based
attack.

5.3.4 Experimental Results

We ran our attack on sntrup761. The preprocessing phase to retrieve cbase requires an
average of ≈ 165 attempts. For N = 10, the number of required tbase goes to ≈ 1650. The
number is almost 4.2 times higher than the one in the PC oracle-based attack, which only
requires ≈ 39 attempts. The increase is partly due to the additional constraints to deal
with the constant bias gr. The subsequent attack phase can recover a single coefficient in
up to 4 ciphertexts and, thus, the complete attack requires ttotal = tbase + tattack ≈ 4566
traces to completely recover f . Our attack works with a success rate of very close to 100%
with no additional brute force or offline analysis to perform.

We successfully verified our attack methodology using a simulated DF oracle on all
parameter sets of NTRU Prime. Table 12 gives the attack’s estimated trace complexity.
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Table 12: The trace complexity of our DF oracle-based SCA on NTRU Prime. We use
tbase to denote the number of traces required in the preprocessing phase (for N = 10
repeated measurements) and ttotal to denote the number of traces required for full key
recovery.

Scheme tbase ttotal Scheme tbase ttotal

sntrup653 1630 4182 sntrup953 760 4436
sntrup761 1650 4566 sntrup1013 740 4603
sntrup857 1200 4631 sntrup1277 410 5287

The numbers are estimated with N = 10 in the preprocessing phase. Roughly, between
4100 to 5300 traces are enough for full key recovery across all listed parameter sets with a
100% success rate. The numbers are 1.2 to 1.4 times the numbers for the PC oracle-based
attack. This increase comes mainly from the longer preprocessing phase for the DF
oracle-based attack.

5.3.5 Comparison with DF Oracle-based SCA on LWE/LWR-based schemes

Known DF oracle-based SCA on LWE/LWR-based schemes [GJN20,BDH+21] modified
the coefficients of the ciphertext to perturb the corresponding bits in the decrypted message
m that served as the anchor variable. Whether or not the perturbations resulted in a
decryption failure is linearly dependent on the secret key. This information, if obtainable
by a DF oracle, led to full key recovery. For LWE/LWR-based schemes, the location of
the perturbed bit in the decrypted message can be precisely controlled.

Although the underlying arithmetic is too different for a direct comparison, we can
identify a few comparative aspects. Our approach does not allow us to control the location
of the perturbed bit of the decrypted message. The more important subtle difference lies
in the type of error used for perturbation. We use carefully constructed perturbations
which, in fact, are the chosen ciphertexts used to carry out the PC oracle-based attacks.
In contrast, the attacks on LWE/LWR-based schemes use simpler errors which perturb
targeted collection of single coefficients of the ciphertext polynomial.

For a quantitative comparison of the attacker’s effort, we utilize experimental results
from the work of Bhasin et al. [BDH+21]. The work demonstrated a practical side-channel
attack on a side-channel resistant implementation of Kyber KEM. Their attack exploited
side-channel vulnerabilities in the ciphertext comparison operation to instantiate a DF
oracle. Their attack on Kyber512 took about 217 decapsulation queries and an additional
offline analysis, with a computational complexity of 265, for full key recovery. Similarly, Guo
et al. [GJN20] proposed a timing side-channel attack targeting the ciphertext comparison
operation to instantiate a DF oracle-based attack on Frodo KEM. Their attack required
≈ 230 decapsulation queries for full key recovery in Frodo− KEM− 1344− AES. While
the number of measurements includes replicated queries for better signal-to-noise ratio,
the number of decapsulation queries without replications is still very high at ≈ 118000.
Our attack on NTRU-based schemes requires much less number of traces, in the range of
4500 to 7000, for full key recovery with a 100% success rate across all parameter sets of
NTRU Prime.

6 Full-Decryption Oracle-Based SCA
We have thus shown that PC and DF oracles can be realized using side-channels through
careful crafting of chosen ciphertexts for NTRU Prime and NTRU KEMs to perform full
key recovery. The PC and DF oracles, however, only provide 1 bit of information about
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the secret-dependent anchor variable, requiring a few thousand chosen ciphertext queries
to the target device. A more powerful side-channel adversary, who can extract more that
just 1 bit of information about the anchor variable, can perform more efficient attacks.

In this respect, Sim et al. [SKL+20] demonstrated single-trace message recovery attacks
over several IND-CCA secure NIST PQC KEMs. In particular, their attack targeted rou-
tines which manipulate sensitive variables, such as the decrypted messages, one coefficient
or one bit at a time. Targeting NTRU, they showed that the polynomial lift operation
computed on the decrypted message m′ in line 10 of NTRU_PKE.Decrypt is susceptible to
side-channel attacks. They exhibited successful single-trace message recovery with close to
a 100% success rate.

Though they have not demonstrate a message recovery for NTRU Prime, we speculate
that the weight check operation on the variable b′ in line 6 of NTRU_Prime_PKE.Decrypt
could also be susceptible to similar single-trace attacks, because it involves manipulation
of single coefficients of b′. The feasibility of performing a single trace recovery of b′ is
outside the scope of our present work.

The aforementioned side-channel vulnerabilities can potentially be exploited to recover
the complete decrypted message m′ in NTRU or the variable b′ in NTRU Prime in a single
trace. We show that such vulnerabilities can also be used to instantiate a full-decryption
(FD) oracle in a CCA setting to mount very efficient key recovery attacks. We first describe
our attack on NTRU Prime KEM before going to NTRU KEM.

6.1 Attack Methodology on NTRU Prime KEM
The attack methodology directly follows from our PC oracle-based SCA on NTRU Prime
KEM in Section 3. We conduct the preprocessing phase to retrieve cbase whose e = ±xi.
Using the side-channel based FD oracle, we assume complete recovery of b′ for cbase in a
single trace. From line 5 of NTRU_Prime_PKE.Decrypt, we have

b′ = e · ĝ ∈ R3, (40)

where ĝ is the inverse of the secret polynomial g in R3. Since e = ±xi, g, we can recover
g = e · b̂′ ∈ R3, where b̂′ is the inverse of b′ ∈ R3. The attacker does not know i, but can
simply try out all possible choices for i ∈ [0, n− 1] to recover the secret polynomials f and
g, up to a rotation.

6.2 Attack Methodology on NTRU KEM
The attack follows the preprocessing phase of the PC oracle-based SCA of NTRU KEM
from Subsection 4.1 to retrieve the base ciphertext cbase whose e = ±xi. Using the
side-channel based FD oracle, we assume a complete recovery of m′ for cbase in a single
trace. From line 9 of NTRU_PKE.Decrypt procedure, we know that

m′ = e · fp ∈ S3, (41)

where fp is the inverse of f in S3. Since e = ±xi, we can compute fp = b̂′ · ê ∈ S3, where
ê is the inverse of e ∈ R3. An attacker can try out all possible values of i to fully retrieve
fp before calculating the secret key polynomials f and g.

Unlike in the PC oracle or DF oracle-based attacks, the attacker can perform full
key recovery by using the base ciphertext cbase only for both NTRU and NTRU Prime
KEMs. This completely eliminates the need for the key recovery phase. Thus, the trace
requirement of the FD oracle-based SCA primarily comes from the preprocessing phase
of the attack. We refer to the column corresponding to tbase in Tables 5 and 9 for the
estimated trace complexity of the FD oracle-based SCA on the different parameter sets of
NTRU Prime and NTRU KEMs, respectively.
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7 Concluding Remarks
We have thus demonstrated the first practical side-channel assisted CCAs on NTRU and
NTRU Prime, which are final round candidates in the onging NIST PQC standardization
process. Our attacks involve a careful construction of malformed ciphertexts which, when
decrypted, can instantiate three different types of oracles through side-channel leakage from
the decapsulation procedure. The resulting responses can then be used to perform full key
recovery. The oracles are plaintext-checking, decryption-failure, and full-decryption oracles.
We validate our attacks experimentally on optimized implementations of NTRU-based
schemes, using the EM-based side-channel on the 32-bit ARM Cortex-M4 microcontroller.
All of our attacks are capable of recovering the full secret key in only a few thousand
chosen ciphertext queries to the target device on all parameter sets of NTRU and NTRU
Prime. The attacks stress on the need for concrete masking strategies for NTRU-based
KEMs to protect against side-channel assisted CCAs.

On protection against proposed SCA-assisted CCA: The primary attack method-
ology behind all our proposed attacks relies on fixing targeted intermediate variables to
known values. The subsequent utilization of side-channel leakage identifies the values
to perform key recovery. Thus, a complete randomization of the internal computation
through masking can serve as a concrete countermeasure. We address the countermeasures
for NTRU Prime and NTRU separately.

In NTRU Prime, the PC oracle-based attack only exploits leakage from the decryption
procedure. Thus, masking only the decryption procedure in decapsulation protects against
the attack. The same applies for the FD oracle-based attack since it primarily relies
upon leakage from the decryption procedure. The DF oracle-based attack, however, is
capable of exploiting leakage from the re-encryption procedure for key recovery. Thus, the
entire decapsulation procedure needs to be masked for a concrete protection to thwart key
recovery.

In NTRU, the decapsulation procedure does not perform any re-encryption of the
decrypted message. Thus, the decryption procedure remains the only source of side-channel
leakage to instantiate the oracles for key recovery. All three attacks target NTRU by
exploiting leakage from the decryption procedure. We believe that masking the decryption
procedure within decapsulation is sufficient to thwart our attacks. However, the other
unmasked operations within the decapsulation procedure could also offer an opportunity
for the attacker to instantiate oracles for key recovery. We leave a concrete analysis of this
possible attack route for some future work.

There are several works, see, e.g., [LSCH10,WZW13,HCY20,SMS19], on protecting
NTRU-based primitives against side-channel attacks. Thus far, existing attacks as well
as countermeasures only target the polynomial multiplier involving the secret key in the
decryption procedure in lines 3 and 5 in NTRU_Prime_PKE.Decrypt of NTRU Prime in
Algorithm 1 and in lines 7 and 9 of NTRU_PKE.Decrypt of NTRU in Algorithm 3. Our
attacks have shown that other operations within decryption and decapsulation can also be
targeted for key recovery. Moreover, schemes such as Streamlined NTRU Prime include
nonlinear operations, which are nontrivial to mask. An example is the weight check in
line 6 of NTRU_Prime_PKE.Decrypt of NTRU Prime. To the best of our knowledge, a
concrete and complete masking scheme for NTRU-based PKE/KEMs is yet to be devised.
Developing efficient and concrete masking strategies for NTRU-based PKE/KEMs, there-
fore, warrants an urgent attention from our community.

On masking countermeasures for lattice-based schemes: Masking countermea-
sures, in general, are known to be costly in performance. This is especially true in schemes
based on the LWE/LWR problem, such as Kyber and Saber. First-order secure masked
implementations of these schemes are slower by 2.5 to 4 times compared to unmasked
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implementations on the ARM Cortex-M4 microcontroller [BDK+21,BGR+21]. Designing
secure masking schemes is tricky, as subtle flaws, if present, can be exploited. This was
shown by Bhasin et al. [BDH+21] on Kyber KEM. In addition, higher order attacks are
possible on masked implementations, as shown by Ngo et al. [NDGJ21] on Saber KEM.
Although the aforementioned attacks target masked implementations, the analysis used in
performing key recovery by exploiting the observed leakage, is the same as the one for key
recovery on unprotected implementations of the targeted schemes. We stress that our pro-
posed approaches to build chosen-ciphertexts as well as the subsequent key recovery could
also be extended to target protected/masked implementations of NTRU-based schemes.
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