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Abstract. Lattice-based schemes are promising candidates to replace
the current public-key cryptographic infrastructure in wake of the loom-
ing threat of quantum computers. One of the Round 3 candidates of the
ongoing NIST post-quantum standardization effort is FrodoKEM. It was
designed to provide conservative security, which comes with the caveat
that implementations are often bigger and slower compared to alternative
schemes. In particular, the most time-consuming arithmetic operation of
FrodoKEM is the multiplication of matrices with entries in Zq.
In this work, we investigate the performance of different matrix multipli-
cation approaches in the specific setting of FrodoKEM. We consider both
optimized “näıve” matrix multiplication with cubic complexity, as well
as the Strassen multiplication algorithm which has a lower asymptotic
run-time complexity. Our results show that for the proposed parameter
sets of FrodoKEM we can improve over the state-of-the-art implementa-
tion with a row-wise blocking and packing approach, denoted as RWCF
in the following. For the matrix multiplication in FrodoKEM, this results
in a factor two speed-up. The impact of these improvements on the full
decapsulation operation is up to 22 percent. We additionally show that
for batching use-cases, where many inputs are processed at once, the
Strassen approach can be the best choice from batch size 8 upwards. For
a practically-relevant batch size of 128 inputs the observed speed-up is
in the range of 5 to 11 percent over using the efficient RWCF approach
and this speed-up grows with the batch size.

Keywords: Post-Quantum Cryptography · Matrix Multiplication · Soft-
ware Implementation · Strassen.

1 Introduction

The security of nearly all our digital assets as well as our online activities relies
on the hardness of the underlying cryptographic primitives. Public-key cryptog-
raphy, most notably RSA [37] and Elliptic Curve Cryptography [27,30], is one of
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the fundamental components to establish a secure cryptographic infrastructure.
With the steady progress in the development of quantum computers, the long-
term security of this infrastructure, including encrypted information and digital
signatures, is being threatened. When a full-scale quantum computer becomes
available, all the currently standardized and widely-used public-key algorithms
are vulnerable to polynomial-time attacks using a quantum computer [39,35].

As a reaction to this imminent threat on our currently deployed public-
key infrastructure, the USA’s National Institute of Standards and Technology
(NIST) initiated a process to solicit, evaluate, and standardize one or more
quantum-resistant public-key cryptographic algorithms in 2016 [32] where a new
replacement standard is expected in 2024. These algorithms are known as post-
quantum or quantum-safe algorithms. Arguably the most promising family of
post-quantum secure cryptographic approaches are the lattice-based schemes.
From its inception with Ajtai’s seminal works [2,3], the field has grown to an
active area of research (see e.g., [33] for a comprehensive overview).

Among the lattice-based family, the learning with errors (LWE) problem is
a common foundation on which to construct practical and post-quantum se-
cure schemes. It was first introduced by Regev in [36] and subsequently gained
traction due to its hardness reduction proofs; the hardness of LWE (for certain
parameterizations) can be reduced to the hardness of various worst-case lattice
problems. To improve efficiency, multiple variants of the original LWE problem
have been proposed. These use additional structures in the lattice to realize a
faster and more compact version of LWE-based schemes. Notable examples are
the Ring-LWE [29,34] and the Module-LWE [13,28] versions. While these vari-
ants indeed offer schemes with better performances, they are more removed from
the original hardness proof of LWE.

In this paper, we focus on the NIST Round 3 candidate FrodoKEM [10,31]. It
is derived from the base LWE problem and was designed to provide a practical
post-quantum key exchange mechanism with conservative security. In particular,
it is based on a carefully parameterized LWE problem, which is closely related to
the conjectured-hard problems on generic, “algebraically unstructured” lattices.
This makes it a very conservative and secure choice in practice.

The downside, of course, is that practical realizations of FrodoKEM are often
bigger and slower compared to the algebraically structured alternatives, i.e., Ky-
ber [11,38], NTRU [15], NTRU Prime [9,8] and Saber [17,18]. Still, the advance
to the third round of the ongoing NIST standardization effort as well as being
one of two post-quantum algorithms recommended by the German Federal Of-
fice for Information Security (BSI) as cryptographically suitable for long-term
confidentiality [14] underline the practical relevance of FrodoKEM.

From a performance perspective, the most costly operations in FrodoKEM
are the (pseudo-random) generation, multiplication and addition of large integer
matrices. Hence, from an arithmetic point of view the main bottleneck and, there-
fore, focus of optimization is the implementation of the matrix multiplication.
The main matrix used in these computations is a square integer matrix of dimen-
sion n ∈ {640, 976, 1344} depending on the used parameter set of FrodoKEM. In
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the reference and optimized implementations of [31], this is achieved (if avail-
able) using the Advanced Vector Extensions (AVX) instructions on the x64 plat-
form. For matrix dimensions n, the implementations of [31] use a näıve matrix
multiplication approach, i.e. of asymptotic complexity O(n3). This is motivated
by “street wisdom” that the asymptotically faster matrix multiplication algo-
rithms only provide benefits for much larger values of n than used in FrodoKEM.
Examples of such algorithms are the Strassen algorithm [41] (O(nlog2 (7)) =
O(n2.807355)), the Coppersmith–Winograd algorithm [16] (O(n2.375477)), and the
most recent improvements by Alman and Williams [6] (O(n2.3728596)).

The concept of batch cryptography was first introduced by Fiat in [19]. He
proposed to perform multiple encryptions or signature generations simultane-
ously in order to reduce the total complexity. This is achieved by batching the
operations instead of performing them one-by-one (see Section 4.2 for more de-
tails and references). For certain use cases, which require the rapid processing
of a large number of cryptographic operations, this approach can be very ben-
eficial, e.g., one of the recent emerging technologies with such requirements is
vehicular communication [12]. In the setting of FrodoKEM, batching could be
used to decapsulate multiple encapsulated keys with the same private key, e.g.,
a server processing a multitude of client requests. In effect, this batch decapsu-
lation would increase one dimension of the multiplied matrices in function of the
processed queries.

Contributions. In this work, we investigate the validity of this “street wisdom”.
This is motivated and in line with the results from Huang, Smith, Henry, and
van de Geijn [22] where they dispel some of the preconceived notions regarding
the practicality of the Strassen matrix multiplication algorithm. They introduce
various implementation strategies to make Strassen a viable alternative to and
even outperform the näıve O(n3) approach for much smaller dimensions than
previously assumed. We apply the learnings from [22] to the cryptographic set-
ting of FrodoKEM: matrix multiplication where one of the inputs is significantly
smaller (dimension n̄ × n = 8 × n) compared to the other (dimension n × n
matrix) with the added aspect that one matrix can be generated on-the-fly.

To this end, we first implement FrodoKEM with various approaches for matrix
multiplication. In particular, we explore variations of näıve matrix multiplication
and Strassen matrix multiplication. We show that using a row-wise blocking and
packing approach, denoted as RWCF, combined with on-the-fly generation of
the FrodoKEM matrix outperforms the current FrodoKEM matrix multiplication
implementation by almost a factor two. When the RWCF approach is used in
FrodoKEM decapsulation, we show an improvement of up to 22 percent.

Furthermore, we investigate the viability of Strassen for the batching use
case. To this end, we benchmark the performance of FrodoKEM when computing
batch operations. We show that for batch sizes as small as 8 (for FrodoKEM-
1344), using the Strassen algorithm can provide better performances than the
näıve multiplication and even the RWCF approach. For batch sizes 128 and
upward, we show that we can expect improvements in the range 19 to 35 percent
compared to the FrodoKEM matrix-multiplication method and of 5 to 11 percent
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Table 1. The relevant FrodoKEM parameters for matrix multiplication for the various
security levels.

Parameter set
NIST

q n̄ n
security level

FrodoKEM-640 1 215 8 640
FrodoKEM-976 3 216 8 976
FrodoKEM-1344 5 216 8 1344

over the RWCF approach. As expected, the benefit of using Strassen becomes
more significant as the batch size increases.

Outline. The remainder of this paper is structured as follows. In Section 2,
we provide the necessary background on FrodoKEM and recursive matrix mul-
tiplication, in particular the Strassen algorithm. In Section 3, we outline the
application of the different matrix multiplication approaches in the context of
FrodoKEM. These are then benchmarked for FrodoKEM and batched FrodoKEM
in Section 4, and the paper is concluded in Section 5.

2 Preliminaries

In this section we outline the basics of the FrodoKEM algorithm [10,31], with
a focus on the generation of the public matrix A ∈ Zn×n

q . We also recall the
Strassen [41] matrix multiplication algorithm.

Notation. We denote the ring of integers modulo q with Zq = Z/qZ. Matrices
are denoted with upper case boldface letters, e.g., B ∈ Zm×n

q , and its matrix
element in the i-th row and j-th column as Bi,j (with 0 ≤ i < m and 0 ≤ j < n).

2.1 The FrodoKEM Algorithm

FrodoKEM was derived from the Frodo key agreement protocol proposed in [10].
The security of Frodo reduces to the hardness of the standard Learning With
Errors (LWE) problem with a short secret. In this section, we only recall the
aspects of FrodoKEM relevant to our contribution. For further information, we
refer the interested reader to the specification of FrodoKEM [31].

Table 1 contains the FrodoKEM parameters related to the matrix multipli-
cation and their associated security levels. The NIST security levels 1, 3 and
5 correspond to the brute-force security of AES128, AES-192 and AES-256,
respectively.

As can be seen from Table 1, the LWE integer modulus q ≤ 216 is always
a power of two in FrodoKEM. This was chosen for efficiency reasons: reduction
modulo q is “for free” on modern computer architectures.

During the FrodoKEM key generation, secret and public keys are generated
from an initial secret and public seeds. In particular, the public matrix A ∈ Zn×n

q
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Algorithm 1 Frodo.Gen using AES128 (algorithm taken from [31]).

Input: Seed seedA ∈ {0, 1}lenseedA .
Output: Matrix A ∈ Zn×n

q .

1: for (i = 0; i < n; i← i + 1) do
2: for (j = 0; j < n; j ← j + 8) do
3: b← 〈i〉‖〈j〉‖0 · · · 0 ∈ {0, 1}128 where 〈i〉, 〈j〉 ∈ {0, 1}16

4: 〈ci,j〉‖〈ci,j+1〉‖ · · · ‖〈ci,j+7〉 ← AES128seedA(b) where each 〈ci,k〉 ∈ {0, 1}16

5: for (k = 0; k < 8; k ← k + 1) do
6: Ai,j+k ← ci,j+k mod q
7: return A

is created by calling FrodoKEM.Gen (seedA) for the public seed seedA. Given A
and the secret matrix S ∈ Zn×n̄

q , a second public matrix B ∈ Zn×n̄
q is computed

as
B = A · S + E ,

where E is randomly drawn from a (small) distribution χ. FrodoKEM security in
this context relies on the hardness of recovering S from B and A. The public key
pk is then derived from B and seedA, while the secret key sk further contains the
secret seeds and matrices. Note that A is not part of any key and it is assumed
to be always generated on-the-fly using seedA.

Apart from error sampling and calls to symmetric primitives (i.e., AES128
or SHAKE128), the main operations in FrodoKEM are matrix operations. In the
remainder of this section we focus on these operations.

To perform encryption FrodoPKE.Enc with respect to the matrix A one gen-
erates a secret matrix S′ ∈ Zn̄×n

q and computes B′ ∈ Zn̄×n
q as

B′ = S′ ·A + E′ ,

where E′ is another matrix randomly drawn from a (small) distribution χ. Since
encryption is a subroutine of both encapsulation and decapsulation, this ma-
trix multiplication operation is also a critical component of FrodoKEM.Enc and
FrodoKEM.Dec.

Generation of the Public Matrix A. To reduce the size of public keys
and accelerate encryption, the public matrix A ∈ Zn×n

q could be set to a fixed
value. However, the designers of FrodoKEM chose to assign the public matrix A
dynamically and pseudorandomly generate it for every generated key. Following
previous work in this area [5,10], using dynamic matrices A helps to avoid the
possibility of backdoors and all-for-the-price-of-one attacks [1].

Let us recall how the matrix is constructed following the FrodoKEM spec-
ification [31]. The algorithm FrodoKEM.Gen takes as input the modulus q, a
seed seedA ∈ {0, 1}lenseedA and a dimension n ∈ Z, and outputs a pseudorandom
matrix A ∈ Zn×n

q . There are two options for instantiating FrodoKEM.Gen. The
first method uses AES128; the second instead uses SHAKE128.
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Algorithm 2 Frodo.Gen using SHAKE128 (algorithm taken from [31]).

Input: Seed seedA ∈ {0, 1}lenseedA .
Output: Pseudorandom matrix A ∈ Zn×n

q .

1: for (i = 0; i < n; i← i + 1) do
2: 〈ci,0〉‖〈ci,1〉‖ · · · ‖〈ci,n−1〉 ← SHAKE128(seedA, 16n, 28 + i) where each 〈ci,j〉 ∈

{0, 1}16.
3: for (j = 0; j < n; j ← j + 1) do
4: Ai,j ← ci,j mod q
5: return A

When using AES128, the matrix A ∈ Zn×n
q is generated 8 elements at-a-

time. For each row and each block of 8 elements (in different columns), the
algorithm generates a 128-bit block of predefined input based on the location in
the matrix. This input is encrypted using the seedA as the AES128 key. This
process is outlined in Algorithm 1. More specifically, the input blocks to AES128
are 〈i〉‖〈j〉‖0‖ · · · ‖0 ∈ {0, 1}128, where i, j are encoded as 16-bit integers (see
Line 3). It then splits the 128-bit AES128 output block into eight 16-bit elements,
which it interprets as non-negative integers ci,j+k for k = 0, 1, . . . , 7 (see Line 4).
Finally, it sets Ai,j+k = ci,j+k mod q for all k. This modular reduction is “for
free” by dropping the most significant bits whenever q < 216.

The second method uses SHAKE128 instead of AES128 to generate the rows
of the matrix A ∈ Zn×n

q . This process is shown in Algorithm 2. In this case, each
entire row is generated with a SHAKE128 call. Its input consists of seedA and a
customization value 28 + i to produce a 16n-bit output (see Line 2). The output
is then split into 16-bit integers ci,j ∈ {0, 1}16 (for j = 0, 1, . . . , n− 1), and used
to set the corresponding matrix entries Ai,j = ci,j mod q in Line 4. Note that
the offset of 28 in the customization value is used for domain separation where
for details we refer to the specification [31] of FrodoKEM.

2.2 The Strassen Algorithm

In this section we consider the application of the Strassen algorithm to the
FrodoKEM multiplication B′ = S′A+E′, where B′,S′,E′ ∈ Zn̄×n

q and A ∈ Zn×n
q .

The schoolbook approach of computing this sum would be to compute

B′i,j = E′i,j +

n−1∑
k=0

S′i,kAk,j ,

for each i = 0, 1, . . . , n̄ − 1 and j = 0, 1, . . . , n − 1. This requires n̄n2 multi-
plications of coefficients in Zq, and therefore is of complexity O(n̄n2). In the
remainder we will refer to this specific multiplication method as the straight-
forward approach, while we will refer to O(n̄n2) methods in general as näıve
approaches.

In 1969, Strassen introduced an algorithm for matrix multiplication [41]
asymptotically faster compared to the straightforward approach. The Strassen



The Matrix Reloaded: Multiplication Strategies in FrodoKEM 7

algorithm works as follows. First the matrices S′,A and E′ are split into four
sub-matrices of equal size:

S′ =

(
S′00 S′01

S′10 S′11

)
, A =

(
A00 A01

A10 A11

)
, E′ =

(
E′00 E′01

E′10 E′11

)
,

where the sub-matrices of S′ and E′ are of dimension n̄/2 × n/2 and the sub-
matrices of A of dimension n/2× n/2 each. The straightforward method would
then be to compute

B′ =

(
B′00 B′01

B′10 B′11

)
,

where

B′00 = E′00 + S′00 ·A00 + S′01 ·A10 ,

B′01 = E′01 + S′00 ·A01 + S′01 ·A11 ,

B′10 = E′10 + S′10 ·A00 + S′11 ·A10 ,

B′11 = E′11 + S′10 ·A01 + S′11 ·A11 .

This split computation consists of eight products of dimension n̄/2 × n/2 sub-
matrices with dimension n/2 × n/2 sub-matrices, and does not decrease the
overall number of multiplications compared to the straightforward approach.
The idea by Strassen is to compute this instead as

M0 = (S′00 + S′11) · (A00 + A11) , B′00 = E′00 + M0 + M3 −M4 + M6 ,

M1 = (S′10 + S′11) ·A00 , B′01 = E′01 + M2 + M4 ,

M2 = S′00 · (A01 −A11) B′10 = E′10 + M1 + M3 ,

M3 = S′11 · (A10 −A00) , B′11 = E′11 + M0 −M1 + M2 + M5 .

M4 = (S′00 + S′01) ·A11 ,

M5 = (S′10 − S′00) · (A00 + A01) ,

M6 = (S′01 − S′11) · (A10 + A11) ,

This requires only seven multiplications of dimension n̄/2×n/2 sub-matrices with
dimension n/2 × n/2 sub-matrices, but has an increased number of additions
and subtractions compared to the näıve method. Strassen’s algorithm applies
this splitting recursively, which asymptotically outperforms the straightforward
block-by-block computation. For example, applying the recursion log2 n̄ times
leads to a complexity of O(n̄log2 7−2 ·n2), which is asymptotically better than the
complexity of O(n̄n2) of näıve methods. The optimal number of recursion levels
will depend on the various parameters and the platform on which the algorithm
is implemented. In [22] it was shown that different strategies can reduce the
overhead of Strassen and that the algorithm can show good results for smaller
dimensions than previously known.
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3 Matrix Multiplication Strategies for Cryptography

In this section, we present different strategies to realize efficient and practical
implementations of matrix multiplication algorithms. These methods have been
studied extensively in the literature before and are not new. The cryptographic
application to FrodoKEM, however, which comes with the different setting of
integer matrices where one of the operands is generated on-the-fly, has as far
as we are aware not been considered in detail before. We use the techniques as
proposed in the BLAS-like Library Instantiation Software (BLIS) framework [42],
which is the infrastructure for instantiating Basic Linear Algebra Subprograms
(BLAS) functionality. The core design idea is that virtually all BLAS operations
(such as matrix-vector and matrix-matrix multiplications) can be expressed and
optimized in terms of very simple kernels. Moreover, we use and describe the
optimizing strategies as summarized and studied in [40].

3.1 Matrix Multiplication for FrodoKEM

In the setting of FrodoKEM we are particularly interested in the matrix product
with accumulation. That is, we consider the operations B = A · S + E and
B′ = S′ · A + E′ where S,E ∈ Zn×n̄

q and S′,E′ ∈ Zn̄×n
q are sampled from a

rounded continuous Gaussian distribution and A ∈ Zn×n
q is generated pseudo-

randomly from a seed seedA according to Algorithm 1 or Algorithm 2. For
simplicity, we only focus on the generation of A with AES128 in this section.
In the proposed parameter sets in [31], one uses n = 8 and n ∈ {640, 976, 1344}
(see Table 1) and therefore the public matrix A is quite large: 800, 1860 and
3528 kilobytes, respectively.

We begin with a brief discussion on the multiplication B = A ·S+E, which
is the most straightforward. In the FrodoKEM submission this is performed with
the näıve (schoolbook) matrix multiplication Bi,j =

∑n−1
k=0 Ai,kSk,j +Ei,j . Note

that this works particularly well with on-the-fly matrix generation: since each
Bi,j only depends on the i-th row of A, and since A is generated row-wise (see
Section 2.1), one can generate a row of A and use it to generate all n̄ elements
in the same row of B. This also sets itself up well for using 16-way SIMD 16-bit
integer instructions (like AVX and AVX2 [23]), but hand-optimizing those results
in only a one percent performance improvement due to the compiler being able
to generate such optimized code very well [31, Section 3.2.1]. Hence, in this work
we make no improvements to the multiplication B = A · S + E.

Instead, we consider the matrix operation B′ = S′ ·A + E′. In this case, the
näıve computation B′i,j =

∑n−1
k=0 S

′
i,kAk,j + E′i,j relies on the j-th column of A.

This leads to a non-trivial problem for on-the-fly computation, as the matrix A
is generated row by row. In the case of AES128 the situation is actually slightly
simpler, as A is really only generated 8 row-elements at a time. However, we
shall see that the choice of algorithm still has significant impact on performance.
In the remainder of this section we compare various algorithms to compute
B′ = S′ ·A + E′.
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3.2 The FrodoKEM Algorithm

The idea of FrodoKEM for computing B′ = S′ · A + E′ is simple to describe:
since elements of a row of A are generated 8 columns at a time, the elements of
B′ are also generated 8 columns at a time. That is, for a fixed j one generates

Ai,j‖Ai,j+1‖ · · · ‖Ai,j+7 ← AES128seedA(〈i〉‖〈j〉‖0 · · · ‖0)

for all i = 0, 1, . . . , n− 1 according to Algorithm 1. These elements can then be
used to compute B′k,j , . . . ,B

′
k,j+7 for k = 0, 1, . . . , n̄− 1.

The most straightforward way to implement this, which is done by FrodoKEM,
is to store the input to AES128 as a sequence of n blocks of 128-bit each

〈0〉‖〈j〉‖0‖ · · · ‖0‖〈1〉‖〈j〉‖0‖ · · · ‖0‖ · · · ‖〈n− 1〉‖〈j〉‖0‖ · · · ‖0 ,

to which AES128 can be applied independently. As a result, the elements of the
8 columns of A are stored sequentially as

A0,j‖ · · · ‖A0,j+7‖A1,j‖ · · · ‖A1,j+7‖ · · · ‖An−1,j‖ · · · ‖An−1,j+7 .

However, to compute B′0,j one would need to access A0,j ,A1,j , . . . ,An−1,j which
are not stored sequentially in memory. To solve this, FrodoKEM explicitly con-
verts the representation to

A0,j‖ · · · ‖An−1,j‖A0,j+1‖ · · · ‖An−1,j+1‖ · · · ‖A0,j+7‖ · · · ‖An−1,j+7 ,

which is essentially a transpose of the columns of A. We observe that this mem-
ory re-organization does have a significant impact on the efficiency of the al-
gorithm (cf. Table 2 in Section 4). For completeness, we summarize the matrix
multiplication algorithm of FrodoKEM in Algorithm 3, where the transposition
is performed in Lines 12 to 14. The authors of FrodoKEM made an efficient im-
plementation of Algorithm 3 available where the multiplications and additions of
the matrix elements are computed using the 256-bit Advanced Vector Extensions
(AVX) 16-way SIMD 16-bit integer instructions [4].

3.3 The RWCF approach: Row-wise Cache-Friendly Multiplication

In this paper we look at an alternative approach to implement the same straight-
forward matrix multiplication algorithm with asymptotic run-time O(n2n̄). We
follow the blocking and packing approach as outlined in [20,42] which does not
seem to have been considered for the FrodoKEM submission. Note that the mul-
tiplication with this complexity still falls under the näıve matrix multiplication
methods. The idea is to avoid the expensive transposition in memory required
by the FrodoKEM algorithm, which leads to an improvement in performance.

For this purpose, the elements of A are generated row-wise as opposed to
column-wise. This is done 8 rows at a time in our benchmarked implementation,
as this led to the best performance. However, doing fewer or more is possible
as there is no dependency between different rows (as opposed to columns). For
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Algorithm 3 Matrix multiplication as implemented in the official FrodoKEM
submission when using AES128. The temporary memory buffers used are
Acols,T and ATcols of 8n elements of Zq each.

Input: Seed seedA ∈ {0, 1}lenseedA and matrices S′,E′ ∈ Zn̄×n
q .

Output: Zn̄×n
q 3 out = S′ ·A + E′.

1: for i← 0; i < n̄; i← i + 1 do
2: for j ← 0; j < n; j ← j + 1 do
3: outi,j ← E′i,j
4: Set T to all zeros
5: aesk ← AES128 load key schedule(seedA)
6: for i← 0; i < n; i← i + 1 do
7: T[8i]← i
8: for k ← 0; k < n; k ← k + 8 do
9: for i← 0; i < n; i← i + 1 do

10: T[8i + 1]← k
11: Acols ← AES128 ECBaesk (T)
12: for i← 0; i < n; i← i + 1 do
13: for j ← 0; j < 8; j ← j + 1 do
14: ATcols[j · n + i]← Acols[8i + j] // Transpose

15: for i← 0; i < n̄; i← i + 1 do
16: for `← 0; ` < 8; `← ` + 1 do
17: sum← 0
18: for j ← 0; j < n; j ← j + 1 do
19: sum← sum + S′i,j ·ATcols[` · n + j] // Access AT sequentially

20: outi,k+` ← outi,k+` + sum

simplicity, we describe the approach for a single row, as using more rows can be
deduced easily by doing them in parallel. We provide the full description for 8
rows in Algorithm 4.

For a fixed row k, the input to AES128 is generated (sequentially in memory)
as

〈k〉‖〈0〉‖0‖ · · · ‖0‖〈k〉‖〈8〉‖0‖ · · · ‖0‖ · · · ‖〈k〉‖〈n− 8〉‖0‖ · · · ‖0 ,
to which we apply AES128 to obtain

Ak,0‖Ak,1‖ · · · ‖Ak,n−1 .

We then initialize B′(−1) = E′ and iteratively accumulate B′(k) as

B
′(k)
i,j = B

′(k−1)
i,j + S′i,kAk,j , (1)

for all i = 0, 1 . . . , n̄− 1 and j = 0, 1 . . . , n− 1. One sees that

B′i,j = B
′(n−1)
i,j = E′i,j +

n−1∑
k=0

S′i,kAk,j ,

proving correctness of the algorithm. Moreover, the elements of A are accessed in
the same order in which they are generated, making this algorithm very suitable
to on-the-fly generation.
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Algorithm 4 Matrix multiplication in FrodoKEM with row-wise AES128 gen-
eration. The temporary memory buffers used are Arows and T of 8n elements of
Zq each.

Input: Seed seedA ∈ {0, 1}lenseedA and matrices S′,E′ ∈ Zn̄×n
q .

Output: Zn̄×n
q 3 B′ = S′ ·A + E′.

1: for i← 0; i < n̄; i← i + 1 do
2: for j ← 0; j < n; j ← j + 1 do
3: B′i,j ← E′i,j
4: Set T to all zeros
5: aesk ← AES128 load key schedule(seedA)
6: for i← 0; i < n; i← i + 8 do
7: for j ← 0; j < 8; j ← j + 1 do
8: T[j · n + i + 1]← i
9: for i← 0; i < n; i← i + 8 do

10: for j ← 0; j < 8; j ← j + 1 do
11: for k ← 0; k < n; k ← k + 8 do
12: T[j · n + k]← i + j
13: Arows ← AES128 ECBaesk (T)
14: for j ← 0; j < n̄; j ← j + 1 do
15: for `← 0; ` < n; `← ` + 1 do
16: sum = B′j,`
17: for k ← 0; k < 8; k ← k + 1 do
18: sum = sum + S′j,i+k ·Arows[k · n + `] // 16 in parallel (AVX2)

19: B′j,` ← sum

This approach can be combined very efficiently with the available SIMD ex-
tensions. Specifically, one can broadcast the (16-bit) value S′i,k to the 16 SIMD
slots. This broadcast is done using the AVX instruction mm256 set1 epi16(·)
which puts the 16-bit integer a in all 16 slots of the returned 256-bit vector reg-
ister. These values can be multiplied with 16 matrix elements Ak,j‖ · · · ‖Ak,j+15

using a single instruction: mm256 mullo epi16(·,·). This computes the products
S′i,kAk,j , . . . ,S

′
i,kAk,j+15, for the 16-bit integers S′i,k and Ak,j , . . . ,Ak,j+15, and

has the additional advantage that the obtained result is automatically reduced
modulo q (or 2q when q = 215 is used). This can be applied in Line 18 of Algo-
rithm 4. Note that 16 | n for all parameter sets of FrodoKEM, so generating 16
row elements of A at a time is not a problem.

It should be clear that the accumulation step in Equation (1) can be com-
puted for multiple rows at the same time by generating those rows simultane-
ously for various k. Although the number of multiplications and additions does
not change in that case, it can be beneficial for the overall run-time by reduc-
ing the overall loads and stores of the B′i,j . This is especially true when loads
and stores are performed to and from AVX registers. For example, in Line 16
and 19 of Algorithm 4 there is only a single load and store of B′j,` for every 8
accumulations.
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Fig. 1. Graphical representation of processing the elements. In orange the FrodoKEM
approach, which for cache-friendly access requires transposing the blocks of columns
from A, before multiplying with the rows of S. In green the RWCF approach, which
does not require a transpose.

Note that for AES128-based version it is not actually necessary to generate
a whole row of A: as we apply AES128 to 8 elements at a time, we can gener-
ate exactly those 8 elements (in the same row) on-the-fly (though 16 would be
preferable for compatibility with AVX instructions). In that case we could con-
sider another extreme version of the above algorithm where we process n rows
simultaneously, generating 16 columns on-the-fly and multiplying and accumu-
lating. This would reduce essentially to a column-based approach again, though
the order of multiplications is different from FrodoKEM and a tranposition in
memory is not necessary. However, since this algorithm is not compatible with
SHAKE, which does generate whole rows from a single SHAKE call, we do not
pursue this further here.

To illustrate the high-level difference in the order of accessing A, we present
a simplified representation in Figure 1. In orange, we see the first columns of A
are processed, which require an additional memory transposition. In green the
row-wise method is shown, which needs no explicit memory transformations.

3.4 FrodoKEM Multiplication using Strassen

The last multiplication approach we discuss in the context of FrodoKEM is
Strassen, which was already introduced in Section 2.2. In [22] it was shown that
Strassen can also be implemented in a cache-friendly manner. The method pre-
sented there can be straightforwardly combined with the on-the-fly generation
of A.

Recall that the AVX2 SIMD instructions allow us to process 16 16-bit ele-
ments at the same time, assuming that 16 | n. To apply the same instructions for
Strassen to the submatrices with only n/2 rows, we would require that 16 | (n/2).
This is true for n = 640, 1344 but does not hold for n = 976. This is easily solved
by padding A with zero columns which has a minor effect on the performance
compared to the other parameter sets.
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In the following, we only consider one-level Strassen and analyze its per-
formance. That is, we reduce the matrix multiplication to 7 multiplications of
half-size row and column dimensions that we perform with RWCF. More levels
of recursion can of course be considered, but it is not a priori clear that Strassen
will outperform other algorithms for the dimensions of FrodoKEM (even for a
single recursion level), as its improvements are only guaranteed asymptotically.
As we will see in Section 4, it outperforms the current FrodoKEM implementa-
tion but does not improve over RWCF itself. Nevertheless, even if Strassen does
not scale fast enough to be relevant for single FrodoKEM, it can still be useful
to explore its application for batching, as we show in Section 4.2.

4 Implementation and Benchmark Results

In this section we discuss the comparative performance for the different ap-
proaches of implementing the FrodoKEM matrix multiplication. The performance
results have been obtained when running on a single core of the 12-core AMD
Ryzen 9 3900XT running at a base clock of 3.8GHz. We consider both the setting
where a single key exchange or encryption is performed, as well as their batched
analogues where multiple keys are handled in parallel.

4.1 Performance Results

The performance measurements for all three FrodoKEM parameter sets are sum-
marized in Table 2. This shows the performance in 103 cycles of the individ-
ual matrix multiplication routines A · S + E (frodo mul add as plus e) and
S′ ·A+E′ (frodo mul add sa plus e). These routines consist of two computa-
tionally significant steps: generation of the matrix elements of A using AES128
and multiplying the resulting matrix with S or S′. Although a fresh A is gener-
ated for each IND-CPA encryption or key exchange, in a KEM setting where a
static key pair is used one can pre-compute A and store for encapsulation and
decapsulation. Therefore we distinguish two separate cases: excluding (labeled
“pre”) and including the generation time of the matrix elements from A using
AES128. Note that the algorithms described in Section 3 only impact the matrix
multiplication step and not the generation, so have relatively more impact when
A is not freshly generated. For completeness, we also include the total cost of
key generation, encapsulation and decapsulation, which generate A on-the-fly
to align with the reference implementation. Again, the impact on encapsulation
and decapsulation is greater by storing A in advance.

Firstly, we highlight an interesting observation about the reference implemen-
tation (using AVX instructions) of FrodoKEM (the “x64” column in Table 2).
When comparing the two matrix multiplication routines, we see that computing
A · S + E is up to 1.4 times faster than S′ · A + E′ if the generation of A is
included, and up to 1.9 times faster if A is pre-generated. The latter speed-up
is almost fully determined by the matrix multiplication, but is surprisingly large
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since the dimensions of the multiplications are exactly the same (though trans-
posed). Using the RWCF algorithm from Section 3.3 for S′ ·A + E′ leads to a
speed-up of up to 1.4 times including generation of A, or of up to 2.0 times ex-
cluding it, when compared to the reference implementation. Indeed, the RWCF
approach reduces the cost of S′ ·A+E′ so that it is essentially equal to comput-
ing A ·S+E, which should be expected for multiplications of equal dimensions.
Overall, employing the RWCF approach leads to an up to 22 percent improve-
ment in encapsulation or decapsulation when A is generated on-the-fly, while
not affecting key generation since it only computes A · S + E.

Interestingly, the Strassen implementation also outperforms the x64 imple-
mentation. This approach uses a single level of Strassen and then reverts to the
RWCF approach for multiplying the smaller sub-matrices. This explains why
Strassen outperforms x64 and not the RWCF approach. For the best overall
performance one should use the RWCF approach. We expect that these results
carry over to other approaches, compared to AES128, to generate the matrix el-
ements. One such example is when using SHAKE128 as outlined in Section 2.1.

4.2 Batching

Let us consider the setting of batch cryptography [19]. The main idea is to
reduce the computational burden of an entity which receives multiple (i.e., a
batch of) cryptographic operations. It might be possible to process this batch
of computation and take advantage of some arithmetic or algorithmic advan-
tages that increase the latency (compared to a single request) but also increase
the overall throughput (the number of cryptographic operations per second)
to ensure an overall increase of computation on this batch processing system.
Many of such approaches have been proposed such as batch verification of RSA
signatures [21], ECDSA batch signature verification [25,26,24] and batch Diffie-
Hellman key agreement [7].

In Frodo, the seed seedA used to generate the large public matrix A (on-the-
fly) is part of the public-key. This means that when Frodo is used as a public-
key encryption scheme multiple devices or clients can encrypt messages to be
sent to the same server which can then perform a batch decryption on all these
ciphertexts which use the same matrix A. Along similar lines multiple clients
can start the key encapsulation mechanism (using FrodoKEM) with the same
clients using the same seedA and corresponding matrix A. This allows for batch
decapsulation on the server. This batching technique enables the server to use
the same public matrix A for multiple requests and increase the dimension in
the matrix multiplication S ·A by considering multiple matrices S at once.

We investigate when (and if) the asymptotic performance gain of the Strassen
algorithm becomes visible in such a batch decryption or batch decapsulation
approach. Performance results when batching up to 128 computations (up to
n̄ = 8 ·128 = 1024) are shown in Figure 2 for the three parameters sets proposed
in FrodoKEM. As expected eventually Strassen will outperform the FrodoKEM
approach in all settings. We see an improvement of 26, 16 and 16 percent for
FrodoKEM-640, FrodoKEM-976 and FrodoKEM-1344, respectively.
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Table 2. Performance numbers of the matrix multiplication methods with and without
(“pre”) generation of the elements using AES128. In parentheses the relative perfor-
mance against the reference implementation “x64”. The numbers are reported in 103

cycles and an average over 1000 runs.

Function x64 Strassen RWCF

FrodoKEM-640

frodo mul add as plus e (pre) 208 212 (1.02) 212 (1.02)
frodo mul add sa plus e (pre) 396 282 (0.71) 202 (0.51)
frodo mul add as plus e 473 477 (1.01) 477 (1.01)
frodo mul add sa plus e 661 547 (0.83) 467 (0.70)
crypto kem keypair 902 902 (1.00) 903 (1.00)
crypto kem enc 1 275 1 174 (0.92) 1 068 (0.84)
crypto kem dec 1 232 1 121 (0.91) 1 025 (0.83)

FrodoKEM-976

frodo mul add as plus e (pre) 507 508 (1.00) 501 (0.99)
frodo mul add sa plus e (pre) 931 759 (0.82) 493 (0.53)
frodo mul add as plus e 1 095 1 096 (1.00) 1 089 (0.99)
frodo mul add sa plus e 1 519 1 347 (0.89) 1 081 (0.71)
crypto kem keypair 1 718 1 727 (1.01) 1 712 (1.00)
crypto kem enc 2 398 2 246 (0.94) 1 955 (0.82)
crypto kem dec 2 310 2 141 (0.93) 1 850 (0.80)

FrodoKEM-1344

frodo mul add as plus e (pre) 1 060 1 031 (0.97) 1 024 (0.97)
frodo mul add sa plus e (pre) 1 888 1 412 (0.75) 1 012 (0.54)
frodo mul add as plus e 2 140 2 111 (0.99) 2 104 (0.98)
frodo mul add sa plus e 2 968 2 492 (0.84) 2 092 (0.70)
crypto kem keypair 3 070 3 023 (0.98) 3 017 (0.98)
crypto kem enc 4 279 3 777 (0.88) 3 363 (0.79)
crypto kem dec 4 130 3 634 (0.88) 3 221 (0.78)

This shows that for the batching use case, performing one-level Strassen
becomes a viable option for the parameter sizes of FrodoKEM. Strassen also
eventually outperforms the RWCF approach in all settings. The cross-over point
is at n equal to 120, 152, 64, for FrodoKEM-640, FrodoKEM-976 and FrodoKEM-
1344, respectively.

This means that for relatively small batch sizes (e.g., using a batch of only
8 computations for FrodoKEM-1344) Strassen already starts to outperform the
straightforward approaches. However, the maximum observed speed-up is rela-
tively small: a 9, 5 or 10 percent improvement for FrodoKEM-640, FrodoKEM-
976 and FrodoKEM-1344. Of course, the difference between RWCF and Strassen
grows with the batch size used. For even larger batch sizes it should also be
checked whether applying more levels of Strassen is even faster.
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Fig. 2. The performance of the row-wise cache-friendly (RWCF) and Strassen matrix
multiplication (dimensions n̄× n with n× n) when varying n̄.
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5 Conclusions

We evaluated the performance of matrix multiplication approaches in the cryp-
tographic setting of FrodoKEM. We consider both optimized “näıve” matrix
multiplication with cubic complexity (i.e., the straightforward algorithm used
in the FrodoKEM submission and the RWCF approach) as well as the Strassen
multiplication algorithm (using one level).

Our results show that for the proposed parameter sets of FrodoKEM we can
improve over the state-of-the-art implementation with the RWCF approach. For
the matrix multiplication alone we achieve improvements up to 30 percent over
the straightforward FrodoKEM approach (and are almost twice as fast when the
matrix generation is pre-computed). The impact of these improvements on the
full encapsulation and decapsulation operations are slightly over 20 percent. In-
terestingly, performing the encapsulation and decapsulation with the Strassen
approach also gains improvements over the FrodoKEM approach, with an im-
provement of up to 12 percent for the largest parameter set. We note that the
RWCF approach is to be preferred in practice.

We additionally show that for batching use-cases, where many inputs are
processed at once, the Strassen approach is already to be preferred for small
batches of size 8. For a practically-relevant batch size of 128 inputs the observed
speed-up is in the range of 5 to 11 percent over using the efficient RWCF ap-
proach, growing with the batch size. Over the current FrodoKEM approach the
improvement is even in the range of 19 to 35 percent.

This work therefore both improves on the FrodoKEM multiplication approach,
and shows that the Strassen method is relevant for FrodoKEM parameter in
practice.
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