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Abstract. A core goal of the NIST PQC competition is to produce public-key encryption (PKE)
schemes which, even if attacked with a large-scale quantum computer, maintain the security guarantees
needed by applications. The main security focus in the NIST PQC context has been IND-CCA security,
but other applications demand that PKE schemes provide anonymity (Bellare et al., ASIACRYPT
2001), and robustness (Abdalla et al., TCC 2010). Examples of such applications include anonymous
communication systems, cryptocurrencies, anonymous credentials, searchable encryption, and auction
protocols. Almost nothing is known about how to build post-quantum PKE schemes offering these
security properties. In particular, the status of the NIST PQC candidates with respect to anonymity
and robustness is unknown.
This paper initiates a systematic study of anonymity and robustness for post-quantum PKE schemes.
Firstly, we identify implicit rejection as a crucial design choice shared by most post-quantum KEMs,
show that implicit rejection renders prior results on anonymity and robustness for KEM-DEM PKEs in-
applicable, and transfer prior results to the implicit-rejection setting where possible. Secondly, since they
are widely used to build post-quantum PKEs, we examine how the Fujisaki-Okamoto (FO) transforms
(Fujisaki and Okamoto, Journal of Cryptology 2013) confer robustness and enhance weak anonymity
of a base PKE.
We then leverage our theoretical results to study the anonymity and robustness of three NIST KEM
finalists—Saber, Kyber, and Classic McEliece—and one alternate, FrodoKEM. Overall, our findings
for robustness are definitive: we provide positive robustness results for Saber, Kyber, and FrodoKEM,
and a negative result for Classic McEliece. Our negative result stems from a striking property of KEM-
DEM PKE schemes built with the Classic McEliece KEM: for any message m, we can construct a single
hybrid ciphertext c which decrypts to the chosen m under any Classic McEliece private key.
Our findings for anonymity are more mixed: we identify barriers to proving anonymity for Saber,
Kyber, and Classic McEliece. We also found that in the case of Saber and Kyber, these barriers lead
to issues with their IND-CCA security claims. We have worked with the Saber and Kyber teams to fix
these issues, but they remain unresolved. On the positive side, we were able to prove anonymity for
FrodoKEM and a variant of Saber introduced by D’Anvers et al. (AFRICACRYPT 2018). Our analyses
of these two schemes also identified technical gaps in their IND-CCA security claims, but we were able
to fix them.

1 Introduction

The increasingly real threat of quantum computers breaking all widely-deployed public-key cryptography has
driven research in new paradigms for building core public-key primitives like signatures, public-key encryption
(PKE), and key encapsulation mechanisms (KEMs) from problems that are computationally intractable even
for quantum computers. An umbrella term for this is Post-Quantum Cryptography (PQC). The US National
Institute of Standards and Technology (NIST) is in the process of selecting new standards which will be
used for decades to come. The process has reached its third round with four finalist candidates and five
alternate candidates in the KEM/PKE category. The main security target of evaluation for these schemes
until now has been IND-CCA security. This was appropriate as a starting point because it suffices for many
important use cases. But we argue that the time has now come for a broader study of the candidates’ fitness
for emerging applications where security properties other than IND-CCA are required.

Two important security properties that go beyond IND-CCA security are anonymity (or key privacy)
and robustness. Anonymity was first formalised in the public key setting by [9]. Roughly, a PKE scheme is
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anonymous if a ciphertext does not leak anything about which public key was used to create it; strong forms
of anonymity equip the adversary with a decryption oracle. Anonymous PKE is a fundamental component
of several deployed anonymity systems, most notably anonymous cryptocurrencies like Zcash [11]. It is also
important in building anonymous broadcast encryption schemes [7, 30], anonymous credential systems [13]
and auction protocols [36]. Robustness for PKE, first formalised in [2], goes hand-in-hand with anonymity.
Suppose a party equipped with a private key receives a ciphertext for an anonymous PKE scheme. In the
absence of other information, how does a party decide that it is the intended receiver of that ciphertext?
The standard approach is to perform trial decryption. Robustness provides an assurance that this process
does not go wrong – that the receiver is not fooled into accepting a plaintext intended for someone else.
Robustness is also important for maintaining consistency in searchable encryption [1] and ensuring auction
bid correctness [36]. Various robustness notions for PKE were studied in [2], while stronger notions were
introduced in [17]; the symmetric setting was treated in [18, 22, 16, 29].

To date, there is almost no work that shows how to build anonymous, robust post-quantum PKE schemes.
Nor is it known whether the NIST candidates meet these extended notions. The only directly relevant work is
by Mohassel [33], who showed a number of foundational results on anonymity and robustness of hybrid PKEs
built via the KEM-DEM paradigm (“DEM” being an abbreviation for “data encapsulation mechanism”). Our
work is influenced by Mohassel’s general approach; however, Mohassel only considers KEMs that are directly
constructed from strongly-secure PKEs via sampling a random message from the PKE scheme’s message
space and then PKE-encrypting it. This makes the results of [33] inapplicable to NIST candidates, for a few
reasons. First, the NIST candidates are all KEMs, not PKEs, so there is a basic syntactic mismatch. Second,
the base PKEs used within the candidate KEMs are only weakly (e.g. OW-CPA) secure, but [33] relies
on the starting PKE having (e.g.) IND-CCA security. Finally, [33] only analyzes explicit-rejection KEMs,
for which decapsulation can fail, but all the NIST candidates except the alternate candidate HQC [32] are
actually implicit-rejection KEMs that never output ⊥. This means, e.g., the NIST finalist KEMs cannot be
even weakly robust, while the constructions of [33] all start from robust KEMs.

One of the negative results of [33] is that even if a KEM enjoys a strong anonymity property, the hybrid
PKE scheme that results from applying the standard KEM-DEM construction may not be anonymous. This
is concerning, since it indicates that if one only focuses on KEMs in the NIST competition, rather than the
PKE schemes that will inevitably be built from them using the standard KEM-DEM approach, then there
is no guarantee that desired security properties will actually carry over. Thus, one must dig into a KEM’s
internals if the target is to achieve anonymous hybrid PKE.

In fact, all the NIST candidates in the KEM/PKE category are constructed using variants of the Fujisaki-
Okamato (FO) transform [19–21]. The FO transform takes a weakly secure PKE scheme (e.g. one that is
OW-CPA or IND-CPA secure) and elevates it to a KEM that is IND-CCA secure. The FO transform and
variants of it have recently been heavily analysed, [24, 35, 27, 38, 25], in the Random Oracle Model (ROM)
and the Quantum ROM (QROM) [12], but insofar as we are aware, only with a view to establishing IND-CCA
security of the resulting KEMs. Only one prior work [23] studies the relationship between FO transforms
and anonymity; it shows that the original FO transform enhances anonymity in the ROM. But this result
does not tell us whether the modern FO variants used by the NIST finalists also enhance (or even preserve)
robustness and anonymity properties; notably, the results of [23] are not in the QROM.

Anonymity and robustness for the KEM-DEM paradigm. Our first main contribution is a modular theory
of anonymity and robustness for PKE schemes built via the KEM-DEM paradigm. This extends the work
of [33] to general KEMs (instead of those built only from PKEs). An interesting aspect that emerges is a
fundamental separation between our results for implicit- and explicit-rejection KEMs. At a high level, KEMs
that perform implicit rejection do not in general transfer anonymity and robustness to PKEs obtained via
the KEM-DEM paradigm from the KEM component, whilst KEMs that offer explicit rejection, and that also
satisfy a mild robustness property, do. Our positive result for explicit rejection KEMs relies on a relatively
weak anonymity notion for KEMs which we introduce here, wANO-CCA security. Our negative results for the
implicit rejection case are proved through the construction of specific counterexamples and are surprisingly
strong. For example, an implicit rejection KEM cannot be robust, but can achieve a strong form of collision
freeness (SCFR-CCA, that we define here). This is in some sense the next best thing to robustness. We
show that even this property is not sufficient, by exhibiting an implicit rejection KEM that is ANO-CCA,
IND-CCA and SCFR-CCA secure, and a DEM that is AE (authenticated encryption) secure and satisfies a
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strong robustness property (XROB, from [18]), but where the PKE scheme resulting from composing this
KEM and DEM is not ANO-CCA secure.

Anonymity and robustness from FO transforms. Since all the NIST finalists are KEMs of the implicit
rejection type and we have a strong negative result there, we must dig deeper if we wish to assure ourselves
that anonymity and robustness will be obtained for PKEs built from those KEMs. This introduces our
second main contribution, wherein we analyse how the FO transform (and its variants) lift anonymity and
robustness properties from a starting weakly-secure PKE scheme, first to the strongly-secure KEM built by
the FO transform, and then to the hybrid PKE scheme constructed using the KEM-DEM paradigm.

For explicit-rejection KEMs, we show that for a slight variant of the HFO⊥ transform of [24], the base
PKE’s weak anonymity and robustness are enhanced to strong (ANO-CCA) anonymity and strong (SROB-
CCA) robustness, as long as an intermediate deterministic PKE used in the transform is collision-free. For
implicit-rejection KEMs, we show that the FO6⊥ transform of [24] similarly enhances anonymity and collision-
freeness. The culmination of this analysis is showing that KEMs and PKEs built via FO-type transforms
can bypass our negative result for implicit rejection KEMs.

Application to NIST candidates. We then apply our above generic analysis for implicit-rejection KEMs to
specific schemes related to the NIST PQC competition which employ a transform close to FO6⊥. In particular,
we focus on the NIST finalist Classic McEliece [3], a simplified version of the NIST finalist Saber [8] from [15]
that we call “proto-Saber”, and the NIST alternate candidate FrodoKEM [4]. The reason we consider proto-
Saber instead of the actual Saber scheme is that the IND-CCA security claims made for Saber in its NIST
third round specification [8] seem to have been taken from those of proto-Saber in [15] without modification.
However, the actual technical specification of Saber in [8, Section 8] and the reference implementation of
Saber differ from proto-Saber in crucial ways that impact on its formal security analysis. We return to this
issue in more detail below and in Section 5.

For Classic McEliece, we show that the hybrid PKE resulting from applying the standard KEM-DEM
construction is not strongly robust (in the sense defined in [2]). In fact, we can show that, for any plaintext m,
it is possible to construct a single ciphertext c such that c always decrypts to m under any Classic McEliece
private key. The construction of c does not even need the public key! We stress that this property does not
indicate any problem with IND-CCA security of Classic McEliece, but it does expose its limitations as a
general-purpose KEM for the broad set of applications that can be envisaged for NIST public key algorithms.
Since our FO 6⊥-related results on anonymity of KEMs and PKEs built from them depend on robustness
properties, Classic McEliece’s limitations in this regard present a barrier to establishing its anonymity using
our techniques (but do not preclude a direct proof).

For proto-Saber, the news is better. We provide positive results on anonymity and robustness properties
of its KEM and the hybrid PKE schemes derived from it. Towards these results, we have to adapt our
analysis on FO6⊥ to the actual transform used by proto-Saber. In doing so, we were also able to obtain an
explicit proof of IND-CCA security for proto-Saber in the QROM that matches the tightness claimed in [15].
This is relevant because despite claims to the contrary in [15], we find that even the IND-CCA security of
proto-Saber cannot be directly proved using any of the known results concerning the FO6⊥ transform. This
is due to low-level details of how proto-Saber applies hash functions to intermediate values in its internal
computations. These details are crucial given the delicate nature of QROM proofs and invalidate the direct
application of known results on “standard” FO transforms in the QROM.

FrodoKEM uses an FO-type transform that is identical to that of proto-Saber. Hence, our positive results
on tight IND-CCA security, anonymity and robustness of proto-Saber also apply to FrodoKEM in a similar
fashion.

Saber and Kyber [6] both implement the same transform, one which hashes even more intermediate values
than proto-Saber does. This creates barriers in applying the proof strategies that we used for proto-Saber
when trying to establish anonymity of Saber and Kyber. Interestingly, as we explain in detail, these extra
hashes also act as barriers in proving even the IND-CCA security of these two finalists in the QROM with
the bounds as claimed in their respective specifications. We consider this an important finding given the
centrality of IND-CCA security as the design target in the NIST competition. On a positive note, we show
that our robustness analysis of proto-Saber can be extended to Saber and Kyber, which implies that these
two NIST finalists lead to strongly robust hybrid PKE schemes. Finally, we suggest small modifications to
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Saber and Kyber that would bring their FO-type transforms closer to that of proto-Saber and allow us to
overcome the aforementioned problems.

Subsequent Work. The NIST finalist NTRU [14] uses altogether a different transform, namely FO6⊥m [24],
that differs from FO 6⊥ in a way which makes it difficult to extend our analysis of FO 6⊥ to NTRU. However,
in subsequent work to ours, Xagawa [41] has established the anonymity and robustness properties of NTRU
by utilizing a stronger property of its base PKE scheme, namely the so-called strong disjoint-simulatability.

Paper organisation. Section 2 contains preliminary definitions. Section 3 contains our anonymity and ro-
bustness definitions for KEMs, and analysis of generic KEM-DEM composition. Section 4 contains our study
of anonymity and robustness enhancement for FO-type transforms, and the security of hybrid PKE built
from FO-type KEMs. Section 5 contains our study of the NIST candidate KEMs.

2 Preliminaries

In this section, we briefly define the preliminaries necessary for the main body. We begin with defining the
syntax of primitives of interest.

Primitives. A key encapsulation mechanism (KEM) KEM = (KGen,Encap,Decap) is a tuple of algorithms.
The randomized key generation algorithm KGen takes no input and outputs a pair (pk, sk) of a public
encapsulation key pk and a private decapsulation key sk. The randomized encapsulation algorithm Encap
takes as input the encapsulation key pk, and outputs a pair (C, k) where C is a ciphertext and k is a
bit string. The determinstic decapsulation algorithm Decap takes as input the encapsulation key pk, the
decapsulation key sk, and the ciphertext C. If decapsulation can output either a key k or an error symbol
⊥, we call the KEM an explicit-rejection KEM. If decapsulation can only output a key k, we call the KEM
an implicit-rejection KEM.

A public-key encryption (PKE) scheme PKE = (KGen,Enc,Dec) is a tuple of algorithms. The algorithm
KGen is the same as above for KEMs. (It is conventional to call KGen’s outputs the encryption/public
and decryption/private key, respectively, instead of “encapsulation”/“decapsulation” keys.) The randomized
encryption algorithm Enc takes as input the public key pk, and messagem, and outputs a ciphertext C. Below,
we will sometimes use a modified syntax for encryption, where instead of sampling internal randomness, the
algorithm is deterministic and takes random coins as an additional input. Letting r be a string of random
bits, we will write Enc(pk,m; r) to denote the output of Enc when run with randomness r. Finally, the
deterministic decryption algorithm Dec takes as input the public key pk, the secret key sk, and a ciphertext
C, and outputs a message m or an error symbol ⊥.

In Appendix A, we define the syntax for authenticated encryption with associated data (AEAD or AE)
schemes and message authentication codes (MACs), along with the correctness and γ-spreadness properties
of PKE schemes and KEMs.

Associated to each algorithm that comprises a primitive above is one or more input spaces (e.g. sets of
possible keys K and messages M) and an output space (e.g. the set of possible ciphertexts C). We assume
each algorithm checks that each of inputs is in this set, and aborts if not. To reduce notational clutter, we
will not make these input/output spaces explicit below, except where necessary.

The KEM-DEM framework. Composing a KEM and a data encapsulation mechanism (DEM) is a standard
way to build PKE. Schemes built this way are often called “hybrid” PKE. For completeness, we describe
the hybrid PKE built via KEM-DEM composition. Let KEM be a KEM, and DEM be an authenticated
encryption scheme. (Below, we will use “DEM” and “AEAD” synonymously.) The hybrid PKE PKEhy =
(KGen,Enc,Dec) is built as follows. The algorithm PKEhy.KGen is the same as KEM.KGen. The algorithm
PKEhy.Enc takes as input the encapsulation key pk and a message m. It first runs (C0, k)←$KEM.Encap(pk),
the computes C1←$ AEAD.Enc(k,m) and outputs ciphertext (C0, C1). The algorithm PKEhy.Dec first uses
sk to decapsulate C0 and get k or possibly an error symbol ⊥. Unless decapsulation failed, the algorithm
completes by running AEAD.Dec(k, C1), outputting either m or an error symbol ⊥.
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The Fujisaki-Okamoto transform. Classical results of Fujisaki and Okamoto [19–21] show how to amplify
(in the random oracle model, or ROM) the security of public-key encryption, from one-wayness (OW)
or indistinguishability (IND) under chosen-plaintext attack (CPA) to indistinguishability under chosen-
ciphertext attack (IND-CCA). In this work we will mostly be interested in modern variants of this so-called
“FO transform” studied first by Hofheinz et al. [24] in the classical ROM and QROM; extensions in the
QROM were then given by [27, 38, 35]. Details of these transforms can be found in Section 4.

2.1 Security Definitions

Next we state several standard security notions which we will use below. In this work we use the “concrete”
security paradigm, which explicitly measures the success probability and resource usage of specific adver-
saries, which we specify using the code-based game-playing framework of Bellare and Rogaway [10]. We will
not relate quantities of interest, such as runtime or oracle queries, to a security parameter. We define relevant
security notions for PKE (upper box), AEAD and MAC (lower box) in Figure 1.

PKE security notions are given for chosen-ciphertext attacks. All adversaries have access to a decryption
oracle D that takes a ciphertext and (where relevant) a bit that selects which secret key to use. In ANO-
CCA and IND-CCA games, the decryption oracle D6C disallows queries for the challenge ciphertext. For each
PKE notion, the corresponding definition for chosen-plaintext attacks can be obtained by simply removing
the decryption oracle. In INT-CTXT, the adversary has an encryption (resp., decryption) oracle that takes
associated data and a message (resp., ciphertext); flag win is set to true if the adversary submits a query to
its decryption oracle that returns non-⊥, but was not returned from an encryption query. In SUF-CMA, the
oracle TagO’s inputs and outputs are stored in the table T after each query. In otROR-CCA, the oracles
E1, $1 are one-time encryption and random-bits oracles, respectively. The many-time security definition
ROR-CCA is identical to otROR-CCA, but without this restriction. As for PKE above, CPA variants can
be obtained by removing decryption oracles.

For any game G in Figure 1, we define an associated advantage measure for an adversary A and primitive
P , denoted AdvGP (A), to be either Pr

[
GAP ⇒ true

]
or the absolute difference between that quantity and 1/2,

if the game G is a bit-guessing game like IND-CCA.

3 Anonymity and Robustness of KEMs

In [33], Mohassel studied the anonymity and robustness of KEMs. However, all of his definitions and results
apply only to the special case of KEMs that are constructed from PKE schemes in a restricted way, namely
KEMs in which the encapsulation algorithm selects a random message for the PKE scheme and encrypts
it using the PKE scheme’s encryption algorithm. With this limitation, Mohassel provided a number of
interesting results (positive and negative) concerning the anonymity and robustness of KEMs and of PKEs
constructed from them via the KEM-DEM framework.

In this section, we bridge the definitional gap left by Mohassel’s work by first considering fully general
definitions for KEM anonymity and robustness, and then revisiting his results on these properties in the
context of the KEM-DEM framework. As we shall see, how much can be recovered depends in a critical way
on the KEM’s behaviour with respect to rejection of invalid encapsulations.

We first define ANO-CCA security of a KEM KEM = (KGen,Encap,Decap) via the security game between
an adversary and a challenger, as described in Figure 2. Note that the security game differs from the AI-
ATK game defined for so-called general encryption schemes in [2], where in the latter, an adversary can have
access to multiple public-keys (and some corresponding secret keys which will not result in a trivial win for
the adversary). Since we are only considering PKE schemes and KEMs in this paper, it is not hard to show
that the two security notions are equivalent up to a factor depending on the number of secret key queries an
adversary could make (as already discussed in [2]).

An analogous ANO-CPA definition can be obtained simply by removing decapsulation queries in the
above game. An adversary A’s advantage in the ANO-{CPA,CCA} game is then defined to be:

Adv
ANO−{CPA,CCA}
KEM (A) = |Pr[GA = 1]− 1/2|

where GA refers to A playing in the appropriate version of the anonymity game,
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SROB-CCAAPKE

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

C ←$AD(·,·)(pk0, pk1)

m0 ← PKE.Dec(pk0, sk0, C)

m1 ← PKE.Dec(pk1, sk1, C)

return m0 6= ⊥ANDm1 6= ⊥

WROB-CCAAPKE

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

(m, b)←$AD(·,·)(pk0, pk1)

C ←$PKE.Enc(pkb,m)

m1 ← PKE.Dec(pk1−b, sk1−b, C)

return m1 6= ⊥

ANO-CCAAPKE

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

b←$ {0, 1}
(m, st)←$AD(·,·)(pk0, pk1)

C ←$PKE.Enc(pkb,m)

b′ ←$AD6C(·,·)(C, st)

return b = b′

SCFR-CCAAPKE

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

C ←$AD(·,·)(pk0, pk1)

m0 ← PKE.Dec(pk0, sk0, C)

m1 ← PKE.Dec(pk1, sk1, C)

return m0 = m1 6= ⊥

WCFR-CCAAPKE

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

(m, b)←$AD(·,·)(pk0, pk1)

C ←$PKE.Enc(pkb,m)

m′ ← PKE.Dec(pk1−b, sk1−b, C)

return m′ = m 6= ⊥

IND-CCAAPKE

(pk, sk)←$KGen

b←$ {0, 1}
(m0,m1, st)←$AD(·)(pk)

C ←$PKE.Enc(pk,mb)

b′ ←$AD6C(·)(C, st)

return b = b′

FROBAAEAD

(C,AD, k0, k1)←$A
m0 ← AEAD.Dec(k0,AD, C)

m1 ← AEAD.Dec(k1,AD, C)

b← m0 6= ⊥ ∧m1 6= ⊥
return (b ∧ (k0 6= k1))

otROR-CCAAAEAD

k←$ AEAD.KGen ; b←$ {0, 1}
if b = 0 then b′ ←$AE1(·,·),D(·,·)

else b′ ←$A$1(·,·),⊥(·,·)

return b = b′

XROBAAEAD

(m0, k0, R0,AD0, k1,AD1, C1)←$A
C0 ← AEAD.Enc(k0,m0;R0)

m1 ← AEAD.Dec(k1,AD1, C1)

b← m0 6= ⊥ ∧m1 6= ⊥
bk ← k0 6= k1

bc ← C0 = C1 6= ⊥
ba ← AD0 = AD1 6= ⊥
return (b ∧ bk ∧ bc ∧ ba)

INT-CTXTAAEAD

k←$ AEAD.KGen

win← false

AE(·,·),D(·,·)

return win
SUF-CMAAMAC

k←$MAC.KGen

T← [ ]

(m,T )← ATagO(·)

b← MAC.Vf(k,m, T )

bt ← (m,T ) 6∈ T

return b ∧ bt

Fig. 1. Security games used in this paper. See Section 2.1 for details.
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ANO-CCAAKEM

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

b←$ {0, 1}
(C∗, k∗)←$Encap(pkb)

b′ ←$AD(·,·)(pk0, pk1, (C
∗, k∗))

return b = b′

wANO-CCAAKEM

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

b←$ {0, 1}
(C∗, k∗)←$Encap(pkb)

b′ ←$AD(·,·)(pk0, pk1, C
∗)

return b = b′

SROB-CCAAKEM

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

C ←$AD(·,·)(pk0, pk1)

k0 ← Decap(pk0, sk0, C)

k1 ← Decap(pk1, sk1, C)

return k0 6= ⊥AND k1 6= ⊥

WROB-CCAAKEM

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

b←$AD(·,·)(pk0, pk1)

(C, kb)←$Encap(pkb)

k1−b ← Decap(pk1−b, sk1−b, C)

return k1−b 6= ⊥

SCFR-CCAAKEM

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

C ←$AD(·,·)(pk0, pk1)

k0 ← Decap(pk0, sk0, C)

k1 ← Decap(pk1, sk1, C)

return k0 = k1 6= ⊥

WCFR-CCAAKEM

(pk0, sk0)←$KGen

(pk1, sk1)←$KGen

b←$AD(·,·)(pk0, pk1)

(C, kb)←$Encap(pkb)

k1−b ← Decap(pk1−b, sk1−b, C)

return kb = k1−b 6= ⊥

Fig. 2. KEM security notions for chosen-ciphertext attacks. All adversaries have access to a decryption oracle D
that takes a ciphertext and (where relevant) a bit that selects which secret key to use. In ANO-CCA and wANO-
CCA games, the decryption oracle disallows queries for the challenge ciphertext. For each notion, the corresponding
definition for chosen-plaintext attacks can be obtained by simply removing the decryption oracle.
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In the context of KEM-DEM framework for constructing PKE schemes, we will find it sufficient to work
with an even weaker notion of anonymity for KEMs, that we refer to as weak anonymity. Here, the security
game above is modified by giving the adversary only C∗ in response to its challenge query, instead of (C∗, k∗);
see Figure 2. We then refer to wANO-{CPA,CCA} security and define adversarial advantages as above.

We also define weak robustness (WROB) and strong robustness (SROB) security notions for general
KEMs. The security games described in Figure 2 define both notions via two different finalisation steps.
Note that the security game for WROB has a subtle difference from the corresponding WROB-ATK game
defined for general encryption schemes in [2] (in addition to the fact that, in the latter game, an adversary
can have access to multiple public-keys). The difference is that in our notion, an adversary outputs a bit
b that determines which of the two public-keys (pk0, pk1) will be used for encapsulation. This is required
because the weak robustness notion is inherently asymmetric w.r.t. the two challenge public-keys, since one
key is used for encapsulation (resp. encryption in case of PKE schemes) and the other for decapsulation
(resp. decryption in case of PKE schemes).

Again, analogous WROB-CPA and SROB-CPA definitions can be obtained simply by removing decap-
sulation queries in the above games. The advantage of an adversary A in the {WROB,SROB}-{CPA,CCA}
game is then defined as:

Adv
{WROB,SROB}−{CPA,CCA}
KEM (A) = Pr[GA = 1]

where GA refers to A playing in the appropriate version of the robustness game.
Note that these robustness definitions apply mainly for KEMs that have explicit rejection on decapsulation

errors. KEMs that offer only implicit rejection can never satisfy even the WROB-CPA notion.
With these anonymity and robustness notions in hand, it is straightforward to extend the result of [33,

Claim 3.3] concerning anonymity preservation from the specific case of KEMs constructed directly from
PKEs to fully general KEMs (with a non-zero decapsulation error probability); in fact, we can also show the
robustness of hybrid PKE schemes constructed from robust KEMs via the KEM-DEM framework. Namely,
we have the following:

Theorem 1. Let PKEhy = (KGen,Enchy,Dechy) be a hybrid encryption scheme obtained by composing
a KEM KEM = (KGen,Encap,Decap) with a one-time secure authenticated encryption scheme DEM =
(Enc,Dec). If KEM is δ-correct, then:

1. For any ANO-CCA adversary A against PKEhy, there exist wANO-CCA adversary B, IND-CCA ad-
versary C and WROB-CPA adversary D against KEM, and INT-CTXT adversary E against DEM such
that

AdvANO-CCA
PKEhy (A) ≤AdvwANO-CCA

KEM (B) + 2AdvIND-CCA
KEM (C)

+ AdvWROB-CPA
KEM (D) + AdvINT-CTXT

DEM (E) + δ .

The running times of B, C and E are the same as that of A. The running time of D is independent (and
less than that) of the running time of A.

2. For any WROB-ATK (resp. SROB-ATK) adversary A against PKEhy, there exists WROB-ATK (resp.
SROB-ATK) adversary B against KEM such that

AdvWROB-ATK
PKEhy (A) ≤ AdvWROB-ATK

KEM (B) ,

AdvSROB-ATK
PKEhy (A) ≤ AdvSROB-ATK

KEM (B) ,

where ATK ∈ {CPA,CCA} and the running time of B is that of A.

Proof (sketch). The proof of Theorem 1.1 closely follows that of [33, Claim 3.3] in terms of the sequence of
game-hops. Also for certain game-hops, we rely on security notions that are weaker than the corresponding
notions considered in the proof of [33, Claim 3.3] (e.g., WROB-CPA, instead of WROB-CCA, security of
the underlying KEM). The full details of the proof can be found in Appendix C.1.

To sketch a proof for Theorem 1.2, note that an adversary A wins the WROB-ATK game w.r.t. PKEhy

if it returns a pair (m, b) such that Dechy(sk1−b, C) 6= ⊥ where C(= (CKEM, CDEM))←$Enchy(pkb,m).
Let (CKEM, kb)←$Encap(pkb) and Decap(sk1−b, CKEM) = k1−b. It is easy to see that k1−b 6= ⊥, since
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Dechy(sk1−b, C) 6= ⊥. This implies that we can return bit b to win the WROB-ATK game w.r.t. KEM.
We can use a similar argument for the SROB-ATK case as well. The full details can again be found in
Appendix C.1.

Note that Theorem 1 is only meaningful for KEMs with explicit rejection, since for implicit rejection KEMs,
the term AdvWROB-ATK

KEM (·) in the above security bounds can be large.

3.1 Generic Composition for Implicit Rejection KEMs

Robustness: We first consider what can be said about robustness for PKE schemes built from KEMs offering
implicit rejection. We begin with a relaxed notion of robustness, namely collision freeness (as introduced
for the specific case of KEMs obtained from PKEs in [33]). Informally, a scheme is said to be collision-free
if a ciphertext always decrypts to two different messages under two different secret keys. We consider two
variants, weak (WCFR) and strong collision freeness (SCFR). The security games defined in Figure 2 define
both notions via two different finalisation steps.

As usual, analogous WCFR-CPA and SCFR-CPA definitions can be obtained by removing decapsulation
queries in the above games. Adversary A’s advantage in the {WCFR,SCFR}-{CPA,CCA} game is defined
to be:

Adv
{WCFR,SCFR}−{CPA,CCA}
KEM (A) := Pr[GA = 1]

where GA refers to A playing in the appropriate version of the CFR game.
Now suppose we have a KEM that is SCFR-CCA (resp. WCFR-CCA) secure and a DEM that is FROB

(resp. XROB) secure. (Recall that FROB and XROB are robustness notions for symmetric encryption
schemes introduced in [18] and defined in Figure 1.) Then we can show that the hybrid PKE scheme obtained
by composing these KEM and DEM schemes is SROB-CCA (resp. WROB-CCA) secure. More formally,

Theorem 2. Let PKEhy = (KGen,Enchy,Dechy) be a hybrid encryption scheme obtained by composing a
KEM KEM = (KGen,Encap,Decap) with a DEM DEM = (Enc,Dec). Then for any SROB-CCA (resp.
WROB-CCA) adversary A against PKEhy, there exist SCFR-CCA (resp. WCFR-CCA) adversary B againt
KEM and FROB (resp. XROB) adversary C against DEM such that

AdvSROB-CCA
PKEhy (A) ≤ AdvSCFR-CCA

KEM (B) + AdvFROB
DEM (C) ,

AdvWROB-CCA
PKEhy (A) ≤ AdvWCFR-CCA

KEM (B) + AdvXROB
DEM (C) ,

where the running times of B and C are the same as that of A.

Proof (sketch). Note that an adversary A wins the SROB-CCA game w.r.t. PKEhy if it returns a ciphertext
C (= (CKEM, CDEM)) such that Dechy(sk0, C) 6= ⊥ and Dechy(sk1, C) 6= ⊥. Let Decap(sk0, CKEM) = k0 and
Decap(sk1, CKEM) = k1. It is easy to see that k0 6= ⊥ and k1 6= ⊥. Now if k0 = k1, we can return CKEM

to win the SCFR-CCA game w.r.t. KEM. If k0 6= k1, we can return (CDEM, k0, k1) to win the FROB game
w.r.t. DEM. We can do a similar case-distinction to argue about WROB-CCA security as well. The full
details of the proof can be found in Appendix C.2.

Note that Farshim et al. [18] provide efficient constructions of FROB- and XROB-secure AE schemes,
meaning that the requirements for the above theorem can be easily met. At the same time, they showed that
a symmetric AE scheme that achieves the standard ROR-CCA notion of security is also inherently robust,
albeit w.r.t. some weaker notions compared to FROB. Namely, such ROR-CCA secure AE schemes were
shown to satisfy the so-called semi-full robustness (SFROB) notion in [18]. The SFROB notion of robustness
for symmetric AE schemes is a (potentially) weaker variant of FROB where, in the corresponding security
game, the adversary does not get to choose any keys. Instead, two keys are honestly generated and the
adversary is given oracle access to encryption and decryption algorithms under both keys. The adversary is
also given access to one of the keys, and the game is won (similar to that of FROB) if the adversary returns
a ciphertext that decrypts correctly under both honestly generated keys.

The following theorem shows that a DEM that is only ROR-CCA secure – and that lacks the stronger
robustness properties from [18] – is incapable of generically transforming strongly collision-free implicit
rejection KEMs to strongly robust hybrid PKEs.
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Theorem 3. Suppose there exists a KEM that is simultaneously SCFR-CCA, IND-CCA and ANO-CCA
secure. Suppose that there exists a SUF-CMA-secure MAC scheme and an ROR-CPA secure symmetric
encryption scheme (such schemes can be built assuming only the existence of one-way functions). Suppose
also that collision-resistant hash functions exist. Then there exists an implicit-rejection KEM that is SCFR-
CCA, IND-CCA and ANO-CCA secure and a DEM that is ROR-CCA secure, such that the hybrid PKE
scheme obtained from their composition is not SROB-CCA secure.

Proof (sketch). Let MAC = (Tag,Vf) be an SUF-CMA secure MAC. We construct MAC = (Tag,Vf) where
the only difference from MAC is that we fix a “faulty” key k chosen uniformly at random from the original
MAC key-space such that Vf(k, ·) = 1. Note that MAC is also SUF-CMA secure. So by composing MAC with
an ROR-CPA secure symmetric encryption scheme SE that never rejects invalid ciphertexts via the “Encrypt-
then-MAC” construction, we get an AE-secure DEM. Now let KEM = (KGen,Encap,Decap) be a KEM that
is SCFR-CCA, IND-CCA and ANO-CCA secure, and H be a collision-resistant hash function with its range
being the key-space of SE. We construct KEM = (KGen,Encap,Decap) where the only difference from KEM is
that the ciphertext space is augmented by a “special” bitstring c such that Decap(sk, c) = H(pk)||k, for any
KEM key-pair (pk, sk). It is not hard to see that KEM is also IND-CCA, ANO-CCA secure, and SCFR-CCA
secure (relying on the collision-resistance of H). Now the composition of KEM and DEM will not result in an
SROB-CCA secure hybrid PKE. Specifically, an adversary can return the ciphertext (c, c′||σ′), where c′||σ′
is an arbitrary DEM ciphertext, to win the corresponding SROB-CCA game with probability 1. Full details
of the proof can be found in Appendix C.3.

Anonymity: Now we turn to the question of what can be said about anonymity for PKE schemes built from
KEMs offering implicit rejection. We prove a negative result that strengthens an analogous result of [33].
That result showed that there exist KEMs that are ANO-CCA (and IND-CCA) secure and XROB-secure
authenticated encryption schemes, such that the hybrid PKE scheme resulting from their composition is
not ANO-CCA secure. Thus anonymity is not preserved in the hybrid construction. However the KEM
construction that was used to show this negative result in [33] is not SCFR-CCA secure, which might lead
one to think that the strong collision freeness of implicit rejection KEMs might be sufficient to preserve
anonymity. Here, we show this not to be true.

Theorem 4. Suppose there exists a KEM that is simultaneously SROB-CCA, IND-CCA and ANO-CCA
secure, a claw-free pair of permutations with domain and range being the encapsulated key-space of the KEM,
and a collision-resistant hash function. Suppose also that there exists a DEM that is ROR-CCA and XROB-
secure. Then there exists an implicit-rejection KEM that is SCFR-CCA, IND-CCA and ANO-CCA secure
and a DEM that is ROR-CCA and XROB-secure, such that the resulting hybrid PKE is not ANO-CCA
secure.

Proof (sketch). Let KEM = (KGen,Encap,Decap) be a KEM that is IND-CCA, ANO-CCA and SROB-CCA
secure. Let H be a collision-resistant hash function that maps the space of public-keys of KEM to its en-
capsulated key-space. We now construct KEM = (KGen,Encap,Decap) as follows. For the public parameters
of KEM, we first generate a pair of claw-free permutations with corresponding fixed public-key PK (see [12,
Section 4.2] for a more formal definition) f1(PK, ·) and f2(PK, ·) with domain and range being the encap-
sulated key-space of KEM. Now Encap(pk) returns (C, k) where (C, k)←$Encap(pk) and k := f1(PK, k).

Decap(sk, C) returns k
′

where, for k′ ← Decap(sk, C), k
′

:= f1(PK, k′) if k′ 6= ⊥ and k
′

:= f2(PK, H(pk)) if
k′ = ⊥. Using straightforward reductions, it is not hard to show that KEM is also IND-CCA and ANO-CCA
secure. In addition, we can show that KEM is SCFR-CCA secure by relying on the SROB-CCA security of
KEM, collision-resistance of H and claw-freeness assumption w.r.t. f1(PK, ·) and f2(PK, ·).

Now let DEM = (Enc,Dec) be an ROR-CCA secure AEAD which is additionally XROB-secure. We now
describe an adversary A against the ANO-CCA security of the hybrid PKE scheme w.r.t. the composition of
KEM and DEM. Upon receiving two public-keys pk0 and pk1 (along with the public-parameters f1(PK, ·) and
f2(PK, ·)), A selects an arbitrary message m and forwards m to the ANO-CCA challenger. It then receives
the ciphertext C = (CKEM, CDEM) where (CKEM, k)←$Encap(pkb) and CDEM←$Enc(k,m), for bit b←$ {0, 1}.
Then, A asks for the decryption of ciphertext C ′ = (CKEM, C

′
DEM) w.r.t. sk0 where C ′DEM = Enc(k̂,m) with

k̂ = f2(PK, H(pk0)). If the response is ⊥, then A outputs 0; else, it outputs 1. We use similar arguments
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Encap(pk)

1 : m←$M
2 : c1 ← Enc(pk,m;G(m))

3 : c2 ← H ′(m)

4 : c2 ← H ′(m, c1)

5 : c← (c1, c2)

6 : k = H(m, c)

7 : return (c, k)

Decap(sk, c)

1 : Parse c = (c1, c2)

2 : m′ ← Dec(sk, c1)

3 : c′1 ← Enc(pk,m′;G(m′))

4 : if c′1 = c1 ∧H ′(m′) = c2 then

5 : if c′1 = c1 ∧H ′(m′, c1) = c2 then

6 : return H(m′, c)

7 : else return ⊥

Fig. 3. The KEM HFO⊥ [PKE, G,H,H ′]. Boxed code shows modifications to HFO⊥ [PKE, G,H,H ′] required to obtain

scheme HFO⊥
′
[PKE, G,H,H ′]. Both constructed schemes reuse algorithm KGen from PKE.

as that of [33, Claim 3.1] to show that A succeeds with a high probability. Full details of the proof can be
found in Appendix C.4.

The consequence of the above theorem (and its counterexample) is that, for implicit rejection KEMs, we
cannot hope to transfer anonymity properties of the KEM to those of the hybrid PKE scheme resulting from
the standard KEM-DEM construction in a fully generic manner. To make further progress in this direction,
then, we need to look more closely at specific KEM constructions.

4 Anonymity and Robustness of KEMs Obtained from Fujisaki-Okamoto
Transforms in the QROM

Fujisaki and Okamoto [19–21] introduced generic transformations that turn weakly secure PKE schemes (e.g.
OW-CPA or IND-CPA secure PKE schemes) into IND-CCA secure KEMs and PKE schemes. Several distinct
transforms have emerged, each with slightly different flavours; we broadly follow the naming conventions
in [24]. One main distinction is whether the constructed KEM offers implicit rejection (FO 6⊥) or explicit
rejection (QFO⊥m). As we have already seen, this distinction is important in considering robustness, and we
divide our analysis of the FO transforms in the same way. Since all NIST PQC candidates in the KEM/PKE
category except one alternate candidate offer implicit rejection, we mainly focus on the corresponding FO 6⊥

transform. Also, since we are mainly concerned with the post-quantum setting, our analysis that follows will
be in the QROM.

4.1 KEMs With Explicit Rejection

Before we focus on the FO 6⊥ transform, we briefly discuss our results related to explicit-rejection KEMs. The
paper [28] presents a variant of the Fujisaki-Okamato transform, namely HFO⊥, that results in IND-CCA
secure KEMs in the QROM. Given a PKE scheme PKE = (KGen,Enc,Dec) (with message spaceM) and hash
functions G, H and H ′, the resulting KEM⊥ = HFO⊥ [PKE, G,H,H ′] = (KGen,Encap,Decap) is described in
Figure 3.

We introduce a slight variant of the above transform, namely HFO⊥
′
, as shown in Figure 3. The only

change is that the c2 component of the ciphertext–used for so-called plaintext confirmation–is derived as

c2 ← H ′(m, c1) instead of as c2 ← H ′(m). However, this seemingly minor change not only allows the HFO⊥
′

transform to result in IND-CCA secure KEMs, but also strongly anonymous (ANO-CCA secure) and robust
(SROB-CCA secure) KEMs in the QROM. In Appendix D, we formally state and prove the corresponding
theorems.

4.2 KEMs With Implicit Rejection

Given a PKE scheme PKE = (KGen,Enc,Dec) with message space M and hash functions G and H, the
KEM KEM 6⊥ = FO 6⊥[PKE, G,H] is shown in Figure 4. As described in [24], the FO 6⊥ transform “implicitly”
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KGen′

1 : (pk, sk)← KGen

2 : s←$M
3 : sk′ = (sk, s)

4 : return (pk, sk′)

Encap(pk)

1 : m←$M
2 : r ← G(m)

3 : c← Enc(pk,m; r)

4 : k ← H(m, c)

5 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ ← Dec(sk, c)

3 : r′ ← G(m′)

4 : c′ ← Enc(pk,m′; r′)

5 : if c′ = c then

6 : return H(m′, c)

7 : else return H(s, c)

Fig. 4. The KEM FO 6⊥[PKE, G,H].

uses a modular transformation T that converts a OW-CPA/IND-CPA secure PKE scheme PKE into a
deterministic PKE scheme PKE1 = T [PKE, G] = (KGen,Enc′,Dec′) that is secure in the presence of so-called
plaintext-checking attacks. The deterministic encryption Enc′(pk,m) returns c where c← Enc(pk,m;G(m)).
The decryption Dec′(sk, c) first computes m′ ← Dec(sk, c) and then returns m′ if the re-encryption check
“Enc(pk,m′;G(m′)) = c” succeeds; otherwise, ⊥ is returned.

It was proved in [27] that the FO 6⊥ transform lifts IND-CPA security of PKE to IND-CCA security
of KEM 6⊥ in the QROM. We provide some further enhancement results for FO 6⊥. They demonstrate that,
provided the starting PKE scheme PKE and the derived deterministic scheme PKE1 satisfy some mild security
assumptions on anonymity (wANO-CPA3) and collision-freeness (SCFR-CPA) respectively, then FO 6⊥ confers
strong anonymity (ANO-CCA) and collision-freeness (SCFR-CCA) to the final KEM 6⊥ in the QROM. (In
Appendix B, we present lemmas related to the QROM that are used in proving our results.)

Theorem 5. Suppose PKE = (KGen,Enc,Dec) is δ-correct and has message space M. Then for any ANO-
CCA adversary A against KEM 6⊥ = FO 6⊥[PKE, G,H] issuing at most qG (resp. qH) queries4 to the quantum
random oracle G (resp. H) and at most qD queries to the (classical) decapsulation oracles, there exist
wANO-CPA adversary B and OW-CPA adversary C against PKE, and SCFR-CPA adversary D against
PKE1 = T[PKE, G] issuing at most qG queries to G, such that:

AdvANO-CCA
KEM6⊥ (A) ≤ AdvwANO-CPA

PKE (B) + 2(qG + qH)

√
AdvOW-CPA

PKE (C)

+ qD ·AdvSCFR-CPA
PKE1

(D) +
4qH√
|M|

+ 2qG(qD + 2)
√

2δ .

Moreover, the running times of B, C and D are the same as that of A.

Proof (sketch). In a reduction from ANO-CCA security of KEM 6⊥ to wANO-CPA security of PKE, note that
we need to simulate two different decapsulation oracles consistently without possessing the corresponding
secret keys. Our approach is to generalize the simulation trick of [27, 35] in the QROM from a single-
key setting (in the context of IND-CCA security) to a two-key setting (ANO-CCA). Namely, given two
public-keys pk0, pk1, note that the encapsulation algorithm for both of them uses a common key-derivation
function (KDF) “k = H(m, c)” (see Fig. 4). So we associate this KDF with two secret random functions
H0 and H1 as follows: given an input (m, c), if c = Enc(pki,m;G(m)) (i.e., c results likely from Encap(pki)),
then replace the KDF with “k = Hi(c)”. Note that in this case, we can simply simulate the decapsulation
oracles as Decap(ski, c) = Hi(c) without requiring the secret keys. Now to argue that this replacement
of KDF is indistinguishable w.r.t. an adversary, we require the functions Enc(pki, · ;G(·)) to be injective.

3 The wANO-CPA security notion for PKE is a weaker variant of ANO-CPA where, in the corresponding security
game, the challenger encrypts a uniformly random secret message under either of the two honestly generated
public-keys and only provides the resulting ciphertext to the adversary, along with the generated public-keys.

4 Following [24, 27], we make the convention that the number qO of queries made by an adversary A to a random
oracle O counts the total number of times O is executed in the corresponding security experiment; i.e., the number
of A’s explicit queries to O plus the number of implicit queries to O made by the experiment.
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Thus, following [27], we first replace oracle G with G′ where G′ only returns “good” encryption randomness
w.r.t. (pk0, sk0) and (pk1, sk1) – i.e., ∀m, Dec(ski,Enc(pki,m;G′(m))) = m, for i ∈ {0, 1}. We again generalize
the argument of [27] from a single-key setting to a two-key setting to show that this replacement of G is
indistinguishable, relying on the δ-correctness of PKE.

However, note that we additionally have to account for pairs (m, c) which satisfy Enc(pk0,m;G′(m)) =
Enc(pk1,m;G′(m)) = c; in this case, the reduction does not know which public-key was used to generate c
during key-encapsulation. So we rely on SCFR-CPA security to argue that it is computationally hard for
an adversary to ask for the (classical) decapsulation of such “peculiar” ciphertexts c. Such a c results in
Dec(sk0, c) = Dec(sk1, c) = m, thereby breaking the SCFR-CPA security of T[PKE, G′], and hence, that of
PKE1 = T[PKE, G] (up to an additive loss). Full details of the proof can be found in Appendix C.5. Note
that it is similar in structure to that of [27, Theorem 1] in terms of the sequence of game-hops. But for the
sake of completeness, we provide a self-contained proof.

To establish strong collision-freeness of the implicit-rejection KEMs constructed using FO 6⊥, we require
the following claw-freeness property of quantum random oracles.

Lemma 1 ([41, Lemma 2.3]). There is a universal constant α (< 648) such that the following holds: Let
X0, X1 and Y be finite sets. Let N0 = |X0| and N1 = |X1|, with N0 ≤ N1. Let H0 : X0 → Y and H1 : X1 → Y
be two random oracles.

If an unbounded time quantum adversary A makes a query to H0 and H1 at most q times, then we have

Pr[H0(x0) = H1(x1) : (x0, x1)← AH0,H1 ] ≤ α(q + 1)3

|Y|
,

where all oracle accesses of A can be quantum.

For the following result, we in-fact need a weaker property than the one described in the above lemma;
namely, it’s hard for an adversary to return a value x ∈ X0 ∩ X1 such that H0(x) = H1(x). We leave the
derivation of the corresponding upper-bound as an open problem.

Theorem 6. Suppose PKE = (KGen,Enc,Dec) is δ-correct. Then for any SCFR-CCA adversary A against
KEM 6⊥ = FO 6⊥[PKE, G,H] issuing at most qD queries to the (classical) decapsulation oracles, at most qG
(resp. qH) queries to the quantum random oracle G (resp. H), there exists an SCFR-CPA adversary B
against PKE1 = T[PKE, G] issuing at most qG queries to G such that

AdvSCFR-CCA
KEM6⊥ (A) ≤ qD ·AdvSCFR-CPA

PKE1
(B) +

α(qH + 1)3

|K|

+
4qH√
|M|

+ 2qG(qD + 2)
√

2δ .

Here K denotes the encapsulated key-space of KEM 6⊥ and α (< 648) is the constant from Lemma 1. The
running time of B is the same as that of A.

Proof (sketch). Here we reduce the SCFR-CCA security of KEM 6⊥ to the hardness of claw-finding w.r.t. QROs.
The proof is similar in structure to that of Theorem 5. Namely, we start with an SCFR-CCA adversary A
and do a similar sequence of game-hops until the point where the decapsulation oracles don’t require the
corresponding secret keys – namely, Decap(ski, c) = Hi(c) for (secret) random functions H0, H1 : C → K,
where C denotes the ciphertext space of PKE/KEM 6⊥. Now A wins this modified SCFR-CCA game if it
returns c such that Decap(sk0, c) = Decap(sk1, c), or equivalently, H0(c) = H1(c). Note that (c, c) is then
a claw w.r.t. the pair of QROs (H0, H1). Hence, we can bound A’s winning probability using Lemma 1. A
complete proof can be found in Appendix C.6.

From Theorems 5 and 6, we see that by applying the FO 6⊥ transformation to weakly secure (i.e., OW-CPA)
and weakly anonymous (i.e., wANO-CPA) PKE schemes, with an additional assumption of strong collision-
freeness (against chosen plaintext attacks) of the deterministic version of the underlying PKE scheme (PKE1

= T[PKE, G]), not only do we obtain strongly secure KEMs (i.e., IND-CCA security) but also KEMs that
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are strongly anonymous (i.e., ANO-CCA) and are strongly collision-free against chosen ciphertext attacks
(SCFR-CCA) in the QROM.

At the same time, we showed a negative result in Theorem 4. It essentially shows that starting from
a KEM that is IND-CCA, ANO-CCA and SCFR-CCA secure does not generically result in a strongly
anonymous (ANO-CCA) hybrid PKE scheme via the KEM-DEM composition. Nonetheless, we are able to
show the following positive result for KEMs obtained via the FO 6⊥ transform. We only need a weak additional
property of the underlying PKE scheme, namely that it be γ-spread (as defined in Appendix A).

Theorem 7. Let PKEhy = (KGen′,Enchy,Dechy) be a hybrid encryption scheme obtained by composing
KEM 6⊥ = FO 6⊥[PKE, G,H] with a one-time authenticated encryption scheme DEM = (Encsym,Decsym). Sup-
pose PKE is δ-correct and γ-spread (with message space M). Then for any ANO-CCA adversary A against
PKEhy issuing at most qG (resp. qH) queries to the quantum random oracle G (resp. H), there exist ANO-
CCA adversary B and IND-CCA adversary C against KEM 6⊥, WCFR-CPA adversary D against PKE1 =
T[PKE, G], and INT-CTXT adversary E against DEM such that:

AdvANO-CCA
PKEhy (A) ≤ AdvANO-CCA

KEM6⊥ (B) + 2AdvIND-CCA
KEM6⊥ (C) + AdvWCFR-CPA

PKE1
(D)

+ 2AdvINT-CTXT
DEM (E) +

4qH√
|M|

+ 4qG
√
δ + 2−γ .

Moreover, the running times of B, C and E are the same as that of A. The running time of D is independent
(and less than that) of the running time of A.

Proof (sketch). We use the proof of Theorem 1. Let (pk0, sk
′
0) and (pk1, sk

′
1) be two key-pairs generated in

the ANO-CCA security game w.r.t. PKEhy, and b←$ {0, 1} be the challenge bit. Let c∗ = (c∗1, c
∗
2) be the

challenge ciphertext given to an adversary A; i.e., (c∗1, k
∗)← KEM 6⊥.Encap(pkb) and c∗2 ← Encsym(m) where

m is chosen by A upon first receiving pk0, pk1. In the proof of Theorem 1, we make some initial game-hops
to modify the Dechy(sk′1−b, ·) oracle such that if the query is of the form (c∗1, c2), the oracle returns ⊥.
There we rely on the WROB-CPA security of the underlying KEM to justify this modification. However,
KEM 6⊥ is trivially not WROB-CPA secure. Nevertheless, we show that by relying on γ-spreadness of PKE,
WCFR-CPA security of PKE1 and INT-CTXT security of DEM, we can still make the above modification
of the Dechy(sk′1−b, ·) oracle. From that point on, we essentially use the same game-hops as in the proof of

Theorem 1 in our reduction to ANO-CCA security of KEM 6⊥. Full details can be found in Appendix C.7.

5 Anonymity and Robustness of NIST PQC Candidates

After analyzing the anonymity and robustness enhancing properties of the “standard” FO transforms in
Section 4, we extend our analysis to the specific instantiations of these transforms used by Classic McEliece,
proto-Saber (the simplified version of Saber in [15]) and FrodoKEM. We conclude this section by discussing
some limitations of our techniques w.r.t. analyzing Saber and Kyber.

5.1 Classic McEliece

Classic McEliece (CM) as defined in its third round NIST specification [3] applies a slight variant of the
FO 6⊥ transform to its starting deterministic PKE scheme (see Fig. 5). It can easily be shown that our generic
transformation results on FO 6⊥, namely Theorems 5 and 6, apply to the FO 6⊥-like transformation used by CM,
while accounting for the additional “Dent hash”. Hence, the only thing that would remain to be analyzed
is whether the base PKE scheme used by CM satisfies the pre-requisite security properties of Theorems 5
and 6, namely wANO-CPA and SCFR-CPA. As we show next, the base PKE scheme used by CM fails to
be collision-free in a striking way that rules out the application of these results. This failure also propagates
to PKE schemes built from the CM KEM via the standard KEM-DEM construction.
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KGen′

1 : (pk, sk)← KGen

2 : s←$M
3 : sk′ ← (sk, pk, s)

4 : return (pk, sk′)

Encap(pk)

1 : m←$M
2 : c← Enc(pk,m)

3 : h← H2(m)

4 : k ← H1(m, (c, h))

5 : return ((c, h), k)

Decap(sk′, (c, h))

1 : Parse sk′ = (sk, pk, s)

2 : m′ ← Dec(sk, c)

3 : c′ ← Enc(pk,m′)

4 : if c′ = c ∧H2(m′) = h then

5 : return H1(m′, (c, h))

6 : else return H0(s, (c, h))

Fig. 5. Classic McEliece uses a slight variant of the FO 6⊥ transform that starts with deterministic PKE schemes. Here
H0 and H1 are two different hash functions. The so-called “Dent hash” H2 is used as an additional component in the
KEM ciphertext [3].

The base CM scheme: The base CM scheme is deterministic. To encrypt a message m, first encode m
as a binary column vector e of some fixed length n and fixed Hamming weight t. Then compute ciphertext
c = He ∈ Fn2 where H is an (n − k) × n matrix of the form H = (In−k |T ), where T is some (n − k) × k
matrix whose value is unimportant below. Matrix H is the parity check matrix of an error correcting code
whose error correcting capacity is at least t. Decryption is done by using the private key to rewrite matrix
H in such a way that efficient decoding can be performed to recover e with perfect correctness. The base
CM scheme is closely related to the Niederreiter variant of the McEliece PKE scheme.

Collision-freeness of the base CM scheme: Recall that we would require the base CM scheme to satisfy
the SCFR-CPA property in order to make use of our generic results concerning the FO6⊥ transform. This
property is crucial in the CPA → CCA security proofs where we have to simulate the decapsulation oracles
under two different secret keys without access to the keys. As we will show now, the base CM scheme is not
SCFR-CPA secure, nor even WCFR-CPA secure. In fact, we can go further and exhibit a strong robustness
failure of the base CM scheme, and explain how it leads to robustness failures in the CM KEM and hybrid
PKE schemes built from it.

Consider any weight t error vector e in which the t 1’s in e are concentrated in the first n−k bit positions
of e (in all the parameter sets used in Classic McEliece, n− k = mt ≥ t, for a positive integer m, so this is
always possible). We call such an e concentrated. Note that any concentrated e can be written e =

( en−k

0k

)
with en−k of length n−k and 0k being the vector of k zeros. Since encryption is done by computing c = He,
and H is of the form (In−k |T ), it is easy to see that c is a fixed vector independent of the T part of H:
namely, He = en−k which depends only on the first n− k bit positions of e.

Note that this property holds independent of the public key of the base CM scheme (which is effectively
the matrix H). Thus there is a class of base CM messages (of size

(
n−k
t

)
) for which the resulting ciphertext

c can be predicted as a function of the message without even knowing the public key. By correctness of the
base CM scheme, such ciphertexts must decrypt to the selected message under any base CM scheme private
key.

It is immediate that this property can be used to violate SCFR-CPA and WCFR-CPA security of the base
CM scheme. This presents a significant barrier to the application of our general theorems for establishing
robustness and anonymity of the full CM KEM.

Robustness of the CM KEM and Hybrid PKEs derived from it: The base CM scheme is used to
construct the CM KEM according to procedure described in Figure 5. This means that the CM KEM encap-
sulations are also of the form c = (He,H2(e)) where H2(·) is a hash function; meanwhile the encapsulated
keys are set as H1(e, c) where H1(·) is another hash function. The CM KEM performs implicit rejection, so
one cannot hope for robustness. However, one might hope for some form of collision-freeness. Our analysis
above shows that the CM KEM does not provide even this, since when e is concentrated, c = (He,H2(e))
decapsulates to H1(e, c) under any CM private key.

Finally, one might ask about the robustness of PKE scheme built by combining the CM KEM with a
DEM in the standard way. Again, such a PKE cannot be strongly collision free (and therefore not strongly
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robust either), since it is trivial using our observations to construct a hybrid PKE ciphertext that decrypts
correctly under any CM private key to any fixed choice of message m (without even knowing the public
key). To see this, simply consider hybrid ciphertexts of the form (He,H2(e),AEAD.Enc(K,m; r)) where e
is concentrated, K = H1(e, c) is the symmetric key encapsulated by the KEM part c = (He,H2(e)) of the
hybrid ciphertext, and r is some fixed randomness for the AEAD scheme. Such ciphertexts decrypt to the
freely chosen message m under any CM private key.

Robustness could plausibly be conferred on this hybrid PKE scheme by including a hash of the public key
in the key derivation step. However CM keys are large, so this would have a negative effect on performance.
Robustness is not conferred in general by replacing the DEM with an AEAD scheme and including the hash
of the public key in the associated data to create a “labelled DEM”. This is easy to see by adapting the
counter-example construction used in the proof of Theorem 3.

Further remarks on CM: The analysis above shows that we cannot hope to establish anonymity or
robustness of the CM KEM or PKEs built from it via the standard KEM-DEM construction using the
sequence of results in this paper. But this does not rule out more direct approaches to proving anonymity.
For example, Persichetti [34] has analysed the anonymity of a scheme called HN (for “hybrid Niederreiter”)
that is rather close to the natural hybrid scheme one would obtain from CM. However, the analysis is in
the ROM rather than the QROM. We are not aware of any further analysis of the anonymity properties of
schemes that are close to CM and that might be easily adapted to CM.

In the context of the NIST PQC process, it remains an important open problem to establish anonymity
of the CM scheme.

5.2 proto-Saber

KGen′

1 : (pk, sk)← KGen

2 : s←$M
3 : sk′ ← (sk, pk, F (pk), s)

4 : return (pk, sk′)

Encap(pk)

1 : m←$M
2 : (k̂, r)← G(F (pk),m)

3 : c← Enc(pk,m; r)

4 : k ← H(k̂, c)

5 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, F (pk), s)

2 : m′ ← Dec(sk, c)

3 : (k̂′, r′)← G(F (pk),m′)

4 : c′ ← Enc(pk,m′; r′)

5 : if c′ = c then

6 : return H(k̂′, c)

7 : else return H(s, c)

Fig. 6. pSaber uses a variant of the FO 6⊥ transform. Here G, F and H are hash functions.

The scheme “proto-Saber” (pSaber for short) is a KEM that was introduced in [15] and which is included
in the NIST third round specification document for Saber [8]. Saber and pSaber use the same base PKE
scheme but apply different FO-type transforms to obtain their respective KEMs. The QROM IND-CCA
security claims for Saber [8, Theorem 6.5] seem to have been taken directly from those for pSaber [15,
Theorem 6] without any modification. However, as we will explain below, there are issues with pSaber’s
IND-CCA security claims, and yet further issues for Saber’s.

Now pSaber uses a transform that differs significantly from the standard FO 6⊥ one (see Fig. 6). These
significant deviations act as an obstacle to applying our generic results on anonymity and SCFR enhancement
of FO 6⊥ to pSaber. The nature of these deviations also led us to ask whether they also act as a barrier in
applying the results of [27] to establish the IND-CCA security of pSaber, as claimed in [15]. We believe this
to be the case, as we explain next.

IND-CCA security of pSaber in the QROM: We claim that the specific proof techniques used by [27],
to obtain relatively tight IND-CCA security bounds for the standard FO 6⊥ transform in the QROM, do not
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directly apply to pSaber’s variant of the FO transform. An important trick used by [27] in their security
proofs of FO 6⊥ is to replace the computation of the key “k ← H(m, c)” with “k ← H ′(g(m))(= H ′(c))” for
function g(·) = Enc(pk, · ;G(·)) and a secret random function H ′(·); note that in this case, we simply have
Decap(sk, c) = H ′(c) leading to an “efficient” simulation of the decapsulation oracle without using the secret
key sk. To justify this replacement, the authors of [27] then argue about the injectivity of g(·), relying on
the correctness of the underlying PKE scheme to establish this.

But in pSaber, the keys are computed as “k ← H(k̂, c)” where the “pre-key” k̂ is derived as a hash of

the message m (to be specific, (k̂, r)← G(F (pk),m)). So there is an extra layer of hashing between m and
the computation of k. Hence, to use a similar trick as [27], we would require some additional injectivity
arguments. Thus, strictly speaking, the proof techniques of [27] do not directly apply to pSaber.

Nevertheless, we are able to overcome the above barrier by adapting the analysis of FO 6⊥ in [27] to obtain
an explicit IND-CCA security proof for pSaber in the QROM, with the same tightness as claimed in [15].
The formal proof can be found in Appendix E. We give a high-level overview of our approach below.

First, note that we can replace the step “(k̂, r) ← G(F (pk),m)” in pSaber’s encapsulation by “k̂ ←
Gk̂(m)” and “r ← Gr(m)” for two fresh random oracles Gk̂, Gr : {0, 1}256 → {0, 1}256. Now our key
observation is that the extra layer of hashing “Gk̂(·)” between m and k is actually length-preserving, i.e.,
the hash function has the same domain and range. So following [24, 38], we can replace the random oracle
Gk̂(·) with a random polynomial of degree 2qG − 1 over a finite field representation of {0, 1}256 (i.e., a 2qG-
wise independent function). Here qG is the number of queries made to oracle G in the IND-CCA security
reduction for pSaber. Because of Lemma 2 in Appendix B, this change is perfectly indistinguishable to an
adversary making at most qG queries to Gk̂. This will allow us to recover m from a corresponding pre-

key value k̂ by computing roots of the polynomial Gk̂(x) − k̂. Hence we can invert this “nested” hashing

of m in order to apply the trick of [27]. Namely, we can now replace the key derivation “k ← H(k̂, c)”
with “k ← H ′(g(m))(= H ′(c))” for function g(·) = Enc(pk, · ;Gr(·)), where in addition, m is a root of the

polynomial Gk̂(x)− k̂.

Anonymity and Robustness of pSaber in the QROM: Our approach to repairing pSaber’s IND-CCA
proof also allows us to derive proofs of anonymity and SCFR enhancement for pSaber with similar tightness.

Now pSaber, and Saber, is a KEM whose claimed security relies on the hardness of the module learning-
with-rounding problem, or mod-LWR for short (see [8, 15] for a precise description of the assumption). In
the following, we prove the ANO-CPA security of the base PKE scheme Saber.PKE that is used by pSaber,
and also currently used by Saber (as per [8]). The result relies on the hardness of mod-LWR. The proof can
be found in Appendix C.8. The proof adapts the proof of [15, Theorem 3] showing IND-CPA security of
Saber.PKE.

Theorem 8. For any ANO-CPA adversary A against Saber.PKE, there exists a distinguisher B1 (resp.,
B2) between l (resp. l + 1) samples from a mod-LWR distribution from that of a uniform distribution, with
corresponding parameters l, µ, q and p, such that

AdvANO-CPA
Saber.PKE (A) ≤ 2 ·Advmod-lwr

l,l,µ,q,p (B1) + Advmod-lwr
l+1,l,µ,q,p(B2).

Moreover, the running times of B1 and B2 are the same as that of A.

Now we establish anonymity and strong collision-freeness of pSaber KEM, which we will denote as
“pSaber.KEM” in the following to contrast the scheme with Saber.PKE. We use similar proof strategies
that were used to show the same properties for FO 6⊥ in Section 4 (Theorems 5 and 6). A major difference
is that instead of relying on the SCFR-CPA security property of Saber.PKE (specifically, its deterministic
version), we again rely on hardness of the claw-finding problem in a quantum setting (see Lemma 1).

In our next results, we show that the stronger properties of ANO-CCA and SCFR-CCA hold for
pSaber.KEM. Below we define CollFSaber.PKE as the probability of the event “F (pk0) = F (pk1)” where pk0 and
pk1 are two honestly-generated Saber.PKE public-keys. Given the space of Saber’s public-keys is sufficiently
large (of size greater than 2256), if the hash function F is sufficiently collision-resistant, then CollFSaber.PKE
can be considered to be negligible. The proofs of Theorems 9 and 10 can be found in Appendices C.9 and
C.10 respectively.
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Theorem 9. Given Saber.PKE = (KGen,Enc,Dec) is δ-correct, for any ANO-CCA adversary A against
pSaber.KEM = (KGen′,Encap,Decap) issuing at most qD classical queries to the decapsulation oracles, at
most qG (resp. qH) quantum queries to the random oracle G (resp. H), there exist ANO-CPA adversary
B, OW-CPA adversary C against Saber.PKE and a distinguisher B1 between l samples from a mod-LWR
distribution and a uniform distribution with corresponding parameters l, µ, q and p, such that

AdvANO-CCA
pSaber.KEM(A) ≤ AdvANO-CPA

Saber.PKE (B) + 2(qG + qH)

√
AdvOW-CPA

Saber.PKE(C)

+ CollFSaber.PKE +
α(qG + 1)3

2256
+ Advmod-lwr

l,l,µ,q,p (B1) +
2

2256
+

4qH
2128

+ 8qG
√
δ

Here α (< 648) is the constant from Lemma 1. The running times of B and C are the same as that of A.
The running time of B1 is independent (and less than that) of the running time of A.

Theorem 10. Given Saber.PKE = (KGen,Enc,Dec) is δ-correct, for any SCFR-CCA adversary A against
pSaber.KEM = (KGen′,Encap,Decap) issuing at most qD queries to the (classical) decapsulation oracles, at
most qG (resp. qH) queries to the quantum random oracle G (resp. H), we have

AdvSCFR-CCA
pSaber.KEM (A) ≤ CollFSaber.PKE +

α(qG + 1)3

2256
+
α(qH + 1)3

2256
+

4qH
2128

Here α (< 648) is the constant from Lemma 1.

Regarding hybrid PKE schemes obtained from pSaber.KEM via the KEM-DEM composition, we addi-
tionally show that such PKE schemes satisfy the stronger ANO-CCA notion of anonymity, in a similar vein
to Theorem 7 w.r.t. FO 6⊥-based KEMs. The proof can be found in Appendix C.11.

Theorem 11. Let pSaber.PKEhy = (KGen′,Enchy,Dechy) be a hybrid encryption scheme obtained by com-
posing pSaber.KEM = (KGen′,Encap,Decap) with a one-time authenticated encryption scheme DEM =
(Encsym,Decsym). Given Saber.PKE = (KGen,Enc,Dec) is δ-correct, then for any ANO-CCA adversary A
against pSaber.PKEhy issuing at most qG (resp. qH) queries to the quantum random oracle G (resp. H), there
exist ANO-CCA adversary B, IND-CCA adversary C against pSaber.KEM, INT-CTXT adversary E against
DEM and distinguisher B1 between l samples from a mod-LWR distribution and a uniform distribution, with
corresponding parameters l, µ, q and p, such that

AdvANO-CCA
pSaber.PKEhy (A) ≤ AdvANO-CCA

pSaber.KEM(B) + 2AdvIND-CCA
pSaber.KEM(C) + CollFSaber.PKE

+ 2AdvINT-CTXT
DEM (E) + Advmod-lwr

l,l,µ,q,p (B1) +
4qH
2128

+ 8qG
√
δ +

1

2256

and the running times of B, C and E are the same as that of A. The running time of B1 is independent (and
less than that) of the running time of A.

At the same time, from Theorems 2 and 10, we note that if the DEM component is also FROB secure,
then the corresponding hybrid PKE scheme will be strongly robust (i.e., SROB-CCA secure). Hence, our
above results give a complete picture of anonymity and robustness properties of pSaber as well as the hybrid
PKE schemes derived from it.

5.3 FrodoKEM

FrodoKEM uses an identical FO-type transform, described as “FO 6⊥′” in the specification document [4], as
pSaber does (see Fig. 6) on its base PKE scheme “FrodoPKE”. Hence, our positive results on tight IND-CCA
security, anonymity and robustness of pSaber should also apply to FrodoKEM in a similar fashion; instead
of relying on hardness of mod-LWR problem, we have to rely on hardness of the learning-with-errors (LWE)
problem.

For example, when it comes to establishing anonymity of FrodoKEM, we only need to prove the ANO-
CPA security of FrodoPKE and then rely on the “ANO-CPA→ ANO-CCA” enhancement property of FO 6⊥′

(LWE variant of Theorem 9). The ANO-CPA security of FrodoPKE can be shown in a similar manner as
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that of Saber.PKE (Theorem 8): namely, by adapting the IND-CPA security proof of FrodoPKE. To be more
precise, it is shown in [4, 31] w.r.t. FrodoPKE = (KGen,Enc,Dec) that given (pk, sk)←$KGen and any valid
message m, the distribution (pk,Enc(pk,m)) is computationally indistinguishable from (pk, c∗) where c∗ is a
uniformly random ciphertext, relying on the LWE hardness assumption. Hence, in the ANO-CPA security
game w.r.t. FrodoPKE, given two honestly-generated public-keys pk0, pk1 and a message m chosen by an
adversary, it cannot distinguish the encryption of m under pk0 from a uniformly random ciphertext that is
independent of pk0. Similarly, the adversary also cannot distinguish the uniformly random ciphertext from
the encryption of m under pk1. It follows that the adversary cannot distinguish between the encryptions of
m under pk0 and pk1, thereby establishing the ANO-CPA security of FrodoPKE.

5.4 Saber and Kyber

It turns out that Saber and Kyber implement a transform that deviates even further from the FO 6⊥ transform
than pSaber does (see Fig. 7). Specifically, the keys in Saber are computed as “k ← F (k̂, F (c))” where the

“pre-key” k̂ is derived as a hash of the message m (to be specific, (k̂, r)← G(F (pk),m)). Again there is an
extra hashing step between m and the computation of k, as we have seen for pSaber. But at the same time,
there is also a “nested” hashing of ciphertext in the key-derivation (i.e., Saber uses “F (c)” in place of just
“c”) as opposed to the standard “single” hashing in FO 6⊥ and pSaber.

KGen′

1 : (pk, sk)← KGen

2 : s←$M
3 : sk′ ← (sk, pk, F (pk), s)

4 : return (pk, sk′)

Encap(pk)

1 : m←$M
2 : m← F (m)

3 : (k̂, r)← G(F (pk),m)

4 : c← Enc(pk,m; r)

5 : k ← F (k̂, F (c))

6 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, F (pk), s)

2 : m′ ← Dec(sk, c)

3 : (k̂′, r′)← G(F (pk),m′)

4 : c′ ← Enc(pk,m′; r′)

5 : if c′ = c then

6 : return F (k̂′, F (c))

7 : else return F (s, F (c))

Fig. 7. Saber uses a variant of the FO 6⊥ transform. Here G and F are hash functions [8].

This “extra” hash of the ciphertext is a significant barrier to applying the techniques we used to prove
anonymity of pSaber. It also acts as a barrier when trying to apply the generic proof techniques of [27] towards
establishing the IND-CCA security of Saber in the QROM, with the same bounds as was claimed in its NIST
third round specification [8]. At least for pSaber, as discussed above, we were able to account for the “nested”
hashing of message because it was length-preserving. However, this is not the case for “F (c)” in Saber. We
believe that an IND-CCA security reduction for Saber, along the lines of [27], in the QROM would need
to rely on the collision-resistance of F (·) when modelled as a quantum random oracle. But a corresponding
additive term is missing in the IND-CCA security bounds claimed in the Saber specification. We have shared
these observations with the Saber team. A representative of the team [40] accepted our findings on the IND-
CCA security of pSaber. Regarding Saber, they maintain that the nested hash of ciphertext F (c) should not
pose a security problem for Saber as c is “deterministically derived from limited entropy”. However, they do
not know if this allows a security proof to go through in the QROM [40].

When it comes to robustness however, the news is better. Namely, we can apply similar proof strategies
used to establish strong collision-freeness of FO 6⊥-based KEMs (Theorem 6) and pSaber (Theorem 10) to show
SCFR-CCA security of Saber in the QROM. The corresponding proof, presented in detail in Appendix C.12,
on a high-level uses the fact that the hash of public-keys are included in Saber’s key-derivation step (in
contrast to Classic McEliece). This allows us to establish the SCFR-CCA security of Saber KEM by mainly
relying on properties of quantum random oracles G and F , namely collision-resistance and claw-freeness.
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Theorem 12. For any SCFR-CCA adversary A against the scheme Saber.KEM = (KGen′,Encap,Decap)
issuing at most qG (resp. qF ) queries to the quantum random oracle G (resp. F ), we have

AdvSCFR-CCA
Saber.KEM (A) ≤ CollFSaber.PKE +

α(qG + 1)3

2256
+

4α(qF + 1)3

2256
+

4qF
2128

Here α (< 648) is the constant from Lemma 1.

Kyber uses an FO-type transform which is essentially the same as that of Saber (see Fig. 7). Hence,
the issues we identified with Saber above w.r.t. IND-CCA security claims in the QROM as described in the
specification document, as well as establishing anonymity of the scheme, apply to Kyber too. We have shared
these observations with the Kyber team. At the 3rd NIST PQC Standardization Conference, a representative
of the Kyber team [37] acknowledged that the nested hash of ciphertext F (c) could make it “tricky” to prove
the security of Kyber in the QROM, while removing this nested hash would overcome this issue.

But on the positive side, our result on strong collision-freeness (SCFR-CCA security) of Saber–namely,
Theorem 12 above–also applies to Kyber in the same fashion, because of the similarity in their respective
FO-type transforms. In other words, the current versions of Kyber and Saber also lead to strongly robust
hybrid PKE schemes in the QROM.

In conclusion, we consider the concrete IND-CCA security–as claimed in [8, 6]–and anonymity (ANO-
CCA security) of Saber and Kyber to remain open. We also suggest a modification to Saber and Kyber:
namely, to apply the same FO-type transform as pSaber uses (as in Figure 6) to the relevant base PKE
scheme, thus replacing the “nested” hashing of ciphertext in key-derivation with single hashing. In doing so,
not only would the two NIST finalists then enjoy the same provable IND-CCA security guarantees of FO 6⊥-
based KEMs in the QROM as established in the literature [27, 35], but this would also allow our techniques
establishing anonymity of pSaber to be extended to Saber and Kyber.5

6 Conclusions and Future Work

In this work, we initiated the study of anonymous and robust KEMs and PKE schemes in the post-quantum
setting. We resolved several core technical questions, and showed that proto-Saber, a simplified version of
Saber, and FrodoKEM can be used to build anonymous, robust hybrid PKE schemes. We also pointed out
gaps in the current IND-CCA security analyses of Saber and Kyber. Both NIST finalists do lead to robust
hybrid PKE from our analysis. Finally, we highlighted a surprising property of Classic McEliece (CM)
showing that it does not lead to robust PKE schemes via the standard KEM-DEM construction.

Important questions remain about the anonymity and robustness of the NIST finalists and alternate
candidates. For example, it is plausible that the anonymity of CM could be proven by a direct approach;
the same applies for Saber and Kyber. Notable among the alternate schemes is SIKE, which uses radically
different algebraic problems to build a KEM; extending our work to SIKE would be interesting. One broader
question about post-quantum PKE which has not been widely studied is multi-receiver hybrid PKE (with or
without anonymity/robustness). Such schemes would have applications in group-oriented end-to-end secure
messaging.
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25. K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh. Generic authenticated key exchange in the quantum random
oracle model. In PKC 2020, Part II, pages 389–422, 2020.

26. A. Hülsing, J. Rijneveld, and F. Song. Mitigating multi-target attacks in hash-based signatures. In PKC 2016,
Part I, pages 387–416, 2016.

27. H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-secure key encapsulation mechanism in the quantum
random oracle model, revisited. In CRYPTO 2018, Part III, pages 96–125, 2018.

28. H. Jiang, Z. Zhang, and Z. Ma. Key encapsulation mechanism with explicit rejection in the quantum random
oracle model. In PKC 2019, Part II, pages 618–645, 2019.

29. J. Len, P. Grubbs, and T. Ristenpart. Partitioning oracle attacks. In USENIX Security, 2021.
30. B. Libert, K. G. Paterson, and E. A. Quaglia. Anonymous broadcast encryption: Adaptive security and efficient

constructions in the standard model. In PKC 2012, pages 206–224, 2012.
31. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In CT-RSA 2011, pages

319–339, 2011.



22 Paul Grubbs, Varun Maram, and Kenneth G. Paterson

32. C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J. Bos, J. Deneuville, A. Dion, P. Gaborit, J. Lacan,
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A Extra Preliminaries

Authenticated encryption scheme (with associated data). An authenticated encryption with associated data
(AEAD or AE) scheme AEAD = (KGen,Enc,Dec) is a triple of algorithms. Key generation KGen takes no
input and outputs a single symmetric key k. The randomized symmetric encryption algorithm Enc takes as
input a symmetric key k, a message m, and optionally some associated data AD, and outputs a ciphertext C.
(When there is no associated data, it is standard to omit that argument to Enc and Dec.) The deterministic
decryption algorithm Dec takes as input a key k, ciphertext C, and optionally some associated data AD, and
outputs a message m or an error symbol ⊥. Symmetric encryption (SE) schemes are very similar to AEADs,
except they do not accept associated data in Enc or Dec.

Message authentication code. A message authentication code (MAC) MAC = (KGen,Tag,Vf) is a triple of
algorithms. Key generation KGen works as AEAD’s key generation above. The deterministic tag algorithm
Tag takes as input a key k and a message m, and outputs a tag T . The deterministic verification algorithm
Vf takes as input a key k, message m, and tag T , and outputs a bit. (Deterministic MACs have a canonical
verification algorithm, which simply re-runs Tag and returns the result of comparing this internally re-
computed tag to T .)

Correctness properties. We will briefly re-define three correctness notions from [24]: a correctness property
of a KEM and two correctness properties of PKE. We say that KEM is δ-correct if

Pr[KEM.Decap(sk, C) 6= k | (pk, sk)←$KEM.KGen ; (k, C)←$KEM.Encap(pk) ] ≤ δ .

We say that a public-key encryption scheme PKE is δ-correct if

E
[

max
m∈M

Pr[PKE.Dec(sk, C) 6= m |C ← PKE.Enc(pk,m) ]

]
≤ δ

where the expectation is taken over the output distribution of PKE.KGen.

γ-spreadness. We now define γ-spreadness of a PKE: we say that PKE is γ-spread if for every key pair
(pk, sk), message m ∈M, and ciphertext C ∈ C,

Prr ←$R [C = PKE.Enc(pk,m; r)] ≤ 2−γ

where R is the set of all possible random strings that can be sampled in PKE.Enc.
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B QROM Lemmas

The following lemma allows a perfect simulation of a quantum random oracle against an adversary.

Lemma 2 (Simulating a QRO [42]). Let H(·) be an oracle drawn from the set of 2q-wise independent
functions uniformly at random. Then the advantage any quantum algorithm making at most q quantum
queries to H(·) has in distinguishing H(·) from a truly random oracle is identically zero.

The second lemma intuitively states that a quantum random oracle can be used as a quantum-accessible
pseudo-random function, even if the distinguisher is given full access to the quantum random oracle in
addition to the PRF oracle.

Lemma 3 (PRF based on a QRO). Let ΩH be the set of all functions H : K × X → Y and ΩR be
the set of all functions R : X → Y. Let H ←$ΩH , k←$K and R←$ΩR. Define the oracles F0 = H(k, ·)
and F1 = R(·). Consider an oracle algorithm/distinguisher AH,Fi that makes at most q queries to H and Fi
(i ∈ {0, 1}). If (“the PRF key”) k is chosen independently from AH,Fi ’s view, then we have

|Pr[1← AH,F0 ]− Pr[1← AH,F1 ]| ≤ 2q√
|K|

The third lemma provides a generic reduction from a hiding-style property (indistinguishability) to a
one-wayness-style property (unpredictability) in the QROM.

Lemma 4 (One-Way to Hiding (OW2H) [39]). Let ΩH be the set of all functions H : X → Y and let
H ←$ΩH be a quantum random oracle. Consider an oracle algorithm AH that makes at most q queries to
H. Let BH be an oracle algorithm that on input x does the following: picks i←$ {1, . . . , q} and y←$Y, runs
AH(x, y) until (just before) the i-th query, measures the argument of the query in the computational basis
and outputs the measurement outcome (if A makes less than i queries, B outputs ⊥/∈ X ). Let,

P 1
A = Pr[b′ = 1 : H ←$ΩH , x←$X , b′ ← AH(x,H(x))]

P 2
A = Pr[b′ = 1 : H ←$ΩH , x←$X , y←$Y, b′ ← AH(x, y)]

PB = Pr[x′ = x : H ←$ΩH , x←$X , x′ ← BH(x, i)]

Then, we have |P 1
A − P 2

A| ≤ 2q
√
PB.

The following lemma gives a lower bound for a decisional variant of so-called generic quantum search
problem.

Lemma 5 (Generic Search Problem [5, 26]). Let γ ∈ [0, 1] and Z be a finite set. Define N1 : Z → {0, 1}
to be the following function: for each z ∈ Z, N1(z) = 1 with probability pz (pz ≤ γ), and N1(z) = 0 else. Let
N2 be the function with N2(z) = 0 ∀z ∈ Z. If an oracle algorithm A (possibly unbounded) makes at most q
quantum queries to N1 (or N2), then

|Pr[b = 1 : b← AN1 ]− Pr[b = 1 : b← AN2 ]| ≤ 2q
√
γ.

The following lemma describes the collision-resistance of quantum random oracles.

Lemma 6 ([43, Theorem 3.1]). There is a universal constant α (< 648) such that the following holds:
Let X and Y be finite sets. Let H : X → Y be a random oracle. If an unbounded time quantum adversary A
makes a query to H at most q times, then we have

Pr[H(x0) = H(x1) ∧ x0 6= x1 : (x0, x1)← AH ] ≤ α(q + 1)3

|Y|
,

where all oracle accesses of A can be quantum.
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C Omitted Proofs

C.1 Proof of Theorem 1

Theorem 1. Let PKEhy = (KGen,Enchy,Dechy) be a hybrid encryption scheme obtained by composing a KEM
KEM = (KGen,Encap,Decap) with a one-time secure authenticated encryption scheme DEM = (Enc,Dec). If
KEM is δ-correct, then:

1. For any ANO-CCA adversary A against PKEhy, there exist wANO-CCA adversary B, IND-CCA ad-
versary C and WROB-CPA adversary D against KEM, and INT-CTXT adversary E against DEM such
that

AdvANO-CCA
PKEhy (A) ≤AdvwANO-CCA

KEM (B) + 2AdvIND-CCA
KEM (C)

+ AdvWROB-CPA
KEM (D) + AdvINT-CTXT

DEM (E) + δ .

The running times of B, C and E are the same as that of A. The running time of D is independent (and
less than that) of the running time of A.

2. For any WROB-ATK (resp. SROB-ATK) adversary A against PKEhy, there exists WROB-ATK (resp.
SROB-ATK) adversary B against KEM such that

AdvWROB-ATK
PKEhy (A) ≤ AdvWROB-ATK

KEM (B) ,

AdvSROB-ATK
PKEhy (A) ≤ AdvSROB-ATK

KEM (B) ,

where ATK ∈ {CPA,CCA} and the running time of B is that of A.

Proof (of Theorem 1.1).
Let A be an adversary in the ANO-CCA game for PKEhy. Consider the sequence of games G0 − G4

described in Figure 8.
Game G0: The game G0 is exactly the ANO-CCA game for PKEhy. Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
PKEhy (A)

Game G1: In game G1, we first make some “cosmetic” changes. Namely, the pair (c∗1, k
∗) is generated by

running Encap(pkb) for a uniformly random bit b before the adversary A gets to choose a message m. This
change does not affect A’s view in any way.

Next, we modify the oracle Dechy(skb, ·) such that if the decryption query is (c1, c2) where c1 = c∗1 (and
c2 6= c∗2), then the oracle uses k∗ to decrypt c2, instead of first decapsulating c∗1 to recover a session key k′. It
is not hard to see that the games G0 and G1 are equivalent unless there is a decapsulation error w.r.t. KEM.
Therefore, we have

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ δ

Game G2: In game G2, we modify the oracle Dechy(sk1−b, ·) such that if the decryption query is (c1, c2)
where c1 = c∗1, then the oracle returns ⊥. Again it is not hard to see that the games G1 and G2 are equivalent
unless the following event occurs: Decap(sk1−b, c

∗
1) = k′ 6= ⊥ (and Dec(k′, c2) 6= ⊥) where Encap(pkb) =

(c∗1, k
∗). And we can bound the probability of this event occurring by the advantage of an adversary D in

the WROB-CPA game of KEM. The adversary D, upon receiving public-keys pk0 and pk1, simply samples a
bit b uniformly at random, i.e., b←$ {0, 1}, and returns the bit to the WROB-CPA challenger. Hence,

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ AdvWROB-CPA
KEM (D)

Game G3: In game G3, we compute c∗2 in the setup as “c∗2 = Enc(k̂,m)”, instead of “c∗2 = Enc(k∗,m)”

as in G2, for a uniformly random key k̂ (i.e., k̂←$K, where K is the encapsulated key-space of KEM) that
is independent of k∗. We make the appropriate modification in the Dechy(skb, ·) oracle as well, i.e., if the

decryption query is (c1, c2) where c1 = c∗1, then the oracle uses k̂ (instead of k∗) to decrypt c2.
We now show that the difference in A’s success probabilities in games G2 and G3 can be bounded by

the advantage of an adversary C in the IND-CCA game of KEM. Upon receiving the input (pk, c∗, k) from
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Games G0 - G4

1 : (pk0, sk0), (pk1, sk1)← KGen(1λ)

2 : b←$ {0, 1}// G1 − G4

3 : (c∗1, k
∗)← Encap(pkb)// G1 − G4

4 : k̂←$K// G3 − G4

5 : m← ADechy(sk0,·),Dechy(sk1,·)(pk0, pk1)

6 : b←$ {0, 1}// G0

7 : (c∗1, k
∗)← Encap(pkb)// G0

8 : c∗2 ← Enc(k∗,m)// G0 − G2

9 : c∗2 ← Enc(k̂,m)// G3 − G4

10 : c∗ = (c∗1, c
∗
2)

11 : b′ ← ADechy(sk0,·),Dechy(sk1,·)(c∗)

12 : return (b′ = b)

Dechy(sk0, c)

1 : Parse c = (c1, c2)

2 : if b = 0 ∧ c1 = c∗1// G1 − G4

3 : k′ ← k∗// G1 − G2

4 : k′ ← k̂// G3

5 : return ⊥// G4

6 : elseif b = 1 ∧ c1 = c∗1// G2 − G4

7 : return ⊥// G2 − G4

8 : else k′ ← Decap(sk0, c1)

9 : m′ ← Dec(k′, c2)

10 : return m′

Dechy(sk1, c)

1 : Parse c = (c1, c2)

2 : if b = 1 ∧ c1 = c∗1// G1 − G4

3 : k′ ← k∗// G1 − G2

4 : k′ ← k̂// G3

5 : return ⊥// G4

6 : elseif b = 0 ∧ c1 = c∗1// G2 − G4

7 : return ⊥// G2 − G4

8 : else k′ ← Decap(sk1, c1)

9 : m′ ← Dec(k′, c2)

10 : return m′

Fig. 8. Games G0 – G4 for the proof of Theorem 1.
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its IND-CCA challenger, where (c∗, k∗)← Encap(pk) and k←$ {k∗, k̂} for a uniformly random key k̂ that is
independent of k∗, C proceeds as described in Figure 9. Note that if k is a “real” (respectively, “random”)

key, i.e., k = k∗ (resp., k = k̂), then C perfectly simulates game G2 (resp., G3) towards A (also note that, to
answer A’s decryption queries, C never has to make the forbidden query c∗(= c∗1) to its decapsulation oracle
Decap(sk, ·)(= Decap(skb, ·)). Therefore, we have

|Pr[G3 = 1]− Pr[G2 = 1]| = |Pr[1← CDecap(sk,·)(pk, c∗, k) | k = k̂]

− Pr[1← CDecap(sk,·)(pk, c∗, k) | k = k∗]| ≤ 2AdvIND-CCA
KEM (C)

CDecap(sk,·)(pk, c∗, k)

1 : b←$ {0, 1}
2 : pkb = pk

3 : (pk1−b, sk1−b)← KGen(1λ)

4 : c∗1 = c∗

5 : m← ADechy(sk0,·),Dechy(sk1,·)(pk0, pk1)

6 : c∗2 ← Enc(k,m)

7 : c∗ = (c∗1, c
∗
2)

8 : b′ ← ADechy(sk0,·),Dechy(sk1,·)(c∗)

9 : return (b′ = b)

Dechy(sk0, c)

1 : Parse c = (c1, c2)

2 : if b = 0 ∧ c1 = c∗1

3 : k′ ← k

4 : elseif b = 1 ∧ c1 = c∗1

5 : return ⊥
6 : else k′ ← Decap(sk0, c1)

7 : m′ ← Dec(k′, c2)

8 : return m′

Dechy(sk1, c)

1 : Parse c = (c1, c2)

2 : if b = 1 ∧ c1 = c∗1

3 : k′ ← k

4 : elseif b = 0 ∧ c1 = c∗1

5 : return ⊥
6 : else k′ ← Decap(sk1, c1)

7 : m′ ← Dec(k′, c2)

8 : return m′

Fig. 9. IND-CCA adversary CDecap(sk,·) for the proof of Theorem 1.

Game G4: In game G4, we modify the oracle Dechy(skb, ·) such that if the decryption query is (c1, c2)
where c1 = c∗1, then the oracle returns ⊥. It is not hard to see that the games G3 and G4 are equivalent
unless the following event occurs: A makes a decryption query (c∗1, c2) to the oracle Dechy(skb, ·) such that

Dec(k̂, c2) 6= ⊥, for a uniformly random key k̂. And we can bound the probability of this event occurring by
the advantage of an adversary E in the INT-CTXT game of DEM. In the INT-CTXT game, we are implicitly
defining k̂ to be the random secret key chosen by the challenger. The adversary E proceeds as described in
Figure 20. Note that if the aforementioned event occurs, then E wins its corresponding game (also note that,

E only makes a single encryption query to the one-time AE-secure DEM, namely “c∗2 = Enc(k̂,m)”, and it

never makes the forbidden query c∗2 to its decryption oracle Dec(k̂, ·)). Hence, we have

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ AdvINT-CTXT
DEM (E)

Finally, we show that A’s success probability in game G4 can be bounded by the advantage of an adversary
B in the wANO-CCA game of KEM. Upon receiving public-keys pk0 and pk1 along with the ciphertext c∗,
where (c∗, k∗)← Encap(pkb) for a uniformly random bit b chosen by the challenger, the adversary B proceeds
as described in Figure 11. Observe that B perfectly simulates the game G4 towards A (also note that, to
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EEnc(k̂,·),Dec(k̂,·)(1λ)

1 : (pk0, sk0), (pk1, sk1)← KGen(1λ)

2 : b←$ {0, 1}
3 : (c∗1, k

∗)← Encap(pkb)

4 : m← ADechy(sk0,·),Dechy(sk1,·)(pk0, pk1)

5 : c∗2 ← Enc(k̂,m)

6 : c∗ = (c∗1, c
∗
2)

7 : b′ ← ADechy(sk0,·),Dechy(sk1,·)(c∗)

8 : return ⊥

Dechy(sk0, c)

1 : Parse c = (c1, c2)

2 : if b = 0 ∧ c1 = c∗1

3 : query Dec(k̂, c2)

4 : return ⊥
5 : elseif b = 1 ∧ c1 = c∗1

6 : return ⊥
7 : else k′ ← Decap(sk0, c1)

8 : m′ ← Dec(k′, c2)

9 : return m′

Dechy(sk1, c)

1 : Parse c = (c1, c2)

2 : if b = 1 ∧ c1 = c∗1

3 : query Dec(k̂, c2)

4 : return ⊥
5 : elseif b = 0 ∧ c1 = c∗1

6 : return ⊥
7 : else k′ ← Decap(sk1, c1)

8 : m′ ← Dec(k′, c2)

9 : return m′

Fig. 10. INT-CTXT adversary EEnc(k̂,·),Dec(k̂,·) for the proof of Theorem 1.



28 Paul Grubbs, Varun Maram, and Kenneth G. Paterson

answer A’s decryption queries, B never has to make the forbidden query c∗(= c∗1) to its decapsulation oracles
Decap(sk0, ·) and Decap(sk1, ·)). Therefore, we have |Pr[G4 = 1]− 1/2| = AdvwANO-CCA

KEM (B).
Collecting all of the above bounds, we finally arrive at

AdvANO-CCA
PKEhy (A) ≤ AdvwANO-CCA

KEM (B) + 2AdvIND-CCA
KEM (C) + AdvWROB-CPA

KEM (D)

+ AdvINT-CTXT
DEM (E) + δ

BDecap(sk0,·),Decap(sk1,·)(pk0, pk1, c
∗)

1 : k̂←$K
2 : c∗1 = c∗

3 : m← ADechy(sk0,·),Dechy(sk1,·)(pk0, pk1)

4 : c∗2 ← Enc(k̂,m)

5 : c∗ = (c∗1, c
∗
2)

6 : b′ ← ADechy(sk0,·),Dechy(sk1,·)(c∗)

7 : return b′

Dechy(sk0, c)

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 return ⊥
3 : else k′ ← Decap(sk0, c1)

4 : m′ ← Dec(k′, c2)

5 : return m′

Dechy(sk1, c)

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 return ⊥
3 : else k′ ← Decap(sk1, c1)

4 : m′ ← Dec(k′, c2)

5 : return m′

Fig. 11. wANO-CCA adversary BDecap(sk0,·),Decap(sk1,·) for the proof of Theorem 1.

Proof (of Theorem 1.2).
Let A be an adversary in the WROB-ATK game for PKEhy. Upon receiving two (honestly-generated)

public-keys pk0 and pk1, A wins the game if it returns a message and a bit, namely (m, b), such that
Dechy(sk1−b, C) 6= ⊥ where C(= (CKEM, CDEM))←$Enchy(pkb,m). Let (CKEM, kb)←$Encap(pkb) and Decap(sk1−b, CKEM) =

k1−b. It is easy to see that k1−b 6= ⊥, since Dechy(sk1−b, C) 6= ⊥ implies Dec(k1−b, CDEM) 6= ⊥. The proba-
bility of A winning the game can then be bounded by the advantage of an adversary B in the WROB-ATK
game for KEM. Upon receiving two public-keys pk0 and pk1 from its WROB-ATK challenger, B forwards
the keys to A and simulates the WROB-ATK game w.r.t. PKEhy (note that if ATK = CCA, then B can
simulate the Dechy(ski, ·) oracles since it has access to the Decap(ski, ·) oracles in its WROB-CCA game).
Once A finally submits the pair (m, b), B forwards the bit b to the WROB-ATK challenger. Note that a win
for A implies a win for B.

Similarly, let A be an adversary in the SROB-ATK game for PKEhy. Upon receiving two (honestly-
generated) public-keys pk0 and pk1, A wins the game if it returns a ciphertext C (= (CKEM, CDEM)) such
that Dechy(sk0, C) 6= ⊥ and Dechy(sk1, C) 6= ⊥. Let Decap(sk0, CKEM) = k0 and Decap(sk1, CKEM) = k1. It is
again easy to see that k0 6= ⊥ and k1 6= ⊥ since we have Dec(k0, CDEM) 6= ⊥ and Dec(k1, CDEM) 6= ⊥. Hence
we can bound the winning probability of A by the advantage of an adversary B in the SROB-ATK game
for KEM. Upon receiving two public-keys pk0 and pk1 from its SROB-ATK challenger, B forwards the keys
to A and simulates the SROB-ATK game w.r.t. PKEhy (note that if ATK = CCA, then B can simulate the
Dechy(ski, ·) oracles since it has access to the Decap(ski, ·) oracles in its SROB-CCA game). Once A submits
the final ciphertext C = (CKEM, CDEM), B forwards CKEM to the SROB-ATK challenger. Again, a win for A
implies a win for B.

C.2 Proof of Theorem 2

Theorem 2. Let PKEhy = (KGen,Enchy,Dechy) be a hybrid encryption scheme obtained by composing
a KEM KEM = (KGen,Encap,Decap) with a DEM DEM = (Enc,Dec). Then for any SROB-CCA (resp.
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WROB-CCA) adversary A against PKEhy, there exist SCFR-CCA (resp. WCFR-CCA) adversary B againt
KEM and FROB (resp. XROB) adversary C against DEM such that

AdvSROB-CCA
PKEhy (A) ≤ AdvSCFR-CCA

KEM (B) + AdvFROB
DEM (C) ,

AdvWROB-CCA
PKEhy (A) ≤ AdvWCFR-CCA

KEM (B) + AdvXROB
DEM (C) ,

where the running times of B and C are the same as that of A.

Proof. Let A be an adversary in the SROB-CCA game for PKEhy. Upon receiving two (honestly-generated)
public-keys pk0 and pk1,A wins the game if it returns a ciphertext C (= (CKEM, CDEM)) such that Dechy(sk0, C) 6=
⊥ and Dechy(sk1, C) 6= ⊥. Let Decap(sk0, CKEM) = k0 and Decap(sk1, CKEM) = k1. It is easy to see that
k0 6= ⊥ and k1 6= ⊥. Now we consider two (disjoint) sub-events w.r.t. this winning event:

– k0 = k1. It is easy to see that the probability of this winning sub-event can be bounded by the advantage
of an adversary B in the SCFR-CCA game for KEM. Upon receiving two public-keys pk0 and pk1 from
its SCFR-CCA challenger, B forwards the keys to A and simulates the SROB-CCA game w.r.t. PKEhy

(note that B can simulate the Dechy(ski, ·) oracles since it has access to the Decap(ski, ·) oracles in its
SCFR-CCA game). Once A submits the final ciphertext C = (CKEM, CDEM), B forwards CKEM to the
SCFR-CCA challenger. Note that k0 = k1 implies a win for B.

– k0 6= k1. The probability of this winning sub-event can be bounded by the advantage of an adversary
C in the FROB game for DEM. C generates two key-pairs (pk0, sk0), (pk1, sk1) honestly using KGen and
forwards (pk0, pk1) to A. C then simulates the SROB-CCA game w.r.t. PKEhy towards A (again note
that C can simulate the Dechy(ski, ·) oracles since it has access to the corresponding secret keys sk0, sk1).
Once A submits the final ciphertext C = (CKEM, CDEM), C first computes k0, k1 as above and forwards
(CDEM, k0, k1) to the FROB challenger. Note that A winning implies Dechy(ski, C) 6= ⊥ which in turn
implies Dec(ki, CDEM) 6= ⊥. Therefore, the (sub-)event that k0 6= k1 implies a win for C.

Similarly, let A be an adversary in the WROB-CCA game for PKEhy. Upon receiving two (honestly-
generated) public-keys pk0 and pk1, A wins the game if it returns a message and a bit, namely (m, b), such
that Dechy(sk1−b, C) 6= ⊥ where C(= (CKEM, CDEM))←$Enchy(pkb,m). Let (CKEM, kb)←$Encap(pkb) and
Decap(sk1−b, CKEM) = k1−b. It is easy to see that k1−b 6= ⊥, since Dechy(sk1−b, C) 6= ⊥. Now we consider
two (disjoint) sub-events w.r.t. this winning event:

– kb = k1−b. It is easy to see that the probability of this winning sub-event can be bounded by the advantage
of an adversary B in the WCFR-CCA game for KEM. Upon receiving two public-keys pk0 and pk1 from
its WCFR-CCA challenger, B forwards the keys to A and simulates the WROB-CCA game w.r.t. PKEhy

(note that B can simulate the Dechy(ski, ·) oracles since it has access to the Decap(ski, ·) oracles in its
WCFR-CCA game). Once A finally submits the pair (m, b), B forwards the bit b to the WCFR-CCA
challenger. Note that kb = k1−b implies a win for B.

– kb 6= k1−b. The probability of this winning sub-event can be bounded by the advantage of an adversary
C in the XROB game for DEM. C generates two key-pairs (pk0, sk0), (pk1, sk1) honestly using KGen and
forwards (pk0, pk1) to A. C then simulates the WROB-CCA game w.r.t. PKEhy towards A (again note
that C can simulate the Dechy(ski, ·) oracles since it has access to the corresponding secret keys sk0,
sk1). Once A submits the pair (m, b), C first computes kb and k1−b as (CKEM, kb)←$Encap(pkb) and
k1−b ← Decap(sk1−b, CKEM) respectively. Then it samples uniform random coins r to be used in the DEM
encryption of m and forwards (m, kb, r, CDEM, k1−b) to the XROB challenger. It is not hard to see that
A winning its WROB-CCA game coupled with the sub-event k0 6= k1 implies a win for C.

C.3 Proof of Theorem 3

Theorem 3. Suppose there exists a KEM that is simultaneously SCFR-CCA, IND-CCA and ANO-CCA
secure. Suppose that there exists a SUF-CMA-secure MAC scheme and an ROR-CPA secure symmetric
encryption scheme (such schemes can be built assuming only the existence of one-way functions). Suppose
also that collision-resistant hash functions exist. Then there exists an implicit-rejection KEM that is SCFR-
CCA, IND-CCA and ANO-CCA secure and a DEM that is ROR-CCA secure, such that the hybrid PKE
scheme obtained from their composition is not SROB-CCA secure.



30 Paul Grubbs, Varun Maram, and Kenneth G. Paterson

Proof. We focus on the “Encrypt-then-MAC” (EtM) construction of a DEM. Namely, let MAC = (Tag,Vf) be
an SUF-CMA secure message authentication code. We construct MAC = (Tag,Vf) where the only difference
from MAC is that a fixed special key k is chosen uniformly at random from the original MAC key-space
such that the verification of any tag under k verifies successfully, i.e., Vf(k, ·) = 1. Note that MAC is also
SUF-CMA secure because the probability of sampling k uniformly at random from the key-space can be
considered to be negligible. So by composing MAC with an ROR-CPA secure symmetric encryption scheme
that never rejects invalid ciphertexts via the EtM construction, we get an AE-secure DEM.

Now let KEM = (KGen,Encap,Decap) be a KEM that is SCFR-CCA, IND-CCA and ANO-CCA secure.
Also let H be a collision-resistant hash function with its range being the key-space of the ROR-CPA sym-
metric encryption scheme used to obtain DEM. We construct KEM = (KGen,Encap,Decap) where the only
difference from KEM is that the ciphertext space is augmented by a special bitstring c. With respect to c,
the decapsulation operation works as follows: Decap(sk, c) = H(pk)||k, for any key-pair (pk, sk) generated
by KGen and the fixed MAC key k described above. It is not hard to see that KEM is also IND-CCA and
ANO-CCA secure. To argue for the SCFR-CCA security of KEM, the only additional case to consider is
when the adversary returns the final ciphertext c. Note that Decap(sk0, c) = Decap(sk1, c), or equivalently,
H(pk0)||k = H(pk1)||k, happens with a negligible probability because of the collision-resistance of H.

Now the resulting hybrid PKE scheme obtained by composing KEM and DEM is not SROB-CCA secure.
This is because an SROB-CCA adversary, upon receiving two public-keys pk0, pk1, could simply output the
ciphertext (c, c′||σ′) where c′||σ′ is an arbitrary DEM ciphertext. The adversary wins the SROB-CCA game
because when decrypting (c, c′||σ′) under ski (i ∈ {0, 1}) we have Decap(ski, c) = H(pki)||k. Since the use of
key k always leads to successful verification of the DEM ciphertext and the underlying ROR-CPA symmetric
encryption never rejects, we thus have that the final decryption of (c, c′||σ′) does not return ⊥ under either
of the secret keys sk0, sk1.

C.4 Proof of Theorem 4

Theorem 4. Suppose there exists a KEM that is simultaneously SROB-CCA, IND-CCA and ANO-CCA
secure, a claw-free pair of permutations with domain and range being the encapsulated key-space of the KEM,
and a collision-resistant hash function. Suppose also that there exists a DEM that is ROR-CCA and XROB-
secure. Then there exists an implicit-rejection KEM that is SCFR-CCA, IND-CCA and ANO-CCA secure
and a DEM that is ROR-CCA and XROB-secure, such that the resulting hybrid PKE is not ANO-CCA
secure.

Proof. Let KEM = (KGen,Encap,Decap) be a key encapsulation mechanism that is IND-CCA, ANO-CCA
and SROB-CCA secure. Let (F1,F2) be a claw-free pair of permutations, with the domain and range being
the encapsulated key-space of KEM, and let H be a collision-resistant hash function that maps the space of
public-keys of KEM to the encapsulated key-space. We now construct KEM = (KGen, Encap, Decap) that is
IND-CCA, ANO-CCA and SCFR-CCA secure, but when composed with an XROB-secure DEM, does not
result in an ANO-CCA secure hybrid PKE scheme.

We first generate public parameters for KEM which are related to the instantiation of (F1,F2). Recall
that Fi = (Gi, fi, f

−1
i ) where G = G1 = G2 is the generator for the pair of claw-free permutations. Hence,

we generate the public parameters f1(PK, .) and f2(PK, .), where PK is the public-key of the pair of claw-free
permutations. The subsequent key generation algorithm of KEM (which is independent of the generation of
public parameters) is the same as that of KEM. The Encap and Decap algorithms of KEM are described in
the Figure 12.

It is not hard to see that KEM is also ANO-CCA secure. To argue about the IND-CCA security of KEM
based on the IND-CCA security of KEM, we need to observe in the reduction that when the IND-CCA
challenger of KEM returns a uniformly random key k (in the real-or-random experiment), f1(PK, k) is a
uniformly random key as well, since f1(PK, .) is a permutation. To show the SCFR-CCA security of KEM,
consider an SCFR-CCA adversary that, after receiving two KEM public-keys pk0, pk1, wins the corresponding
security game by returning the ciphertext C such that Decap(sk0, C) = Decap(sk1, C). There are 3 cases to
consider:

– Case 1: If Decap(sk0, C) 6= ⊥ and Decap(sk1, C) 6= ⊥, then we can break the SROB-CCA security of
KEM via a straightforward reduction.
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Encap(pk)

(C, k)←$Encap(pk)

k ← f1(PK, k)

return (C, k)

Decap(sk, C)

k′ ← Decap(sk, C)

if k′ = ⊥ then

k
′ ← f2(PK, H(pk))

else k
′ ← f1(PK, k′)

return k
′

Fig. 12. Encap and Decap algorithms of KEM for the proof of Theorem 4.

– Case 2: If Decap(sk0, C) = ⊥ and Decap(sk1, C) = ⊥, then this would mean that f2(PK, H(pk0)) =
f2(PK, H(pk1)). This would break the collision-resistance of H as f2(PK, .) is a permutation, and with
high probability, pk0 6= pk1.

– Case 3: Without loss of generality, let Decap(sk0, C) = k 6= ⊥ and let Decap(sk1, C) = ⊥. This would
mean that f1(PK, k) = f2(PK, H(pk1)). But then the pair (k,H(pk1)) is a claw w.r.t. f1(PK, .) and
f2(PK, .) which breaks the underlying claw-freeness assumption of (F1,F2).

Now let DEM = (Enc,Dec) be an ROR-CCA secure AEAD which is additionally XROB-secure. We
describe and then analyse an adversary A for the ANO-CCA security game against the hybrid PKE scheme
resulting from the composition of KEM and DEM.

Upon receiving two public-keys pk0 and pk1 (along with the public parameters f1(PK, ·) and f2(PK, ·)), A
selects an arbitrary message m and forwards the challenge message m in the ANO-CCA game. It then receives
the ciphertext C = (CKEM, CDEM) where (CKEM, k)←$Encap(pkb) and CDEM←$Enc(k,m), for a uniformly
random bit b←$ {0, 1}. Then, A asks for the decryption of ciphertext C ′ = (CKEM, C

′
DEM) w.r.t. sk0 where

C ′DEM = Enc(k̂,m) with k̂ = f2(PK, H(pk0)). If the response is ⊥, then the adversary A outputs 0; else, it
outputs 1.

To see why A breaks the ANO-CCA security of the hybrid PKE scheme, consider the following 2 cases:

– b = 0: In the decryption of C ′ = (CKEM, C
′
DEM) w.r.t. sk0, we have that Decap(sk0, CKEM) = k′ where

f1(PK, k′) = k. Therefore, we have f1(PK, k′) = k 6= f2(PK, H(pk0)) (i.e., k 6= k̂) with a high probability

owing to the claw-freeness of (F1,F2). Since DEM is XROB-secure, we also have Dec(k, Enc(k̂,m)) = ⊥
with a high probability. Hence, the adversary guesses correctly by outputting 0.

– b = 1: In the decryption of C ′ = (CKEM, C
′
DEM) w.r.t. sk0, we have that Decap(sk0, CKEM) = ⊥ with a

high probability because the underlying KEM is SROB-CCA secure (note that Encap(pk1) = (CKEM, k
′)

where f1(PK, k′) = k). Because of the way KEM was constructed, we thus have Decap(sk0, CKEM) =

f2(PK, H(pk0))(= k̂). Therefore, we have Dec(k̂, Enc(k̂, m)) = m 6= ⊥. Again, the adversary guesses
correctly by outputting 1.

C.5 Proof of Theorem 5

Theorem 5. Suppose PKE = (KGen,Enc,Dec) is δ-correct and has message space M. Then for any ANO-
CCA adversary A against KEM 6⊥ = FO 6⊥[PKE, G,H] issuing at most qG

6 (resp. qH) queries to the quantum
random oracle G (resp. H) and at most qD queries to the (classical) decapsulation oracles, there exist
wANO-CPA adversary B and OW-CPA adversary C against PKE, and SCFR-CPA adversary D against
PKE1 = T[PKE, G] issuing at most qG queries to G, such that:

AdvANO-CCA
KEM6⊥ (A) ≤ AdvwANO-CPA

PKE (B) + 2(qG + qH)

√
AdvOW-CPA

PKE (C)

+ qD ·AdvSCFR-CPA
PKE1

(D) +
4qH√
|M|

+ 2qG(qD + 2)
√

2δ .

6 Following [24, 27], we make the convention that the number qO of queries made by an adversary A to a random
oracle O counts the total number of times O is executed in the corresponding security experiment; i.e., the number
of A’s explicit queries to O plus the number of implicit queries to O made by the experiment.
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Moreover, the running times of B, C and D are the same as that of A.

Games G0 - G8

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′(1λ)

2 : G←$ΩG

3 : Ggood ←$ΩGgood ;G = Ggood// G2 - G5

4 : Hacc
0 , Hacc

1 , Hrej
0 , Hrej

1 ←$ΩH

5 : H2 ←$ΩH′ ;H3 ←$ΩH′′

6 : b←$ {0, 1}
7 : m∗ ←$M
8 : r∗ ← G(m∗)// G0 − G6

9 : r∗ ←$R// G7 − G8

10 : c∗ ← Enc(pkb,m
∗; r∗)

11 : k∗ ← H(m∗, c∗)// G0 − G6

12 : k∗ ←$K// G7 − G8

13 : inp← (pk0, pk1, (c
∗, k∗))

14 : i←$ {1, . . . , qG + qH}// G8

15 : run AG,H,Decap(sk′0,·),Decap(sk′1,·)(inp) until

i-th query to G×H3// G8

16 : measure the i-th query and let the

outcome be m̂// G8

17 : return (m̂ = m∗)// G8

18 : b′ ← AG,H,Decap(sk′0,·),Decap(sk′1,·)(inp)

19 : return (b′ = b)

H(m, c)

1 : if c = c∗ return H3(m)// G5 - G8

2 : if Enc(pk0,m;G(m)) = c// G3 - G8

3 : return Hacc
0 (c)// G3 - G8

4 : if Enc(pk1,m;G(m)) = c// G3 - G8

5 : return Hacc
1 (c)// G3 - G8

6 : return H2(m, c)

Decap(sk′0, c)

1 : return Hacc
0 (c) // G3.5 - G8

2 : Parse sk′0 = (sk0, s0)

3 : m′ = Dec(sk0, c)

4 : if Enc(pk0,m
′, G(m′)) = c then

5 : return H(m′, c)

6 : else return H(s0, c)// G0

7 : else return Hrej
0 (c)// G0.5 - G3

Decap(sk′1, c)

1 : return Hacc
1 (c)// G4 - G8

2 : Parse sk′1 = (sk1, s1)

3 : m′ = Dec(sk1, c)

4 : if Enc(pk1,m
′, G(m′)) = c then

5 : return H(m′, c)

6 : else return H(s1, c)// G0 - G0.5

7 : else return Hrej
1 (c)// G1 - G3.5

Fig. 13. Games G0 – G8 for the proof of Theorem 5.

Proof. Denote ΩG, ΩH , ΩH′ and ΩH′′ to be the set of all functions G :M→R, H : C → K, H ′ :M×C → K
and H ′′ :M→ K respectively, where R is the set of random coins used in Enc, K is the encapsulated key-
space of KEM 6⊥ and C is the ciphertext space of PKE/KEM6⊥.

Let A be an adversary in the ANO-CCA game for KEM 6⊥ issuing at most qD (classical) queries to the
oracles Decap(sk′0, ·) and Decap(sk′1, ·), and qG (resp., qH) quantum queries to the random oracles G (resp.
H). Consider the sequence of games G0 − G8 described in Figure 13.

Game G0 The game G0 is exactly the ANO-CCA game for KEM 6⊥ ( = FO 6⊥[PKE, G, H]). Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
KEM6⊥ (A)
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Game G0.5 In game G0.5, we modify the decapsulation oracle Decap(sk′0, ·) such that Hrej
0 (c) is returned

instead of H(s0, c) for an invalid ciphertext c. That is, pseudo-random decapsulation of invalid ciphertexts
(w.r.t. sk0) are replaced by truly random outputs. Define an oracle algorithm AH2,Fi (i ∈ {0, 1}) as described

in Figure 14. Let F0(·) = H2(s0, ·) for secret s0←$M and F1(·) = Hrej
0 (·), whereH2 andHrej

0 are chosen in the
same way as in G0 and G0.5. Then note that, Pr[G0 = 1] = Pr[1← AH2,F0 ] and Pr[G0.5 = 1] = Pr[1← AH2,F1 ].
Since the uniform secret s0 is chosen independently from AH2,Fi ’s view, we use Lemma 3 to obtain

|Pr[G0.5 = 1]− Pr[G0 = 1]| ≤ 2qH√
|M|

AH2,Fi(1λ)

1 : (pk0, sk0)← KGen(1λ)// s0 implicitly defined

2 : (pk1, sk
′
1)← KGen′(1λ)// sk′1 = (sk1, s1)

3 : G←$ΩG

4 : b←$ {0, 1}
5 : m∗ ←$M
6 : c∗ ← Enc(pkb,m

∗;G(m∗))

7 : k∗ ← H(m∗, c∗)

8 : b′ ← AG,H,Decap(sk′0,·),Decap(sk′1,·)(pk0, pk1, (c
∗, k∗))

9 : return (b′ = b)

H(m, c)

1 : return H2(m, c)

Decap(sk′0, c)

1 : m′ = Dec(sk0, c)

2 : if Enc(pk0,m
′, G(m′)) = c

3 : return H(m′, c)

4 : else return Fi(c)

Decap(sk′1, c)

1 : Parse sk′1 = (sk1, s1)

2 : m′ = Dec(sk1, c)

3 : if Enc(pk1,m
′, G(m′)) = c

4 : return H(m′, c)

5 : else return H(s1, c)

Fig. 14. Algorithm AH2,Fi for the proof of Theorem 5.

Game G1 In game G1, we modify the decapsulation oracle Decap(sk′1, ·) such that Hrej
1 (c) is returned

instead of H(s1, c) for an invalid ciphertext c. Using Lemma 3 in a similar manner as the previous “game-
hop”, it is not hard to obtain

|Pr[GA1 → 1]− Pr[GA0.5 → 1]| ≤ 2qH√
|M|

Game G2 In game G2, we change the random oracle G such that it uniformly samples “good” random
coins w.r.t. the key-pairs (pk0, sk0) and (pk1, sk1). To be specific, given a PKE key-pair (pk, sk) and a message
m ∈M, define

Rgood((pk, sk),m) = {r ∈ R | Dec(sk,Enc(pk,m; r)) = m}

and Rbad((pk, sk),m) = R \ Rgood((pk, sk),m). Now w.r.t. the key-pairs (pk0, sk0) and (pk1, sk1), denote
ΩGgood to be the set of all random functions Ggood such that Ggood(m) is sampled according to a uniform
distribution in (Rgood(pk0, sk0,m) ∩ Rgood(pk1, sk1,m)). Hence in G2, we replace the oracle G with Ggood.
Note that the task of distinguishing between G1 and G2 is equivalent to that of distinguishing between the

oracles G and Ggood. To be specific, we can construct a distinguisher BĜ((pk0, sk0), (pk1, sk1)) between G
and Ggood that simulates the adversary A’s view in games G1 or G2 by using the oracle Ĝ. That is, for any

two fixed key-pairs (pk0, sk0), (pk1, sk1) generated by KGen, if Ĝ = G, BĜ((pk0, sk0), (pk1, sk1)) simulates G1,

and if Ĝ = Ggood, BĜ((pk0, sk0), (pk1, sk1)) perfectly simulates G2. Therefore,

|Pr[G2 = 1 | (pk0, sk0), (pk1, sk1)← KGen]− Pr[G1 = 1 | (pk0, sk0), (pk1, sk1)← KGen]|

= |Pr[1← BG
good

((pk0, sk0), (pk1, sk1))]− Pr[1← BG((pk0, sk0), (pk1, sk1))]|
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Now any distinguisher between G and Ggood can be converted to a distinguisher between N1 and N2 where
N1 is a function such that N1(m) is sampled according to the Bernoulli distribution Bδ((pk0,sk0),(pk1,sk1),m),
i.e., Pr[N1(m) = 1] = δ((pk0, sk0), (pk1, sk1),m) (resp. Pr[N1(m) = 0] = 1 − δ((pk0, sk0), (pk1, sk1),m)),
where

δ((pk0, sk0), (pk1, sk1),m) =
|Rbad(pk0, sk0,m) ∪Rbad(pk1, sk1,m)|

|R|
and N2 is a constant function that always outputs 0 for any input m. Specifically, for any distinguisher

BĜ((pk0, sk0), (pk1, sk1)), we can construct a distinguisher CN ((pk0, sk0), (pk1, sk1)) that is described in Fig-
ure 15. Sample(Y) is a probabilistic algorithm that returns a uniformly distributed y←$Y and Sample(Y; f(m))
denotes the deterministic execution of Sample(Y) using explicit randomness f(m).

CN ((pk0, sk0), (pk1, sk1))

1 : Pick a 2qG-wise function f

2 : b′′ ← BĜ((pk0, sk0), (pk1, sk1))

3 : return b′′

Ĝ(m)

1 : if N(m) = 0

2 : Ĝ(m) = Sample(Rgood(pk0, sk0,m) ∩Rgood(pk1, sk1,m); f(m))

3 : else

4 : Ĝ(m) = Sample(Rbad(pk0, sk0,m) ∪Rbad(pk1, sk1,m); f(m))

5 : return Ĝ(m)

Fig. 15. Algorithm CN for the proof of Theorem 5.

Note that if N = N1, then Ĝ = G, and if N = N2, then Ĝ = Ggood. Therefore, for any two fixed
key-pairs (pk0, sk0), (pk1, sk1) generated by KGen, we have Pr[1 ← CN1((pk0, sk0), (pk1, sk1))] = Pr[1 ←
BG((pk0, sk0), (pk1, sk1))] and Pr[1 ← CN2((pk0, sk0), (pk1, sk1))] = Pr[1 ← BG

good

((pk0, sk0), (pk1, sk1))].
Hence, from Lemma 5, we have

|Pr[1← BG
good

((pk0, sk0), (pk1, sk1))]− Pr[1← BG((pk0, sk0), (pk1, sk1))]|
= |Pr[1← CN2((pk0, sk0), (pk1, sk1))]− Pr[1← CN1((pk0, sk0), (pk1, sk1))]|

≤ 2qG
√
δ((pk0, sk0), (pk1, sk1))

where δ((pk0, sk0), (pk1, sk1)) = maxm∈M δ((pk0, sk0), (pk1, sk1),m). Hence, conditioned on two fixed key-
pairs (pk0, sk0), (pk1, sk1) generated by KGen, we obtain

|Pr[G2 = 1 | (pk0, sk0), (pk1, sk1)← KGen]− Pr[G1 = 1 | (pk0, sk0), (pk1, sk1)← KGen]|

≤ 2qG
√
δ((pk0, sk0), (pk1, sk1))

Averaging over (pk0, sk0) ← KGen, (pk1, sk1) ← KGen, and applying Jensen’s inequality w.r.t. the square
root function, we get

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2qG
√

E[δ((pk0, sk0), (pk1, sk1))]

where the expectation is taken over (pk0, sk0)← KGen, (pk1, sk1)← KGen. From the notion of δ-correctness,
note that for a single key-pair (pk, sk)← KGen, E[δ((pk, sk))] = δ, where δ((pk, sk)) = maxm∈M δ((pk, sk),m)

and δ((pk, sk),m) = Rbad(pk,sk,m)
R . We now show that for two key-pairs, δ((pk0, sk0), (pk1, sk1)) ≤ 2δ. First
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note that, for a particular message m, δ((pk0, sk0), (pk1, sk1),m) ≤ δ((pk0, sk0),m) + δ((pk1, sk1),m), and
hence, δ((pk0, sk0), (pk1, sk1)) ≤ δ((pk0, sk0)) + δ((pk1, sk1)). We now have the following

E[δ((pk0, sk0), (pk1, sk1))] =
∑

(pk0,sk0)
(pk1,sk1)

Pr[(pk0, sk0)] Pr[(pk1, sk1)]δ((pk0, sk0), (pk1, sk1))

≤
∑

(pk0,sk0)
(pk1,sk1)

Pr[(pk0, sk0)] Pr[(pk1, sk1)](δ((pk0, sk0)) + δ((pk1, sk1)))

=
∑

(pk1,sk1)

( ∑
(pk0,sk0)

Pr[(pk0, sk0)]δ((pk0, sk0))
)

Pr[(pk1, sk1)]

+
∑

(pk0,sk0)

( ∑
(pk1,sk1)

Pr[(pk1, sk1)]δ((pk1, sk1))
)

Pr[(pk0, sk0)]

=
∑

(pk1,sk1)

δ · Pr[(pk1, sk1)] +
∑

(pk0,sk0)

δ · Pr[(pk0, sk0)] = 2δ

where Pr[(pki, ski)] denotes the probability of the fixed key-pair (pki, ski) being generated by KGen. We also
used the fact that the key-pairs (pk0, sk0), (pk1, sk1) are generated independently. Thus, we finally obtain

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2qG
√

2δ

Game G3 In game G3, we implicitly divide the H-queries (m, c) into three disjoint categories: (1)
Enc(pk0,m;G(m)) = c, (2) Enc(pk0,m;G(m)) 6= c = Enc(pk1,m;G(m)), and (3) Enc(pk0,m;G(m)) 6=
c ∧ Enc(pk1,m;G(m)) 6= c. We then respond to the queries from the respective categories with Hacc

0 (c),
Hacc

1 (c) and H2(m, c) respectively, where Hacc
0 and Hacc

1 are internal random functions not directly accessi-
ble to the adversary A. Because G samples “good” random coins, it is not hard to see that the encryption
functions Enc(pk0, .;G(·)) and Enc(pk1, .;G(·)) are injective, and hence, the output distributions of the H-
oracle in the games G2 and G3 are equivalent. Therefore,

Pr[G3 = 1] = Pr[G2 = 1]

Game G3.5 In game G3.5, we change the Decap(sk′0, ·) oracle such that there is no need for the secret
key sk′0. Namely, Hacc

0 (c) is returned for the decapsulation of ciphertext c w.r.t. sk′0. Let m′ = Dec(sk0, c).
Consider the following two cases:

– Enc(pk0,m
′;G(m′)) = c. In this case, the Decap(sk′0, ·) oracles in games G3 and G3.5 return the same

value Hacc
0 (c).

– Enc(pk0,m
′;G(m′)) 6= c. In game G3, as the random function Hrej

0 is independent of all other oracles,

the output Hrej
0 (c) is uniformly random in the adversary A’s view. In game G3.5, the only way A gets

prior access to the function Hacc
0 is if it made a H-query (m′′, c) such that Enc(pk0,m

′′;G(m′′) = c.
But because G samples good random coins, we have Dec(sk0, c) = m′′ = m′ leading to a contradiction
of “Enc(pk0,m

′;G(m′)) 6= c”. Therefore, such a prior access is not possible and Hacc
0 (c) will also be a

uniformly random value in A’s view.

As the output distributions of the Decap(sk′0, ·) oracle in G3 and G3.5 are the same in both cases, we have

Pr[G3.5 = 1] = Pr[G3 = 1]

Game G4 In game G4, we change the Decap(sk′1, ·) oracle such that Hacc
1 (c) is returned for the decapsula-

tion of any ciphertext c w.r.t. sk1. The analysis here follows quite similarly to that of the previous game-hop
except that this simulation of the Decap(sk′1, ·) oracle – without the secret key sk′1 – will fail ifA asks for the de-
capsulation of a ciphertext ĉ such that m′ = Dec(sk1, ĉ) and Enc(pk0,m

′;G(m′)) = Enc(pk1,m
′;G(m′)) = ĉ.

In this peculiar case, Hacc
0 (ĉ) is returned in G3 and Hacc

1 (ĉ) is returned in G4.
We bound the probability of this peculiar event (i.e., A asking for the decapsulation of such an above

ciphertext ĉ w.r.t. sk′1) by the advantage of an SCFR-CPA adversary D against the deterministic scheme
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PKEgood
1 = T[PKE, Ggood]. First note that, because Ggood samples good random coins, for such ciphertexts

ĉ we have Dec(sk0, ĉ) = Dec(sk1, ĉ) = m′ and Enc(pk0,m
′;Ggood(m′)) = Enc(pk1,m

′;Ggood(m′)) = ĉ. Note

that such a ĉ corresponds to winning the SCFR-CPA game of PKEgood
1 . So we can construct a corresponding

SCFR-CPA adversary D that has access to the (non-ideal) “good” random oracle Ggood. Upon receiving two
public-keys pk0 and pk1, D simulates G4 for the adversary A and maintains a list of A’s classical queries to
the oracle Decap(sk′1, ·) (note that D can simulate the two decapsulation oracles as in G4 even with no access
to the corresponding secret keys sk0 and sk1). Then D chooses a ciphertext uniformly at random from the

list and forwards it as the final message to the SCFR-CPA challenger of PKEgood
1 .

Let Pr[P] be the probability of this peculiar event, denoted as P, occurring. We have the games G3.5 and
G4 to be equivalent unless the event P occurs. From the construction of the SCFR-CPA adversary D above,
it is not hard to see that AdvSCFR-CPA

PKEgood
1

(D) ≥ 1
qD
· Pr[P]. Hence, we have

|Pr[G4 = 1]− Pr[G3.5 = 1]| ≤ Pr[P] ≤ qD ·AdvSCFR-CPA
PKEgood

1
(D)

Using a similar analysis as the game-hop G1 → G2, by replacing Ggood with an ideal random oracle G
w.r.t. the SCFR-CPA adversary D, we obtain

|Pr[GA4 → 1]− Pr[GA3.5 → 1]| ≤ qD · (AdvSCFR-CPA
PKE1

(D) + 2qG
√

2δ)

Game G5 In game G5, we answer H-queries of the form (m, c∗) with H3(m), where H3 is an independent
random function. Since G samples good randomness, there are at most two H-queries worth considering,
namely (m0, c

∗) and (m1, c
∗), where Enc(pk0,m0;G(m0)) = c∗ and Enc(pk1,m1;G(m1)) = c∗ (for the other

H-queries (m′, c∗), where m′ /∈ {m0,m1}. we are replacing the oracle outputs H2(m′, c∗) in G4 with H3(m′) in
G5). W.r.t. these two queries, the H oracle would return Hacc

0 (c∗), Hacc
1 (c∗) respectively in G4, and H3(m0),

H3(m1) respectively in G5. The adversary A’s view would be identical even after this change because the
random values Hacc

0 (c∗), Hacc
1 (c∗) are only accessible to A via the H-oracle in G4, and in particular, not

through the Decap(sk′i, ·) oracles since c∗ is a forbidden decapsulation query. Hence in G5, we are effectively
replacing (at most) two uniformly random values that can only be accessed via the H-oracle by A with
two other uniformly random values (the simpler case of m0 = m1 would follow similarly). Since the output
distributions of the H-oracle in the games G4 and G5 are equivalent, we have

Pr[G5 = 1] = Pr[G4 = 1]

Game G6 In game G6, we reset G to be an ideal random oracle, i.e., G(m) now returns uniformly random
coins from R instead of returning only “good” random coins. Since this change, in a sense, is the “inverse”
of the game-hop G1 → G2, by using a similar analysis, it is not hard to obtain

|Pr[G6 = 1]− Pr[G5 = 1]| ≤ 2qG
√

2δ

Game G7 In the setup of game G7, we replace the hash evaluations “r∗ ← G(m∗)” and “k∗ ←
H(m∗, c∗)(= H3(m∗))” with “r∗←$R” and “k∗←$K” respectively. That is, r∗ and k∗ are now uniformly
random values that are generated independently of the random oracles G and H3. We use Lemma 4 to bound
the difference in the success probabilities of A in G6 and G7. Let A be an oracle algorithm that has quantum
access to the random oracle G × H3, where (G × H3)(m) = (G(m), H3(m)). Figure 16 describes AG×H3 ’s
operation on input (m∗, (r∗, k∗)). Note that the algorithm AG×H3 makes at most qG + qH number of queries
to the random oracle G×H3 to respond to A’s oracle queries7.

Let B be an oracle algorithm that on input m∗ does the following: picks i←$ {1, . . . , qG + qH}, generates
r∗←$R and k∗←$K, runs AG×H3(m∗, (r∗, k∗)) until the i-th query, measures the argument of the (G×H3)-
query in the computational basis and outputs the measurement outcome (if AG×H3 makes less than i queries,
B outputs ⊥). With this construction of A, note that P 1

A = Pr[G6 = 1] and P 2
A = Pr[G7 = 1], where P 1

A and
P 2
A are as defined in Lemma 4 w.r.t. the algorithm AG×H3 . Therefore, we now define game G8 (see Fig. 13)

such that PB = Pr[G8 = 1], where PB is as defined in Lemma 4 w.r.t. the algorithm BG×H3 . From Lemma
4, we thus have

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 2(qG + qH)
√

Pr[G8 = 1]

7 For example, if AG×H3 wants to respond to A’s H-query, then AG×H3 prepares a uniform superposition of all
states in the output register corresponding to G (see [38] for particulars of this “trick”).
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AG×H3(m∗, (r∗, k∗))

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′(1λ)

2 : Hacc
0 , Hacc

1 ←$ΩH ;H2 ←$ΩH′

3 : b←$ {0, 1}
4 : c∗ ← Enc(pkb,m

∗; r∗)

5 : b′ ← AG,H,Decap(sk′0,·),Decap(sk′1,·)(pk0, pk1, (c
∗, k∗))

6 : return (b′ = b)

H(m, c)

1 : if c = c∗return H3(m)

2 : if Enc(pk0,m;G(m)) = c

3 : return Hacc
0 (c)

4 : if Enc(pk1,m;G(m)) = c

5 : return Hacc
1 (c)

6 : return H2(m, c)

Decap(sk′0, c)

1 : return Hacc
0 (c)

Decap(sk′1, c)

1 : return Hacc
1 (c)

Fig. 16. Algorithm AG×H3 for the proof of Theorem 5.

We now bound the success probability of A in G7 by the advantage of an adversary B in the wANO-
CPA game of PKE. Upon receiving public-keys pk0 and pk1 along with the ciphertext c∗, where c∗ ←
Enc(pkb,m

∗; r∗) for uniformly random bit b(←$ {0, 1}), (secret) messagem∗(←$M) and randomness r∗(←$R)
chosen by the challenger, B proceeds as follows:

– Runs A as a subroutine as in game G7.
– Uses a 2qG-wise independent function and four different 2qH -wise independent functions to perfectly

simulate the random oracles G,Hacc
0 , Hacc

1 , H2 and H3 respectively in A’s view, as noted in Lemma 2.
The random oracle H is simulated in the same way as in G7.

– Answers decapsulation queries using the oracles Hacc
i (i ∈ {0, 1}) as in G7.

– For A’s challenge query, samples a uniformly random key k∗←$K and responds with (pk0, pk1, (c
∗, k∗)).

– After obtaining a bit b′ from A, forwards b′ to its wANO-CPA challenger as the final message.

It is easy to see that |Pr[G7 = 1] − 1
2 | = AdvwANO-CPA

PKE (B). Now we bound the success probability of
A in G8 by the advantage of an adversary C in the OW-CPA game of PKE. Upon receiving a public-key pk
along with a ciphertext c∗, where c∗ ← Enc(pk,m∗; r∗) for uniformly random (secret) message m∗(←$M)
and randomness r∗(←$R) chosen by the challenger, C proceeds as follows:

– Runs A as a subroutine as in game G8.
– Uses a 2qG-wise independent function and four different 2qH -wise independent functions to perfectly

simulate the random oracles G,Hacc
0 , Hacc

1 , H2 and H3 respectively in A’s view, as noted in Lemma 2.
Also evaluates A’s G- and H-queries using the oracle G×H3; the random oracle H is simulated in the
same way as in G8,

– Answers decapsulation queries using the oracles Hacc
i (i ∈ {0, 1}) as in G8.

– For A’s challenge query, first samples a uniformly random bit b←$ {0, 1} and sets pkb = pk. Then
generates a key-pair (pk1−b, sk1−b)← KGen(1λ), samples a uniformly random key k∗←$K and responds
with (pk0, pk1, (c

∗, k∗)). (By doing this, note that we have c∗ ← Enc(pkb,m
∗; r∗) in A’s view.)

– Selects i←$ {1, . . . , qG + qH}, measures the i-th query to oracle G×H3 and returns the outcome m̂.

Again, it is not hard to see that Pr[G8 = 1] ≤ AdvOW-CPA
PKE (C). Hence by collecting all of the above bounds,

we arrive at

AdvANO-CCA
KEM6⊥ (A) ≤ AdvwANO-CPA

PKE (B) + 2(qG + qH)

√
AdvOW-CPA

PKE (C)

+ qD ·AdvSCFR-CPA
PKE1

(D) +
4qH√
|M|

+ 2qG(qD + 2)
√

2δ

C.6 Proof of Theorem 6

Theorem 6. Suppose PKE = (KGen,Enc,Dec) is δ-correct. Then for any SCFR-CCA adversary A against
KEM 6⊥ = FO 6⊥[PKE, G,H] issuing at most qD queries to the (classical) decapsulation oracles, at most qG
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(resp. qH) queries to the quantum random oracle G (resp. H), there exists an SCFR-CPA adversary B
against PKE1 = T[PKE, G] issuing at most qG queries to G such that

AdvSCFR-CCA
KEM6⊥ (A) ≤ qD ·AdvSCFR-CPA

PKE1
(B) +

α(qH + 1)3

|K|

+
4qH√
|M|

+ 2qG(qD + 2)
√

2δ .

Here K denotes the encapsulated key-space of KEM 6⊥ and α (< 648) is the constant from Lemma 1. The
running time of B is the same as that of A.

Games G0 - G5

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′(1λ)

2 : G←$ΩG

3 : Ggood ←$ΩGgood ;G = Ggood// G2 - G4

4 : Hacc
0 , Hacc

1 , Hrej
0 , Hrej

1 ←$ΩH

5 : H2 ←$ΩH′

6 : inp← (pk0, pk1)

7 : c← AG,H,Decap(sk′0,·),Decap(sk′1,·)(inp)

8 : return (Decap(sk′0, c) = Decap(sk′1, c))

H(m, c)

1 : if Enc(pk0,m;G(m)) = c// G3 - G5

2 : return Hacc
0 (c)// G3 - G5

3 : if Enc(pk1,m;G(m)) = c// G3 - G5

4 : return Hacc
1 (c)// G3 - G5

5 : return H2(m, c)

Decap(sk′0, c)

1 : return Hacc
0 (c) // G3.5 - G5

2 : Parse sk′0 = (sk0, s0)

3 : m′ = Dec(sk0, c)

4 : if Enc(pk0,m
′, G(m′)) = c then

5 : return H(m′, c)

6 : else return H(s0, c)// G0

7 : else return Hrej
0 (c)// G0.5 - G3

Decap(sk′1, c)

1 : return Hacc
1 (c)// G4 − G5

2 : Parse sk′1 = (sk1, s1)

3 : m′ = Dec(sk1, c)

4 : if Enc(pk1,m
′, G(m′)) = c then

5 : return H(m′, c)

6 : else return H(s1, c)// G0 - G0.5

7 : else return Hrej
1 (c)// G1 - G3.5

Fig. 17. Games G0 – G5 for the proof of Theorem 6.

Proof. Denote ΩG, ΩH , ΩH′ to be the set of all functions G : M → R, H : C → K, H ′ : M× C → K
respectively, where R is the set of random coins used in Enc, K is the encapsulated key-space of KEM 6⊥ and
C is the ciphertext space of PKE/KEM 6⊥.

Let A be an adversary in the SCFR-CCA game for KEM 6⊥ issuing at most qD (classical) queries to the
oracles Decap(sk′0, ·) and Decap(sk′1, ·), and qG (resp., qH) quantum queries to the random oracles G (resp.
H).

The structure of the proof is very similar to that of Theorem 5. Basically we do the same sequence of
game-hops as in the proof of Theorem 5 until the point where we can simulate the decapsulation oracles
Decap(sk′i, ·) (i ∈ {0, 1}) without requiring the corresponding secret keys sk′i. In the final game-hop, we reset
G to be an ideal random oracle.

To be specific, we do the sequence of game-hops G0 → G5 as described in Figure 17. By a similar analysis
as that of the proof of Theorem 5 w.r.t. these game-hops, it is not hard to obtain

|Pr[G0 = 1]− Pr[G5 = 1]| ≤ qD ·AdvSCFR-CPA
PKE1

(B) +
4qH√
|M|

+ 2qG(qD + 2)
√

2δ

Note that the game G0 is exactly the SCFR-CCA game for KEM 6⊥. Hence, we have

Pr[G0 = 1] = AdvSCFR-CCA
KEM6⊥ (A)
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Coming to the game G5, note that the adversary A wins the game if it finally outputs a ciphertext c
such that Decap(sk′0, c) = Decap(sk′1, c). Because of the modification of the Decap(sk′i, ·) oracles, this winning
condition translates to Hacc

0 (c) = Hacc
1 (c), where Hacc

0 and Hacc
1 are independent quantum-accessible random

functions. Note that in this case, (c, c) is a claw w.r.t. the pair of QROs Hacc
0 : C → K and Hacc

1 : C → K.
Hence we can bound the success probability of A in G5 by the advantage of an adversary C against the
claw-finding problem w.r.t. the instance (Hacc

0 , Hacc
1 ). C proceeds as follows:

– Runs A as a subroutine as in game G5.
– Uses a 2qG-wise independent function and a 2qH -wise independent function to perfectly simulate the

random oracles G and H2 in A’s view, as noted in Lemma 2. Also uses the pair of functions f0 : C → K
and f1 : C → K – which is the instance of the claw-finding problem – to simulate the oracles Hacc

0 and
Hacc

1 respectively.
– Answers decapsulation queries using the oracles fi(·) (i ∈ {0, 1}) as in G4.
– After obtaining a final ciphertext c from A, forwards (c, c) as the claw w.r.t. (f0, f1).

Note that C makes at most qH queries to the pair (f0, f1). It is easy to see that Pr[G5 = 1] ≤ α(qH+1)3

|K|
from Lemma 1. Hence, we finally get

AdvSCFR-CCA
KEM6⊥ (A) ≤ qD ·AdvSCFR-CPA

PKE1
(B) +

α(qH + 1)3

|K|

+
4qH√
|M|

+ 2qG(qD + 2)
√

2δ

C.7 Proof of Theorem 7

Theorem 7. Let PKEhy = (KGen′,Enchy,Dechy) be a hybrid encryption scheme obtained by composing
KEM 6⊥ = FO 6⊥[PKE, G,H] with a one-time authenticated encryption scheme DEM = (Encsym,Decsym). Sup-
pose PKE is δ-correct and γ-spread (with message space M). Then for any ANO-CCA adversary A against
PKEhy issuing at most qG (resp. qH) queries to the quantum random oracle G (resp. H), there exist ANO-
CCA adversary B and IND-CCA adversary C against KEM 6⊥, WCFR-CPA adversary D against PKE1 =
T[PKE, G], and INT-CTXT adversary E against DEM such that:

AdvANO-CCA
PKEhy (A) ≤ AdvANO-CCA

KEM6⊥ (B) + 2AdvIND-CCA
KEM6⊥ (C) + AdvWCFR-CPA

PKE1
(D)

+ 2AdvINT-CTXT
DEM (E) +

4qH√
|M|

+ 4qG
√
δ + 2−γ .

Moreover, the running times of B, C and E are the same as that of A. The running time of D is independent
(and less than that) of the running time of A.

Proof. The structure of the proof is quite similar to that of Theorem 1, except for some initial game-hops.
Here we will be focusing on these hops.

Denote ΩG, ΩH and ΩH′ to be the set of all functions G : M → R, H : M× C → K and H ′ : C → K
respectively, where R is the set of random coins used in Enc, K is the encapsulated key-space of KEM 6⊥ and
C is the ciphertext space of PKE/KEM 6⊥. Let A be an adversary in the ANO-CCA game for PKEhy issuing
at most qG (resp. qH) quantum queries to the random oracles G (resp. H). Consider the sequence of games
G0 − G6 described in Figure 18.

Game G0: The game G0 is equivalent to the ANO-CCA game for PKEhy (the only “cosmetic” change is
that the uniform random bit b is sampled before the adversary A gets to choose a message m). Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
PKEhy (A)

Game G0.3: In game G0.3, we first make some “cosmetic” changes. Namely, the pair (c∗1, k
∗) resulting

from running Encap(pkb) for a uniformly random bit b is generated before the adversary A gets to choose a
message m. This change does not affect A’s view in any way.
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Games G0 - G5

1 : (pk0, sk0), (pk1, sk1)← KGen(1λ)

2 : s0 ←$M; s1 ←$M
3 : sk′0 = (sk0, s0), sk′1 = (sk1, s1)

4 : G←$ΩG; H ←$ΩH ;H ′ ←$ΩH′

5 : b←$ {0, 1}
6 : Ggood ←$ΩGgood ;G = Ggood// G0.3 − G0.6

7 : m∗ ←$M// G0.3 − G5

8 : c∗1 ← Enc(pkb,m
∗;G(m∗))// G0.3 − G5

9 : k∗ ← H(m∗, c∗1)// G0.3 − G5

10 : krej ← H(s1−b, c
∗
1)// G2

11 : krej ← H ′(c∗1)// G3 − G4

12 : m← AG,H,Dechy(sk′0,·),Dechy(sk′1,·)(pk0, pk1)

13 : m∗ ←$M// G0

14 : c∗1 ← Enc(pkb,m
∗;G(m∗))// G0

15 : k∗ ← H(m∗, c∗1)// G0

16 : c∗2 ← Encsym(k∗,m)// G0 − G5

17 : c∗ = (c∗1, c
∗
2)

18 : b′ ← AG,H,Dechy(sk′0,·),Dechy(sk′1,·)(c∗)

19 : return (b′ = b)

Dechy(sk′b, c)

1 : Parse c = (c1, c2)

2 : Parse sk′b = (skb, sb)

3 : if c1 = c∗1// G0.6 − G5

4 : k′ ← k∗// G0.6 − G5

5 : else // G0.6 − G5

6 : m′ ← Dec(skb, c1)

7 : if Enc(pkb,m
′;G(m′)) = c1

8 : k′ ← H(m′, c1)

9 : else k′ ← H(sb, c1)

10 : m′ ← Decsym(k′, c2)

11 : return m′

Dechy(sk′1−b, c)

1 : Parse c = (c1, c2)

2 : Parse sk′1−b = (sk1−b, s1−b)

3 : if c1 = c∗1// G2 − G5

4 : k′ ← krej// G2 − G3

5 : return ⊥// G4 − G5

6 : else // G0.6 − G5

7 : m′ ← Dec(sk1−b, c1)

8 : if Enc(pk1−b,m
′;G(m′)) = c1

9 : k′ ← H(m′, c1)

10 : else k′ ← H ′(c1)// G3 − G4

11 : else k′ ← H(s1−b, c1)

12 : m′ ← Decsym(k′, c2)

13 : return m′

Fig. 18. Games G0 – G5 for the proof of Theorem 7.
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Next, we change the random oracle G such that it uniformly samples “good” random coins w.r.t. the
key-pair (pkb, skb), as seen in the proof of Theorem 5. Specifically, denote ΩGgood to be the set of all random
functions Ggood such that Ggood(m) is sampled according to a uniform distribution in (Rgood(pkb, skb,m).
Hence in G0.3, we replace the oracle G with Ggood. By using a similar analysis as the game-hop (G1 → G2)
in the proof of Theorem 5 (in fact, the analysis would be simpler in this case since we have to consider a
single key-pair (pkb, skb) instead of two), it is not hard to obtain

|Pr[G0.3 = 1]− Pr[G0 = 1]| ≤ 2qG
√
δ

Game G0.6: In game G0.6, we modify the oracle Dechy(sk′b, ·) such that if the decryption query is (c1, c2)
where c1 = c∗1 (and c2 6= c∗2), then the oracle uses k∗ to decrypt c2, instead of first decapsulating c∗1 to recover
a session key k′. It is not hard to see that the games G0 and G1 are equivalent since G samples good random
coins, and hence, there is no decapsulation error w.r.t. KEM. Therefore, we have

Pr[G0.6 = 1] = Pr[G0.3 = 1]

Game G1: In game G1, we reset G to be an ideal random oracle, i.e., G(m) now returns uniformly random
coins from R instead of returning only “good” random coins. Since this change, in a sense, is the “inverse”
of the game-hop G0 → G0.3, by using a similar analysis, it is not hard to obtain

|Pr[G1 = 1]− Pr[G0.6 = 1]| ≤ 2qG
√
δ

Game G2: In game G2, we modify the oracle Dechy(sk′1−b, ·) such that if the decryption query is (c1, c2)
where c1 = c∗1, then the oracle uses krej(= H(s1−b, c

∗
1)) to decrypt c2. Here krej is the key returned if

Decap(sk′1−b, c
∗
1) would have resulted in an “implicit rejection”. Thus, it is not hard to see that the games G1

and G2 are equivalent unless c∗1 is not (implicitly) rejected by the Decap(sk′1−b, ·) operation, or in other
words, if the following event occurs: Enc(pk1−b,m

′;G(m′)) = c∗1 where Enc(pkb,m
∗;G(m∗) = c∗1) and

Dec(sk1−b, c
∗
1) = m′ (for m∗←$M).

There are two sub-events to consider w.r.t. the above event:

1. m′ 6= m∗: In this case, the random oracle G on a new query m′ will return uniformly random coins r←$R.
Since PKE is γ-spread, for the key-pair (pk1−b, sk1−b) and message m′, we have the re-encryption check,
namely “Enc(pk1−b,m

′; r) = c∗1”, to hold with probability ≤ 2−γ , for uniformly random r.
2. m′ = m∗: In this case, we can bound the probability of the sub-event occurring by the advantage of

an adversary D in the WCFR-CPA game of PKE1 (= T[PKE, G]). The adversary D, upon receiving
public-keys pk0 and pk1, simply samples a bit b and message m∗ uniformly at random, i.e., b←$ {0, 1}
and m∗←$M, and returns (m, b) to the WCFR-CPA challenger (note that only a single query is made
to G on m∗ in the security experiment).

Hence,
|Pr[G2 = 1]− Pr[G1 = 1]| ≤ AdvWCFR-CPA

PKE1
(D) + 2−γ

Note that for the ANO-CCA security of KEM6⊥, we anyway rely on the SCFR-CPA security of the deter-
ministic PKE1.

Game G3: In game G3, we modify the decryption oracle Dechy(sk′1−b, ·) such that the key H ′(c1) is used
to decrypt the DEM ciphertext c2 instead of H(s1−b, c1) where the KEM ciphertext c1 was implicitly rejected
by the Decap(sk′1−b, ·) operation (H ′ is an internal random oracle not directly accessible by the adversary A).
We also generate the key krej as “krej ← H ′(c∗1)” (instead of “krej ← H(s1−b, c

∗
1)”). Define an oracle algorithm

AH,Fi (i ∈ {0, 1}) as described in Figure 19. Let F0(·) = H(s, ·) for secret s←$M and F1(·) = H ′(·), where
H and H ′ are chosen in the same way as in G2 and G3. Then note that, Pr[G2 = 1] = Pr[1 ← AH,F0 ] and
Pr[G3 = 1] = Pr[1 ← AH,F1 ]. Since the uniform secret s is chosen independently from AH,Fi ’s view, we use
Lemma 3 to obtain

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ 2qH√
|M|

Game G4: In game G4, we modify the oracle Dechy(sk1−b, ·) such that if the decryption query is (c1, c2)
where c1 = c∗1, then the oracle returns ⊥. It is not hard to see that the games G3 and G4 are equivalent
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AH,Fi(1λ)

1 : b←$ {0, 1}
2 : (pkb, skb), (pk1−b, sk1−b)← KGen(1λ)

3 : sb ←$M// s1−b = s is set implicitly

4 : G←$ΩG

5 : m∗ ←$M
6 : c∗1 ← Enc(pkb,m

∗;G(m∗))

7 : k∗ ← H(m∗, c∗1)

8 : krej ← Fi(c
∗
1)

9 : m← AG,H,Dechy(sk′0,·),Dechy(sk′1,·)(pk0, pk1)

10 : c∗2 ← Encsym(k∗,m)

11 : c∗ = (c∗1, c
∗
2)

12 : b′ ← AG,H,Dechy(sk′0,·),Dechy(sk′1,·)(c∗)

13 : return (b′ = b)

Dechy(sk′b, c)

1 : Parse c = (c1, c2)

2 : Parse sk′b = (skb, sb)

3 : if c1 = c∗1 then k′ ← k∗

4 : else

5 : m′ ← Dec(skb, c1)

6 : if Enc(pkb,m
′;G(m′)) = c1

7 : k′ ← H(m′, c1)

8 : else k′ ← H(sb, c1)

9 : m′ ← Decsym(k′, c2)

10 : return m′

Dechy(sk′1−b, c)

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 then k′ ← krej

3 : else

4 : m′ ← Dec(sk1−b, c1)

5 : if Enc(pk1−b,m
′;G(m′)) = c1

6 : k′ ← H(m′, c1)

7 : else k′ ← Fi(c1)

8 : m′ ← Decsym(k′, c2)

9 : return m′

Fig. 19. Algorithm AH,Fi for the proof of Theorem 7.
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unless the following event occurs: A makes a decryption query (c∗1, c2) to the oracle Dechy(sk1−b, ·) such that
Decsym(krej, c2) 6= ⊥. And we can bound the probability of this event occurring by the advantage of an
adversary E in the INT-CTXT game of DEM (see Figure 20).

First note that, the internal random oracle H ′ is only used to process classical queries c1 (because we
consider only classical decryption queries in the QROM). Hence E simulates H ′ classically towards A, e.g.,
via “lazy sampling” (and uses a 2qG-wise and a 2qH -wise independent function to simulate the quantum
random oracles G and H respectively). Also note that in games G3 and G4, H ′ is never queried on c∗1
(particularly, in the Dechy(sk1−b, ·) oracle) except for defining krej(← H ′(c∗1)) in the setup. This is equivalent
to having krej to be a uniformly random key independent of the oracle H ′, i.e., krej←$K.

Now in the INT-CTXT game, we are implicitly defining krej to be the random secret key chosen by
the challenger. The adversary E proceeds as described in Figure 20. Note that if the aforementioned event
occurs, then E wins its corresponding game (also note that, E makes no encryption queries to the one-time
AE-secure DEM w.r.t. the secret key krej). Hence, we have

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ AdvINT-CTXT
DEM (E)

EEnc
sym(krej,·),Decsym(krej,·)(1λ)

1 : b←$ {0, 1}
2 : (pkb, skb), (pk1−b, sk1−b)← KGen(1λ)

3 : sb ←$M
4 : G←$ΩG;H ←$ΩH ;H ′ ←$ΩH′

5 : m∗ ←$M
6 : c∗1 ← Enc(pkb,m

∗;G(m∗))

7 : k∗ ← H(m∗, c∗1)

8 : m← AG,H,Dechy(sk′0,·),Dechy(sk′1,·)(pk0, pk1)

9 : c∗2 ← Encsym(k∗,m)

10 : c∗ = (c∗1, c
∗
2)

11 : b′ ← AG,H,Dechy(sk′0,·),Dechy(sk′1,·)(c∗)

12 : return ⊥

Dechy(sk′b, c)

1 : Parse c = (c1, c2)

2 : Parse sk′b = (skb, sb)

3 : if c1 = c∗1 then k′ ← k∗

4 : else

5 : m′ ← Dec(skb, c1)

6 : if Enc(pkb,m
′;G(m′)) = c1

7 : k′ ← H(m′, c1)

8 : else k′ ← H(sb, c1)

9 : m′ ← Decsym(k′, c2)

10 : return m′

Dechy(sk′1−b, c)

1 : Parse c = (c1, c2)

2 : if c1 = c∗1

3 : query Decsym(krej, c2)

4 : return ⊥
5 : else

6 : m′ ← Dec(sk1−b, c1)

7 : if Enc(pk1−b,m
′;G(m′)) = c1

8 : k′ ← H(m′, c1)

9 : else k′ ← H ′(c1)

10 : m′ ← Decsym(k′, c2)

11 : return m′

Fig. 20. INT-CTXT adversary EEnc(k̂,·),Dec(k̂,·) for the proof of Theorem 1.

Game G5 In game G5, we (re-)modify the decryption oracle Dechy(sk′1−b, ·) such that the key H(s1−b, c1)
is used to decrypt the DEM ciphertext c2 instead of H ′(c1) where the KEM ciphertext c1 was implicitly
rejected by the Decap(sk′1−b, ·) operation. In a sense, we are reverting the changes introduced in the G2 → G3

hop. Hence, by using a similar analysis as that hop (and note that now, the key krej is not used anymore),
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it is not hard to obtain

|Pr[G5 = 1]− Pr[G4 = 1]| ≤ 2qH√
|M|

Compared to the proof of Theorem 1, we have effectively used the sequence of games G0−G5 to arrive at
a point where we modified the oracle Dechy(sk′1−b, ·) such that if the decryption query is (c∗1, c2), the oracle
returns ⊥; this particular point is the hybrid game “G2” in the proof of Theorem 1. Now doing a similar
sequence of game-hops from that point on, namely “G2 → G4”, in the current setting starting from G5, we
arrive at

AdvANO-CCA
PKEhy (A) ≤ AdvANO-CCA

KEM6⊥ (B) + 2AdvIND-CCA
KEM6⊥ (C) + AdvWCFR-CPA

PKE1
(D)

+ 2AdvINT-CTXT
DEM (E) +

4qH√
|M|

+ 4qG
√
δ + 2−γ

C.8 Proof of Theorem 8

Theorem 8. For any ANO-CPA adversary A against Saber.PKE, there exists a distinguisher B1 (resp.,
B2) between l (resp. l + 1) samples from a mod-LWR distribution from that of a uniform distribution, with
corresponding parameters l, µ, q and p, such that

AdvANO-CPA
Saber.PKE (A) ≤ 2 ·Advmod-lwr

l,l,µ,q,p (B1) + Advmod-lwr
l+1,l,µ,q,p(B2).

Moreover, the running times of B1 and B2 are the same as that of A.

Games G0 − G4

1 : (pk0, sk0)←$KGen// pk0 = (A0, b0)

2 : (pk1, sk1)←$KGen// pk1 = (A1, b1)

3 : m← A(pk0, pk1)

4 : s′ ←$βµ(Rl×1
q )

5 : b′ = ((A0s
′ + h) mod q) >> (εq − εp) ∈ Rl×1

p // G0 − G1

6 : b′ ←$Rl×1
p // G2

7 : b′ = ((A1s
′ + h) mod q) >> (εq − εp) ∈ Rl×1

p // G3 − G4

8 : v′ = bT0 (s′ mod p) ∈ Rp// G0

9 : v′ ←$Rp// G1 − G3

10 : v′ = bT1 (s′ mod p) ∈ Rp// G4

11 : cm = (v′ + h1 − 2εp−1m mod p) >> (εp − εT ) ∈ RT
12 : b← A(cm, b

′)

Fig. 21. Games G0 − G4 for the proof of Theorem 8.

Proof. Game G0 In game G0, the adversary A always receives the encryption of its chosen message m under
the public-key pk0.

Game G1 In game g1, we replace v′ with a uniformly random value in Rp. As explained in [15], on
a higher level, Saber.PKE can be seen as a variant of ElGamal public-key encryption. Then in [15], the
“Diffie-Hellman key-exchange” counterpart of Saber.PKE – namely pSaber.KE′ – was shown to satisfy the so-
called key-indistinguishability property based on the hardness of the module learning-with-rounding problem
(mod-LWR). This effectively means that the distribution (pk0, b

′, v′) as generated in G0 is computationally
indistinguishable from (pk0, b

′, v′′) where v′′←$Rp. More concretely, it was shown in [15, Theorem 3] that,

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ Advmod-lwr
l,l,µ,q,p (B1) + Advmod-lwr

l+1,l,µ,q,p(B2)



Anonymous, Robust Post-Quantum Public Key Encryption 45

where Advmod-lwr
m,l,µ,q,p(B) denotes the advantage of an adversary B in distinguishing between m samples from

a mod-LWR distribution from that of a uniform distribution, with corresponding parameters l, µ, q and p.
Game G2 In game G2, we replace b′ with a uniformly random vector in Rl×1

p . Since (A0, b
′) forms a

mod-LWR sample (recall that A0←$Rl×lq ) in G2, it is computationally indistinguishable from (A0, b
′′) for

b′′←$Rl×1
p based on the hardness of the mod-LWR problem. More concretely, we have

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ Advmod-lwr
l,l,µ,q,p (B1) .

Game G3 In game G3, we (re-)compute b′ as b′ = ((A1s
′ + h) mod q) >> (εq − εp) ∈ Rl×1

p . Since this
game-hop is, in a sense, the inverse of the (G1 → G2) hop but w.r.t. a different uniformly random matrix
A1(←$Rl×lq ), it is easy to see that

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ Advmod-lwr
l,l,µ,q,p (B1) .

Game G4 In game G4, we recompute v′ as v′ = bT1 (s′ mod p) ∈ Rp. Since this game-hop is, in a sense,
the inverse of the (G0 → G1) hop but w.r.t. a different public-key pk1(= (A1, b1)), it is again easy to see that

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ Advmod-lwr
l,l,µ,q,p (B1) + Advmod-lwr

l+1,l,µ,q,p(B2).

Now note that in G4, the adversary A receives the encryption of its chosen message m under the public-key
pk1. Therefore, we have

AdvANO-CPA
Saber.PKE (A) =

1

2
· |Pr[G4 = 1]− Pr[G0 = 1]|

≤ 2 ·Advmod-lwr
l,l,µ,q,p (B1) + Advmod-lwr

l+1,l,µ,q,p(B2) .

C.9 Proof of Theorem 9

Theorem 9. Given Saber.PKE = (KGen,Enc,Dec) is δ-correct, for any ANO-CCA adversary A against
pSaber.KEM = (KGen′,Encap,Decap) issuing at most qD classical queries to the decapsulation oracles, at
most qG (resp. qH) quantum queries to the random oracle G (resp. H), there exist ANO-CPA adversary
B, OW-CPA adversary C against Saber.PKE and a distinguisher B1 between l samples from a mod-LWR
distribution and a uniform distribution with corresponding parameters l, µ, q and p, such that

AdvANO-CCA
pSaber.KEM(A) ≤ AdvANO-CPA

Saber.PKE (B) + 2(qG + qH)

√
AdvOW-CPA

Saber.PKE(C)

+ CollFSaber.PKE +
α(qG + 1)3

2256
+ Advmod-lwr

l,l,µ,q,p (B1) +
2

2256
+

4qH
2128

+ 8qG
√
δ

Here α (< 648) is the constant from Lemma 1. The running times of B and C are the same as that of A.
The running time of B1 is independent (and less than that) of the running time of A.

Proof. The structure of the proof is quite similar to that of Theorem 5.
Denote ΩG2

, ΩG, ΩH and ΩH′ to be the set of all functions G2 : {0, 1}∗ → {0, 1}512, G : {0, 1}256 →
{0, 1}256, H : {0, 1}∗ → {0, 1}256 and H ′ : C → {0, 1}256 respectively, where C is the ciphertext space of
Saber.PKE/pSaber.KEM.

Let A be an adversary in the ANO-CCA game for pSaber.KEM issuing at most qD (classical) queries
to the oracles Decap(sk′0, ·) and Decap(sk′1, ·), and qG (resp., qH) quantum queries to the random oracles G
(resp. H). Consider the sequence of games G0 − G12 described in Figures 22 and 23.

Game G0 The game G0 is exactly the ANO-CCA game for pSaber.KEM. Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
pSaber.KEM(A).

Game G1 In game G1, we modify the decapsulation oracles Decap(sk′0, ·) (resp. Decap(sk′1, ·)) such that

Hrej
0 (c) (resp. Hrej

1 (c)) is returned instead of H(s0, c) (resp. H(s1, c)) for an invalid ciphertext c. Since this
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Games G0 − G8.5

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′

2 : G2 ←$ΩG2 ;G0r, G1r ←$ΩG

3 : Ggood
0r ←$Ω

G
good
0

;G0r = Ggood
0r // G6.5 - G8.5

4 : Ggood
1r ←$Ω

G
good
1

;G1r = Ggood
1r // G7 - G8.5

5 : G0k̂, G1k̂ ←$ΩG// G0 - G8

6 : G0k̂, G1k̂ ←$Ωpoly// G8.5

7 : H2 ←$ΩH ;Hrej
0 , Hrej

1 ←$ΩH′

8 : H3 ←$ΩG;Hacc
0 , Hacc

1 ←$ΩH′

9 : b←$ {0, 1}
10 : m∗ ←$ {0, 1}256

11 : (k̂∗, r∗)← G(F (pkb),m
∗)// G0 − G2

12 : r∗ ← Gbr(m
∗)// G3 − G8.5

13 : k̂∗ ← Gbk̂(m∗)// G3 − G7

14 : c∗ ← Enc(pkb,m
∗; r∗)

15 : k∗ ← H(k̂∗, c∗)// G0 − G7

16 : k∗ ← H3(m∗)// G8 − G8.5

17 : inp← (pk0, pk1, (c
∗, k∗))

18 : b′ ← AG,H,Decap(sk′0,·),Decap(sk′1,·)(inp)

19 : return (b′ = b)

G(f,m) // |f |+ |m| = 512

1 : if f = F (pk0) then // G2-G8.5

2 : r ← G0r(m)// G2 - G8.5

3 : k̂ ← G0k̂(m)// G2 - G8.5

4 : elseif f = F (pk1) then // G2-G8.5

5 : r ← G1r(m)// G2 - G8.5

6 : k̂ ← G1k̂(m)// G2 - G8.5

7 : else (k̂, r)← G2(f,m)

8 : return (k̂, r)

G(f,m) // |f |+ |m| 6= 512

1 : return G2(f,m)

H(k̂, c) // k̂ ∈ {0, 1}256, c ∈ C

1 : m′ = Dec(sk0, c)// G4 − G8.5

2 : if Enc(pk0,m
′;G0r(m

′)) = c∧
G0k̂(m′) = k̂// G4 − G8.5

3 : if c = c∗// G6 − G8.5

4 : return H3(m′)// G6 − G8.5

5 : return Hacc
0 (c)// G4 − G8.5

6 : m′ = Dec(sk1, c)// G4 − G8.5

7 : if Enc(pk1,m
′;G1r(m

′)) = c∧
G1k̂(m′) = k̂// G4 − G8.5

8 : if c = c∗// G6 − G8.5

9 : return H3(m′)// G6 − G8.5

10 : return Hacc
1 (c)// G4 − G8.5

11 : return H2(k̂, c)

H(k̂, c) // k̂ /∈ {0, 1}256 or c /∈ C

1 : return H2(k̂, c)

Decap(sk′0, c)

1 : return Hacc
0 (c)// G4.5 - G8.5

2 : Parse sk′0 = (sk0, s0, F (pk0))

3 : m′ = Dec(sk0, c)

4 : (k̂′, r′)← G(F (pk0),m′)// G0 − G2

5 : r′ ← G0r(m
′)// G3 − G4

6 : k̂′ ← G0k̂(m′)// G3 − G4

7 : if Enc(pk0,m
′; r′) = c then

8 : return H(k̂′, c)

9 : else return H(s0, c)// G0

10 : else return Hrej
0 (c)// G1 - G4

Decap(sk′1, c)

1 : return Hacc
1 (c)// G5 - G8.5

2 : Parse sk′1 = (sk1, s1, F (pk1))

3 : m′ = Dec(sk1, c)

4 : (k̂′, r′)← G(F (pk1),m′)// G0 − G2

5 : r′ ← G1r(m
′)// G3 − G4.5

6 : k̂′ ← G1k̂(m′)// G3 − G4.5

7 : if Enc(pk1,m
′; r′) = c then

8 : return H(k̂′, c)

9 : else return H(s1, c)// G0

10 : else return Hrej
1 (c)// G1 - G4.5

Fig. 22. Games G0 – G8.5 for the proof of Theorem 9.
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Games G9 − G12

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′

2 : G2 ←$ΩG2 ;G0r, G1r ←$ΩG

3 : Ggood
0r ←$Ω

G
good
0

;G0r = Ggood
0r // G9

4 : Ggood
1r ←$Ω

G
good
1

;G1r = Ggood
1r // G9

5 : G0k̂, G1k̂ ←$Ωpoly

6 : H2 ←$ΩH ;H3 ←$ΩG

7 : Hacc
0 , Hacc

1 ←$ΩH′

8 : b←$ {0, 1}
9 : m∗ ←$ {0, 1}256

10 : r∗ ← Gbr(m
∗)// G9 − G10

11 : r∗ ←$ {0, 1}256// G11 − G12

12 : c∗ ← Enc(pkb,m
∗; r∗)

13 : k∗ ← H3(m∗)// G9 − G10

14 : k∗ ←$ {0, 1}256// G11 − G12

15 : inp← (pk0, pk1, (c
∗, k∗))

16 : i←$ {1, . . . , qG + qH}// G12

17 : run AG,H,Decap(sk′0,·),Decap(sk′1,·)(inp) until

i-th query to Gbr ×H3// G12

18 : measure the i-th query and let the

outcome be m̂// G12

19 : return (m̂ = m∗)// G12

20 : b′ ← AG,H,Decap(sk′0,·),Decap(sk′1,·)(inp)

21 : return (b′ = b)

Decap(sk′0, c)

1 : return Hacc
0 (c)

Decap(sk′1, c)

1 : return Hacc
1 (c)

G(f,m) // |f |+ |m| = 512

1 : if f = F (pk0) then

2 : r ← G0r(m)

3 : k̂ ← G0k̂(m)

4 : elseif f = F (pk1) then

5 : r ← G1r(m)

6 : k̂ ← G1k̂(m)

7 : else (k̂, r)← G2(f,m)

8 : return (k̂, r)

G(f,m) // |f |+ |m| 6= 512

1 : return G2(f,m)

H(k̂, c) // k̂ ∈ {0, 1}256, c ∈ C

1 : Compute set of roots S0

of polynomial G0k̂(x)− k̂
2 : if ∃m′ ∈ S0 s.t.

Enc(pk0,m
′;G0r(m

′)) = c

3 : if c = c∗ then

4 : return H3(m′)

5 : return Hacc
0 (c)

6 : Compute set of roots S1

of polynomial G1k̂(x)− k̂
7 : if ∃m′ ∈ S1 s.t.

Enc(pk1,m
′;G1r(m

′)) = c

8 : if c = c∗ then

9 : return H3(m′)

10 : return Hacc
1 (c)

11 : return H2(k̂, c)

H(k̂, c) // k̂ /∈ {0, 1}256 or c /∈ C

1 : return H2(k̂, c)

Fig. 23. Games G9 – G12 for the proof of Theorem 9.
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change is similar to the sequence of game-hops “G0 → G0.5 → G1” in the proof of Theorem 5, using Lemma
3, it is not hard to obtain

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ 4qH√
2256

(note that the message space of Saber.PKE is {0, 1}256).
Game G2 In game G2, we implicitly divide the G-queries into at most three categories: (1) query is of

the form (f,m) with |f |+ |m| = 512 and f = F (pk0), (2) query is of the form (f,m) with |f |+ |m| = 512 and
f = F (pk1), and (3) the remaining queries. We then respond to the queries from the respective categories
with (G0k̂(m), G0r(m)), (G1k̂(m), G1r(m)) and G2(m, c) respectively, where Gik̂, Gir (for i ∈ {0, 1}) are
internal random functions; note that we say “at most” three categories because of the (unlikely) possibility
that F (pk0) = F (pk1). It is not hard to verify that the output distributions of the G-oracle in games G1 and
G2 are equivalent. Therefore,

Pr[G2 = 1] = Pr[G1 = 1].

Game G3 In game G3, we make the following changes w.r.t. the G-oracle evaluation. First, we generate
the values k̂∗, r∗ in setup of the game as “k̂∗ ← Gbk̂(m∗)” and “r∗ ← Gbr(m

∗)” (effectively, replacing the

step “(k̂∗, r∗)← G(F (pkb),m
∗)” in G2). We then similarly generate the values k̂′, r′ w.r.t. the decapsulation

oracles Decap(sk′i, ·) (i ∈ {0, 1}) as “k̂′ ← Gik̂(m′)” and “r′ ← Gir(m
′)” (replacing the step “(k̂′, r′) ←

G(F (pki),m
′)” in G2).

Let bad denote the event where the public-keys pk0 and pk1 generated honestly in the setup satisfy the
following: F (pk0) = F (pk1). It is not hard to see that the games G2 and G3 are equivalent unless the event
“bad” happens. Hence, if CollFSaber.PKE is defined as the probability of the event “F (pk0) = F (pk1)” where
pk0 and pk1 are two honestly-generated Saber.PKE public-keys, then we have

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ Pr[bad] ≤ CollFSaber.PKE.

Game G4 In game G4, we implicitly divide the H-queries into three disjoint categories: (1) query is of

the form (k̂, c) with k̂ ∈ {0, 1}256, c ∈ C, and which satisfies Enc(pk0,m;G0r(m)) = c and G0k̂(m) = k̂,

where m = Dec(sk0, c), (2) query is of the form (k̂, c) with k̂ ∈ {0, 1}256, c ∈ C and which does not

fall under “category (1)”, while at the same time, satisfies Enc(pk1,m;G1r(m)) = c and G1k̂(m) = k̂, where
m = Dec(sk1, c), and (3) the remaining queries. We then respond to the queries from the respective categories

with Hacc
0 (c), Hacc

1 (c) and H2(k̂, c), where Hacc
0 and Hacc

1 are internal random functions not directly accessible
to the adversary A.

Focusing on H-queries in “category (1)”, note that it is not possible for two distinct queries (k̂′, c) and

(k̂′′, c) to result in the same output Hacc
0 (c). Note that Dec(sk0, ·) and G0k̂(·) are deterministic functions.

Hence w.r.t. the queries (k̂′, c) and (k̂′′, c), there can only exist a unique value m such that m = Dec(sk0, c).
At the same time, G0k̂(m) can take at most one value. The same reasoning applies to “category (2)” as well,
and hence, the output distributions of the H-oracle in the games G3 and G4 are equivalent. Therefore,

Pr[G4 = 1] = Pr[G3 = 1].

Game G4.5 In game G4.5, we change the Decap(sk′0, ·) oracle such that there is no need for the secret
key sk′0. Namely, Hacc

0 (c) is returned for the decapsulation of ciphertext c w.r.t. sk′0. Let m′ = Dec(sk0, c),

r′ = G0r(m
′) and k̂′ = G0k̂(m′). Now consider the following two cases:

1. Enc(pk0,m
′; r′) = c. In this case, the Decap(sk′0, ·) oracle returns H(k̂′, c) in game G4 and Hacc

0 (c) in

game G4.5. Hence, it is not hard to see that we have H(k̂′, c) = Hacc
0 (c) in G4, since the query (k̂′, c) falls

under “category (1)” w.r.t. oracle H. Therefore, Decap(sk′0, ·) oracles of games G4 and G4.5 return the
same value Hacc

0 (c).

2. Enc(pk0,m
′; r′) 6= c. In this case, the Decap(sk′0, ·) oracle returns Hrej

0 (c) in game G4 and Hacc
0 (c) in game

G4.5. In game G4, as the random function Hrej
0 is independent of all other oracles, the output Hrej

0 (c)
is uniformly random in the adversary A’s view. In game G4.5, the only way A gets prior access to the
function Hacc

0 is if it made a H-query (k̂′′, c) such that Enc(pk0,m
′′;G0r(m

′′)) = c (and G0k̂(m′′) = k̂′′),
where m′′ = Dec(sk0, c). But since Dec(sk0, ·) is a deterministic function, we have m′′ = m′ leading to
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a contradiction of “Enc(pk0,m
′; r′) 6= c”. Therefore, such a prior access is not possible and Hacc

0 (c) will
also be a uniformly random value in A’s view.

As the output distributions of the Decap(sk′0, ·) oracle in G4 and G4.5 are the same in both cases, we have

Pr[G4.5 = 1] = Pr[G4 = 1].

Game G5 In game G5, we change the Decap(sk′1, ·) oracle such that Hacc
1 (c) is returned for the de-

capsulation of any ciphertext c w.r.t. sk1. The analysis here follows quite similarly to that of the previ-
ous game-hop except that this simulation of the Decap(sk′1, ·) oracle – without the secret key sk′1 – will
fail (w.r.t. case 1 in the above game-hop) if A asks for the decapsulation of a ciphertext ĉ such that

Enc(pk1,m
′;G1r(m

′)) = ĉ = Enc(pk0,m
′′;G0r(m

′′)) and G1k̂(m′) = k̂′ = G0k̂(m′′), where m′ = Dec(sk1, ĉ)
and m′′ = Dec(sk0, ĉ). In this peculiar case, Hacc

0 (ĉ) is returned in G4.5 and Hacc
1 (ĉ) is returned in G5.

We bound the probability of this peculiar event (i.e., A asking for the decapsulation of such an above
ciphertext ĉ w.r.t. sk′1) by the advantage of an adversary E against the claw-finding problem w.r.t. the instance
(G0k̂, G1k̂). Because note that the pair (m′′,m) is a claw with G0k̂(m′′) = G1k̂(m′), where m′′ = Dec(sk0, ĉ)
and m′ = Dec(sk1, ĉ). More formally, E proceeds as follows:

– Runs A as a subroutine as in game G4.5, by creating the appropriate setup (starting with the generation
of two honest key-pairs (pk0, sk

′
0) and (pk1, sk

′
1)).

– Uses three different 2qG-wise independent functions to perfectly simulate the random oracles G2, G0r

and G1r respectively, four different 2qH -wise independent functions to simulate the random oracles
Hacc

0 , Hacc
1 , Hrej

1 and H2 respectively in A’s view, as noted in Lemma 2. Also uses the pair of functions
f0 : {0, 1}256 → {0, 1}256 and f1 : {0, 1}256 → {0, 1}256 – which is the instance of the claw-finding
problem – to simulate the oracles G0k̂ and G1k̂ respectively.

– Answers decapsulation queries the same way as in G4.5. Particularly, w.r.t. any query ĉ made by A to
the Decap(sk′1, ·) oracle, checks if the query satisfies the above described peculiar event. If so, returns the
pair (m′′,m′) as a claw w.r.t. (f0, f1), where m′′ = Dec(sk0, ĉ) and m′ = Dec(sk1, ĉ).

Note that E makes at most qG queries to the pair (f0, f1). Let Pr[P] be the probability of this peculiar event,
denoted as P, occurring. We have the games G4.5 and G5 to be equivalent unless the event P occurs. From

the construction of the claw-finding adversary E above, it is not hard to see that Pr[P] ≤ α(qG+1)3

2256 from
Lemma 1. Hence, we have

|Pr[G5 = 1]− Pr[G4.5 = 1]| ≤ Pr[P] ≤ α(qG + 1)3

2256
.

Game G6 In game G6, we make a further modification to the evaluation of “category (1) and (2)” H-

queries (as introduced in the “G3 → G4” game-hop) of the form (k̂, c∗) as follows, where c∗ is the challenge
ciphertext computed in the setup: respond to the corresponding “category (1)” queries with H3(m), where
m = Dec(sk0, c), and the corresponding “category (2)” queries with H3(m), where m = Dec(sk1, c). Here H3

is an internal independent random function.
Let m0 = Dec(sk0, c

∗) and m1 = Dec(sk1, c
∗) which additionally satisfy Enc(pk0,m0;G0r(m0)) = c∗ and

Enc(pk1,m1;G1r(m1)) = c∗. So to analyze this change to oracle H, there are only two H-queries worth

considering, namely “category (1)” query (k̂0, c
∗) and “category (2)” query (k̂1, c

∗) where k̂0 = G0k̂(m0)

and k̂1 = G1k̂(m1). W.r.t. these two queries, the H oracle would return Hacc
0 (c∗), Hacc

1 (c∗) respectively in
G5, and H3(m0), H3(m1) respectively in G6. Conditional on m0 6= m1, the adversary A’s view would be
identical even after this change because the random values Hacc

0 (c∗), Hacc
1 (c∗) are only accessible to A via the

H-oracle in G5, and in particular, not through the Decap(sk′i, ·) oracles since c∗ is a forbidden decapsulation
query. Hence in G6, we are effectively replacing two uniformly random values that can only be accessed
via the H-oracle by A with two other uniformly random values. Hence, the output distributions of the H-
oracle in the games G5 and G6 are equivalent unless we have m0 = m1, or in other words, the following
event occurs w.r.t. two honest Saber.PKE key-pairs (pk0, sk0), (pk1, sk1): Dec(sk0, c

∗) = Dec(sk1, c
∗) = m′

and Enc(pk0,m
′;G0r(m

′)) = Enc(pk1,m
′;G1r(m

′)) = c∗, where for m∗←$ {0, 1}256 and b←$ {0, 1} we have
c∗ = Enc(pkb,m

∗;Gbr(m
∗)) (note that we are not assuming the correctness of Saber.PKE, i.e., m∗ may or

may not be equal to m′).
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We can bound the probability of the above event by considering the sub-event “Enc(pk1−b,m
′;G(1−b)r(m

′)) =
c∗”. Note that in the context of an experiment describing the above event, we have G(1−b)r(m

′) resulting
in uniformly random coins r′←$ {0, 1}256, since Gbr is used to compute the ciphertext c∗ and G(1−b)r is a
random oracle independent to Gbr. Borrowing the notation used to describe Saber.PKE (especially the KGen
and Enc algorithms), note that the public-key pk1−b results in a uniformly random matrix A1−b←$Rl×lq

(in the random oracle model). Similarly the Saber.PKE ciphertext c∗ (specifically, its second component)
contains a vector b∗′ ∈ Rl×1

p . Now considering the re-encryption check “Enc(pk1−b,m
′; r′) = c∗” and looking

at the Enc algorithm description, note that this implies “A1−bs
′+ h mod q = b∗′” where h is a constant vec-

tor, A1−b←$Rl×lq and s′←$βµ(Rl×1
q ) (specifically, s′ = βµ(Rl×1

q ; r) for uniformly random r′←$ {0, 1}256 as
discussed above). Since the distribution (A1−b, A1−bs

′ + h mod q) is computationally indistinguishable from
(A1−b, b

′′) for a uniformly random vector b′′←$Rl×1
p based on the hardness of mod-LWR, the probability of

the event “A1−bs
′+h mod q = b∗′” will be negligible. More concretely, it is not hard to obtain the following:

|Pr[G6 = 1]− Pr[G5 = 1]| ≤ Advmod-lwr
l,l,µ,q,p (B1) +

1

2256

where Advmod-lwr
m,l,µ,q,p(B1) denotes the advantage of an adversary B1 in distinguishing between m samples

from a mod-LWR distribution from that of a uniform distribution, with corresponding parameters l, µ, q and
p. Also from the specification of pSaber, it can be shown that the size of the vector space Rl×1

p is at least
2256.

Game G6.5 In game G6.5, we change the random oracle G0r such that it uniformly samples “good”
random coins w.r.t. the key-pair (pk0, sk0), as seen in the proof of Theorem 5. Specifically, denote ΩGgood

0r
to

be the set of all random functions Ggood
0r such that Ggood

0r (m) is sampled according to a uniform distribution

in Rgood(pk0, sk0,m). Hence in G6.5, we replace the oracle G0r with Ggood
0r . By using a similar analysis as

the game-hop (G1 → G2) in the proof of Theorem 5 (in fact, the analysis would be simpler in this case since
we have to consider a single key-pair (pk0, sk0) instead of two), it is not hard to obtain

|Pr[G6.5 = 1]− Pr[G6 = 1]| ≤ 2qG
√
δ

Game G7 In game G7, we now change the random oracle G1r such that it uniformly samples “good”
random coins w.r.t. the key-pair (pk1, sk1). The analysis in this case would be similar (and simpler when
compared) to the game-hop (G1 → G2) in the proof of Theorem 5. But a thing worth noting is that the

distinguisher BĜ (for Ĝ ∈ {G1r, G
good
1r }) – as was used in the (G1 → G2) game-hop in the proof of Theorem

5 – will have a single key-pair (pk1, sk1) as input, and will need to simulate A’s view in the games G6.5 and

G7. But since the distinguisher BĜ can be unbounded, it can simulate the “non-ideal” random oracle Ggood
0r

that is used in G6.5 and G7. Again, it is not hard to obtain

|Pr[G7 = 1]− Pr[G6.5 = 1]| ≤ 2qG
√
δ

Game G8 In the setup of game G8, we generate the value k∗ as “k∗ ← H3(m∗)” (as opposed to “k∗ ←
H(k̂∗, c∗)” in G7). Also k̂∗ is not generated in the setup (i.e., removing the step “k̂∗ ← Gbk̂(m∗)” in G7)
as the value is not required anymore in the game. Note that G8 is equivalent to G7 w.r.t. this change
unless the following event occurs: for b = 1 if we have c∗ = Enc(pk1,m

∗;G1r(m
∗)) and k̂∗ ← G1k̂(m∗) (for

m∗←$ {0, 1}256) in the setup, then Enc(pk0,m
′;G0r(m

′)) = c∗ and G0k̂(m′) = k̂∗, where Dec(sk0, c
∗) = m′.

Note that in this case, the value k∗ computed in setup of the games will be equal to H3(m′)(= H(k̂∗, c∗)) in
G7 and H3(m∗) in G8.

We can bound the probability of such an event by considering the sub-event “G0k̂(m′) = G1k̂(m∗) (= k̂∗)”.
More formally, consider a (hypothetical) experiment which describes the above event as follows. First, it
generates (honestly) two Saber.PKE key-pairs (pk0, sk

′
0) and (pk1, sk

′
1). Then it uniformly at random samples

a message m∗←$ {0, 1}256 and computes c∗ = Enc(pk1,m
∗;G1r(m

∗)), k̂∗ ← G1k̂(m∗); one thing worth noting
here is that the hypothetical experiment can simulate the “non-ideal” random oracle G1r̂, which only samples
“good” random coins, with an unbounded running time. Then it computes m′ = Dec(sk0, c

∗) and finally

checks if “G0k̂(m′) = k̂∗”. Note that in the context of this experiment, since this is the first invocation of the

oracle G0k̂ (independent to G1k̂), G0k̂(m′) results in a uniformly random value k̂′←$ {0, 1}256. Therefore,
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the probability of this sub-event, or “G0k̂(m′) = k̂∗”, happening is at most 1/2256. Hence, it is not hard to
see that

|Pr[G8 = 1]− Pr[G7 = 1]| ≤ 1

2256

Game G8.5 In game G8.5, we replace the random oracles Gik̂ (i ∈ {0, 1}) with 2qG-wise independent
functions, following Lemma 2. Random polynomials of degree 2qG − 1 over the finite field representation of
the message space {0, 1}256 are 2qG-wise independent. Let Ωpoly be the set of all such polynomials. We are
then replacing the step “G0k̂, G1k̂←$ΩG” with “G0k̂, G1k̂←$Ωpoly” in G8.5. From Lemma 2, as this change
is indistinguishable when the oracles G0k̂, G1k̂ are queried at most qG times, we have

Pr[G8.5 = 1] = Pr[G8 = 1]

Game G9 In game G9, we change the H-oracle such that there is no need for secret keys sk0, sk1.

Namely, we implicitly divide the H-queries into three disjoint categories: (1) query is of the form (k̂, c) with

k̂ ∈ {0, 1}256, c ∈ C and there exists m ∈ {0, 1}256 which is a root of the polynomial G0k̂(x) − k̂ (recall

that G0k̂ and G1k̂ are now polynomials) such that Enc(pk0,m;G0r(m)) = c, (2) query is of the form (k̂, c)

with k̂ ∈ {0, 1}256, c ∈ C and which do not fall under “category (1)”, while at the same time, there exists

m ∈ {0, 1}256 which is a root of the polynomial G1k̂(x)− k̂ such that Enc(pk1,m;G1r(m)) = c, and (3) the
remaining queries. We then respond to queries from the respective categories as follows: (1) return H3(m)
if c = c∗, otherwise return Hacc

0 (c), (2) return H3(m) if c = c∗, otherwise return Hacc
1 (c), and (3) return

H2(k̂, c).
It is not hard to see that the input-output behavior of oracle H in games G8.5 and G9 is identical. For

example, w.r.t. a query (k̂, c) if the oracle H in G8.5 returns Hacc
0 (c), then we have Enc(pk0,m;G0r(m)) = c

( 6= c∗) and G0k̂(m) = k̂, where m = Dec(sk0, c). This implies that m is the only root of the polynomial

G0k̂(x)− k̂ which satisfies Enc(pk0,m;G0r(m)) = c (note that there cannot exist some other root m′ (6= m)

of G0k̂(x) − k̂ satisfying Enc(pk0,m
′;G0r(m

′)) = c because, as G0r samples “good” random coins, we must

then have Dec(sk0, c) = m′ = m – a contradiction), and hence on the same input (k̂, c), oracle H in G9 outputs

the value Hacc
0 (c) as well. In the other direction, w.r.t. a query (k̂, c) if the oracle H in G9 returns Hacc

0 (c),

then there exists a root m of the polynomial G0k̂(x)−k̂ such that it uniquely satisfies Enc(pk0,m;G0r(m)) = c

(6= c∗). Since G0r samples “good” random coins, we must have Dec(sk0, c) = m with m satisfying G0k̂(m) = k̂

and Enc(pk0,m;G0r(m)) = c. Therefore, on the same input (k̂, c), oracle H in G8.5 outputs the value Hacc
0 (c)

as well. A similar reasoning applies to the outputs Hacc
1 (c) and H2(k̂, c) w.r.t. H-queries (k̂, c), and also to

queries of the form (k̂, c∗), which finally leads to the equivalence of oracles H in G8.5 and G9. We thus have

Pr[G9 = 1] = Pr[G8.5 = 1]

Game G10 In game G10, we reset the random oracles Gir (for i ∈ {0, 1}) so that they return uniformly
random coins from {0, 1}256 instead of returning only “good” random coins. Since this change, in a sense, is
the “inverse” of the game-hop G6 → G7, by using a similar analysis, we obtain

|Pr[G10 = 1]− Pr[G9 = 1]| ≤ 4qG
√
δ

Game G11 In the set-up of game G11, we generate the values r∗ and k∗ such that they are uniformly
random values independent of any oracles, i.e., we replace the step “r∗ ← Gbr(m

∗)” with “r∗←$ {0, 1}256”
and “k∗ ← H3(m∗)” with “k∗←$ {0, 1}256”. We use Lemma 4 to bound the difference in the success prob-
abilities of A in G10 and G11. Let A be an oracle algorithm that has quantum access to the random oracle
Gr×H3, where Gr, H3←$ΩG and (Gr×H3)(m) = (Gr(m), H3(m)). Figure 24 describes AGr×H3 ’s operation
on input (m∗, (r∗, k∗)). Note that the algorithm AGr×H3 makes at most qG + qH number of queries to the
random oracle Gr ×H3 to respond to A’s G-oracle and H-oracle queries.

Let B be an oracle algorithm that on input m∗ does the following: picks i←$ {1, . . . , qG + qH}, generates
r∗←$ {0, 1}256 and k∗←$ {0, 1}256, runs the algorithm AGr×H3(m∗, (r∗, k∗)) until the i-th query, measures
the argument of the (Gr ×H3)-query in the computational basis and outputs the measurement outcome (if
AGr×H3 makes less than i queries, B outputs ⊥). With this construction of A, note that P 1

A = Pr[G10 = 1]
and P 2

A = Pr[G11 = 1], where P 1
A and P 2

A are as defined in Lemma 4 w.r.t. the algorithm AGr×H3 . Therefore,
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AGr×H3(m∗, (r∗, k∗))

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′

2 : G2 ←$ΩG2

3 : G0k̂, G1k̂ ←$Ωpoly

4 : H2 ←$ΩH

5 : Hacc
0 , Hacc

1 ←$ΩH′

6 : b←$ {0, 1}
7 : Gbr = Gr

8 : G(1−b)r ←$ΩG

9 : c∗ ← Enc(pkb,m
∗; r∗)

10 : inp← (pk0, pk1, (c
∗, k∗))

11 : b′ ← AG,H,Decap(sk′0,·),Decap(sk′1,·)(inp)

12 : return (b′ = b)

G(f,m) // |f |+ |m| = 512

1 : if f = F (pk0) then

2 : r ← G0r(m)

3 : k̂ ← G0k̂(m)

4 : elseif f = F (pk1) then

5 : r ← G1r(m)

6 : k̂ ← G1k̂(m)

7 : else (k̂, r)← G2(f,m)

8 : return (k̂, r)

G(f,m) // |f |+ |m| 6= 512

1 : return G2(f,m)

H(k̂, c) // k̂ ∈ {0, 1}256, c ∈ C

1 : Compute set of roots S0

of polynomial G0k̂(x)− k̂
2 : if ∃m′ ∈ S0 s.t.

Enc(pk0,m
′;G0r(m

′)) = c

3 : if c = c∗ then

4 : return H3(m′)

5 : return Hacc
0 (c)

6 : Compute set of roots S1

of polynomial G1k̂(x)− k̂
7 : if ∃m′ ∈ S1 s.t.

Enc(pk1,m
′;G1r(m

′)) = c

8 : if c = c∗ then

9 : return H3(m′)

10 : return Hacc
1 (c)

11 : return H2(k̂, c)

H(k̂, c) // k̂ /∈ {0, 1}256 or c /∈ C

1 : return H2(k̂, c)

Decap(sk′0, c)

1 : return Hacc
0 (c)

Decap(sk′1, c)

1 : return Hacc
1 (c)

Fig. 24. Algorithm AGr×H3 for the proof of Theorem 9.
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we now define game G12 (see Fig. 23) such that PB = Pr[G12 = 1], where PB is as defined in Lemma 4
w.r.t. the algorithm BGr×H3 . From Lemma 4, we thus have

|Pr[G10 = 1]− Pr[G11 = 1]| ≤ 2(qG + qH)
√

Pr[G12 = 1]

We now bound the success probability of A in G11 by the advantage of an adversary B in the ANO-
CPA game of Saber.PKE. Upon receiving public-keys pk0 and pk1, B submits a uniformly random message
m∗←$ {0, 1}256 to the ANO-CPA challenger. It then receives a ciphertext c∗, where c∗ ← Enc(pkb,m

∗; r∗)
for uniformly random bit b(←$ {0, 1}) and randomness r∗(←$ {0, 1}256) chosen by the challenger. B then
proceeds as follows:

– Runs A as a subroutine as in game G11.

– Uses five different 2qG-wise independent functions to perfectly simulate the random oracles G2, G0r, G1r,
G0k̂ and G1k̂ respectively, four different 2qH -wise independent functions to simulate the random oracles
Hacc

0 , Hacc
1 , H2 and H3 respectively in A’s view, as noted in Lemma 2. The random oracles G and H

are simulated in the same way as in G11.

– Answers decapsulation queries using the oracles Hacc
i (i ∈ {0, 1}) as in G11.

– ForA’s challenge query, samples a uniformly random key k∗←$ {0, 1}256 and responds with (pk0, pk1, (c
∗, k∗)).

– After obtaining a bit b′ from A, forwards b′ to its ANO-CPA challenger as the final message.

It is easy to see that |Pr[G11 = 1] − 1
2 | = AdvANO-CPA

Saber.PKE (B). Now we bound the success probability
of A in G12 by the advantage of an adversary C in the OW-CPA game of Saber.PKE. Upon receiving a
public-key pk along with a ciphertext c∗, where c∗ ← Enc(pk,m∗; r∗) for uniformly random (secret) message
m∗(←$ {0, 1}256) and randomness r∗(←$ {0, 1}256) chosen by the challenger, C proceeds as follows:

– Runs A as a subroutine as in game G12 (e.g., starting with sampling a uniformly random bit b←$ {0, 1}).
– Uses five different 2qG-wise independent functions to perfectly simulate the random oracles G2, G0r,
G1r, G0k̂ and G1k̂ respectively, four different 2qH -wise independent functions to simulate the random
oracles Hacc

0 , Hacc
1 , H2 and H3 respectively in A’s view, as noted in Lemma 2. Also evaluates A’s G-

and H-queries using the oracle Gbr ×H3; the random oracles G and H are simulated in the same way
as in G12.

– Answers decapsulation queries using the oracles Hacc
i (i ∈ {0, 1}) as in G12.

– For A’s challenge query, first sets pkb = pk. Then generates a key-pair (pk1−b, sk1−b) ← KGen(1λ),
samples a uniformly random key k∗←$ {0, 1}256 and responds with (pk0, pk1, (c

∗, k∗)). (By doing this,
note that we have c∗ ← Enc(pkb,m

∗; r∗) in A’s view.)

– Selects i←$ {1, . . . , qG + qH}, measures the i-th query to oracle Gbr ×H3 and returns the outcome m̂.

Again, it is not hard to see that Pr[G12 = 1] ≤ AdvOW-CPA
Saber.PKE(C). Hence by collecting all of the above bounds,

we arrive at

AdvANO-CCA
pSaber.KEM(A) ≤ AdvANO-CPA

Saber.PKE (B) + 2(qG + qH)

√
AdvOW-CPA

Saber.PKE(C)

+ CollFSaber.PKE +
α(qG + 1)3

2256
+ Advmod-lwr

l,l,µ,q,p (B1) +
2

2256
+

4qH
2128

+ 8qG
√
δ

C.10 Proof of Theorem 10

Theorem 10. Given Saber.PKE = (KGen,Enc,Dec) is δ-correct, for any SCFR-CCA adversary A against
pSaber.KEM = (KGen′,Encap,Decap) issuing at most qD queries to the (classical) decapsulation oracles, at
most qG (resp. qH) queries to the quantum random oracle G (resp. H), we have

AdvSCFR-CCA
pSaber.KEM (A) ≤ CollFSaber.PKE +

α(qG + 1)3

2256
+
α(qH + 1)3

2256
+

4qH
2128

Here α (< 648) is the constant from Lemma 1.
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Games G0 − G5

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′

2 : G2 ←$ΩG2 ;G0r, G1r ←$ΩG

3 : G0k̂, G1k̂ ←$ΩG

4 : H2 ←$ΩH ;Hrej
0 , Hrej

1 ←$ΩH′

5 : Hacc
0 , Hacc

1 ←$ΩH′

6 : inp← (pk0, pk1)

7 : c← AG,H,Decap(sk′0,·),Decap(sk′1,·)(inp)

8 : return (Decap(sk′0, c) = Decap(sk′1, c))

Decap(sk′0, c)

1 : return Hacc
0 (c)// G4.5 - G5

2 : Parse sk′0 = (sk0, s0, F (pk0))

3 : m′ = Dec(sk0, c)

4 : (k̂′, r′)← G(F (pk0),m′)// G0 − G2

5 : r′ ← G0r(m
′)// G3 − G4

6 : k̂′ ← G0k̂(m′)// G3 − G4

7 : if Enc(pk0,m
′; r′) = c then

8 : return H(k̂′, c)

9 : else return H(s0, c)// G0

10 : else return Hrej
0 (c)// G1 - G4

Decap(sk′1, c)

1 : return Hacc
1 (c)// G5

2 : Parse sk′1 = (sk1, s1, F (pk1))

3 : m′ = Dec(sk1, c)

4 : (k̂′, r′)← G(F (pk1),m′)// G0 − G2

5 : r′ ← G1r(m
′)// G3 − G4.5

6 : k̂′ ← G1k̂(m′)// G3 − G4.5

7 : if Enc(pk1,m
′; r′) = c then

8 : return H(k̂′, c)

9 : else return H(s1, c)// G0

10 : else return Hrej
1 (c)// G1 - G4.5

G(f,m) // |f |+ |m| = 512

1 : if f = F (pk0) then // G2-G5

2 : r ← G0r(m)// G2 - G5

3 : k̂ ← G0k̂(m)// G2 - G5

4 : elseif f = F (pk1) then // G2-G5

5 : r ← G1r(m)// G2 - G5

6 : k̂ ← G1k̂(m)// G2 - G5

7 : else (k̂, r)← G2(f,m)

8 : return (k̂, r)

G(f,m) // |f |+ |m| 6= 512

1 : return G2(f,m)

H(k̂, c) // k̂ ∈ {0, 1}256, c ∈ C

1 : m′ = Dec(sk0, c)// G4 − G5

2 : if Enc(pk0,m
′;G0r(m

′)) = c∧
G0k̂(m′) = k̂// G4 − G5

3 : return Hacc
0 (c)// G4 − G5

4 : m′ = Dec(sk1, c)// G4 − G5

5 : if Enc(pk1,m
′;G1r(m

′)) = c∧
G1k̂(m′) = k̂// G4 − G5

6 : return Hacc
1 (c)// G4 − G5

7 : return H2(k̂, c)

H(k̂, c) // k̂ /∈ {0, 1}256 or c /∈ C

1 : return H2(k̂, c)

Fig. 25. Games G0 – G5 for the proof of Theorem 10.
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Proof. Denote ΩG2 , ΩG, ΩH and ΩH′ to be the set of all functions G2 : {0, 1}∗ → {0, 1}512, G : {0, 1}256 →
{0, 1}256, H : {0, 1}∗ → {0, 1}256 and H ′ : C → {0, 1}256 respectively, where C is the ciphertext space of
Saber.PKE/pSaber.KEM.

Let A be an adversary in the SCFR-CCA game for pSaber.KEM issuing at most qD (classical) queries
to the oracles Decap(sk′0, ·) and Decap(sk′1, ·), and qG (resp., qH) quantum queries to the random oracles G
(resp. H).

The structure of the proof is very similar to that of Theorem 9. Basically we do a similar sequence of
game-hops as in the proof of Theorem 9 until the point where we can simulate the decapsulation oracles
Decap(sk′i, ·) (i ∈ {0, 1}) without requiring the corresponding secret keys sk′i.

To be specific, we do the sequence of game-hops G0 → G5 as described in Figure 25. By a similar analysis
as that of the proof of Theorem 9 w.r.t. these game-hops, it is not hard to obtain

|Pr[G0 = 1]− Pr[G5 = 1]| ≤ CollFSaber.PKE +
α(qG + 1)3

2256
+

4qH
2128

Note that the game G0 is exactly the SCFR-CCA game for pSaber.KEM. Hence, we have

Pr[G0 = 1] = AdvSCFR-CCA
pSaber.KEM (A)

Coming to the game G5, note that the adversary A wins the game if it finally outputs a ciphertext c
such that Decap(sk′0, c) = Decap(sk′1, c). Because of the modification of the Decap(sk′i, ·) oracles, this winning
condition translates to Hacc

0 (c) = Hacc
1 (c), where Hacc

0 and Hacc
1 are independent quantum-accessible random

functions. Note that in this case, (c, c) is a claw w.r.t. the pair of functions Hacc
0 : C → {0, 1}256 and

Hacc
1 : C → {0, 1}256. Hence we can bound the success probability of A in G5 by the advantage of an

adversary D against the claw-finding problem w.r.t. the instance (Hacc
0 , Hacc

1 ). D proceeds as follows:

– Runs A as a subroutine as in game G5, by creating the appropriate setup (starting with the generation
of two honest key-pairs (pk0, sk

′
0) and (pk1, sk

′
1)).

– Uses five different 2qG-wise independent functions to perfectly simulate the random oracles G2, G0r, G1r,
G0k̂ and G1k̂ respectively, four different 2(qG + qH)-wise independent functions to simulate the random
oracles G0r, G1r, G0k̂ and G1k̂ respectively in A’s view, as noted in Lemma 2. Also uses the pair of

functions f0 : C → {0, 1}256 and f1 : C → {0, 1}256 – which is the instance of the claw-finding problem –
to simulate the oracles Hacc

0 and Hacc
1 respectively.

– The random oracles G and H are simulated in the same way as in G5 (e.g., note that H can be simulated
as the claw-finding adversary D possesses the secret keys sk0 and sk1).

– Answers decapsulation queries using the oracles fi(·) (i ∈ {0, 1}) as in G5.
– After obtaining a final ciphertext c from A, forwards (c, c) as a claw w.r.t. (f0, f1).

Note that D makes at most qH queries to the pair (f0, f1). It is easy to see that Pr[G5 = 1] ≤ α(qH+1)3

2256

from Lemma 1. Hence, we finally get

AdvSCFR-CCA
pSaber.KEM (A) ≤ CollFSaber.PKE +

α(qG + 1)3

2256
+
α(qH + 1)3

2256
+

4qH
2128

C.11 Proof of Theorem 11

Theorem 11. Let pSaber.PKEhy = (KGen′,Enchy,Dechy) be a hybrid encryption scheme obtained by com-
posing pSaber.KEM = (KGen′,Encap,Decap) with a one-time authenticated encryption scheme DEM =
(Encsym,Decsym). Given Saber.PKE = (KGen,Enc,Dec) is δ-correct, then for any ANO-CCA adversary A
against pSaber.PKEhy issuing at most qG (resp. qH) queries to the quantum random oracle G (resp. H), there
exist ANO-CCA adversary B, IND-CCA adversary C against pSaber.KEM, INT-CTXT adversary E against
DEM and distinguisher B1 between l samples from a mod-LWR distribution and a uniform distribution, with
corresponding parameters l, µ, q and p, such that

AdvANO-CCA
pSaber.PKEhy (A) ≤ AdvANO-CCA

pSaber.KEM(B) + 2AdvIND-CCA
pSaber.KEM(C) + CollFSaber.PKE

+ 2AdvINT-CTXT
DEM (E) + Advmod-lwr

l,l,µ,q,p (B1) +
4qH
2128

+ 8qG
√
δ +

1

2256
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and the running times of B, C and E are the same as that of A. The running time of B1 is independent (and
less than that) of the running time of A.

Proof. The proof is quite similar to that of Theorem 7, except for some initial game-hops. Here we will be
focusing on these hops.

Denote ΩG2
, ΩG and ΩH to be the set of all functions G2 : {0, 1}∗ → {0, 1}512, G : {0, 1}256 → {0, 1}256

and H : {0, 1}∗ → {0, 1}256 respectively. Let A be an adversary in the ANO-CCA game for pSaber.PKEhy

issuing at most qG (resp. qH) quantum queries to the random oracles G (resp. H). Consider the sequence of
games G0 − G1 described in Figure 26.

Game G0: The game G0 is equivalent to the ANO-CCA game for pSaber.PKEhy, except for some “cos-
metic” changes. Namely, the pair (c∗1, k

∗) resulting from running Encap(pkb) for a uniformly random bit b is
generated before the adversary A gets to choose a message m. This change does not affect A’s view in any
way. Hence, ∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
pSaber.PKEhy (A)

Game G1: In game G1, we implicitly divide the G-queries into at most three categories: (1) query is of
the form (f,m) with |f |+ |m| = 512 and f = F (pk0), (2) query is of the form (f,m) with |f |+ |m| = 512 and
f = F (pk1), and (3) the remaining queries. We then respond to the queries from the respective categories
with (G0k̂(m), G0r(m)), (G1k̂(m), G1r(m)) and G2(m, c) respectively, where Gik̂, Gir (for i ∈ {0, 1}) are
internal random functions; note that we say “at most” three categories because of the (unlikely) possibility
that F (pk0) = F (pk1). It is not hard to verify that the output distributions of the G-oracle in games G0 and
G1 are equivalent. Therefore,

Pr[G1 = 1] = Pr[G0 = 1].

Game G2 In game G2, we make the following changes w.r.t. the G-oracle evaluation. First, we generate
the values k̂∗, r∗ in setup of the game as “k̂∗ ← Gbk̂(m∗)” and “r∗ ← Gbr(m

∗)” (effectively, replacing the

step “(k̂∗, r∗)← G(F (pkb),m
∗)” in G1). We then similarly generate the values k̂′, r′ w.r.t. the decapsulation

oracles Decap(sk′i, ·) (i ∈ {0, 1}) as “k̂′ ← Gik̂(m′)” and “r′ ← Gir(m
′)” (replacing the step “(k̂′, r′) ←

G(F (pki),m
′)” in G1).

Let bad denote the event where the public-keys pk0 and pk1 generated honestly in the setup satisfy the
following: F (pk0) = F (pk1). It is not hard to see that the games G1 and G2 are equivalent unless the event
“bad” happens. As seen in the proof of Theorem 9 (specifically, the “G2 → G3” hop), we also have the
probability of the event bad occurring to be: Pr[bad] ≤ CollFSaber.PKE. Hence, we get

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ Pr[bad] ≤ CollFSaber.PKE.

Game G3 In game G3, we modify the oracle Dechy(sk1−b, ·) such that if the decryption query is (c1, c2)
where c1 = c∗1, then the oracle uses krej(= H(s1−b, c

∗
1)) to decrypt c2. Here krej is the key returned if

Decap(sk′1−b, c
∗
1) would have resulted in an “implicit rejection”. Thus, it is not hard to see that the games G2

and G3 are equivalent unless c∗1 is not (implicitly) rejected by the Decap(sk′1−b, ·) operation, or in other
words, if the following event occurs: “Enc(pk1−b,m

′; r′) = c∗1” where for a uniformly random message

m∗←$ {0, 1}256 we have (k̂∗, r∗)←$ (Gbk̂(m∗), Gbr(m
∗)), Enc(pkb,m

∗; r∗) = c∗1, Dec(sk1−b, c
∗
1) = m′ and

(k̂
′
, r′)←$ (G(1−b)k̂(m′), G(1−b)r(m

′)).
The analysis that follows is quite similar to the “G5 → G6” game-hop in the proof of Theorem 9.

Note that in the context of an experiment describing the above event, we have G(1−b)r(m
′) resulting in

uniformly random coins r′←$ {0, 1}256, since Gbr is used to compute the ciphertext c∗1 and G(1−b)r is a
random oracle independent to Gbr. Borrowing the notation used to describe Saber.PKE (especially the KGen
and Enc algorithms), note that the public-key pk1−b consists of a uniformly random matrix A1−b←$Rl×lq .

Similarly the Saber.PKE ciphertext c∗1 (specifically, its second component) contains a vector b∗′ ∈ Rl×1
p . Now

considering the re-encryption check “Enc(pk1−b,m
′; r′) = c∗1” and looking at the Enc algorithm description,

note that this implies “A1−bs
′+h mod q = b∗′” where h is a constant vector, A1−b←$Rl×lq and s′←$βµ(Rl×1

q )

(specifically, s′ = βµ(Rl×1
q ; r) for uniformly random r′←$ {0, 1}256 as discussed above). Since the distribution

(A1−b, A1−bs
′+h mod q) is computationally indistinguishable from (A1−b, b

′′) for a uniformly random vector
b′′←$Rl×1

p based on the hardness of mod-LWR, the probability of the event “A1−bs
′ + h mod q = b∗′” will

be negligible. More concretely, it is not hard to obtain the following:
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Games G0 - G3

1 : (pk0, sk0), (pk1, sk1)← KGen

2 : s0 ←$ {0, 1}256; s1 ←$ {0, 1}256

3 : sk′0 = (sk0, s0, F (pk0))

4 : sk′1 = (sk1, s1, F (pk1))

5 : G2 ←$ΩG2 ;H ←$ΩH

6 : G0r, G1r ←$ΩG// G1 − G3

7 : G0k̂, G1k̂ ←$ΩG// G1 − G3

8 : b←$ {0, 1}
9 : m∗ ←$ {0, 1}256

10 : (k̂∗, r∗)←$G(F (pkb),m
∗)// G0 − G1

11 : r∗ ← Gbr(m
∗)// G2 − G3

12 : k̂∗ ← Gbk̂(m∗)// G2 − G3

13 : c∗1 ← Enc(pkb,m
∗; r∗)

14 : k∗ ← H(k̂∗, c∗1)

15 : krej ← H(s1−b, c
∗
1)// G3

16 : m← AG,H,Dechy(sk′0,·),Dechy(sk′1,·)(pk0, pk1)

17 : c∗2 ← Encsym(k∗,m)

18 : c∗ = (c∗1, c
∗
2)

19 : b′ ← AG,H,Dechy(sk′0,·),Dechy(sk′1,·)(c∗)

20 : return (b′ = b)

G(f,m) // |f |+ |m| = 512

1 : if f = F (pk0) then // G1 − G3

2 : r ← G0r(m)// G1 − G3

3 : k̂ ← G0k̂(m)// G1 − G3

4 : elseif f = F (pk1) then // G1 − G3

5 : r ← G1r(m)// G1 − G3

6 : k̂ ← G1k̂(m)// G1 − G3

7 : else (k̂, r)← G2(f,m)

8 : return (k̂, r)

G(f,m) // |f |+ |m| 6= 512

1 : return G2(f,m)

Dechy(sk′b, c)

1 : Parse c = (c1, c2)

2 : Parse sk′b = (skb, sb, F (pkb))

3 : m′ ← Dec(skb, c1)

4 : (k̂′, r′)←$G(F (pkb),m
′)// G0 − G1

5 : r′ ← Gbr(m
′)// G2 − G3

6 : k̂′ ← Gbk̂(m′)// G2 − G3

7 : if Enc(pkb,m
′; r′) = c1

8 : k′ ← H(m′, c1)

9 : else k′ ← H(sb, c1)

10 : m′ ← Decsym(k′, c2)

11 : return m′

Dechy(sk′1−b, c)

1 : Parse c = (c1, c2)

2 : Parse sk′1−b = (sk1−b, s1−b, F (pk1−b))

3 : if c1 = c∗1 then // G3

4 : k′ ← krej// G3

5 : else // G3

6 : m′ ← Dec(sk1−b, c1)

7 : (k̂′, r′)←$G(F (pk1−b),m
′)

8 : r′ ← G(1−b)r(m
′)// G2 − G3

9 : k̂′ ← G(1−b)k̂(m′)// G2 − G3

10 : if Enc(pk1−b,m
′; r′) = c1

11 : k′ ← H(m′, c1)

12 : else k′ ← H(s1−b, c1)

13 : m′ ← Decsym(k′, c2)

14 : return m′

Fig. 26. Games G0 – G3 for the proof of Theorem 11.
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|Pr[G3 = 1]− Pr[G2 = 1]| ≤ Advmod-lwr
l,l,µ,q,p (B1) +

1

2256

where Advmod-lwr
m,l,µ,q,p(B1) denotes the advantage of an adversary B1 in distinguishing between m samples

from a mod-LWR distribution from that of a uniform distribution, with corresponding parameters l, µ, q and
p. Also from the specification of pSaber, it can be shown that the size of the vector space Rl×1

p is at least
2256.

The rest of the proof follows very similarly to that of Theorem 7, where we then do the game-hop
“G0 → G1” of Theorem 7, skip the “G1 → G2” hop – since effectively this is covered by our above G0 → G3

hop – and proceed from “G3” of Theorem 7 from then on, and so on.
Hence, it is not hard to finally arrive at

AdvANO-CCA
pSaber.PKEhy (A) ≤ AdvANO-CCA

pSaber.KEM(B) + 2AdvIND-CCA
pSaber.KEM(C) + CollFSaber.PKE

+ 2AdvINT-CTXT
DEM (E) + Advmod-lwr

l,l,µ,q,p (B1) +
4qH
2128

+ 8qG
√
δ +

1

2256

C.12 Proof of Theorem 12

Theorem 12. For any SCFR-CCA adversary A against the scheme Saber.KEM = (KGen′,Encap,Decap)
issuing at most qG (resp. qF ) queries to the quantum random oracle G (resp. F ), we have

AdvSCFR-CCA
Saber.KEM (A) ≤ CollFSaber.PKE +

α(qG + 1)3

2256
+

4α(qF + 1)3

2256
+

4qF
2128

Here α (< 648) is the constant from Lemma 1.

Proof. Denote ΩG2 , ΩG and ΩH′ to be the set of all functions G2 : {0, 1}∗ → {0, 1}512, G : {0, 1}256 →
{0, 1}256 and H ′ : {0, 1}256 → {0, 1}256 respectively.

Let A be an adversary in the SCFR-CCA game for Saber.KEM issuing at most qG (resp., qF ) quantum
queries to the random oracle G (resp. F ).

The structure of the proof is very similar to that of Theorem 9. Namely, we do the sequence of game-hops
G0 → G3 as described in Figure 27. Since this sequence is similar to the game-hops “G0 → G3” in the proof
of Theorem 9, by a similar analysis we obtain

|Pr[G0 = 1]− Pr[G3 = 1]| ≤ CollFSaber.PKE +
4qF
2128

Note that the game G0 is exactly the SCFR-CCA game for Saber.KEM. Hence, we have

Pr[G0 = 1] = AdvSCFR-CCA
Saber.KEM (A)

Coming to the game G3, note that the adversary A wins the game if it finally outputs a ciphertext

c such that Decap(sk′0, c) = Decap(sk′1, c). Let m′0 = Dec(sk0, c), m
′
1 = Dec(sk1, c), k̂0

′
← G0k̂(m′0) and

k̂1
′
← G1k̂(m′1). There are four disjoint cases that need to be considered w.r.t. this winning condition:

– Decap(sk′0, c) = F (k̂0
′
, F (c)) ∧ Decap(sk′1, c) = F (k̂1

′
, F (c)):

• k̂0
′
6= k̂1

′
: The winning condition in this case translates to F (k̂0

′
, F (c)) = F (k̂1

′
, F (c)), where k̂0

′
6=

k̂1
′
. This implies a collision in the quantum random oracle F . Hence using Lemma 6, we can bound

the probability of this sub-event by α(qF +1)3

2256 via a straightforward reduction to the collision-resistance
of the random oracle F .

• k̂0
′

= k̂1
′
: In this sub-case, note that (m′0,m

′
1) is a claw w.r.t. the pair of random oracles G0k̂ and

G1k̂. Using Lemma 1, we can bound the probability of this event by α(qG+1)3

2256 via a straightforward
reduction to the claw-finding problem w.r.t. the instance (G0k̂, G1k̂).
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Games G0 − G3

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′

2 : G2 ←$ΩG2 ;G0r, G1r ←$ΩG

3 : G0k̂, G1k̂ ←$ΩG

4 : Hrej
0 , Hrej

1 ←$ΩH′

5 : inp← (pk0, pk1)

6 : c← AG,F,Decap(sk′0,·),Decap(sk′1,·)(inp)

7 : return (Decap(sk′0, c) = Decap(sk′1, c))

Decap(sk′0, c)

1 : Parse sk′0 = (sk0, pk0, F (pk0), s0)

2 : m′ = Dec(sk0, c)

3 : (k̂′, r′)← G(F (pk0),m′)// G0 − G2

4 : r′ ← G0r(m
′)// G3

5 : k̂′ ← G0k̂(m′)// G3

6 : if Enc(pk0,m
′; r′) = c then

7 : return F (k̂′, F (c))

8 : else return F (s0, F (c))// G0

9 : else return Hrej
0 (F (c))// G1 - G3

G(f,m) // |f |+ |m| = 512

1 : if f = F (pk0) then // G2-G3

2 : r ← G0r(m)// G2 - G3

3 : k̂ ← G0k̂(m)// G2 - G3

4 : elseif f = F (pk1) then // G2-G3

5 : r ← G1r(m)// G2 - G3

6 : k̂ ← G1k̂(m)// G2 - G3

7 : else (k̂, r)← G2(f,m)

8 : return (k̂, r)

G(f,m) // |f |+ |m| 6= 512

1 : return G2(f,m)

Decap(sk′1, c)

1 : Parse sk′1 = (sk1, pk0, F (pk1), s1)

2 : m′ = Dec(sk1, c)

3 : (k̂′, r′)← G(F (pk1),m′)// G0 − G2

4 : r′ ← G1r(m
′)// G3

5 : k̂′ ← G1k̂(m′)// G3

6 : if Enc(pk1,m
′; r′) = c then

7 : return F (k̂′, F (c))

8 : else return F (s1, F (c))// G0

9 : else return Hrej
1 (F (c))// G1 - G3

Fig. 27. Games G0 – G3 for the proof of Theorem 12.
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Encap(pk)

1 : m←$M
2 : c1 ← Enc(pk,m;G(m))

3 : c2 ← H ′(m, c1)

4 : c← (c1, c2)

5 : k = H(m, c)

6 : return (c, k)

Decap(sk, c)

1 : Parse c = (c1, c2)

2 : m′ ← Dec(sk, c1)

3 : c′1 ← Enc(pk,m′;G(m′))

4 : if c′1 = c1 ∧H ′(m′, c1) = c2 then

5 : return H(m′, c)

6 : else return ⊥

Fig. 28. The KEM HFO⊥
′
[PKE, G,H,H ′].

– Decap(sk′0, c) = F (k̂0
′
, F (c)) ∧ Decap(sk′1, c) = Hrej

1 (F (c)): In this case, the winning condition translates

to F (k̂0
′
, F (c)) = Hrej

1 (F (c)). Note that then ((k̂0
′
, F (c)), F (c)) is a claw w.r.t. the pair of random oracles

F and Hrej
1 . Using Lemma 1, we can bound the probability of this event by α(qF +1)3

2256 via a straightforward

reduction to the claw-finding problem w.r.t. the instance (F,Hrej
1 ).

– Decap(sk′0, c) = Hrej
0 (F (c)) ∧ Decap(sk′1, c) = F (k̂1

′
, F (c)): The analysis here will be the same as the pre-

vious case.
– Decap(sk′0, c) = Hrej

0 (F (c)) ∧ Decap(sk′1, c) = Hrej
1 (F (c)): In this case, the winning condition translates

to Hrej
0 (F (c)) = Hrej

1 (F (c)). Note that (F (c), F (c)) is then a claw w.r.t. the pair of random oracles Hrej
0

and Hrej
1 . Using Lemma 1, we can bound the probability of this event by α(qF +1)3

2256 via a straightforward

reduction to the claw-finding problem w.r.t. the instance (Hrej
0 , Hrej

1 ).

From the above analysis, we have Pr[G3 = 1] ≤ α(qG+1)3

2256 + 4α(qF +1)3

2256 . Hence, we finally get

AdvSCFR-CCA
Saber.KEM (A) ≤ CollFSaber.PKE +

α(qG + 1)3

2256
+

4α(qF + 1)3

2256
+

4qF
2128

D Analysis of the HFO⊥′
Transform

For the sake of convenience, we describe our HFO⊥
′

transform again in Figure 28.

We now formally state the three theorems that respectively capture the enhancement properties of HFO⊥
′

with regards to confidentiality, anonymity and robustness in the QROM.

Theorem 13. Suppose PKE = (KGen,Enc,Dec) is a δ-correct scheme. Then for any IND-CCA adversary

A against KEM⊥ = HFO⊥
′
[PKE, G,H,H ′] issuing at most qG

8, qH and qH′ queries to the quantum random
oracles G, H and H ′ resp., and at most qD queries to the (classical) decapsulation oracles, there exists an
OW-CPA adversary B against PKE such that:

AdvIND-CCA
KEM⊥ (A) ≤ 2(qG + qH) ·

√
AdvOW-CPA

PKE (B) +
qD

|C2|
+ 4qG

√
δ .

Here |C2| denotes the cardinality of the range of H ′. Moreover, the running time of B is about the same as
that of A.

The proof for this theorem follows very similarly to that of the HFO⊥ transform given in [28, Theorem 2].
We do not discuss it further here. Instead, we focus on the anonymity and robustness enhancing properties

of HFO⊥
′
.

8 Following [24, 27], we make the convention that the number qO of queries made by an adversary A to a random
oracle O counts the total number of times O is executed in the corresponding security experiment; i.e., the number
of A’s explicit queries to O plus the number of implicit queries to O made by the experiment.
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Theorem 14. Suppose PKE = (KGen,Enc,Dec) is a δ-correct and γ-spread scheme. Then for any ANO-

CCA adversary A against KEM⊥ = HFO⊥
′
[PKE, G,H,H ′] issuing at most qD queries to the (classical)

decapsulation oracles, and at most qG, qH and qH′ queries to the quantum random oracles G, H and H ′

resp., there exist wANO-CPA adversary B, OW-CPA adversary C against PKE and SCFR-CPA adversary
D against the deterministic PKE scheme PKE1 = T[PKE, G] issuing at most qG queries to G such that:

AdvANO-CCA
KEM⊥ (A) ≤ AdvwANO-CPA

PKE (B) + 2(qG + qH + qH′)

√
AdvOW-CPA

PKE (C)

+ qD ·AdvSCFR-CPA
PKE1

(D) +
2qD

|C2|
+ 2qG(qD + 4)

√
2δ + 2−γ .

Here |C2| denotes the cardinality of the range of H ′. Moreover, the running times of B, C and D are the
same as that of A.

First, note that to obtain anonymous (ANO-CCA secure) hybrid PKE schemes from explicit rejection
KEMs via the KEM-DEM framework, Theorem 1 requires the KEM to satisfy a weaker notion of anonymity,
namely wANO-CCA. In this context, Theorem 14 proves something stronger: the KEM KEM⊥ obtained

from the HFO⊥
′

transform is strongly anonymous, i.e., ANO-CCA secure.

Proof. The structure of the proof is quite similar to that of Theorem 5.
Denote ΩG, ΩH , ΩH′ , ΩH2

, ΩH3
, ΩH′2 and ΩH′3 to be the set of all functions G :M→ R, H : C → K,

H ′ : C1 → C2, H2 :M× C → K, H ′2 :M× C1 → C2, H3 :M→ K and H ′3 :M→ C2 respectively, where R
is the set of random coins used in Enc, M is the message space of PKE, K is the encapsulated key-space of
KEM⊥, C1 is the ciphertext space of PKE and C(= C1 × C2) is the ciphertext space of KEM⊥.

Let A be an adversary in the ANO-CCA game for KEM⊥ issuing at most qD (classical) queries to the
oracles Decap(sk′0, ·) and Decap(sk′1, ·), and qG, qH , qH′ quantum queries to the random oracles G, H, H ′

respectively. Consider the sequence of games G0 − G8 described in Figure 29. (In Figure 29, w.r.t. changes
in the Decap(sk′b, ·) oracle, Gx = G3 if b = 0 and Gx = G3.5 if b = 1. Similarly, w.r.t. changes in the
Decap(sk′1−b, ·) oracle, Gy = G3.5 if b = 0 and Gy = G3 if b = 1.)

Game G0 The game G0 is exactly the ANO-CCA game for KEM⊥ ( = HFO⊥
′
[PKE, G, H, H ′]). Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
KEM⊥ (A)

Game G1 In game G1, we change the random oracle G such that it uniformly samples “good” random
coins w.r.t. the key-pairs (pk0, sk0) and (pk1, sk1), as seen in the proof of Theorem 5 (game “G2” to be
specific). A similar analysis applies to this particular game-hop as well, and we thus obtain

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2qG
√

2δ

Game G1.5 In game G1.5, we implicitly divide the H ′-queries (m, c1) into three disjoint categories: (1)
Enc(pk0,m;G(m)) = c1, (2) Enc(pk0,m;G(m)) 6= c1 = Enc(pk1,m;G(m)), and (3) Enc(pk0,m;G(m)) 6=
c1 ∧ Enc(pk1,m;G(m)) 6= c1. We then respond to the queries from the respective categories with H ′0(c1),
H ′1(c1) and H ′2(m, c1) respectively, where H ′0 and H ′1 are internal random functions not directly accessible to
the adversary A. Because G samples “good” random coins, it is not hard to see that the encryption functions
Enc(pk0, .;G(·)) and Enc(pk1, .;G(·)) are injective, and hence, the output distributions of the H ′-oracle in
the games G1 and G1.5 are equivalent. Therefore,

Pr[G1.5 = 1] = Pr[G1 = 1]

Game G2 In game G2, we implicitly divide the H-queries (m, c) with c = (c1, c2) into three disjoint
categories again: (1) Enc(pk0,m;G(m)) = c1, (2) Enc(pk0,m;G(m)) 6= c1 = Enc(pk1,m;G(m)), and (3)
Enc(pk0,m;G(m)) 6= c1 ∧ Enc(pk1,m;G(m)) 6= c1. We then respond to the queries from the respective
categories with H0(c), H1(c) and H2(m, c) respectively, where H0 and H1 are internal random functions
not directly accessible to the adversary A. Because G samples “good” random coins, the encryption func-
tions Enc(pk0, .;G(·)) and Enc(pk1, .;G(·)) are injective, and hence, it is not hard to see that the output
distributions of the H-oracle in the games G1.5 and G2 are equivalent. Therefore,

Pr[G2 = 1] = Pr[G1.5 = 1]
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Games G0 - G8

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′(1λ)

2 : G←$ΩG

3 : Ggood ←$ΩGgood

4 : G = Ggood// G1 - G2.25; G3 - G5

5 : H0, H1 ←$ΩH ;H ′0, H
′
1 ←$ΩH′

6 : H2 ←$ΩH2 ;H3 ←$ΩH3

7 : H ′2 ←$ΩH′2 ;H ′3 ←$ΩH′3
8 : b←$ {0, 1}
9 : m∗ ←$M

10 : r∗ ← G(m∗)// G0 − G6

11 : r∗ ←$R// G7 − G8

12 : c∗1 ← Enc(pkb,m
∗; r∗)

13 : c∗2 ← H ′(m∗, c∗1)// G0 − G6

14 : c∗2 ←$ C2// G7 − G8

15 : c∗ = (c∗1, c
∗
2)

16 : k∗ ← H(m∗, c∗)// G0 − G6

17 : k∗ ←$K// G7 − G8

18 : inp← (pk0, pk1, (c
∗, k∗))

19 : i←$ {1, . . . , qG + qH + qH′}// G8

20 : run AG,H,H
′,Decap(sk′0,·),Decap(sk′1,·)(inp)

until i-th query to G×H3 ×H ′3// G8

21 : measure the i-th query and let the

outcome be m̂// G8

22 : return (m̂ = m∗)// G8

23 : b′ ← AG,H,H
′,Decap(sk′0,·),Decap(sk′1,·)(inp)

24 : return (b′ = b)

H(m, c)

1 : if c = c∗ return H3(m)// G5 - G8

2 : Parse c = (c1, c2)

3 : if Enc(pk0,m;G(m)) = c1// G2-G8

4 : return H0(c)// G2-G8

5 : if Enc(pk1,m;G(m)) = c1// G2-G8

6 : return H1(c)// G2-G8

7 : return H2(m, c)

H ′(m, c1)

1 : if c1 = c∗1 return H ′3(m)// G4.5-G8

2 : if Enc(pk0,m;G(m)) = c1// G1.5-G8

3 : return H ′0(c1)// G1.5-G8

4 : if Enc(pk1,m;G(m)) = c1// G1.5-G8

5 : return H ′1(c1)// G1.5-G8

6 : return H ′2(m, c1)

Decap(sk′0, c) // G3.5 - G8

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 return ⊥
3 : if H ′0(c1) = c2 then

4 : return H0(c)

5 : else return ⊥

Decap(sk′1, c) // G4 - G8

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 return ⊥
3 : if H ′1(c1) = c2 then

4 : return H1(c)

5 : else return ⊥

Decap(sk′b, c) // G0 - Gx

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 return ⊥// G2.25 - Gx

3 : m′ = Dec(sk′b, c1)

4 : if Enc(pkb,m
′, G(m′)) = c1 ∧

H ′(m′, c1) = c2 then

5 : return H(m′, c)

6 : else return ⊥

Decap(sk′1−b, c) // G0 - Gy

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 return ⊥// G2.75 - Gy

3 : m′ = Dec(sk′1−b, c1−b)

4 : if Enc(pk1−b,m
′, G(m′)) = c1 ∧

H ′(m′, c1) = c2 then

5 : return H(m′, c)

6 : else return ⊥

Fig. 29. Games G0 – G8 for the proof of Theorem 14.
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Game G2.25: In game G2.25, we modify the oracle Decap(sk′b, ·) such that if the decapsulation query is
(c1, c2) where c1 = c∗1, then the oracle returns ⊥. This is because, querying (c∗1, c2) to the (unchanged) oracle
Decap(sk′b, ·) of game G2 would not result in a ⊥ response if and only if c2 = c∗2; as G samples good random
coins, Dec(skb, c

∗
1) = m∗, and hence, to get a non-⊥ response, it must be the case H ′(m∗, c∗1)(= c∗2) = c2.

But since (c∗1, c
∗
2) is a forbidden query, we have the games G2 and G2.5 to be equivalent. Hence,

Pr[G2.25 = 1] = Pr[G2 = 1]

Game G2.5: In game G2.5, we reset G to be an ideal random oracle, i.e., G(m) now returns uniformly
random coins from R instead of returning only “good” random coins. Since this change, in a sense, is the
“inverse” of the game-hop G0 → G1, by using a similar analysis, it is not hard to obtain

|Pr[G2.5 = 1]− Pr[G2.25 = 1]| ≤ 2qG
√

2δ

Game G2.75: In game G2.75, we modify the oracle Decap(sk′1−b, ·) such that if the decapsulation query
is (c1, c2) where c1 = c∗1, then the oracle returns ⊥. We can see that the games G2.5 and G2.75 are equiv-
alent unless Decap(sk′1−b, (c

∗
1, c2)) (c2 6= c∗2) does not result in a ⊥ in game G2.5, or in other words, if the

following event occurs: Enc(pk1−b,m
′;G(m′)) = c∗1 and H ′(m′, c∗1) = c2 where Enc(pkb,m

∗;G(m∗)) = c∗1 and
Dec(sk1−b, c

∗
1) = m′ (for m∗←$M).

There are two sub-events to consider w.r.t. the above event:

1. m′ 6= m∗: In this case, the random oracle G on a new query m′ will return uniformly random coins r←$R.
Since PKE is γ-spread, for the key-pair (pk1−b, sk1−b) and message m′, we have the re-encryption check,
namely “Enc(pk1−b,m

′; r) = c∗1”, to hold with probability ≤ 2−γ , for uniformly random r.
2. m′ = m∗: In this case, note that the additional hash check, namely “H ′(m′, c∗1) = c2”, succeeds if and only

if c2 = c∗2 (since m′ = m∗, we have H ′(m∗, c∗1) = c∗2). But because (c∗1, c
∗
2) is a forbidden decapsulation

query, the probability of this sub-event occurring is zero.

Hence,

|Pr[G2.75 = 1]− Pr[G2.5 = 1]| ≤ 2−γ

Game G3: In game G3, we (re)-modify the random oracle G such that it uniformly samples “good”
random coins w.r.t. the key-pairs (pk0, sk0) and (pk1, sk1). A similar analysis as the G0 → G1 hop shows that

|Pr[G3 = 1]− Pr[G2.75 = 1]| ≤ 2qG
√

2δ

Game G3.5 In game G3.5, we change the Decap(sk′0, ·) oracle such that there is no need for the secret
key sk′0. When A queries the Decap(sk′0, ·) oracle on c = (c1, c2) (c1 6= c∗1), the key k = H0(c) is returned if
the check “H ′0(c1) = c2” is satisfied; otherwise ⊥ is returned. Let m′ = Dec(sk0, c1). Consider the following
three cases:

1. Enc(pk0,m
′;G(m′)) = c1 ∧ H ′(m′, c1) = c2. In this case, it is not hard to verify that the Decap(sk′0, ·)

oracles in games G3 and G3.5 return the same value H0(c). (Note that in this case, H ′(m′, c1) = H ′0(c1).)
2. Enc(pk0,m

′;G(m′)) = c1∧H ′(m′, c1) 6= c2. In this case, it is again not hard to verify that the Decap(sk′0, ·)
oracles in games G3 and G3.5 return ⊥.

3. Enc(pk0,m
′;G(m′)) 6= c1. In game G3, the Decap(sk′0, ·) oracle returns ⊥. In game G3.5, the only way A

gets prior access to the function H ′0 is if it made a H ′-query (m′′, c1) such that Enc(pk0,m
′′;G(m′′)) = c1.

But because G samples good random coins, we have Dec(sk0, c1) = m′′ = m′ leading to a contradiction of
“Enc(pk0,m

′;G(m′)) 6= c1”. Therefore, such a prior access is not possible and H ′0(c1) will be a uniformly
random value in A’s view. As a result, the probability that the “H ′0(c1) = c2” is satisfied is 1

C2
, and

hence, the Decap(sk′0, ·) oracle in G3.5 returns ⊥ with probability 1− 1
C2

.

From applying a union bound over (at most) qD number of decapsulation queries made by A, we obtain

|Pr[G3.5 = 1]− Pr[G3 = 1]| ≤ qD

C2
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Game G4 In game G4, we change the Decap(sk′1, ·) oracle such when A queries the Decap(sk′1, ·) oracle
on c = (c1, c2) (c1 6= c∗1), the key k = H1(c) is returned if the check “H ′1(c1) = c2” is satisfied; other-
wise ⊥ is returned. The analysis here follows quite similarly to that of the previous game-hop except that
the games G3.5 and G4 could additionally differ if, w.r.t. the analogous cases of 1 and 2 above (namely
“Enc(pk1,m

′;G(m′)) = c1 ∧H ′(m′, c1) = c2” and “Enc(pk1,m
′;G(m′)) = c1 ∧H ′(m′, c1) 6= c2” respectively,

where m′ = Dec(sk1, c1)), A asks for the decapsulation of a ciphertext ĉ = (ĉ1, ĉ2) such that m′ = Dec(sk1, ĉ1)
and Enc(pk0,m

′;G(m′)) = Enc(pk1,m
′;G(m′) = ĉ1; in such a peculiar event, H ′(m′, ĉ1) = H ′0(ĉ1), and hence,

has no clear relation with the check “H ′1(ĉ1) = ĉ1” in game G4. We bound the probability of this peculiar
event (i.e., A asking for the decapsulation of such an above ciphertext ĉ w.r.t. sk′1) by the advantage of an
SCFR-CPA adversary D against the deterministic scheme PKE1 = T[PKE, G], as was done similarly in the
“(G3.5 → G4)” hop in the proof of Theorem 5. Hence, by a similar analysis, it is not hard to see that

|Pr[G4 = 1]− Pr[G3.5 = 1]| ≤ qD · (AdvSCFR-CPA
PKE1

(D) + 2qG
√

2δ) +
qD

C2

where the additional term “ qDC2
” in the above bound is because of the difference in games G3.5 and G4

w.r.t. the analogous case of 3 above (namely “Enc(pk1,m
′;G(m′)) 6= c1”, where m′ = Dec(sk1, c1), and the

Decap(sk′1, ·) oracle returns ⊥ in G3.5, but does not return a ⊥ in G4 with probability 1
C2

.)

Game G4.5 In game G4.5, we answer H ′-queries of the form (m, c∗1) with H ′3(m), where H ′3 is an in-
dependent random function. Since G samples good randomness, there are at most two H ′-queries worth
considering, namely (m0, c

∗
1) and (m1, c

∗
1), where Enc(pk0,m0;G(m0)) = c∗1 and Enc(pk1,m1;G(m1)) = c∗1

(for the other H ′-queries (m′, c∗1), where m′ /∈ {m0,m1}. we are replacing the oracle outputs H ′2(m′, c∗1) in
G4 with H ′3(m′) in G4.5). W.r.t. these two queries, the H ′ oracle would return H ′0(c∗1), H ′1(c∗1) respectively
in G4, and H ′3(m0), H ′3(m1) respectively in G4.5. The adversary A’s view would be identical even after this
change because the random values H ′0(c∗1), H ′1(c∗1) are only accessible to A via the H ′-oracle in G4, and in
particular, not through the Decap(sk′i, ·) oracles since decapsulation queries of the form (c∗1, c2) result in a ⊥.
Hence in G4.5, we are effectively replacing (at most) two uniformly random values that can only be accessed
via the H ′-oracle by A with two other uniformly random values (the simpler case of m0 = m1 would follow
similarly). Since the output distributions of the H ′-oracle in the games G4 and G4.5 are equivalent, we have

Pr[G4.5 = 1] = Pr[G4 = 1]

Game G5 In game G5, we answer H-queries of the form (m, c∗) (where c∗ = (c∗1, c
∗
2)) with H3(m), where

H3 is an independent random function. Since G samples only good randomness, there are at most two H-
queries worth considering, namely (m0, c

∗) and (m1, c
∗), where Enc(pk0,m0;G(m0)) = c∗1 and Enc(pk1,m1;G(m1)) =

c∗1 (for the other H-queries (m′, c∗), where m′ /∈ {m0,m1}. we are replacing the oracle outputs H2(m′, c∗)
in G4.5 with H3(m′) in G5). W.r.t. these two queries, the H oracle would return H0(c∗), H1(c∗) respectively
in G4.5, and H3(m0), H3(m1) respectively in G5. The adversary A’s view would be identical even after this
change because the random values H0(c∗), H1(c∗) are only accessible to A via the H-oracle in G4.5, and in
particular, not through the Decap(sk′i, ·) oracles since c∗ is a forbidden decapsulation query. Hence in G5, we
are effectively replacing (at most) two uniformly random values that can only be accessed via the H-oracle
by A with two other uniformly random values (the simpler case of m0 = m1 would follow similarly). Since
the output distributions of the H-oracle in the games G4.5 and G5 are equivalent, we have

Pr[G5 = 1] = Pr[G4.5 = 1]

Game G6 In game G6, we reset G to be an ideal random oracle, i.e., G(m) now returns uniformly random
coins from R instead of returning only “good” random coins. Since this change, in a sense, is the “inverse”
of the game-hop G0 → G1, by using a similar analysis, we obtain

|Pr[G6 = 1]− Pr[G5 = 1]| ≤ 2qG
√

2δ

Game G7 In the setup of game G7, we replace the hash evaluations “r∗ ← G(m∗)”, “c∗2 ← H ′(m∗, c∗1)(=
H ′3(m∗))” and “k∗ ← H(m∗, c∗)(= H3(m∗))” with “r∗←$R”, “c∗2←$ C2” and “k∗←$K” respectively. That
is, r∗, k∗ and c∗2 are now uniformly random values that are generated independently of the random oracles G,
H3 and H ′3. We use Lemma 4 to bound the difference in the success probabilities of A in G6 and G7. Let A be
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AG×H3×H′3(m∗, (r∗, k∗, c∗2))

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′(1λ)

2 : H0, H1 ←$ΩH ;H ′0, H
′
1 ←$ΩH′

3 : H2 ←$ΩH2 ;H ′2 ←$ΩH′2
4 : b←$ {0, 1}
5 : c∗1 ← Enc(pkb,m

∗; r∗)

6 : c∗ = (c∗1, c
∗
2)

7 : inp← (pk0, pk1, (c
∗, k∗))

8 : b′ ← AG,H,H
′,Decap(sk′0,·),Decap(sk′1,·)(inp)

9 : return (b′ = b)

H(m, c)

1 : if c = c∗ return H3(m)

2 : Parse c = (c1, c2)

3 : if Enc(pk0,m;G(m)) = c1

4 : return H0(c)

5 : if Enc(pk1,m;G(m)) = c1

6 : return H1(c)

7 : return H2(m, c)

H ′(m, c1)

1 : if c1 = c∗1 return H ′3(m)

2 : if Enc(pk0,m;G(m)) = c1

3 : return H ′0(c1)

4 : if Enc(pk1,m;G(m)) = c1

5 : return H ′1(c1)

6 : return H ′2(m, c1)

Decap(sk′0, c)

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 return ⊥
3 : if H ′0(c1) = c2 then

4 : return H0(c)

5 : else return ⊥

Decap(sk′1, c)

1 : Parse c = (c1, c2)

2 : if c1 = c∗1 return ⊥
3 : if H ′1(c1) = c2 then

4 : return H1(c)

5 : else return ⊥

Fig. 30. Algorithm AG×H3×H′3 for the proof of Theorem 14.
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an oracle algorithm that has quantum access to the random oracle G×H3×H ′3, where (G×H3×H ′3)(m) =
(G(m), H3(m), H3(m)). Figure 30 describes AG×H3×H′3 ’s operation on input (m∗, (r∗, k∗, c∗2)). Note that the
algorithm AG×H3×H′3 makes at most qG + qH + qH′ number of queries to the random oracle G×H3×H ′3 to
respond to A’s oracle queries9.

Let B be an oracle algorithm that on input m∗ does the following: picks i←$ {1, . . . , qG + qH + qH′},
generates r∗←$R, k∗←$K and c∗2←$ C2, runs AG×H3×H′3(m∗, (r∗, k∗, c∗2)) until the i-th query, measures the
argument of the (G×H3 ×H ′3)-query in the computational basis and outputs the measurement outcome (if
AG×H3×H′3 makes less than i queries, B outputs ⊥). With this construction of A, note that P 1

A = Pr[G6 = 1]

and P 2
A = Pr[G7 = 1], where P 1

A and P 2
A are as defined in Lemma 4 w.r.t. the algorithm AG×H3×H′3 . Therefore,

we now define game G8 (see Fig. 29) such that PB = Pr[G8 = 1], where PB is as defined in Lemma 4 w.r.t. the
algorithm BG×H3×H′3 . From Lemma 4, we thus have

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 2(qG + qH + qH′)
√

Pr[G8 = 1]

We now bound the success probability of A in G7 by the advantage of an adversary B in the wANO-
CPA game of PKE. Upon receiving public-keys pk0 and pk1 along with the ciphertext c∗1, where c∗1 ←
Enc(pkb,m

∗; r∗) for uniformly random bit b(←$ {0, 1}), (secret) messagem∗(←$M) and randomness r∗(←$R)
chosen by the challenger, B proceeds as follows:

– Runs A as a subroutine as in game G7.
– Uses a 2qG-wise independent function to simulate the random oracle G, uses four different 2qH -wise

independent functions to simulate the random oracles H0, H1, H2, H3 respectively, and uses four different
2qH′ -wise independent functions to simulate the random oracles H ′0, H

′
1, H

′
2, H

′
3 respectively in A’s view,

as noted in Lemma 2. The random oracles H and H ′ are simulated in the same way as in G7.
– Answers decapsulation queries the same way as in G7 by using the oracles Hi, H

′
i (i ∈ {0, 1}).

– For A’s challenge query, samples a uniformly random key k∗←$K and a ciphertext component c∗2←$ C2,
and responds with (pk0, pk1, (c

∗, k∗)) where c∗ = (c∗1, c
∗
2).

– After obtaining a bit b′ from A, forwards b′ to its wANO-CPA challenger as the final message.

It is easy to see that |Pr[G7 = 1] − 1
2 | = AdvwANO-CPA

PKE (B). Now we bound the success probability of
A in G8 by the advantage of an adversary C in the OW-CPA game of PKE. Upon receiving a public-key pk
along with a ciphertext c∗1, where c∗1 ← Enc(pk,m∗; r∗) for uniformly random (secret) message m∗(←$M)
and randomness r∗(←$R) chosen by the challenger, C proceeds as follows:

– Runs A as a subroutine as in game G8.
– Uses a 2qG-wise independent function to simulate the random oracle G, uses four different 2qH -wise

independent functions to simulate the random oracles H0, H1, H2, H3 respectively, and uses four different
2qH′ -wise independent functions to simulate the random oracles H ′0, H

′
1, H

′
2, H

′
3 respectively in A’s view,

as noted in Lemma 2. Also evaluates A’s G-, H- and H ′-queries using the oracle G × H3 × H ′3; the
random oracles H and H ′ are simulated in the same way as in G8.

– Answers decapsulation queries the same way as in G8 by using the oracles Hi, H
′
i (i ∈ {0, 1}).

– For A’s challenge query, first samples a uniformly random bit b←$ {0, 1} and sets pkb = pk. Then
generates a key-pair (pk1−b, sk1−b)← KGen(1λ), samples a uniformly random key k∗←$K, a ciphertext

component c∗2←$ C2, and responds with (pk0, pk1, (c
∗, k∗)) where c∗ = (c∗1, c

∗
2). (By doing this, note that

we have c∗1 ← Enc(pkb,m
∗; r∗) in A’s view.)

– Selects i←$ {1, . . . , qG + qH + qH′}, measures the i-th query to oracle G × H3 × H ′3 and returns the
outcome m̂.

Again, it is not hard to see that Pr[G8 = 1] ≤ AdvOW-CPA
PKE (C). Hence by collecting all of the above bounds,

we arrive at

AdvANO-CCA
KEM⊥ (A) ≤ AdvwANO-CPA

PKE (B) + 2(qG + qH + qH′)

√
AdvOW-CPA

PKE (C)

+ qD ·AdvSCFR-CPA
PKE1

(D) +
2qD

|C2|
+ 2qG(qD + 4)

√
2δ + 2−γ

9 For example, if AG×H3×H′3 wants to respond to A’s H-query, then AG×H3×H′3 prepares a uniform superposition of
all states in the output registers corresponding to G and H ′3 (see [38] for particulars of this “trick”).
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Regarding robustness of KEMs constructed using HFO⊥
′
, we have the following.

Theorem 15. Suppose PKE = (KGen,Enc,Dec) is δ-correct. Then for any SROB-CCA adversary A against

KEM⊥ = HFO⊥
′
[PKE, G,H,H ′] issuing at most qD queries to the (classical) decapsulation oracles, and at

most qG, qH , qH′ queries to the quantum random oracles G, H, H ′ resp., there exists an SCFR-CPA
adversary B against the deterministic PKE scheme PKE1 = T[PKE, G] issuing at most qG queries to G such
that:

AdvSROB-CCA
KEM⊥ (A) ≤ qD ·AdvSCFR-CPA

PKE1
(B) +

C(qH′ + 1)3

|C2|

+
2qD

|C2|
+ 2qG(qD + 2)

√
2δ .

Here |C2| denotes the cardinality of the range of H ′ and C is the constant from Lemma 1. Moreover, the
running time of B is the same as that of A.

Games G0 - G4

1 : (pk0, sk
′
0), (pk1, sk

′
1)← KGen′(1λ)

2 : G←$ΩG

3 : Ggood ←$ΩGgood

4 : G = Ggood// G1 - G3

5 : H0, H1 ←$ΩH

6 : H ′0, H
′
1 ←$ΩH′

7 : H2 ←$ΩH2 ;H ′2 ←$ΩH′2
8 : inp← (pk0, pk1)

9 : c← AG,H,H
′,Decap(sk′0,·),Decap(sk′1,·)(inp)

10 : return (Decap(sk′0, c) 6=⊥
∧ Decap(sk′1, c) 6=⊥)

H(m, c)

1 : Parse c = (c1, c2)

2 : if Enc(pk0,m;G(m)) = c1// G2-G4

3 : return H0(c)// G2-G4

4 : if Enc(pk1,m;G(m)) = c1// G2-G4

5 : return H1(c)// G2-G4

6 : return H2(m, c)

H ′(m, c1)

1 : if Enc(pk0,m;G(m)) = c1// G1.5-G4

2 : return H ′0(c1)// G1.5-G4

3 : if Enc(pk1,m;G(m)) = c1// G1.5-G4

4 : return H ′1(c1)// G1.5-G4

5 : return H ′2(m, c1)

Decap(sk′0, c)

1 : Parse c = (c1, c2)

2 : if H ′0(c1) = c2 then // G2.5 - G4

3 : return H0(c) // G2.5 - G4

4 : else return ⊥ // G2.5 - G4

5 : m′ = Dec(sk′0, c1)

6 : if Enc(pk0,m
′, G(m′)) = c1 ∧

H ′(m′, c1) = c2 then

7 : return H(m′, c)

8 : else return ⊥

Decap(sk′1, c)

1 : Parse c = (c1, c2)

2 : if H ′1(c1) = c2 then // G3 - G4

3 : return H1(c) // G3 - G4

4 : else return ⊥ // G3 - G4

5 : m′ = Dec(sk′1, c1)

6 : if Enc(pk1,m
′, G(m′)) = c1 ∧

H ′(m′, c1) = c2 then

7 : return H(m′, c)

8 : else return ⊥

Fig. 31. Games G0 – G4 for the proof of Theorem 15.

Proof. Denote ΩG, ΩH , ΩH′ , ΩH2
, ΩH′2 to be the set of all functions G :M→R, H : C → K, H ′ : C1 → C2,

H2 : M× C → K, H ′2 : M× C1 → C2 respectively, where R is the set of random coins used in Enc, M is
the message space of PKE, K is the encapsulated key-space of KEM⊥, C1 is the ciphertext space of PKE and
C(= C1 × C2) is the ciphertext space of KEM⊥.
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Let A be an adversary in the SROB-CCA game for KEM⊥ issuing at most qD (classical) queries to the
oracles Decap(sk′0, ·) and Decap(sk′1, ·), and qG, qH , qH′ quantum queries to the random oracles G, H, H ′

respectively.
The structure of the proof is quite similar to that of Theorem 14. Basically we do a similar sequence of

game-hops as in the proof of Theorem 14 until the point where we can simulate the decapsulation oracles
Decap(sk′i, ·) (i ∈ {0, 1}) without requiring the corresponding secret keys sk′i. In the final game-hop, we reset
G to be an ideal random oracle.

To be specific, the sequence of game-hops G0 → G4 as described in Figure 31 is similar to the sequence
“G0 → G2”, “G3.5 → G4” and “G5 → G6” w.r.t. the proof of Theorem 14 (i.e., we do not consider the
intermediate sequence “G2 → G3.5”). By a similar analysis as that of the proof of Theorem 14 w.r.t. these
game-hops, it is not hard to obtain

|Pr[G0 = 1]− Pr[G4 = 1]| ≤ qD ·AdvSCFR-CPA
PKE1

(B) +
2qD

C2

+ 2qG(qD + 2)
√

2δ

Note that the game G0 is exactly the SROB-CCA game for KEM⊥. Hence, we have

Pr[G0 = 1] = AdvSROB-CCA
KEM⊥ (A)

Coming to the game G4, note that the adversary A wins the game if it finally outputs a ciphertext c
such that Decap(sk′0, c) 6= ⊥ and Decap(sk′1, c) 6= ⊥. Because of the modification of the Decap(sk′i, ·) oracles,
this winning condition translates to H ′0(c1) = c2 and H ′1(c1) = c2, or in other words, H ′0(c1) = H ′1(c1) where
H ′0 and H ′1 are independent quantum-accessible random functions. Note that in this case, (c1, c1) is a claw
w.r.t. the pair of functions H ′0 : C1 → C2 and H ′1 : C1 → C2. Hence we can bound the success probability of
A in G4 by the advantage of an adversary C against the claw-finding problem w.r.t. the instance (H ′0, H ′1).
C proceeds as follows:

– Runs A as a subroutine as in game G4.
– Uses a 2qG-wise independent function to perfectly simulate the random oracle G, uses three different

2qH -wise independent functions to perfectly simulate the random oracles H0, H1 and H2 respectively,
and uses a 2qH′ -wise independent function to perfectly simulate the random oracle H ′2 in A’s view, as
noted in Lemma 2. Also uses the pair of functions f0 : C1 → C2 and f1 : C1 → C1 – which is the instance
of the claw-finding problem – to simulate the oracles H ′0 and H ′1 respectively.

– Answers decapsulation queries the same way as in G4 using the oracles fi(·), Hi(·) (i ∈ {0, 1}).
– After obtaining a final ciphertext c (= (c1, c2)) from A, forwards (c1, c1) as a claw w.r.t. (f0, f1).

Note that C makes at most qH′ queries to the pair (f0, f1). It is easy to see that Pr[G4 = 1] ≤ C(qH′+1)3

|C2|
from Lemma 1. Hence, we finally get

AdvSROB-CCA
KEM⊥ (A) ≤ qD ·AdvSCFR-CPA

PKE1
(B) +

C(qH′ + 1)3

|C2|

+
2qD

C2

+ 2qG(qD + 2)
√

2δ

E An IND-CCA Security Proof of proto-Saber in the QROM

We restate the IND-CCA security theorem for proto-Saber in the QROM from [15].

Theorem 16. Given pSaber.PKE = (KGen,Enc,Dec) is δ-correct, for any IND-CCA adversary A against
pSaber.KEM = (KGen′,Encap,Decap) issuing at most qD queries to the decapsulation oracles, at most qG
(resp. qH) queries to the quantum random oracle G (resp. H), there exists an IND-CPA adversary B against
pSaber.PKE such that

AdvIND-CCA
pSaber.KEM(A) ≤ 2(qG + qH)

√
AdvIND-CPA

pSaber.PKE(B) +
1

2256
+

2qH
2128

+ 4qG
√
δ

and the running time of B is that of A.
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Games G0 − G11

1 : (pk, sk)← KGen′

2 : G2 ←$ΩG2 ;Gr ←$ΩG

3 : Ggood
r ←$ΩGgood

4 : Gr = Ggood
r // G4 − G8

5 : Gk̂ ←$ΩG// G0 − G4

6 : Gk̂ ←$Ωpoly// G5 − G11

7 : H2 ←$ΩH ;Hrej ←$ΩH′

8 : H3 ←$ΩG;Hacc ←$ΩH′

9 : b←$ {0, 1}
10 : m∗ ←$ {0, 1}256

11 : (k̂∗, r∗)← G(F (pk),m∗)// G0 − G2

12 : r∗ ← Gr(m
∗)// G3 − G9

13 : r∗ ←$ {0, 1}256// G10 − G11

14 : k̂∗ ← Gk̂(m∗)// G3 − G7

15 : c∗ ← Enc(pk,m∗; r∗)

16 : k∗0 ← H(k̂∗, c∗)// G0 − G7

17 : k∗0 ← H3(m∗)// G8 − G9

18 : k∗0 ←$ {0, 1}256// G10 − G11

19 : k∗1 ←$ {0, 1}256

20 : inp← (pk, (c∗, k∗b ))

21 : i←$ {1, . . . , qG}// G11

22 : run AG,H,Decap(sk′,·)(inp) until

i-th query to Gr ×H3// G11

23 : measure the i-th query and let the

outcome be m̂// G11

24 : return (m̂ = m∗)// G11

25 : b′ ← AG,H,Decap(sk,·)(inp)

26 : return (b′ = b)

G(f,m) // |f |+ |m| = 512

1 : (k̂, r)← G2(f,m)

2 : if f = F (pk) then // G2 − G11

3 : r ← Gr(m)// G2 − G11

4 : k̂ ← Gk̂(m)// G2 − G11

5 : return (k̂, r)

G(f,m) // |f |+ |m| 6= 512

1 : return G2(f,m)

H(k̂, c) // k̂ ∈ {0, 1}256, c ∈ C

1 : return H2(k̂, c)// G0 − G5

2 : Compute set of roots S

of polynomial Gk̂(x)− k̂
3 : if ∃m′ ∈ S s.t.

Enc(pk,m′;Gr(m
′)) = c

4 : if c = c∗ then // G8 − G11

5 : return H3(m′)// G8 − G11

6 : return Hacc(c)

7 : return H2(k̂, c)

H(k̂, c) // k̂ /∈ {0, 1}256 or c /∈ C

1 : return H2(k̂, c)

Decap(sk′, c)

1 : return Hacc(c)// G7 − G11

2 : Parse sk′ = (sk, s, F (pk))

3 : m′ = Dec(sk, c)

4 : (k̂′, r′)← G(F (pk),m′)// G0 − G2

5 : r′ ← Gr(m
′)// G3 − G6

6 : k̂′ ← Gk̂(m′)// G3 − G6

7 : if Enc(pk,m′; r′) = c then

8 : return H(k̂′, c)

9 : else return H(s, c)// G0

10 : else return Hrej(c)// G1 − G6

Fig. 32. Games G0 – G11 for the proof of Theorem 16.
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The proof that follows is structurally similar to that of [27, Theorem 1]. But the key component of this
proof that overcomes the barrier described in Subsection 5.2 is encapsulated in the “G5 → G8” game-hops.

Proof. Denote ΩG2 , ΩG, ΩH and ΩH′ to be the set of all functions G2 : {0, 1}∗ → {0, 1}512, G : {0, 1}256 →
{0, 1}256, H : {0, 1}∗ → {0, 1}256 and H ′ : C → {0, 1}256 respectively, where C is the ciphertext space of
pSaber.PKE/pSaber.KEM.

Let A be an adversary in the IND-CCA game for pSaber.KEM issuing at most qD (classical) queries to
the oracle Decap(sk, ·), and qG (resp., qH) quantum queries to the random oracles G (resp. H). Consider the
sequence of games G0 − G11 described in Figure 32.

Game G0 The game G0 is exactly the IND-CCA game for pSaber.KEM. Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvIND-CCA
pSaber.KEM(A).

Game G1 In game G1, we modify the decapsulation oracle Decap(sk′, ·) such that Hrej(c) is returned
instead of H(s, c) for an invalid ciphertext c. Since this change is quite similar to the game-hop “G0 → G1”
in the proof of [27, Theorem 1], it is not hard to obtain

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2qH√
2256

(note that the message space of pSaber.PKE is {0, 1}256).
Game G2 In game G2, we implicitly divide the G-queries into two categories: (1) query is of the form

(f,m) with |f | + |m| = 512 and f = F (pk) and (2) the remaining queries. We then respond to the queries
from the respective categories with (Gk̂(m), Gr(m)) and G2(m, c) respectively, where Gk̂, Gr are internal
random functions. It is not hard to verify that the output distributions of the G-oracle in games G1 and G2

are equivalent. Therefore,
Pr[G2 = 1] = Pr[G1 = 1].

Game G3 In game G3, we make the following changes w.r.t. the G-oracle evaluation. First, we generate
the values k̂∗, r∗ in setup of the game as “k̂∗ ← Gk̂(m∗)” and “r∗ ← Gr(m

∗)” (effectively, replacing the step

“(k̂∗, r∗)← G(F (pk),m∗)” in G2). We then similarly generate the values k̂′, r′ w.r.t. the decapsulation oracle

Decap(sk′, ·) as “k̂′ ← Gk̂(m′)” and “r′ ← Gr(m
′)” (replacing the step “(k̂′, r′)← G(F (pk),m′)” in G2).

Since these changes are “cosmetic” in nature following our modification to oracle G in game G2, we have

Pr[G3 = 1] = Pr[G2 = 1].

Game G4 In game G4, we change the random oracle Gr such that it uniformly samples “good” random
coins w.r.t. the key-pair (pk, sk). To be specific, given a PKE key-pair (pk, sk) and a message m ∈M, define

Rgood((pk, sk),m) = {r ∈ R | Dec(sk,Enc(pk,m; r)) = m}.

Denote ΩGgood
r

to be the set of all random functions Ggood
r such that Ggood

r (m) is sampled according to

a uniform distribution in Rgood(pk, sk,m). Hence in G4, we replace the oracle Gr with Ggood
r . Again, this

change is quite similar to the game-hop “G1 → G2” in the proof of [27, Theorem 1]. Hence, it is not hard to
obtain

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ 2qG
√
δ.

Game G5 In game G5, we replace the random oracle Gk̂ with a 2qG-wise independent function, following
Lemma 2. Random polynomials of degree 2qG − 1 over the finite field representation of the message space
{0, 1}256 are 2qG-wise independent. Let Ωpoly be the set of all such polynomials. We are then replacing the
step “Gk̂←$ΩG” with “Gk̂←$Ωpoly” in G5. From Lemma 2, as this change is indistinguishable when the
oracle Gk̂ is queried at most qG times, we have

Pr[G5 = 1] = Pr[G4 = 1].

Game G6 In game G6, we implicitly divide the H-queries into two disjoint categories: (1) query is of

the form (k̂, c) with k̂ ∈ {0, 1}256, c ∈ C and there exists m ∈ {0, 1}256 which is a root of the polynomial
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Gk̂(x) − k̂ (recall that Gk̂ is now a polynomial) such that Enc(pk,m;Gr(m)) = c and (2) the remaining

queries. We then respond to queries from the respective categories with Hacc(c) and H2(k̂, c), where Hacc is
an internal random function not directly accessible to the adversary A.

Focusing on H-queries in “category (1)”, note that it is not possible for two distinct queries (k̂′, c) and

(k̂′′, c) to result in the same output Hacc(c). The reason is, as Gr now samples “good” random coins, there
can exist at most one value m that satisfies Enc(pk,m;Gr(m)) = c. And since Gk̂(·) is a deterministic
function, the above follows. Therefore, the output distributions of the H-oracle in the games G5 and G6 are
equivalent, and we get

Pr[G6 = 1] = Pr[G5 = 1].

Game G7 In game G7, we change the Decap(sk′, ·) oracle such that there is no need for the secret key
sk′. Namely, Hacc(c) is returned for the decapsulation of any ciphertext c w.r.t. sk′. Let m′ = Dec(sk, c),

r′ = Gr(m
′) and k̂′ = Gk̂(m′). Now consider the following two cases:

1. Enc(pk,m′; r′) = c. In this case, the Decap(sk′, ·) oracle returns H(k̂′, c) in game G6 and Hacc(c) in game

G7. It is not hard to see that we have H(k̂′, c) = Hacc(c) in G6, since the query (k̂′, c) falls under “category
(1)” w.r.t. oracle H. Therefore, Decap(sk′, ·) oracles of games G6 and G7 return the same value Hacc(c).

2. Enc(pk,m′; r′) 6= c. In this case, the Decap(sk′, ·) oracle returns Hrej(c) in game G6 and Hacc(c) in game
G7. In game G6, as the random function Hrej is independent of all other oracles, the output Hrej(c) is
uniformly random in the adversary A’s view. In game G7, the only way A gets prior access to the value
Hacc(c) is if it made a H-query (k̂′′, c) such that Enc(pk,m′′;Gr(m

′′)) = c (and Gk̂(m′′) = k̂′′). But
since Gr samples “good” random coins, we have Dec(sk, c) = m′′ = m′ leading to a contradiction of
“Enc(pk,m′; r′) 6= c”. Therefore, such a prior access is not possible and Hacc(c) will also be a uniformly
random value in A’s view.

As the output distributions of the Decap(sk′, ·) oracle in G6 and G7 are the same in both cases, we have

Pr[G7 = 1] = Pr[G6 = 1].

Game G8 In game G8, we make a further modification to the evaluation of “category (1)” H-queries

of the form (k̂, c∗) as follows, where c∗ is the challenge ciphertext computed in the setup: respond to the
corresponding “category (1)” query with H3(m), where m is a (lexicographically minimal) root of polynomial

Gk̂(x)− k̂ that satisfies Enc(pk,m;Gr(m)) = c∗. Here H3 is another internal independent random function.
Since we established in the “G5 → G6” game-hop that there cannot be two distinct “category (1)” H-

queries (k̂∗, c∗) and (k̂′, c∗), this further change to the H-oracle only affects the H-query (k̂∗, c∗), where k̂∗ =
Gk̂(m∗) for the secret message m∗ sampled uniformly at random in the setup (and Enc(pk,m∗;Gr(m

∗)) = c∗).
W.r.t. this query, the H oracle would return Hacc(c∗) in G7, and H3(m∗) in G8. The adversary A’s view
would be identical even after this change because the random value Hacc(c∗) is only accessible to A via the
H-oracle in G7, and in particular, not through the Decap(sk′, ·) oracle since c∗ is a forbidden decapsulation
query. Hence in G8, we are effectively replacing a uniformly random value that can only be accessed via the
H-oracle by A with another uniformly random value. Hence, the output distributions of the H-oracle in the
games G7 and G8 are equivalent. Therefore, we have

Pr[G8 = 1] = Pr[G7 = 1].

Following the above modification, we make a “cosmetic” change in the setup where the “real” key k∗0
defined in the setup is now generated as “k∗0 ← H3(m∗)” (instead of “k∗0 ← H(k̂∗, c∗)”). This change does
not affect the game in any way.

Game G9 In game G9, we reset the random oracle Gr so that it returns uniformly random coins from
{0, 1}256 instead of returning only “good” random coins. Since this change, in a sense, is the “inverse” of the
game-hop “G3 → G4”, by using a similar analysis, we obtain

|Pr[G9 = 1]− Pr[G8 = 1]| ≤ 2qG
√
δ.

Game G10 In the set-up of game G10, we generate the values r∗ and k∗0 such that they are uniformly
random values independent of any oracles, i.e., we replace the step “r∗ ← Gr(m

∗)” with “r∗←$ {0, 1}256”



72 Paul Grubbs, Varun Maram, and Kenneth G. Paterson

AGr×H3(m∗, (r∗, k∗0))

1 : (pk, sk′)← KGen′

2 : G2 ←$ΩG2

3 : Gk̂ ←$Ωpoly

4 : H2 ←$ΩH

5 : Hacc ←$ΩH′

6 : b←$ {0, 1}
7 : c∗ ← Enc(pkb,m

∗; r∗)

8 : k∗1 ←$ {0, 1}256

9 : inp← (pk, (c∗, k∗b ))

10 : b′ ← AG,H,Decap(sk′,·)(inp)

11 : return (b′ = b)

G(f,m) // |f |+ |m| = 512

1 : if f = F (pk) then

2 : r ← Gr(m)

3 : k̂ ← Gk̂(m)

4 : else (k̂, r)← G2(f,m)

5 : return (k̂, r)

G(f,m) // |f |+ |m| 6= 512

1 : return G2(f,m)

H(k̂, c) // k̂ ∈ {0, 1}256, c ∈ C

1 : Compute set of roots S

of polynomial Gk̂(x)− k̂
2 : if ∃m′ ∈ S s.t.

Enc(pk,m′;Gr(m
′)) = c

3 : if c = c∗ then

4 : return H3(m′)

5 : return Hacc(c)

6 : return H2(k̂, c)

H(k̂, c) // k̂ /∈ {0, 1}256 or c /∈ C

1 : return H2(k̂, c)

Decap(sk′, c)

1 : return Hacc(c)

Fig. 33. Algorithm AGr×H3 for the proof of Theorem 16.
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and “k∗0 ← H3(m∗)” with “k∗0 ←$ {0, 1}256”. Note that in this game, both the “real” and “random” keys are
sampled uniformly at random from {0, 1}256 (i.e., both keys have the exact same distribution). Hence, the
challenge bit b is independent from A’s view and we get

Pr[G10 = 1] =
1

2
.

Now we use Lemma 4 to bound the difference in the success probabilities of A in G9 and G10. Let A
be an oracle algorithm that has quantum access to the random oracle Gr × H3, where Gr, H3←$ΩG and
(Gr×H3)(m) = (Gr(m), H3(m)). Figure 33 describes AGr×H3 ’s operation on input (m∗, (r∗, k∗0)). Note that
the algorithm AGr×H3 makes at most qG + qH number of queries to the random oracle Gr ×H3 to respond
to A’s G-oracle and H-oracle queries.10.

Let B be an oracle algorithm that on input m∗ does the following: picks i←$ {1, . . . , qG + qH}, generates
r∗←$ {0, 1}256 and k∗0 ←$ {0, 1}256, runs the algorithm AGr×H3(m∗, (r∗, k∗0)) until the i-th query, measures
the argument of the (Gr ×H3)-query in the computational basis and outputs the measurement outcome (if
AGr×H3 makes less than i queries, B outputs ⊥). With this construction of A, note that P 1

A = Pr[G9 = 1]
and P 2

A = Pr[G10 = 1], where P 1
A and P 2

A are as defined in Lemma 4 w.r.t. the algorithm AGr×H3 . Therefore,
we now define game G11 (see Fig. 32) such that PB = Pr[G11 = 1], where PB is as defined in Lemma 4
w.r.t. the algorithm BGr×H3 . From Lemma 4, we thus have

|Pr[G9 = 1]− Pr[G10 = 1]| ≤ 2(qG + qH)
√

Pr[G11 = 1]

We now bound the success probability of A in G11 by the advantage of an adversary C in the OW-CPA
game of pSaber.PKE. Upon receiving a public-key pk along with a ciphertext c∗, where c∗ ← Enc(pk,m∗; r∗)
for uniformly random (secret) message m∗(←$ {0, 1}256) and randomness r∗(←$ {0, 1}256) chosen by the
challenger, C proceeds as follows:

– Runs A as a subroutine as in game G11 (e.g., starting with sampling a uniformly random bit b←$ {0, 1}).
– Uses three different 2qG-wise independent functions to perfectly simulate the random oracles G2, Gr,

and Gk̂ respectively, three different 2qH -wise independent functions to simulate the random oracles Hacc,
H2 and H3 respectively in A’s view, as noted in Lemma 2. Also evaluates A’s G- and H-queries using
the oracle Gr ×H3; the random oracles G and H are simulated in the same way as in G11.

– Answers decapsulation queries using the oracle Hacc as in G11.
– For A’s challenge query, samples a uniformly random key k∗←$ {0, 1}256 and responds with (pk, (c∗, k∗)).
– Selects i←$ {1, . . . , qG + qH}, measures the i-th query to oracle Gr ×H3 and returns the outcome m̂.

Again, it is not hard to see that Pr[G11 = 1] ≤ AdvOW-CPA
pSaber.PKE(C). Since we know that IND-CPA security of

a PKE scheme with a sufficiently large message space also implies its OW-CPA security, corresponding to
adversary C, there exists an IND-CPA adversary B against pSaber.PKE such that

AdvOW-CPA
pSaber.PKE(C) ≤ AdvIND-CPA

pSaber.PKE(B) +
1

2256

where the running time of B is that of C, and 1
2256 is the message space of pSaber.PKE.

Hence by collecting all of the above bounds, we finally arrive at

AdvIND-CCA
pSaber.KEM(A) ≤ 2(qG + qH)

√
AdvIND-CPA

pSaber.PKE(B) +
1

2256
+

2qH
2128

+ 4qG
√
δ

10 For example, if AGr×H3 wants to respond to A’s H-query, then AGr×H3 prepares a uniform superposition of all
states in the output register corresponding to Gr (see [38] for particulars of this “trick”).


