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Abstract

This paper presents Multidimentional ModDiv public key exchange protocol which security is
based on the hardness of an LWR problem instance consisting on finding a secret vector X in
Zn
q knowing vectors A and B respectively in Zm

p and Zm−n
p−q , where elements of vector B are

defined as follows : B(i) = (
∑j=n

j=1 A(i + n− j)×X(j)) Mod(P )Div(Q).
Mod is integer modulo, Div is integer division, P and Q are known positive integers which sizes
in bits are respectively p and q which satisfy p > 2× q. m and n satisfy m > 2× n .

Keywords : Diffie Hellman key exchange protocol, Post Quantum cryptography, Lattice based
cryptography, Closest vector problem, Learn with rounding problem.

1 Introduction :

Since its invention by Withfield Diffie and Martin Hellman [1], public key cryptography has im-
posed itself as the necessary and indispensable building block of every IT security architecture.
In the last decades, it has been proven that public key cryptosystems based on number theory
problems are not immune againt quantum computing attacks [2], urging the necessity of inventing
new algorithms not based on classical problems namely factoring, discret log over multiplicative
groups or elliptic curves.

In [3] is presented a one dimentional ModDiv public key exchange protocol which security have
been shown in Barcau et all [4] to be related to CVP problem.
Y Zang [5] have proven that one dimentional ModDiv security problem can be reduced to a CVP
problem in 2 dimentional lattice.

Present paper proposes Multidimentional ModDiv public key exchange protocol which security is
based on an instance of learn with rounding problem [6], we defined as ModDiv learn with rounding
problem.

In section 2, we describe one dimentional ModDiv public key exchange protocol.
In section 3, we describe Multidimentional ModDiv public key exchange protocol.
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2 One dimentional ModDiv public key exchange protocol :

2.1 Notations:

Div : Integer division, Mod : Integer modulo.

Imdv(P,Q)(A) = A Mod(P )Div(Q).

polyDiv : Polynomial division, polyMod : Polynomial modulo.

Pmdv(m,n)(P) = P polyMod(xm)polyDiv(xn).

‖ A ‖ : size in bits of A.

P(i) : ith coefficient of polynomial P.

2.1.1 Public parameters :

Integer A, positive integers p, q, P and Q where p > 2× q.

A is pseudorandom and ‖ A ‖ = ‖ P ‖ = p.

2.1.2 Private Computations :

- Alice generates pseudorandomly a number X where ‖ X ‖= q.

- Calculates U = Imdv(P,Q)(A×X).

- Bob generates pseudorandomly a number Y where ‖ Y ‖= q.

- Calculates V = Imdv(P,Q)(A× Y ).

2.1.3 Publicly exchanged values :

- Alice sends U to Bob.

- Bob sends V to Alice.
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2.1.4 Further Private Computations :

- Alice calculates Wa = Imdv(P,22×q)(X ×Q× V ).

- Bob calculates Wb = Imdv(P,22×q)(Y ×Q× U).

Bob and Alice know that :

Wa = Wb or |Wa−Wb | = 1.

2.2 Proof of correctness :

Protocol described above is correct according to the following theorem :

Theorem 1. Let A, X, Y, P and Q be integers and p, q positive integers where p > 2× q.

‖ A ‖=‖ P ‖= p, ‖ X ‖=‖ Y ‖=‖ Q ‖= q.

Wa = Imdv(P,22×q)(X ×Q× Imdv(P,Q)(A× Y )).

Wb = Imdv(P,22×q)(Y ×Q× Imdv(P,Q)(A×X)).

There is two ways that Wa and Wb could be related :

1 - Wa = Wb.

2 - |Wa−Wb | = 1.

Proof :

We know that for every positive integers A and Q where A > Q, A Div(Q)×Q = A−A Mod(Q).

X ×Q× Imdv(P,Q)(A× Y ) = X × (A× Y )Mod(P )Div(Q)×Q.

X ×Q× Imdv(P,Q)(A× Y ) = X × ((A× Y )Mod(P )− (A× Y )Mod(P )Mod(Q)).

(X ×Q× Imdv(P,Q)(A× Y ))Mod(P ) = ((X ×A× Y )− (X × ((A× Y )Mod(P )Mod(Q)))Mod(P ).

(X×Q×Imdv(P,Q)(A×Y ))Mod(P ) = ((X×A×Y )Mod(P )−(X×((A×Y )Mod(P )Mod(Q))Mod(P ))Mod(P ).

(X×Q×Imdv(P,Q)(A×Y ))Mod(P ) = ((X×A×Y )Mod(P )−(X×((A×Y )Mod(P )Mod(Q))) (1).
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Similarily, we can prove :

(Y ×Q×Imdv(P,Q)(A×X))Mod(P ) = ((Y ×A×X)Mod(P )−(Y ×((A×X)Mod(P )Mod(Q))) (2).

Note ‖ (X × ((A× Y )Mod(P )Mod(Q)) ‖ = ‖ (Y × ((A×X)Mod(P )Mod(Q)) ‖ = 2× q.

They mask at least 2× q least significant bits of ((X ×A× Y )Mod(P ).

If 2× q th borrow of substraction (1) equals 0, we have :

Wa = (X ×Q× Imdv(P,Q)(A× Y ))Mod(P )Div(22×q) = ((X ×A× Y )Mod(P )Div(22×q).

If 2× q th borrow of substraction (1) equals 1, we have :

Wa = (X ×Q× Imdv(P,Q)(A× Y ))Mod(P )Div(22×q) = ((X ×A× Y )Mod(P )Div(22×q)− 1.

Wa can have then two values :

((X ×A× Y )Mod(P )Div(22×q) or ((X ×A× Y )Mod(P )Div(22×q)− 1.

Likewise we can prove that Wb can have the same values :

((Y ×A×X)Mod(P )Div(22×q) or ((Y ×A×X)Mod(P )Div(22×q)− 1.

In other words Wa could be equal to Wb , Wb− 1 or Wb + 1.

Concluding thus the proof of theorem 1.

Observe, exchanged key size maximum is equal to p− (2× q).

To get the same number, Alice or Bob have to divide their obtained values Wa and Wb by 2r+1

where r is the number of trailing zeros or ones of Wa or Wb ( See Figure 1 ).
Indeed if | Wa − Wb | = 1, and Wa have r trailing ones, Wb would have r trailing zeros, the
converse is also true.

4



r can be calculated by the following algorithm :

Algorithm 1.

Inputs : W is Wa or Wb
Output : r

1 : r := 0
2 : v := W Mod(2)
3 : W := W Div(2)
4 : While (v = W Mod(2))
5 : r := r + 1
6 : W := W Div(2)
7 : End While

Figure 1:

Alice and Bob can’t know beforehand exact exchanged key size, but if Wa and Wb are uniformly
distributed, Pr [ exchanged key size = p− (2× q)− i ] = 1− 2−(i+1).
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2.3 Multidimentional ModDiv public key exchange protocol:

2.3.1 Public parameters :

Integers m, n, p, q, P, Q where m > (2× n) + 1, p > (2× q) + log2(n), ‖ P ‖ = p and ‖ Q ‖ = q.

An m degree polynomial A, which coefficients size in bits equals p.

P, Q and A coefficients are pseudorandomly generated.

2.3.2 Private Computations :

- Alice chooses an n degree polynomial X, which coefficient size in bits equals q. X coefficients are
pseudorandomly generated.

- Alice calculates U = Pmdv(m,n)(A×X) .

- For each U coefficient U(i) :

– She calculates U1(i) = U(i) Mod(P )Div(Q), getting thus polynomial U1.

- Bob chooses an n degree polynomial Y, which coefficient size in bits equals q. Y coefficients are
pseudorandomly generated.

- Bob calculates V = Pmdv(m,n)(A×Y) .

- For each V coefficient V (i) :

– He calculates V 1(i) = V (i) Mod(P )Div(Q), getting thus polynomial V1.

2.3.3 Publicly exchanged values :

- Alice sends U1 coefficients to Bob.

- Bob sends V1 coefficients to Alice.
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2.3.4 Further Private Computations :

- Alice calculates polynomial Wa = Pmdv(m,2×n)(x
n ×X×V1).

- For each Wa coefficient Wa(i) :

– Using algorithm 1, she calculates r(i), the number of Wa(i) Div(2log2(n))’s trailing bits with
same value.

– She calculates Wa1(i) = (Q×Wa(i)) Mod(P ) Div(2(2×q)+r(i)+1+log2(n)).

- Bob calculates polynomial Wb = Pmdv(m,2×n)(x
n ×X×U1).

- For each Wb coefficient Wb(i) :

– Using algorithm 1, he calculates r(i), the number of Wb(i) Div(2log2(n))’s trailing bits with
same value.

– He calculates Wb1(i) =(Q×Wb(i)) Mod(P ) Div(2(2×q)+r(i)+1+log2(n)).

Shared key sise in bits they could get equals :∑i=m−(2×n)
i=1 (p− ((2× q) + r(i) + 1 + log2(n)).

2.4 Proof of Correction :

Proof of correction straitly follows from :

- Polynomial multiplication commutativity.

- Theorem 1.

- Pmdv(m,2×n)(Y× xn × Pmdv(m,n)(A×X)) = Pmdv(m,2×n)(X× xn × Pmdv(m,n)(A×Y)).
because basically polynomial multiplication is integer mutiplication without carry propagation,
this equality can be proved similarily as theorem 1.

- Size in bits of the result of adding n, s bits numbers, is s× log2(n).
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2.5 Security :

To attack proposed public key exchange protocol, adversary Eve knows polynomials A, U1, V1
and parameters p, q, P, Q, m, n satistifying the following conditions :

- A is of degree m.

- A coefficients size in bits, equals p.

- U1 and V1 are of degree m-n-1.

- U1 and V1 coefficients size in bits, equals p− q.

- m > (2× n) + 1 and p > (2× q) + log2(n).

She equaly knows that there exists polynomials U, V, X and Y Satisfying :

- X and Y are of degree n.

- X and Y coefficients size in bits, equals q.

- U and V are of degree m-n-1.

- U = (X×A) polyMod(xm)polyDiv(xn).

- V = (Y×A) polyMod(xm)polyDiv(xn).

Coefficients of U and V are respectively related to those of U1 and V1 by following equations :

- U1(i) = U(i) Mod(P )Div(Q).

- V 1(i) = V (i) Mod(P )Div(Q).

Meaning to know secret polynomials X and Y, Eve have to solve the following equations set :

U1(i) =(
∑j=n+1

j=1 A(i + n + 1− j)×X(j)) Mod(P )Div(Q) .

V 1(i) =(
∑j=n+1

j=1 A(i + n + 1− j)× Y (j)) Mod(P )Div(Q) .

Where 1 ≤ i ≤ m− n.
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2.5.1 ModDiv learn with rounding problem:

Basically underlying security problem of proposed public key exchange protocol is an instance of
learn with rounding problem first proposed by Banerjee et all [6], which we would define as follows :

Definition 1. ModDiv learn with rounding problem is an instance of learn with rounding problem

caracterized by the following features :

- Rounding is done from ZP to ZPDiv(Q).

- Public vectors are not random, they reflect polynomial mutiplication algebraic structure :
If vector A1 [A(1), A(2) .... A(m+1)] is given as public, vector A2 [R(1),A(1),.... A(m)].
is also given as public. Element R(1) is pseudorandomly generated.

- Secret vector elements size is the same as derandomized error vector elements induced by
rounding.

Learn with rounding problem is considered to be at least as hard as Learn with error problem, and
was used recently to construct public key cryptosystems like Saber [7], one of NIST third round
finalists. Corresponding lattices to ModDiv learn with rounding problem, are a generalization of
cyclic lattices where recycled elements, if we may say, are pseudorandomly generated unlike in Ideal
lattices where they are deterministically generated, which is a proof that CVP problem equivalent
to ModDiv learn with rounding problem might be at least as hard as CVP problem in Ideal lattices.

2.5.2 Cyclic ModDiv learn with rounding problem:

For efficiency as regards computation and public key size, public polynomial A coefficients could
be choosen such as A(i) = A(i− n− 1) where n + 2 ≤ i ≤ m + 1.

In this case proposed key exchange protocol would be based on a instance of ModDiv learn with
rounding problem, defined as follows :

Definition 2. Cyclic ModDiv learn with rounding problem is an instance of ModDiv learn with
rounding problem caracterized by :

- If vector A1 [A(1), A(2) .... A(m+1)] is given as public, vector A2 [A(m+1),A(1),.... A(m)]
is also given as public.

Observe the lattice corresponding to this instance of learn with rounding problem is cyclic meaning
in order for it, to be hard as assumed [8], public vector elements or public polynomial coefficients
should satisfiy this condition :

∑j=m+1
j=1 A(i) = 0.
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3 Conclusion :

In this paper we have presented Multidimentional ModDiv public key exchange protocol, the mul-
tidimentional version of public key exchange protocol presented in [3].

We have shown that its security is based on an instance of learn with rounding problem, we defined
as ModDiv learn with rounding problem. We also introduced a cyclic variant of this problem and
determine a condition under which it is assumed to be hard [8], key exchange protocol based on
this varient is efficient as regards computation and public key size.

One can construct public key encryption and digital signature ElGamal schemes based on presented
Key exchange protocol, it is also quite possible to device hash functions and pseudo random num-
bers generators, based on introduced problems.
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