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Abstract. The framework of interactive oracle proofs (IOP) has been
used with great success to construct a number of e�cient transparent
zk-SNARKs in recent years. However, these constructions are based on
Reed-Solomon codes and can only be applied directly to statements given
in the form of arithmetic circuits or R1CS over large �elds F since their
soundness error is at least 1/|F|.
This motivates the question of what is the best way to apply these IOPs
to statements that are naturally written as R1CS over small �elds, and
more concretely, the binary �eld F2. While one can just see the system
as one over an extension �eld F2e containing F2, this seems wasteful, as
it uses e bits to encode just one �information� bit. In fact, the recent
BooLigero has devised a way to apply the well-known Ligero while being
able to encode

√
e bits into one element of F2e .

In this paper, we introduce a new protocol for F2-R1CS which among
other things relies on a more e�cient embedding which (for practical
parameters) allows to encode ≥ e/4 bits into an element of F2e . Our
protocol makes then black box use of lincheck and rowcheck protocols for
the larger �eld. Using the lincheck and rowcheck introduced in Aurora
and Ligero respectively we obtain 1.31−1.65× smaller proofs for Aurora
and 3.71× for Ligero. We also estimate the reduction of prover time by
a factor of 24.7× for Aurora and between 6.9− 32.5× for Ligero without
interactive repetitions.
Our methodology uses the notion of reverse multiplication friendly em-
beddings introduced in the area of secure multiparty computation, com-
bined with a new IOPP to test linear statements modulo a subspace
V ≤ F2e which may be of independent interest.

1 Introduction

A zero-knowledge proof is a protocol in which a prover convinces a veri�er that
a statement is true, while conveying no other information apart from its truth.
Zero-knowledge proofs have been among the most useful and studied primitives
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in cryptography since their advent in the 80s. Their popularity has increased even
more in recent times, propelled by new applications motivated by blockchain
technologies. This context has highlighted the relevance of a particular �avour
of zero-knowledge proof, known as zero-knowledge succinct non-interactive ar-
gument of knowledge, or zk-SNARK.

Here succinct means that communication complexity is sublinear with respect
to the witness length. Non-interactiveness means that the proof consists of one
message from prover to veri�er, while being an argument of knowledge stands for
the fact that in order for the prover to reliably convince the veri�er, she has to
know a witness for the statement. Because of succinctness, soundness necessarily
relies on computational assumptions [GH98] thus the proof is called argument.

The �exibility and e�ciency of zk-SNARKs allow to provide practical argu-
ments of knowledge for relations that lack any kind of algebraic structure, for
instance the preimage relation for a one-way function. However, it is well known
[Wee05] that under standard complexity assumptions, succinct non-interactive
arguments do not exist unless some kind of setup is assumed, such as a common
reference string. This either requires a trusted third party or the execution of
heavy MPC protocols if the setup relies on secret randomness.

For this reason, transparent SNARKs have been proposed, whose setup in-
volves only publicly generated randomness. Many constructions of transparent
setup SNARKs have been proposed in recent years, both based on asymmet-
ric cryptography [BCC+16], [WTS+18], [BBB+18], [BFS20] and on symmetric
cryptographic techniques [AHIV17], [BBHR18b], [BCR+19], [COS20], [Set20],
[BFH+20].

In this work we focus on this latter type of constructions and remark that all
cited works in this category are built in (variants of) the Interactive Oracle Proof
framework presented in [BCS16] and independently in [RRR16] as �interactive
PCP�. Moreover they all address directly or indirectly the NP-complete rank 1
constraint system satis�ability problem. An easier to state variant asks to prove,
given A,B,C ∈ Fm,n and b ∈ Fm, the existence of a vector z ∈ Fn such that
Az ∗ Bz = Cz + b, where ∗ is the component-wise multiplication of vectors
in Fm. An IOP is an interactive proof where the veri�er has oracle access to
some strings provided by the prover. Its relation to zk-SNARKs stems from the
results in [BCS16] where it was shown that any IOP can be e�ciently compiled
into a non-interactive argument in the random oracle model by using Merkle
trees [Mer90], and the transformation in addition preserves zero knowledge and
knowledge soundness. In particular, IOPs can be used to construct zk-SNARKs.

Unfortunately, the IOP constructions above cannot be directly instantiated
for every �eld choice as they extensively use Reed-Solomon codes, that requires
the existence of enough points in F and, even worse, the soundness error is always
greater than |F|−1 which implies |F| > 2λ with λ security parameter. This leaves
out for example the case of R1CS over F2. This case is actually interesting
as some hash functions and encryption schemes can be interpreted as boolean
circuits with relative ease, and then translated to a R1CS. A straight-forward
way to overcome this problem, mentioned in [AHIV17], is to simply embed F2 in
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a larger �eld F2e , for large enough e (where at least e > λ) and add constraints
of the kind z2i = zi for i = 1, . . . , n to ensure that the witness entries belongs to
F2,

3 and then execute the protocol for R1CS over the larger �eld.
However this approach seems wasteful, as elements of F2e which in principle

could encode up to e bits of information are used to represent only one element of
F2. Also, operations over F2e are more expensive than those over F2. Finally one
needs the aforementioned additional constraints on the witness, which increase
the size of the system. Since F2e is an e-dimensional vector space over F2, one
attempt to improve this would be to interpret vectors in Fe2 as elements over the
larger �eld F2e . While this would work for systems that only involve additions,
it fails in general when multiplications are considered too. 4 The technical issue
is that for e > 1, the ring Fe2, considered with component-wise addition and
multiplication, cannot be embedded via a ring homomorphism in F2e (nor into
any other �nite �eld) since Fe2 contains zero divisors while �elds do not.

The issue was recently addressed for the case of Ligero[AHIV17] in BooLigero
[GSV21] with a technique that allows to roughly encode e bits into

√
e �eld ele-

ments in F2e , meaning that approximately
√
e bits are encoded per �eld element,

in a manner that one can use Ligero over F2e while adding little overhead. This
however motivates the following question: can we �nd embeddings of Fk2 into F2e

with a larger embedding rate k/e which allow to produce more e�cient IOPs for
R1CS over F2 given an IOP for R1CS over F2e?

1.1 Our contributions

In this work we answer the above question in the a�rmative using a more e�cient
embedding that allows us to encode k ≥ e/4 bits into an element of F2e . We then
present a construction of an IOP for F2-R1CS satis�ability which makes black-
box use of any IOP satisfying mild assumptions for R1CS over larger �elds. This
leads us to reducing Aurora's argument size up to 1.31 − 1.65× and Ligero's
argument size up to 3.71×.

More concretely, we can use any Reed Solomon encoded IOP, a variant of
IOP introduced in [BCR+19], that provides two commonly used sub-protocols:
a generalised lincheck, which tests linear relations of the form A1x1+. . .+Anxn =
b when the veri�er has only oracle access to Reed Solomon codewords encoding
xi, and a rowcheck, which tests quadratic relations x∗y = z when the veri�er has
oracle access to encodings of x,y, z. This includes Ligero5 and Aurora [BCR+19]6

up to minor manipulations to transform their lincheck, see Appendix C.
To obtain our results we use the notion of reverse multiplication friendly

embedding (RMFE), introduced in the MPC literature in [CCXY18] and inde-

3 This is necessary as, for example, x2 + x+ 1 = 0 is satis�able over F4 but not over
F2, despite the fact that the constraint only involves constants over F2.

4 This not only includes coordinate-wise products of secret vectors, but also the linear
operations Ax in the R1CS system, where A is a public matrix over the larger �eld.

5 See [BCR+19] for how to see Ligero as an IOP with these characteristics
6 We cannot however apply our techniques to IOPs with preprocessing, see comment
in Section 1.3.
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pendently in [BMN18], and used in several subsequent works [DLN19, CG20,
PS20, DGOT21, ACE+21]. Such device allows to embed Fk2 into a larger �eld
Fq = F2e in a manner such that �eld additions and products of two encodings in
Fq still encode (in a precise way described later) the component-wise additions
and products of the originally vectors from Fk2 . For parameters up to k < 100,
we can embed k bits in a �eld F2e , with e ≈ 3.3k if we take the most convenient
extension �eld, or e = 4k if we insist on e being a power of 2 or more gener-
ally having small Hamming weight (e.g. e = 192) which is usually a prefered
choice in practice. The constructions are based on polynomial interpolation. See
Section 2.2 and Appendix A.2 for asymptotical statements.

However, even with this tool in hand we still face some hurdles when at-
tempting to reduce proving satis�ability for a F2-R1CS statement to a proof for
a smaller Fq-R1CS statement. One such obstacle is that the RMFE embedding
map (which we call ϕ) cannot be surjective. Since the �rst thing we will do in the
proof is to embed the witness in a larger �eld by using the map ϕ, we will need
to come up with a mechanism to convince the veri�er that a given vector has
entries in the image Imϕ. In addition, the transformation of the R1CS system
over F2 into one over Fq via this embedding introduces a few more obstacles.
These eventually come from the fact that the embedding map ϕ is not a ring
homomorphism, even though the Fq-�eld product ϕ(x) · ϕ(y) still contains all
information about x ∗ y. In handling that we need to introduce some additional
equations that are in principle foreign to the Fq-R1CS template, in the sense
that they capture F2-linear relations that are not linear over Fq (this is just
another manifestation of a phenomenon that [CCXY18, CG20, PS20, ACE+21]
needed to deal with in various ways).

It turns out that all of these can be dealt with by means of a notion we
introduce in Section 3.3: the modular lincheck, an IOPP that we believe is of
independent interest, to test linear relations modulo an F2 vector space, i.e.
equations of the form Ax = b mod V n.7

In conclusion we compare the resulting argument system, using the compiler
in [BCS16], with Aurora and Ligero both in terms of argument size and prover
complexity. Regarding the proof size we estimate the aforementioned improve-
ment factors numerically, see our Python implementation at [Git21a]. Regarding
prover time we estimate it to be asymptotically reduced by a factor of 24.7× for
Aurora and between 6.9− 32.5× for Ligero without interactive repetitions.

1.2 Techniques

Reverse multiplication friendly embeddings. Given a �nite �eld Fp (in this article
we focus on the case p = 2), and an integer e, a (k, e)p-RMFE, introduced in
[CCXY18, BMN18] in the context of secure multiparty computation, is a pair of
F2-linear maps ϕ : Fkp → Fpe and ψ : Fpe → Fkp satisfying x ∗ y = ψ(ϕ(x) · ϕ(y))
for all x,y ∈ Fkp, where ∗ denotes the component-wise product. The properties
automatically imply that ϕ is injective, which justi�es the name embedding.

7 Or equivalently that Ax− b ∈ V n.
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We extend the notation and denote by Φ the map that splits a long vector in
blocks of k coordinates and applies ϕ to each block, namely let Φ : (Fkp)n → Fnpe
given by Φ(x1, . . . ,xn) = (ϕ(x1), . . . , ϕ(xn)) and consequently let Ψ : Fnpe →
(Fkp)n given by Ψ(x1, . . . , xn) = (ψ(x1), . . . , ψ(xn)), which then satisfy x ∗ y =

Ψ(Φ(x) ∗ Φ(y)) for all x,y ∈ (Fkp)n = Fknp , where the component-wise product
on the right side is on Fnpe .

From F2-R1CS to a system of statements over Fq. Our �rst step is to translate
the statement that there exists w such that A1w ∗ A2w = A3w + b into sat-
is�ability of an equivalent system consisting of quadratic and (modular) linear
relations over Fq. One well known reformulation of the above relation is that
there exist w ∈ Fn2 and xi ∈ Fm2 for i ∈ {1, 2, 3} such that Aiw = xi and
x1 ∗ x2 = x3 + b.
We rephrase the above by embedding w̃ = Φ(w) ∈ Fn/kq and x̃i = Φ(xi)
(assuming for simplicity n,m are divisible by k), and setting t = x̃1 ∗ x̃2.
First we deal with the quadratic relation. The key observation is that, if 1
denotes the vector whose entries are all ones, x1 ∗ x2 = x3 + b is equivalent to
x1 ∗ x2 = 1 ∗ (x3 + b). Applying now the RMFE properties this is satis�able if
and only if Ψ(x̃1 ∗ x̃2−Φ(1) ∗ (x̃3 +Φ(b))) = 0, that is, if and only if each entry
of t− Φ(1) ∗ (x̃3 + Φ(b)) lies in Kerψ.
Next we deal with linear relations. Let us restrict at �rst to one of the form
a>x = 0 with a,x ∈ Fk2 . The idea, calling S the map that sums all the com-
ponents of a vector, is to rewrite it as S(a ∗ x) = 0. In this way we can apply
the RMFE properties, obtaining S(ψ(ϕ(a) · ϕ(x))) = 0. Finally, since S ◦ ψ is
linear, this is equivalent to ϕ(a) · ϕ(x) ∈ KerS ◦ ψ. In general, when the given
vectors have length a multiple of k, one can prove that a>x = 0 is equivalent to
Φ(a)>Φ(x) ∈ KerS ◦ ψ.
Given now a matrix A with rows a1, . . . ,am, observe that the entries of Ax
are inner products of the form a>i x. Applying the idea above we conclude that

Ax = 0 is equivalent to show that all the entries of Ã ·Φ(x) lies in KerS ◦ψ with

Ã the result of applying Φ to A row-wise. In conclusion, the three linear relations
Aiw = xi = Imxi in the R1CS over F2 are equivalent to three modular linear
relations Ãw̃ − Ĩmx̃i ∈ (KerS ◦ ψ)m. Finally, as observed, the fact that w̃,xi
belonging to the image of Φ is equivalent to the constraints In/k · w̃ ∈ (Imϕ)n/k

and Im/k · x̃i ∈ (Imϕ)m/k.

Modular linear test The sketched characterization above implies that providing a
way to test linear modular relations over Fq yields the desired IOP as the prover
could provide oracle access to encodings of w̃, x̃1, x̃2, x̃3, t and then convince the
veri�er that all those constraints are satis�ed. The basic idea of our construction
is that, to test x = 0 mod V n or equivalently x ∈ V n, a standard approach
would be to prove that a random linear combination of its coordinates belongs
to V . However, as in our case V ⊆ Fq is an F2-vector space, the coe�cients of
this linear combination have to lie in F2, granting only soundness 1/2. In order to
decrease it we could check several independent linear combinations by sampling
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R ∼ U(Fλ,n2 ) and testing Rx ∈ V λ. Hence the prover �rst sends v = Rx to
the veri�er who checks v ∈ V λ and then both parties run a lincheck to test the
correctness of v. In Section 3.3 we describe how to achieve zero knowledge by
adding a masking term and how to reduce the required random bits to Θ(λ) by
using certain family of almost universal linear hash functions. In Section 4.1 we
generalise this idea to e�ciently proving several statements at the same time.

Optimizations The above techniques require a total of 8 modular linchecks and a
rowcheck. In Section 4, we introduce several modi�cations, the main of which is
to reduce the number of modular linchecks to just 3. The observation is that we
can test several equations of the form Axi = bi mod V ni (with common V ) all
at once by checking

∑
Ri(Axi−bi) ∈ V λ for appropriately chosen matrices Ri.

We also note that the communication can be further reduced by noticing that
the prover is sending vectors which should be in certain subspaces, and hence
admit a succinct representation; we �nd a way to use the properties of RMFEs
to e�ciently compress and decompress this information.

1.3 Other related work

As mentioned, our work compares favourably with [GSV21] showing signi�cantly
better improvement factors for Ligero's proof size. In particular our work im-
proves on Ligero by a factor of 3.71× for 220 constraints, while BooLigero only
improves on Ligero by a factor 2.8× on a circuit consisting on 216 − 1 execution
of SHA3, i.e. for a much larger number of constraints in the associated R1CS.
We remark that the encoding used in [GSV21], which essentially embeds the
bit vectors into elements in the �eld extension in such a way that all of the
bit products can be recovered directly as coordinates of the product of the two
�eld elements, is similar to one considered in [BMN17] in the context of secure
computation, which was subsequently improved in the same paper and later
in [BMN18], where a similar embedding as [CCXY18] was considered. We also
stress that in contrast to [GSV21] we present a general reduction that can be
applied to a larger class of protocols.
Regarding the use of RMFE, to the best of our knowledge only the recent work
[DGOT21] applied this tool in the IOP framework (see their Appendix A). How-
ever, their use is restricted to their own protocol, which follows the MPC-in-
the-head paradigm introduced in [IKOS07], and cannot be applied directly to
other existing IOPs such as Aurora. Furthermore, this optimisation is only con-
sidered in the multi-instance case while in our work we manage to integrate the
RMFE also for a single instance. It is an interesting question to determine if the
approach in [DGOT21] can be applied to a single instance, as in the context of
MPC, [CG20] has shown that RMFE can also be used to improve the complexity
of a single evaluation of a su�ciently �well behaved� boolean circuit.
We also remark that even though our construction captures essentially any IOPs
that provides a lincheck and a rowcheck, it still cannot be applied out of the box
to preprocessing zk-SNARKs, such as [COS20, Set20]. The reason behind this
limitation lies in the fact that we use the given lincheck to test a randomised
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relation, depending on the random coin of the veri�er. This signi�cantly af-
fects the usefulness of any pre-computation. We believe however that this issue
can be overcome in a non black-box way with di�erent technique, a problem
that we leave for future work. Finally, [DLS20] introduced the notion of Circuit
Amortization-Friendly embedding or CAFE, a generalization of RMFE which
allows to construct better encodings with respect to certain operations such as
inner products. We have considered its use in this problem because it naturally
�ts well with linchecks, but rowchecks become too expensive to prove in this way
and it does not yield immediate improvements. We leave it as an open question
whether it is possible to improve our construction using CAFEs.

2 Preliminaries

2.1 Notation

For an integer n, [n] = {1, . . . , n}. Boldface font (e.g. v) denotes vectors over
a ring R. 1k ∈ Rk is the vector whose entries are all 1. Given vectors v,w =
(w1, . . . , wn) ∈ Rn, v∗w is their coordinate-wise (also called Hadamard or Schur)
product and ‖v‖ is the Hamming weight of v, i.e. the number of its non-zero
entries. Rm,n is the space of matrices with m rows, n columns and entries in R.
In ∈ Rn,n is the identity matrix. Given A ∈ Rm,n, A> ∈ Rn,m is its transpose.

Given q a prime power, Fq is the only �eld of cardinality q up to isomorphisms.
If q = pe then we identify Fp ⊆ Fq as usual and Fq is an Fp vector space
of dimension e. V ≤ Fq means that V is an Fp-vector subspace of Fq. Two
elements a, b ∈ Fq are equal modulo V , or a = b mod V , if a − b ∈ V . For
vectors a,b ∈ Fmq , a = b mod V m if a − b ∈ V m, i.e. ai = bi mod V at each
coordinate i ∈ [m].

Given a polynomial f̂ ∈ Fq[x] and L ⊆ Fq we denote f̂ |L = (f̂(α))α∈L its
evaluation over L. The Reed-Solomon code over L of rate ρ ∈ [0, 1] is the set

RSFq,L,ρ := {f̂ |L : f̂ ∈ Fq[x], deg f̂ < ρ|L|}. When clear from the context we

will omit the �eld Fq. For any f ∈ RSFq,L,ρ we keep the convention that f̂ is the

polynomial of smallest degree (the only one of degree < ρ|L|) such that f̂ |L = f .

We will typically encode vectors v of length m < ρ|L| as codewords from
RSFq,L,ρ. To do so, given a subset H ⊆ Fq of size m, we identify FHq , i.e. vectors
indexed byH, and Fmq by choosing a bijection betweenH and [m] so that v ∈ FHq .
Then the encoding happens by sampling a f ∈ RSL,ρ such that f̂ |H = v. In a

similar fashion FH1×H2
q will be used for matrices with coordinates in Fq with

rows and columns indexed by H1 and H2 respectively. IH is the identity matrix
in FH×Hq . For all the notations in this paragraph, replacing Fq by V means that
the coordinates of the vectors or matrices are restricted to V .

Finally with FFT(F, n) we denote the number of �eld operations required to
perform a (binary) fast Fourier transform over a set of size n, see [GM10].
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2.2 Reverse multiplication friendly embedding

We now recall the notion of reverse multiplication friendly embedding from
[CCXY18]. Its purpose is to `reconcile' the coordinate-wise multiplicative struc-
ture of a ring Fkp and the �nite �eld structure of an extension Fpe of Fp.

De�nition 1. Given a prime power p and k, e ∈ N a Reverse Multiplication-

Friendly Embedding, denoted (k, e)p-RMFE, is a pair of Fp-linear maps ϕ :
Fkp → Fpe , ψ : Fpe → Fkp such that for all x,y ∈ Fkp, it holds that

x ∗ y = ψ(ϕ(x) · ϕ(y)).

That is, one can embed Fkp into Fpe via a linear map ϕ so that the product in Fpe
of the images of any two vectors x,y carries information about their component-
wise product x ∗ y, and this can be recovered applying ψ to that �eld product.
For notational convenience, we extend both ϕ and ψ to maps Φ, Ψ as follows.
Given vectors x = (x1, . . . ,xn) ∈ (Fkp)n and z = (z1, . . . , zn) ∈ (Fpe)n we de�ne

Φ(x) := (ϕ(x1), . . . , ϕ(xn)) ∈ (Fpe)n, Ψ(z) := (ψ(z1), . . . , ψ(zn)) ∈ (Fkp)n.

and identify (Fkp)n = Fnkp . We will need a number of properties that are direct
consequences of the de�nition.

Lemma 1. The following holds for all positive n ∈ N:

1. The maps ϕ and Φ are injective. The maps ψ and Ψ are surjective.
2. For all x, y ∈ (Fkp)n, x ∗ y = Ψ(Φ(x) ∗ Φ(y)) where the ∗ product in the

right-hand side is component-wise in (Fpe)n, i.e. in each component we use
the �eld product in Fpe .

3. Let u = ϕ(1k) ∈ Fpe .8 Then for all x ∈ (Fkp)n we have x = Ψ(u · Φ(x)).
4. Let S : Fkp → Fp be given by S(x1, x2, . . . , xk) = x1 + x2 + · · ·+ xk. Then for

all x, y ∈ (Fkp)n, the inner product x>y can be written as

x>y = S ◦ ψ(Φ(x)>Φ(y))

Lemma 1 is proved in Section A.3. As for the existence of RMFEs, we know the
following: �rst of all, unless k = 1, we will need e ≥ 2k − 1 > k (in particular
ϕ, Φ are not surjective maps and ψ, Ψ are not injective). If k ≤ p + 1, then
e = 2k − 1 is achievable. Asymptotically, it is shown in [CCXY18] that for all
p, there exists an in�nite family of (k,Θ(k))p-RMFE, where k →∞. This result
relies on algebraic geometry. On the other hand, as we note in Appendix A.2, we
can achieve (k,O(k2log

∗ k))2-RMFEs using concatenation of purely polynomial-
interpolation based techniques, where log∗ k is the iterated log, a function with
a very slow growth.9

For concrete parameters, and using concatenation of polynomial-interpolation
based techniques, one can get RMFEs with good parameters. For example, for
our case of interest p = 2:

8 Note that u is not necessarily equal to 1.
9 In fact 2log

∗ k = o(log log . . . log k) for any �nite number of applications of log on the
right.
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Lemma 2. For all r ≤ 33, there exists a (3r, 10r − 5)2-RMFE. For all a ≤ 17
there exists a (2a, 8a)2-RMFE. For all b ≤ 65 there exists a (3b, 12b)2-RMFE.

Note that the rate k/e is larger in the �rst case as it is lower bounded
by 3/10 while in the other cases k/e = 1/4. However, we mention the last
two results as they include cases in which the dimension of the larger �eld is
a power of two up to 128, and the (48, 192)2-RMFE that we use to compare
with Aurora. Although some of these results were not explicitly mentioned in
[CCXY18], they can easily be deduced from the results there. We justify all of
this in Appendix A.1. Moreover, explicit constructions of generator matrices for
ϕ,ψ and other data we use in this paper for selected RMFEs of interest are
included in the implementation at [Git21b].

2.3 R1CS, Lincheck and Rowcheck

We now recall the main relations used in recent IOP-based10 SNARKs like
[BCR+19, AHIV17]. The �rst one is the rank 1 constraints system, or R1CS, that
de�nes an NP-complete language closely related to arithmetic circuit satis�abil-
ity. Here we present an equivalent a�ne version that requires for A1, A2, A3 ∈
Fm,n and b ∈ Fm to exhibit a vector w ∈ Fn such that A1w ∗A2w = A3w+ b.
Formally

De�nition 2. We de�ne the a�ne R1CS relation as the set

RR1CS = {((F,m, n,A1, A2, A3,b),w) : Ai ∈ Fm,n, A1w ∗A2w = A3w + b}.

Instead of directly providing a proof system for R1CS, two intermediate rela-
tions, lincheck and rowcheck, are de�ned and for which [BCR+19] constructs
RS-encoded IOPPs; these are then used as building blocks to produce a RS-
encoded IOP for the R1CS relation, which in turn can be combined with a low
degree test, such as [BBHR18a, BGKS20], to make a standard IOP for R1CS.
The lincheck relation requires that the witnesses f1, f2 ∈ RSL,ρ encode over

H1, H2 ⊆ Fq two vectors x1,x2 (i.e. f̂i|Hi = xi) which satisfy a given linear
constraint. The rowcheck relation requires that witnesses f1, f2, f3 ∈ RSL,ρ en-
code over H ⊆ Fq three vectors x1,x2,x3 such that x1 ∗ x2 = x3. For e�ciency
reasons, depending on the concrete instantiations of Aurora and FRI, both def-
initions given below require L,H1, H2, H to be F2-a�ne subspaces of Fq.

De�nition 3. We de�ne RLin as the set of tuples ((Fq, L,H1, H2, ρ,M), (f1, f2))
such that L,Hi ⊆ Fq are a�ne subspaces, Hi ∩L = ∅ for i ∈ {1, 2}, fi ∈ RSL,ρ,

M ∈ FH1×H2
q and the linear relationship f̂1|H1

=M · f̂2|H2
holds.

De�nition 4. We de�ne RRow as the set of tuples ((Fq, L,H, ρ), (f1, f2, f3))
such that L,H ⊆ Fq are disjoint a�ne subspaces, fi ∈ RSL,ρ for i ∈ {1, 2, 3}
and the quadratic relationship f̂1|H ∗ f̂2|H = f̂3|H holds.

10 see Section B for an informal de�nition of IOP or [BCS16, BCR+19] for a more
formal one
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As said RS-encoded IOPPs (PLin ,VLin) and (PRow,VRow) for the two relations
above are provided in [BCR+19] and in [AHIV17] up to minor adaptations in
the second case. In our work we will need a generalisation of RLin that tests
relations of the form A1x1 + . . .+ Ahxh = b. Observe that for h = 2, A1 = −I
and b = 0 we get back the standard lincheck.

De�nition 5. RLinh is the set of tuples ((Fq, L,H0, Hi, ρ,Mi,b)
h
i=1, (fi)

h
i=1) such

that L,H0, Hi ≤ Fq, L ∩ H0 = L ∩ Hi = ∅ for all i ∈ {1, . . . , h}, fi ∈ RSL,ρ,

M ∈ FH0×Hi
q and the linear relationship

∑h
i=1Mi · f̂i|Hi = b holds.

The lincheck protocol presented in Aurora can be generalised to capture this
variant, as shown in the appendix Section C. More precisely we claim that

Proposition 1. There exists a RS-encoded IOPP (PLinh ,VLinh) for RLinh with
the following parameters:

Rounds = 2

Proof Length = 2|L|
Randomness = 2 log q

Soundness = |H0|q−1

Prover Time = |H0|+
∑h
i=1 ‖Mi‖+ ‖b‖+ h|L|+ 2h · FFT(Fq, |L|) + TP

Sum

Veri�er Time = |H0|+O(
∑h
i=1 ‖Mi‖+ |H|) + TV

Sum

Max Rates =
(
ρ, ρ+ |H| · |L|−1

)
where TP

Sum, T
V
Sum are respectively the prover and veri�er complexity for the Uni-

variate Sumcheck, see [BCR+19], and H = span (H0, H1, . . . Hh)

3 Simpli�ed Construction

The main goal we pursue in this section and the next one is to describe an e�cient
RS-encoded IOP for the R1CS language over F2. This will be based on two RS-
encoded IOPP: (PLinh ,VLinh) for the generalised lincheck and (PRow,VRow) for the
rowcheck both over a large �eld Fq, see Section 2.3. The �rst step we take in this
direction (in Section 3.1) is to characterise satis�able R1CSs over F2 in terms of
one quadratic relation over Fq and a set of linear relations modulo some vector
space V ≤ Fq. An RS-encoded IOPP to test the latter is provided in Section
3.3 while Section 3.2 provides basic tools for this construction. Finally a simple
solution that makes a naive usage of the modular lincheck is provided. Even if
suboptimal, we see this as a useful stepping stone to better present the e�cient
version in Section 4.3

3.1 Characterisation of R1CS

In the following we assume (ϕ,ψ) to be a (k, e)2-RMFE, where q = 2e, and recall
that Φ, Ψ denote the block-wise application of ϕ and ψ, cf. Section 2.2.
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Theorem 1. Let A1, A2, A3 ∈ Fm,n2 , b ∈ Fm2 with m,n multiples of k. Then
there exists w ∈ Fn2 such that ((F2,m, n,A1, A2, A3,b),w) ∈ RR1CS if and only

if there exist w̃ ∈ Fn/kq and x̃1, x̃2, x̃3, t ∈ Fm/kq satisfying

x̃1 ∗ x̃2 = t (1)

w̃ = 0 mod (Imϕ)n/k (2)

x̃i = 0 mod (Imϕ)m/k ∀i ∈ {1, 2, 3} (3)

Ãiw̃ − Ĩmx̃i = 0 mod (KerS ◦ ψ)m ∀i ∈ {1, 2, 3} (4)

t− ux̃3 = ub̃ mod (Kerψ)m/k (5)

where b̃ = Φ(b) ∈ Fm/kq , u = ϕ(1k) ∈ Fq, Ãi ∈ Fm,n/kq is the matrix obtained by

applying Φ row-wise to Ai, and Ĩm ∈ Fm,m/kq is the matrix obtained by applying
Φ row-wise to the identity matrix Im ∈ Fm,m2 . Moreover if w is a witness for the
R1CS then w̃ = Φ(w), x̃i = Φ(Aiw), t = x̃1 ∗ x̃2 satisfy the conditions above.

Proof. In one direction, assume the existence ofw. For i ∈ {1, 2, 3} let xi = Aiw,
x̃i = Φ(xi), w̃ = Φ(w) and t = x̃1 ∗ x̃2. Conditions 1, 2, 3 are automatically
satis�ed. Next, for each i, condition 4 is equivalent to Aiw = xi. Indeed, rewrit-
ing this as Aiw = Imxi, we can interpret it as m equations, one for each row
of Ai and Im, of inner-products of the form a>i,jw = e>j xi where ai,j is the
j-th row of Ai and ej is the j-th unit vector. Applying 1 to both sides this is

equivalent to S ◦ ψ(ã>i,jw̃) = S ◦ ψ(ẽ>j x̃i) with ãj = Φ(aj) and ẽj = Φ(ej). By

F2-linearity S ◦ ψ(ã>j w̃ − ẽ>j x̃i) = 0 i.e. the j-th component of Ãiw̃ − Ĩmx̃i
lies in the kernel of S ◦ ψ. Condition 4 must therefore be satis�ed. Finally we
show that condition 5 is equivalent to x1 ∗ x2 = x3 + b, which in turn holds
by the de�nition of xi and the assumption on w. First we rewrite it using
Lemma 1 as Ψ(Φ(x1) ∗ Φ(x2)) = Ψ(uΦ(x3)) + Ψ(uΦ(b)) or, with our notation,

Ψ(x̃1 ∗ x̃2) = Ψ(ux̃3)− Ψ(ub̃). By F2 linearity of Ψ this is ultimately equivalent

to x̃1 ∗ x̃2 − u(x̃3 + b̃) ∈ (Kerψ)m/k. This concludes the �rst half of the proof.
For the other direction, suppose there exist w̃, x̃1, x̃2, x̃3, t satisfying conditions
above. By 2, 3 there exist w ∈ Fn2 and x1,x2,x3 ∈ Fm2 with Φ(w) = w̃ and
Φ(xi) = x̃i for i = 1, 2, 3. Now as showed before 4 is equivalent to Aiw = xi
for i = 1, 2, 3 and, as condition 1 ensures t = x̃1 ∗ x̃2, 5 is equivalent to
x1∗x2 = x3+b. Putting everything together we have that A1w∗A2w = A3w+b.

We �nally remark that when n,m are not multiple of k, Theorem 1 can still
be applied by properly padding matrices Ai and b with zeroes.

3.2 Linear Hashing

One common technique used to e�ciently test that some encoded vector satis�es
a set of linear equations is to prove it satis�es a random linear combination
of them. More speci�cally to verify that Ax = b, one can sample a random
vector r ∈ Fmq and check r>Ax = r>b. This must hold true if the original
statement does, while it fails with high probability (speci�cally 1 − 1/q) if the
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original statement is false. This is used for example in [AHIV17]. In order to
use less randomness one could sample r ←$ Fq and perform the test above with
r = (1, r, . . . , rm−1). This works analogously, albeit with a higher soundness
error, because if Ax − b 6= 0, then r>(Ax − b) = 0 if and only if r is a root of
the degree m − 1 polynomial whose coe�cients are the entries of Ax − b. This
happens with probability smaller than (m− 1)/q as r is uniformly random.
When the �eld has small size the above techniques have a too large soundness
error (e.g. for q = 2, this error is 1/2 in the �rst case, while the second case is
useless for m > 2). Therefore they need to be adapted. With this aim in mind,
let ϑ : Fλ2 → F2λ be an isomorphism of F2-linear spaces

11. For any α ∈ F2λ we

de�ne R
(m)
α : Fλm2 → Fλ2 such that

R(m)
α (x1, . . . ,xm) = ϑ−1

(
αϑ(x1) + . . .+ αmϑ(xm)

)
.

For ease of notation we will identify the linear function R
(m)
α with the associ-

ated matrix in Fλ,λm2 with respect to the canonical base, and since all its entries

are in F2, we can apply it to vectors in Fλmq . In other words if R
(m)
α = (ri,j) ∈

Fλ,λm2 and x = (x1, . . . , xλm) ∈ Fλmq then

R(m)
α x =

(∑λm

j=1
ri,jxj

)λ
i=1

Furthermore, this de�nition can be extended to vectors whose length is not a
multiple of λ by padding with zeroes.
These de�nitions allow us to state the results below in a form that facilitates
their application to test linear relation modulo an F2 vector space V ≤ Fq.

Proposition 2. Let V ≤ Fq be an F2 vector subspace, y ∈ Fλq , x ∈ Fλmq \ V λm

and α ∼ U(F2λ), then Pr
[
R

(m)
α x = y mod V λ

]
≤ m

2λ
.

Proposition 3. Let V ≤ Fq be an F2 vector subspace, y ∈ Fλq , xi ∈ Fλmiq for

i ∈ [h] such that xj /∈ V λmj for some j. Then αi ∼ U(F2λ) implies

Pr
[
R(m1)
α1

x1 + . . .+R(mh)
αh

xh = y mod V λ
]
≤ max{mi : i ∈ [h]}

2λ
.

3.3 Modular Lincheck

In this section we provide an RS-encoded IOPP that generalises the Lincheck to
linear relations of the form M1x1 + . . .+Mhxh = b modulo an F2 vector space
V ≤ Fq, where the veri�er has oracle access to an encoding of xi for each i.

De�nition 6. The Modular Lincheck relation is the set RMlinh of all tuples
((Fq, L,H0, Hi, ρ,Mi,b, V )hi=1, (fi)

h
i=1) such that L,H0, Hi ⊆ Fq are a�ne F2-

spaces with L∩Hi = ∅, ρ ∈ [0, 1),Mi ∈ FH0×Hi
q , fi ∈ RSL,ρ and

∑h
i=1Mif̂i|Hi =

b mod V H0 .
11 Observe here we do not worry about their multiplicative structures
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If we restrict our attention to prove simpler statements of the form x = 0

mod V H , i.e. x ∈ V H , for x = f̂ |H we could sample a random R ∼ U(FH
′
0×H

2 )

and test Rx ∈ V H′0 . This can be done by having the prover send v = Rx to the
veri�er, who �rst checks that v ∈ V H′0 and then runs a lincheck. However, the
resulting protocol is not Zero Knowledge as the veri�er learns Rx.
To address this issue we add a masking codeword g sampled from the set

Mask(L, ρ,H ′0, V ) = {f ∈ RSL,ρ : f̂ |H′0 ∈ V
H′0}.

The prover initially provides oracle access to g, then waits for the matrix R from
the veri�er, and replies with v = Rx + ĝ|H′0 sent in plain, after which parties
execute a lincheck to convince the veri�er that v was computed correctly. The
masking term does not a�ect soundness as it is independent from R.
In the general case we replace x with

∑h
i=1Mif̂i|Hi−b and, for e�ciency reasons,

the random matrix R with Rα for a uniform α ∈ F2λ , cf. Section 3.2. Finally we
set the rate of the masking term to be ρ+ |H ′0| · |L|−1 to achieve Zero Knowledge
against unbounded queries.

PMlinh((pp,Mi,b, V, fi)
h
i=1) Vf1,...,fhMlinh

((pp,Mi,b, V )hi=1)

Agree on H ′0 ⊆ Fq : H ′0 ∩ L = ∅ Agree on H ′0 ⊆ Fq : H ′0 ∩ L = ∅
Mh+1 ← IH′0 , Hh+1 ← H ′0 Mh+1 ← IH′0 , Hh+1 ← H ′0

ρ′ ← ρ+ |H ′0||L|−1 ρ′ ← ρ+ |H ′0||L|−1

pp′ ← (Fq, L,H ′0, Hi, ρ′)h+1
i=1 pp′ ← (Fq, L,H ′0, Hi, ρ′)h+1

i=1

fh+1 ←$ Mask(L, ρ′, H ′0, V ) fh+1

α α←$ F2λ

v← Rα
[∑h

i=1Mif̂i|Hi − b
]
+ f̂h+1|H′0

v

If v /∈ V H
′
0 return ⊥

M ′ ← ((RαMi)
h
i=1, IH′0) M ′ ← ((RαMi)

h
i=1, IH′0)

Execute: Execute:

PLinh+1(pp
′,M ′, Rαb+ v, (fi)

h+1
i=1 ) V

f1,...,fh+1

Linh+1
(pp′,M ′, Rαb+ v)

Fig. 1. RS-encoded IOPP for RMlinh with pp = (Fq, L,H0, Hi, ρ)
h
i=1
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Theorem 2. Protocol 1 is an RS-encoded IOPP for the relation RMlinh that
upon setting |H ′0| = λ has the following parameters:

Rounds = 2

Proof Length = 3|L|
Randomness = λ+ 2 log q

Soundness = dm/λe2−λ + λq−1

Prover Time = FFT(Fq, |L|) +
∑h
i=1 ‖Mi‖+ ‖b‖+ λ

∑n
i=1 |Hi|+ TP

Linh+1

Veri�er Time = λ dimV +
∑h
i=1 ‖Mi‖+ ‖b‖+ TV

Linh+1

Max Rates =
(
ρ+ λ|L|−1, ρ+ (λ+ |H|)|L|−1

)
where H = span (H1, . . . ,Hh, H

′
0) and T

P
Linh+1

, TV
Linh+1

denotes the costs of run-
ning respectively PLinh+1

and VLinh+1
.

Proof sketch. Completeness holds because v ∈ V H′0 , as its �rst term is the prod-
uct of a vector in V H0 and a matrix with entries in F2, and the second term
lies in V H

′
0 by construction. Moreover from our de�nition of v the tested linear

relation is satis�ed.
For soundness, by Proposition 3 the vector v honestly computed lies in V H

′
0 with

probability dm/λe · 2−λ. If this does not happen, calling v∗ the vector sent by a
malicious prover, either v∗ ∈ V H′0 or the veri�er rejects. In the �rst case v 6= v∗

so the relation tested is not satis�ed and the veri�er reject with probability λq−1.
Finally for Zero Knowledge the vector f̂h+1|H′0

is uniform in V H
′
0 and so is v.

As f̂ has degree ρ|L| − 1+λ, if the malicious veri�er queries positions in Q with
|Q| < ρ|L| − 1 a simulator can reply to those queries with random �eld elements
and send a uniform v. If the number of queries ever reaches ρ|L| the veri�er
can query f1, . . . , fh in ρ|L| points and interpolate. In particular it can compute

y =
∑h
i=1Mif̂i|Hi − v ∈ V H

′
0 and �nd a ĝ that agrees on Q with f̂h+1 and

such that ĝ|H′0 = y. Replacing g with fh+1 allows the simulator to keep replies
consistent.

3.4 An RS-encoded IOP for R1CS from Modular Lincheck

Given RS-encoded IOPPs for Modular Lincheck and Rowcheck, we show how
to construct an RS-encoded IOP for the R1CS relation over F2. From Theorem
1 we know that a given R1CS A1, A2, A3,b over F2 is satis�able if and only if

there exist x̃1, x̃2, x̃3, t ∈ Fm/kq and w̃ ∈ Fn/kq such that

t = x̃1 ∗ x̃2

w̃ = 0 mod (Imϕ)n/k

x̃i = 0 mod (Imϕ)m/k for i = 1, 2, 3

Ãiw̃ − Ĩmx̃i = 0 mod (KerS ◦ ψ)m for i = 1, 2, 3

Im/kt− uIm/kx̃3 = ub̃ mod (Kerψ)m/k

where we recall that Ãi and Ĩm are obtained applying Φ to Ai and Im row-
wise respectively and b̃ = Φ(b). In Protocol 2 we split the proof in the parallel
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execution of a Rowcheck to test the �rst condition and 8 Modular Linchecks to
test the other equations. To do this we �x three F2-a�ne spaces H0, H1, H2 ⊆ Fq
such that |H0| = m, |H1| = m/k, |H2| = n/k and an a�ne space L ⊆ Fq
disjoint from the previous ones. Then, given a witnessw for the R1CS, we encode
x̃i = Φ(Aiw) and t = x̃1 ∗ x̃2 in codewords fx̃i , ft over H1 and w̃ = Φ(w) in

fw̃ over H2, i.e., such that f̂x̃i |H1
= x̃i, f̂t|H1

= t and f̂w̃|H2
= w̃. These

codewords are sent and used as oracles in the respective sub-protocol. To obtain

Zero Knowledge against β queries we �x the rate of fx̃i , ft to m/k+β
|L| and the

rate of fw̃ to n/k+β
|L| .

PR1CS(Fq,m, n,A1, A2, A3,b,w) VR1CS(Fq,m, n,A1, A2, A3,b)

u := ϕ(1k), m
′ := m/k, n′ := n/k Compute u,m′, n′

ρ1 := (m′ + β)/|L|, ρ2 := (n′ + β)/|L| ρ1 := (m′ + β)/|L|

Ĩm ← (Φ(ej)
>)mj=1 Ĩm ← (Φ(ej)

>)mj=1

Parse Ai = (a>i,j)
m
j=1 Parse Ai = (a>i,j)

m
j=1

Ãi ← (Φ(ai,j)
>)mj=1 Ãi ← (Φ(ai,j)

>)mj=1

b̃← Φ(b) b̃← Φ(b)

xi ← Aiw, t← Φ(x1) ∗ Φ(x2)

fw̃ ←$ {f ∈ RSL,ρ2 : f̂ |H2
= Φ(w)}

fx̃i ←
$ {f ∈ RSL,ρ1 : f̂ |H1

= Φ(xi)}

ft ←$ {f ∈ RSL,ρ1 : f̂ |H1
= t}

fw̃, fx̃i , ft

Run: Run:

PRow(Fq, L,H1, ρ1, fx̃1 , fx̃2 , ft) V
fx̃1

,fx̃2
,ft

Row (Fq, L,H1, ρ1)

PMlin2(Im′ ,−uIm′ , ub̃,Kerψ, ft, fx̃3) V
ft,fx̃3
Mlin2

(Im′ ,−uIm′ , ub̃,Kerψ)

PMlin1(In′ ,0, Imϕ, fw̃) V
fw̃
Mlin1

(In′ ,0, Imϕ)

Run for all i ∈ {1, 2, 3}: Run for all i ∈ {1, 2, 3}:

PMlin1(Im′ ,0, Imϕ, fx̃i) V
fx̃i
Mlin1

(Im′ ,0, Imϕ)

PMlin2(Ãi, Ĩm,0,KerS ◦ ψ, fw̃, fx̃i) V
fw̃,fx̃i
Mlin2

(Ãi, Ĩm,0,KerS ◦ ψ)

Fig. 2. RS-encoded IOP for R1CS. Fixed a linear order on H0, H1, H2 we assume
Ãi ∈ FH0×H2

q , Ĩm ∈ FH0×H1
q , Im′ ∈ FH1×H1

q and In′ ∈ FH2×H2
q . The �rst three steps

can be preprocessed knowing the input size.
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Theorem 3. Protocol 2 is an RS-encoded IOP for the relation RR1CS with the
following parameters

Rounds = 3

Proof Length = 24|L|
Randomness = 8λ+ 16 log q

Soundness = max(dm/λe, dn/kλe) · 2−λ + λq−1

Prover Time = O(|L| log(n+m) +
∑3
i=1 ‖Ai‖+ ‖b‖) + 56 · FFT(Fq, |L|)

Veri�er Time = O(
∑3
i=1 ‖Ai‖+ ‖b‖+ n+m)

Max Rates =
(

max(m/k, n/k, λ)+2β
|L| , 2max(m/k, n/k, λ)+2β+λ

|L|

)
Proof sketch. Completeness follows as by Theorem 1 all the statements tested
with the sub protocols are true. For soundness, if the given R1CS is not sat-
is�able, again by Theorem 1 at least one of the statements tested is false and
acceptance probability is upper bounded by the maximum soundness error of
these tests. Finally Zero-Knowledge against β queries follows as fx̃i , ft are eval-
uations over L of random polynomials of degree m/k + β encoding respectively

x̃i, t ∈ FH1
q . By polynomial interpolation, if |Q| ≤ β, then f̂x̃i |Q and f̂t|Q are uni-

form over FQq . Therefore replies to these queries can be simulated with random
�eld elements. The same argument applies to fw̃.

4 E�cient Construction

4.1 Batching Modular Linchecks

The main e�ciency loss in Protocol 2 comes from the parallel execution of 8
modular Linchecks, which a�ects both time and communication complexity. Re-
garding the latter, observe that in each execution a vector in Fλq is sent, which
for concrete parameters like λ = 128 and q = 2192 translates to a overhead of
roughly 24KB total overhead. In this section we show how to reduce the number
of required modular linchecks to three, by batching proofs of relations modulo
the same vector space.
More in detail assume a sequence of matrices A1, . . . , Ah and vectors b1, . . . ,bh,
x1, . . . ,xh is given. We aim at designing an RS-encoded IOPP for the relation
Aixi = bi mod V mi for all i ∈ [h].
Recall that in Section 3.3 the idea for a single equation Ax = b mod V m was
to �rst make the prover commit to a masking term y, then let the veri�er choose
an F2 linear map Rα and �nally have the prover send v = Rα(Ax−b)+y whose
correctness can be tested through a standard linear check.
For the general case we propose a similar solution. As before the prover begins
by sending a codeword that encodes a masking term y ∼ U(V λ). The veri�er
then chooses h matrices Rα1

, . . . , Rαh and the prover replies by sending

v =
∑h

i=1
Rαi(Aixi − bi) + y.
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Finally the veri�er checks if v ∈ V λ and both parties executes a lincheck to test
the above relation.
Informally (for details we refer to the proof of Theorem 4) this protocol is
complete because if Aixi − bi ∈ V mi then applying Rαi the result lies in
V λ, which implies v ∈ V λ. Soundness follows by Proposition 3 which says
that if at least one of the relations is not satis�ed then with high probability∑h
i=1Rαi(Aixi−bi)+y /∈ V λ and in this case either v is not in the right space

or the relation tested with the lincheck does not hold. Finally Zero Knowledge
against unbounded queries is proven as in Theorem 2 as long as the codeword
encoding y has rate (ρ+ λ)|L|−1.

4.2 Packing Vectors

To further improve Protocol 2 we show how to reduce the size of vectors sent
in plain by the prover in the (batched) modular lincheck. The key observation
is that all those vectors should have entries in Imϕ, KerS ◦ ψ or Kerψ whose
dimensions over F2 are respectively k, log q− 1 and log q− k. Therefore �xing a
base for each of these spaces it is possible to replace each component with its base
representation, which requires less than log q bits. We take a slightly di�erent
approach to perform this conversion more e�ciently by using the properties of
the RMFE.
First recalling u = ϕ(1k) we point out Kerψ and u · Imϕ intersect only in 0,
because ψ(u·ϕ(v)) = 1k∗v = v, and have dimension log q−k and k respectively.
Therefore Fq = (u · Imϕ) ⊕ Kerψ.12 The idea is then, given x ∈ (Imϕ)n and
y ∈ (Kerψ)n, to only send z = ux + y. Since Fq = (u · Imϕ) ⊕ Kerψ, it is
possible with simple linear algebra to extract x and y from z. This can be also
done e�ciently. Calling v ∈ Fkn2 such that x = Φ(v) we have that

Φ(Ψ(z)) = Φ(Ψ(ux+ y)) = Φ(Ψ(u · Φ(v))) = Φ(v) = x

where the second equality follows as y ∈ (Kerψ)n and the third one from Lemma
1. Thus we can e�ciently recover x and consequently set y = z − ux. We
summarize the discussion above in the following Lemma

Lemma 3. Given (ϕ,ψ) a (k, e)2-RMFE, q = 2e, and calling u = ϕ(1k), the
maps

η : (Imϕ)n ⊕ (Kerψ)n → Fnq : η(x,y) = ux+ y,

η′ : Fnq → (Imϕ)n ⊕ (Kerψ)n : η′(z) = (Φ ◦ Ψ(z), z− u · Φ ◦ Ψ(z))

are isomorphisms and η′ = η−1.

4.3 An E�cient RS-encoded IOP for R1CS

We now use the ideas presented so far to improve the RS-encoded IOP of Section
3.4. We batch the 8 modular linchecks in three groups testing linear conditions

12 Here ⊕ stands for direct sum of subspaces (do not confuse with XOR)
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modulo Imϕ, KerS ◦ ψ and Kerψ as shown in Section 4.1. This is further opti-
mised by sending only two (instead of three) vectors, as detailed in the previous
section. Moreover, instead of providing oracle access to three masking codewords
in the �rst round, one for each (batched) modular lincheck, we only send one
that encodes three masking terms over disjoint a�ne spaces H ′1, H

′
2, H

′
3. More

formally we de�ne the set of masking codewords BMask (L, ρ,H ′1, H
′
2, H

′
3, ϕ, ψ)

as{
f ∈ RSL,ρ : f̂ |H′1 ∈ (Imϕ)H

′
1 , f̂ |H′2 ∈ (KerS ◦ ψ)H

′
2 , f̂ |H′3 ∈ (Kerψ)H

′
3

}
.

For this reason in the construction below we assume that H ′1, H
′
2, H

′
3, H0, H1,

H2 ⊆ Fq are a�ne subspaces such that |H ′i| = λ, |H0| = m, |H1| = m/k,
|H2| = n/k, H ′1, H

′
2, H

′
3 are disjoint and L ⊆ Fq is an a�ne subspace disjoint

form the others. Moreover for ease of notation we call ρ1 = (m/k + β)|L|−1,
ρ2 = (n/k + β)|L|−1 and ρ3 = (3λ + β)|L|−1 the three rates used across the
protocol.

Theorem 4. Protocol 3 is an RS-encoded IOP for the relation RR1CS with the
following parameters

Rounds = 3

Proof Length = 8|L|
Randomness = 8λ+ 5 log q

Soundness = max(dm/λe, dn/kλe) · 2−λ + λq−1

Prover Time = O(|L| log(m+ n) +
∑3
i=1 ‖Ai‖+ ‖b‖) + 35 · FFT(Fq, |L|)

Veri�er Time = O(
∑3
i=1 ‖Ai‖+ ‖b‖+ n+m)

Max Rates =
(

max(m/k,n/k,3λ)+2β
|L| , max(2m/k,2n/k,3λ)+2β

|L|

)
Proof. Completeness A tuple in RR1CS satis�es conditions 1-5 in Theorem 1.
This already implies that the rowcheck always passes by condition 1.
Next we show that v1 ∈ (Imϕ)H

′
1 , v2 ∈ (KerS ◦ ψ)H′2 and v3 ∈ (Kerψ)H

′
3 . For

ease of notation we call yi = ĝ|H′i for i = 1, 2, 3.

� By conditions 2 and 3 we have x̃i ∈ (Imϕ)H1 and w̃ ∈ (Imϕ)H2 . Since Rαi
has all its entries in F2 it preserves F2-linear subspaces and in particular
Rαi x̃i, Rα4

w̃ ∈ (Imϕ)H
′
1 . On the other side y1 lies in the same space, there-

fore the sum of all these terms v1 lies in (Imϕ)H
′
1 .

� By condition 4 we have Ãiw̃− Ĩmx̃i ∈ (KerS ◦ψ)H0 . Since Rγi is F2-linear,

Rγi(Ãiw̃− Ĩmx̃i) lies in (KerS ◦ ψ)H′2 . Hence v2 lies in this vector space as
well because all its terms do.

� By 5 we have t−u(x̃3+b̃) ∈ (Kerψ)H1 and in particular Rδ(t−u(x̃3+b̃)) ∈
(Kerψ)H

′
3 . As y3 belongs by construction to the same space, v3 ∈ (Kerψ)H

′
3 .

18



PR1CS(Fq,m, n,A1, A2, A3,b,w) VR1CS(Fq,m, n,A1, A2, A3,b)

u := ϕ(1k) u := ϕ(1k)

g ←$ BMask (L, ρ3, H
′
1, H

′
2, H

′
3, ϕ, ψ)

Ĩm ← (Φ(ej)
>)mj=1 Ĩm ← (Φ(ej)

>)mj=1

Ãi ← (Φ(ai,j)
>)mj=1 Ãi ← (Φ(ai,j)

>)mj=1

b̃← Φ(b), w̃← Φ(w) b̃← Φ(b)

x̃i ← Φ(Aiw), t← x̃1 ∗ x̃2

fw̃ ←$ {f ∈ RSL,ρ2 : f̂ |H2
= w̃}

fx̃i ←
$ {f ∈ RSL,ρ1 : f̂ |H1

= x̃i}

ft ←$ {f ∈ RSL,ρ1 : f̂ |H1
= t}

fw̃, fx̃i , ft, g

(αi)
4
i=1 ←$ F2λ

αi, γi, δ (γi)
3
i=1 ←$ F2λ , δ ←$ F2λ

M1 ← (Rαi , Iλ)
4
i=1 Compute M1

M2 ← (
∑3
j=1Rγj Ãj ,−Rγi Ĩm, Iλ)

3
i=1 Compute M2

M3 ← (Rδ,−uRδ, Iλ) Compute M3

v1 ←
∑3
i=1Rαi x̃i +Rα4w̃ + ĝ|H′1

v2 ←
∑3
i=1Rγi(Ãiw̃ − Ĩmx̃i) + ĝ|H′2

v3 ← Rδt− uRδ(x̃3 + b̃) + ĝ|H′3

v0 ← v3 + uv1
v0,v2

If v2 /∈ (KerS ◦ ψ)H
′
0

Return ⊥
v′1 ← Φ(Ψ(v0))

v′3 ← v0 − uv1

Run: PLin5(M1,v1, (fx̃i)
3
i=1, fw̃, g) Run: V

(fx̃i
)3i=1,fw̃,g

Lin5
(M1,v

′
1)

PLin5(M2,v2, fw̃, (fx̃i)
3
i=1, g) V

fw̃,(fx̃i
)3i=1,g

Lin5
(M2,v2)

PLin3(M3, uRδb̃+ v3, ft, fx̃3 , g) V
ft,fx̃3

,g

Lin3
(M3, uRδb̃+ v′3)

PRow(Fq, L,H1, ρ1, fx̃1 , fx̃2 , ft) V
fx̃1

,fx̃2
,ft

Row (Fq, L,H1, ρ1)

Fig. 3. RS-encoded IOP for R1CS. Fixed a linear order on H0, H1, H2 we assume
Ãi ∈ FH0×H2

q , Ĩm ∈ FH0×H1
q . The �rst three steps can be precomputed knowing the

input size.
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Consequently the veri�er does not halt after testing v2 and, from Lemma 3,
v′1 = v1 and v′3 = v3. Finally this implies that the three linchecks return accept-
ing constraints because the tested linear relations are satis�ed by construction.

Soundness: Given an unsatis�able R1CS and a malicious P̃, let the codewords
sent in the �rst round fw̃, fx̃i , ft, g encode respectively w̃, x̃i, t,yi and call v1 =
v′1, v3 = v′3. By Theorem 1, since the R1CS system is not satis�able, at least
one of the following cases occurs:

1. t 6= x̃1 ∗ x̃2, which implies that the rowcheck returns a non satis�able con-
straint.

2. x̃i /∈ (Imϕ)H1 or w̃ /∈ (Imϕ)H2 . Since y1 is independent from αi ∼ U(F2λ)
for i ∈ [4], by Proposition 3

Pr

[∑3

i=1
Rαi x̃i +Rα4

w̃ + y1 ∈ (Imϕ)H
′
1

]
≤
⌈
max(m,n)

kλ

⌉
1

2λ
.

If the above event does not happen, observing that v1 ∈ (Imϕ)H
′
0 by con-

struction, the relation tested by the �rst lincheck is not satis�ed and the
veri�er accepts with probability smaller than λq−1. By a union bound the
proof is accepted with probability smaller than⌈

max(m,n)

kλ

⌉
1

2λ
+
λ

q
≤ max(dm/λe, dn/kλe)

2λ
+
λ

q
.

3. For some i ∈ {1, 2, 3}, Ãiw̃− Ĩmx̃i /∈ (KerS ◦ψ)H0 . Since γ1, γ2, γ3 ∼ U(F2λ)
are distributed independently from y2, by Proposition 3

Pr

[∑3

i=1
Rαi(Ãiw̃ − Ĩmx̃i) + y2 ∈ (KerS ◦ ψ)H

′
2

]
≤ dm/λe

2−λ
.

Assume that event above does not occur. Either v2 /∈ (KerS◦ψ)H′0 , in which
case the veri�er always rejects, or v2 ∈ (KerS ◦ψ)H′2 which implies that the
statement proved through the second lincheck does not hold. Therefore the
veri�er accepts in this case with probability smaller than λq−1. With a union
bound the soundness error is at most

dm/λe
2−λ

+
λ

q
≤ max(dm/λe, dn/kλe)

2λ
+
λ

q
.

4. t − u(x̃ + b̃) /∈ (Kerψ)H1 . Once again, since δ is independent from y3

we have by Proposition 2 that Pr
[
Rδ(t− ux̃3 − ub̃) + y3 ∈ (Kerψ)H

′
3

]
is

smaller than dm/kλe ·2−λ. Assuming that this event does not occur, we �rst
observe that v3 have entries in the kernel of ψ because

Ψ(v3) = Ψ(v0 − u · Φ ◦ Ψ(v0))

= Ψ(v0)− Ψ(u · Φ(Ψ(v0)))

= Ψ(v0)− Ψ(v0) = 0.
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As a consequence Rδ(t − ux̃3 − ub̃) + y3 6= v3 and the last lincheck pro-
duces a satis�able set of constraints with probability smaller than λq−1. The
soundness error in this case is therefore less than

dm/λe
2λ

+
λ

q
≤ max(dm/λe, dn/kλe)

2λ
+
λ

q
.

Soundness is thus proven.

Zero Knowledge against β queries: We detail a simulator SR1CS in Figure 4
keeping the same notation for ρ1, ρ2, ρ3 and suppressing for clarity part of the
public input for the simulated linchecks.

SR1CS(Fq,m, n,A1, A2, A3,b):

1 : Parse Ai = (a>i,j)
m
j=1 and compute Ãi ← (Φ(ai,j)

>)mj=1, Ĩm ← (Φ(ej)
>)mj=1

2 : Set u← ϕ(1k), b̃← Φ(b) and sample f ′w̃, f
′
x̃i
, f ′t, g

′ ←$ FLq for i ∈ {1, 2, 3}

3 : Give Ṽ oracle access to f ′w̃, f
′
x̃i
, f ′t, g

′

4 : When (αi, γi, δ)
3
i=1 ← Ṽ:

5 : Sample v′0 ←$ Fλq and v′2 ←$ (KerS ◦ ψ)H
′
2

6 : Compute v′1 ← Φ(Ψ(v′0)), v
′
3 ← v′0 − uv′1, M1 ← (Rαi , Iλ)

4
i=1

7 : M2 ← (
∑3
j=1Rγj Ãj ,−Rγi Ĩm, Iλ)

3
i=1, M3 ← (Rδ,−uRδ, Iλ)

8 : Execute:

9 : S
f ′x̃1

,f ′x̃2
,f ′x̃3

,f ′w̃,g
′

Lin5
(pp′1,M1,v

′
1),

10 : S
f ′w̃,f

′
x̃1
,f ′x̃2

,f ′x̃3
,g′

Lin5
(pp′2,M2,v

′
2),

11 : S
f ′t,f

′
x̃3
,g′

Lin3
(pp′3,M3, uRδb̃+ v′3),

12 : S
f ′x̃1

,f ′x̃2
,f ′t

Row (Fq, L,H1, ρ1)

Fig. 4. Description of zero knowledge simulator SR1CS

First of all observe that in the real execution for any set Q ⊆ L of size at
most β, f̂w̃|Q is uniform over FQq . To show this consider the map

π : {f ∈ RSL,ρ2 : f̂ |H2
= w̃} → FQq : π(f) = f̂ |Q

Where we recall ρ2 = (n/k + β)|L|−1. This is linear and surjective because for
any vector over FQq by polynomial interpolation there exists a polynomial of
degree smaller than n/k+ β that evaluated over Q returns the given vector and
over H1 returns w̃. The evaluation of this polynomial over L is a codeword of
rate ρ2 whose projection through π returns the given vector. Since fw̃ is uniform
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over the domain of π, π(fw̃) is uniform over FQq . The same arguments shows that
for i ∈ {1, 2, 3} evaluating fx̃i , ft over Q returns a uniformly distributed vector
of FQq .
Regarding g, calling Z = BMask (L, ρ3, H

′
1, H

′
2, H

′
3, ϕ, ψ) and V1 = Imϕ, V2 =

KerS ◦ ψ and V3 = Kerψ we de�ne

π′ : Z → FQq × V
vH′1
1 × V H

′
2

2 × V H
′
3

3 : π′(f) = (f̂ |Q, f̂ |H′1 , f̂ |H′2 , f̂ |H′3).

Again this is linear and surjective because given a vector u ∈ FQq and yi ∈ V
H′i
i

by polynomial interpolation there exists f̂ of degree smaller than 3λ + β such
that f̂ |Q = u and f̂ |H′i = yi. Evaluating this polynomial over L de�nes a code-

word of rate ρ3 that lies in Z and whose projection through π′ is (u,y1,y2,y3).
Since g is uniformly sampled from Z we proved that calling yi = ĝ|H′i , the vector

(ĝ|Q,y1,y2,y3) is uniform over the domain of π. In particular this implies that
v1,v2,v3 are uniform over their respective spaces and so is v0 = η(v1,v3) as η
is an isomorphism.
Next we study the view with the simulator. Here queries to the given codewords
are answered by construction with uniform and mutually independent �eld ele-
ments, v2 is uniform over (KerS ◦ ψ)H′2 and v0 is uniform over Fλq .
To conclude it is enough to show that the simulators invoked produce the correct
view. By de�nition of Zero Knowledge, this is only guaranteed to happen when
the oracles they have access to and the public input belong to the associated
relation, which is likely not true in our case because all codewords are random.
However calling w̃, x̃i, t the extended witness produced by the honest prover and

y1 = v1 −
∑3

i=1
Rαi x̃i +Rα4w̃, y2 = v2 −

∑3

i=1
Rγi(Ãiw̃ − Ĩmx̃i),

y3 = Rδt− uRδ(x̃3 + b̃)

by polynomial interpolation there exist (unique) fw̃, fx̃i , ft, g encoding respec-
tively w̃, x̃i, t,yi and agreeing on Q with f ′w̃, f

′
x̃i
, f ′t, g

′. Since all the simulators
only depend on their oracles' values in Q, their behaviour does not change re-
placing the random codewords with the correct one. This completes the proof.

E�ciency On the prover side we �rst list the costs of operations performed
before running any subroutine, measured in terms of number of multiplications
over Fq

· ‖A1‖+ ‖A2‖+ ‖A3‖+m+ ‖b‖ to compute Ãi, Ĩm, b̃
· ‖Ai‖ for computing Aiw
· 4m+ n+m/k to get Φ(xi), Φ(w) and t = Φ(x1) ∗ Φ(x2)
· 12 · FFT(Fq, |L|) to sample fx̃i , fw̃, ft, g for i ∈ 1, 2, 3
· Nothing to compute M1

·
∑3
i=1 ‖Ai‖+ 3m for M2

· λm/k to compute M3

· 3λm/k + λn/k + λ to produce v1
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· λn/k + 3λm/k to compute v2 as it is the sum of (
∑3
j=1Rγj Ãj)w, Rγj Ĩm

and ĝ2|H′0 where the �rst matrix was previously computed

· 2λm/k +m/k + λ to compute v3

· 2λ to get the linear combination v0 = v3 + uv1

Next we list the costs of the three linchecks

· λ+ (3λm/k + λn/k + λ) + λ+ 5|L|+ 10 · FFT(Fq, |L|)
· λ+ (3λn/k + λm/k + λ) + λ+ 5|L|+ 10 · FFT(Fq, |L|)
· λ+ (λm/k + λm/k + λ) + λ+ 3|L|+ 6 · FFT(Fq, |L|)

Using optimisations from [BCR+19] we can save 4FFT using the same random-
ness across the three linchecks and 2FFT in the last lincheck as Rδ and −uRδ
are multiples of each other. Finally, adding the cost of one batched sumcheck,
amounting to O(|L| log(n + m)) + 3|L| + 3FFT(Fq, |L|), and summing up we
obtain that the prover's time complexity is as claimed.
On the veri�er side instead Ãi, Ĩm, b̃ are computed in O(

∑3
i=1 ‖Ai‖+ ‖b‖+m),

the time required to compute M1,M2,M3 is as above, while checking v2 /∈
(KerS ◦ψ)H′0 requires λ log q bit operations if the veri�er has access to the only

element of Fq = Flog q
2 orthogonal to KerS ◦ ψ. Computing v′1 and v′3 requires

2λ2 log q bit operations. Finally the subroutines add the following costs

· O(n+m) for the �rst lincheck

· O(
∑3
i=1 ‖Ai‖+ n+m) for the second lincheck

· O(n+m) for the third lincheck

plus an amortized execution of the sumcheck which adds O(log2(n + m) + 3).
Summing all this terms yields the claimed value.

5 Comparisons

In this section we compare our construction with [BCR+19, AHIV17] when prov-
ing satis�ability of an R1CS over F2 using the naïve embedding F2 ⊆ Fq in the
�rst case and interactive repetitions in the second one, see Appendix F for more
details. In all cases we assume [BCS16] is used to compile IOP into NIZKP. Our
focus will be on the proof size, which we compute through a parameter optimiser,
available at [Git21a], based on [lib], the open source implementation of Aurora
and R1CS-Ligero, and on prover e�ciency, which we only estimate theoretically.
Regarding veri�er time instead we don't expect signi�cant improvements or over-
head, as asymptotic costs are the same with roughly the same constants, and
leave a precise estimate of it as future work.

5.1 Aurora

Proof size: In the case of Aurora call n,m the number of variables and con-
straints respectively and �x ρ the rate of the RS code. Assuming all spaces
are linearly ordered by inclusion, i.e. Hi ⊆ Hj or Hj ⊆ Hi, we have that
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the maximum degree tested equals 2max(n,m) + 2β, i.e. the block length is
|L′| = 2(max(n,m) + β)/ρ which scales linearly in n,m. As a consequence,
when 2max(n,m)/k ≥ λ the block length required in our construction is ap-
proximately k times smaller. This a�ects the NIZKP size because in the BCS
transform replying to each query requires O(log |L|) hash values per oracle. As
we assumed ρ to be constant, FRI requires O(log |L|) rounds, with one ora-
cle codeword sent in each round. Hence each query requires O(log2 |L|) hash
values. Reducing |L| by a factor of k allow us to reduce this cost by a term
O(2 log k log |L|).
Moreover FRI's query phase soundness, proven in [BBHR18a] and later improved
in [BSKS18], depends on |L|, implying that in our case the low degree test re-
quires a slightly lower number of queries to achieve the same soundness bound.
To measure our improvements we derived from Aurora's open source implemen-
tation a parameters optimiser estimating the proof size for an F2-R1CS of 2n

variables and constraints, remarking that in case of plain Aurora for each vari-
able x the constraint x2 = x is required. This is shown in Fig. 5 where the results
displayed in the graph on the left are obtained using proven soundness bounds,
while in the graph on the right using optimistic (but not proven) bounds, see
Appendix F for more details. The improvement factor for 220 constraints with a
(48, 192)2-RMFE and 128 security bits amounts in the �rst case to 1.65, in the
second case to 1.31.
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Fig. 5. Argument Size with respect to the number of constraints for 128 security bit in
Aurora with proven soundness bounds (left) and with optimistic bounds (right). Our
work uses a (48, 192)2-RMFE

Prover time: Using again the fact that the block length is reduced by a factor
of k with a (k, e)2-RMFE observe that
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� In the RS-encoded IOP, the cost is dominated by the 18 · FFT(Fq, |L|). In
our case we perform 35 fast Fourier transforms over a set k times smaller,
leading to an improvement factor of 18k/35.

� In the low degree test, prover complexity is upper bounded by 6|L| arithmetic
operations [BBHR18a]. Hence our construction improves by a factor k.

� In the BSC transform, computing the Merkle tree from an oracle of size |L|
requires 2|L| − 1 hashes. Using column hashing our construction requires
the same amount of trees as in plain Aurora. Moreover, calling fi FRI's i-th
oracle, the length of fi is |L| · 2−iη for a constant η, i.e. it scales linearly in
|L|. Therefore our protocol requires k times less hash function evaluations.

In conclusion, we estimate that deploying a (48, 192)2-RMFE leads to a ≈
24.7× speed up asymptotically.

5.2 Ligero

Proof size: Since our protocol uses in a black-box way IOPPs for linear and
quadratic test, we can use the one introduced for R1CS-Ligero in [BCR+19] and
compare it to Ligero. First we confront with the naïve construction, i.e. over a
large �eld as F2160 for 128 security bit. In this case communication complexity
is O(

√
n) for an R1CS with n variables and n constrains. As our protocol exe-

cute all IOPPs with input reduced by a factor k, we can expect asymptotically√
k-times smaller proofs. Using a (48, 160)2-RMFE, we will get

√
k ≈ 6.93.

However in [AHIV17] a version for smaller �elds which improves the interactive
soundness error through repetitions is presented. As this version is harder to
analyse theoretically, we numerically estimate the argument size for 128 security
bit and compare it with our construction using a (48, 160)2-RMFE, Fig. 6. We
measure a reduction in the argument size up to a factor 3.71×.

Prover time: For simplicity we only compare our construction to Ligero with-
out repetitions, as in this case operations are performed over the same exten-
sion of F2, for a R1CS over F2 with n variables and n constraints. Recall that
|L| = Θ(

√
n) and each vector is divided in m blocks of length `, both growing

asymptotically as
√
n. As in Aurora we split the prover time in three terms:

� In the IOP, costs are dominated asymptotically by 21m · FFT(Fq, |L|). In
our cases we would need 31m′ fast Fourier transform but with m′ ∼ m/

√
k

and over a set
√
k times smaller, leading to an improvement factor of 21k/31

� As Ligero performs a direct low degree test no extra computation is per-
formed for testing proximity

� In the BSC transform, using column hashing only one tree with 2|L| − 1
nodes has to be computed. Hence in our construction this step is performed√
k times faster. Notice however that asymptotically this cost is Θ(

√
n) and

is therefore dominated by the cost of computing the FFTs.

In conclusion we expect an improvement factor between 6.9 − 32.5 with a
(48, 160)2-RMFE. We leave comparison with the more e�cient version of Ligero
that allows repetitions as future work.
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Fig. 6. Argument Size w.r.t. the number of constraints for 128 security bit in Ligero
with interactive repetitions. Our work uses a (48, 160)2-RMFE
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A Reverse Multiplication Friendly Embeddings

A.1 Practical Constructions

In this appendix we give details about constructions of reverse multiplication
friendly embeddings based only on polynomial interpolation. We begin by re-
calling that if Fp is a �nite �eld of cardinality p, and e > 1 is an integer then an
extension �eld of order pe can be obtained by selecting an irreducible polynomial
h of degree e in Fp[X], and setting Fpe = Fp[X]/(h). If we call α the equivalence
class modulo h of X in Fpe , then {1, α, . . . , αe−1} is a basis of Fpe over Fp and
every element β in Fpe can be written uniquely as f(α) for f a polynomial in
Fp[X]<e. If k is an integer satisfying k ≤ p+1 and 2k− 1 ≤ e, we can construct
a (k, e)p-RMFE as in Figure 7 below

Let:

· ∞t+1 be a formal symbol, and f(∞t+1) be the coe�cient of Xt in f ∈ Fp[X]≤t.
· x0, . . . , xk−1 be pairwise distinct elements in Fp ∪ {∞k} (note that this requires
k ≤ p+ 1).

· x′i be de�ned as x′i = xi if xi ∈ Fp and x′i =∞2k−1 if xi =∞k.
· α ∈ Fpe be such that Fpe = Fp(α).

Then we construct:

ϕ : Fkp → Fpe , (u0, . . . , uk−1) 7→ f(α)

where f is the unique polynomial in f ∈ Fp[X]<k s.t. f(xi) = ui for all i ≤ k − 1, and

ψ : Fpe → Fkp, β 7→ (f(x′0), . . . , f(x
′
k−1))

where f is the unique polynomial in Fp[X]<e such that β = f(α).

Fig. 7. Direct polynomial-interpolation based RMFE

Theorem 5. If k ≤ p+ 1 and e ≥ 2k− 1, then the pair (ϕ,ψ) from Figure 7 is
a (k, e)p-RMFE.

The proof can be found in [CCXY18], but the intuition is that the image
of ϕ is the set of elements β in Fpe that are written as f(α) where deg f ≤
k − 1. Therefore the product of two elements f(α), g(α) ∈ Imϕ is represented
as (f · g)(α) because deg f · g ≤ 2(k − 1) < e, i.e. no modular reduction by h
occurs. Finally applying ψ will simply evaluate f · g in the points x′i which is
the product of the evaluations of f and g in xi. It is not di�cult to prove that
the rates k/e of these constructions are optimal (as large as they can be for that
value of k). However, since the construction above is limited by k ≤ p + 1, we
will need a second building block, namely the concatenation or RMFE.
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Theorem 6. Assume that (ϕ1, ψ1) is an (k1, e1)pe2 -RMFE and (ϕ2, ψ2) is an
(k2, e2)p-RMFE. Then the maps

ϕ : Fk1k2p → Fpe1e2 ,

(x1, . . . ,xk1) 7→ (ϕ2(x1), . . . , ϕ2(xn1)) ∈ Fk1pe2 7→ ϕ1(ϕ2(x1), . . . , ϕ2(xk1))

and
ψ : Fpe1e2 → Fk1k2p ,

y 7→ ψ1(y) = (y1, . . . , yk1) ∈ Fk1pe2 7→ (ψ2(y1), . . . , ψ2(yk1))

give an (k1k2, e1e2)p-RMFE.

Again the proof can be found in [CCXY18]. These two results combined allow
to construct (k, e)p-RMFEs for arbitrarily large k (independent of p) by con-
catenating enough RMFEs. We call such constructions polynomial-interpolation
based RMFEs. As a result of this concatenation, the rate k/e worsens, but the
decrease is extremely slow, as we will see below. First, we give some concrete
parameters for our case of interest q = 2. Using both of the theorems above

1. for all r ≤ 33 and s ≥ 2r − 1 there exists a (3r, 5s)2-RMFE, obtained by
concatenation of (3, 5)2 and (r, s)32-RMFEs, both promised by Theorem 5.

2. for all a ≤ 17 there exists a (2a, 8a)2-RMFE obtained by concatenation of
(2, 4)2 and (a, 2a)16-RMFEs, both existing by Theorem 5.

3. for all b ≤ 65 there exists a (3b, 12b)2-RMFE obtained by concatenation of
(3, 6)2 and (b, 2b)32-RMFEs, both implied by Theorem 5.

This proves Lemma 2. Note that the (2, 4)2 and (3, 6)2-RMFEs, and con-
sequently all the RMFEs in the last two families, are clearly not optimal with
respect to the rates. We decided to present them nonetheless because the degree
of the output �eld is of a convenient form to use in practice. For instance by
choosing a and b powers of 2, 8a is a power of 2 up to 128, while 12b have binary
representation of weight 2 up to 768.

The construction above is based on polynomial interpolation and therefore
e�cient to compute. Nevertheless, given that ϕ,ψ are linear functions for the
RMFE, that we use concrete �xed relatively small parameters and that we will
use them multiple times (keep in mind that we are going to apply Φ and Ψ which
are blockwise applciations of ϕ and ψ, to vectors with many blocks) it is better in
practice to precompute the generator matrices of ϕ and ψ (by computing ϕ and ψ
on a F2-basis of Fk2 and F2e respectively) as F2-linear maps and then compute ϕ
and ψ on a given input as a matrix-vector multiplication. Precomputed generator
matrices of ϕ and ψ, as well as bases for Imϕ,Kerψ,KerS ◦ψ and ϕ(1k), which
are other elements needed in our protocols, can be found in [Git21b] for diverse
values of (k, e) that can be obtained as concatenation of two direct polynomial-
interpolation based RMFE.

30



A.2 A note on asymptotical complexity

In [CCXY18], it was shown that an asymptotical family of constant rate, i.e. a
family of (k,Θ(k))p-RMFEs where p is �xed and k → ∞, can be constructed
for any prime power p by algebraic geometric methods [CCXY18]. For example
in the case of p = 2 one can achieve a family of (k, e(k))2-RMFEs, where for an
ini�nite number of k, e(k) < 5k

One unfortunately cannot get, solely from the concatenation of interpolation-
based techniques above the same constant rate result. Nevertheless, we remark
that the rate of concatenation of polynomial-interpolation based RMFEs de-
creases extremely slowly and therefore, for all practical purposes, these RMFEs
present very good rates. We show this more precisely next.

De�nition 7. For q ∈ R+, y ∈ N, the tetration q ↑↑ y is de�ned as

q ↑↑ y = qq
q.
..︸ ︷︷ ︸

y

,

where the exponentiations are operated right-to-left, i.e., q ↑↑ 0 = 1, and q ↑↑
y = qq↑↑(y−1) for y ≥ 1.

We de�ne the iterated logarithm log∗q : R→ N as follows:

� If k ≤ 1, then log∗q k = 0
� If k > 1, then log∗q k = y where y is the only natural number such that
q ↑↑ (y − 1) < k ≤ q ↑↑ y.

Theorem 7. For every prime power p there exists a sequence of polynomial-
interpolation based (k, e)p-RMFE with k →∞ such that e ≤ k · 2log

∗
p k for p > 2

and asymptotically e ≤ k · 2log∗2 log k for p = 2.

The proof of Theorem 7 is obtained by combining Theorems 5 and 6 as
follows. For n > 0, we consider the concatenation of (pi, 2pi)pi -RMFEs, i =

1, ..., n where pi+1 = p2pii , and for the �rst step p1 = p. Such concatenation
yields a (k, e)-RMFE which satis�es k =

∏n
i=1 pi, e = 2nk. For general p it is

easy to show by induction that k ≥ p ↑↑ n which implies n ≤ log∗ k. When p = 2
instead for n ≥ 2 one can show by induction that k ≥ 2 ↑↑ (n+1) = 22↑↑n which
implies n ≤ log log∗ k.

The function log∗ grows extremely slowly, in fact asymptotically log∗ k =
o(log . . . log k) for any �xed number of applications of the log function on the
right side.

A.3 Properties

We conclude this section with a proof of Lemma 1 stating a few fundamental
properties of RMFEs
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Proof of Lemma 1.

1. ψ is surjective because from the identity ψ(ϕ(x) ·ϕ(y)) = x∗y, �xing y = 1k
we deduce ψ(ϕ(1k) ·ϕ(x)) = x for all x ∈ Fk2 . Similarly if ϕ(x) = 0 for some
vector then ψ(ϕ(1k) · ϕ(x)) = 0 by linearity which implies x = 0. This also
implies that Φ is injective and Ψ is surjective.

2. Call x = (x1, . . . ,xn) and y = (y1, . . . ,yn). By de�nition

Ψ(Φ(x) ∗ Φ(y)) = Ψ((ϕ(x1), . . . , ϕ(xn)) ∗ (ϕ(y1), . . . , ϕ(yn))

= Ψ(ϕ(x1) · ϕ(y1), . . . , ϕ(xn) · ϕ(yn))
= (ψ(ϕ(x1) · ϕ(y1)), . . . , ψ(ϕ(xn) · ϕ(yn)))
= (x1 ∗ y1, . . . ,xn ∗ yn) = x ∗ y.

3. As in point 1 follows by de�nition.
4. Calling x = (x1, . . . ,xn) ∈ (Fk2)n, y = (y1, . . . ,yn) ∈ (Fk2)n and xi =

(xi,j)
k
j=1, yi = (yi,j)

k
j=1 we have that x>y =

=
∑n

i=1

∑k

j=1
xi,jyi,j =

∑n

i=1
S(yi ∗ xi) =

∑n

i=1
S ◦ ψ(ϕ(xi) · ϕ(yi)) =

= S ◦ ψ
(∑n

i=1
ϕ(xi) · ϕ(yi)

)
= S ◦ ψ(Φ(x)>Φ(y)).

B IOPs, RS-encoded IOPs and their proximity versions

We recall the concepts of interactive oracle proofs (IOP) [BCS16], RS-encoded
interactive oracle proofs [BCR+19], and their proximity versions. For reasons of
space we keep the description informal, and refer to the cited works for details.
For a relation R ⊆ X ×W , we denote its associated language as L (R) = {x ∈
X : ∃(x,w) ∈ R} and, given x ∈ X, we de�ne R|x = {w ∈ W : (x,w) ∈ R}
which could be empty.

IOPs. A k-round public-coin IOP for a relation R is a protocol between a prover
P(x,w) and a veri�er V(x) where at round i ∈ [k], the veri�er sends a uniformly
random bit-string mi ∈ {0, 1}ui , and the prover replies by sending a message
m′i ∈ {0, 1}u

′
i and giving the veri�er oracle access to a string πi ∈ {0, 1}`i . After

the k-th round, the veri�er makes queries to the oracles πi, i.e. he asks to see
some coordinates of the string, and either accepts or rejects. We speak about
the randomness complexity u1 + . . .+ uk and proof length `1 + . . .+ `k.
Correctness requires that if (x,w) ∈ R then the veri�er accepts with probability
1. Soundness requires that if x /∈ L (R) (equivalently R|x = ∅) for any malicious

prover P̃ the veri�er accepts with negligible probability. In fact, we consider the
stronger notion of proof of knowledge: there exists an extractor interacting with
P̃ which returns a witness w ∈ R|x with almost the same probability that the
veri�er accepts the proof.
An IOP has zero knowledge against β queries if for every malicious veri�er Ṽ
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reading at most β entries of the prover's messages there exists an e�cient sim-
ulator with straight-line access to Ṽ such that the veri�er's view when executed
with P or with the simulator follows the same probability distribution.

IOPPs. A k-round public-coin IOP of proximity (IOPP) is an IOP where the
veri�er has oracle access to a purported witness w and has to decide if w ∈ R|x
under the promise that w is either in R|x or far from it i.e. d(w,R|x) ≥ δ where
d is some distance function; we will consider here the Hamming distance.
While correctness is as above, soundness only requires the veri�er to reject with
overwhelming probability when d(w,R|x) ≥ δ. Finally an IOPP has Zero Knowl-

edge against unbounded queries if for any Ṽ there exists a simulator S with
straight-line access to Ṽ such that the view of Ṽ interacting with P together
with the number of queries performed by Ṽ has the same distribution as the
view obtained interacting with S together with the number of queries performed
by the simulator.

RS-encoded IOPs. Reed-Solomon encoded IOPs are IOPs for which the sound-
ness guarantees only holds if the messages sent by the prover are codewords in
Reed Solomon codes of speci�ed rate. Moreover the veri�er, after the interaction
and the queries, returns a set of rational constraints (instead of a bit), i.e. tuples
of the form (N,D, σ) with N,D (multivariate) polynomials and σ ∈ [0, 1]. A set
of codewords f1, . . . , fn ∈ RSL,ρ satisfy a rational constraint if(

N(α, f1(α), . . . , fn(α))

D(α, f1(α), . . . , fn(α))

)
α∈L
∈ RSL,σ

that is, if the associated rational function N/D coincides on L with a polynomial
of degree < σ|L|. We say that the veri�er accepts if the codewords sent by the
prover satis�es all the rational constraints sent by the veri�er.
Completeness requires that if (x,w) ∈ R then the veri�er accepts. Soundness

holds if, for any x /∈ L (R) and malicious prover P̃, the veri�er accepts with
negligible probability. Furthermore the protocol is a proof of knowledge if there
exists an extractor interacting with P̃ which for any x returns a witness w ∈ R|x
with almost the same probability that the veri�er accepts. Finally zero knowl-
edge for RS-IOPs is as in the case of IOPs.

RS-encoded IOPPs. In an Reed Solomon-encoded IOP of proximity the ver-
i�er has oracle access to a purported witness w and have to decide if w ∈ R|x
provided that w lies in a RS code with the speci�ed parameters. Note that
despite the name �proximity�, in this case (as opposed to IOPPs) the sound-
ness does not take into account the distance between the purported witness and
R|x 13. Zero knowledge for RS-encoded IOPPs is de�ned as in the case of IOPPs.

13 The name is motivated by the fact that, as in the case of IOPPs, the veri�er has
oracle access to the witness.
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For RS-encoded IOPs or IOPPs we also introduce the maximum rates. Given
a multivariate polynomial F in n+ 1 variables, deg(F, (k1, . . . , kn)) is the max-
imum degree attained by F (x, p1(x), . . . , pn(x)) for pi ∈ F[x]<ki . Thus, if in
an RS-encoded protocol the purposed codewords have rates ρ1, . . . , ρn and the
veri�er returns constraints (Nj , Dj , σj)

m
j=1 then, calling k = (ρi|L|)ni=1, we de-

�ne σ∗ as the maximum among ρi and σj and ρ∗ as the maximum among
deg(Nj ,k)|L|−1 and σj+deg(Dj ,k)|L|−1. The maximum rates are then (σ∗, ρ∗).
Note that if for any codeword there is a constraint that depends on it, then
σ∗ ≤ ρ∗.

C Generalised Lincheck

In this section we detail an RS-encoded IOPP for RLinh that generalise the
Lincheck to linear relations of the form M1x1 + . . . +Mnxh = b given oracle
access to an encoding of xi, see De�nition 5. In order present the protocol we
recall that Aurora's Lincheck is based on the Suncheck protocol that, given a
witness f ∈ RSF,ρ and H ⊆ Fq test if the sum of f̂(a) for a ∈ H is equal to a
given value. More precisely

De�nition 8. We de�ne RSum as the set of all tuples ((Fq, L,H, ρ, b), f) such
that L,H ⊆ Fq are disjoint a�ne subspaces, f ∈ RSL,ρ, and∑

a∈H
f̂(a) = b.

In [BCR+19] they provide an RS-encoded IOPP for the sumcheck relation as
stated in the following

Proposition 4. There exists an RS-encoded IOPP for RSum with the following
parameters

Rounds = 1

Proof Length = 2|L|
Randomness = 2 log q

Soundness = q−1

Prover Time = O(|L| log |H|) + 3 · FFT(Fq, |L|)
Veri�er Time = O(log2 |H|)
Max Rates = (ρ, ρ)

Given a Sumcheck protocol we detail our generalised linear check in Figure
1

Proposition 5. Protocol 8 is an RS-encoded IOPP for RLinh with the parame-
ters of Proposition 1
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PLinh((pp,Mi,b, fi)
h
i=1) Vf1,...,fhLinh

((pp,Mi,b)
h
i=1)

r ←$ Fq

r

r← (1, . . . , r|H0|−1) r← (1, . . . , r|H0|−1)

H ← span (H1, . . . , Hh) H ← span (H1, . . . , Hh)

Let p̂i : p̂i|Hi = r>Mi Let p̂i : p̂i|Hi = r>Mi

p̂i|H\Hi = 0 p̂i|H\Hi = 0

f ←
∑h
i=1 fi ∗ p̂i|L f(α) :=

∑h
i=1 fi(α)pi(α)

Run PSum(Fq, L,H, ρ, r>b, f) Run VfSum(Fq, L,H, ρ, r
>b)

Fig. 8. RS-encoded IOPP for RLinh with pp = (Fq, L,H0, Hi, ρ)
h
i=1

Proof. Correctness: Given a tuple in RLinh ,
∑h
i=1Mifi = b implies that for all∑h

i=1 r
>Mifi = r>b for all r ∈ FH0

q . In particular∑
α∈H

f̂(α) =
∑h

i=1

∑
α∈H

p̂i(α)f̂i(α) =

=
∑h

i=1

∑
α∈Hi

(r>Mi)αf̂i(α) =
∑h

i=1
r>Mifi = r>b.

Correctness thus follows by correctness of the underlying sumcheck protocol.

Soundness: If a given tuple does not belong to RLinh then
∑h
i=1Mifi 6= b.

Therefore

Pr

[
r>
(∑h

i=1
Mifi − b

)
= 0

]
≤ (|H0| − 1)q−1

and in particular when the above event occurs
∑
α∈H f(α) 6= r>b. By the q−1

soundness of the underlying sumcheck protocol, the veri�er outputs a rejecting
constraint with probability q−1. With a union bound we conclude that the ver-
i�er rejects with probability smaller that |H0|q−1.

Zero Knowledge: Let SSum be a simulator for the sumcheck protocol. We de�ne
SLinh against a malicious veri�er Ṽ as follows

First notice that SLinh correctly replies to any request from Ṽ and SSum. Since
the sumcheck protocol has HVZK fro unbounded queries, we deduce that SSum
produce a transcript indistinguishable from the one generated by PSum. The
thesis follows.
E�ciency The costs for the prover comes from the following operations:

� |H0| − 1 ≤ |H0| multiplications to compute r = (1, . . . , r|H0|−1)
� ‖Mi‖ multiplications to determine r>Mi for all i ∈ [h]
� h times FFT(Fq, |L|) to interpolate p̂i for i ∈ [h]
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Sf1,...,fhLinh
((Fq, L,H0, Hi, ρ,Mi,b)

h
i=1)

1 : When Ṽ queries fi in α: Send Ṽ← fi(α)

2 : When r ←$ Ṽ:

3 : H ← span (H1, . . . , Hh) , r← (1, . . . , r|H0|−1)

4 : Interpolate p̂i such that p̂i|Hi = r>Mi and p̂i|H\Hi = 0

5 : Execute SfSum(Fq, L,H, ρ, r
>b)

6 : When SfSum request f(α): send SSum ←
∑h
i=1 fi(α) · p̂i(α)

� h ·FFT(Fq, |L|)+h|L| to evaluate pi = p̂i|L and compute the products fi ∗pi
� ‖b‖ multiplications to compute the inner product r>b
� TP

Sum to run the sumcheck subroutine

For what regards the veri�er instead it requires |H0| products to compute r and

time O(
∑h
i=1 ‖Mi‖+ |H|) to simulate access to f as explained in [BCR+19] plus

the time it takes to run the sumcheck subroutine.

D A�ne R1CS

The way we de�ne the satis�ability of rank one constraint system, see De�nition
2 as said di�ers from the one used in related works. In this section we provide
the canonical de�nition and prove that the two problem are equivalent up to a
linear-time rearrangement of the system.

De�nition 9. We de�ne R∗R1CS the set of tuples ((F, k, n,m,A1, A2, A3,v),w)
where F is a �nite �eld, k, n,m ∈ N \ {0} are positive integers, Ai ∈ Fm,1+n,
v ∈ Fk, w ∈ Fn−k and calling z = (1,v,w) ∈ F1+n it satis�es the relation
A1z ∗A2z = A3z.

Proposition 6. There exist a reduction Y of R∗R1CS to RR1CS that on input
(F, k, n,m,A1, A2, A3,v), executes less than

2 ‖A‖+ 2 ‖B‖+ ‖C‖+ 2m

operations over F2.

Proof. Y is detailed in Protocol 9 where given a vector x ∈ Fm2 and a matrix
A ∈ Fm,n2 by x ∗A we mean the Hadamard product of x applied to each column
of A.

As a general observation, for all x ∈ Fm2 , calling Dx = (di,j) the diagonal
matrix such that di,i = xi, then

∀y ∈ Fm2 x ∗ y = Dxy, ∀A ∈ Fm,n2 x ∗A = DxA.
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Y(F, k, n,m,A1, A2, A3,v) :

1 : For i ∈ {1, 2, 3}:
2 : Parse Ai = Ai,l||Ai,r with Ai,l ∈ Fk+1,m, Ai,r ∈ Fn−k,m

3 : ui ← Ai,l · (1,v)
4 : A′1 ← A1,r, A

′
2 ← A2,r, A

′
3 ← A3,r − (u2 ∗A1,r + u1 ∗A2,r)

5 : b′ ← u3 − (u1 ∗ u2)

6 : Return (F,m, n− k,A′1, A′2, A′3,b)

Fig. 9. Description of Y where A,B,C ∈ Fm,n
′+n

2 , Al, Bl, Cl ∈ Fm,n
′

2 , Ar, Br, Cr ∈
Fm,n2 and v ∈ Fn

′
2

Since the matrix product is associative it follows that x ∗ (Ay) = (x ∗ A)y. We
deduce that Y maps L (R∗R1CS)→ L (RR1CS), i.e. transform a satis�able canonical
R1CS in a satis�able a�ne R1CS, because for all w ∈ Fn2 , calling z = (1,v,w),
A1z ∗A2z = A3z if and only if

⇔ (A1,l · (1,v) +A1,rw) ∗ (A2,l · (1,v) +A2,rw) = A3,l · (1,v) +A3,rw

⇔ u1 ∗ u2 + u1 ∗ (A2,rw) + u2 ∗ (A1,rw) +A1,rw ∗A2,rw = u3 +A3,rw

⇔ A1,rw ∗A1,rw = (A3,r − (u2 ∗A1,r + u1 ∗A2,r))w + (u3 − (u1 ∗ u2))

⇔ A′w ∗B′w = C ′w + b.

Finally the running time is as speci�ed because step 3 requires ‖A1,l‖, ‖A2,l‖,
‖A3,l‖ respectively for each matrix multiplication, in step 4, the two Hadamard
product can be computed in ‖A1,r‖ + ‖A2,r‖ multiplications and the two sums
in less than

‖A3,r‖+ ‖u2 ∗A1,r‖+ ‖u1 ∗Br‖ ≤ ‖A3,r‖+ ‖A1,r‖+ ‖A2,r‖

additions. Step 5 requires m multiplications and m additions leaving a total cost
of∑3

i=1
‖Ai,l‖+2 ‖A1,r‖+2 ‖A2,r‖+‖A3,l‖+2n′ ≤ 2 ‖A1‖+2 ‖A2‖+‖A3‖+2m

operations, where we used the fact that ‖Ai‖ = ‖Ai,l‖ + ‖Ai,r‖ which in turn
implies ‖Ai,r‖ ≤ ‖Ai‖.

E Postponed Proofs

E.1 Linear Hashing

In this section we provide a proof of Propositions 2 3. First of all we prove the
following Lemmata that reinterpret the �rst proposition over F2λ and Fλ2 .
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Lemma 4. Let x ∈ Fm2λ , y ∈ F2λ and α ∼ U(F2λ). Calling a = (α, α2, . . . , αm),
if x 6= 0 then

Pr
[
a>x = y

]
≤ m

2λ

Proof. Let x = (x1, . . . , xm) and f(t) = −y + x1t + . . . + xmt
m ∈ F2λ [t] be a

polynomial. Since f has degree m it can have at most m roots. In particular the
probability that α is a root of f is m2λ and therefore

Pr
[
a>x = y

]
= Pr [−y + x1α+ . . .+ xmα

m = 0] = Pr [f(α) = 0] ≤ m

2λ
.

Lemma 5. Let x ∈ Fλm2 , y ∈ Fλ2 and α ∼ U(F2λ). If x 6= 0 then

Pr [Rαx = y] ≤ m

2λ
.

Proof. Call x = (x1, . . . ,xm) with xi ∈ Fλ2 . From the hypothesis at least
one of these vectors is non zero. Since ϑ : Fλ2 → F2λ is an isomorphism we
have that at least one of ϑ(x1), . . . , ϑ(xm) is non zero and in particular z =
(ϑ(x1), . . . , ϑ(xm)) ∈ Fm2λ is not the zero vector. In conclusion calling a =
(α, . . . , αm) we have that Pr [Rαx = y] =

= Pr
[
ϑ−1(αϑ(x1) + . . .+ αmϑ(xm)) = y

]
= Pr

[
a>z = ϑ(y)

]
≤ m

2λ

where the last inequality follow as α ∼ U(F2λ) and z 6= 0.

We are now ready to prove the claimed Propositions

Proof of Proposition 2. Let Rα = (ri,j) ∈ Fλ,λm2 , µ = log q be the dimension
over F2 of Fq and k = dimV . By base completion we can �nd a base e1, . . . , eµ
of Fq such that e1, . . . , ek is a base of V . Calling x = (x1, . . . , xλm) ∈ Fλmq and

y = (y1, . . . , yλ) ∈ Fλq we can express this element in the larger �elds with respect
to the base e1, . . . , eµ, that is there exists unique bj,h, ci,h ∈ F2 such that

xj =
∑µ

h=1
bj,heh, yi =

∑µ

h=1
ci,heh.

Next we express the i-th coordinate of Rαx− y ∈ Fλq with respect to this base

(Rαx− y)i =
∑λm

j=1
ri,jxj − yi

=
∑λm

j=1

∑µ

h=1
ri,jbj,heh −

∑λ

j=1
ci,heh

=
∑µ

h=1
eh ·

(∑λm

j=1
ri,jbj,h − ci,h

)
.

In particular, calling bh = (b1,h, . . . , bλm,h) ∈ Fλm2 and ch = (c1,h, . . . , cλ,h),
we deduce Rαx − y =

∑µ
h=1 eh(Rαbh − ch). From the hypothesis x /∈ V λm,

therefore there exists a j′ with xj′ /∈ V and consequently an h′ > k such that
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bj′,h′ 6= 0. Thus bh′ 6= 0. In conclusion observe that if Rαx− y ∈ V λ then each
entry of this vector is a F2-linear combination of e1, . . . , ek and in particular the
coe�cient of eh′ in its base representation is 0. It follows that

Pr
[
Rαx− y ∈ V λ

]
≤ Pr [Rαbh′ − ch′ = 0] ≤ m

2λ
.

Proof of Proposition 3. Follows from Proposition 2 because, if xj /∈ V λmj then

Pr

[∑h

i=1
R(mi)
αi xi = y mod V λ

]
≤

≤ Pr
[
R(mj)
αj xj = y −

∑
i 6=j

R(mi)
αi xi mod V λ

]
≤ mi

2λ
≤ max{mi : i ∈ [h]}

2λ
.

We remark in conclusion that the above properties are not satis�ed in general
by any almost universal linear hash function. For instance consider the family of
maps fα : Fm2λ → F2λ for α ∈ F2λ such that fα(x) = a>x with a = (1, . . . , αm−1).
This is (m− 1)2−λ-almost universal, however, given x = (1, 0, . . . , 0) and y = 1

Pr [fα(x) = y] = 1

E.2 Modular Lincheck

Proof of Theore 2. Completeness: if
∑h
i=1Mif̂i|Hi = b mod V H0 then, since

V is an F2 vector space and Rα ∈ FH
′
0×H0

2 for any α ∈ F2λ , the equality is

preserved after multiplying by Rα, i.e.
∑h
i=1RαMif̂i|Hi − Rαb ∈ V H

′
0 . By

construction we also have that f̂h+1|H′0
∈ V H

′
0 and in particular v ∈ V H

′
0 .

In conclusion by completeness of the underlying Lincheck protocol, the veri-
�er returns a set of accepting constraints because by construction Rαb + v =∑h
i=1RαMif̂i|Hi + f̂h+1|H′0

.

Soundness: If x :=
∑h
i=1Mif̂i|Hi − b 6= 0 mod V H0 , call f∗h+1 and v∗ the

messages sent by a malicious prover and y∗ = f̂∗h+1|H′0
. Since α is independent

from f∗h+1, then by Proposition 3

Pr
[
Rαx+ y∗ = 0 mod V H

′
0

]
≤ dm/λe

2λ
.

Up to this probability we can assume that Rαx+ y∗ /∈ V H′0 . If v∗ = Rαx+ y∗

then v∗ /∈ V H
′
0 and the veri�er returns an unsatis�able constraint. Otherwise

v∗ 6= Rαx + y∗ and by the soundness of the underlying Lincheck the veri�er
returns an accepting set of constraints with probability smaller than |H ′0|q−1 =
λq−1. With a union bound, the soundness error is at most dm/λe · 2−λ + λq−1.

Zero Knowledge: Given a malicious veri�er Ṽ and SLinh+1
a simulator for the

Lincheck protocol, we construct SMlinh as in Figure 10:
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Sf1,...,fhMlinh
((Fq, L,H0, Hi, ρ,Mi,b, V )hi=1)

1 : Sample f ′h+1 ←$ Mask(L, ρ+ |H ′0||L|−1, H ′0, V ) and set Q← ∅
2 : When Ṽ queries fi in ξ, i ≤ h: Query fi(ξ) and send Ṽ← fi(ξ)

3 : When Ṽ queries f ′h+1 in ξ: Send Ṽ← f ′h+1(ξ) and update Q← Q ∪ {ξ}
4 : When Ṽ returns α ∈ F2λ :

5 : If |Q| < ρ|L|: Sample v′ ←$ V H
′
0 and send Ṽ← v′

6 : Else: Query fi(ξ) for all ξ ∈ Q and set f̂i their interpolation over Q

7 : Set v′ ← Rα
[∑h

i=1Mif̂i|Hi − b
]
+ f̂ ′h+1|H′0

and send Ṽ← v′

8 : Set pp′ ← (Fq, L,H ′0, Hi, ρ+ |H ′0||L|−1)hi=1 and M ′ ← ((RαMi)
h
i=1, IH′0)

9 : Run S
f1,...,fh,f

′
h+1

Linh+1
(pp′,M ′, Rαb+ v)

10 : When Ṽ or SLinh+1 queries f ′h+1 in ξ: update Q← Q ∪ {ξ}
11 : If |Q| < ρ|L|: send Ṽ← f ′h+1(ξ)

12 : Else: Query fi(ξ) for all ξ ∈ Q and set f̂i their interpolation over Q

13 : x←
∑h
i=1Mif̂i|Hi − b

14 : Compute ĝ : deg ĝ < |H ′0|+ ρ|L|, ĝ|Q = f̂ ′h+1|Q and ĝ|H′0
= v′ −Rαx

15 : Send Ṽ← g(ξ)

Fig. 10. Zero knowledge simulator for the Modular Lincheck RS-IOPP from Figure 1

We confront real and simulated transcripts on input a tuple in RMlinh study-

ing three cases. If Ṽ queries f ′h+1 in less than ρ|L| entries, until α is sent
the simulator behaves as the prover. By construction and polynomial inter-
polation observe that for any set Q ⊆ L with |Q| < ρ|L|, the projection of
Mask(L, ρ + |H ′0||L|−1, H ′0, V ) over V H

′
0 × FQq de�ned evaluating the associ-

ated polynomial is F2-linear and surjective. Therefore after α is sent, calling

x =
[∑h

i=1Mif̂i|Hi − b
]
we have that conditioning on α

∆
(
(v, f̂h+1|Q), (v

′, f̂ ′h+1|Q)
)

= ∆
(
(Rαx+ f̂h+1|H′0

, f̂h+1|Q), (v
′, f̂ ′h+1|Q)

)

Since fh+1 and f
′
h+1 are uniform over Mask(L, ρ+ |H ′0||L|−1, H ′0, V ), and Rαx ∈

V H
′
0 we conclude that both vectors are uniform over V H

′
0 × FQq .

If Ṽ performs more that ρ|L| total queries to f ′h+1 after sending Rα then call Q0
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the �rst ρ|L| − 1 and Q1 the others. Conditioning on Rα

∆
(
(v, f̂h+1|Q), (v

′, f̂ ′h+1|Q0
, ĝ|Q1

)
)

= ∆
(
(Rαx+ f̂h+1|H′0

, f̂h+1|Q0
, f̂h+1|Q1

), (v′, f̂ ′h+1|Q0
, ĝ|Q1

)
)

≤ ∆
(
(Rαx+ f̂h+1|H′0

, f̂h+1|Q0
), (v′, f̂ ′h+1|Q0

)
)

= 0

where the inequality comes from the fact that in both vectors the last component
is a function of the others and last equality as both vectors are uniform.
Finally if the malicious veri�er performs ρ|L| queries to f ′h+1 before sending Rα,
the simulator behaves exactly as the prover.

E�ciency: On the prover side fh+1 can be sampled by choosing a random
vector y ∈ V H′0 and r ∈ FSq with S ⊆ L of size ρ|L| − 1 and then interpolating
with an FFT. ‖Mi‖ and ‖b‖ operations are required to compute RαMi and

Rαb respectively. Computing (RαMi)f̂i|Hi assuming f̂i|Hi is given takes at most

λ|Hi|. Finally TP
Linh+1

steps are required to run the subroutine.

On the veri�er side the costs ‖Mi‖ and ‖b‖ comes from the products RαMi and
Rαb as well. In addition the veri�er checks that each entry of v lies in V by
choosing a base and projecting on V , which takes dimV inner products of binary
vectors of length log q. Assuming that the cost for each of these inner products
is smaller than a multiplication in Fq we have that this check is performed in
less than λ dimV operations.

E.3 First Construction

Proof of Theorem 3. Completeness: Given in input a tuple in RR1CS with wit-
ness w all the condition tested are satis�ed because of Theorem 1 because
fw̃, fx̃i , ft respectively encode Φ(w), Φ(Aiw) and Φ(A1w) ∗ Φ(A2w). Therefore
the veri�er accepts with probability 1.

Soundness: Let P̃ be a malicious veri�er, (Fq,m, n,A1, A2, A3,b) not in the

language associated to RR1CS and f
∗
w̃, f

∗
x̃i
, f∗t the codewords sent by P̃. Moreover

let w̃ be the evaluation of f̂w̃ over H2 and x̃i, t the evaluation of f̂x̃i , f̂t respec-
tively over H1.
If all the statements associated to the sub protocols are satis�ed by Theorem 1
the given R1CS is satis�able, which is a contradiction. Therefore at least one of
those statements is false and from the soundness of the sub protocols invoked the
veri�er accepts with probability at most max(dm/λke, dn/λke, dm/ke) · 2−λ +
λq−1 that is the claimed bound.

Zero Knowledge against β queries : Given a tuple in RR1CS we de�ne a
simulator SR1CS interacting without rewinding with a malicious veri�er Ṽ that
performs at most β queries.
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SR1CS(Fq,m, n,A1, A2, A3,b)

1 : Sample fw̃, fx̃i , ft ←
$ FLq

2 : Parse Ai = (a>i,j) and set Ãi ← (Φ(a)>i,j), Ĩm ← (e>j )

3 : Set u← Φ(1k), b̃← Φ(b), ρ1 ← (m/k + β)/|L|, ρ2 ← (n/k + β)/|L|
4 : Send Ṽ← fw̃, fx̃i , ft and execute

5 : S
fx̃1

,fx̃2
,ft

Row (Fq, L,H1, ρ1)

6 : S
ft,fx̃3
Mlin2

(Fq, L,H1, H1, H1, ρ1, Im/k,−uIm/k, ub̃,Kerψ)

7 : S
fw̃
Mlin1

(Fq, L,H2, H2, ρ2, In/k,0, Imϕ)

8 : For i ∈ {1, 2, 3} execute:

9 : S
fx̃i
Mlin2

(Fq, L,H1, H1, ρ1, Im/k,0, Imϕ)

10 : S
fw̃,fx̃i
Mlin2

(Fq, L,H0, H2, H1,max(ρ1, ρ2), Ãi, Ĩm/k,0,KerS ◦ ψ)

Let Q,Q′ ⊆ L be the sets of positions requested by Ṽ respectively in the
real and simulated protocol. Observe that, in the �rst case, by polynomial in-
terpolation |Q| < β, ρ1|L| < m + β, ρ2|L| < n + β imply that f̂w̃|Q, f̂x̃i |Q, f̂t|Q
are uniform and mutually independent over FQq . The same holds by construction
in the second one. In conclusion, since SRow and SMlin1 ,SMlin2 receive correctly
distributed oracles, they perfectly simulate the associated RS-encoded IOPP.

E�ciency: We upper bound computational costs in terms of multiplications
over Fq. In this setting, assuming that ϕ(e1), . . . , ϕ(ek) were precomputed be-
fore, computing ϕ(x) for x ∈ Fk2 requires ‖x‖ additions, i.e. less than ‖x‖ multi-
plications. Observe also that since Φ acts block-wise we have that for any vector
‖Φ(x)‖ ≤ ‖x‖.
With this in mind the prover's costs before sending his codewords are

� ‖A‖i and ‖b‖ to compute respectively Ãi and b̃

� m operations to compute Ĩm
� ‖Φ(b)‖ ≤ ‖b‖ to produce ub̃, used later
� ‖A‖i to compute Aiw
� 3m+ n for Φ(xi), Φ(w) and m/k to get Φ(x1) ∗ Φ(x2)
� 5 · FFT(Fq, |L|) to compute fw̃, fx̃i , ft

Next the costs coming from the sub-protocols, assuming RS-encoded IOPPs from
[BCR+19] are used, are

� Nothing for the rowcheck as the veri�er directly output a rational constraint
� 7 · FFT(Fq, |L|) + 2m/k + ‖b‖ + 4λm/k + 3|L| + 3λ for the �rst modular

lincheck. Observe that we used 2λm/k+λ as an upper bound on the weight
of the matrices and vectors used in lincheck subroutine.

� 5 · FFT(Fq, |L|) + n/k + 2λn/k + 2|L|+ 2λ for the second modular lincheck
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� 5 ·FFT(Fq, |L|)+m/k+2λm/k+2|L|+2λ for each modular lincheck in the
�rst block

� 7 · FFT(Fq, |L|) + ‖Ai‖ + m + 2λ(n + m)/k + 2|L| + 2λ for each modular
lincheck in the last block.

Finally, using an optimisation from [BCR+19] we can batch the sumchecks
protocols used in each lincheck. This last cost ammount to 3 · FFT(Fq, |L|) +
O(|L| log(n+m))+8|L|. Summing up these terms yields the claimed complexity.
On the veri�er side, computation before receiving the codewords consists of

� ‖A‖i and ‖b‖ to compute Ãi and b̃ respectively

� m operations to compute Ĩm.

Finally the costs coming from sub-protocols are

� nothing for the rowcheck - as in the speci�c case of Aurora the constraint
sent is independent from the veri�er's input.

� λ(log q − k) + 2m/k + ‖b‖+ λ+ O(m+ n) from the �rst modular lincheck
where log q − k = dimKerψ.

� λk+n/k+λ+O(m+n) from the second modular lincheck where we remind
k = dim Imϕ.

� λk +m/k + λ+O(m+ n) for each modular lincheck in the third block.
� λk + ‖Ai‖+m+ λ+O(m+ n) for each execution of a modular lincheck in

the last block.
� O(log2(m + n) + 8) from a batched execution of the sumcheck protocol,

invoked by the 8 linear check.

This concludes the proof.

F Technical details on our comparison

We now provide additional informations on how we estimated numerically the
argument size in section 5. For both Ligero and Aurora we consider the plain
description in the respective papers with the following optimisations:

1. Column Hashing : When multiple oracles f1, . . . , fn ∈ F`q of the same length
are sent in the same round we interpret this as a single interleaved codeword
over F`q. In this way it is not possible to open a single fi in a certain position
without opening the other codewords, however this is not an issue in both
Ligero and Aurora.

2. Path Pruning : Instead of upper-bounding the number of hash values required
to open fi ∈ Fn on Q ⊆ [n] with |Q| log n, we omit redundant values in com-
mon between the accepting paths. As the resulting amount depends on Q
(not only on |Q|) we estimate the expected number of hash values required
through a Monte Carlo simulation.
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3. Queries Collision: In FRI, in each repetitions of the QUERY procedure,
queries are chosen with fresh randomness, meaning that they can possibly
collide. We take this into account estimating the number of distinct queries
through a Monte Carlo simulation. Observe however that this technique
cannot be applied to Ligero, where t = |Q| directly a�ects the resulting
soundness.

4. Coset Hashing : In FRI, to show that f ∈ FL has low degree the argument
recursively reduces the size of L and the degree of f , creating a sequence of
codeword f = f0, . . . , fr, linear spaces L = L0, . . . , Lr and F2-linear maps
q0, . . . , qr such that Li+1 = qi(Li). To test consistency between the various
oracles, fi is queried (multiple times) on a coset of Ker qi. For this reason we
see fi as a codeword in FKer qi

q with smaller proof length, requiring therefore
less hash values for openings.

5. Earlier direct LDT : As opposed to the version of FRI presented in [BBHR18a]
where the reduction step is applied until the last codeword has small con-
stant degree, after which the coe�cients are sent in plain, we interrupt the
reductions at step i if the number of points queried in Li is larger than ρ|Li|,
as in this case the veri�er could recover fi through interpolation. This allows
to reduce slightly the proof length, round complexity and the overall number
of �eld elements sent.

In the case of Aurora, in order to present costs matching the one provided
in [BCR+19], in Fig. 5 we distinguish two cases. The �rst one on the left uses
values for the soundness proven in the original papers, in particular, the query
soundness error for FRI with relative distance δ is

εq(δ) = 1−min(δ, δ0), δ0 =
1− 3ρ− 2η · |L|−1/2

4

On the right instead we use εq = 1−δ as in libiop, that is the best possible value
not in contradiction with currently known bounds, which leads to less queries.
The second di�erence between the two graphs lies in the relative distance tested.
In the graph on the left, calling (σ∗, ρ∗) the maximum rates,

δ ≤ min

(
1− 2σ∗

2
,
1− σ∗

3
, 1− ρ∗

)
,

while in the graph on the right δ ≤ min(1 − ρ∗, 1 − σ∗) as in libiop. We stress
that testing for a larger δ signi�cantly a�ects εq and so the proof size.
In the case of Ligero we use used the parameters of Strong-Ligero due to recent
improvements [BCI+20], i.e. we set the absolute proximity parameter as

e =

⌊
n− 2k + 1

3

⌋
assuming the RS-code RSn,k/n is used to encode the extended witness. Moreover,
as suggested in the paper, we estimate the query soundness error with the �ner
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bound

εq ≤ max

((
n− e− 1

t

)(
n

t

)−1
,

(
e+ 2k − 2

t

)(
n

t

)−1)
.

Notice that in this expression we excluded the soundness error associated to
linear tests as it is always smaller than the error associated to quadratic tests,
that is the second term.
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