
Shorter Signatures Based on Tailor-Made
Minimalist Symmetric-Key Crypto

Christoph Dobraunig1, Daniel Kales2, Christian Rechberger2,
Markus Schofnegger2, and Greg Zaverucha3

1Lamarr Security Research, Graz, Austria
2IAIK, Graz University of Technology, Graz, Austria

3Microsoft Research, Redmond, WA, USA

April 25, 2022

Abstract
Signature schemes based on the MPC-in-the-head approach (MPCitH)

have either been designed by taking a proof system and selecting a suitable
symmetric-key primitive (Picnic, CCS16), or starting with an existing
primitive such as AES and trying to find the most suitable proof system
(BBQ, SAC19 or Banquet, PKC21). In this work we do both: we improve
certain symmetric-key primitives to better fit existing signature schemes,
and we also propose a new signature scheme that combines a new, min-
imalist one-way function with changes to a proof system to make their
combination even more efficient. Our concrete results are as follows.

First, we show how to provably remove the need to include the key
schedule of block ciphers. This simplifies schemes like Picnic and it also
leads to the fastest and smallest AES-based signatures, where we achieve
signature sizes of around 10.8 to 14.2 KB using AES-128, on average 10%
shorter than Banquet and 15% faster.

Second, we investigate a variant of AES with larger S-boxes we call
LSAES, for which we argue that it is likely to be at least as strong as AES,
further reducing the size of AES-based signatures to 9.9 KB.

Finally, we present a new signature scheme, Rainier, combining a new
one-way function called Rain with a Banquet-like proof system. To the
best of our knowledge, it is the first MPCitH-based signature scheme which
can produce signatures that are less than 5 KB in size; it also outperforms
previous Picnic and Banquet instances in all performance metrics.

1 Introduction
Most currently used digital signature schemes deployed in today’s Internet
infrastructure rely on the discrete logarithm assumption in elliptic curve groups,
or the RSA assumption. While these hardness assumptions are believed to hold
against classical attackers, the situation might change with the introduction of
powerful quantum computers.

1

While no quantum computer threatening currently deployed cryptography
exists today, the cryptographic community is already searching for public-key
primitives which are secure against quantum attacks. To name a few examples,
candidates for such primitives in the ongoing NIST post-quantum standardization
project include schemes based on the hardness of lattice problems (e.g., [LDK+20,
PFH+20]), problems from coding theory [ABC+20], the hardness of solving
multivariate quadratic equation systems [DCP+20] or different assumptions
related to finding isogenies between elliptic curves [JAC+20].

In addition to the above hardness assumptions, digital signatures can also
be built solely using symmetric primitives, which has the advantage of relying
on well-studied primitives instead of more “structured” hardness assumptions.
Here, two examples are SPHINCS+ [BHK+19, HBD+20], relying only on hash
functions, and Picnic [CDG+17, ZCD+20], relying on hash functions and a block
cipher.

The constructions in the Picnic family follow an interesting design approach:
The secret key of the signature scheme is a the input to a one-way function, with
the public key being the corresponding output. A signature is a non-interactive
zero-knowledge proof of knowledge (ZKPoK) of the secret input for the public
output, with the message to be signed being included in the challenge generation
of the proof. Importantly, the ZKPoK also has to provide security against
quantum attackers; a class of zero-knowledge proofs that fulfill this requirement
are the ones based on the MPC-in-the-head (MPCitH) paradigm [IKOS07]. In
these proofs, the prover simulates a multiparty computation protocol executing
the function to be proven for a number of parties, commits to the internal state
of all parties during the protocol, and is then later challenged to open a subset
of the parties’ states to the verifier. If the internal state of the opened parties is
consistent with a real execution, then the verifier gains some assurance that the
execution was valid, with multiple parallel repetitions being executed to boost
the soundness.

In Picnic, this one-way function is built using the LowMC block cipher [ARS+15]
in the following construction.

Construction 1. A family of one-way functions {fx} can be built from a block
cipher E by defining fx(k) := Ek(x), where Ek(x) denotes the encryption of the
block x under the key k. An instance of the one-way function is then sampled
from the family by choosing a block x uniformly at random. The OWF output
includes x, defining the OWF relation ((x, y), k) ∈ R⇔ Ek(x) = y.

Clearly the security of the resulting one-way function is based directly on
the security of E against key recovery attacks with a single known plaintext; we
formalize this in Appendix A.1.

LowMC has the design goal of being efficiently computable in MPC protocols.
This means that the internal state that needs to be committed to and revealed
can be smaller and therefore, the overall size of the signature is reduced. This
is accomplished by having a low multiplicative complexity, as multiplications
(AND gates) are the most expensive part of MPC protocols that use linear
secret sharing. This is a delicate balance, as the nonlinear operations of a block
cipher are essential for security. LowMC is a relatively new design, and (like
all ciphers) is not as well analyzed as AES [DR20]. While AES would be an
obvious first choice as a block cipher to be used in a Picnic-style signature, its
Boolean circuit representation (which is used in the ZKPoK protocols in Picnic,

2

ZKB++/ZKBoo [CDG+17, GMO16], and KKW [KKW18]) is much larger than
that of LowMC, leading to signatures of about 209 KB for ZKB++ [GCZ16],
and 52 KB for KKW [dDOS19].

Recently, a line of work has started to improve these AES-based signatures.
In BBQ [dDOS19], the authors modify the MPC protocol to execute a circuit
over the AES-native field F28 (rather than a binary circuit) and show how
to improve the computation of the inverse in the AES S-box. This reduces
the size of AES-based signatures to about 30 KB, still larger than the 12 KB
signatures that Picnic using LowMC can achieve. In a follow-up work called
Banquet [BdSGK+21], the authors proposed a new MPCitH protocol that reduces
signature sizes even further by allowing the prover to inject known values into the
MPC computation, removing the need to perform the computation of the inverse
in the MPC protocol. The verifier instead checks the validity of the injected
values using a batched polynomial checking protocol. The final signature sizes
for Banquet signatures range from 13.2 to 20 KB, which is close to the sizes
of Picnic, however, Banquet instances with comparable sizes have significantly
slower signing and verification times than Picnic.

When it comes to designing and selecting ciphers for MPC-in-the-head proofs,
Banquet has shown that field inversion can be more efficient than expected,
especially when measuring the amount of non-linearity per unit of proof size.
Since field inversion is a choice non-linear operation in symmetric cipher design
(e.g, it is the only non-linear operation in AES), a natural question is whether
we can design a primitive to take full advantage of this efficiency. We further
observe that the Banquet proof system is even more efficient when the inverse
operations are in larger fields; which points to block cipher designs with large
S-boxes. Inversion over large fields (we consider GF(232) to GF(2256)) would be
a non-starter for traditional block ciphers, were performance is expected to be a
handful of cycles per byte. However, in our MPCitH setting these inversions are
comparatively cheap to prove.

We also note that it is possible to construct OWFs directly (see [DGH+21] for
a recent example), rather than starting from block cipher designs as we do in this
work. However, our new design benefits from the large literature on secure block
cipher design and cryptanalysis, and also gives a natural way to incorporate the
field inversion operations that are friendly to MPCitH proof systems.

Contributions. In this work, we investigate three methods of reducing MPCitH
signature sizes further, while simultaneously improving the performance of sign-
ing and verification. Our results cover a range of options from more conservative
(but less performant), to more performant (but with stronger assumptions).

• We investigate the use of AES as a public permutation in a single-key
Even–Mansour construction. The use of a public constant for the AES
key removes the need to calculate the AES key schedule as part of the
MPC protocol, reducing the number of S-boxes (and therefore inversions)
from 200 to 160 for AES-128, which leads to smaller signatures using the
Banquet proof system.

• In Banquet, the in- and outputs to the inverse functions are lifted from the
AES field F28 to a larger field F28λ to reduce the soundness error of the
protocol. This step leads to an increase in signature size, since elements

3

of that larger field are included in the final signature. We investigate the
security of a variant of AES that uses 32-bit S-boxes and show that we
can then remove the lifting step, leading to smaller signatures.

• Finally, we present a one-way function, called Rain (Random Affine Inverse
Nyberg-inspired), that is ideally suited for the MPCitH protocol. Rain
follows a very simple design; having no key schedule and each round
only consisting of a constant addition, a matrix multiplication and a field
inversion. We then analyze its security as a one-way function, and finally
build a signature algorithm called Rainier, using Rain and a modified
variant of the Banquet proof system. Rainier is, to the best of our knowledge,
the first MPCitH-based signature scheme with signatures less than 5 KB
in size and it also outperforms previous Picnic and Banquet instances in
all performance metrics.

A side benefit of the EM and Rain constructions is that signature private
keys may be sampled uniformly whereas in BBQ and Banquet a negligible part
of the key space must be excluded.

We have implemented all of these signature scheme variants, and provide
detailed comparisons of running time, signature size and also briefly compare to
other post-quantum signatures not based on the MPCitH paradigm. Our imple-
mentation is available at https://github.com/IAIK/rainier-signatures.

Cryptanalysis Scenario. We perform all dedicated cryptanalysis of our
new primitives in the scenario given by Theorem 1. In detail, for our Rain
construction, we show that it provides security against key recovery attacks
with a single known plaintext-ciphertext pair, as it is sufficient to be used as
a one-way function in a Picnic-style signature. Security claims in this paper
should be interpreted in this scenario, we do not give any guarantees for attacks
with larger data complexities. This naturally prevents a large class of statistical
attacks, since they usually require multiple pairs. For example, at least two pairs
are necessary for a classical differential attack.

Related Work to Rain. Our proposal Rain described in Section 4 shows
several similarities to MiMC [AGR+16] and the Marvellous designs Jarvis
[AD18] and (instances of) Vision [AAB+20]. These designs also aim to minimize
a certain cost metric in arithmetization-oriented scenarios, and all three of them
are built using a single large S-box covering the full permutation state.

The round function of Rain is composed of two very different building blocks.
First, we use the inversion in the field F2n , arguably a very structured operation.
The second part is then an unstructured random affine layer with operations
in F2. The latter building block together with the fact that our proof system
can efficiently handle these two rather different types of operations is crucial
for the concrete efficiency. For MiMC and its primary use cases, operations are
preferred to all be in the same field and hence such an affine layer was not
used at all, leading to a requirement of more than 80 rounds for security. For
Jarvis/Vision this is reduced to 36 and without safety margin could be halved
to 18 rounds. The main reason for this reduction is that a structured affine layer
is introduced in every round and shown to allow for efficient implementations.
With the unstructured affine layer in Rain, our analysis suggests that 3 rounds

4

https://github.com/IAIK/rainier-signatures

are already sufficient in the signature use-case, leading to substantial efficiency
improvements despite the lack of structure. This is also supported by Nyberg’s
analysis [Nyb94] showing that finite field inversion has a large distance from
affine functions.

Related Work to Large S-Boxes. Using S-boxes or non-linear permu-
tations working on more than eight bits is not new. In the early 1990s, we
see for example the Knudsen–Nyberg cipher [NK93] using cubing in GF(237),
or Subterranean [CDGP93] using the χ-layer [Dae95] on 257 bits. Also in
recent cipher designs, we see the use of fairly large S-boxes. For example,
Rasta [DEG+18] and Subterranean 2.0 [DMMR20] use large versions of the
χ-layer, while Alzette [BBdS+20] is an S-box design for 64-bit inputs/outputs
based on modular additions, rotations and XORs. Other examples include MiMC
[AGR+16], GMiMC [AGP+19], HadesMiMC [GLR+20], Poseidon [GKR+21],
and Marvellous [AAB+20] instances with large S-boxes having a very simple
algebraic description.

Related Work to MPCitH Proof Systems for AES Limbo [dSGOT21]
is a proof system suitable for generic circuits, and can also be used to build
signature schemes with runtimes and sizes very close to Banquet. We compare
our variants to their proposed Limbo-Sign AES-128 signature in Table 4. A
natural implication of our work on single-key Even-Mansour variants of AES
is to investigate the performance of EM-AES signatures in Limbo. Based on
the formulas given in [dSGOT21], and our comparison for AES-128, we expect
similar performance to our Banquet variants, with Limbo having slightly larger
signatures and slightly better runtimes.

2 Using Single-Key Even–Mansour
In this section we discuss using the single-key Even–Mansour (EM) construction
as a one-way function. We start with background and security analysis, and give
the construction we use for MPCitH-based signatures below in Section 2.1.

The single-key Even–Mansour scheme [DKS12, EM97, Riv84] is a way to
construct a block cipher F from a cryptographic permutation π by adding a key
k to the input x and to the output of the permutation, i.e.,

Fk(x) = k + π(x+ k) . (1)

In practice we can instantiate π with a block cipher such as AES, by fixing a
random key p0, and making it a public constant. We thus avoid calculating the
non-linear key schedule with a secret key. We write F : {0, 1}κ×{0, 1}n → {0, 1}n,
where n is the block size, and κ is the key size and π : {0, 1}n → {0, 1}n. We
assume that κ = n and addition of n-bit strings is done with bitwise XOR.

Security. In the context of a signature scheme constructed from an MPC-in-
the-head proof system, F must be a one-way function of the key: given some
(x, y) such that y = Fk(x), it should be difficult to find a k′ such that Fk′(x) = y.
More formally, F is a secure OWF if the following probability

Pr[x $← {0, 1}n, k $← {0, 1}κ, k′ ← Aπ(x, Fk(x)) : Fk′(x) = Fk(x)] (2)

5

is negligible in n for all polynomial-time adversaries A, with oracle access to π.
It is easy to see that removing either addition of k in the construction of F is

insecure. The single-key EM scheme is a special case of the two-key scheme, that
constructs a block cipher T from π using two keys as T (k1, k2, x) = k2 +π(x+k1).
The function T is trivially not a secure one-way function (OWF) of the correct
type: given (x, y) we can compute a (k1, k2) by first choosing k1 at random and
then setting k2 = y + π(x + k1). It is therefore important to formally show
security of the single-key EM construction for signatures.

We model π as an ideal permutation, and consider attacks where the attacker
is given oracle access to it. We would like to prove a lower bound on the number
of queries to π for a successful attack, or equivalently, show that any attack
making q queries succeeds with probability negligible in κ. In [EM97], Even and
Mansour prove a lower bound for the two-key construction, namely that an attack
has DT = Ω(2n) where D is the data complexity (i.e., the number of encryption
queries or decryption queries to F) and T is the time complexity (measured as
the number of queries to π). Dunkelman, Keller and Shamir [DKS12] show that
with small modifications, the proof also holds for the single-key EM construction.
However, the analysis of [EM97, DKS12] uses a reasonable but nonstandard
CCA-like security definition. As shown above with the two-key construction,
this definition does not imply security of EM in our setting. Dunkelman et al.
comment that obtaining a nontrivial amount of information about the key is
covered by the analysis, and our two-key attack above does not contradict this
since the key produced by the attack is different from the original key used to
create y with overwhelming probability. The main difference is that our OWF
game may be won with any key for F while in the block cipher setting the
attack must find the single correct key, in order to recover information about the
plaintext. In addition, in our use-case as a one-way function the data complexity
is limited to a single plaintext-ciphertext pair (i.e., D = 1), meaning we can
achieve n-bit security with a n-bit permutation, since the attacker must invest
T = 2n time. This is in contrast to traditional attack scenarios where attackers
can trade off data and time complexity, i.e., by setting D = T = 2n/2.

Theorem 2. The single-key Even–Mansour construction (Eq. (1)) is a secure
one-way function, when the permutation π is an ideal random permutation.

Proof. The attacker A is initialized with (x, y) and has oracle access to π. We
must show that the probability in Eq. (2) is negligible in n (the key size and
block size in bits).

We say that a key K is consistent with the pair (x, y) if y = FK(x), i.e.,
y = K + π(x+K).

Just before producing an output, A has made q queries to π, and has q pairs
(Xi, Yi) where Yi = π(Xi). W.l.o.g., we assume that inputs Xi to π are distinct.

Therefore, each query Xi has the form Xi = x + Ki for a distinct key Ki.
In one case, the query either gives A the correct key, and we have Yi +Ki = y.
In the other case, the query does not give A the correct key, but reveals that
K ′i = y − Yi, a second key distinct from Ki, cannot be consistent with (x, y).
First we note that K ′i is distinct from Ki since Yi +Ki 6= y, then Ki 6= y − Yi.
To see that K ′i cannot be consistent if Ki is not consistent, assume that K ′i was

6

consistent, which implies that

Yi +K ′i = π(x+K ′i) +K ′i

π(x+Ki) +K ′i = π(x+K ′i) +K ′i

π(x+Ki) = π(x+K ′i) ,

which is a contradiction since π is a permutation and Ki 6= K ′i.
Now we argue that the remaining 2n − 2q keys are equally likely to be

consistent with (x, y), given the information A has. Consider K∗, one of the
remaining keys, not equal to Ki or K ′i. If A knew that K∗ was not consistent
with (x, y), then A knows y −K∗, and that

y −K∗ 6= π(x+K∗) (3)

But since π is a random permutation, π(x+K∗) is uniformly selected from the
2n−2q remaining possible values, so Eq. (3) holds with probability 1−1/(2n−2q)
and all remaining keys are equally likely.

Therefore, after q queries A succeeds with probability not more than 2q/2n.
Alternatively, A succeeds after Ω(2n) queries.

When compared to the upper bound given by the complexity of a brute-force
attack (where A succeeds with probability q/2n), this lower bound is off by a
factor of two. As described in the proof, each query to π can be used to rule out
two keys, improving the brute force attack, to succeed with probability 2q/2n.
Therefore the lower bound is tight, since it matches the complexity of the attack.

The assumption required for security of the EM-OWF is that π is an ideal
random permutation. Assume that π is constructed by fixing the key of a block
cipher E (since this is how we will construct π for signature schemes). How this
assumption compares to directly assuming E is a OWF is not always clear. In
general, the ideal permutation assumption is stronger than directly assuming
that E is an OWF of the key (as is currently done in signature schemes such
as Picnic and Banquet) since a function can still be one-way even with slightly
biased outputs, and we can construct contrived examples of OWFs with biased
output. But is the difference meaningful for any natural choices of E?

When E is 5-round AES, Grassi, Rechberger and Rønjom describe a distin-
guisher [GRR17] that requires 232 (plaintext, ciphertext) pairs and works for
any key (for adaptively chosen ciphertexts improved to 227.2 in [BR19b] and to
6 rounds in [BR19a]). In short, if the 232 plaintexts are chosen carefully, then
[GRR17] shows that the set of ciphertexts possess a property (with probability
1) that would not be present for an ideal permutation (except with low proba-
bility). Therefore, Theorem 2 says nothing about the security of the EM-OWF
construction when π is built with 5-round AES.

By contrast, 5-round AES appears to be a secure OWF, as there are no
known key-recovery attacks that work with a single (plaintext, ciphertext) pair.
The best known attack in this class is given by Bouillaguet, Derbez and Fouque
[BDF11], applied to 4-round AES and is marginal, costing 2120 time and 280

memory.
In one sense there is more positive evidence that 5-round AES is a secure

OWF than there is for EM-OWF, however, neither problem is very well studied,
so making conclusions with confidence is difficult. The issue of how the security

7

of the EM and non-EM one-way functions compare for practical choices of E
(such as 5-round AES) is an interesting open question.

Multi-Target Security. We take a closer look on the multi-target, or multi-
user OWF security of the single-key EM construction in Appendix A.2.

Post-Quantum Security of Single-Key EM As with any one-way function,
inputs can be recovered in time O(2n/2) using quantum amplitude amplifica-
tion [BHMT02] (a generalization of Grover’s algorithm [Gro96]), with costs
similar to those for AES as described in [JNRV20]. Some recent work on the
post-quantum security of EM [JST21, ABKM21] (that covers OWF security as a
special case), shows that this is the best possible. The model used to analyze EM
in [JST21, ABKM21] matches ours closely; the adversary may make classical
queries to Fk, and quantum queries to π. In the signature/OWF scenario the
adversary is given the output of a random classical query to Fk (in the form of
the public key), and π is public so the adversary may implement it with classical
or quantum hardware.

2.1 EM-OWF Constructions
Given a block cipher Ek(x) with n-bit key size and block size, where k is the
secret key and x is the input, we build the one-way function in k as

F (x, k) = k + Ex(k) . (4)

As discussed above, this is an instance of the single-key EM construction when
π is random per user, and the plaintext input (denoted x above) is fixed to zero.
For example when E is AES-128 we have a suitable OWF for use in Banquet key
generation at security level L1, here n = 128 bits. A requirement for Banquet
and BBQ is that the key be chosen so that there are no zero inputs to S-boxes,
and key generation uses rejection sampling to find one (each sample is rejected
w.p. ≈ 1/2). Note that with the EM construction, we can instead sample k
uniformly at random, then vary x until Ex(k) has no zero S-box inputs.

There is no direct way to use the EM-OWF construction at security levels
L3 and L5, because the block size of AES is limited to 128 bits. These higher
security levels are best achieved with Rijndael [DR98], where n can be 192 and
256 bits. Rijndael is not a standardized primitive (as AES-192 and AES-256 are),
however it is a mature and well analyzed design.

For key generation in Picnic, since n scales to 192 and 256 in LowMC, all three
security levels may use the construction of Eq. (4) directly. As the key schedule
in LowMC consists of only linear operations, using the EM construction will not
reduce signature sizes, but can improve performance and simplify implementation,
since deriving round keys is done with a matrix multiplication.

3 LSAES: AES with Larger S-boxes
In [dDOS19] and [BdSGK+21] it has been shown that MPC protocols using the
fact that the S-box of AES-128 is based on field inversion can reduce the size
of AES-based signatures. In this section, we present a mild tweak to AES-128.

8

We leave the description of AES-128 unchanged, except for the SubBytes part,
where we replace the parallel byte-wise inversion in F28 of 4 elements in a row
with a single inversion in F232 . Essentially, this transforms AES-128 back to
its predecessor having a 10-round SHARK-like [RDP+96] cipher with 32-bit
S-boxes, which we call LargeSboxAES-128 or LSAES-128 in short.

It is possible to consider LSAES with 16-, 32-, 64- or 128-bit S-boxes (with
minor changes to the key schedule). For use in Banquet at security level L1,
32 bits are a natural choice, because the MPC protocol already lifts the 8-bit
S-box (input, output) pairs to a 32-bit field to increase the soundness of the
polynomial checking protocol. We will therefore focus on 32-bit S-boxes. We
briefly discuss the signature sizes achievable by using LSAES with other S-box
sizes in Appendix D.2.

3.1 Specification
Since LSAES-128 corresponds largely to AES-128, we only recall the structure
of the cipher and the application of the S-boxes in this section. The details
regarding the affine parts and the key schedule can be found in Appendix B. As
AES-128, LSAES-128 mainly consists of two parts, the key schedule, where the
round-keys k(i) are derived from the secret key k, and the data path, where an
input x is transformed by the round function Ri and mixed with the round-keys
k(i). There are ten rounds and eleven round keys. Thus, we have

Fk(x) = R10 ◦ · · · ◦R2 ◦R1(x),

where each round function Ri ∀i < 10 is defined as

Ri(x) = L
(
S
(
x+ k(i)

))
,

and the last round function R10 is defined as

R10(x) = S
(
x+ k(10)

)
+ k(11) .

3.1.1 Structure of the State

For describing the cipher, we use the typical description of AES-128 as a rectan-
gular 4 × 4 representation of the bytes xi, shown in Fig. 1a. A 128-bit input x
to the cipher is seen as a concatenation of byte elements x = x0 || x1 || · · · || x15.
In addition, we define the 32-bit elements χi = xi || xi+4 || xi+8 || xi+12 ∀ i ∈
N : 0 ≤ i < 4 leading to the representation shown in Fig. 1b.

3.1.2 Substitution Layer S

The substitution layer interprets the four 32-bit state values χi as elements of
the field GF(232) defined by the irreducible polynomial X32 +X7 +X3 +X2 + 1
(a different choice of irreducible polynomial is possible in case of existing software
or hardware implementations). Then, the inversion operation is applied to each
of the four χi with the additional convention that element 0 maps to 0. So we
have

S(x) = S(χ0, χ1, χ2, χ3) = (χ−1
0 , χ−1

1 , χ−1
2 , χ−1

3).

9

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

(a) Byte-wise state.

χ0

χ1

χ2

χ3

(b) 32-bit-wise state.

Figure 1: Different views of the internal state of AES.

3.2 Cryptanalysis
One major feature of AES-128 is its resistance against differential [BS91] and
linear [Mat94] cryptanalysis. Hence, those are not the dominant attack vectors
covering the highest number of rounds. After years of cryptanalysis, attack vectors
that can turn the strong alignment of AES’s round function to their advantage,
like impossible differential attacks [MDRMH10] and meet-in-the-middle [DFJ13]
attacks, have turned out to cover the highest number of rounds. This section
shows that LSAES retains excellent resistance against differential and linear
cryptanalysis while also reaching at least the same security level against attacks
exploiting strong alignment. Note that we consider the strongest attacks on AES
without restricting the data complexity.

3.2.1 Differential and Linear Cryptanalysis

The use of 32-bit S-boxes in the columns of the AES state while leaving all linear
transformation intact essentially leads to LSAES being a SHARK-like [RDP+96]
design. The reasons for this are as follows (referring to the notation in Ap-
pendix B).

• The linear transformation ABi is performed four times in parallel on 8-bit
chunks of our 32-bit state variable values χi, while SR is just a re-ordering
of bytes within each state value χi. Hence, we can see those two linear
layers as part of 32-bit S-boxes, which are now just affine equivalents to
the inversion in GF(232).

• Applying four 4× 4 MDS matrices with coefficients in F8×8
2 in parallel on

8 bit parts of our state words χi corresponds to the application of a single
4× 4 MDS matrix with coefficients in F32×32

2 [KLSW17].

Hence, we now know that a linear or differential trail has at least five active
S-boxes per 2 rounds. So we have at least 25 active S-boxes in total. Our S-boxes
have a maximum differential probability of δ = 2−30 and a maximum correlation
of λ = 2−15 [Nyb94]. Hence, the theoretical values for 10 round differential trails
of δ = 2−750 and for 10 round linear trails of λ = 2−375 let us conjecture that
those attack vectors do not pose a threat to LSAES.

3.2.2 Attacks Exploiting Strong Alignment

AES has a strongly aligned structure that leads to nice bounds on the differential
probability and correlation of trails, used to give convincing arguments that

10

AES resists differential and linear cryptanalysis. If we take a closer look at one
round of AES, we see that the only function directly providing diffusion between
byte-borders is MixColumns. In particular, MixColumns is a linear function
mixing the 4 bytes within each of the four columns of the AES state separately.

The attacks that reach the largest number of rounds for AES-128 exploit these
characteristics of AES. Attacks that exploit the strong alignment of AES-128
are (amongst others) the Integral/Square attacks [DKR97, FKL+01], impossible
differential attacks [MDRMH10], or meet-in-the-middle attacks [DS08], where
the last one gives the most efficient attacks on seven rounds of AES-128 [DFJ13].

For LSAES-128, the diffusion of the linear layer stays the same. The only
thing we change is the S-box. Since the S-boxes of LSAES-128 are applied on all
4 bytes belonging to one row, we now have one additional component directly
providing diffusion between byte-borders. In contrast to MixColumns, those
S-boxes used in LSAES-128 are non-linear functions. Hence, we expect that all
attacks exploiting the strong alignment and the direct linear mixture of the
bytes in AES-128 do not perform better for LSAES-128. On the contrary, we
expect that most of them will actually perform worse. For instance, we have
implemented LSAES-128 in a tool capable of finding meet-in-the-middle and
impossible differential attacks [DF16]. In contrast to AES-128, this tool does
not give any indications for the existence of meet-in-the-middle and impossible
differential attacks for seven rounds of LSAES-128.

3.2.3 Algebraic Attacks

Attempts to use the relatively simple algebraic structure for attacks on AES [CP02,
MR02] turned out to be not fruitful [CL05, CMR06]. We conjecture that this
also applies to LSAES.

4 Rain
Compared to LSAES, we go further with Rain by increasing the S-box size
and also modifying the linear layer. We summarize our design rationale in the
following. We use inversion in F2n , where n is the state size, since large inversions
are efficient to prove in Banquet-like protocols[BdSGK+21]. Compared to many
other settings, the actual structure of the linear layer does not impact the
performance much for our MPCitH use-cases. Hence, we use multiplication by a
randomly chosen matrix M ∈ Fn×n2 (we ensure they also have a dense linearized
polynomial that is of maximum degree when expressed over the same field as the
inversion) as our linear layer in order to improve the diffusion compared to more
structured linear layers. Recent designs also using large finite field inversions (e.g.,
Vision [AAB+20] and Jarvis [AD18]) use an affine layer that can be efficiently
described in the same field. This is the main difference between these designs
and Rain.

Another way of seeing Rain is as an iteration of a larger variant of the
AES S-box [DR20] using a more unstructured affine mapping. Since, to the best
of our knowledge, Nyberg [Nyb94] proposed the use of an inverse augmented
affine permutation, we call our proposal Rain (Random Affine Inverse Nyberg-
inspired).

Since we use Rain with only a small amount of rounds, we have decided to

11

use different matrices and round constants per round to improve the diffusion as
much as possible and prohibit symmetry properties. This choice has a negligible
effect on the proof system performance compared to always using the same
matrix in each round and no round constants. We are also using a trivial key
schedule (ki = k) to further simplify the design.

We emphasize again that Rain is not a classical block cipher, and is only
intended to be used in Theorem 1 for a MPCitH proof system. This implies
that the data complexity available to an attacker is restricted to a single known
(input, output) pair.

4.1 Specification
We define a keyed permutation Fk(x) consisting of a nonlinear operation S and a
constant addition over a large field F2n , together with a linear layer. We choose
S : F2n → F2n such that

S(x) = x2n−2 =
{
x−1 if x 6= 0,
0 otherwise.

The entire permutation is described as a concatenation of round functions Ri,
where each round function Ri ∀i < r is defined as

Ri(x) = Mi

(
S
(
x+ k + c(i)

))
,

and the last round function Rr is defined as

Rr(x) = k + S
(
x+ k + c(r)

)
.

We denote the round constant in round i by c(i), and Mi ∈ (F2)n×n is the
linear layer matrix over F2 used in round i. Every such matrix Mi can also be
represented as a linearized polynomial Li ∈ F2n [X], namely

Li(X) =
n−1∑
j=0

a
(i)
j X2j

for some coefficients (aj)n−1
j=0 . In our design, we will make sure that aj 6= 0 for

j ∈ {0, . . . , n− 1}. This implies that the linearized polynomial is of maximum
degree and as dense as possible.

A graphical overview of the construction is shown in Fig. 2. The details for
the generation of the round constants and matrices are given in Appendix C.

x x−1 M1

k ⊕ c(1)

x−1 M2

k ⊕ c(2) k ⊕ c(3)

x−1

k

y

Figure 2: The Rain permutation with r = 3 rounds.Mi denotes the multiplication
with an unstructured invertible matrix over F2 in the i-th round.

12

4.2 Concrete Instances
The concrete instances we focus on are defined in the following.

• 128-Bit Security. We use F2128 and the reduction polynomial X128 +
X7 +X2 +X + 1. This polynomial is also used in AES-GCM [MV04].

• 192-Bit Security. We use F2192 and the reduction polynomial X192 +
X7 +X2 +X + 1.

• 256-Bit Security. We use F2256 and the reduction polynomial X256 +
X10 +X5 +X2 + 1.

4.3 Cryptanalysis
In this section, we will show that 3 rounds of the construction are sufficient in
order to provide security. Indeed, we do not consider fewer than 3 rounds, mainly
to avoid the possibility of splitting the construction into two single-round parts.

For the sake of simplicity, we omit using the round-specific indices of the
linearized permutation polynomials Li, i.e., we write L instead of Li. Again,
we highlight that due to the intended use of Rain in Theorem 1, we limit the
attacker to be able to use only a single (input, output) pair (vin, vout), and the
goal is to recover a full key k which maps vin to vout.

4.3.1 Gröbner Basis Attacks

We try to represent the keyed permutation as a system of equations, which
we then want to solve by converting it into a Gröbner basis and solving the
univariate equations (after order transformation) for the remaining variables.

Equation System over F2. A straightforward way to build such a system is
by working with variables in F2. We would then have n variables and n equations
for a key size of n bits. Each equation describes a single output bit in the (known)
input bits and the key variables. Working purely with Gröbner bases, we assume
this system of equations to be hard to solve, as each round has an algebraic
(bit-level) degree of n− 1, which is the maximum for a permutation.1 Note that
this also holds for the decryption direction, since we use the inverse function.
Besides the approach discussed here, this property also makes recent low-data
attacks on schemes with low algebraic degrees (e.g., [Din21]) infeasible. Hence,
we conjecture that 3 rounds are sufficient in order to provide security w.r.t.
Gröbner basis attacks using equation systems over F2.

Equation System over F2n (Single Variable). A more efficient approach
is to instead focus on equation systems over F2n . As we only have a single input,
we can represent the whole equation by a single equation in a single key variable
(assuming a linear key schedule). Note that the resulting system of equations
with a single equation is automatically a Gröbner basis, hence this step is free.
However, we still need to account for the complexity of solving this equation
for the single key variable. Indeed, with overwhelming probability, the resulting

1Indeed, current results in the literature suggest that even low-degree equation systems
over F2 are hard to solve (see e.g. [JV17, NNY18]).

13

polynomial has a maximum degree of 2n− 2 = d over F2n and is also dense. The
cost of finding the root of such a polynomial is an element in O(d3n2 + dn3)
[Gen07]. Since the maximum degree is already reached after a single round, we
conjecture that 3 rounds provide ample security w.r.t. to this approach.

Equation System over F2n (Intermediate Variables). Another strategy
is to add intermediate variables in order to decrease the degree of the inverse
operation. This can be done by using the fact that

x−1 = y =⇒ xy = 1

for every nonzero x ∈ F2n . Hence, instead of using a single equation for the whole
permutation, we can introduce an intermediate variable in each round and use it
to translate every nonlinear operation into a degree-2 relation. This fact holds
with a probability of (1− 2−n)r when using r rounds. Then, the equation system
for r rounds consists of r variables and r equations in F2n [x1, x2, . . . , xr−1, k],
namely

(vin + k + c(1)) · L−1(x1)− 1 = 0,
(xj−1 + k + c(j)) · L−1(xj)− 1 = 0 ∀j ∈ {2, . . . , r − 1},

(xr−1 + k + c(r)) · (vout − k)− 1 = 0.
(5)

Note that the last equation has a degree of 2, while the other r − 1 equations
have a high degree, since we assume L−1 to be a linearized polynomial of high
degree.2 Concretely, using this system of equations and generic estimates, we
would assume the degree of regularity of this system to be

Dreg = 1+
r∑
i=1

deg(fi)−1 = 3+
r−1∑
i=1

2n−1−1 = 3+(r−1)(2n−1−1) ≥ 2n−1 (6)

for r ≥ 2 and practical n. We immediately see that((
r + 1 + 2n−1

2n−1

)ω)
>

((
1 + 2n−1

2n−1

)ω)
= (1 + 2n−1)ω > 2n

and hence
log2

((
r + 1 + 2n−1

2n−1

)ω)
> n

for ω ≥ 2 and r ≥ 1. However, note that this analysis assumes that the equations
result from a semi-regular system of equations, which is clearly not the case
due to the linearized polynomial L. Therefore, we evaluated the actual degree
reached in practical experiments.

Degrees Reached During the Computation. An overview of some of our
results is given in Fig. 3. In this illustration, Dreg denotes the estimated degree
of regularity assuming a semi-regular system of equations. On the other hand,
D denotes the highest degree reached during a Gröbner basis computation.

In our tests, we observed that the minimum degree resulting from one possible
reduction between two high-degree equations (i.e., a degree of 2 · 2n−1 = 2n)

2Indeed, we generate L−1 such that it is guaranteed to have a high degree.

14

Table 1: Gröbner basis attack strategies on Rain.

Strategy #vars = #eqs Degrees
System over F2 n n− 1
System over F2n (1) r 2n−1 + 1, 2
System over F2n (2) r − 1 2n−1 + 1, 2n−1 + 2

3 4 5 6 7 8 9 10

100

200

300

Block size n

D
eg
re
e

Dreg (2 rounds)
D (2 rounds)
Dreg (3 rounds)
D (3 rounds)

Figure 3: Comparison of the estimated degree of regularity Dreg (computed
using Eq. (6)) and the highest degree D encountered in practical Gröbner
basis computations for r ∈ {2, 3} rounds. We note that some of the lines are
overlapping, which indicates that the estimated degree matches the practical
one.

is always reached for r ≥ 3.3 Indeed, the actual degree reached in experiments
matched the estimated degree for r = 3 and came very close for r = 2. In many
cases, D was also equal to the first-fall degree.

Further, the complexity of the Gröbner basis conversion using e.g. the FGLM
algorithm [FGLM93] depends on the degree of the final recovered univariate
polynomial in the lexicographically ordered basis. In our tests, this degree reached
its maximum for r ≥ 3, and the resulting polynomial was also dense. Further, we
could only observe a small number of solutions for this polynomial, essentially
matching the expected number of keys mapping a given plaintext to a given
ciphertext. We note that any spurious solutions arising through the factorization
or root-finding process are not valid solutions to the original system, and thus not
of interest to an attacker. Following these results, we conjecture that a similar
behavior can also be observed for larger block sizes and that the construction
provides the advertised level of security if r ≥ 3.

Toy Versions and Comparison with Exhaustive Search. The Gröbner
basis computations for block sizes of n > 10 bits start to get increasingly
expensive, mainly due to the high degrees in the computation. For versions with
reduced state sizes, we can confirm that the attacks perform significantly worse
than a simple exhaustive search on a small number of bits. We expect that the
same is also true for practical state sizes.

3Since we have r − 1 linear layers, we only have a single linear layer for r = 2 rounds, and
hence only one high-degree equation in the resulting equation system.

15

A Different Representation. The two representations given above (i.e., one
variable for the entire permutation or one intermediate variable for each round)
are not the only possible descriptions of the function. Indeed, given Eq. (5), for
example it is possible to skip some variables and equations, since

L−1(xi) = 1
xi−1 + k + c(i)

=⇒ xi = L

(
1

xi−1 + k + c(i)

)
, and

xi + k + c(i+1) = 1
vout − k

=⇒ xi = 1
vout − k

− k − c(i+1),

and hence
L

(
1

xi−1 + k + c(i)

)
= 1
vout − k

− k − c(i+1),

which implies(
an−1 +

n−2∑
j=0

aj

(
xi−1 + k + c(i)

)2n−1−2j
)

(vout − k)

−
(
xi−1 + k + c(i)

)2n−1 ((
k + c(i+1)

)
(vout − k)− 1

)
= 0

for the last round, where (aj)n−1
j=0 are the coefficients of L (we omit the distinction

between the different linear layers for simplicity). A similar technique can also
be used to skip every second variable in a construction using more than 3
rounds. However, even though this approach may speed up the Gröbner basis
computations for a low number of equations and variables (although the degree
of regularity was the same in practical experiments), this does not necessarily
mean that the final solving step will also be faster. In particular, in our practical
tests we observed that the recovered univariate polynomials were mostly dense
and of maximum degree, especially with larger n. Exploiting this approach
further, we would eventually end up at the single-variable equation system given
at the beginning of this section, where the prohibitively expensive step is not
the Gröbner basis computation, but the factorization of the final polynomial.

Concrete Runtime Results. In Fig. 4 we compare the runtime of the entire
solving step for a key-recovery attack and different state sizes n. Our experiments
suggest that the expected runtime more than doubles when increasing n by one
for n ≥ 6. We therefore reasonably assume that the same behavior continues for
larger block sizes, and in particular for n ≥ 128. All tests were done with Sage.

Comparison with Similar Constructions. Note that our design is similar
to Jarvis [AD18], since it uses the same S-box and a similar round function.
Moreover, there have been attacks on Jarvis [ACG+19] which use a similar
approach as the one taken here. However, these attacks mainly exploit the low
degree of the linear layer (which is required by the design strategy). This is
not possible for Rain, since we ensure that each linear layer has maximum
degree. Indeed, in [ACG+19, Section 7], the authors compare the affine part of
the Jarvis S-box with the affine part of the AES S-box. The latter also has a
maximum degree and cannot be split into two low-degree components, which is
possible in Jarvis.

16

3 4 5 6 7 8 9 100

1,000

2,000

Block size n

T
im

e
(s
ec
on

ds
) 2 rounds (1 variable)

3 rounds (2 variables)

Figure 4: Solving time comparisons for 2-round and 3-round versions of Rain.

Moreover, our construction shows similarities with MiMC [AGR+16], whose S-
box also covers the full state and can also be described by low-degree polynomials.
Although MiMC has recently been attacked [EGL+20], the proposed method is
not applicable in our setting due to the limited amount of data available.

4.3.2 Other Attacks

Since we only consider an attacker who has access to a single (input, output)
pair, we mainly analyzed attack vectors which are based on solving equation
systems over some finite field. However, for completeness, we briefly mention
other attack vectors here.

Differential and Linear Attacks. Note that these statistical attacks in
their basic form need multiple (plaintext, ciphertext) pairs and are thus not
directly applicable in our scenario. Still, even when considering multiple pairs,
we would be counting the number of active S-boxes in each round. Since our
design consists of a single large S-box, for a nonzero input difference in each
round clearly one S-box is active. Further, the inversion mapping over F2n

provides sufficiently strong linear and differential properties [Nyb94] such that
the maximal differential probability is less than 2−2n and the maximum linear
correlation is less than 2−n after 3 rounds.

Interpolation. We do not consider interpolation attacks in our setting, since
multiple data pairs are needed in order to interpolate. However, we still assume
the polynomial representation of the function to be dense after 3 rounds, mainly
due to the uses of the inversion mapping.

Linearization. In a linearization attack, we essentially replace every monomial
of degree greater than 1 in the equation system by a new variable, until eventually
arriving at a linear equation systems. After that, a simple equation solving
algorithm can be used to attack the primitive.

In our scenario, this attack is not applicable since increasing the number of
variables (and equations) with the linearization requires an increased number of
data, which is not accessible to the attacker. Secondly, the number of monomials is
large thanks to the density of the inverse function. Finally, note that introducing
intermediate variables in a linearization step does not seem to be feasible, because
their values would change with each requested data pair.

17

Table 2: Attack strategies and number of rounds to prevent each of them. Attacks
not applicable are denoted by “N/A”.

Type Nr. of rounds
Differential cryptanalysis N/A
Linear cryptanalysis N/A
Integral/saturation attacks N/A
Higher-order differentials, cube attacks N/A
Gröbner basis (full-round) 2
Gröbner basis (intermediate variables) 3
Interpolation N/A
Linearization N/A
Guess and determine 2

Higher-Order Differential Attacks. In higher-order differential attacks
[Lai94], a low degree of the construction over Fn2 (i.e., the algebraic degree) is
exploited. However, this attack vector also needs more than a single pair, and is
hence not directly applicable in our setting. Nevertheless, variations of the attack
might work for very low degrees [DMRS20]. Therefore, we mention that the
algebraic degree of the inversion mapping in F2n is n− 1 (i.e., the maximum for
a permutation), and hence a higher-order differential distinguisher is infeasible
since it would use the full space. The same is true also for the inverse direction.

Guess-and-Determine Attacks. Guess-and-determine attacks can often be
used together with other algebraic techniques in order to reduce the complexity
of the main attack. For example, a couple of variables may be guessed in order
to simplify the resulting equation systems. For Rain, we can essentially guess
over F2n or directly over F2. The former approach matches the complexity of
exhaustive search after guessing a single element. In the second approach, we
are allowed to guess b < n bits. Note, however, that the mapping x 7→ x−1

provides full diffusion on the bit level. While it may be possible to linearize
specific component functions after one nonlinear operation by guessing b < n bit
variables, we expect this property to vanish after at most 2 full rounds. Practical
experiments support this conclusion.

4.3.3 Recommended Number of Rounds

We summarize the results of our security analysis and give the number of rounds
to prevent the attacks in Table 2. We conclude that 3 rounds provide security
against attackers who are only allowed to use a single (plaintext, ciphertext)
pair. In the following, we primarily use 3 or 4 rounds and call the resulting
instances Rain3 and Rain4, respectively. While our analysis shows that 3 rounds
are sufficient, we propose to primarily use Rain4, with an additional round of
security margin. In our evaluation in Section 6, we give numbers for both the
3-round and 4-round variants for comparison. These round numbers are valid
independent of the block size n, when considering n-bit security.

18

Table 3: Parameters for the Banquet proof system [BdSGK+21] for κ-bit security,
a total ofm (= m1 ·m2) inversions over a native field of F2n , lifted to an extension
field F2nλ in the proof.

OWF κ m m1 m2 n λ

EM-AES-128 128 160 10 16 8 4
LSAES-128 128 50 5 10 32 1
EM-LSAES-128 128 40 5 8 32 1

5 Constructing Signatures from our Designs
We now discuss how one can use the designs presented in the previous sections
to build post-quantum signature schemes.

5.1 EM-AES, LSAES, EM-LSAES
For the constructions described in Section 2.1 and Section 3, we use the Banquet
proof system [BdSGK+21] directly. Using the Limbo proof system [dSGOT21]
would also be possible, but from the formulas given by the authors the resulting
signatures would be slightly larger. We give the parameters (in the notation of
[BdSGK+21, Section 4]) for the different instantiations in Table 3. The number
of parties N and parallel repetitions τ can be chosen as a tradeoff between size
and speed, following the soundness analysis of [BdSGK+21, Section 6.1].

Key generation also follows Banquet and BBQ: secret keys are randomly
sampled until one is found such that none of the S-box inputs are zero. As
explained in Section 2.1 for the EM options we can instead sample the key
uniformly at random, and choose the per-user random value until no S-box
inputs are zero.

In the case of LSAES, the probability of a zero input per S-box is decreased
from 1/256 to 1/232, and the total number of S-boxes is nearly four times lower,
so the probability of a zero input per key, given by (1− 2−32)# S-boxes, is about
2−26. As argued in [dDOS19, BdSGK+21], this excludes only a small portion of
the key space, and does not reduce security significantly.

5.2 Rainier – A Signature Scheme based on Rain
For building a signature scheme from our Rain design, we do not use Banquet
directly. Instead, we use a simplified variant of Banquet that is better suited for
the low number of inversions in Rain. We give a short summary of Banquet and
the modifications we make to the protocol in the following.

5.2.1 High-Level Roadmap

We rely on the ideas of Banquet [BdSGK+21], which introduced a new MPCitH
proof protocol suited for block ciphers using field inverses. Instead of computing
the inverse operation using a square-and-multiply approach or relying on other
techniques from the MPC literature like the masked inversion of BBQ [dDOS19],
the Banquet proof protocol instead injects the output of the field inverse ti = si

−1

19

as an additional input to the protocol. While this removes the need to compute
it during the MPC evaluation, the parties must now validate the injected values.

A simple approach is to multiply si and ti in the MPC protocol and check if
the result is 1 (inputs si = 0 are filtered out during key generation). However,
this again introduces additional overhead to perform the multiplications. An
optimization proposed in Banquet is to instead interpolate two degree-(m− 1)
polynomials S and T using all of the inputs and outputs of the m inverse
operations, respectively, and show that their product is equal to a degree-
(2m− 2) polynomial P which evaluates to 1 at the points [1,m]. This check is
done by evaluating the polynomials at a randomly chosen point R and checking
that S(R) · T (R) = P (R). To make this polynomial proof zero-knowledge, an
additional random point is included when interpolating S and T in the MPC
protocol. This ensures that the evaluation of the polynomials at the point R
does not leak any information about the interpolated values.

To further improve efficiency, Banquet first splits the m values into a square
of size

√
m ×

√
m and then interpolates the rows to get

√
m polynomials of

degree
√
m. Then, a random linear combination of these smaller polynomials

is checked in a similar fashion, reducing the number of elements that need
to be communicated from 2m to m + O(

√
m). However, in our investigation

we observed that while this step is beneficial for Banquet (where m is in the
hundreds), it is not for our Rain design (with m ∈ {3, 4}). With such a small m
the additional overhead of this approach results in larger signatures. We therefore
take a step back and use the simple polynomial checking protocol outlined above
for Rain.

In general, the crossover point seems to be for m around 40–50, depending
also on N and the field size. For instance, with EM-LSAES-128 (which uses a
32-bit field), we have m = 40, and we estimate that when N ≥ 256 the simplified
protocol produces shorter proofs.

In addition to producing smaller signatures (at least for Rain) and having a
simpler protocol description, the simple polynomial checking protocol, which we
call Rainier in the following, also transforms the proof from a 7-pass protocol
to a 5-pass protocol. This means that when we make it non-interactive using
the Fiat-Shamir transformation, we can rely on the previous analysis of 5-pass
protocols by Kales and Zaverucha [KZ20a] for the soundness calculation. The
new soundness analysis then results in a lower number of parallel repetitions,
further reducing signature size.

Further Optimizations. Notice that we do not need to include all 3 points
S(R), T (R) and P (R) in the final signature, since from any two of them we can
calculate the third one. Therefore, we only include S(R) and T (R) in the final
signature and save one field element per repetition. (Note that this can also be
applied to the original Banquet protocol for minor size reductions.)

Additionally, in a similar fashion to Picnic, we can omit the inclusion of ∆sk,
∆t and ∆P in the signature in case that the challenged party is the first one
(j = 1). This would save, on average, 1/N · τ · (κ + L · κ + (L + 1) · κ) bits in
the signature. However, for a larger number of parties this does not result in
significant savings (e.g., for 128-bit security and 64 parties we save 44 bytes on
average), and we therefore choose not to use this optimization, which has the
drawback of making signatures variable-length. However, if future work were to

20

use N = 2, this would be a significant optimization.
Remark 3. As mentioned, one alternative to the Banquet-style protocol above
is to directly calculate si · ti in the MPC protocol and check that the result
is equal to one. This can be done using a variant of [KKW18] working over
the native field. However, a quick analysis of the resulting signature size shows
that this approach is inferior: A signature using this approach with Rain at
the 128-bit security level has 512 bits of MPC input per repetition, 384 bits of
preprocessing information and 384 bits of online communication, totaling 1280
bits per repetition. Together with the commitments and seeds, a KKW-style
signature would be 12.9 KB in size, which is just a little larger than Picnic3 for
the same parameter choices. As we will show in Section 6, Rainier can produce
much smaller signatures, highlighting the interplay between the cipher and the
MPCitH proof system.

5.2.2 The Rainier signature scheme

The key generation function of Rainier, KeyGen(1κ) uses Rain in Theorem 1,
i.e., it samples k, p $← {0, 1}κ, computes c ← Raink(p). If any of the inverse
operations in the computation have a zero input, repeat with a new random p
until there are no zero inputs. Output the secret key sk = k and the public key
pk = (p, c). Due to the large size of the field, the probability of the zero case
occurring is negligible.

We give the full signing algorithm of Rainier in Fig. 5 and Fig. 6, and show
the verification algorithm in Fig. 7. These algorithms make use of several hash
functions: Commit, H1 and H2; as well as two pseudorandom generators: Expand
and ExpandTape. All of these are instantiated using SHAKE1284 (or SHAKE256
for larger security levels), with different constants added for domain separation.
Sample(t) is a helper function that samples elements from a random tape t that
was output by ExpandTape, keeping track of the current position on the tape.

5.2.3 Soundness Analysis and Parameter Selection

Rainier is parameterizable on the security level κ (which is also equal to the key
and block size of Rain, and inverse operations are done in GF(2κ)), the number
of parties N and the number of parallel repetitions τ .

In the following we give an analysis of the soundness of the protocol, based on
the previous analysis done in [BdSGK+21], taking into account our modifications
to the protocol. In Phase 2 of Fig. 6, a random value Re is produced for each
repetition which is the point at which the polynomials Se, Te and Pe are evaluated.
Remember that for all l ∈ [L] the values of Se(l) and Te(l) correspond to the
input and output of the inverse operation respectively and that we set up Pe in
such a way that Pe(l) = 1. If Se · Te 6= Pe, we can bound the probability of a
random challenge Re not detecting this inequality by the number of zeroes of
the polynomial Qe = Pe − Se · Te. In the case of a cheating prover, Qe(Re) may
be zero by chance, but the number of zeroes of Qe is bounded by Theorem 4.

4We note that hashing is the dominant part of the overall runtime (about 55% from our
benchmarks) and the usage of a faster hash function (e.g., SHA-2 or Haraka [KLMR16]) can
substantially improve performance.

21

Sign(sk,msg): Phase 1: Committing to the seeds, the execution views
and interpolated polynomials of the parties.

1: Sample a random salt salt $← {0, 1}2κ.
2: for each parallel execution e do
3: Sample a root seed: seede

$← {0, 1}κ.
4: Derive seed(1)

e , . . . , seed(N)
e as leaves of binary tree from seede.

5: for each party i do
6: Commit to seed: com(i)

e ← Commit(salt, e, i, seed(i)
e).

7: Expand tape: tape(i)
e ← ExpandTape(salt, e, i, seed(i)

e)
8: Sample witness share: sk(i)

e ← Sample(tape(i)
e).

9: Compute witness offset: ∆ske ← sk−
∑
i sk(i)

e .
10: Adjust first share: sk(1)

e ← sk(1)
e + ∆ske.

11: for each S-box ` do
12: For each party i, compute the local linear operations in Rain to

obtain the share s(i)
e,` of the S-box input se,`.

13: Compute the S-box output: te,` =
(∑

i s
(i)
e,`

)−1
.

14: For each party i, set: t(i)e,` ← Sample(tape(i)
e).

15: Compute output offset: ∆te,` = te,` −
∑
i t

(i)
e,`.

16: Adjust first share: t(1)
e,` ← t

(1)
e,` + ∆te,`.

17: Broadcast each party’s share ct(i)
e of the output.

18: for each party i do
19: Sample random points: s̄(i)

e , t̄
(i)
e ← Sample(tape(i)

e).
20: Define S(i)

e (k) = s
(i)
e,k and T (i)

e (k) = t
(i)
e,k for k ∈ [0, L− 1]; set

S
(i)
e (L) = s̄

(i)
e and T (i)

e (L) = t̄
(i)
e .

21: Interpolate polynomials S(i)
e (·) and T (i)

e (·) of degree L using
the defined L+ 1 points.

22: Compute product polynomial: Pe ←
(∑

i S
(i)
e

)
·
(∑

i T
(i)
e

)
.

23: for each party i do

24: For k ∈ [0, L− 1]: P (i)
e (k) =

{
1 if i = 1
0 if i 6= 1

25: For k ∈ [L, 2L], sample P (i)
e (k)← Sample(tape(i)

e).
26: for k ∈ [L, 2L] do
27: Compute offset: ∆Pe(k) = Pe(k)−

∑
i P

(i)
e (k).

28: Adjust first share: P (1)
e (k)← P

(1)
e (k) + ∆Pe(k).

29: For each party i, interpolate P (i)
e using the 2L+ 1 points.

30: Set σ1 ← (salt, ((com(i)
e)i∈[N], (ct(i)

e)i∈[N],∆ske, (∆te,`)`∈[L],
31: (∆Pe(k))k∈[L,2L])e∈[τ].

Figure 5: Rainier Signature Scheme - Phase 1. Commitment to executions of Rain
and the interpolated polynomials. We use e to index the τ parallel repetitions, i
to index the N parties, and ` to index the L S-boxes.

Lemma 4 (Schwartz–Zippel Lemma). Let Q(x) ∈ F[x] be a non-zero polynomial

22

Phase 2: Challenging the checking polynomials.
1: Compute challenge hash: h1 ← H1(msg, pk, σ1).
2: Expand h1: (Re)e∈[τ] ← Expand(h1) with Re ∈ F2κ \ [0, L− 1].
Phase 3: Committing to the views of the checking protocol.

1: for each execution e do
2: for each party i do

3: Compute and open: a(i)
e ← S

(i)
e (Re),

b
(i)
e ← T

(i)
e (Re) and c(i)e ← P

(i)
e (Re).

4: Set σ2 ← (Se(Re), Te(Re), Pe(Re), (a(i)
e , b

(i)
e , c

(i)
e)i∈[N])e∈[τ].

Phase 4: Challenging the views of the checking protocol.
1: Compute challenge hash: h2 ← H2(salt, h1, σ2).
2: Expand hash: (̄ie)e∈[τ] ← Expand(h2) where īe ∈ [N].
Phase 5: Opening the views of the checking protocol.

1: for each execution e do
2:

seedse ← {log2(N) nodes needed to compute seede,i for i ∈
[N] \ {̄ie}}.

3: Output σ ← (salt, h1, h2, (seedse, com(̄ie)
e ,∆ske, (∆te,`)`∈[L],

(∆Pe(k))k∈[L,2L], Se(Re), Te(Re))e∈[τ]).

Figure 6: Rainier Signature Scheme - Phases 2-5. Computation of the checking
protocol, challenging and opening of the views of the checking protocol.

of degree d ≥ 0. For any finite subset S of F,

Pr
[
r

$← S : Q(r) = 0
]
≤ d

|S|
.

Since the polynomial Qe is of degree 2L, and we sample the challenge Re
from a set of size 2κ − L, we arrive at a maximum cheating probability of 2L

2κ−L .
The second challenge in Phase 4 of Fig. 6 chooses the player whose state does

not get revealed. A cheating prover has a 1/N chance of guessing this challenge
and therefore cheating.

Following the analysis of 5-pass protocols without early abort in [KZ20a], we
provide an attack strategy with the minimum work, where we cheat τ1 times
for the first challenge (i.e., produce a polynomial Pe 6= Se · Te and hope that
the random challenge hits a random zero in Qe) and cheat in the remaining
τ2 = τ − τ1 instances by guessing which player does not get revealed (the second
challenge) and cheat in the MPC computation of that player.

The minimum cost of the attack is then given by

Cost(κ,N, τ) = 1
SPMF(τ, τ1, 2L/(2κ − L)) +Nτ−τ1 ,

where SPMF is the summed probability mass function,

SPMF(n, k, p) =
n∑

k′=k

(
n

k′

)
pk
′
(1− p)n−k

′
,

where each term gives the probability of guessing correctly in k′ of τ independent
trials, each with success probability p. The choice of τ1 that minimizes the attack

23

Verify(pk,msg, σ) :
1: Parse σ ← (salt, h1, h2, (seedse, com(̄ie)

e ,∆ske, (∆te,`)`∈[L],
(∆Pe(k))k∈[L,2L], Se(Re), Te(Re))e∈[τ]).

2: Expand hashes as (Re)e∈[τ] ← Expand(h1) and (̄ie)e∈[τ] ← Expand(h2).
3: for each execution e do
4: Use seedse to recompute seed(i)

e for i ∈ [N] \ īe.
5: for each party i ∈ [N] \ īe do
6: Recompute com(i)

e ← Commit(salt, e, i, seed(i)
e), tape(i)

e ←
ExpandTape(salt, e, i, seed(i)

e) and sk(i)
e ← Sample(tape(i)

e).
7: if i ?= 1 then
8: Adjust first share: sk(i)

e ← sk(i)
e + ∆ske.

9: for each S-box ` do
10: Compute linear operations in Rain to obtain s(i)

e,`.
11: Sample output share: t(i)e,` ← Sample(tape(i)

e).
12: if i ?= 1 then
13: Adjust first share: t(i)e,` ← t

(i)
e,` + ∆te,`.

14: Recompute output broadcast ct(i)
e .

15: Do as in Phase 1, Lines 19–21 to interpolate S(i)
e , T

(i)
e .

16: for k from 0 to L− 1 do
17: If i ?= 1, set P (i)

e (k) = 1; otherwise set P (i)
e (k) = 0.

18: for k from L to 2L do
19: Sample share: P (i)

e (k)← Sample(tape(i)
e).

20: if i ?= 1 then
21: Adjust first share: P (i)

e (k)← P
(i)
e (k) + ∆Pe(k).

22: Interpolate P (i)
e and compute c(i)e ← P

(i)
e (Re).

23: Compute a(i)
e ← S

(i)
e (Re) and b(i)e ← T

(i)
e (Re).

24: Compute Pe(Re)← Se(Re) · Te(Re).
25: Compute missing output broadcast ct(̄ie)

e = ct−
∑
i 6=īe ct(i)

e .
26: Compute missing shares a

(̄ie)
e ← Se(Re) −

∑
i 6=īe a

(i)
e , b

(̄ie)
e ←

Te(Re)−
∑
i6=īe b

(i)
e and c(̄ie)e ← Pe(Re)−

∑
i 6=īe c

(i)
e .

27: Set h′1 ← H1

(
msg, pk, salt, ((com(i)

e)i∈[N], (ct(i)
e)i∈[N],

∆ske, (∆te,`)`∈[L], (∆Pe(k))k∈[L,2L])e∈[τ]

)
.

28: Set h′2 ← H2

(
salt, h′1, (Se(Re), Te(Re), Pe(Re),

(a(i)
e , b

(i)
e , c

(i)
e)i∈[N])e∈[τ]

)
.

29: Output accept iff h′1
?= h1 and h′2

?= h2.

Figure 7: Rainier Verification algorithm.

cost gives the optimal attack

τ1 = arg min
0≤τ ′≤τ

1
SPMF(τ, τ ′, 2L/(2κ − L)) +Nτ−τ ′ .

To select secure parameters, we fix κ and N and increase the value of τ until

24

the best attack strategy has an average cost of 2κ or more. A script to select
secure parameters is included in the source code and was used to generate all
parameter sets in this work.

5.2.4 Security Proof

Although our protocol is similar in nature to the proof protocol of Banquet
[BdSGK+21], the modifications to the protocol (reducing it from 7 to 5 internal
rounds) mean that the existing proof does not apply directly. Like Banquet,
we conjecture that Rainier is also secure in the quantum random oracle model
(QROM), as there has been much recent progress in QROM analysis for signature
schemes constructed from Σ-protocols (see, e.g., [DFMS19, DFM20, GHHM20]),
but we leave a formal proof to future work. A good starting point is the work of
Don et al. [DFM20], who give a generic QROM security analysis of signatures
schemes constructed from 5-round Σ-protocols using the Fiat-Shamir transform.

Theorem 5. The Rainier signature scheme is EUF-CMA-secure, assuming that
Commit, H1, H2 and Expand are modelled as random oracles, ExpandTape is a
secure PRG, the seed tree construction is computationally hiding, the (N, τ, L)
parameters are appropriately chosen, and that KeyGen is a secure one-way
function.

Proof. See Appendix A.3 for the full proof.

Alternative Proof systems for Rain Recently and in concurrent work,
Kales and Zaverucha [KZ21] presented a new proof system which could be used
together with Rain to build a signature scheme. Since no implementation of their
proof system exists at this time, we leave a full integration and implementation
for future work. Based on their theoretical estimates, we expect their proof
system to reduce the proof size by 2 elements of F per repetition. For concrete
Rainier parameters, this results in a size reduction of about 8− 10%.

6 Performance Evaluation & Comparison with
Other Designs

We now compare the performance in terms of signature sizes and signing/verification
run-times of several post-quantum signature schemes. To ensure a fair compar-
ison, all candidates are benchmarked on the same machine, a standard Intel
desktop i7-4790 CPU @ 3.60GHz. For Banquet [BdSGK+21], we used the public
implementation [Ban21], which we also used as a starting point for our own
C++ implementations of Banquet using the single-key Even–Mansour variants,
LSAES and Rainier5. For other signature schemes, we use their implementation
from SUPERCOP6.

5Our implementations are available at https://github.com/IAIK/rainier-signatures.
6https://bench.cr.yp.to/supercop.html, version 20210125

25

https://github.com/IAIK/rainier-signatures
https://bench.cr.yp.to/supercop.html

6.1 Performance Evaluation
We compare the designs explored in this work to several other post-quantum
signature schemes, namely the ones in the third round of the NIST PQC standard-
ization project; of these, the ones with the most similarity are Picnic [ZCD+20],
which is also an MPCitH-based scheme,and SPHINCS+[HBD+20]which also
only relies on the security of symmetric-key primitives.

We focus our comparisons on the 128-bit security level (NIST level L1), as
this is expected to be sufficiently secure in the near term, and due to the fact
that some of the constructions like EM-AES are not able to instantiate higher
security levels in a straightforward way. We give additional data for the 192-bit
and 256-bit security levels in Appendix D.1.

In Fig. 8, we give a graphical overview of the signing performance of the
schemes explored in this work and compare them to Picnic and SPHINCS+.
For almost all of the schemes in Fig. 8, verification has similar performance to
signing, except for SPHINCS+, where the verification is much faster, in the
range of 0.2-2.6ms, depending on the instance and used hash function. We give
the numerical data and detailed parameter sets in Appendix D, Table 5.

212 213 214 215 216

100

101

102

103

Signature Size (Bytes)

Si
gn

in
g
T
im

e
(m

s)

Rainier3
Rainier4
Banquet
EM-Banquet
LSAES-Banquet
EM-LSAES-Banquet
Picnic
SPHINCS+

Figure 8: Comparison of signing time and signature size of various schemes
at the 128-bit security level. Picnic instances include all proposed third round
parameter sets for the L1 security level. SPHINCS+ instances include all simple
parameter sets for the L1 security level (haraka,sha256,shake256, in order of
increasing signing time).

Fig. 8 shows that Rainier3 and the more conservative Rainier4 (based on
Rain3 and Rain4, respectively) outperform the other schemes considerably. The
flexible parametrization of MPCitH-based signatures results in a large array
of possible instances that have varying tradeoffs between signature size and
performance. When compared to the small SPHINCS+ variants, Rainier can
offer signatures with similar size but two orders of magnitude faster signing or
can offer similar signing performance while reducing signature sizes from 8 to 5
KB. Comparing to Picnic3, we can also have signatures that are less than half the
size with the same performance. In Fig. 8 we also see the expected improvements

26

from single-key Even-Mansour (EM) and LSAES. We see approximately 10%
improvement in signature sizes (and running times) when using the EM variants,
since the AES key schedule can be evaluated publicly in the MPCitH protocol.
The instances using LSAES-128 also show a similar improvement compared to
using AES-128, and the EM-LSAES instances can have signatures below 10 KB.

We compare Banquet and Rainier to the third-round candidates in the NIST
PQC project in Table 4, as well as a signature built using the Limbo proof system
[dSGOT21], which offers a tradeoff of size and speed compared to Banquet. Since
the public implementation of Limbo is intended for circuits over F2 and their
Limbo-Sign AES-128 variant does not have a public implementation, we compare
directly to the benchmarks from [dSGOT21]. We also remark that the recursive
nature of the Limbo proof system is not that well suited to the small number of
multiplications in Rain. Even when executing a single recursion in Limbo, based
on the formulas given in [dSGOT21], proof sizes are already larger than Rainier.

In Table 4, we also highlight the public key sizes since in a PKI environment,
an X509 certificate includes both a signature and a public key. In this scenario
the combined size of public key + signature is relevant, benefitting the signa-
ture schemes based on symmetric-key primitives having very small public keys,
allowing them to somewhat offset their larger signatures.

Table 4: Comparison of public-key and signature sizes at the 128-bit security
level for the third-round candidates of the NIST PQC standardization project
and the designs explored in this work. Size in bytes, time in ms. Limbo numbers
are taken directly from [dSGOT21].

Scheme |pk| |sig| Sign Verify
Picnic1-L1-FS [ZCD+20] 32 32 860 1.60 1.31
Picnic3-L1 [ZCD+20] 32 12 468 5.27 3.99
sphincss128sha256simple [HBD+20] 32 8 080 248.37 0.75
sphincsf128sha256simple [HBD+20] 32 16 976 14.73 1.79
Dilithium2 [LDK+20] 1 312 2 420 0.07 0.03
Falcon-512 [PFH+20] 897 666 0.11 0.02
Rainbow Ia-Classic [DCP+20] 161 600 66 0.02 0.01
GeMSS128v2 [CFM+20] 352 188 33 320.99 0.08
Banquet-AES-128 [BdSGK+21] 32 13 284 47.31 43.03
Limbo-Sign AES-128 [dSGOT21] 32 14 512 29.00 27.00
Banquet-EM-AES-128 32 11 940 41.05 36.88
Banquet-EM-LSAES-128 32 10 496 20.99 18.91
Rainier3-128 (N = 16, τ = 33) 32 8 544 0.87 0.81
Rainier3-128 (N = 107, τ = 20) 32 6 176 2.96 2.92
Rainier3-128 (N = 1624, τ = 13) 32 4 880 28.28 28.16
Rainier4-128 (N = 16, τ = 33) 32 9 600 1.03 0.96
Rainier4-128 (N = 107, τ = 20) 32 6 816 3.47 3.42
Rainier4-128 (N = 1625, τ = 13) 32 5 260 33.41 33.11

As Table 4 shows, the lattice based schemes Dilithium and Falcon provide
the best combined sizes for public key and signature, while also having very
fast signing and verification operations. The multivariate schemes Rainbow and

27

GeMSS suffer in this scenario due to their large public keys, however Rainbow
has the fastest signing and verification times. Rainier provides smaller certificate
sizes than Picnic and SPHINCS+, and can also improve upon their signing times,
while SPHINCS+ providing faster verification times for their small parameter
set than similar sized Rainier instances.

Other One-Way Function Designs. We discuss using alternative one-way
functions such as Vision in MPCitH-based signatures in Appendix D.2.

7 Conclusions and Future Work
In this work, we present MPCitH-based signature schemes that produce – to the
best of our knowledge – the smallest signature sizes when compared to existing
schemes in this category. In addition, we open up or reinforce several exciting
directions for future research.

When implementing Rainier, an implementation of the multiplication in
GF(2n) for relatively large n is needed. The same is true for signature schemes
based on elliptic curves over binary fields. Hence, basing Rainier on the same
field could utilize shared resources, e.g., use the same multiplier in hardware.
Therefore, it seems worthwhile to explore the overhead of a hybrid signature
scheme of Rainier and a signature scheme using elliptic curves over binary fields
as given by NIST [KG13] compared to implementations that just perform either
of them.

Since we profit from using AES in Even–Mansour mode, it is of interest to
evaluate which distinguisher on round-reduced AES can actually speed up key
recovery attacks on round-reduced AES in Even–Mansour mode only having a
single (plaintext, ciphertext) pair. In this OWF security setting, is it easier to
recover the key of round-reduced AES or round-reduced AES in Even–Mansour
mode? What is the difference in the number of rounds that can be attacked? We
also note that when AES is used in EM mode for signature key pair generation,
since the key used to define the permutation is public, the key schedule used to
derive round keys may be far more complex (e.g., it could be SHAKE), without
increasing signature size since it is no longer evaluated in the MPC computation.
Does this improve the security of the EM construction?

Since MPCitH-based signature schemes are built from interactive proof
protocols, it is possible to use them interactively in certain authentication
scenarios (e.g., smart cards). This has been investigated for ZKBoo, Picnic,
and Banquet in [GMO16, KZ20b, BdSGK+21]. Performance in this scenario is
roughly an order of magnitude better than the non-interactive case, is the same
true of Rainier?

The number of rounds we use for LSAES in Table 5 is the same as AES
(e.g., 10 at the 128-bit security level). For OWF security, this seems to provide
ample margin, and reduced-round variants would offer better performance. So
this raises the question of how many rounds are sufficient for OWF security of
LSAES and EM-LSAES with 32-bit and larger S-boxes? Another interesting
topic is the security of Rain. While our current analysis covers its usage in the
signature scheme Rainier, it would be interesting to conduct more research on
its security when allowing more than the single data pair we consider in our
scenario.

28

References
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen

Dhooghe, and Alan Szepieniec. Design of symmetric-key primitives
for advanced cryptographic protocols. IACR Trans. Symmetric
Cryptol., 2020(3):1–45, 2020.

[ABC+20] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Car-
los Cid, Jan Gilcher, Tanja Lange, Varun Maram, Ingo
von Maurich, Rafael Misoczki, Ruben Niederhagen, Ken-
neth G. Paterson, Edoardo Persichetti, Christiane Peters, Pe-
ter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai,
Martin Tomlinson, and Wen Wang. Classic McEliece. Tech-
nical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[ABKM21] Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz.
Post-quantum security of the even-mansour cipher. Cryptology
ePrint Archive, Report 2021/1601, 2021. https://ia.cr/2021/
1601.

[ACG+19] Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovra-
tovich, Reinhard Lüftenegger, Christian Rechberger, and Markus
Schofnegger. Algebraic Cryptanalysis of STARK-Friendly Designs:
Application to MARVELlous and MiMC. In ASIACRYPT 2019,
volume 11923 of LNCS, pages 371–397, 2019.

[AD18] Tomer Ashur and Siemen Dhooghe. MARVELlous: a STARK-
Friendly Family of Cryptographic Primitives. IACR Cryptol. ePrint
Arch., 2018:1098, 2018.

[AGP+19] Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ra-
macher, Christian Rechberger, Dragos Rotaru, Arnab Roy, and
Markus Schofnegger. Feistel structures for MPC, and more. In
Kazue Sako, Steve Schneider, and Peter Y. A. Ryan, editors, ES-
ORICS 2019, Part II, volume 11736 of LNCS, pages 151–171.
Springer, Heidelberg, September 2019.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab
Roy, and Tyge Tiessen. MiMC: Efficient Encryption and Cryp-
tographic Hashing with Minimal Multiplicative Complexity. In
ASIACRYPT 2016, volume 10031 of LNCS, pages 191–219, 2016.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015,
Part I, volume 9056 of LNCS, pages 430–454. Springer, Heidelberg,
April 2015.

[Ban21] Banquet: Short and Fast Signatures from AES, 2021. Software im-
plementation from [BdSGK+21]. https://github.com/dkales/
banquet.

29

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2021/1601
https://ia.cr/2021/1601
https://github.com/dkales/banquet
https://github.com/dkales/banquet

[BBdS+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann
Großschädl, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and
Qingju Wang. Alzette: A 64-bit ARX-box - (feat. CRAX and
TRAX). In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 419–448.
Springer, Heidelberg, August 2020.

[Bd20] Ward Beullens and Cyprien de Saint Guilhem. LegRoast: Effi-
cient post-quantum signatures from the Legendre PRF. In Post-
Quantum Cryptography, pages 130–150. Springer, 2020.

[BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Au-
tomatic search of attacks on round-reduced AES and applications.
In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS,
pages 169–187. Springer, Heidelberg, August 2011.

[BdSGK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales,
Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. Banquet:
Short and fast signatures from AES. In Public Key Cryptography
(1), volume 12710 of LNCS, pages 266–297. Springer, 2021.

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Nieder-
hagen, Joost Rijneveld, and Peter Schwabe. The SPHINCS+

signature framework. In Lorenzo Cavallaro, Johannes Kinder, Xi-
aoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages
2129–2146. ACM Press, November 2019.

[BHMT02] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp.
Quantum amplitude amplification and estimation. Contemporary
Mathematics, 305:53–74, 2002.

[BR19a] Navid Ghaedi Bardeh and Sondre Rønjom. The exchange at-
tack: How to distinguish six rounds of AES with 288.2 chosen
plaintexts. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 347–370.
Springer, Heidelberg, December 2019.

[BR19b] Navid Ghaedi Bardeh and Sondre Rønjom. Practical attacks on
reduced-round AES. In Johannes Buchmann, Abderrahmane Nitaj,
and Tajje eddine Rachidi, editors, AFRICACRYPT 19, volume
11627 of LNCS, pages 297–310. Springer, Heidelberg, July 2019.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-
like cryptosystems. In Alfred J. Menezes and Scott A. Vanstone,
editors, CRYPTO’90, volume 537 of LNCS, pages 2–21. Springer,
Heidelberg, August 1991.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied
cryptography, 2020. Available online https://crypto.stanford.
edu/~dabo/cryptobook/.

[Car63] L. Carlitz. A Note on the Betti-Mathieu group. Portugaliae
Mathematica, 22:121–125, 1963.

30

https://crypto.stanford.edu/~dabo/cryptobook/
https://crypto.stanford.edu/~dabo/cryptobook/

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. Post-quantum zero-knowledge and signatures
from symmetric-key primitives. In Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1825–1842. ACM Press, October / November 2017.

[CDG+20] Melissa Chase, David Derler, Steven Goldfeder, Jonathan Katz,
Valdimir Kolesnikov, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, Xiao Wang, and Greg Zaverucha.
The Picnic Signature Scheme Design Document (version 2.2), 2020.

[CDGP93] Luc J. M. Claesen, Joan Daemen, Mark Genoe, and G. Peeters.
Subterranean: A 600 mbit/sec cryptographic VLSI chip. In ICCD,
pages 610–613. IEEE Computer Society, 1993.

[CFM+20] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin,
L. Perret, and J. Ryckeghem. GeMSS. Technical re-
port, National Institute of Standards and Technology,
2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[CL05] Carlos Cid and Gaëtan Leurent. An analysis of the XSL algorithm.
In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of LNCS,
pages 333–352. Springer, 2005.

[CMR06] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. Algebraic
aspects of the advanced encryption standard. Springer, 2006.

[CP02] Nicolas T. Courtois and Josef Pieprzyk. Cryptanalysis of block
ciphers with overdefined systems of equations. In Yuliang Zheng, ed-
itor, ASIACRYPT, volume 2501 of LNCS, pages 267–287. Springer,
2002.

[Dae95] Joan Daemen. Cipher and hash function design, strategies based
on linear and differential cryptanalysis, PhD Thesis. K.U.Leuven,
1995.

[DCP+20] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt,
Bo-Yin Yang, Matthias Kannwischer, and Jacques Patarin. Rain-
bow. Technical report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[dDOS19] Cyprien de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini,
and Nigel P. Smart. BBQ: Using AES in Picnic signatures. In
Kenneth G. Paterson and Douglas Stebila, editors, SAC 2019, vol-
ume 11959 of LNCS, pages 669–692. Springer, Heidelberg, August
2019.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie
Lallemand, Gregor Leander, Eik List, Florian Mendel, and Chris-
tian Rechberger. Rasta: A cipher with low ANDdepth and few

31

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

ANDs per bit. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages
662–692. Springer, Heidelberg, August 2018.

[DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic search of
meet-in-the-middle and impossible differential attacks. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 157–184. Springer, Heidelberg, August
2016.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved
key recovery attacks on reduced-round AES in the single-key
setting. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 371–387. Springer,
Heidelberg, May 2013.

[DFM20] Jelle Don, Serge Fehr, and Christian Majenz. The measure-
and-reprogram technique 2.0: Multi-round Fiat-Shamir and
more. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 602–631.
Springer, Heidelberg, August 2020.

[DFMS19] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner.
Security of the Fiat-Shamir transformation in the quantum random-
oracle model. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages
356–383. Springer, Heidelberg, August 2019.

[DGH+21] Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna
Kelkar, Vivek Sharma, and Greg Zaverucha. MPC-friendly sym-
metric cryptography from alternating moduli: Candidates, proto-
cols, and applications. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, pages 517–547, Cham,
2021. Springer International Publishing.

[Dic01] Leonard Eugene Dickson. Linear groups: with an exposition of the
Galois field theory, volume 6. BG Teubner, 1901.

[Din21] Itai Dinur. Cryptanalytic Applications of the Polynomial Method
for Solving Multivariate Equation Systems over GF(2). In EU-
ROCRYPT (1), volume 12696 of LNCS, pages 374–403. Springer,
2021.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block
Cipher Square. In FSE 1997, volume 1267 of LNCS, pages 149–165,
1997.

[DKS12] Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism
in cryptography: The Even-Mansour scheme revisited. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 336–354. Springer, Heidelberg, April
2012.

32

[DMMR20] Joan Daemen, Pedro Maat Costa Massolino, Alireza Mehrdad, and
Yann Rotella. The Subterranean 2.0 cipher suite. IACR Trans.
Symm. Cryptol., 2020(S1):262–294, 2020.

[DMRS20] Christoph Dobraunig, Farokhlagha Moazami, Christian Rech-
berger, and Hadi Soleimany. Framework for faster key search
using related-key higher-order differential properties: Applications
to Agrasta. IET Inf. Secur., 14(2):202–209, 2020.

[DR98] Joan Daemen and Vincent Rijmen. The block cipher Rijndael. In
CARDIS, volume 1820 of LNCS, pages 277–284. Springer, 1998.

[DR20] Joan Daemen and Vincent Rijmen. The Design of Rijndael - The
Advanced Encryption Standard (AES), Second Edition. Informa-
tion Security and Cryptography. Springer, 2020.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle
attack on 8-round AES. In Kaisa Nyberg, editor, FSE 2008, volume
5086 of LNCS, pages 116–126. Springer, Heidelberg, February 2008.

[dSGOT21] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and
Titouan Tanguy. Limbo: Efficient zero-knowledge mpcith-based
arguments. In CCS, pages 3022–3036. ACM, 2021.

[EGL+20] Maria Eichlseder, Lorenzo Grassi, Reinhard Lüftenegger, Morten
Øygarden, Christian Rechberger, Markus Schofnegger, and Qingju
Wang. An algebraic attack on ciphers with low-degree round
functions: Application to full MiMC. In ASIACRYPT (1), volume
12491 of LNCS, pages 477–506. Springer, 2020.

[EM97] Shimon Even and Yishay Mansour. A construction of a cipher
from a single pseudorandom permutation. Journal of Cryptology,
10(3):151–162, June 1997.

[FGLM93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo
Mora. Efficient computation of zero-dimensional gröbner bases by
change of ordering. J. Symb. Comput., 16(4):329–344, 1993.

[FJM14] Pierre-Alain Fouque, Antoine Joux, and Chrysanthi Mavromati.
Multi-user collisions: Applications to discrete logarithm, Even-
Mansour and PRINCE. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 420–438.
Springer, Heidelberg, December 2014.

[FKL+01] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael
Stay, David Wagner, and Doug Whiting. Improved cryptanalysis
of Rijndael. In Bruce Schneier, editor, FSE 2000, volume 1978 of
LNCS, pages 213–230. Springer, Heidelberg, April 2001.

[GB01] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography,
2001.

33

[GCZ16] Steven Goldfeder, Melissa Chase, and Greg Zaverucha. Efficient
post-quantum zero-knowledge and signatures. Cryptology ePrint
Archive, Report 2016/1110, 2016. http://eprint.iacr.org/
2016/1110.

[Gen07] Giulio Genovese. Improving the algorithms of berlekamp and
niederreiter for factoring polynomials over finite fields. J. Symb.
Comput., 42(1-2):159–177, 2007.

[GHHM20] Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Chris-
tian Majenz. Tight adaptive reprogramming in the QROM.
Cryptology ePrint Archive, Report 2020/1361, 2020. https:
//eprint.iacr.org/2020/1361.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Arnab Roy, Christian Rech-
berger, and Markus Schofnegger. Poseidon: A new hash function
for zero-knowledge proof systems. In USENIX Security Symposium,
Vancouver, B.C., August 2021. USENIX Association.

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dra-
gos Rotaru, and Markus Schofnegger. On a generalization of
substitution-permutation networks: The HADES design strategy.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 674–704. Springer, Heidel-
berg, May 2020.

[GM16] Shay Gueron and Nicky Mouha. Simpira v2: A family of efficient
permutations using the AES round function. In Jung Hee Cheon
and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 95–125. Springer, Heidelberg, December
2016.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo:
Faster zero-knowledge for Boolean circuits. In Thorsten Holz and
Stefan Savage, editors, USENIX Security 2016, pages 1069–1083.
USENIX Association, August 2016.

[Gol07] Oded Goldreich. Foundations of Cryptography: Volume 1, Basic
Tools. Cambridge University Press, 2007.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In 28th ACM STOC, pages 212–219. ACM Press, May
1996.

[GRR17] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A new
structural-differential property of 5-round AES. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017,
Part II, volume 10211 of LNCS, pages 289–317. Springer, Heidel-
berg, April / May 2017.

[HBD+20] Andreas Hulsing, Daniel J. Bernstein, Christoph Dobraunig,
Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Panos

34

http://eprint.iacr.org/2016/1110
http://eprint.iacr.org/2016/1110
https://eprint.iacr.org/2020/1361
https://eprint.iacr.org/2020/1361

Kampanakis, Stefan Kolbl, Tanja Lange, Martin M Laurid-
sen, Florian Mendel, Ruben Niederhagen, Christian Rech-
berger, Joost Rijneveld, Peter Schwabe, Jean-Philippe Aumas-
son, Bas Westerbaan, and Ward Beullens. SPHINCS+. Tech-
nical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation. In David S.
Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30.
ACM Press, June 2007.

[JAC+20] David Jao, Reza Azarderakhsh, Matthew Campagna, Craig
Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel,
Brian LaMacchia, Patrick Longa, Michael Naehrig, Joost
Renes, Vladimir Soukharev, David Urbanik, Geovandro Pereira,
Koray Karabina, and Aaron Hutchinson. SIKE. Tech-
nical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[JNRV20] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando
Virdia. Implementing Grover oracles for quantum key search on
AES and LowMC. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 280–
310. Springer, Heidelberg, May 2020.

[JST21] Joseph Jaeger, Fang Song, and Stefano Tessaro. Quantum key-
length extension. In 19th Theory of Cryptography Conference –
TCC 2021, volume 13042 of LNCS, pages 209–239, Springer, 2021.

[JV17] Antoine Joux and Vanessa Vitse. A crossbred algorithm for solving
boolean polynomial systems. In NuTMiC, volume 10737 of LNCS,
pages 3–21, 2017.

[Kat10] Jonathan Katz. Digital signatures. Springer Science & Business
Media, 2010.

[KG13] Cameron F. Kerry and Patrick D. Gallagher. FIPS PUB 186-4:
Digital Signature Standard (DSS), 2013.

[KKW18] Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved
non-interactive zero knowledge with applications to post-quantum
signatures. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537.
ACM Press, October 2018.

[KLMR16] Stefan Kölbl, Martin M. Lauridsen, Florian Mendel, and Christian
Rechberger. Haraka v2 - Efficient short-input hashing for post-
quantum applications. IACR Trans. Symm. Cryptol., 2016(2):1–29,
2016. http://tosc.iacr.org/index.php/ToSC/article/view/
563.

35

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://tosc.iacr.org/index.php/ToSC/article/view/563
http://tosc.iacr.org/index.php/ToSC/article/view/563

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich
Wiemer. Shorter linear straight-line programs for MDS matrices.
IACR Trans. Symm. Cryptol., 2017(4):188–211, 2017.

[KZ20a] Daniel Kales and Greg Zaverucha. An attack on some signa-
ture schemes constructed from five-pass identification schemes.
In Stephan Krenn, Haya Shulman, and Serge Vaudenay, editors,
CANS 20, volume 12579 of LNCS, pages 3–22. Springer, Heidelberg,
December 2020.

[KZ20b] Daniel Kales and Greg Zaverucha. Improving the performance of
the Picnic signature scheme. IACR TCHES, 2020(4):154–188,
2020. https://tches.iacr.org/index.php/TCHES/article/
view/8680.

[KZ21] Daniel Kales and Greg Zaverucha. Efficient Lifting for Shorter Zero-
Knowledge Proofs and Post-Quantum Signatures (Preliminary
Draft), 2021. https://groups.google.com/a/list.nist.gov/
g/pqc-forum/c/vLyUa_NFUsY.

[Lai94] Xuejia Lai. Higher Order Derivatives and Differential Cryptanaly-
sis, pages 227–233. 1994.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède
Lepoint, Peter Schwabe, Gregor Seiler, Damien Stehlé,
and Shi Bai. CRYSTALS-DILITHIUM. Technical re-
port, National Institute of Standards and Technology,
2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[LN96] Rudolf Lidl and Harald Niederreiter. Finite Fields. Encyclopedia
of Mathematics and its Applications. Cambridge University Press,
2 edition, 1996.

[Mat94] Mitsuru Matsui. Linear cryptanalysis method for DES cipher.
In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS,
pages 386–397. Springer, Heidelberg, May 1994.

[MDRMH10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mah-
moud Modarres-Hashemi. Improved impossible differential crypt-
analysis of 7-round AES-128. In Guang Gong and Kishan Chand
Gupta, editors, INDOCRYPT 2010, volume 6498 of LNCS, pages
282–291. Springer, Heidelberg, December 2010.

[ML15] Nicky Mouha and Atul Luykx. Multi-key security: The Even-
Mansour construction revisited. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of
LNCS, pages 209–223. Springer, Heidelberg, August 2015.

[MR02] Sean Murphy and Matthew J. B. Robshaw. Essential algebraic
structure within the AES. In Moti Yung, editor, CRYPTO, volume
2442 of LNCS, pages 1–16. Springer, 2002.

36

https://tches.iacr.org/index.php/TCHES/article/view/8680
https://tches.iacr.org/index.php/TCHES/article/view/8680
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/vLyUa_NFUsY
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/vLyUa_NFUsY
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

[MV04] David A. McGrew and John Viega. The security and performance
of the Galois/counter mode (GCM) of operation. In Anne Canteaut
and Kapalee Viswanathan, editors, INDOCRYPT 2004, volume
3348 of LNCS, pages 343–355. Springer, Heidelberg, December
2004.

[NIS15] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. National Institute of Standards and Technology
(NIST), FIPS PUB 202, U.S. Department of Commerce, 2015.

[NK93] Kaisa Nyberg and Lars R. Knudsen. Provable security against
differential cryptanalysis (rump session). In Ernest F. Brickell,
editor, CRYPTO’92, volume 740 of LNCS, pages 566–574. Springer,
Heidelberg, August 1993.

[NNY18] Ruben Niederhagen, Kai-Chun Ning, and Bo-Yin Yang. Imple-
menting Joux-Vitse’s crossbred algorithm for solvingMQ systems
over F2 on GPUs. In Tanja Lange and Rainer Steinwandt, edi-
tors, Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, pages 121–141. Springer, Heidelberg, 2018.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography.
In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of LNCS,
pages 55–64. Springer, Heidelberg, May 1994.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirch-
ner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset,
Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON.
Technical report, National Institute of Standards and Tech-
nology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[RDP+96] Vincent Rijmen, Joan Daemen, Bart Preneel, Anton Bossalaers,
and Erik De Win. The cipher SHARK. In Dieter Gollmann, editor,
FSE’96, volume 1039 of LNCS, pages 99–111. Springer, Heidelberg,
February 1996.

[Riv84] Ron Rivest. DESX, 1984. Unpublished.

[WL13] Baofeng Wu and Zhuojun Liu. Linearized polynomials over finite
fields revisited. Finite Fields Their Appl., 22:79–100, 2013.

[ZCD+20] Greg Zaverucha, Melissa Chase, David Derler, Steven
Goldfeder, Claudio Orlandi, Sebastian Ramacher, Chris-
tian Rechberger, Daniel Slamanig, Jonathan Katz, Xiao
Wang, Vladmir Kolesnikov, and Daniel Kales. Picnic. Tech-
nical report, National Institute of Standards and Technol-
ogy, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

37

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

A Security Proofs
A.1 Building a OWF from a Block Cipher
Chase et al. [CDG+17, App. D] show that any block cipher E (with key size
equal to the block size) together with Theorem 1 yields a family of secure one-way
functions assuming E is a pseudorandom function (PRF). However, their proof
technique boils down to building a distinguisher for the PRF with two oracle
queries and while this is a nice generic result, in the scenario of the signature
use-case, we actually do not need security against two queries, but only ever
reveal a single plaintext and its corresponding ciphertext. We therefore show that
we can also base the security of the resulting one-way function on the security of
the block cipher against key recovery attacks with a single known plaintext.

First, we recall the general definition of a security against key-recovery attacks
from [GB01], with slight changes to fit our notation.

Definition 6. Let E : K ×M 7→ M be a family of functions and let A be
an algorithm with access to an oracle O and outputs a string. We consider the
experiment:
Experiment Expkr

E (A) :
K

$← Keys(E)
K ′ ← AOK
if K = K ′ then return 1, else return 0

The kr-advantage of A is defined as

Advkr
E (A) = Pr[Expkr

E (A) = 1] .

We say that E is kr-secure if Advkr
E (A) is negligible.

Based on the exact definition of the oracle O, this allows modeling all kinds
of key-recovery attacks, e.g., known-plaintext (KP) or chosen-plaintext (CP)
attacks. Below we give the definition of the oracle O for a q-KP attack, where
an attacker gets access to q known plaintexts.

Algorithm 1 q-KP oracle OK():
Setup: Initialize an empty set Q.

1: if |Q| ≥ q then abort. . We already answered q queries.
2: x

$←M.
3: if x ∈ Q then goto step 2. . Check if x is fresh.
4: x→ Q.
5: Return x,EK(x).

In our scenario, we are considering the key recovery security with 1 known
plaintext, i.e., we have a 1-KP oracle. We additionally weaken the winning
condition in Expkr

E in that we do not require K = K ′ to hold, but rather say
that K ′ has to be a consistent key for the plaintexts in Q, which just means
that EK(x) = EK′(x) for all x ∈ Q. This captures the fact that multiple keys
might exist that map a single plaintext to a ciphertext, however, on average we
expect only a single key since we always require |M| ≥ |K| in practice.

38

Definition 7 (1-KP-kr-security). Let E : K×M 7→M be a family of functions
and let A be an algorithm with access to the 1-KP oracle OK and outputs a
string. We consider the experiment:
Experiment Exp1-KP-kr

E (A) :
K

$← Keys(E)
K ′ ← AOK
if EK(x) = EK′(x) then return 1, else return 0

The 1-KP-kr-advantage of A, denoted Adv1-KP-kr
E (A), is the probability that A

outputs 1 in the experiment. We say E is 1-KP-kr-secure if Adv1-KP-kr
E (A) is

negligible.

We also recall the definition of a one-way function from [GB01].

Definition 8. An algorithm f : {0, 1}∗ 7→ {0, 1}∗ is a one-way function if:

1. there exists a PPT that given x outputs f(x);

2. and for every PPT algorithm A there is a negligible function ε(·) so that

Pr[x $← {0, 1}κ, y ← f(x), x∗ ← A(1κ, y) : f(x∗) = y] ≤ ε(κ) .

Theorem 9. Using a block cipher E that is 1-KP-kr-secure in Theorem 1 results
in a one-way function fx(k) := (x,Ek(x)), where x selects the concrete instance
from the family of one-way functions according to Theorem 1.

Proof. It is trivial to see that condition (1) of Theorem 8 holds if the original
E is efficiently computable, since for any key k ∈ K and any plaintext block
x ∈ M, we can always compute the ciphertext y = Ek(x) with a single call
to E. For condition (2), we build a basic reduction by using the adversary
against the OWF property to build an adversary B against the 1-KP-kr game.
B calls the 1-KP oracle O and receives (x, y) and passes it as an input to the
OWF adversary A. B then returns the output of A as its own output. It is
easy to see that our reduction B has the same success probability as A, namely
Adv1-KP-kr

E (A).

A.2 Multi-Target Security of EM-OWF
In the context of a signature scheme, each of ` users has a public key (xi, yi) and
an attacker must find a key K such that yi = FK(xi) for any i ∈ [`]. Ideally the
cost of attacking any one of ` users is at least as expensive as attacking one user.

There are some multi-target attacks known for single-key EM in the context
of encryption. Fouque, Joux and Mavromati [FJM14] give a multi-target key
recovery attack (that requires multiple (adaptive) queries to F , which are not
possible when F is used as a key generation function for signatures). Mouha and
Luykx [ML15] prove that the advantage of distinguishing multiple EM instances
from multiple permutations depends on the number of instances.

To mitigate multi-user attacks we consider two possible countermeasures.
The first is to choose a random xi per user, and the second is to choose a random
permutation πi per user. Without mitigation, a simple multi-target attack in
our scenario is possible: simply guess K∗, compute y∗ = FK∗(x) for the fixed
x, and compare y∗ to all yi; if a match is found, then K∗ is consistent with

39

the matching (x, yi). Another attack remains when xi is random, but π is fixed.
Note that a query X to π corresponds to some key for each user, namely Ki

such that X = Ki + xi. Then one key for each user can be tested by checking
whether Ki−X = yi, and so the queries to π are amortized across all users, and
security loses a factor `.

To create a random πi each user also generates a random key as the public
constant for the the block cipher used to construct π, and outputs the public
key (xi, yi, πi). Once π is random per user, it does not appear necessary to also
choose random xi, so we fix it to zero.

A.3 Security Proof of Rainier
Since the Rainier signature scheme is similar to Banquet the security analysis is
also similar. The schemes are just different enough that the results do not directly
apply, necessitating a separate analysis for Rainier. That said, this section is a
simplified version of the corresponding section in [BdSGK+21] where the scheme
and analysis are modified for a 5-round protocol, rather than the 7-round one as
in [BdSGK+21]. Many parts of the analysis are identical, and we give full credit
to [BdSGK+21].

In Theorem 5, we prove that Rainier is an EUF-CMA secure signature scheme.
Our definition of unforgeability under chosen message attacks is the standard one,
as defined in [Kat10, Definition 1.6]. We first prove in Theorem 10 that Rainier
is EUF-KO secure, i.e., secure against forgery attacks where the attacker is only
given the public key, and no signature queries. A formal definition is obtained
from the EUF-CMA definition by removing the adversary’s access to the signing
oracle. The idea is that because the protocol is sound, if an attacker successfully
creates a forgery, then by reading the random oracle query history, we can extract
the secret key, inverting the one-way function used in key generation.

Then to show that the scheme is EUF-CMA secure in Theorem 5, we addi-
tionally show that signatures may be simulated without knowledge of the private
key, by programming the random oracles.

All adversaries in this section are assumed to be probabilistic polynomial
time (in κ) algorithms.

Lemma 10. Let Commit, H1 and H2 be modeled as random oracles, Expand() be
modeled as a random function, and let (N, τ, κ, L) be parameters of the Rainier
signature scheme. Let A be an adversary against the EUF-KO security of Rainier
that makes a total of Q random oracle queries. Assuming that KeyGen is an
εowf-hard one-way function, then A’s advantage in the EUF-KO game is

εko ≤ εowf + (τN + 1)Q2

22κ + Pr[X + Y = τ],

where Pr[X + Y = τ] is as described in the proof.

Remark 11. We do not express Pr[X + Y = τ] as a closed function; we must
choose parameters (N, τ, L) for Rainier such that it is negligible in κ.

Proof. We give an algorithm B which uses the EUF-KO adversary A to compute
a pre-image for the key generation OWF.

Algorithm B simulates the EUF-KO game using the random oracles Hc
(shorthand for Commit), H1 and H2 and query lists Qc,Q1 and Q2. In addition,

40

Algorithm 2 Hc(qc = (salt, e, i, seed)):

1: x
$← {0, 1}2κ.

2: if x ∈ Bad then abort. . Check if x is fresh.
3: x→ Bad.
4: (qc, x)→ Qc.
5: Return x.

B maintains three tables Tsh, Tin and Top to store shares of the parties, inputs
to the MPC protocol and openings of the polynomial checking protocol that
it recovers from A’s RO queries. B also maintains a set Bad to keep track of
the outputs of all three random oracles. We also ignore calls to Expand() in our
analysis, since they are used to expand outputs from H1 and H2 when Expand()
is a random function this is equivalent to increasing the output lengths of H1
and H2.

Behavior of B. On input pk, a OWF challenge, algorithm B forwards it to A as a
Rainier public key for the EUF-KO game. It lets A run and answers its random
oracle queries in the following way. We assume (w.l.o.g.) that Algorithm 2,
Algorithm 3 and Algorithm 4 only consider queries that are correctly formed,
and ignore duplicate queries.)

• Hc: When A queries the commitment random oracle, B records the query
to learn which commitment corresponds to which seed. See Algorithm 2.

• H1: When A commits to seeds and sends the offsets for the secret key and
the inverse values, B checks whether the commitments were output by its
simulation of Hc. If any were for some e and i, then B is able to reconstruct
the shares for party i in execution e. If B was able to reconstruct every
party’s share for any e, then it can use the offsets included in σ1 to extract
the values used by A in that execution. For the checking polynomials, B
uses the newly sampled response to expand the challenges and extract the
checking polynomials. See Algorithm 3.

• H2: No extraction takes place during this random oracle simulation. See
Algorithm 4.

When A terminates, B checks the Tin table for any entry where the extracted
ske is consistent with pk. If a match is found, B outputs ske as a pre-image for
the OWF, otherwise B outputs ⊥.

Advantage of the reduction. Given the behavior presented above, we have the
following by the law of total probability:

Pr[A wins] = Pr[A wins ∧ B aborts] + Pr[A wins ∧ B outputs ⊥]
+ Pr[A wins ∧ B outputs sk]

≤Pr[B aborts] + Pr[A wins | B outputs ⊥]
+ Pr[B outputs sk]. (7)

Let Qcom, Q1 and Q2 denote the number of queries made by A to each
respective random oracle. Given the way in which values are added to Bad, we

41

Algorithm 3 H1(q1 = σ1):

Parse σ1 as (salt, ((com(i)
e)i∈[N], (ct(i)

e)i∈[N],∆ske,
(∆te,`)`∈[L], (∆Pe(k))k∈[L,2L])e∈[τ])

1: for e ∈ [τ], i ∈ [N] do com(i)
e → Bad.

If the committed seed is known for a certain e, i, then B records the shares
of the secret key and of the inverse values from that party that derive from
that seed and the offsets committed to in σ1:

2: for (e, i) ∈ [τ]× [N] : ∃ seed(i)
e : ((salt, e, i, seed(i)

e), com(i)
e) ∈ Qc do

3: sk(i)
e , (t(i)e,`)` ← ExpandTape(salt, e, i, seed(i)

e).
4: if i ?= 1 then sk(i)

e ← sk(i)
e + ∆ske and (t(i)e,`)` ← (t(i)e,` + ∆te,`)`.

5: (sk(i)
e , (t(i)e,`)`)→ Tsh[q1, e, i].

If the shares of the secret key and of the inverse values are known for every
party in that execution, B records the resulting secret key and inverse values:

6: for each e : ∀i, Tsh[q1, e, i] 6= ∅ do
7: ske ←

∑
i sk(i)

e and (te,`)` ← (
∑
i t

(i)
e,`)`.

8: (ske, (te,`)`)→ Tin[q1, e].

9: x
$← {0, 1}2κ.

10: if x ∈ Bad then abort.
11: x→ Bad.
12: (q1, x)→ Q1.

Store the multiplication checking values.
13: (Re)e ← Expand(x) .
14: for each e : Tin[q∗1 , e] 6= ∅ do
15: (Pe(Re), Se(Re), Te(Re))e → Top[q2, e].
16: Return x.

have:

Pr[B aborts] = (#times an x is sampled) · Pr[B aborts at that sample]

≤ (Qcom +Q1 +Q2) · max |Bad|
22κ

= (Qcom +Q1 +Q2) · Qcom + (τN + 1)Q1 + 2Q2

22κ

≤ (τN + 1)(Qcom +Q1 +Q2)2

22κ . (8)

We now analyze the probability of A winning the EUF-KO experiment
conditioned on the event that B outputs ⊥, i.e., no pre-image to pk was found
on the query lists.

Cheating in the first round. For any query q1 ∈ Q1, and its corresponding answer
h1 = (Re)e∈[τ], let G1(q1, h1) be the set of indices e ∈ [τ] of “good executions”
where both Tin[q1, e] = (ske, (te,`)`∈[L]) is non-empty and and it holds that

Pe(Re) = Se(Re) · Te(Re). (9)

42

Algorithm 4 H2(q2 = (h1, σ2)) :
1: h1 → Bad.
2: x

$← {0, 1}2κ.
3: if x ∈ Bad then abort.
4: x→ Bad.
5: (q2, x)→ Q2.
6: Return x.

If there does not exist such a q1, let G1(q1, h1) = ∅.
For any such good execution e ∈ G2(q2, h2), since B outputs ⊥ but A wins,

this implies that either the challenges in the first round were such that Eq. (9) held
(in which case any value of Re passes the check), or the challenge Re was sampled
such that Eq. (9) held. Conditioning on the first event not happening, Theorem 4
gives us that the second happens with probability at most p1 := 2L/(2κ − 2L),
given that h1 is distributed uniformly at random (which holds assuming H1 and
Expand() are random functions).

As the response h1 is uniform, each e ∈ [τ] has the same independent
probability of being in G1(q1, h1), given that B outputs ⊥. We therefore have
that #G1(q1, h1) |⊥∼ Xq1 where Xq1 = B(τ, p1), where B(τ, p1) is the binomial
distribution with τ events, each with success probability p1. Letting (qbest1 , hbest1)
denote the query-response pair which maximizes #G1(q1, h1), we then have that

#G1(qbest1 , hbest1) |⊥∼ X = max
q1∈Q1

{Xq1}.

Cheating in the second round. Each second round query q2 = (h1, σ2) that A
makes to H2 can only be used in a valid signature if there exists a corresponding
query (q1, h1) ∈ Q1. Then for each “bad” first-round execution e ∈ [τ]\G1(q1, h1),
either verification failed, in which case A couldn’t have won, or the verification
passed, despite Eq. (9) not being satisfied. This implies that exactly one of the
parties must have cheated. At least one cheater is required for verification to
pass, but as N − 1 parties are opened, verification would fail if more than one
party cheated.

Since h2 ∈ [N]τ is distributed uniformly at random, the probability that this
happens for all such “bad” first-round executions e is(

1
N

)τ−#G1(q1,h1)
≤
(

1
N

)τ−#G1(qbest1 ,hbest1)
.

The probability that this happens for at least one of the Q2 queries made to H2
is

Pr[A wins | #G1(qbest1 , hbest1) = τ1] ≤ 1−
(

1−
(

1
N

)τ−τ1
)Q2

.

Finally conditioning on B outputting ⊥ and summing over all values of τ1, we
have that

Pr[A wins | ⊥] ≤ Pr[X + Y = τ] (10)
where X is as before, and Y = maxq2∈Q2{Yq2} where the Yq2 variables are
independently and identically distributed as B(τ −X, 1/N)).

43

Conclusion. Bringing Eq. (7), Eq. (8) and Eq. (10) together, we obtain the
following.

Pr[A wins] ≤ (τN + 1)(Qcom +Q1 +Q2)2

22κ + Pr[X + Y = τ]

+ Pr[B outputs sk]

Assuming KeyGen is an εowf-secure OWF and setting Q = Qcom +Q1 +Q2 gives
the required bound and concludes the proof.

We assume that ExpandTape() is a secure pseudorandom generator (PRG),
again using the standard definition, see for example [BS20, Definition 3.1]. In our
implementation ExpandTape is implemented with the SHA-3 based extendable
output function SHAKE [NIS15]. The assumption related to the tree derivation
construction for random seeds is that it must be hiding. Informally, this means
that after revealing a subset of the seeds (e.g., N − 1 of N seeds), the remaining
seeds remain hidden to a computationally bounded adversary. In [CDG+20,
Section 6.3] it is shown that this holds when the hash function used to derived
seeds is modelled as a random oracle. Secure one-way functions are defined in
[Gol07, Section 2.2].
Theorem 5. The Rainier signature scheme is EUF-CMA-secure, assuming that
Commit, H1, H2 and Expand are modelled as random oracles, ExpandTape is a
secure PRG, the seed tree construction is computationally hiding, the (N, τ, L)
parameters are appropriately chosen, and that KeyGen is a secure one-way
function.

Proof. Fix an attacker A. We define a sequence of games where the first corre-
sponds to A interacting with the real signature scheme in the EUF-CMA game.
Through a series of hybrid arguments we show that this is indistinguishable
from a simulated game, under the assumptions above. Let G0 be the unmodified
EUF-CMA game and let B denote an adversary against the EUF-KO game that
acts as a simulator of the EUF-CMA game to A. As we’re in the random oracle
model: when A queries one of its random oracles, B first checks if that query
has been recorded before; if so, then it responds with the recorded answer; if
not, B forwards the query to its corresponding random oracle, records the query
and the answer it receives and forwards the answer to A. Let Gi denote the
probability that A succeeds in game Gi. At a high level, the sequence of games
is as follows:

G0: B knows a real secret key sk and can compute signatures honestly;

G1: B replaces real signatures with simulated ones which no longer use sk;

B then uses the EUF-KO challenge pk∗ in its simulation with A.

We note that A’s advantage in the EUF-CMA game is εcma = G0 = (G0−G1)+G1
and we obtain a bound on G0 by first bounding G0 − G1 and then G1

Hopping to Game G1. When A queries the signing oracle, B simulates a
signature by sampling a random secret key sk∗, choosing a party Pi∗ at random
and cheating in the verification phase and in the broadcast of the output shares
cte

(i) such that the circuit still outputs the correct ciphertext, and finally ensuring

44

that the values observed by A are sampled independently of sk∗ and with a
distribution that is computationally indistinguishable from a real signature. B
programs H1 to return the Re values that it sampled, and H2 to hide the cheating
party Pi∗ in Phase 5.

We now argue that the simulated signatures in G1 are computationally
indistinguishable from real signatures in G0. We list a series of (sub) game hops
which begins with G0, where sk is known and signatures are created honestly,
and ends with G1, where signatures are simulated without using sk. With each
change to B’s behavior, we give an argument as to why the simulation remains
indistinguishable, and quantify these below.

1. The initial B knows the real sk and can compute honest signatures as
in the protocol. It only aborts if the salt that it samples in Phase 1 has
already been queried. As its simulation is perfect, B is indistinguishable
from the real EUF-CMA game as long as it does not abort.

2. Before beginning, the next B samples h2 at random and expands it to obtain
(i∗e)e∈[τ]; these are the unopened parties, which B will use for cheating. It
proceeds as before and programs the random oracle H2 so that it outputs
h2 when queried in Phase 6. If that query has already been made, B aborts
the simulation.

3. In Phase 1, the next B replaces seed(i∗)
e in the binary tree, for each e ∈ [τ],

by a randomly sampled one. This is indistinguishable from the previous
version of B assuming that the tree structure is hiding.

4. The next B replaces the random tapes for party i∗, i.e., the outputs of
ExpandTape(salt, e, i∗, seed(i∗)

e), by random outputs (independent of the
seed). This is indistinguishable from the previous reduction assuming that
ExpandTape() is a secure PRG.

5. The next B replaces the commitments of the unopened parties com(i∗)
e

with random values (i.e., without querying Commit). B aborts if A queries
x such that Commit(x) was output by B.

6. Before starting Phase 2, the next B samples h1 at random and expands
it to obtain (Re)e∈[τ]; this will enable it to sample the checking values at
random. It then proceeds as before and programs the random oracle H1 to
output h1 in Phase 2. If that query has already been made, B aborts the
simulation.

7. In Phase 1, the next B interpolates S(i)
e for i ∈ [N] \ {i∗}, samples the

values Se(Re) at random, computes S(i∗)
e (Re) = Se(Re)−

∑
i6=i∗ S

(i)
e and

interpolates S(i∗)
e using k ∈ {0, . . . , L−1}∪{Re}. It does the same for the T

polynomials and computes Pe and the offsets according to the protocol. As
the uniform distribution of honestly generated Se(Re) and Te(Re) (opened
in Phase 3) comes from the uniform distribution of s̄e and t̄e read from the
random tape (recall that seed(i∗)

e is no longer used), this is indistinguishable
from the previous hop. The same holds for the shares of party Pi∗ that
are opened in Phase 5. The distribution of the ∆Pe offsets is therefore
also indistinguishable from a real signature as they are computed honestly

45

from indistinguishable elements. (At this stage the Pe polynomials always
satisfy the check since B is still using a real sk.)

8. In Phase 5, the next B replaces c(i
∗)

e ← P
(i∗)
e (Re) with c(i)e ← Pe(Re) −∑

i 6=i∗ P
(i)
e (Re). This is indistinguishable because the P (i)

e (Re) values, for
i 6= i∗, are computed honestly, and the Pe(Re) value is distributed iden-
tically to an honest signature (because Se,j and Te,j are). From now on,
the Schwartz–Zippel check always passes, even if the product relation
doesn’t hold, and the distribution of everything that A can observe is
indistinguishable from an honest signature and independent of hidden
values.

9. The final B replaces the real sk by a random key sk∗ and cheats on the
broadcast of party Pi∗ ’s output share ct(i∗)

e such that it matches what
is expected, given the N − 1 other shares. As sk(i∗)

e is independent from
the seeds A observes, the distribution of ∆sk∗e is identical and A has no
information about sk∗. As Pi∗ is never opened, B’s cheating on ct(i∗)

e can’t
be detected.

We can conclude that B’s simulation of the signing oracle is indistinguishable and
that A behaves exactly as in the real EUF-CMA game unless an abort happens.

There are four points at which B could abort: if the salt it sampled has been
used before, if the committed value it replaces is queried, or if its queries to H1
and H2 have been made previously. Let Qsalt denote the number of different salts
queried during the game (by both A and B); each time B simulates a signature, it
has a maximum probability of Qsalt/22κ of selecting an existing salt and aborting.
Let Qc denote the number of queries made to Commit by A, including those
made during signature queries. Since Commit is a random oracle, and seed(i∗)

e is
a uniformly random κ-bit value not used by B elsewhere, each time B attempts
a new signature, it has a maximum probability of Qc/2κ of replacing an existing
commitment and aborting.

Similarly for H1, resp. H2, B has a maximum probability of Q1/22κ, resp.
Q2/22κ of aborting, where Q1 and Q2 denote the number of queries made to
each random oracle during the game. Note that B samples one salt, replaces τ
commitments and makes one query to both H1 and H2 for each signature query.

Let Qs be the total number of signature queries, therefore

G0 − G1 ≤ Qs · (τ · εprg + εtree + Pr[B aborts])

where

Pr[B aborts] ≤ Qsalt/22κ +Qc/2κ +Q1/22κ +Q2/22κ

= (Qsalt +Q1 +Q2)/22κ +Qc/2κ

≤ (Q1 +Q2)/22κ−1 +Qc/2κ (Since Qsalt ≤ Q1 + Q2) ,
≤ Q/2κ (where Q = Q1 + Q2 + Qc) .

Bounding G1. In G1, B is no longer using the witness and is instead simulating
signatures only by programming the random oracles; it therefore replaces the
honestly computed pk with and instance pk∗ of the EUF-KO game. We see that

46

if A wins G1, i.e. outputs a valid signature, then B outputs a valid signature in
the EUF-KO game, and so we have

G1 ≤ εko ≤ εowf + (τN + 1)Q2

22κ + Pr[X + Y = τ],

where the bound on the advantage εko of a EUF-KO attacker follows from
Theorem 10. By a union bound, we have that

εcma ≤ εowf + (τN + 1)Q2

22κ + Pr[X + Y = τ]

+Qs · (τ · εprg + εtree +Q/2κ) .

Assuming that ExpandTape() is a secure PRG that is εprg-close to uniform,
that the seed tree construction is hiding (so that εtree is negligible), that key
generation is a one-way function and that parameters (N, τ, L) are appropriately
chosen implies that εcma is negligible in κ.

B Linear Layer and Key Schedule of LSAES
B.1 Linear layer L

The linear layer L consists the serial application of the linear function AB, SR,
and MC , where as usual in descriptions of AES-128, the linear layer AB is seen
as part of the description of the S-box. So we have L(x) = MC ◦ SR ◦AB(x).

The layer AB interprets all bytes xi of the state as a series of bits xi =
b7‖b6‖b5‖b4‖b3‖b2‖b1‖b0. On each of the resulting bit vectors, the following affine
transformation is performed:

ABi(xi) =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

b0
b1
b2
b3
b4
b5
b6
b7

+

1
1
0
0
0
1
1
0

.

The layer shift rows SR performs a row-wise rotation of the square state by
the row index j to the left. So we get

SR(x) = x0‖x5‖x10‖x15‖x4‖x9‖x14‖x3‖x8‖x13‖x2‖x7‖x12‖x1‖x6‖x11 .

For the MixColumns layer, each byte of the state is interpreted as an element
GF(28) using the irreducible polynomial X8 +X4 +X3 +X + 1. On each of the
rows h (0 ≤ h < 4), the following matrix multiplication is applied

MCh(x0+h, x1+h, x2+h, x3+h) =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

x0+h
x1+h
x2+h
x3+h

 .

47

B.2 Key Schedule
Given our secret key k we interpret it as as bytes and immediately get our first
round key k(1) = k = k

(1)
0 ‖k

(1)
1 ‖ . . . ‖k

(1)
15 . To compute round key k(i+1) from k(i),

we do the following

t
(i)
0 ‖t

(i)
1 ‖t

(i)
2 ‖t

(i)
3 = S(k(i)

13 ‖k
(i)
14 ‖k

(i)
15 ‖k

(i)
12)

k
(i+1)
0 = k

(i)
0 +ABi(t(i)0) + 2i−1

k
(i+1)
j = k

(i)
j +ABi(t(i)j), (1 ≤ j < 4)

k
(i+1)
j = k

(i)
j + k

(i+1)
j−4 , (4 ≤ j < 16)

C Matrix and Round Constant Generation for
Rain

For the sake of simplicity, in this section we omit using the round-specific indices
of the linear layer matrices Mi and the linearized permutation polynomials Li,
i.e., we write M and L instead of Mi and Li, respectively.

C.1 Building the Linear Layer M from L(X)
In order to build our linear layer M , we first pseudo-randomly generate a
dense and linearized polynomial L(X) ∈ F2n [X] of maximum degree, i.e., a
polynomial with n nonzero coefficients and a degree of 2n−1. Note that we
need this polynomial to be a permutation polynomial, and we also want the
compositional inverse of this polynomial to fulfill the same properties.

For this purpose, we first define the Dickson matrix

DL =

a0 a1 · · · an−1
a2
n−1 a2

0 · · · a2
n−2

...
...

...
...

a2n−1

1 a2n−1

2 · · · a2n−1

0

of the linearized polynomial L(X) =

∑n−1
i=0 aiX

2i . It is known [LN96] that L is
a permutation polynomial if and only if DL is invertible.

In order to also ensure that the inverse of L fulfills the same properties (i.e.,
nonzero coefficients and maximum degree), we simply compute it. Indeed, the
inverse L−1(X) of L(X) is defined as

L−1(X) = 1
det(DL) ·

n−1∑
i=0

aiX
2i ,

where ai is the (i, 0)-th cofactor of DL. Hence, in order to generate a “good”
polynomial L(X), we pseudo-randomly generate coefficients {ai}n−1

i=0 until both
L(X) and L−1(X) have n nonzero coefficients and a degree of 2n−1.

The second step is to generate the matrix M ∈ Fn×n2n from L. This transfor-
mation has explicitly been shown in [Car63] and has been revisited in [WL13].
We quickly recall it here.

48

Assume L(X) is given. Then, we first compute the ordered power basis

{β1, β2, . . . , βn} = {β, β2, . . . , βn−1}

and its dual basis
{β′1, β′2, . . . , β′n},

i.e., a basis such that
tr(βiβ′j) = δi,j

for i ∈ [0, n] and j ∈ [0, n], where tr : F2n → F2 is the trace function and δi,j is
the Kronecker delta. Now, the element Mi,j at the j-th column of the i-th row
in the matrix M is defined as

Mi,j = tr(β′iL(βj)).

Hence, to summarize, we first generate a suitable linearized permutation
polynomial L(X), and we then compute the corresponding matrix. Ignoring
the invertibility evaluation (with high probability, an invertible polynomial will
be found after only a few trials), the cost of this approach is approximately
n2 + n3 ∈ O(n3) field operations. For example, using Sage, we are able to
construct such a matrix for n = 128 in only a couple of seconds on an ordinary
computer.

C.1.1 Pseudo-Randomly Sampling M

For completeness, we mention that it is also possible to construct the linear layer
matrices by pseudo-randomly sampling them (i.e., without first choosing L and
then computing the corresponding M). Here we argue that this approach will
also lead to secure linear layers with high probability.

It is well-known that there exists a one-to-one relation between the general
linear group GL(n,F2) and the set of linearized permutation polynomials with
coefficients in F2n , which is also called the Betti–Mathieu group [Dic01, Car63].
It is also known that the number of invertible n× n matrices over GF(2) is

n−1∏
i=0

2n − 2i > (2n − 2n−1)n = (2n−1)n.

Since n log2(2n−1) = log2(2n2)− n, it follows that at most n bits of entropy are
lost when considering only invertible matrices. This means that, in the worst case,
no maximum-degree monomial appears in the set of all linearized permutation
polynomials of degree at most 2n−1 over a fixed field, and the appearances of all
other degrees are uniformly distributed. Hence, the term with the second-highest
degree will appear with an overwhelming probability of at least 1−2−n. However,
in practical tests we observed that the probability of a maximum-degree term
appearing is also around 1− 2−n. Further, the probability of the polynomial to
contain all powers of 2 less than or equal to 2n−1 is approximately (1− 2−n)n, as
expected. We therefore conjecture that any pseudo-randomly chosen n×n matrix
over F2 will result in a high-degree and dense (as far as possible) permutation
over F2n .

49

C.2 Pseudo-Random Number Generation
We generate the round constants and the linear layers using the SHAKE256
extendable output function [NIS15] with the input Rain-N-R (encoded as UTF-8
text), where N is replaced with the state size in bits and R is replaced with
the number of rounds, e.g., Rain-128-3 for Rain3-128. We first generate the
n-bit round constants c(i) by squeezing n bits from the SHAKE256 instance for
each constant. Then, we use the same method to generate the coefficients for
our linear layers.

C.3 Concrete Instances
The round constants and matrices used for Rain-n, where n ∈ {128, 192, 256}, are
publicly available.7 These files also contain the coefficients of the corresponding
linearized permutation polynomials.

D Additional Performance Data and Evaluation
We explore the performance data of a huge range of instances for the variants
presented in this paper at the 128-bit security level in Table 5. Most of these
instances are included in Fig. 8.

D.1 Instances for larger Security Levels
In Table 6, we give some numbers for Rainier for the 192-bit and 256-bit security
levels.

7https://github.com/IAIK/rainier-signatures

50

https://github.com/IAIK/rainier-signatures

Table 5: Comparison of signatures discussed in this work at the 128-bit security
level. Times are in ms, sizes are in bytes.

Design N τ m1 m2 λ Sign Verify Sig. size
Banquet 16 41 10 20 4 7.03 5.32 19 776
AES-128 31 35 10 20 4 10.01 8.27 17 456

57 31 10 20 4 15.56 13.37 15 968
107 24 10 20 6 23.03 20.45 14 784
255 21 10 20 6 47.31 43.03 13 284
512 20 10 20 6 90.30 82.67 12 976
1024 18 10 20 6 161.51 148.55 11 976

Banquet 16 41 10 16 4 5.57 4.28 17 480
EM-AES-128 31 35 10 16 4 8.04 6.72 15 496

57 31 10 16 4 12.54 10.89 14 232
107 24 10 16 6 19.69 17.31 13 248
255 21 10 16 6 41.05 36.88 11 940
512 20 10 16 6 78.66 71.26 11 696
1024 18 10 16 6 140.72 127.89 10 824

Banquet 16 41 5 10 1 2.93 2.37 16 496
LSAES-128 31 35 5 10 1 4.35 3.74 14 656

64 31 5 10 1 7.49 6.54 13 488
128 28 5 10 1 13.27 11.82 12 640
256 25 5 10 1 25.28 22.92 11 696
512 24 5 10 1 51.52 47.10 11 616
1024 22 5 10 1 98.97 91.77 11 008

Banquet 16 41 5 8 1 2.50 1.99 14 528
EM-LSAES-128 31 35 5 8 1 3.71 3.15 12 976

64 31 5 8 1 6.30 5.47 12 000
128 28 5 8 1 11.48 10.16 11 296
256 25 5 8 1 20.99 18.91 10 496
512 24 5 8 1 40.66 36.47 10 464
1024 22 5 8 1 79.21 72.57 9 952

Rainier3 8 44 - - - 0.70 0.60 10 656
Rain3-128 16 33 - - - 0.87 0.81 8 544

31 27 - - - 1.29 1.23 7 440
57 23 - - - 1.87 1.82 6 720
107 20 - - - 2.96 2.92 6 176
256 17 - - - 5.65 5.63 5 536
920 14 - - - 16.82 16.70 5 024
1624 13 - - - 28.28 28.16 4 880
3180 12 - - - 51.90 51.49 4 704
7121 11 - - - 105.98 105.15 4 496
65384 9 - - - 801.98 794.35 4 128

Rainier4 8 44 - - - 0.81 0.71 12 064
Rain4-128 16 33 - - - 1.03 0.96 9 600

31 27 - - - 1.50 1.44 8 304
57 23 - - - 2.19 2.14 7 456
107 20 - - - 3.47 3.42 6 816
256 17 - - - 6.65 6.60 6 080
920 14 - - - 20.01 19.76 5 472
1625 13 - - - 33.41 33.11 5 296
3181 12 - - - 60.88 60.49 5 088
7124 11 - - - 124.88 123.79 4 848
65422 9 - - - 952.73 941.02 4 416

51

Table 6: Performance comparison at the 192-bit and 256-bit security levels for
N ∈ {16, 32, 64, 128, 256}. Times are in ms, sizes are in bytes.

Design N τ m1 m2 λ Sign Verify Sig. size
Banquet 16 62 16 26 4 18.86 14.24 51 216
AES-192x2 32 53 16 26 4 28.77 23.95 45 072

64 40 16 26 6 42.72 36.98 39 808
128 36 16 26 6 74.43 66.18 36 704
256 32 16 26 6 128.80 116.41 33 408

Banquet 16 84 20 25 4 29.99 23.23 83 488
AES-256x2 32 63 20 25 6 42.30 35.23 73 114

64 54 20 25 6 67.96 59.51 64 420
128 48 20 25 6 116.85 104.65 58 816
256 43 20 25 6 205.26 185.95 54 082

Banquet 16 62 8 13 1 7.23 5.81 44 024
LSAES-192x2 32 53 8 13 1 11.40 9.65 38 924

64 45 8 13 1 19.17 16.68 34 148
128 41 8 13 1 35.85 32.04 32 108
256 37 8 13 1 65.92 59.43 29 876

Banquet 16 84 5 25 1 12.69 10.00 73 408
LSAES-256x2 32 72 5 25 1 19.25 15.88 65 248

64 63 5 25 1 31.69 26.91 59 128
128 56 5 25 1 55.57 48.15 54 368
256 50 5 25 1 99.71 88.17 50 160

Rainier3 16 49 - - - 1.97 1.77 18 944
Rain3-192 32 40 - - - 2.90 2.76 16 448

64 33 - - - 4.38 4.23 14 384
128 29 - - - 7.36 7.22 13 352
256 25 - - - 12.85 12.60 12 128

Rainier4 16 49 - - - 2.30 2.07 21 296
Rain4-192 32 40 - - - 3.34 3.15 18 368

64 33 - - - 5.06 4.90 15 968
128 29 - - - 8.55 8.38 14 744
256 25 - - - 15.09 14.81 13 328

Rainier3 16 65 - - - 3.05 2.83 33 440
Rain3-256 32 53 - - - 4.48 4.27 28 992

64 44 - - - 6.97 6.80 25 504
128 38 - - - 11.74 11.57 23 264
256 33 - - - 20.40 20.23 21 280

Rainier4 16 65 - - - 3.46 3.18 37 600
Rain4-256 32 53 - - - 4.99 4.75 32 384

64 44 - - - 7.71 7.47 28 320
128 38 - - - 13.08 12.80 25 696
256 33 - - - 23.16 22.73 23 392

52

We can see the same trends as for the 128-bit security level, where the LSAES-
variants provide a 10-15% improvement in signature size over standard Banquet,
while usually being about twice as fast. Recall that the EM construction is not
directly instantiable with AES-192 and 256 since it requires an s-bit permutation
for s-bit security. Rainier produces much smaller signatures that Banquet and also
compares favorably to Picnic3 (with signatures of 27.4 KB at the 192-bit and 48.4
KB at the 256-bit security level) and SPHINCS+ (with its “small” parameter
sets having 17 KB at the 192-bit and 29.8 KB at the 256-bit security level, and
its “fast” parameter sets being comparable in size to Picnic3). Furthermore, the
signing and verification speeds of Rainier are again much faster than the other
designs (with the exception of the verification times in SPHINCS+, which are
in the order of 0.5-5ms for all parameter sets). We give a visual representation
of the signing times and signatures sizes at the 192-bit and 256-bit security level
for various schemes in Fig. 9a and Fig. 9b.

D.2 Alternative OWF Designs for MPCitH Signatures
Most existing proposals and designs of block ciphers and oneway-functions are,
like Rijndael/AES, designed for very different use-cases and hence have no chance
of being competitive with Rain. However we discuss a few where this can not
be ruled out a priori and take a quick look how they could be used in the
proof protocol of Banquet [BdSGK+21] or the modified variant presented in
Section 5.2.2.

Vision [AAB+20]. Vision is a block cipher design intended for use-cases in
multi-party computation and zero-knowledge proofs with the goal of reducing the
arithmetic complexity of the cipher. Vision is a family of block ciphers operating
over binary fields, where the only non-linear operation is the field inverse. This
makes Vision an easy fit for the Banquet proof protocol. One point of remark is
Vision’s heavy key schedule, which essentially corresponds to a second evaluation
of the cipher itself; while in many scenarios this can be amortized over many
encryption calls, for the signature use-case we only prove a single encryption,
resulting in a large overhead. However, we can also use Vision in a single-key
Even–Mansour construction as discussed in Section 2.1. We also give the sizes
for these variants. While we have not implemented the full signature for the
following variants, we give the calculated signature sizes for three different Vision
instances at the 128-bit security level in the Banquet proof protocol in Table 7.
The first one is Vision Mark I, an instance recommended in [AAB+20] intended
to be similar to AES. The second and third ones are generated with the provided
parameter generation script8 intended to resemble the design choices of LSAES
and Rain with field sizes of 32 and 128 bits respectively. However, we remark
that the resulting parameters are for general use and could potentially be reduced
for the attack scenario presented by the use in the signature construction, where
only a single (plaintext, ciphertext) pair is published.

Table 7 highlights our remarks about the heavy key schedule of Vision as
the signatures produced by using Vision instances are larger than all other
alternatives we investigated and even unmodified Banquet. When considering the
EM variants, we see that the signature size of EM-Vision Mark I and EM-Vision

8https://github.com/KULeuven-COSIC/Marvellous

53

214 215 216 217

101

102

103

Signature Size (Bytes)

Si
gn

in
g
T
im

e
(m

s)
Rainier3
Rainier4
Banquet
LSAES-Banquet
Picnic
SPHINCS+

(a) 192-bit security level.

215 216 217 218

101

102

103

Signature Size (Bytes)

Si
gn

in
g
T
im

e
(m

s)

Rainier3
Rainier4
Banquet
LSAES-Banquet
Picnic
SPHINCS+

(b) 256-bit security level.

Figure 9: Comparison of signing time and signature size of various schemes at
192-bit and 256-bit security levels. Picnic instances include all proposed third
round parameter sets. SPHINCS+ instances include all simple parameter sets
(haraka,sha256,shake256, in order of decreasing performance).

Variant 2 are equal to EM-AES-128 and EM-LSAES-128, respectively. This is
because of the similarities of the internal structure of the ciphers, resulting in
the same number of inversions for the same field sizes. For Variant 3, the number
of internal rounds is much larger than Rain, since the parameter selection script
takes into account all types of attacks, even those not applicable in the signature
scenario. A future dedicated analysis could reduce the number of rounds needed
for security, but due to the structure in the affine layer of Vision the number of
rounds will very likely need to be larger than for Rain.

LegRoast and PorcRoast [Bd20]. Leg- and PorcRoast are two recent
proposals of MPCitH-based signature schemes that use the Legendre PRF
instead of a block cipher as a one-way function. Security is based on a more
structured number-theoretic assumption, which arguably puts these in a different

54

Table 7: Signature sizes in bytes for different instances of Vision with a security
level of 128 bits using a state of m elements over the field F2n and r rounds of
the cipher (resulting in a total of #inv. inverses). The proof system parameters
are set to N = 64 with the minimum number of rounds τ chosen so that the
signature scheme provides 128 bits of security and the remaining parameters
chosen as recommended by [BdSGK+21].

Instance n m r #inv. |sig|
Vision Mark I 8 16 10 320 21 176
Vision Variant 2 32 4 10 80 17 952
Vision Variant 3 128 1 36 72 41 184
EM-Vision Mark I 8 16 10 160 14 232
EM-Vision Variant 2 32 4 10 40 12 000
EM-Vision Variant 3 128 1 36 36 25 056
Banquet (AES-128) 8 16 10 200 15 968
Banquet (EM-AES-128) 8 16 10 160 14 232
Banquet (LSAES-128) 32 4 10 50 13 488
Banquet (EM-LSAES-128) 32 4 10 40 12 000
Rainier3 128 1 3 3 6 720
Rainier4 128 1 4 4 7 456

category than the schemes in this paper, but we provide a brief comparison. On
our machine, the LegRoast parameter sets have signature sizes of 12.5 to 16.48
KB with a signing time of 3.19 to 17.95 ms, while the PorcRoast parameter
sets have signature sizes of 6.4 to 8.8 KB with signing times of 1.43 to 8.85 ms
(with larger signatures leading to faster signing times). Public keys are 4 KB,
compared to 32 bytes in Rainier.

LSAES with Larger S-Boxes. As mentioned above, the choice of 32-bit
S-boxes in LSAES was made to match the field F28λ used in Banquet (where
λ = 4 for L1). However, we can further reduce the number of S-boxes by using
64-bit or even 128-bit S-boxes. Since the (LS)AES key schedule operates on
32-bits at a time, this is the largest size for the key schedule, but rather than
mixing S-box sizes, here we focus on EM-LSAES and for simplicity fix N = 256.
With 64-bit S-boxes, EM-LSAES has only 20 S-boxes, and the signature size
is 9 168 bytes using the Rainier protocol and 9 216 bytes using the Banquet
protocol, compared to 10 496 bytes for 32-bit S-boxes (Table 5). With 128-bit
S-boxes, EM-LSASES has only 10 S-boxes and signatures are 9 072 or 9 312 bytes
using the simplified or full Banquet protocol. Unfortunately sizes do not really
decrease further with larger S-boxes, and Rain gives much better performance.
This can be explained by having 10 rounds in the LSAES variants vs. 3 rounds
in Rain. Indeed, note that signature sizes of r-round EM-LSAES with 128-bit
S-boxes is the same as r-round Rain. This motivates study of reduced-round
versions of EM-LSAES, which has a weaker linear layer than Rain, however, we
expect that 7 and perhaps even 5 rounds to be sufficient.

55

Other AES-Based Permutations. In order to use the EM OWF construction
at higher security levels, we require 192 and 256-bit permutations. Using Rijndael
is one option, but there are also constructions of permutations from AES. The
motivation for these constructions is that they make use of hardware acceleration
for AES (such as the AESNI instructions), while no such hardware is available
for Rijndael.

The Simpira v2 permutation (with b ≥ 2) together with the EM construction
gives a candidate OWF for Banquet-like signatures at security level L5 (256-bit
security) [GM16]. However, the number of AES rounds required is 30 rounds,
compared to AES-256x2 (two calls to AES-256), which uses 28 AES rounds +
the key schedule. So it seems Simpira v2 is not a good choice for our application.

Haraka v2 [KLMR16] defines the permutation π256. This permutation has
5 rounds, where each π256 round uses four AES rounds, for a total of 20 AES
rounds. Aside from the AES rounds, the state is permuted, so counting the AES
rounds is sufficient when discussing signature signature sizes. The parameters
in [KLMR16] were chosen and analyzed to provide 256 bits of second preimage
resistance, meaning Haraka-v2-256 is a OWF suitable for use in a Banquet-like
scheme, where key generation is pk = Haraka-v2(sk) = sk⊕π256(sk) for random
256-bit secret key sk (ignoring that a salt is required to prevent multi-target
attacks; we assume some of the round constants can be selected per-party, to
give each user a distinct instance of π256).

Then Banquet-Haraka-v2-256 provides 256-bit security, with 320 eight-bit
S-boxes. Signatures range from 66.7–44.4 KB (with N =16–256) better than any
of the Banquet-based options in Table 6, but worse than the Rainier options.

One can also consider the Haraka v2 analogues constructed with LSAES
rounds, instead of AES rounds (with the caveat that the security analysis must
be revisited). Then instead of 320 8-bit S-boxes, we have 80 32-bit S-boxes. Here
the signature sizes range from 54.6–39.4 KB (with N =16–256).

56

	Introduction
	Using Single-Key Even–Mansour
	EM-OWF Constructions

	LSAES: AES with Larger S-boxes
	Specification
	Structure of the State
	Substitution Layer S

	Cryptanalysis
	Differential and Linear Cryptanalysis
	Attacks Exploiting Strong Alignment
	Algebraic Attacks

	Rain
	Specification
	Concrete Instances
	Cryptanalysis
	Gröbner Basis Attacks
	Other Attacks
	Recommended Number of Rounds

	Constructing Signatures from our Designs
	EM-AES, LSAES, EM-LSAES
	Rainier – A Signature Scheme based on Rain
	High-Level Roadmap
	The Rainier signature scheme
	Soundness Analysis and Parameter Selection
	Security Proof

	Performance Evaluation & Comparison with Other Designs
	Performance Evaluation

	Conclusions and Future Work
	Security Proofs
	Building a OWF from a Block Cipher
	Multi-Target Security of EM-OWF
	Security Proof of Rainier

	Linear Layer and Key Schedule of LSAES
	Linear layer L
	Key Schedule

	Matrix and Round Constant Generation for Rain
	Building the Linear Layer M from L(X)
	Pseudo-Randomly Sampling M

	Pseudo-Random Number Generation
	Concrete Instances

	Additional Performance Data and Evaluation
	Instances for larger Security Levels
	Alternative OWF Designs for MPCitH Signatures

