
On Communication Models and Best-Achievable Security in

Two-Round MPC

Aarushi Goel1, Abhishek Jain1, Manoj Prabhakaran2, and Rajeev Raghunath2

1Johns Hopkins University
{aarushig,abhishek}@cs.jhu.edu

2IIT Bombay
{mp,mrrajeev}@cse.iitb.ac.in

Abstract

Recently, a sequence of works have made strong advances in two-round (i.e., round-optimal)
secure multi-party computation (MPC). In the honest-majority setting – the focus of this work
– Ananth et al. [CRYPTO’18, EC’19], Applebaum et al. [TCC’18, EC’19] and Garg et al.
[TCC’18] have established the feasibility of general two-round MPC in standard communication
models involving broadcast (BC) and private point-to-point (P2P) channels.

In this work, we set out to understand what features of the communication model are
necessary for these results, and more broadly the design of two-round MPC. Focusing our study
on the plain model – the most natural model for honest-majority MPC – we obtain the following
results:

• Dishonest majority from Honest majority: In the two round setting, honest-majority
MPC and dishonest-majority MPC are surprisingly close, and often equivalent. This fol-
lows from our results that the former implies 2-message oblivious transfer, in many settings.
(i) We show that without private point-to-point (P2P) channels, i.e., when we use only
broadcast (BC) channels, honest-majority MPC implies 2-message oblivious transfer. (ii)
Furthermore, this implication holds even when we use both P2P and BC, provided that
the MPC protocol is robust against “fail-stop” adversaries.

• Best-Achievable Security: While security with guaranteed output delivery (and even
fairness) against malicious adversaries is impossible in two rounds, nothing is known with
regards to the “next best” security notion, namely, security with identifiable abort (IA).
We show that IA is also impossible to achieve with honest-majority even if we use both
P2P and BC channels. However, if we replace P2P channels with a “bare” (i.e., untrusted)
public-key infrastructure (PKI), then even security with guaranteed output delivery (and
hence IA) is possible to achieve.

These results “explain” that the reliance on P2P channels (together with BC) in the recent
two-round protocols in the plain model was in fact necessary, and that these protocols couldn’t
have achieved a stronger security guarantee, namely, IA. Overall, our results (put together with
prior works) fully determine the best-achievable security for honest-majority MPC in different
communication models in two rounds. As a consequence, they yield the following hierarchy of
communication models:

BC < P2P < BC + P2P < BC + PKI.

This shows that BC channel is the weakest communication model, and that BC +PKI model is
strictly stronger than BC + P2P model.

Contents

1 Introduction 1
1.1 Our Results in Detail . 3
1.2 Related Work . 6

2 Technical Overview 6
2.1 Lower Bounds in the BC only Model . 6
2.2 BC + P2P Model . 7

2.2.1 Impossibility of IA in BC + P2P Model . 7
2.2.2 Necessity of sh-OT for FS-GoD in the BC + P2P Model 9

2.3 BC + PKI Model . 10

3 Preliminaries 11
3.1 Oblivious Transfer (OT) . 11
3.2 Secure Multiparty Computation . 12

3.2.1 Adversarial Behavior . 13
3.2.2 Security Definitions . 13

3.3 Multi-CRS Non-Interactive Zero Knowledge (m-NIZK) 15

4 Broadcast Model 16
4.1 Lower Bound for t = 1 . 17
4.2 Impossibility of Two-message mR-OT in the Plain Model 19

5 BC + P2P Model 20
5.1 Impossibility Result for Identifiable Result . 20
5.2 Fail-Stop Guaranteed Output Delivery . 22

5.2.1 Necessity of sh-OT for (t < n/2) . 22
5.2.2 Positive Result for (t < n/3) . 23

6 BC + PKI Model 25
6.1 Positive Result for Guaranteed Output Delivery . 25
6.2 Positive Result for Identifiable Abort . 29

1 Introduction

Recently, a sequence of works [19, 9, 1, 31, 3, 18, 2, 4, 12] have made strong advances in two-round
secure multi-party computation (MPC). These works have established the feasibility of general
two-round (i.e., round-optimal) MPC, relying on essentially minimal computational assumptions.

Such round optimality is of both theoretical and practical interest. In particular, it opens up
the possibility of using MPC in scenarios where more rounds of interaction leads to significant
costs, or in tools where a third round is simply inadmissible (e.g., if the communication is over
blockchains, or if the first round messages are to be interpreted as “public keys” used to create
“ciphertexts” in the second round). On the theoretical front, the separation between 1, 2 or more
round protocols is arguably as fundamental as the separation between minicrypt, cryptomania or
obfustopia, in that they admit only some cryptographic tools and not others. Indeed, the round
complexity of protocols (e.g., of zero-knowledge proofs [24] and MPC) has always been a central
theoretical question.

The practical and theoretical significance of round complexity is intertwined with the specific
communication models employed. There are two major models of communication channels – broad-
cast (BC) channels and secure point-to-point (P2P) channels – that have been central in the MPC
literature, starting from early results in the multi-party setting [22, 11, 8, 32]. In the honest-
majority setting – the focus of this work – these channels can provide varying “powers”: e.g., P2P
channels are necessary for achieving information-theoretic security [11, 8], and broadcast channels
are necessary for achieving security against t > n/3 corruptions [17]. They can also provide differ-
ent use cases, e.g., a protocol that solely uses BC would be applicable in scenarios where, say, the
first round messages are to be interpreted as public keys.

Our Work. The focus of this work is on understanding the role of these channels in the two-round
setting with honest majority, where their differences come into sharper contrast. We ask:

In two-round honest-majority MPC, in the different communication models involving BC and
P2P, what levels of security are achievable for general computation, and under what assumptions?

That is, we seek to understand the best-achievable security and the necessary assumptions in
different communication models. We focus our study on the plain model – the most natural model
for honest-majority MPC.1 We sometimes augment our model to include a “bare” (i.e., untrusted)
public-key infrastructure (PKI) as a means for emulating P2P channels over BC.2 Throughout this
work, we use PKI to refer to a bare PKI setup.

Background on Security Notions. Before presenting our results, we provide a brief discussion
on the prominent security notions studied in the literature. The weakest of them all is semi-honest
(SH) security that guarantees privacy against semi-honest (a.k.a. honest but curious) adversaries.
The case of malicious adversaries is more complex, and a variety of security notions have been
studied.3

1Typically, the honest-majority assumption is viewed as an alternative to trusted setup assumptions such as a
common reference string (CRS).

2In a bare PKI setup, an adversarial party does not need to register its key prior to protocol; specifically, it does
not need to prove knowledge of its secret key.

3The list of notions we discuss here is not exhaustive and some other notions have been studied that lie “in-
between” the primary notions. This includes, e.g., semi-malicious security [5], which is a slight strengthening of SH,
and fairness, which is a weakening of M-GoD. The lower and upper bounds for these notions tend to be similar to their
respective “closest” notions; hence we do not explicitly discuss them.

1

• Security with abort: A suite of three increasingly stronger security notions allows a ma-
licious adversary to prevent the honest parties from learning the output by prematurely
aborting the protocol: (a) selective abort (SA), where the adversary may selectively force a
subset of honest parties to abort, (b) unanimous abort (UA), where all the honest parties agree
on whether or not to abort, and (c) identifiable abort (IA) [30], where the honest parties agree
on the identity of a corrupted party in the case of an abort.

• Security with guaranteed output delivery: Security with guaranteed output delivery
ensures that an adversary cannot prevent the honest parties from learning the output via
premature aborts. This notion is meaningful, both against fully malicious adversaries, and
fail-stop adversaries who behave like semi-honest adversaries, except that they may prema-
turely abort. We refer to security in these two cases as M-GoD and FS-GoD, respectively.

The relationship between all of these notions can be summarized as follows: SH < SA < UA <
IA < M-GoD, and SH < FS-GoD < M-GoD (note that FS-GoD is incomparable to SA, UA and IA).

Summary of Our Contributions. We start by providing a high-level statement of the key
conclusions from our study, while omitting some finer points and results. We sketch an overview
(omitting the specifics of the computational assumptions involved) in Figure 1, which shows how
our results fill in the gaps from prior work with regards to the feasibility of different security notions.
A detailed description of our results in different communication models is given in Section 1.1.

SH FS-GoD SA UA IA M-GoD

BC

P2P

BC + P2P

BC + PKI

This work

[31]

This work

[19, 9]

[1] [2]

[1, 2, 4]

This work

[25]

[20, 31]

Figure 1: Hierarchy of communication models in two-round honest-majority MPC without trusted
setup. Green denotes feasibility of a security level and red denotes impossibility. The security
notions featured in the columns are explained below.

• Necessity of Oblivious Transfer: While honest-majority MPC without any round restric-
tions is possible information-theoretically, our first set of results show that in many cases
two-round MPC implies the existence of a two-message two-party oblivious transfer (OT)
protocol:

– When the two-round honest-majority MPC protocol is over a BC channel only (no P2P
channels), then it implies a two-message OT protocol. If the original MPC protocol is
semi-honest or malicious secure, and if it is in the plain model or uses a setup like a
common reference string, the OT protocol inherits the same properties.

– Even if the honest-majority MPC protocol uses both a BC channel and P2P channels,
if it offers FS-GoD security, then it implies two-message semi-honest OT. Interestingly,
this holds only when the corruption threshold is n/3 ≤ t < n/2; for t < n/3, we show
that minicrypt assumptions are in fact sufficient.

2

• Equivalence of Honest Majority and Dishonest Majority: An interesting consequence
of the first of the above results is that it removes the qualitative difference between honest-
majority and dishonest-majority in the two-round BC-only setting. Specifically, in the semi-
honest setting, an honest-majority protocol implies two-message semi-honest OT, which in
turn implies two-round dishonest-majority MPC [19, 9]. On the other hand, in the malicious
adversary setting, two-message OT is impossible in the plain model, and it follows that
achieving malicious security is impossible in the honest-majority setting without P2P channels
(as was already known for dishonest majority [23]). In other words, removing P2P channels
“strips off” the advantages of the honest-majority model and places it on equal footing with
dishonest-majority MPC – both in terms of necessary assumptions and feasibility.

• Best-Achievable Security: In the plain model, M-GoD and fairness are known to be im-
possible in two rounds even in the BC + P2P setting [20, 31].4 Yet, nothing is known with
regards to the “next best” security notion, namely, IA.

We first prove that IA is also impossible in the plain model in the BC+P2P setting. However,
if we replace P2P channels with a bare PKI setup, then we observe that M-GoD (and hence,
fairness and IA) is in fact possible. Previously, two-round protocols achieving M-GoD relied on
a CRS setup in addition to bare PKI [25].

These results “explain” that the reliance on P2P channels (together with BC) in the recent con-
structions of two-round honest-majority MPC protocols [1, 31, 3, 18, 2, 4] was in fact necessary,
and that these protocols couldn’t have achieved the stronger security guarantee of IA or achieved
security with FS-GoD under weaker assumptions.

Overall, our results (put together with prior works) fully determine the best-achievable security
notions in different communication models in two rounds in the honest-majority setting. Referring
to Figure 1, we obtain the following hierarchy of communication models:

BC < P2P < BC + P2P < BC + PKI.

This shows that BC channel is the weakest communication model, and that BC + PKI model is
strictly stronger than BC + P2P model.

1.1 Our Results in Detail

We conduct a comprehensive study of the role of communication channels in two-round honest-
majority MPC. There are four natural communication models that one can consider: (i) BC only,
i.e., where the protocol only uses BC channels, (ii) P2P only, i.e., where the protocol only uses P2P
channels, (iii) BC + P2P, where protocol uses both BC and P2P channels, and (iv) BC + PKI,
where we replace P2P channels with a “bare” public-key infrastructure. Out of these four, the
P2P only model is already pretty well-understood from prior work. Hence, we primarily focus on
the remaining three models.

For each of these models, we obtain new results for two-round honest-majority MPC that we
elaborate on below. See Figure 2 for a summary.

I. Broadcast only. We first investigate the feasibility of two-round honest-majority MPC without
P2P channels, i.e., by relying only on BC. In this model, we show that two-round honest-majority

4There is a corner case of exactly one corruption (i.e., t = 1) and n ≥ 4 where this impossibility result can be
circumvented in the plain model [29, 27].

3

MPC is equivalent to two-round dishonest-majority MPC. In other words, without P2P channels,
achieving security against dishonest minority is as hard as against dishonest majority.

Specifically, we show that any two-round honest-majority MPC for general functions in the
BC only model can be transformed into two-round oblivious transfer (OT). Starting with an MPC
with SH security yields semi-honest OT (sh-OT), while starting with one with SA (or stronger
malicious) security yields malicious-receiver OT (mR-OT), where the view of a malicious receiver
can be simulated.

Overall, in Section 4, we establish that sh-OT (resp., mR-OT) is necessary for SH (resp., SA, UA,
IA), thereby yielding the following corollaries:

• SA, UA and IA are impossible in the plain model. This follows from the impossibility of
two-round mR-OT in the plain model.

Recently, two-round honest-majority MPC protocols with SH [1, 3, 18, 2], SA [2, 4] and UA

[1, 2, 4] security were constructed for general circuits based on one-way functions (OWF)
and for NC1 circuits unconditionally, i.e., with information-theoretic (IT) security. These
protocols use (only) P2P channels for achieving SH and SA security, and BC +P2P channels
for achieving UA security. The above result establishes that the reliance on P2P channels in
these protocols is necessary.

• We observe that our transformation in fact also works in the CRS model. In the CRS model,
two-round dishonest-majority MPC with SA and UA security was established in [19, 9] based
on mR-OT.5 Recently, [12] extended these results to also capture IA security. A natural
question is whether one could obtain similar feasibility results in the CRS model from weaker
assumptions by assuming an honest majority. We establish that this is not the case; in
particular, mR-OT is necessary even when we assume an honest majority.

II. Broadcast + P2P. We next investigate how the above landscape changes when we use P2P
channels together with BC. Recent works have already shown that SH, SA, UA and FS-GoD are
achievable in this model. Our contribution here is in providing a more complete picture, both with
regards to best-achievable security and the necessary computational assumptions.

1. Identifiable Abort. In light of the impossibility of M-GoD (as well as fairness), we investigate
the feasibility of the “next best” security notion, namely, IA for which no prior results are
known in the two-round setting (without trusted setup).

In Section 5.1, we show that IA is impossible to achieve for general honest majority even in
the BC +P2P model.6 This separates it from UA for which positive results are known in this
model [1, 31, 2, 4].

2. Fail-Stop Guaranteed Output Delivery. On the one hand, FS-GoD is known to be
impossible in two rounds in the BC only model [25] due to implications to general-purpose
program obfuscation [7]. On the other hand, it was recently shown to be achievable in the
P2P only model based on sh-OT [1] for any t < n/2. A natural question is whether it is
possible to base it on weaker assumptions, possibly in the stronger BC+P2P model. We find
that the answer is mixed:

5These works in fact rely on mR-OT in the CRS model with universally composable security [10].
6In the weaker P2P only model, honest-majority protocols with IA security are known to be impossible even if

we allow for arbitrary rounds [13].

4

SH SA UA IA FS-GoD M-GoD

t < n/2 t < n/2 t < n/3 t < n/2 t < n/2

BC
sh-OT

7

Cor 4.1

7

[25]

7

[20, 31]

[19, 9]

H Thm

4.1

P2P
OWF/IT

[1, 3, 18, 2, 4]

OWF/IT

[2, 4]

7

[31]

BC + P2P
OWF/IT

[1, 3, 18, 2, 4]

7

Thm 5.1

OWF/IT sh-OT

[1]
Cor 5.1

H Thm 5.2

BC + PKI
PKE

[1, 3, 18, 2, 4]

PKE+

m-NIZK
Cor 6.1

PKE

[1]

PKE+

m-NIZK
Cor 6.1

Figure 2: Feasibility of two-round honest-majority MPC. The symbol 7 denotes impossibility and
H denotes necessity of an assumption.

• For n/3 ≤ t < n/2, in Section 5.2.1, we show that sh-OT is necessary for FS-GoD in the
BC + P2P model.

• For t < n/3, in Section 5.2.2, we observe that FS-GoD can be easily achieved for general
circuits based on only OWFs (and for NC1 circuits, with IT security) in the P2P only
model.

III. Broadcast + PKI. Next, we consider the case where the protocol uses a bare PKI setup
instead of P2P channels, together with BC. It is easy to see that BC + PKI model is at least as
strong as BC + P2P since private channels can be emulated over BC using public-key encryption
(PKE). While it might be tempting to believe that these models are equivalent, this is not the case
– BC + PKI model is strictly stronger than BC + P2P.

• In Section 6.1, we observe that by leveraging a specially crafted bare PKI, it is possible to
achieve M-GoD against t < n/2 corruptions in two rounds in the BC + PKI model.

• In Section 6.2, we show that by using a bare PKI based on generic PKE, it is possible to
achieve IA against t < n/2 corruptions in two rounds in the BC + PKI model.

Both of these constructions rely on multi-CRS non-interactive zero-knowledge (m-NIZK) [26]
proofs in addition to PKE. m-NIZK proof systems for NP are known based on Zaps [15] (which
in turn can be constructed from various standard assumptions such as trapdoor permutations and
assumptions on bilinear maps) or learning with errors [6].

We note that while the first protocol achieves a strictly stronger result, it is qualitatively different
from the second in that it relies on a specially crafted bare PKI setup where the public keys contain
CRSes of an m-NIZK proof system in addition to public keys of a PKE scheme. On a technical level,
such a PKI allows for using m-NIZK proofs in the first round of the protocol which is instrumental
for achieving M-GoD security. Without such a PKI, however, we can still use m-NIZK proofs in the
second round and we observe that this is sufficient for achieving IA security.

5

IV. P2P Only. The remaining case is when the parties have access to only P2P channels. A
recent work of [31] established SA as the strongest achievable notion of security against malicious
adversaries in this setting, and a matching positive result for computing general circuits was given
by [2, 4] based on OWFs (and for NC1 circuits, with IT security). For FS-GoD, [1] showed that it
is achievable for t < n/2 based on sh-OT. We have further sharpened this result by showing that
for t < n/3, OWFs suffice, and for n/3 ≤ t < n/2, sh-OT is necessary. Put together, these results
complete the picture for the P2P only model as well.

1.2 Related Work

In this work, we show that any form of malicious security is impossible in the BC only setting in
the plain model. In the CRS model, however, SA, UA and IA are possible to achieve in the BC only
setting [19, 9, 12].

In a concurrent and independent work, Damg̊ard et al. [14], explore a related (but different)
question in the setting where parties have access to both a PKI and a trusted CRS setup. They
investigate the necessity of BC in each individual round of a two-round honest-majority MPC
protocol. In contrast, we consider a setting without any trusted setup (i.e., either the plain model
or the plain model augmented with a bare PKI). Hence, their results are incomparable to ours.

2 Technical Overview

In this section, we discuss the main ideas underlying our results.

2.1 Lower Bounds in the BC only Model

In the BC only model, we show that 2-round honest-majority MPC implies the existence of 2-
message oblivious transfer (sh-OT or mR-OT, depending on the level of security of the honest-
majority MPC). This is in sharp contrast to the general setting, where without any restriction on
the number of rounds or communication channels, honest-majority MPC (even with M-GoD security)
is possible unconditionally.

To understand the source of this requirement, we consider an n-party variant of OT, denoted
as Fn-OT, in which there is a sender, a receiver, and (n− 2) “helper parties” (who do not have any
inputs or outputs). Interestingly, by relying on P2P channels, Fn-OT can be securely realized (with
SH security) unconditionally in two rounds.7 Further, even if we only use BC channels but allow
for at least three rounds, then public-key encryption (rather than OT) is sufficient, by using the
first round to send public keys for establishing private channels for the next two rounds. Thus the
necessity of OT must stem from the combination of the two-round constraint and the restriction
to BC.

Our strategy is to build a two-message (two-party) OT protocol from an honest-majority two-
round protocol Π for Fn-OT, in the BC model. In this section, we only consider n = 3 (with the
sender, the receiver and a single helper party), so that honest-majority translates to corruption of
at most one party. The proof easily generalizes to an arbitrary number of parties and is shown in
the technical section.

As a first attempt, one may hope that the helper party – who has no input and receives
only publicly visible messages – can be implemented by either party (thus collapsing to a 2-party

7Specifically, it can be implemented as OLE over a large field, using a protocol in which each helper party receives
degree t Shamir shares of a and x from sender and receiver respectively, and degree 2t shares of b from sender, and
sends degree 2t shares of ax + b to the receiver.

6

protocol), and the protocol will remain secure. Unfortunately, this is not true. For instance,
suppose the receiver and the helper also broadcast a public key for encryption in the first round,
and the sender’s second round message also includes a 2-out-of-2 secret-sharing of its inputs, each
share encrypted using one of these keys. In such a case, corrupting at most one party in Π does
not reveal these inputs, but if the helper is implemented by the receiver, then the protocol is no
longer secure. This attack is symmetric, and prevents clubbing the helper with either the sender
or the receiver. On the other hand, the sender and the receiver jointly implementing the helper in
a secure manner is not an option, as it leaves us with a harder problem than we set out to solve.

The key to resolving this conundrum is to break the symmetry between the receiver and the
sender. We observe that Π can first be modified so that the receiver does not send any message
in the second round. This is a legitimate modification, since the last round messages are only
used for output generation, and the receiver is the only party with an output in the protocol.
This modification to Π prevents the attack mentioned above when the helper is implemented by the
sender. We go on to show that this in fact, leads to a protocol that is secure against all passive
attacks. Clearly, security against corruption of the receiver follows from the same in Π. Security
against corruption of the sender follows, informally, from the fact that even in Π, by corrupting the
sender alone, the adversary can obtain the same view as in the transformed 2-party protocol, by
internally simulating the helper party. Specifically, since the honest receiver never responds to the
helper’s messages, the internally simulated helper’s view can be combined with the independently
generated message of the receiver to obtain a valid simulation.

Thus the transformed protocol is a semi-honest secure 2-party OT protocol (i.e., sh-OT). Fur-
ther, it can be cast as a two message protocol:

• Round 1: The first message from the receiver consists of its first round message in Π.

• Round 2: The second message from the sender consists of both first and second round
messages from the sender and the helper in Π.

Note that we are able to “postpone” the first round messages of the sender and helper in Π to the
second message of OT because an honest receiver is non-rushing; i.e., its first round message does
not depend on the messages of the other parties.

This argument partly extends to the case when Π is secure against active corruptions. In
this case, the transformed protocol will have the same security as Π against the corruption of the
receiver, but only security against semi-honest corruption of the sender. When Π is secure w.r.t.
straightline simulation (which is standard for security with honest majority) this yields a 2-party,
2-round OT protocol that is secure against passive corruption of senders, and active corruption
of receivers, with straightline simulation in the latter case. We term such a protocol an mR-OT
protocol.

These arguments readily extend to all n ≥ 3. Thus two-round n-party honest-majority MPC
over BC channels implies two-round sh-OT or two-round mR-OT, depending on the security level
of the honest-majority protocol. In the latter case, we obtain an impossibility result for MPC in
the plain model, by proving the impossibility of two-round mR-OT protocol (in the plain model),
similar to the impossibility of UC security in the plain model. We give a formal proof in Section 4.

2.2 BC + P2P Model

2.2.1 Impossibility of IA in BC + P2P Model

We next describe our ideas for proving the impossibility of 2-round honest-majority MPC with IA

security in the BC + P2P model, without any setup. We focus on the case of n = 3 parties and

7

t = 1 corruption.
From our first lower bound, we know that security with IA is impossible in two-rounds in the BC

only model. In general, access to P2P channels can often help in overcoming such impossibilities.
Indeed, recent two-round protocols [1, 4, 2] that achieve SA/UA security crucially rely on the use
of P2P channels. An obvious advantage of using P2P channels in the honest majority setting is
“easy” (straight-line) extraction of the adversary’s inputs during simulation. However, there is also
a potential disadvantage: an adversary may use P2P channels to create inconsistent views amongst
the honest parties. For example, it may send honestly computed messages to one honest party, but
not to the other.

While such attacks can usually be handled (by requiring the honest parties to output ⊥ by
default in case of any conflict or confusion) when we only require SA or UA security, it becomes a
challenge in achieving IA security. Recall that in IA, if the honest parties output ⊥, they must
also be able to identify a corrupt party. In a two round protocol, even if an honest party – who
does not receive a “valid” message in the first round from the adversary – tries to complain to
another honest party in the second round, the latter party is left in a dilemma about whether the
complaint is legitimate or fabricated (to frame the other party). As a result, it is unable to decide
who amongst the other two parties is actually corrupt. This observation forms the basis of our
impossibility result.

Consider a 3-party functionality F that takes inputs b ∈ {0, 1} from P2 and (x0, x1) from P3

and outputs xb to P1. That is, F(⊥, b, (x0, x1)) = (xb,⊥,⊥). Consider an adversary who corrupts
P2 in the following manner: it behaves honestly, except that it does not send any protocol specified
private channel message to P1 (i.e., simply drops them).8 We argue that no protocol can achieve
IA security against such an attack.

In particular, we argue that in this case, the honest parties can neither output ⊥ nor a non-⊥
value. As discussed earlier, if the honest parties output ⊥, they must also be able to identify the
corrupt party. However, P3’s view in this case is indistinguishable from another execution where a
corrupt P1 falsely accuses an honest P2 of not sending private channel messages. It is easy to see
that this inherent “conflict” for P3 about who amongst P1 and P2 is the corrupt party is impossible
to resolve. Hence, the output of the honest parties cannot be ⊥.

This leaves the possibility of the output being non-⊥. Consider P2 using an input b in the
protocol execution. In case the output of the honest parties is a non-⊥ value, there are two possible
outcomes, corresponding to what a simulator extracts as P2’s input: (1) the simulator extracts b
with probability (almost) 1 or (2) with at least a non-negligible probability, it extracts 1− b.

• In the first case, note that the simulator’s view of P2’s messages only involves messages visible
to P3. Then, since the simulator is a straight-line simulator, and the protocol is in the plain
model, a corrupt P3 can violate privacy by running the same simulator to extract an honest
P2’s input. Hence this case is not possible.

• In the second case, consider another instance where P1 is corrupt, while P2 and P3 are honest.
Consider an execution where P1 follows the protocol honestly and learns the output xb. Later
it launches an “offline reset attack,” by recomputing its second round messages pretending
that it did not receive a message from party P2 in the first round. Upon recomputing the
output using this alternate view (where P2’s private messages were not received), it learns,
with non-negligible probability, x1−b. Hence, P1 can distinguish between the case x0 = x1

8If the protocol does not require any P2P message from P2 to P1, then the corrupted P2 is simply behaving
honestly since there is no message to be dropped. In this case, the protocol must result in a not-⊥ output. This case
is addressed below.

8

and x0 6= x1 with a non-negligible advantage, thereby violating P3’s privacy. Hence, this case
is also not possible.

We present a formal proof in Section 5.1.

2.2.2 Necessity of sh-OT for FS-GoD in the BC + P2P Model

In the BC + P2P model, we show that 2-round honest-majority that achieves FS-GoD security
implies the existence of 2-message sh-OT. This implication holds for n/3 ≤ t < n/2; for t < n/3,
we describe a simple FS-GoD protocol in the technical sections based on weaker assumptions.

Recall that in the transformation from a two-round BC only protocol for F3-OT to a secure
protocol for OT (discussed in Section 2.1), the sender implements the helper party. Security against
a semi-honest sender follows from the fact that in the BC only model, the view of an adversary
who corrupts the sender and the helper in the transformed protocol is no different from the view
of an adversary who only corrupts the sender in the original protocol. It is easy to see that this
argument fails (even in the semi-honest setting) when the protocol additionally uses P2P channels.
Consider, for example, the case where the receiver is required to send a private message to the
helper in the first round. An adversary who corrupts both the sender and the helper now gets
this additional information, which it does not get by corrupting the sender alone. Indeed, since
two-round protocols [1, 3, 18, 4, 2] that achieve security with SA or UA in the BC +P2P model are
already known, we know that the above approach must fail.

Our key insight is that if the two-round protocol achieves FS-GoD security, then it means that
some private channel messages are “redundant,” and can be removed if one only cares about security
against semi-honest adversaries. This observation allows us to start with with a “truncated” version
of the underlying FS-GoD protocol (which only achieves SH security) and then use a similar strategy
as in Section 2.1 to construct two-message sh-OT. We first focus on the setting with n = 3 parties
and t = 1 corruption. Later we discuss how this argument can be extended for arbitrary n and
n/3 ≤ t < n/2.

As earlier, we consider the functionality F3-OT involving a sender, a receiver and a helper party.
Let Π be a 3-party protocol for this functionality with FS-GoD security. Note that FS-GoD security
implies that even if the helper does not send its second round message, the protocol must still
remain (at the very least) semi-honest secure. Furthermore, if the helper is not required to send
any messages in the second round, the sender and receiver do not need to send any messages to the
helper in the first round (except the broadcast channel messages, which are received by everyone).
Combining these observations with the observation from Section 2.1 that the receiver (by virtue
of being the only output party) does not need to send a message in the second round, and that
the sender and helper can send all their messages in the second round, we obtain the following
two-message protocol:

• Round 1: The receiver computes and sends its first round broadcast message and its private
message for the sender.

• Round 2: The sender computes and sends its first and second round broadcast messages
and its private channel messages for the receiver. It also computes and sends the first round
broadcast message and the private channel message of the helper for the receiver.

Security against a semi-honest sender and receiver in the transformed OT protocol can be ar-
gued similarly as before, although we need to be slightly more careful in handling private channel
messages of each party in the underlying three-party protocol.

9

The above idea can be generalized to n parties and n/3 ≤ t < n/2 corruptions for the n-party
functionality Fn-OT (described earlier). In this case, the first 2t parties are emulated by the sender
and the remaining n−2t are emulated by the receiver. Since n/3 ≤ t < n/2, we know that n−2t ≤ t.
Security against a semi-honest receiver in this case follows exactly as before. For security against
a semi-honest sender, we rely on the fact that since t out of the 2t parties emulated by the sender
do not send second round messages, the receiver parties do not need to send them private channel
messages in the first round. We can now rely on the semi-honest security of (the truncated version
of) Π to show that an adversary who corrupts the sender does not gain any more advantage over
an adversary who corrupts the first t parties in Π. We defer further details to Section 5.2.1.

2.3 BC + PKI Model

Positive Result for M-GoD. There exist two-round M-GoD protocols in the BC+PKI model that
rely on a trusted CRS setup [25]. We observe that there is simple way to eliminate the centralized
CRS setup.

The CRS setup in existing two-round M-GoD protocols is only used for NIZK proofs. In the
honest majority setting, it is easy to verify that standard NIZKs can be replaced with multi-CRS
NIZKs (m-NIZKs) [26], where the setup consists of multiple CRS strings (as opposed to a single
CRS) and soundness holds as long as a majority of the CRS are honestly generated. Our key
observation is that a multi-CRS setup can in fact be embedded inside the bare PKI setup: start
with any bare PKI setup and modify it such that the public key of each party also includes a CRS
for a m-NIZK. This is still a valid bare PKI setup since the adversary in m-NIZK is allowed to
choose its CRSes adaptively after looking at the honest parties’ CRSes. Putting this together, we
obtain a 2-round M-GoD protocol in the PKI + BC model.

By using the same observation, the three-round M-GoD protocol of Ananth et al. [1] in the plain
model can also be transformed into a two-round protocol in the BC + PKI model by moving the
entire first round of their protocol to a bare PKI setup. For the sake of completeness, in Section
6.1, we give a formal description of the resulting two-round M-GoD protocol. We in fact present
a transformation from any two-round (semi-malicious) FS-GoD protocol in the BC + PKI model
(which is known from [1]) into a two-round M-GoD protocol using m-NIZKs.

Positive Result for IA. The above M-GoD protocol also implies a two-round protocol for IA in
the BC + PKI model and complements the IA impossibility result from Section 2.2.1. However,
the protocol uses a specially crafted PKI where the public keys contain CRSes of an m-NIZK proof
system in addition to public keys of a PKE scheme.

We present a separate protocol for IA in the BC+PKI model, where the PKI can be instantiated
from generic PKE. We obtain this protocol by devising a generic transformation from any two-round
UA-secure protocol in the BC+P2P model that achieves perfect correctness to a two-round IA-secure
protocol in the BC + PKI model.

Given a two-round protocol Π that achieves security with UA in the BC+P2P model, a natural
idea to strengthen its security to IA (in the BC + PKI model) is to simply require each party to
prove honest behavior using the standard “commit and prove” approach: the parties encrypt their
private channel messages under the public-keys of the recipient parties, broadcast them in the first
round and attach a proof of having computed all of these messages honestly in each round. If a
party cheats, then its proof will fail verification, and all the honest parties will be able to identify
that corrupt party. While this idea can be easily implemented using NIZKs, it would result in a
protocol in the CRS model.

Since we are in the honest majority setting, we can attempt to replace standard NIZKs with

10

multi-CRS NIZKs (m-NIZKs)[26]. In our setting, the CRS strings can be generated by the parties
in the first round of the protocol and the honest majority assumption implies that a majority of
the CRS are computed honestly. Using m-NIZKs, the parties can still prove honest behavior in the
second round of the protocol. However, a proof of honest behavior in the first round can no longer
be sent in the first round itself (since the CRS strings are not known at that point); instead it can
only be sent (belatedly) in the second round. In this case, we need to ensure that it is not “too
late” for the honest parties to detect and identify a cheating party.

We implement this idea in the following manner. If the parties are able to compute their second
round messages – given the first round messages from all the other parties – they give a single
proof in the second round to prove that they computed all their (first and second round) messages
honestly.

In case a corrupt party does not compute and encrypt its first round private channel messages
honestly, there are two possibilities: (1) the honest recipient of the malformed private message is
able to detect that the message is not “well-formed” (e.g. if the message is an empty string or it
does not satisfy the syntax specified by underlying protocol, etc.) and is unable to use this message
to compute its second round message, or (2) the honest recipient does not detect any issues with the
message and is able to compute its second round message as per the specification of the underlying
protocol. We handle these two scenarios differently.

In the first case, the recipient party simply reveals the decrypted malformed message to all
other parties in the second round and gives a proof to convince them that its (respective) public
key was honestly generated and that the corrupt party did indeed send them an encryption of this
malformed message. Given the decrypted message, the remaining parties can perform the same
(public) verification as the recipient party to determine whether or not the message is well-formed
and identify the corrupt party. In the second case, we will rely on the soundness of the proof given
by the corrupt party. In case the corrupt party did not encrypt its first round private channel
messages honestly, it will not be able to give a convincing proof in the second round, and will be
easily identified. We give a formal description of this construction in Section 6.2.

3 Preliminaries

Throughout the paper, we use λ to denote the security parameter. We recall some standard
cryptographic definitions in this section. Apart from the primitives defined in this section, we also
use some other standard building blocks like public key encryption. We omit their definitions here.

3.1 Oblivious Transfer (OT)

In this paper, we consider the standard notion of 1-out-of-2 oblivious transfer [16]; where one party
(the sender) has inputs (m0,m1) in some domain (say {0, 1}∗), and another party (the receiver)
has a choice bit b ∈ {0, 1}. At the end, the receiver should learn mb and nothing more while the
sender should learn nothing about b.

We consider two variants of this OT protocol, a semi-honest version called sh-OT and one that is
secure against a malicious receiver called mR-OT. For mR-OT , we require an efficient straight-line
simulator for a maliciously corrupt receiver.

We define the syntax and the security guarantees of a two-message OT protocol in the plain
model. The definition can be naturally extended to the CRS model.

Definition 3.1 (2 Message OT). A two-message oblivious transfer between a receiver R and a
sender S is defined by a tuple of 3 PPT algorithms (OTR,OTS ,OTout). Let λ be the security

11

parameter. The receiver computes msgR, ρ as the evaluation of OTR(1λ, b), where b ∈ {0, 1} is
the receiver’s input. The receiver sends msgR to the sender. The sender computes msgS as the
evaluation of OTS(1λ,msgR, (m0,m1)), where m0,m1 ∈ {0, 1}∗ are the sender’s input. The sender
sends msgS to the receiver. Finally the receiver computes mb by evaluating OTout(ρ,msgR,msgS).

A sh-OT protocol satisfies correctness, security against semi-honest receiver and semi-honest
sender, while a mR-OT satisfies correctness, security against semi-honest sender and malicious
receiver, which are defined as follows:

• Correctness: For each m0,m1 ∈ {0, 1}∗, b ∈ {0, 1}, it holds that

Pr

 (ρ,msgR)← OTR

(
1λ, b

)
msgS ← OTS

(
1λ,msgR, (m0,m1)

) ∣∣∣∣∣ OTout (ρ,msgR,msgS) = mb

 = 1,

• Security against Semi-Honest Sender: It holds that,{
(msg0

R, ρ
0)← OTR

(
1λ, 0

) ∣∣∣ msg0
R

}
≈c
{

(msg1
R, ρ

1)← OTR

(
1λ, 1

)
| msg1

R

}
• Security against Semi-Honest Receiver: it holds that for each b ∈ {0, 1},
m0,m1,m

′
0,m

′
1 ∈ {0, 1}∗, and mb = m′b,{

OTS

(
1λ,msgR, (m0,m1)

)}
≈c
{
OTS

(
1λ,msgR, (m

′
0,m

′
1)
)}

where (msgR, ρ)← OTR(1λ, b).

• Security against a Malicious Receiver: For every PPT adversary A, there exists a PPT
simulator SR = (S1

R,S2
R) for any choice of m0,m1 ∈ {0, 1}∗ such that the following holds∣∣∣∣Pr

[
IDEALSR,FOT

(1λ,m0,m1) = 1
]
− Pr

[
REALA,OT(1λ,m0,m1) = 1

] ∣∣∣∣
≤ 1

2
+ negl(λ).

Where experiments IDEALSR,FOT
and REALA,OT are defined as follows:

Exp IDEALSR,FOT
(1λ,m0,m1) :

msgR ← A
(

1λ
)

b← S1
R(1λ,msgR)

mb ← FOT(m0,m1, b)

msgS ← S2
R(1λ,mb,msgR)

Out A(msgS)

Exp REALA,OT(1λ,m0,m1) :

msgR ← A
(

1λ
)

msgS ← OTS

(
1λ,msgR, (m0,mb)

)
Out A(msgS)

3.2 Secure Multiparty Computation

A secure multi-party computation protocol (MPC) is a protocol executed by n parties P =
{P1, · · · , Pn} for a functionality F . We allow for parties to exchange messages simultaneously.
In every round, every party is allowed to exchange messages with other parties using different com-
munication channels, depending on the model. A protocol is said to have k rounds if it proceeds
in k distinct and interactive rounds.

12

3.2.1 Adversarial Behavior

One of the primary goals in MPC is to protect the honest parties against dishonest behavior of
the corrupted parties. This is usually modeled using a central adversarial entity, that controls the
set of corrupted parties and instructs them on how to operate. That is, the adversary obtains the
views of the corrupted parties, consisting of their inputs, random tapes and incoming messages,
and provides them with the messages that they are to send in the execution of the protocol. In our
protocols we only consider the case where the adversary can only control a minority of the parties
in the protocol. We discuss the following adversarial models in detail:

1. Semi-Honest Adversaries: A semi-honest adversary always follows the instructions of the
protocol. This is an ”honest but curious” adversarial model, where the adversary might try
to learn extra information by analyzing the transcript of the protocol later.

2. Fail-Stop Adversaries: A non-rushing fail-stop adversary instructs the corrupted parties
to follow the protocol as a semi-honest adversary, but it may also instruct a corrupted party
to abort at any time in the protocol. The decision to abort or not may depend on its view.
Note that a fail-stop adversary does not selectively abort over private channels, i,e, it either
sends all private messages in a round or does not send any message in that particular round.

3. Malicious Adversaries: A malicious adversary can deviate from the protocol and instruct
the corrupted parties to follow any arbitrary strategy.

4. Semi-Malicious Adversaries: A semi-malicious adversary [5] is like a semi-honest adver-
sary, except that it is allowed to be rushing and can choose its random coins arbitrarily. In
other words, it may choose its random coins adaptively, after seeing the protocol messages of
the honest parties in that round (and all prior rounds). However, given its choice of random
coins, it computes the protocol messages honestly. In this work, for one of our protocols,
we also consider a variant called (semi-malicious) fail-stop adversary that is essentially like a
semi-malicious adversary but may abort at any time in the protocol.

We provide the basic definitions for secure multiparty computation according to the real/ideal
paradigm [21]. Informally, a protocol is considered secure if whatever an adversary can do in the
real execution of protocol, can be done also in an ideal computation, in which an uncorrupted
trusted party assists the computation.

3.2.2 Security Definitions

Real World. The real world execution of a protocol Π = (P1, . . . , Pn) begins by an adversary
A selecting any arbitrary subset of parties I ⊂ [n] to corrupt. The parties then engage in an
execution of a real n-party protocol Π. Throughout the execution of Π, the adversary A sends all
messages on behalf of the corrupted parties, and may follow an arbitrary polynomial-time strategy.
In contrast, the honest parties follow the instructions of Π. At the conclusion of the protocol,
each honest party outputs all the outputs it obtained in the computations. Malicious parties may
output an arbitrary PPT function of the view of A. This joint execution of Π under (A, I) in the
real model, on input vector ~x = (x1, . . . , xn), auxiliary input z and security parameter λ, denoted

by REALΠ,I,A(z)

(
1λ, ~x

)
, is defined as the output vector of P1, . . . , Pn and A(z) resulting from this

protocol interaction.

13

Ideal World. We now present standard definitions of ideal-model computations that are used
to define security with SA/UA, with IA, and with FS-GoD/M-GoD. We start by presenting the ideal-
model computation for security with UA, where the adversary may abort the computation either
before or after it has learned the output; other ideal-model computations are defined either by
allowing the adversary to selectively abort to some parties but not to others or by restricting the
power of the adversary either by forcing the adversary to identify a corrupted party in case of abort,
or no abort (guaranteed output delivery).

Ideal Computation with UA. An ideal computation with UA of an n-party functionality F
on input ~x = (x1, . . . , xn) for parties (P1, . . . , Pn) in the presence of an ideal-model adversary A
controlling the parties indexed by I ⊂ [n], proceeds via the following steps.

Sending inputs to trusted party: For each i /∈ I, Pi sends its input xi to the trusted party. If i ∈ I,
the adversary may send to the trusted party any arbitrary input for the corrupted party Pi.
Let x′i be the value actually sent as the ith party’s input.

Early abort: The adversary A can abort the computation by sending an abort message to the
trusted party. In case of such an abort, the trusted party sends ⊥ to all parties and halts.

Trusted party answers adversary: The trusted party computes (y1, . . . , yn) = F(x′1, . . . , x
′
n) and

sends yi to party Pi for every i ∈ I.

Late abort: The adversary A can abort the computation (after seeing the outputs of corrupted
parties) by sending an abort message to the trusted party. In case of such abort, the trusted
party sends ⊥ to all honest parties and halts. Otherwise, the adversary sends a continue
message to the trusted party.

Trusted party answers remaining parties: The trusted party sends yi to Pi for every i /∈ I.

Outputs: Honest parties always output the message received from the trusted party and the cor-
rupted parties output nothing. The adversary A outputs an arbitrary function of the initial
inputs xi s.t. i ∈ I, the messages received by the corrupted parties from the trusted party
and its auxiliary input.

We now define the following variants of this ideal computation:

• Ideal computation with SA. This ideal model proceeds as in Definition 3.2, with the
exception that during late abort, the adversary is allowed to choose which honest parties get
the output and which ones get abort.

• Ideal computation with IA. This ideal model proceeds as in Definition 3.2, with the ex-
ception that in order to abort the computation, the adversary chooses an index of a corrupted
party i∗ ∈ I and sends (abort, i∗) to the trusted party. In this case the trusted party responds
with (⊥, i∗) to all parties.

• Ideal computation with FS-GoD/M-GoD. This ideal model proceeds as in Definition 3.2,
with the exceptions that the adversary can only send x′i ∈ {xi,⊥} (for each i ∈ I) as input
for the corrupted parties and is additionally not allowed to send abort to the trusted party at
any point.

14

Definition 3.2 (Ideal-model computation). Let type ∈ {UA, SA, IA, FS-GoD, M-GoD} and F :
({0, 1}∗)n → ({0, 1}∗)n be an n-party functionality. let I ⊂ [n] be the set of indices of the cor-
rupted parties, and let λ be the security parameter. Then, the joint execution of F under (A, I) in
the ideal model, on input vector ~x = (x1, . . . , xn), auxiliary input z to A and security parameter λ,
denoted IDEALtypeF ,I,A(z)(1

λ, ~x), is defined as the output vector of P1, . . . , Pn and A resulting from the
above described ideal process.

Security Having defined the real and ideal models, we can now define security of protocols
according to the real/ideal paradigm.

Definition 3.3. Let type ∈ {UA, SA, IA, FS-GoD, M-GoD}. Let F : ({0, 1}∗)n → ({0, 1}∗)n be an n-
party functionality and let Π be a probabilistic polynomial-time protocol computing F . The protocol
Π t-securely computes F with “type”, if for every probabilistic polynomial-time real-model adversary
A, there exists a probabilistic polynomial-time simulator S for the ideal model, such that for every
I ⊂ [n] of size at most t, it holds that{

REALΠ,I,A(z)

(
1λ, ~x

)}
(~x,z)∈({0,1}∗)n+1,λ∈N

≈c
{
IDEALtypeF ,I,S(z)(1

λ, ~x)
}

(~x,z)∈({0,1}∗)n+1,λ∈N

We also consider protocols where the adversary A is allowed to be unbounded and the running
time of S is polynomial in the running time of A. We say that such a protocol is statistically (or
perfectly resp.) secure if the above distributions are statistically (or perfectly resp.) indistinguish-
able.

For all our lower bounds and positive results, we only work with MPC protocols that are
simulatable by (efficient) straight-line simulators. We note that this is standard in the honest
majority MPC literature, since all known honest majority protocols admit straight-line simulation.

For one of our constructions, we will also make use of the following definition of perfect correct-
ness of an MPC protocol.

Definition 3.4 (Perfect Correctness). Let type ∈ {UA, SA, IA, FS-GoD, M-GoD}. Let F : ({0, 1}∗)n →
({0, 1}∗)n be an n-party functionality and let Π be a probabilistic polynomial-time n-party protocol
that t-securely computes F with “type”. We say that protocol Π realizes functionality F with
perfectness correctness, if it holds with probability 1, that the output of all the parties in an honest
execution (i.e., when all parties follow the protocol) of Π on all input vectors −→x = (x1, . . . , xn) is
equal to F(x1, . . . , xn), where the probability is over the random coins of all the parties.

3.3 Multi-CRS Non-Interactive Zero Knowledge (m-NIZK)

We use the definition from [6], which is adapted from [26]. Let R be an efficiently computable
binary relation and L an NP-language of statements x such that (x,w) ∈ R for some witness w.

Definition 3.5 (Multi-CRS NIZK). A multi-CRS NIZK for a language L is a tuple of PPT
algorithms m-NIZK = (m-NIZK.Gen,m-NIZK.Prove,m-NIZK.Verify) satisfying the following specifi-
cations:

• m-NIZK.Gen(1λ): It takes as input the security parameter λ and outputs a uniformly random
string crs.

• m-NIZK.Prove(crs, x, w): It takes as input a set of n random strings −→crs, a statement x, and
a witness w and outputs a proof.

15

• m-NIZK.Verify(−→crs, x, proof): It takes as input a set of n random strings −→crs, a statement x,
and a proof. It outputs 1 if it accepts the proof and 0 if it rejects it.

We require that the algorithms satisfy the following properties for all non uniform PPT adversaries
A:

• Perfect Completeness.

Pr

[
s = ∅; (−→crs, x, w)← Am-NIZK.Gen

proof ← m-NIZK.Prove(−→crs, x, w)

∣∣∣∣∣ m-NIZK.Verify(−→crs, x, proof) = 0

and (x,w) ∈ R

]
= 0,

where m-NIZK.Gen is an oracle that when queried, outputs crs ← m-NIZK.Gen(1λ) and sets
−→crs = −→crs ∪ crs. Note that this says that even if the adversary arbitrarily picks all the random
strings, perfect completeness still holds.

• Soundness.

Pr

[
S = ∅;

(−→crs, x, proof)← Am-NIZK.Gen

∣∣∣∣∣ m-NIZK.Verify(−→crs, x, proof) = 0 ∧
x /∈ L ∧ |−→crs ∩ S| > n/2

]
≤ negl(λ)

where m-NIZK.Gen is an oracle that when queried, outputs crs ← m-NIZK.Gen(1λ) and sets
S = S∪crsq. Note that this says that as long as at least half of the random strings are honestly
generated, the adversary cannot forge a proof except with negligible probability.

• Zero-Knowledge. There exist PPT algorithms SGen, SProve such that

Pr[crs← m-NIZK.Gen(1λ) | A(crs) = 1] ≈ Pr[(crs, τ)← SGen(1λ) : A(crs) = 1]

and

Pr

[
s = ∅; (−→crs, x, proof)← ASGen

proof ← m-NIZK.Prove(−→crs, x, w)

∣∣∣∣∣ A(proof) = 1 and (x,w) ∈ R
and |−→crs ∩ S| > n/2

]

≈ Pr

[
s = ∅; (−→crs, x, proof)← ASGen

proof ← SProve(−→crs, x,−→τ)

∣∣∣∣∣ A(proof) = 1 and (x,w) ∈ R
and |−→crs ∩ S| > n/2

]
where −→τ is the set containing all simulation trapdoors τ generated by SGen.

4 Broadcast Model

In this section, we investigate the minimal assumptions required to enable two-round honest-
majority secure MPC protocols over only a BC channel. In Section 4.1, we show that any two-round
honest majority MPC for general functionalities that achieves either semi-honest security or security
against malicious adversaries, over a BC channel can be transformed into a two-message oblivious
transfer protocol. In the semi-honest case, this yields a semi-honest OT protocol (sh-OT), while in
the malicious setting, this yields a malicious receiver OT protocol (mR-OT). Later in Section 4.2, we
show that such a two-round malicious receiver OT is impossible in the plain model, thereby show-
ing that maliciously secure, two-round MPC is impossible in the plain model given only broadcast
channels.

16

4.1 Lower Bound for t = 1

We start by formally stating the observation that for functionalities where only a single party
receives an output, the output party need not send any messages in the last round.

Observation 1. Let F be any n-input functionality and let Π be a secure MPC protocol that
computes F , such that only one party Pout receives the output of F . Then Π can be transformed
into a protocol Π′, where the output party does not send any message in the last round. Moreover,
Π′ achieves the same security as Π in the same communication/setup model.

Indeed, the above observation holds w.l.o.g. If Pout simply drops its last round message, then by
virtue of being the only output party, the output of all other parties remains unaffected. While Pout

can still compute its output by first locally computing its last round message in Π and then running
the output reconstruction algorithm of Π on the protocol transcript and this locally computed
message. It is easy to see that the security of this modified protocol follows from the security of Π.

Given this observation, we now show that any two-round protocol in the BC model can be
transformed into a two-message OT in the same setting.

Theorem 4.1. If there exists a 2-round, n-party protocol over BC channels for general functions, in
the plain model, that is secure against t = 1 semi-honest corruption, then there exists a 2-message
semi-honest OT protocol in the plain model.

If there exists a 2-round, n-party protocol over BC channels for general functions, in the plain
model, that achieves security with abort (SA, UA, IA) against t = 1 malicious corruption, then there
exists a 2-message malicious receiver OT protocol in the plain model.

Looking ahead, in Section 4.2, we show that two-message mR-OT in the plain model is im-
possible, thereby proving impossibility of SA, UA and IA in the plain model over only BC channels.
We remark that while Theorem 4.1 is stated for the plain model, it will be easy to see that this
implication from two-round BC only protocols to two-message OT also holds in the CRS model.
As discussed in the Introduction, since mR-OT is achievable in two-rounds in the CRS model, this
implication complements the two-round protocols based on two-message mR-OT for SA, UA and IA

from [19, 9, 12] in the CRS model.
The proof of Theorem 4.1 is organised as follows: We first give a common transformation from

an n-party protocol Π to a two-message OT protocol. Then in Lemma 4.1, we show that if Π is
semi-honest secure, then the resulting OT protocol is also semi-honest secure. Finally, in Lemma
4.2, we show that if Π achieves security with abort (SA,UA,IA) against a malicious adversary, then
the resulting OT protocol achieves malicious receiver security.

Proof of Theorem 4.1. Consider the following functionality involving a set of n parties, P =
{P1, . . . , Pn}:

Fn-OT((m0,m1), {⊥}i∈[n−2], b) = ({⊥}i∈[n−1],mb)

where the input of the first party P1 is (m0,m1) ∈ {0, 1}∗, parties P2, . . . , Pn−1 have no inputs
and the input of the last party Pn is a bit b ∈ {0, 1}. Party Pn is the only output party in this
functionality.

Let Π be a protocol for Fn-OT that operates over a BC channel. From Observation 1, we know
that any MPC protocol with a single output party can be transformed into one where the output
party does not send any message in the last round. In Figure 3, we show how such a protocol
(where Pn does not participate in the second round) for Fn-OT can be used to design a two-message
OT protocol ΠOT in the same setup/communication model as Π. We assume Πr to be the rth

17

round next message function in Π that takes the index of a party Pi among other values as input
and outputs msgri , ρ

r
i (internal state). We use −−→msgr to denote the set of all the messages sent by

the parties in round r. For simplicity of notation, we do not specify the randomness used in these
functions explicitly. We specify the input of a party as part of the input to Π1, and internal state
as part of the input to Πr, for r > 1.

Two-message OT from Two-round MPC for Fn-OT over BC

Receiver Message

The receiver computes (msg1
n, ρ

1
n)← Π1(n, b) and sends msg1

n to the sender.

Sender Message

The sender computes (msg1
1, ρ

1
1)← Π1(1, (m0,m1)), and for each j ∈ [n− 1] \ {1} it computes (msg1

j , ρ
1
j)←

Π1(j,⊥) and for each j ∈ [n − 1], it computes msg2
j ← Π2(j, ρ1

j ,
−−→msg1). It sends {msg1

j ,msg2
j}j∈[n−1] to the

receiver.

Receiver Output

The receiver computes and outputs out = Πout(n, ρ1
n,
−−→msg1,−−→msg2), where −−→msg1 = {msg1

1, ...,msg1
n}, and

−−→msg2 = {msg2
1, ...,msg2

n−1}.

Figure 3: A transformation from a two-round MPC Π for Fn-OT that achieves SH/SA/UA/IA over a
BC channel to a two-message OT protocol ΠOT.

Lemma 4.1. Let Π be a two-round n-party protocol for Fn-OT, secure against a single semi-honest
corruption over BC in the plain (or CRS resp.) model, then the protocol ΠOT in figure 3 is a
two-message sh-OT in the plain (or CRS resp.) model.

Proof. Correctness of ΠOT follows directly from the correctness of the protocol Π for functionality
Fn-OT. We now argue sender and receiver security. Let E be an execution of Π, where P ′1s input is
(m0,m1) and P ′ns input is b.

1. Security against semi-honest receiver: From the semi-honest security of Π, we know that
there exists a simulator Sn corresponding to the real world execution E where the adversary
corrupts party Pn, such that the following holds:{

Sn(b,mb), {⊥}i∈[n−1]

}
≈c {viewn(E), out1(E), . . . , outn−1(E)}

=⇒ {Sn(b,mb)} ≈c {viewn(E)}

where viewi(E), outi(E) denote the view and output of party Pi in the real world execution E .

Let E ′ be another execution of Π, where P ′1s input is (m′0,m
′
1) and P ′ns input is b and let

mb = m′b. Then it also holds that {Sn(b,mb)} ≈c {viewn(E ′)} . From transitivity of the
indistinguishability property,

{viewn(E)} ≈c
{
viewn(E ′)

}
=⇒ {viewR(E)} ≈c

{
viewR(E ′)

}
where viewn = viewR. Thus, sender security holds.

18

2. Security against semi-honest sender: From the semi-honest security of Π, we know that
there exists a simulator S1 corresponding to E where the adversary corrupts party P1, such
that the following holds:{

S1((m0,m1),⊥), {⊥}i∈[n−2],mb

}
≈c {view1(E), out2(E), . . . , outn(E)}{

msg1
n

}
≈c
{
msg1

n

}
where msg1

n is the first round message of party Pn simulated by S1((m0,m1),⊥).

Let E ′ be another execution of Π, where P ′1s input is (m0,m1) and P ′ns input is b′ 6= b. Then
it also holds that

{
msg1

n

}
≈c
{
msg′1n

}
. Receiver security now follows from transitivity of the

indistinguishability property{
msg1

n

}
≈c
{
msg′1n

}
=⇒ {viewS(E)} ≈c

{
viewS(E ′)

}
�

Lemma 4.2. Let Π be a two-round n-party protocol for Fn-OT, that achieves security with abort
(SA, UA, IA) against a single malicious corruption over BC in the plain (or CRS resp.) model, then
the protocol ΠOT in figure 3 is a two-message mR-OT in the plain (or CRS resp.) model.

Proof. Correctness of the OT protocol follows directly from the correctness of the underlying proto-
col Π. Receiver security against a semi-honest sender follows exactly as in Lemma 4.1. We proceed
to argue simulation-based sender security against a malicious receiver. Let the adversary corrupt
party Pn in the underlying protocol Π. From security of Π, we know that there exists a stateful
PPT simulator Sn, that can simulate an indistinguishable view for this adversary in the ideal world.

Given Sn, the simulator SR for the OT protocol first computes {msg1
i }i∈[n−1] ← Sn. Upon

receiving the OT receiver message msgR = msg1
n, it invokes Sn on this message. At some point,

while running Sn, when Sn queries the ideal functionality on input b of party Pn (receiver), the
simulator SR of the OT protocol forwards this query to its ideal functionality FOT. Upon receiving
the output mb from its ideal functionality, it forwards it to the simulator Sn. At the end, Sn also
outputs simulated second round messages {msg2

i }i∈[n−1]. It sends msgS = {msg1
i ,msg2

i }i∈[n−1] to
the adversary.

Indistinguishability of the real and ideal world executions of the OT protocol follow from security
of protocol Π. We note that we do not need to explicitly consider the output of honest parties in
the real and ideal experiments in this case, because the output of an honest sender in this case is
⊥. �

This completes the proof of Theorem 4.1. �

4.2 Impossibility of Two-message mR-OT in the Plain Model

In this section we show that a two-message malicious receiver OT is impossible in the plain model.
We prove this impossibility by showing that if there exists a simulator that can simulate an indis-
tinguishable view for a malicious receiver, then a malicious/semi-honest sender can run the same
simulator to extract the input of an honest receiver.

Lemma 4.3. There does not exist a 2-message OT with one-sided efficient straight-line simulation
security against a corrupt receiver.

19

Proof. Suppose there exists a 2-round protocol which securely realizes such an OT, i.e. for each
PPT A, there exists a PPT SR = (S1

R,S2
R) s.t for each m0,m1 ∈ {0, 1}∗:

∣∣∣∣Pr
[
IDEALSR,FOT

(1λ,m0,m1) = 1
]
− Pr

[
REALA,OT(1λ,m0,m1) = 1

] ∣∣∣∣
≤ 1

2
+ negl(λ).

where experiments IDEALSR,FOT
and REALA,OT are as defined in Definition 3.1. Let b be the

input on which SR queries the functionality FOT (m0,m1). Then, we construct an adversary AS
who corrupts the sender as follows: AS receives msgR from an honest receiver, runs S1

R

(
1λ,msgR

)
and computes b. This enables AS to extract an honest receiver’s input with a high probability. Note
that AS is a semi-honest adversary since it does not need to send any message before extracting the
receiver’s input. This contradicts the assumption that the protocol is secure against a semi-honest
sender. �

Combining Theorem 4.1 with the above Lemma, we get the following corollary.

Corollary 4.1. There exists a functionality F ∈ P/Poly, for which there does not exist a two-round
n-party protocol over BC that achieves security with SA/UA/IA against t = 1 malicious corruption
with straight-line simulation in the plain model.

We note that all known honest majority protocols have straight-line simulation.
Another interesting consequence of Theorem 4.1, is an equivalence between a two-round honest-

majority MPC and a two-round dishonest majority MPC over broadcast channels. We note that
the above reduction from 2-round honest majority MPC for general functionalities to mR-OT com-
pliments the protocols in [19, 9], where they show that OT is complete for two-round MPC over
BC in the CRS model.

5 BC + P2P Model

In this section, we investigate the feasibility of a two round IA protocol with general honest majority
in the BC +P2P model and investigate the minimal assumptions that are required for designing a
two round FS-GoD protocol in the BC + P2P model.

5.1 Impossibility Result for Identifiable Result

In this section, we show that there does not exist a two-round IA protocol for general functionalities
and general honest majority over BC + P2P in the plain model. To prove this result, it suffices to
show that there exists a three-party functionality that cannot be securely realized with IA security,
over BC + P2P in the plain model, in two-rounds, against a single corrupt party.

Theorem 5.1. There exists a functionality F ∈ P/Poly, for which there does not exist a three-
party protocol that achieves security with IA against a single malicious corruption over BC + P2P
with straight-line simulation in the plain model.

Proof. Let F be a 3-party functionality in which party P1 has no input, P2’s input is b ∈ {0, 1}
and P3’s input is (x0, x1). P1 receives an output xb, while P2 and P3 do not receive any output.
That is, F(⊥, b, (x0, x1)) = (xb,⊥,⊥). Let Π be a three-party protocol over BC + P2P channels,

20

realises F with IA security and straight line simulation. Let E1 be an execution of the protocol Π
computing F . Also, let Π be such that the parties do not send any private messages in the second
round (this holds w.l.o.g.). Let A be an adversary who corrupts party P2 and works as follows; it
behaves like an honest party except that it does not send its private channel message to party P1

in the first round.
We consider the following three cases:

1. Output of the honest parties is ⊥: We know that in security with IA, if the output of the
honest parties is ⊥, then they must identify at least one corrupted party. Since by assumption
Π achieves security with IA, it must be the case that both P1 and P3 correctly identify P2 as
the corrupt party. Let view3(E1) be the view of party P3 in execution E1.

Consider another execution E2 for the same functionality with the same set of inputs, where
the adversary corrupts party P1 and works as follows. It behaves honestly in the first round.
In the second round, it lies about not having received a message from party P2 in the first
round and computes its second round messages accordingly. Let view3(E2) be the view of
party P3 in execution E2. Clearly, the view of party P3 in this case is indistinguishable from
its view in execution E1

Π, i.e., view3(E1) ≈c view3(E2). Since the output of P3 in E1 was (⊥, P2),
it must be the case that the output of party P3 in execution E2 is also (⊥, P2). However, since
P2 is an honest party, this violates the requirements of security with IA.

Hence either Π does not achieve IA or the output of the honest parties in E1 cannot be ⊥.

2. The simulator extracts b as P2’s input with probability (almost) 1: In this case,
simulator S2’s view of P2’s messages only involves the broadcast message (say bmsg1

2) and the
private message (say pmsg1

2→3) that was sent to P3. The simulator S2, it straight-line, it is
able to extract P2’s input b only using (bmsg1

2, pmsg1
2→3). Note that both of these messages

are visible to P3, i.e., (bmsg1
2, pmsg1

2→3) ∈ view3(E1).

Consider another execution E2, where the adversary passively corrupts P3 and all parties

(including P3) compute and send their messages honestly. Let (bmsg
1
2, pmsg1

2→3) be the
messages sent by an honest P2 to P3 in execution E2. Since the simulator S2 is straight-line,

a corrupt P3 can now simply run S2 on (bmsg
1
2, pmsg1

2→3) to extract an honest P2’s input.
This would clearly break privacy of an honest P2’s input. Hence, either Π does not achieve
IA or there does not exist a straight-line simulator that extracts P2’s correct input b.

3. The simulator extracts 1 − b as P2’s input with some non-negligible probability.
Consider another execution E2 for the same functionality F , with the same set of inputs,
where the adversary passively corrupts party P1 and behaves honestly throughout the protocol
execution. Let {bmsg1

i , bmsg2
i , {pmsg1

i→j}j∈[3]}i∈[3] be the set of messages exchanged between
the parties. From correctness of protocol Π, it follows that P1 learns the output x′b′ , where
x′b′ is P3’s input in E2 and b′ is P2’s input.

A semi-honest P1 can now launch the following offline resetting attack: It computes a new
second round message while assuming that it did not receive a message from P2 in the first
round, i.e.,

bmsg
2
1 ← Π2(1, T

1
1),

where T
1
1 is the truncated first round transcript (bmsg1

2, bmsg1
3, pmsg1

3→1) of party P1. Note
that the transcript of P1 is now similar to the one in E1 and hence outcome of the protocol
(output of P1) in this case must be x′1−b′ with non-negligible probability. As a result of this
attack, P1 is able to learn both x′b′ and x′1−b′ , which clearly violates the privacy of P3’s input.

21

Hence, either Π does not achieve IA or there does not exist a straight-line simulator that
extracts 1− b with non-negligible probability.

Since all 3 cases above are impossible, protocol Π cannot be a secure implementation of functionality
F , tolerating a single corruption with IA. �

5.2 Fail-Stop Guaranteed Output Delivery

FS-GoD is known to be impossible [25] in the plain/CRS models in the absence of private channels
in two rounds. In this section, we investigate the minimal assumptions that are required to a
realize such protocols in the presence of private channels. More specifically, we show that for
n/3 ≤ t < n/2, sh-OT is necessary for achieving FS-GoD for general functionalities in the plain
model9, while OWF suffice for t < n/3.

5.2.1 Necessity of sh-OT for (t < n/2)

We first show that any n-party FS-GoD protocol for general functionalities with n/3 ≤ t < n/2
implies sh-OT.

Theorem 5.2. If there exists a 2-round n-party FS-GoD protocol for any F ∈ P/Poly in the plain
model for n/3 ≤ t < n/2, then there exists a two-message sh-OT protocol in the plain model.

Proof. Let Φ be a n-party FS-GoD protocol over BC + P2P for the following functionality:

Fn-OT((m0,m1), {⊥}i∈[n−2], b) = ({⊥}i∈[n−1],mb)

where, input of P1 is (m0,m1) ∈ {0, 1}∗, parties P2, . . . , Pn−1 have no inputs, input of Pn is a bit
b ∈ {0, 1}; and output of Pn is mb.

From Observation 1, we assume that Pn does not send any message in the last round. Addition-
ally, the remaining parties only need to send private channel messages to Pn in the second round.
Now, since Φ achieves FS-GoD, even if t parties, say Pt+1, . . . , P2t fail-stop after sending their first
round messages, an honest Pn will still be able to learn the output. Let Π be a slightly modified
version of Φ, which forces Pt+1, . . . , P2t to stop after sending their first round messages, as follows:

• No messages are sent to Pt+1, . . . , P2t in the first round.

• Pt+1, . . . , P2t do not send any messages in the second round.

Note that Π is not only a correct protocol (based on FS-GoD security of Φ), but also a semi-honest
secure protocol against corruption of any t parties. This is true since an adversary in protocol Φ
corrupting any t parties can further pretend to not have received the messages omitted in Π, thus
simulating the view in protocol Π.

In Figure 4, we show how Π for Fn-OT can be used to design a two-message sh-OT in the same
setup/communication model as Π, where the first 2t parties act as the sender and the remaining
parties act as the receiver. We use Tri to denote the transcript of party Pn, at the end of the round
r. We borrow the remaining notations from previous sections.

Correctness of the OT protocol in figure 4 follows directly from the correctness of the underlying
protocol Π for functionality Fn-OT. The proof for security against semi-honest receiver follows from
semi-honest security of Π, since, any adversary corrupting the receiver in OT protocol can be viewed
as an adversary corrupting the last n− 2t parties in the underlying protocol Π (where n− 2t < t).
We now argue security against semi-honest sender.

9We note that this lower bound complements the protocol designed by Ananth et al. in [1]

22

Two-message sh-OT from n-Party FS-GoD Protocol over BC + P2P

Receiver Message

• Compute
(
bmsg1

n,
{
pmsg1

n→j
}
j∈{1,...,t,2t+1,...,n}

)
← Π1(n, b).

• For i ∈ [2t+ 1, n], compute
(
bmsg1

i ,
{
pmsg1

i→j
}
j∈{1,...,t,2t+1,...,n}

)
← Π1(i,⊥).

Send
{
bmsg1

i , pmsg1
i→j
}
i∈[2t+1,n],j∈[1,t]

to the sender.

Sender Message

• Compute
(
bmsg1

1, {pmsg1
1→j}j∈[n]

)
← Π1 (1, (m0,m1)) .

• For each i ∈ [2t], compute
(
bmsg1

i , {pmsg1
i→j}j∈{1,...,t,2t+1,...,n}

)
← Π1(i,⊥).

• For each i ∈ [t], compute
(
bmsg2

i , pmsg2
i→n

)
← Π2(i, T1

i), where T1
i =

{
bmsg1

j , pmsg1
j→i
}
j∈[n]

.

Send
{
bmsg1

i , pmsg1
i→j
}
i∈[2t],j∈[2t+1,n]

,
{
bmsg2

i , pmsg2
i→n

}
i∈[t]

to the receiver.

Receiver Output

• For each i ∈ [2t+ 1, n], compute
(
bmsg2

i , pmsg2
i→n

)
← Π2(i, T1

i), where T1
i =

{
bmsg1

j , pmsg1
j→i
}
j∈[n]

.

• Compute and output out = Πout(n, T2
n), where T2

n ={
bmsg1

j , bmsg2
j , pmsg1

j→n, pmsg2
j→n

}
j∈{1,...,t,2t+1,...,n} ..

Figure 4: A transformation from an n-party FS-GoD protocol Φ with n/3 ≤ t < n/2 over BC +
P2P for Fn-OT to a two-message sh-OT. Π refers to a truncated SH variant of Φ, where parties
P2, . . . , Pt+1 and Pn do not send any messages in the second round.

Security Against Semi-Honest Sender. Recall that, we need to show that the distribution
of the first message by the receiver on input b = 0 is indistinguishable from that on input b = 1.
The message sent by the receiver is {bmsg1

j , {pmsg1
j→i}i∈[2t]}j∈[2t+1,n]. But, since the parties do

not send any messages to Pt, . . . , P2t in the underlying protocol Π, the first message is in fact
{bmsg1

j , {pmsg1
j→i}i∈[t]}j∈[2t+1,n]. This however, is part of the view of a semi-honest adversary

corrupting the first t parties in the underlying protocol Π. Hence by the semi-honest security
guarantee of Π, this view remains indistinguishable between b = 0 and b = 1.

�

5.2.2 Positive Result for (t < n/3)

Now we construct a two-round FS-GoD protocol for t < n/3. Our construction is based on one-
way functions for general functionalities in P/Poly and achieves information-theoretic security for
functions in NC1. We obtain this result by using the compiler from [4], who show that the task of
securely computing any arbitrary polynomial function can be non-interactively reduced to securely
computing arbitrary quadratic functions in the multi-party setting. An important property of their
reduction is that the resulting protocol for arbitrary polynomial functions achieves the same security
as the protocol for quadratic functions. We leverage this observation and focus on constructing an

23

FS-GoD protocol for quadratic functionalities and prove the following theorem.

Theorem 5.3. There exists a perfectly secure two-round FS-GoD protocol for quadratic functional-
ities with t < n/3 unbounded fail-stop corruptions over P2P channels in the plain model.

Instantiating the Master Theorem from [4] using the protocol from the above theorem, we get
the following results.

Corollary 5.1. Assuming the existence of OWF, there exists a two round FS-GoD protocol for
t < n/3 over P2P channels in the plain model for any f ∈ P/Poly.

There exists a statistically secure two round FS-GoD protocol for t < n/3 over P2P channels in
the plain model for any f ∈ NC1.

A two-round FS-GoD protocol for any quadratic functionality with t < n/3 over P2P channels

Let P = {P1, . . . , Pn} be the set of parties and F be the function that they wish to jointly compute. Let Xi
be the input held by party Pi. We say that a party is ’active’, if it does not abort in the first round. Let
active ⊆ [n] be the subset of parties that are active in the last round of the protocol. Let (Share,Recon) be
a threshold secret sharing scheme [33].

Party Pi in Round 1

1. Compute {[Xi]1 , . . . , [Xi]n} ← Share((t, n),Xi) and send [Xi]j to party Pj .

2. Compute {[Yi]1 , . . . , [Yi]n} ← Share((t, n), 0) and send [Yi]j to party Pj .

Party Pi in Round 2

Compute [Z]i = F([X1]i , . . . , [Xn]i) +
∑
j∈[n] [Yj]i , where [Xj]i = [Yj]i = 0, if Pj /∈ active.

Output Evaluation

Compute and output Z = Recon((2t, n), {[Z]i}i∈[n]
).

Figure 5: A two round FS-GoD protocol for quadratic functionalities with t < n/3 over P2P
channels.

.

Proof of Theorem 5.3. We observe that a slightly modified version of the semi-honest protocol in
[28], achieves FS-GoD with t < n/3 for quadratic functionalities. The protocol in [28] is based on
the standard “share-evaluate-reconstruct” approach, where the parties compute t-out-of-n threshold
secret shares [33] of their inputs in the first round. In the second round all the parties evaluate the
functionality (that they wish to compute) on their respective shares and send the evaluated share
to all other parties, who can then run the reconstruction algorithm of the secret sharing scheme to
reconstruct the output. We observe that pre-mature aborts by a fail-stop adversary can be handled
in this protocol for t < n/3 as follows:

• Abort in Round 1: If a corrupt party Pi aborts in the first round and does not send any
messages, the remaining parties can evaluate the functionality by simply setting the shares
that they were expecting from Pi to 0 and proceed as normal, without any disruption.

24

• Abort in Round 2: Since there are > 2t honest parties and evaluated shares in the second
round correspond to a 2t-out-of-n secret sharing, the shares of the honest parties are suffi-
cient to reconstruct the output. Therefore, aborts in the second round do not disrupt the
computation.

For the sake of completeness, we give a description of this protocol in Figure 5. The correctness
and security of this modified protocol follows trivially and hence we omit it. �

6 BC + PKI Model

In this section, we design two round protocols for M-GoD and IA in the BC + PKI model. While
our two round protocol for M-GoD also implies a protocol for security with IA, this protocol uses a
specially crafted PKI where the public keys contain CRSes of an m-NIZK proof system in addition
to public keys of a PKE scheme. We present a separate protocol for IA where the PKI can be
instantiated from generic PKE.

6.1 Positive Result for Guaranteed Output Delivery

In this section, we give a generic compiler from any two-round (semi-malicious) FS-GoD protocol
over BC + PKI channels to a two-round M-GoD protocol over BC + PKI. Our transformation
relies on multi-CRS non-interactive zero-knowledge (m-NIZK) proof systems and PKE. We refer
the reader to Section 3.3 for a formal definition of m-NIZKs. This protocol is a simple adaptation
of the three-round M-GoD protocol of Ananth et al [1], with the only modification that the entire
first round of their protocol is moved to the bare PKI setup in our protocol.

Theorem 6.1. Assuming the existence of PKE and m-NIZK, there exists a generic transformation
from any two round, n-party (semi-malicious) FS-GoD protocol in the BC+PKI model for t < n/2,
to a two-round n-party M-GoD protocol in the BC + PKI model for t < n/2.

Ananth et al. [1] present a two-round (semi-malicious) FS-GoD protocol in the BC+PKI model
based on public-key encryption (PKE) with perfect correctness. Instantiating the above theorem
with this protocol, we get the following corollary.

Corollary 6.1. Assuming the existence of PKE and m-NIZK, there exists an n-party protocol in the
BC+PKI model that achieves security with M-GoD against t < n/2 corruptions for any F ∈ P/Poly.

Protocol Description. Let P = {P1, . . . , Pn} be the set of parties with inputs X1, . . . ,Xn. We
start by listing the building blocks and establishing some notations:

1. Protocol Π: A two-round n-party MPC protocol Π = (ΠPKI ,Π1,Π2,Πout) that operates in
the BC + PKI model and achieves (semi-malicious) FS-GoD security against t < n/2. Here,
ΠPKI is the algorithm used by each party to compute its message in the bare PKI setup
phase, Πr is the rth round next-message function and Πout is the output computation function
of Π. We use msgri to denote the broadcast message of party Pi in round r.

2. PKE: Public key encryption scheme (PKE.Gen,PKE.Enc,PKE.Dec) with perfect complete-
ness.

3. Secret Sharing: A threshold secret sharing scheme (Share,Recon) [33].

25

4. m-NIZK: Multi-string NIZK (m-NIZK.Gen,m-NIZK.Prove,m-NIZK.Verify) (see Definitions
3.3). We assume the randomness used in these algorithms to be implicit and do not specify
them.

At the start of the protocol, each party Pi samples a sufficiently long random tape ρi to use in the
various sub-parts of the protocol; let ρkeyi be the randomness used for generating keys (pki, ski), ρ

PKI
i

be the randomness used to generate the PKI in the underlying protocol Π, ρΠ
i be the randomness

for generating messages in protocol Π and ρenci,j to encrypt the private message intended for Pj .
We use the vector notation along with a • symbol to refer to a set of n messages, for instance,−→
ct•→i = ct1→i, . . . , ctn→i. The remaining notations are borrowed from previous sections. A full
description of our protocol appears in Figure 6.

Security. We now proceed to give a description of the simulator. Let A be the real world
adversary and H be the set of honest parties. The simulator S for this protocol makes use of
the simulator SΠ = (SPKIΠ ,S1

Π,S2
Π) of the underlying protocol Π and the simulator of the m-NIZK

scheme (SGen,SProve) and proceeds as follows:

Bare PKI Setup.

• Compute {pkΠ
i }i∈H ← SPKIΠ .

• For each i ∈ H, for each j ∈ H, compute (crsi→j , τi,j) ← SGen and for each j ∈ I, compute
crsi→j ← m-NIZK.Gen.

• For each i ∈ H, compute (pki, ski)← PKE.Gen(; ρkeyi)

• Publish {pkΠ
i , pki,

−→crsi→•}i∈H.

Round 1.

• Compute
{
msg1

i

}
i∈[H]

← S1
Π

(−→
pkΠ
•

)
.

• For each i ∈ H, j ∈ I, randomly sample a value [Yi]j and compute cti→j ←
PKE.Enc

(
pkj , [Yi]j ; ρenci,j

)
.

• For each i, j ∈ H, compute ct1i→j ← PKE.Enc
(
pkj , 0; ρenci,j

)
.

• Compute proof1i ← SProve
(−→crs•→i, y1

i ,
−→τ i
)

where y1
i =

(−→
pkΠ
• ,
−→
pk•,msg1

i ,
−→
ct i→•

)
and −→τ i =

{τj,i}j∈H using language L1
i specified in Figure 6.

Round 2.

• Upon receiving messages from the adversary, for each i ∈ H and j ∈ I, compute [Yj]i ←
PKE.Dec(ski, ctj→i).

• For each j ∈ I, compute Yj = Recon((t, n),
{

[Yj]i
}
i∈H). Parse Yj = (Xj , ρ

Π
j).

• For each j ∈ I, the simulator checks if the m-NIZK proofs sent by the adversary on behalf of
each Pj ∈ I is valid. If not, it sets msgj = ⊥ and Xj = ⊥, ρΠ

j = ⊥.

• It sends {Xj}j∈I to the ideal functionality and obtains output z.

26

• Compute
{
msg2

i

}
i∈H ← S

2
Π

(−→
pkΠ
• ,
−−→msg1

•, z, {Xj , ρΠ
j }j∈I

)
.

• Compute proof2i ← SProve
(−→crs•→i, y2

i ,
−→τ i
)

where y2
i =

(−→
pkΠ
• ,
−→
pk•,
−→
ct i→•,msg2

i ,
−−→msg1

•

)
and −→τ i =

{τj,i}j∈H using language L2
i specified in Figure 6.

Proof of Indistinguishability. We prove indistinguishability of the adversary’s view and the
output of the honest parties in the real and ideal worlds using hybrid arguments. We consider the
following hybrids:

H0 : This hybrid is same as the real world execution.

H1: This hybrid is similar to hybrid H0, except that we change the way the honest parties’ proofs
are computed. In particular, all the honest parties use the simulator of the multi-string NIZK
proof system to simulate their respective crs’s for each of the other honest parties, who then
also simulate their proofs using these simulated crs’s in the second round.

• H0 ≈c H1 : Indistinguishability of hybrids H0 and H1 follows from zero knowledge of the
multi-string NIZK proof system.

H2 : This hybrid is similar to hybrid H1, except that the simulator encrypts 0 under the public
keys of other honest parties.

• H1 ≈c H2 : Indistinguishability of hybrids H1 and H2 follows from semantic security of the
public-key encryption scheme.

H3 : This hybrid is similar to hybrid H2, except that instead of computing secret shares of the
honest parties inputs and randomness, the simulator simply assigns random values to [Yi]j
for each i ∈ H and j ∈ I.

• H2 ≈c H3 : Indistinguishability of hybrids H2 and H3 follows from perfect secrecy of the
secret sharing scheme.

H4 : This hybrid is similar to hybrid H3, except that the simulator extracts the inputs and ran-
domness of the adversarial parties using the shares encrypted under the honest parties’ keys
and sends their inputs to the ideal functionality and uses the simulator SΠ to compute the
messages of the honest parties in the first and second rounds.

• H3 ≈c H4 : If any adversarial party does not behave honestly in the first round, from sound-
ness of m-NIZKs it follows that the first round proof given by that party will not verify. In
H3, the messages of such parties are discarded and similarly in H4, the inputs of these par-
ties are set to ⊥. Essentially, these parties act as the parties who abort in the first round
itself, in the underlying FS-GoD protocol. Similarly, if any adversarial party does not behave
honestly in the second round, its second proof is guaranteed to fail w.h.p., and its second
round messages are discarded. This is now identical to a party aborting in the underlying
FS-GoD protocol. As a result, indistinguishability of the two hybrids reduces to security of
the underlying semi-malicious FS-GoD protocol.

27

Two-Round M-GoD Protocol for t < n/2 in the BC + PKI Model

Party Pi for the Bare PKI Setup

• PKI for Protocol Π: Compute pkΠ
i ← ΠPKI(i; ρPKIi).

• PKE Compute (pki, ski)← PKE.Gen(; ρkeyi)

• m-NIZK: For each j ∈ [n], compute crsi→j ← m-NIZK.Gen.

• Publish PKi = (pkΠ
i , pki,

−→crsi→•).

Party Pi in Round 1

• PKI: For each j ∈ [n], parse PKj = (pkΠ
j , pkj ,

−→crsj→•).

• Protocol Π: Compute msg1
i ← Π1

(
i,Xi,

−→
pkΠ
• ; ρΠ

i

)
.

• Secret Sharing: Set Yi = (Xi, ρ
Π
i) and compute {[Yi]1 , . . . , [Yi]n} ← Share((t, n),Yi).

• Ciphertexts: For each j ∈ [n], compute cti→j ← PKE.Enc(pkj , [Yi]j ; ρenci,j).

• m-NIZK: Compute proof1i ← m-NIZK.Prove
(−→crs•→i, yi, wi), where y1

i =
(−→
pkΠ
• ,
−→
pk•,msg1

i ,
−→
ct i→•

)
and

w1
i =

(
Xi, ρ

Π
i , ρ

PKI
i , ρkeyi ,−→ρ enc

i,•

)
, using language L1

i (see Figure 8)

• Broadcast (msg1
i , proof

1
i ,
−→
ct i→•).

Party Pi in Round 2

• Proof Check: For each j ∈ [n], check if m-NIZK.Verify
(−→crs•→j , y1

j , proof
1
j

)
= 1, where y1

j =(−→
pkΠ
• ,
−→
pk•,msg1

j ,
−→
ctj→•

)
. If this check fails, set msg1

j = ⊥.

• Protocol Π: Compute msg2
i ← Π2

(
i,Xi,

−→
pkΠ
• ,
−−→msg1

•; ρ
Π
i

)
.

• m-NIZK: Compute proof2i ← m-NIZK.Prove
(−→crs•→i, y2

i , w
2
i

)
, where y2

i =(−→
pkΠ
• ,
−→
pk•,
−→
ct i→•,msg2

i ,
−−→msg1

•

)
and w2

i =
(
Xi, ρ

Π
i ,
−→ρ enc
i,•
)
, using language L2

i (see Figure 8)

• Broadcast (msg2
i , proof

2
i).

Output Reconstruction.

• For each j ∈ [n], check if m-NIZK.Verify
(−→crs•→j , y2

j , proof
2
j

)
= 1, where y2

j =(−→
pkΠ
• ,
−→
pk•,
−→
ctj→•,msg2

j ,
−−→msg1

•

)
. If this check fails or if msg1

j was set to ⊥, set msg2
j = ⊥.

• Compute and output z = Πout
(
i,Xi, ρ

Π
i , ρ

PKI
i ,

−→
pkΠ
• ,
−−→msg1

•,
−−→msg2

•

)
.

Figure 6: A transformation from a two-round (semi-malicious) FS-GoD protocol for t < n/2 in the
BC + PKI model to a two-round M-GoD protocol for t < n/2 in the BC + PKI model.

28

L1
i : NP Language used in Round 1

Statement y1
i =

(−→
pkΠ
• ,
−→
pk•,msg1

i ,
−→
ct i→•

)
Witness w1

i =
(
Xi, ρ

Π
i , ρ

PKI
i , ρkeyi ,−→ρ enc

i,•

)
Relation R1

i (y
1
i , w

1
i) = 1, if all of the following con-

ditions hold:

1. The public key pki was generated honestly us-

ing PKE.Gen() and randomness ρkeyi .

2. The PKI pkΠ
i was generated honestly using

ΠPKI with input i and randomness ρPKIi .

3. Shares {[Yi]1 , . . . , [Yi]n} are honestly com-
puted (t, n) threshold shares of Yi = (Xi, ρ

Π
i).

4. For each j ∈ [n], the ciphertext cti→j is an
honest encryption of [Yi]j under the public key
pkj , using randomness ρenci,j .

5. msg1
i is an honestly computed message us-

ing the next message function Π1 with inputs

i,Xi,
−→
pkΠ
• and randomness ρΠ

i .

L2
i : NP Language used in Round 2

Statement y2
i =

(−→
pkΠ
• ,
−→
pk•,
−→
ct i→•,msg2

i ,
−−→msg1

•

)
Witness w2

i =
(
Xi, ρ

Π
i ,
−→ρ enc
i,•
)

Relation R2
i (y

2
i , w

2
i) = 1, if all of the following con-

ditions hold:

1. msg2
i is an honestly computed message us-

ing the next message function Π2 with inputs

i,Xi,
−→
pk•,
−−→msg1

• and randomness ρΠ
i .

2. Shares {[Yi]1 , . . . , [Yi]n} are honestly com-
puted (t, n) threshold shares of Yi = (Xi, ρ

Π
i).

3.

4. For each j ∈ [n], the ciphertext cti→j is an
honest encryption of [Yi]j under the public key
pkj , using randomness ρenci,j .

Figure 7: NP Languages used in the protocol description in Figure 6.

6.2 Positive Result for Identifiable Abort

In this section, we give a generic compiler from any two-round UA protocol over BC+P2P channels to
a two-round IA protocol over BC+PKI. Our transformation relies on two building blocks: public-
key encryption (PKE) and multi-CRS non-interactive zero-knowledge (m-NIZK) proof systems. We
refer the reader to Section 3.3 for a formal definition of m-NIZKs.

Formally, we prove the following theorem.

Theorem 6.2. Assuming the existence of PKE and m-NIZK, there exists a generic transformation
from any two-round, n-party UA protocol with perfect correctness (See Definition 3.4) that operates
over BC + P2P channels for t < n/2, to a two-round n-party IA protocol in the BC + PKI model
for t < n/2.

Instantiating the above theorem using the protocol from [1], we get the following corollary:

Corollary 6.2. Assuming the existence of PKE and m-NIZKs, there exists an n-party protocol in
the BC + PKI model that achieves security with IA against t < n/2 malicious corruptions for any
F ∈ P/Poly.

Protocol Description Let P = {P1, . . . , Pn} be the set of parties with inputs X1, . . . ,Xn. We
start by listing the building blocks and establishing some notations:

29

1. Protocol Π: A two-round n-party MPC protocol Π = (Π1,Π2,Πout) in the plain model
that operates over BC + P2P channels10, achieves security with UA against t < n/2 and has
perfect correctness. We assume that these are stateful algorithms and only indicate the actual
input and randomness explicitly for computing the first round messages in Π; for subsequent
computations, we assume these to be implicit. We use pmsgi→j to denote the first round
private message sent by party Pi to party Pj and bmsgri to denote the broadcast message
of party Pi in round r. We assume that there exists an additional PPT algorithm ValidΠ

that checks if the first round messages (bmsg1
i , pmsgi→j) sent by Pi to Pj are well-formed. As

discussed in the technical overview, algorithm ValidΠ corresponds to a simple check (e.g., with
regards to the syntax of the messages) that can be easily performed by the party receiving
these messages.

2. PKE: Public key encryption scheme (PKE.Gen,PKE.Enc,PKE.Dec) with perfect complete-
ness.

3. m-NIZK: Multi-string NIZK (m-NIZK.Gen,m-NIZK.Prove,m-NIZK.Verify) (see Definitions
3.3). We assume the randomness used in these algorithms to be implicit and do not specify
them.

At the start of the protocol, each party Pi samples a sufficiently long random tape ρi to use in the
various sub-parts of the protocol; let ρkeyi be the randomness used for generating keys (pki, ski),
ρΠ
i for generating messages in protocol Π and ρenci,j to encrypt the private message intended for Pj .

Whenever necessary, we augment our notation with subscript i → j to indicate that the message
is sent by Pi and is intended for Pj . We use the vector notation along with a • symbol to refer to
a set of n messages, for instance, −−−→pmsg•→i = pmsg1→i, . . . , pmsgn→i. The remaining notations are
borrowed from previous sections. A full description of our protocol appears in Figure 9.

Security. We now proceed to give a description of simulator. Let A be the real world adversary
and H be the set of honest parties. The simulator S for this protocol makes use of the simulator
SΠ = (S1

Π,S2
Π) of the underlying protocol Π and the simulator of the m-NIZK scheme (SGen,SProve)

and proceeds as follows:

Round 1:

• Compute
{
bmsg1

i ,
{
pmsgi→j

}
j∈I

}
i∈[H]

← S1
Π.

• For each i ∈ H,j ∈ I, compute cti→j ← PKE.Enc
(
pmsgi→j , pkj ; ρ

enc
i,j

)
, and crsi→j ←

m-NIZK.Gen.

• For each i, j ∈ H, compute ct1i→j ← PKE.Enc
(

0, pkj ; ρ
enc
i,j

)
and (crsi→j , τi,j)← SGen.

• It sends
{
bmsg1

i ,
−→
ct i→•,

−→crsi→•
}
i∈H

to the adversary parties.

Round 2.

• Upon receiving first round messages from the adversary, the simulator checks if the messages
are well-formed as specified in the protocol and computes Ci for each i ∈ H.

10We assume that this protocol uses BC + P2P channels in the first round and only a BC channel in the second
round. Note that this holds without loss of generality, since any such protocol can be transformed into one that only
uses a BC channel in the second round, by allowing each pair of parties to exchange sufficiently long time pads in the
first round and then encrypting and broadcasting the second round private channel messages using these pads.

30

• Compute
{
bmsg2

i

}
i∈H ← S

2
Π

({
bmsg1

j ,
{
pmsgj→i

}
i∈H

}
j∈I

)
. For each i ∈ H:

1. Normal Mode. If Ci = ∅, compute proofi ← SProve
(−→crs•→i, yi,−→τi) where yi =(−→

pk•,
−−−→
bmsg1

•,
−→
ct i→•,

−→
ct•→i, bmsg2

i

)
and −→τi = {τj,i}j∈H using language Lnorm (Figure 8).

2. Complaint Mode. If Ci 6= ∅, compute proofji ← m-NIZK.Prove
(−→crs•→i, yji , wji) , where

yji =
(
pki, ctj→i, pmsg∗j→i

)
and wji =

(
ski, ρ

key
i

)
using language Lcomp (Figure 8).

At the end of Round 2. If ∃i ∈ H, such that |Ci| 6= 0. Then the simulator simply chooses
the corrupted party with the smallest index (say j∗) who was identified as a cheater and sends
(⊥, j∗) to the ideal functionality as output for the honest parties. Else, if for each i ∈ H, |Ci| = 0
then for each j ∈ I, the simulator checks if Pj raised any complaint. If it raised a complaint
against an honest party, the simulator sends (⊥, Pj) as output to the ideal functionality. Else,

if it raised a complaint against another corrupt party Pk, check if Validπ
(
bmsg1

k, pmsg∗k→j

)
= 1

and m-NIZK.Verify
(−→crs•→j , ykj , proofkj) = 1. If both the above checks pass, send (⊥, Pj) to the

ideal functionality. Otherwise, if at least one of the above checks fail output (⊥, Pi) to the ideal
functionality. If none of the corrupt parties raise a complaint, then for each j ∈ I, check if

1 =?= m-NIZK.Verify
(
crs•→j , yj , proofj

)
, where yj =

(−→
pk•,
−−−→
bmsg1

•,
−→
ct j→•,

−→
ct•→j , bmsg2

j

)
. If this

check fails for any party Pj , then the simulator sends (⊥, Pj) to the ideal functionality. Else, it
simply sends continue to the ideal functionality, signaling it to send the correct output to the honest
parties.

Lnorm: NP Language for Normal Mode

Statement yi =
(−→
pk•,
−−−→
bmsg1

•,
−→
ct i→•,

−→
ct•→i, bmsg2

i

)
Witness wi =

(
ski, ρ

key
i ,Xi, ρ

Π
i ,
−→ρ enc
i,•

)
Relation Rnorm(yi, wi) = 1, if all of the following
conditions hold:

1. The keys pki, ski were honestly generated using

randomness ρkeyi .

2.
(
bmsg1

i ,
−−−→pmsgi,•

)
were computed honestly us-

ing input Xi and randomness ρΠ
i .

3. For each j ∈ [n], cti→j is an honest encryption
of pmsgi→j using key pkj and randomness ρenci,j .

4. bmsg2
i was honestly computed using transcript

T1
i =

(−−−→
bmsg1

•,
−−−→pmsg∗•→i

)
and for each j ∈ [n],

pmsg∗j→i is the decryption of ctj→i using secret
key ski.

Lcomp: NP Language for Complaint Mode

Statement yji :
(
pki, ctj→i, pmsgj→i

)
Witness wji :

(
ski, ρ

key
i

)
Relation Rcomp(y

j
i , w

j
i) = 1, if all of the following

conditions hold:

1. The keys pki, ski were honestly generated using

randomness ρkeyi .

2. pmsgj→i is the decryption of ctj→i using secret
key ski.

Figure 8: NP Languages used in the protocol description in Figure 9.

31

Two-Round IA Protocol for t < n/2 in the BC + PKI Model

Party Pi in Round 1

• Protocol Π: Compute
(
bmsg1

i ,
−−−→pmsgi→•

)
← Π1

(
i,Xi; ρ

Π
i

)
and broadcast bmsg1

i .

• Ciphertexts: For each j ∈ [n], compute and broadcast cti→j ← PKE.Enc
(
pmsgi→j , pkj ; ρ

enc
i,j

)
.

• m-NIZKs: For each j ∈ [n], compute and broadcast crsi→j ← m-NIZK.Gen.

Party Pi in Round 2

Initialize a cheater list Ci = ∅ and compute the following for each j ∈ [n]:

1. Compute pmsg∗j→i ← PKE.Dec (ctj→i, ski) . If pmsg∗j→i = ⊥, append j to the cheater list Ci and skip
the next check.

2. Check if ValidΠ

(
bmsg1

j , pmsg∗j→i
)

= 0. If so, append j to the cheater list Ci.

Normal Mode - If Ci = ∅:

1. Protocol Π: Compute bmsg2
i ← Π2

(
i, T1

i

)
,

where T1
i =

(−−−→
bmsg1

•,
−−−→pmsg∗•→i

)
.

2. m-NIZK: Compute

proofi ← m-NIZK.Prove
(−→crs•→i, yi, wi) ,

where yi =
(−→
pk•,
−−−→
bmsg1

•,
−→
ct i→•,

−→
ct•→i, bmsg2

i

)
and wi =

(
ski, ρ

key
i ,Xi, ρ

Π
i ,
−→ρ enc
i,•

)
using lan-

guage Lnorm (Figure 8).

3. Broadcast
(
normal, bmsg2

i , proofi
)

to all
other parties.

Complaint Mode - If Ci 6= ∅:

1. m-NIZK: For each j ∈ Ci, compute

proofji ← m-NIZK.Prove
(−→crs•→i, yji , wji) ,

where yji =
(
pki, ctj→i, pmsg∗j→i

)
and wji =(

ski, ρ
key
i

)
using language Lcomp (Figure 8).

2. Broadcast

(
complaint,

{
j, pmsg∗j→i, proof

j
i

}
j∈Ci

)
.

Output Reconstruction.

• For each pair i, j ∈ [n], if Pi raises a complaint a party Pj , check if Validπ
(
bmsg1

j , pmsg∗j→i
)

= 1

and m-NIZK.Verify
(−→crs•→i, yji , proofji) = 1. If both the above checks pass, output (⊥, Pj). Otherwise,

output (⊥, Pi).

• Else, if no complaints are raised, check if m-NIZK.Verify
(−→crs•→i, yi, proofi) = 1, ∀i ∈ [n], where

yi =
(−→
pk•,
−−−→
bmsg1

•,
−→
ct i→•,

−→
ct•→i, bmsg2

i

)
. If this check fails, output (⊥, Pi).

• Compute and output Πout
(
i,
−−−→
bmsg2

•

)
.

Figure 9: A transformation from a two-round UA protocol for t < n/2 in the BC +P2P model to a
two-round IA protocol for t < n/2 in the BC + PKI model.

Proof of Indistinguishability. We prove indistinguishability of the adversary’s view and the
output of the honest parties in the real and ideal worlds using hybrid arguments. We consider the
following hybrids:

32

H0 : This hybrid is same as the real world execution.

H1 : This hybrid is similar to hybrid H0, except for the way the output of the honest parties is
decided.

• H0 ≈c H1 : We consider the following cases:

1. If honest Pi raises a complaint against corrupt Pj : In this case, inH1 the simulator
simply identifies Pj as corrupt, while in H0, this decision based on the complaint proof
sent by Pi. From completeness of m-NIZK, it follows that Pj will be identified as corrupt.
Therefore, the output remains the same in both hybrids in this case.

2. If corrupt Pj raises a complaint against an honest Pi: In this case, in H1, the
simulator simply identifies Pj as corrupt and instructs the ideal functionality to output
(⊥, Pj). While in H0, the parties check the complaint proof sent by Pj to see if the
complaint is valid. From soundness of m-NIZK, it follows that the proof will not verify
and Pj will be identified as corrupt. Therefore, the output remains the same in both
hybrids in this case.

3. If corrupt Pi raises a complaint against another corrupt Pj : This case is handled
identically in both hybrids and hence the output in the two hybrids remains the same.

4. If no complaints are raised but the at least one of the second round (normal
mode) proofs does not verify: From completeness of m-NIZK it follows that the
proofs of the honest parties will always verify. Therefore, in H1, the simulator only
checks the proofs sent by the corrupt parties. Since this proof verification process is the
same in both hybrids, their outputs in this case remain the same.

5. If the no party raises a complaint and all proofs verify: In this case, it follows
from the soundness of m-NIZKs, that given some input and random tape, the adversary
did indeed compute all its messages honestly. Now it follows from perfect correctness
(See Definition 3.4) of the underlying UA protocol that the output will be a non-⊥ value
in both hybrids.

H2 : This hybrid is similar to hybrid H1, except that we change the way the honest parties’ proofs
are computed. In particular, all the honest parties use the simulator of the multi-string NIZK
proof system to simulate their respective crs’s for each of the other honest parties, who then
also simulate their proofs using these simulated crs’s in the second round.

• H1 ≈c H2 : Indistinguishability of hybridsH1 andH2 follows from composable zero knowledge
of the multi-string NIZK proof system.

H3 : This hybrid is similar to hybrid H2, except that we change the way the honest parties encrypt
private channel messages for other honest parties.

• H2 ≈c H3 : Indistinguishability of hybrids H2 and H3 follows from semantic security of the
public-key encryption scheme.

H4 : This hybrid is similar to hybrid H2, except that the honest parties’ messages in the first and
second rounds are simulated using the simulator SΠ.

• H3 ≈c H4 : Indistinguishability of hybrids H3 and H4 follows from the security of protocol Π
against malicious corruptions.

33

Acknowledgements. The first and second authors were supported in part by an NSF CNS
grant 1814919, NSF CAREER award 1942789 and Johns Hopkins University Catalyst award. The
second author was additionally supported in part by an Office of Naval Research grant N00014- 19-
1-2294. The third author is supported by the joint Indo-Israel Project DST/INT/ISR/P-16/2017
and Ramanujan Fellowship of Dept. of Science and Technology, India.

References

[1] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Round-optimal
secure multiparty computation with honest majority. In Hovav Shacham and Alexandra
Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 395–424. Springer,
Heidelberg, August 2018.

[2] Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, and Abhishek Jain. Two round
information-theoretic MPC with malicious security. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 532–561. Springer, Heidelberg,
May 2019.

[3] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Perfect secure computation in two
rounds. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239
of LNCS, pages 152–174. Springer, Heidelberg, November 2018.

[4] Benny Applebaum, Zvika Brakerski, and Rotem Tsabary. Degree 2 is complete for the
round-complexity of malicious MPC. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part II, volume 11477 of LNCS, pages 504–531. Springer, Heidelberg, May
2019.

[5] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and
Daniel Wichs. Multiparty computation with low communication, computation and interaction
via threshold FHE. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012,
volume 7237 of LNCS, pages 483–501. Springer, Heidelberg, April 2012.

[6] Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and Amit Sahai. Secure MPC:
Laziness leads to GOD. Cryptology ePrint Archive, Report 2018/580, 2018. https://eprint.
iacr.org/2018/580.

[7] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vad-
han, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Heidelberg, August 2001.

[8] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In 20th ACM
STOC, pages 1–10. ACM Press, May 1988.

[9] Fabrice Benhamouda and Huijia Lin. k-round multiparty computation from k-round oblivious
transfer via garbled interactive circuits. In Jesper Buus Nielsen and Vincent Rijmen, editors,
EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 500–532. Springer, Heidelberg,
April / May 2018.

[10] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October 2001.

34

https://eprint.iacr.org/2018/580
https://eprint.iacr.org/2018/580

[11] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure proto-
cols (abstract) (informal contribution). In Carl Pomerance, editor, CRYPTO’87, volume 293
of LNCS, page 462. Springer, Heidelberg, August 1988.

[12] Ran Cohen, Juan Garay, and Vasillis Zikas. Broadcast-optimal two-round mpc. In Advances
in Cryptology – EUROCRYPT 2020, 2020.

[13] Ran Cohen and Yehuda Lindell. Fairness versus guaranteed output delivery in secure multi-
party computation. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part II,
volume 8874 of LNCS, pages 466–485. Springer, Heidelberg, December 2014.

[14] Ivan Damg̊ard, Bernardo Magri, Luisa Siniscalchi, and Sophia Yakoubov. Broadcast-optimal
two round mpc with an honest majority. Cryptology ePrint Archive, Report 2020/1254, 2020.
https://eprint.iacr.org/2020/1254.

[15] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st FOCS, pages 283–293.
IEEE Computer Society Press, November 2000.

[16] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing
contracts. In David Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82,
pages 205–210. Plenum Press, New York, USA, 1982.

[17] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for
distributed consensus problems. In Michael A. Malcolm and H. Raymond Strong, editors, 4th
ACM PODC, pages 59–70. ACM, August 1985.

[18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: Information-
theoretic and black-box. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018, Part I,
volume 11239 of LNCS, pages 123–151. Springer, Heidelberg, November 2018.

[19] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 468–499. Springer, Heidelberg,
April / May 2018.

[20] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. On 2-round secure multiparty
computation. In Moti Yung, editor, CRYPTO 2002, volume 2442 of LNCS, pages 178–193.
Springer, Heidelberg, August 2002.

[21] Oded Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications. Cambridge
University Press, 2004.

[22] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM
STOC, pages 218–229. ACM Press, May 1987.

[23] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems.
Journal of Cryptology, 7(1):1–32, December 1994.

[24] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th ACM STOC, pages 291–304. ACM Press, May
1985.

35

https://eprint.iacr.org/2020/1254

[25] S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer, Heidelberg, August
2015.

[26] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In Alfred Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 323–341. Springer, Heidelberg, August
2007.

[27] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky. Secure com-
putation with minimal interaction, revisited. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 359–378. Springer, Heidelberg,
August 2015.

[28] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with appli-
cations to round-efficient secure computation. In 41st FOCS, pages 294–304. IEEE Computer
Society Press, November 2000.

[29] Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty computation with minimal
interaction. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 577–594.
Springer, Heidelberg, August 2010.

[30] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identi-
fiable abort. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume
8617 of LNCS, pages 369–386. Springer, Heidelberg, August 2014.

[31] Arpita Patra and Divya Ravi. On the exact round complexity of secure three-party computa-
tion. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume
10992 of LNCS, pages 425–458. Springer, Heidelberg, August 2018.

[32] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st ACM STOC, pages 73–85. ACM Press, May 1989.

[33] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

36

	Introduction
	Our Results in Detail
	Related Work

	Technical Overview
	Lower Bounds in the BC only Model
	BC+P2P Model
	Impossibility of IA in BC+P2P Model
	Necessity of sh-OT for FS-GoD in the BC+P2P Model

	BC+PKI Model

	Preliminaries
	Oblivious Transfer (OT)
	Secure Multiparty Computation
	Adversarial Behavior
	Security Definitions

	Multi-CRS Non-Interactive Zero Knowledge (m-NIZK)

	Broadcast Model
	Lower Bound for t=1
	Impossibility of Two-message mR-OT in the Plain Model

	BC+P2P Model
	Impossibility Result for Identifiable Result
	Fail-Stop Guaranteed Output Delivery
	Necessity of sh-OT for (t<n/2)
	Positive Result for (t<n/3)

	BC+PKI Model
	Positive Result for Guaranteed Output Delivery
	Positive Result for Identifiable Abort

