
OSHA: A General-purpose and Next Generation
One-way Secure Hash Algorithm

Ripon Patgiri
Dept. of Computer Science & Engineering

National Institue of Technology Silchar
Cachar-788010, Assam, India

ripon@cse.nits.ac.in

Abstract—Secure hash functions are widely used in crypto-
graphic algorithms to secure against diverse attacks. A one-
way secure hash function is used in the various research
fields to secure, for instance, blockchain. Notably, most of the
hash functions provide security based on static parameters and
publicly known operations. Consequently, it becomes easier to
attack by the attackers because all parameters and operations
are predefined. The publicly known parameters and predefined
operations make the oracle regenerate the key even though it is
a one-way secure hash function. Moreover, the sensitive data
is mixed with the predefined constant where an oracle may
find a way to discover the key. To address the above issues,
we propose a novel one-way secure hash algorithm, OSHA for
short, to protect sensitive data against attackers. OSHA depends
on a pseudo-random number generator to generate a hash value.
Particularly, OSHA mixes multiple pseudo-random numbers to
produce a secure hash value. Furthermore, OSHA uses dynamic
parameters, which is difficult for adversaries to guess. Unlike
conventional secure hash algorithms, OSHA does not depend on
fixed constants. It replaces the fixed constant with the pseudo-
random numbers. Also, the input message is not mixed with the
pseudo-random numbers; hence, there is no way to recover and
reverse the process for the adversaries.

Index Terms—Hash function, SHA, Secure hash algorithms,
Cryptography, Attacks, Cryptanalysis, Pseudo-random Number
Generator, Algorithms.

I. INTRODUCTION

Secure hash algorithms are used to solve a specific problem
in certain domains, particularly, digital signature, password,
SSH, Blockchain, TLS, PGP, SSL, IPsec, S/MiME, and other
sensitive data. Secure hash algorithms are also used to protect
passwords in our day-to-day life. The most famous crypto-
graphically secure hash algorithms are the SHA2 and SHA3
families. However, there are preimage attacks [1], [2], crypt-
analysis attacks [3] and collision attacks [4], [5]. Cryptanalysis
is more powerful than other variants of attacks. Collision
attacks are obvious, which can be expressed by the birthday
paradox for any existing hash algorithms. The existing secure
hash algorithms define constants and the number of rounds that
are public and fixed. Moreover, message padding is required
for the last block of the message. The existing secure hash
design philosophy is based on static parameters, and as a
result, these parameters are known to adversaries. In particular,
the types of operations are fixed and known to adversaries.
Furthermore, the message is used to derive a hash value.
Hence, it makes it easier to attack the hash values.

The state-of-the-art secure hash algorithms are prone to
preimage attacks [1], [2], second preimage attacks [1], [2],
collision attacks [3], and cryptanalysis attacks [4], [5] due
to static and public parameters. Diverse attacks on the state-
of-the-art secure hash algorithms have already been reported,
such as attacks on SHA1 [6], [7], attacks on SHA2 [8], attacks
on SHA3 [9], attacks on BLAKE [10], and attacks on SHAKE
[11]. Thus, a few research questions arise, which are outlined
below-

Q1 Can a single secure hash algorithm be used for
various-sized hash value requirements? For instance,
low-powered IoT devices.

Q2 Can the predefined constants and operations be re-
placed, which are used by the state-of-the-art secure
hash algorithms?

Q3 Can the secure hash algorithm defeat diverse attacks?

SHAKE [12]–[14] addressed the question Q1. Since, there
are diverse devices available that cannot process 256 bits;
hence, it demands secure and variable-sized hash functions.
Similarly, the emergence of Edge Computing also demands
variable-sized hash function. In addition, the Q2 and Q3 create
a serious security concerns. Moreover, the adversary knows
all operations, constants, and parameters, making a weaker
hash value. Therefore, we propose a novel and next-generation
one-way secure hash algorithm, OSHA for short, to address
the existing issues of secure hash algorithms. Our proposed
algorithms take two inputs: secret key (input message) and
seed value (however, the seed value is completely fixed
and the public). Using these two inputs, OSHA generates a
pseudo-random number to replace the fixed constants. The
pseudo-random numbers are generated using the murmur hash
function [15]. The total number of pseudo-random numbers is
decided dynamically, wherein the total number is not known
to the adversaries. Notably, OSHA calculates all possible
parameters dynamically, including the total number of rounds,
type of rotation, and the total number of rotations. In short,
OSHA works on secret parameters and secret operations,
which are calculated dynamically. The types of rotation and
number of rotations change in each iteration. Furthermore, the
new pseudo-random numbers are generated in each iteration.
The existing ciphertext is XORed with the newly generated
pseudo-random number in each round. Thus, OSHA creates

unpredictability of the generated hash value. Therefore, we
claim that OSHA is the first variant of a secure hash algorithm
to use multiple pseudo-random numbers instead of predefined
constants to the best of our knowledge.

This paper describes our proposed algorithm, OSHA, and
compares OSHA with state-of-the-art secure hash algorithms.
Moreover, we compare the features of OSHA with the state-
of-the-art secure hash algorithm. OSHA is heavily dependent
on the pseudo-random number generator, and henceforth, we
enhance the pseudo-random number generator of existing
work [16]. The enhanced pseudo-random number generator
algorithm is tested in NIST SP 800-22 statistical test suite for
randomness [17], [18], and results show excellent performance
on the P-values and pass rates. Furthermore, we theoretically
demonstrate the capability of our proposed work, and we
show its strong resistance against preimage attacks, second
preimage attacks, collision attacks, and cryptanalysis attacks.
Thereupon, our claims are as follows-

• We devise a novel one-way secure hash algorithm,
OSHA.

• It is the first variant to use a pseudo-random number
instead of fixed and public constants.

• Security of OSHA depends on a pseudo-random number
generator.

• All operations of OSHA are secret and dynamic.
• OSHA exhibits strong resistance against any possible

attacks.
• It produces variable-sized secure hash values.
This article is organized as follows- Section II establishes

the proposed system and provides an in-depth description.
Section III analyzes the proposed system and compares it with
existing state-of-the-art secure hash algorithms. In addition,
it demonstrates the randomness analysis practically. Finally,
Section V concludes the article.

II. OSHA: THE PROPOSED ALGORITHM

We propose a novel and next generation one-way
secure hash algorithm, called OSHA. It extends the non-
cryptographic string hash function, and it is used to generate
a pseudo-random number to generate a hash value. The
embodiment of OSHA is to use a pseudo-random number
to produce a secure hash value. Pseudo-random numbers are
highly unpredictable and secure. Accordingly, OSHA can pro-
vide better security than the existing state-of-the-art algorithm.
Also, our proposed system is flexible, and it can be used
for any bit size, for instance, 128-4096 or more. There is
no restriction of bit sizes, unlike state-of-the-art secure hash
functions. The proposed algorithm is a keyless secure hash
functions depending on the applications, but both are one-way
hash functions. The seed value of a keyless hash function is
publicly available and fixed.

A. Description of proposed system

In this subsection, we demonstrate the working mechanism
of our proposed system. A pseudo-random number P is
generated using an input message (secret key) K and a seed

N
e
w

 k
e
y

1 0

X
O

R
 r

e
su

lt

Fig. 1. Architecture of the proposed algorithm.

value S, which is demonstrated in Figure 1. The P is circular
shift rotated r times either left or right side, which is decided
dynamically. The value of r changes in each iteration. It results
ζ, and the ζ is XORed with a newly generated pseudo-random
number P . The pseudo-random number P is generated using
a pseudo-random number generator. This process is repeated
t times to generate a secure hash value, and the t is calculated
dynamically.

Table I shows the required parameters and their states. All
parameters are kept secret and generated dynamically. The
seed value can be public or secret. There is no restriction
on the seed value, and a user can input any number ≥ 4
digits. The seed value is made public and fixed. The rest
values of the parameters are not known and computed at the
run-time. In accordance, it is hard to retrieve the dynamically
generated information by the adversaries. In addition, the input
message and seed value are used to create a single bit. The
input message and seed values are altered dynamically. The
adversaries do not know dynamic parameters. It changes the
value at run-time and in each iteration. OSHA has only two
public and a static parameter which the bit size β of the hash
value and seed value, and known to all.

B. Hash Value Generation

Algorithm 2 splits the large message into 64 characters
for hashing. It invokes Algorithm 1 for hashing the string.
If the input message is less than 64 characters, then it invokes
Algorithm 1 once; otherwise, it invokes the algorithm several
times.

Algorithm 1 demonstrates generating a hash value of given
message K and fixed seed value S in the OSHA algorithm.
It uses a non-cryptographic string hash function to generate
the pseudo-random number [15]. The K and S are used to
generate a single bit of the first pseudo-random number. The
pseudo-random number is used to replace the constants of the
conventional hashing algorithms. The K and S are changed
after generating the initial bit, and the initial message and
seed value are discarded. The first generated pseudo-random
number is rotated either left or right depending on the LSB
bit of the pseudo-random number. The rotation’s value r is

TABLE I
PARAMETERS, DESCRIPTIONS AND THEIR STATE IN OSHA ALGORITHM.

Parameter Description State
K Secret Key- Input message Secret, and Dynamic
S Public and fixed for keyless hash function Public and Static
l Length of the input string Secret and Dynamic
β Unrestricted bit size of hash value, for instance, β = 4096 Public and Static
t Number of rounds Secret, and Dynamic
r Number of rotations Secret, and Dynamic
Rotation type Circular rotation, either left or right depending the last bit of the

generated pseudo-random number
Secret, and Dynamic

P Newly generated pseudo-random number to replace constants Secret, and Dynamic
ζ Hash value in cipher form Initially, it is secret and dynamic,

but later, made it public.

Algorithm 1 Hash value generation using OSHA algorithm
1: procedure GENHASH(K, β)
2: l = LENGTH(K)
3: S = Integer number
4: S = S ⊕ β
5: ζ = GENPRNG(K, l, S, β)
6: K′ = MURMUR(K, l, S)
7: t = (K′ mod δ) + µ ▷ For instance, µ = 5, δ = 17
8: while t ≥ 1 do
9: S = S ⊕ K′

10: r = K′ mod β
11: if ζ ∧ 1 = 1 then
12: ζ = ROTATELEFT(ζ, r)
13: else
14: ζ = ROTATERIGHT(ζ, r)
15: end if
16: K = CONVERTTOSTRING(K′)
17: l = LENGTH(K)
18: K′ = MURMUR(K, l, S)
19: P = GENPRNG(K, l, S, β)
20: ζ = ζ ⊕ P
21: t = t− 1
22: end while
23: return ζ
24: end procedure

calculated dynamically. The rotation process produces a new
ciphertext, ζ. The ζ is XORed with a newly generated pseudo-
random number P . The pseudo-random number P is generated
using a pseudo-random number generator 3. The pseudo-
random number generator uses the murmur hash function.
Murmur hash functions produce a 10-digits integer, and only
a single LSB bit is recorded, and the rest are discarded. This
process repeats t times to generate a secure hash value. The
total number of iteration ranges between µ to δ. Moreover, the
total number of rotations varies between 0 to β − 1.

C. Pseudo-Random Number Generator

OSHA depends on a pseudo-random number generator
(PNRG). We derive the proposed PNRG from our previous
work [16], [19]. The necessary conditions for the pseudo-

Algorithm 2 Hashing a large message msg

1: procedure HASHMSG(msg)
2: l = LENGTH(msg)
3: if l ≤ 64 then
4: ζ = GENHASH(msg, l, S, β)
5: else
6: i = 0
7: while i < l do
8: m = SUBSTRING(msg, i, i+ 63, l)
9: P = GENHASH(m, l, S, β)

10: ζ = ζ ⊕ P
11: i = i+ 64
12: end while
13: end if
14: α = CONVERTINTOHEXADECIMAL(ζ, β)
15: return α
16: end procedure

random number generator are- consistent, secure, and statis-
tically proven for randomness. Algorithm 3 demonstrates the
generation of pseudo-random numbers. It uses the murmur
hash function to generate a single bit. Conversely, the murmur
hash function produces a 10-digits hash value, but a single
LSB is considered in the bin[] array, and the rest bits are
discarded. It generates a β bits array, which is unpredictable
and secure. Importantly, Algorithm 3 changes its parameters
dynamically, which makes it hard to predict by the adversaries.

D. Seed value for a large message

OSHA restricts the message length to 64 characters, and
hence, it is the responsibility of Algorithm 2 to split the mes-
sages into several small blocks; otherwise, OSHA processes
the entire message as a single message. If a set of keys (blocks
of a message) is hashed, then the seed value is changed in each
block hashing. In this case, the previous seed value is stored
for the next message block. The seed value of GENHASH()
modifies the original seed value S at HASHMSG(). It can be
achieved call by reference. Thus, a set of keys can be hashed
by OSHA using different seed values.

Algorithm 3 Pseudo-random number generator for pseudo-
random number

1: procedure GENPRNG(K, l, S, β)
2: i = 0
3: while β ≥ 1 do
4: d = MURMUR(K, l, S)
5: K = d
6: l = LENGTH(K)
7: e = MURMUR(K, l, S)
8: K = CONCATENATE(d, e)
9: l = LENGTH(K)

10: S =| d− e |
11: bin[i] = d ∧ 1
12: β = β − 1
13: i = i+ 1
14: end while
15: return bin
16: end procedure

III. ANALYSIS

The adversaries know the rotation process and the total
number of iteration in the conventional secure hash algorithms.
As a consequence, it makes it easier to attack by adversaries.
On the contrary, OSHA calculates all parameter dynamically
making it hard to attack by the adversaries. The adversaries
do not know whether to circular rotate left or right and how
much rotation is required. Moreover, the adversary does not
know how many iterations to be performed.

A. Time Complexity

The time complexity of Algorithm 1 depends on the bit
size of the hash value; for instance, 1024. The bit size of
the hash value is β. OSHA uses a bit array, and hence, it
requires r time complexity to rotate the bit array. Additionally,
it requires β time complexity to generate a pseudo-random
number. Therefore, the time complexity of OSHA is O(r +
β) in each round. There are total t rounds in OSHA, thus,
the total time complexity is O(β + t(r + β) + r). The r ≤
β, so, the total time complexity can be rewritten as O(β +
tβ). Moreover, the t ranges from 5 to 17, which is a constant
and small. Therefore, the total time complexity of OSHA is
O(β) ≈ O(1). Now, we consider the message length l. As
a consequence, the time complexity of Algorithm 1 becomes
the length of the message. Consequently, we can conclude the
time complexity as O(l). Hence, the time complexity depends
on the input string’s length.

B. Comparison with existing secure hash algorithm

Table II compares the state-of-the-art secure hash functions
with OSHA. SHA family produces fixed-size output, whereas
SHAKE, cSHAKE, and OSHA produce variable-sized output.
SHA family, SHAKE, and cSHAKE perform fixed and pre-
defined rounds, whereas OSHA can perform any number of
rounds kept secret and calculated dynamically. Nonetheless,
the minimum and the maximum number of rounds are public.

SHA2 family uses modulus operation, but SHA3 family re-
moves the modulus operation due to large integer calculation.
Notably, SHA2, SHA3, SHAKE, and cSHAKE depends on
the system architecture (little-endian and big-endian) due to
bitwise operation. Conversely, OSHA does not depend on the
system architecture because OSHA uses extra spaces O(β) to
store the bits, and thus, it is system independent. OSHA is
the only variant to use a pseudo-random number to produce a
hash value.

Table III shows the difference between state-of-the-art se-
cure hash algorithms and OSHA. State-of-the-art secure hash
algorithms use predefined constants and operations, which are
public. Therefore, all operations and constants are known to
adversaries too. OSHA uses secret and dynamic operations; for
instance, rotation type is calculated dynamically. Furthermore,
the number of rotations is calculated dynamically. As a result,
there is no clue to adversaries to find the rotation type
and number of rotations. In short, OSHA performs secret
operations, which are calculated dynamically. On the contrary,
the state-of-the-art secure hash algorithms use predefined
operations and constant. OSHA generates the pseudo-random
number dynamically instead of predefined constants.

C. Flexibility

To the best of our knowledge, SHAKE and OSHA provide
flexibility in hash bit size; otherwise, the state-of-the-art secure
hash algorithms can produce fixed bit size of the hash value.
For example, SHA3-256 can produce 256 bits hash value while
SHAKE and OSHA can produce any size of the output. A
single algorithm works for 256 bits or 4096 bits, even higher
bit sizes as shown in Table IV.

D. Outputs

Table IV demonstrates the variable-sized output of OSHA,
SHAKE128 [13], and SHAKE256 [14] for input word
“OSHA”. In addition, OSHA requires a seed value, and
“98899” is used as a seed value. Depending on the require-
ments, the seed value can be made fixed and public or kept
secret. SHAKE produces the same prefix different length for
the same input; for instance, the prefix of 256 bits is 128 bits
hash value. However, OSHA does not produce a similar prefix
or suffix. It changes in changing of the bit sizes.

Notably, BLAKE is the fastest variant of secure hash
algorithms [24]. The second fastest secure hash function is
MD5 [24]. OSHA is slower than SHAKE because it does
not depend on the predefined constants and operations. Also,
OSHA uses a bit array for circular shift rotation; so, it is slower
than BLAKE, but performance is similar to MD5 as shown
in Table VI. Bit array makes OSHA a platform-independent
secure hash algorithm.

Table V demonstrates the hash value of various secure hash
algorithms. Also, it shows the fixed-sized hash value. On the
contrary, OSHA does not restrict output size, which is similar
to SHAKE128, and SHAKE256 [12]. SHA3-512 is restricted
to 512 bits output size, and it cannot produce 256 or 1024
bits output. The 1024 or 2048 bits size output is not so

TABLE II
COMPARISON WITH EXISTING SECURE HASH ALGORITHM.

Name Output Size Internal
State

Block size Rounds Collision Operations

MD5 128 128 512 64 ≤ 18 And, Xor, Rot, Add (mod
232), Or

SHA-0 160 160 512 80 < 34 And, Xor, Rot, Add (mod
232), Or

SHA-1 160 160 512 80 < 34 And, Xor, Rot, Add (mod
232), Or

SHA2-224 [20] 224 256 512 64 112 And, Xor, Rot, Add (mod
232), Or, Shr

SHA2-256 [20] 256 256 512 64 128 And, Xor, Rot, Add (mod
232), Or, Shr

SHA2-384 [20] 384 512 1024 80 192 And, Xor, Rot, Add (mod
264), Or, Shr

SHA2-512 [20] 256 512 1024 80 256 And, Xor, Rot, Add (mod
264), Or, Shr

SHA3-224 [12] 224 1600 1152 24 112 And, Xor, Rot, Not
SHA3-256 [12] 256 1600 1088 24 128 And, Xor, Rot, Not
SHA3-384 [12] 384 1600 832 24 192 And, Xor, Rot, Not
SHA3-512 [12] 512 1600 576 24 256 And, Xor, Rot, Not
SHAKE128 [12] Unlimited 1600 1344 24 min(β/2, 128) And, Xor, Rot, Not
SHAKE256 [12] Unlimited 1600 1088 24 min(β/2, 256) And, Xor, Rot, Not
cSHAKE128 [21] Unlimited 1600 1344 24 min(β/2, 128) And, Xor, Rot, Not
cSHAKE256 [21] Unlimited 1600 1088 24 min(β/2, 256) And, Xor, Rot, Not
BLAKE2s [22] 256 16 words of

size 32 bits
512 10 128

BLAKE2b [22] 256 16 words of
size 64 bits

512 12 128

BLAKE3 [23] 256 16 words of
size 32 bits

512 7 128

OSHA Unilimited – Flexible Flexible, secret,
and Dynamic

≈ β XOR, Rot, and genPRNG

TABLE III
DIFFERENCE BETWEEN OSHA AND STATE-OF-THE-ART SECURE HASH ALGORITHMS.

Parameters OSHA State-of-the-art Secure Hash Algorithms
Output size Flexible Fixed
Output Output completely changes if desired output length

changes for the same input
Some parts of the output are same even if desired
output length of SHAKE128 and SHAKE256 change
for the same input.

Rounds Secret and Dynamic Public and Fixed
Rotation type Secret and Dynamic Public and Fixed
Number of rotation Secret and Dynamic Public and Fixed
Mixture Mixes with pseudo-random numbers Mixes with predefined constants
Secret message It contributes a single bit and define the bit patterns Use to mix with predefined constants
Seed value Public and fixed integer value None
Constants None Public and Fixed
Pseudo-random num-
bers

Secret and Dynamic. It is a pseudo-random number. None

Word size Flexible Fixed sizes
Padding with message Not required Required

costly for high-security requirements. Notably, the prefix of
the SHAKE256 output for 256 bits, which is the same with
128 bits output size and it is shown in Table IV.

E. Performance

Table VI shows the time taken to produce 1000 hash values.
The BLAKE3 outperforms all, and it is the fastest secure hash
algorithm. On the contrary, OSHA and MD5 generate 1000
hash values in 2 ms for 64 bits. BLAKE3 produces 1000 hash
values in 2 ms for 256 bits while OSHA takes 5 ms for the

same. SHAKE is slower than MD5, and hence, we exclude
SHAKE in the comparison [24].

F. Irreversibility
Definition 1. The function f : A 7→ B maps A to B, then
the function f is said to be irreversible if the function exhibits
f : B ̸7→ A.

OSHA is a one-way hash function, and hence, there is no
way to regenerate the key. Therefore, OSHA follows Definition
1, and there is no way to regenerate the input from the
output. The function f : A 7→ B, i.e., OSHA transform

TABLE IV
OUTPUTS OF OSHA, SHAKE128, AND SHAKE256 FOR THE INPUT STRING “OSHA”.

Bits OSHA SHAKE128 SHAKE256
16 b8a9 144e 9f6e
32 c655f80d 144e65ef 9f6e4af9
64 a68517979a06c690 144e65efe08651ca 9f6e4af9b5fdbeac
128 f1ec5c2da85661622589f6253a0d45a0 144e65efe08651ca40a9579648d4fcac 9f6e4af9b5fdbeacc748920658e9b894

256 ed4948e9382f486f4eec0f362b0410c06
ecc85fd50d492f9df02044a17eb0600

144e65efe08651ca40a9579648d4fcacf
088711566275ab8fb673b96b06c7a76

9f6e4af9b5fdbeacc748920658e9b8945
75852bc7499ba098e1513fced329367

512

c0d1f616fcebcd47c8daca7d9da4b08b5
a9396e80e734174387e4e3a9781cf0c7
3ff1b88d8e658f96857b7e6a52005f7e3
50c27224fe460a812f2130b51dffbd

144e65efe08651ca40a9579648d4fcacf
088711566275ab8fb673b96b06c7a76
6053a5dd64503da095f0094c687e12c9
af8124477f4765af904783c86aa015ff

9f6e4af9b5fdbeacc748920658e9b8945
75852bc7499ba098e1513fced329367c
943e7e61eb4863fa373b7ccb1acd2a39f
87a7c24eb7355c4607d1ecb480f76a

1024

b8c2e5fa87d15ea905ab6fce04b36041c
13f13b713abb4d187a0e817e7219f443
bb6d97ccb0bb783ac32eeaff858177260
b1fef795b31cb6254f10e33376a0f6384
20c62a7172bb1c2f8b50aa84a542ed8b
7413f588cf030ea140d53a2acfbdf8d64
40a2cf01f1c9e32beaacd41401efd4209
2407801430e36a938ae259320ef

144e65efe08651ca40a9579648d4fcacf
088711566275ab8fb673b96b06c7a76
6053a5dd64503da095f0094c687e12c9
af8124477f4765af904783c86aa015ffe
02040c6f3168d27a158c05706dd687bc
ca44f132ba6b205ffab437053ff5ec844c
055670280522e032d71512c4d30eab8
d1956abe1f0fe2924858636a260e

9f6e4af9b5fdbeacc748920658e9b894
75852bc7499ba098e1513fced329367c
943e7e61eb4863fa373b7ccb1acd2a39f
87a7c24eb7355c4607d1ecb480f76ac3
07616825943b6e612874432dc4780eeb
d1490b1b34ab28f208cfb7411a6497d2
9e8cbd5be9564f997de0dc4962b39450
258e17b714c09f78c85ff4fc8a11aa

TABLE V
OUTPUT OF VARIOUS HASH FUNCTIONS FOR THE INPUT STRING “OSHA”

Hash function’s
name

Hash output

MD5 7b95917312740e2be161a373be1bdce9
SHA256 7fde3b94d739f42f431d20fcac28017181462ae53873449995d45febe9ea8eb5
SHA3-256 c81957c8d5ab48bcf8971fe45580e98724d3b64e7f7780882154efb32912b757

SHA384 0aed40222131c9d872bdc76c20cf04082279ca28956ebf56fbe0c8be31384af9b1bfc4153
c1eb373646e9d114b733180

SHA3-384 0d1458a960fff9acf02844709e1b525b13f2c0513ed6558e61bbd29597ae110dab9542e1
dde20d0c7246598a8a8e4e6c

SHA512 590a860a95ada9ecd50541f7167d19caf87fb5c8aa3b1cca1fda7f12bb2af8feb91ff3a2d23
66a57047a3031bc2b392a3b077e30f8885f0c627e4671b1263692

SHA3-512 7a1fea1aa23d73491413a0a6bf21c8d325b302e7fb75843857c96a988a93bba70ab4cdd1
abda8a9dc1a23199a734e7fdf6e7c5a3fa613a7602cc17c82015f171

TABLE VI
TIME TAKEN IN GENERATING VARIOUS HASH VALUES IN MILLISECONDS.

Hash function Times in milliseconds
OSHA (64 bits) 2
MD5 (64 bits) 2

BLAKE3 (256 bits) 2
OSHA (256 bits) 5

any input A to output B. The input A contributes a single
bit of B initially, and the pseudo-random numbers replace it.
Consequently, there is no way to regenerate A from the output
B. Let us assume that there exists a reversible function. The
oracle need to reverse the function and regenerate the message
from the hash value. Oracle needs to reverse hash value and
eventually meet a single bit. Notably, it is impossible to find
the input message from a single bit. Thus, OSHA guarantees
that f : B ̸7→ A, because it is impossible to regenerate A
from B.

G. Irrecoverability

The function f : A 7→ B, and the A is lost. OSHA
guarantees f : B ̸7→ A. Consequently, we cannot recover
the lost input string. OSHA generates the output using a

pseudo-random number generator; subsequently, it is highly
unpredictable. As a result, the A is responsible for the initial
bit. Thus, the A must be correct to regenerate the output B.
An oracle can find reversibility; however, the oracle eventually
finds the first bit but not the original string. On the contrary,
conventional secure hash algorithms mix the input string
with the predefined constant, where an oracle can find the
reversibility of a hash value. As a consequence, input string
is not recoverable from the hash value.

H. Consistency

Consistency states that the output should be the same for
the same input even if the platform changes. OSHA produces
the same output for the same input parameters. OSHA does
not depend on volatile variables. Therefore, it can produce a
consistent result. Moreover, OSHA works on a bit array and
random bits, and so, it can provide consistency irrespective of
the system’s architecture.

I. Rounds

Most of the conventional secure hash algorithm performs
64 rounds, which is fixed. OSHA performs µ to δ rounds of
XOR, Rotation, and key generations (pseudo-random number
generation). The rounds are dynamically generated between

µ to δ to defend the adversaries; however, it is flexible.
The user can set the total number of rounds as per their
requirements to protect against the attacks. For instance, 2-
17, 11-19, etc. Importantly, the δ should be a prime number.
The difference between µ and δ should be significant enough
to provide unpredictability; for instance, 2-17 is better than
11-19 because the difference between 2-17 is larger than 11-
19. Notably, the minimum should be µ ≥ 1. On the contrary,
if the minimum round is zero, it can also defend against many
attacks because it depends on the pseudo-random numbers that
are truly random and secure.

J. Collision resistance

Definition 2. If there exists some functions such that
f : A 7→ B and f : C 7→ B where A ̸= C, then it is
said to be collision.

Definition 2 defines the collision where two hash values of
two different input strings become the same. Generally, the
collision probability of all hash functions is the same. The
birthday paradox state that there is a collision probability in
2

β
2 hash functions for β bits hash functions. If η items are

hashed to find a collision, the collision probability is given
using birthday paradox in Equation (1).

ρ = 1− 2β !

2ηβ(2β − η)!
(1)

Solving Equation (1), we get Equation (2).

ρ = 1− e−
η2

2β+1

1− ρ = e−
η2

2β+1

ln(1− ρ) = − η2

2β+1

η2 = −2β+1 ln(1− ρ)

η = 2
β+1
2

√
−ln(1− ρ)

(2)

In Equation (2), we approximate ln(1−ρ) = −ρ, then we get
Equation (3).

η = 2
β+1
2

√
ρ (3)

Equation (3) gives us the probability of collision of any secure
hash function. The η becomes enormous for 256-bits and
onward. Equation (3) shows the collision probability of keyless
OSHA. Notably, OSHA uses pseudo-random number which
makes much harder for the attackers.

For keyed OSHA, it uses two secret keys: input message
and seed value. Therefore, the combination of the two keys
is

(
η
2

)
= η(η−1)

2 . The probability of picking a correct pair is
2

η(η−1) . The probability of not picking a correct pair is (1 −
2

η(η−1)). The η is large, and thereupon, we approximate the
probability 2

η(η−1) ≈ 0; thus, the probability of not picking
a correct pair is 1. With this approximation, we can rewrite

Equation (1), and thus the probability of collision becomes 0,
which is given in Equation (4).

ρ ≈ 1− 2β !

2β(2β − 1)!

ρ ≈ 1− 2β

2β

ρ ≈ 0

(4)

Significantly, Equation (4) is an approximation of the proba-
bility, and it shows the difficulties in getting collision attacks
in keyed OSHA.

K. Preimage resistance

Definition 3. Given a hash value B, a preimage attack finds
a function such that f : A 7→ B.

Definition 3 defines preimage attack on the hash value.
The hash value B is given, and the preimage attacker finds
the input. The preimage attacks are successful in password
guessing because of a weak password. Precisely, modern
practice recommends a password of at least an alphabet, a
digit, and a special symbol of string length eight. Still, there
is a creation of a weak password, for instance, “abcd@1234”.
OSHA provides strong security even if there is a weak
password because OSHA uses a secret seed value in the
keyed one-way secure hash function. However, the seed value
can be completely a secret in keyed OSHA by providing
an unpredictable number greater than four-digit. Therefore,
OSHA provides strong resistance against preimage attacks. On
the contrary, the seed value is fixed and publicly available for
keyless OSHA. The combination of secret message and seed
value provides strong resistance against the attackers. OSHA
completely depends on the pseudo-random numbers other than
state-of-the-art secure hash functions. If the pseudo-random
number is weak, then OSHA cannot provide a strong preimage
resistance. Particularly, our experimental results show that the
generated pseudo-random number is secure. Therefore, key-
less OSHA also provides strong resistance against preimage
attacks.

Meet-in-the-middle [25] performs an exhaustive search on
key spaces to achieve preimage attacks. The meet-in-the-
middle has broken various secure hash algorithms [4], [5],
[26] which try to perform preimage attacks. Nevertheless, this
is an exhaustive search, and it takes huge computing resources.
OSHA uses pseudo-random numbers, and thus, it does not
follow any bit patterns. Thus, it can provide strong deterrence
against meet-in-the-middle attacks.

L. Second preimage resistance

Definition 4. Given a hash value B, a second preimage attack
finds the functions f : A 7→ B and f : C 7→ B where
A ̸= C.

Definition 3 defines second preimage attack. Given the hash
value B to find two hash function that finds B for different
inputs. Let us assume that f : A 7→ B and f : C 7→ B
where A ̸= C. OSHA depends on not only the input string but

also the statistically proven pseudo-random numbers. Thus, it
requires high-powered computing machinery to find the given
hash value. Therefore, it is hard to find such a collision.

M. Cryptanalysis

There are diverse cryptanalysis attacks, particularly
ciphertext-only, plaintext-only attacks, known-plaintext at-
tacks, chosen-ciphertext attacks, chosen-plaintext attacks,
adaptive chosen-ciphertext attacks, fault-injection attacks, dif-
ferential cryptanalysis attacks, and linear cryptanalysis attacks.
Cryptanalysis does not perform a brute-force search on the
target. It performs in-depth analysis on the target and tries to
find the fault/loophole to attacks on the hash values. Cryptanal-
ysis is easier to perform if the parameters and constants are
predefined. Predefined parameters and constants have hidden
relations with the ciphertext. Therefore, the cryptanalysis tries
to finds the relationship of all collected ciphertexts. On the
contrary, OSHA does not have any relationship with the
generated ciphertexts. Consequently, it is hard to perform
cryptanalysis attacks.

N. Randomness testing

Table VII demonstrates the randomness of Algorithm 3.
Security of the OSHA depends on pseudo-random numbers,
which are generated by Algorithm 3. The randomness of
Algorithm 3 is tested in NITS SP 800-22. Table VII demon-
strates the P-values and pass rate of the generated bits using
Algorithm 3. Initially, we have generated 10M random bits of
the word “OSHA” and the number 98899. We have chosen a
weak word to demonstrate the performance of our algorithm.
The generated random bits are tested in NIST SP 800-22
statistical test suite [17], [18] for 32 bits, 64 bits, and 128
bits stream. NIST SP 800-22 test suit provides approximate
entropy, frequency, block frequency, cumulative sums, runs,
longest runs, rank, FFT, non-overlapping template, overlap-
ping template, random excursions, random excursions variant,
serial, linear complexity, and universal tests. The minimum
pass rate of 32bits, 64 bits, and 128 bits stream is 0.96875,
0.9375, and 0.9765625, respectively. The minimum P-value of
32 bits, 64 bits, and 128 bits stream is 0.100508, 0.134686,
and 0.015065, respectively. The P-value must be ≥ 0.001 to
be considered as a random number. The maximum P-values of
32 bits, 64 bits, and 128 bits stream are 0.991468, 0.991468,
and 0.788728, respectively. R. Patgiri [27] reported the highest
P-values are 0.976060, 0.991468 and 0.941144 in 32 bits, 64
bits, and 128 bits streams, respectively. The minimum P-value
of R. Patgiri [27] are 0.035174, 0.012043, 0.017912 in 32
bits, 64 bits, and 128 bits streams, respectively. Our proposed
pseudo-random number generator clearly enhances and outper-
forms the pseudo-random number generator of R. Patgiri [27].
Similarly, R. Patgiri [27] reports test’s minimum pass rates
are 0.96875, 0.96875, and 0.9765625 in 32 bits, 64bits, and
128 bits stream, respectively; whereas our proposed pseudo-
random number generator clearly surpasses the minimum pass
rate.

IV. DISCUSSION

OSHA is slower than BLAKE due to bit array and pseudo-
random numbers, but it can be as fast as any other variants of
the secure hash algorithms. Notably, BLAKE is faster than the
state-of-the-art secure hash algorithm; however, OSHA also
performs well. The performance of OSHA depends on the
number of rounds. It can be t = 0, 1, 2, 3, . . ., and any number
of rounds can protect hash value against the attackers. For
instance, a zero round in OSHA performs a pseudo-random
key generation and does not perform circular shift rotation.
We know that random numbers are cryptographically secure,
and therefore, a zero round can provide good security on
the hash value. Furthermore, more rounds can provide higher
unpredictability. Especially, OSHA keeps all operations private
and calculates dynamically. OSHA removes predefined con-
stants by pseudo-random numbers, making it more potent than
any other state-of-the-art secure hash algorithms. Therefore,
OSHA can be improved using any pseudo-random number
generator which uses seed value.

V. CONCLUSION

In this paper, we have presented a one-way secure hash
algorithm, OSHA for short, to produce a secure hash value
and it can defend against diverse attacks. OSHA uses murmur
hash functions to generate a single bit of a pseudo-random
number. It uses multiple pseudo-random numbers to replace
the predefined constants. Additionally, OSHA uses two vari-
ables as input, mainly secret message (key) and seed value,
to generate a hash value. The input message and seed value
contribute a single bit. Therefore, it does not use in the rest bit
generation, but it defined the future bits. The seed value can
be fixed and public or kept secret depending on the require-
ments of the hash function. Furthermore, OSHA can generate
variable-sized hash values similar to SHAKE hash algorithms.
OSHA calculates the parameters’ value dynamically, and thus,
parameters’ values are not known to adversaries.

Moreover, the operation type is decided dynamically. Fur-
thermore, OSHA performs an XOR operation with a newly
generated pseudo-random number, but the original message is
not used in the XORing process. Therefore, it provides truly
one-way secure hash functions. Due to the dynamic property
of OSHA, it provides strong resistance against diverse attacks,
particularly preimage attacks, second preimage attacks, colli-
sion attacks, and cryptanalysis attacks. Significantly, there are
diverse applications OSHA hash functions, for example, Edge
Computing, IoT, Blockchain, Cloud Computing etc.

REFERENCES

[1] D. Khovratovich, C. Rechberger, and A. Savelieva, “Bicliques for
preimages: Attacks on skein-512 and the sha-2 family,” in Fast Software
Encryption, A. Canteaut, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 244–263.

[2] T. Espitau, P.-A. Fouque, and P. Karpman, “Higher-Order Differential
Meet-in-the-middle Preimage Attacks on SHA-1 and BLAKE,” in Ad-
vances in Cryptology – CRYPTO 2015. Berlin, Germany: Springer,
Aug 2015, pp. 683–701.

TABLE VII
P-VALUES AND SUCCESS RATES OF ALGORITHMS 3 FOR 32, 64 AND 128 BITS IN NIST SP 800-22.

Test name 32 bits 64 bits 128 bits
P-value Pass rate P-value Pass rate P-value Pass rate

Approximate Entropy 0.100508 32/32 0.500934 64/64 0.350485 126/128
Frequency 0.862344 32/32 0.134686 64/64 0.178278 128/128

Block Frequency 0.949602 31/32 0.468595 63/64 0.054199 127/128
Cumulative sums 0.213309 32/32 0.324180 64/64 0.364146 128/128

Runs 0.213309 31/32 0.324180 60/64 0.619772 124/128
Longest runs 0.407091 31/32 0.350485 64/64 0.654467 127/128

Rank 0.671779 32/32 0.407091 64/64 0.222869 128/128
FFT 0.911413 32/32 0.500934 61/64 0.110952 127/128

Non-overlapping Template 0.991468 32/32 0.991468 64/64 0.788728 128/128
Overlapping Template 0.468595 32/32 0.862344 64/64 0.275709 127/128
Random Excursions 0.275709 13/13 0.162606 17/17 0.162606 15/15

Random Excursions Variant 0.637119 13/13 0.275709 17/17 0.275709 15/15
Serial 0.299251 32/32 0.671779 63/64 0.422034 128/128

Linear complexity 0.407091 31/32 0.911413 64/64 0.015065 125/128
Universal 0.534146 31/32 0.671779 64/64 0.350485 126/128

[3] A. Biryukov, M. Lamberger, F. Mendel, and I. Nikolić, “Second-
Order Differential Collisions for Reduced SHA-256,” in Advances in
Cryptology – ASIACRYPT 2011. Berlin, Germany: Springer, Dec 2011,
pp. 270–287.

[4] J. Guo, S. Ling, C. Rechberger, and H. Wang, “Advanced Meet-in-the-
Middle Preimage Attacks: First Results on Full Tiger, and Improved
Results on MD4 and SHA-2,” in Advances in Cryptology - ASIACRYPT
2010. Berlin, Germany: Springer, Dec 2010, pp. 56–75.

[5] J. Li, T. Isobe, and K. Shibutani, “Converting Meet-In-The-Middle
Preimage Attack into Pseudo Collision Attack: Application to SHA-2,”
in Fast Software Encryption. Berlin, Germany: Springer, Mar 2012,
pp. 264–286.

[6] M. Stevens, “New Collision Attacks on SHA-1 Based on Optimal Joint
Local-Collision Analysis,” in Advances in Cryptology – EUROCRYPT
2013. Berlin, Germany: Springer, May 2013, pp. 245–261.

[7] G. Leurent and T. Peyrin, “From Collisions to Chosen-Prefix Collisions
Application to Full SHA-1,” in Advances in Cryptology – EUROCRYPT
2019. Cham, Switzerland: Springer, Apr 2019, pp. 527–555.

[8] A. Hosoyamada and Y. Sasaki, “Quantum collision attacks on reduced
SHA-256 and SHA-512,” IACR Cryptol. ePrint Arch., vol. 2021, p.
292, 2021. [Online]. Available: https://eprint.iacr.org/2021/292

[9] J. Guo, G. Liao, G. Liu, M. Liu, K. Qiao, and L. Song, “Practical Col-
lision Attacks against Round-Reduced SHA-3,” J. Cryptology, vol. 33,
no. 1, pp. 228–270, Jan 2020.

[10] Y. Hao, “The Boomerang Attacks on BLAKE and BLAKE2,” in
Information Security and Cryptology. Cham, Switzerland: Springer,
Mar 2015, pp. 286–310.

[11] T. Li and Y. Sun, “Preimage Attacks on Round-Reduced Keccak-224/256
via an Allocating Approach,” in Advances in Cryptology – EUROCRYPT
2019. Cham, Switzerland: Springer, Apr 2019, pp. 556–584.

[12] O. Standards and N. I. Technology, “SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions,” CSRC | NIST,
Aug 2015. [Online]. Available: https://www.nist.gov/publications/sha-3-
standard-permutation-based-hash-and-extendable-output-functions

[13] “Shake-128 Online,” April 2021, [Online; accessed on
April 2021]. [Online]. Available: https://emn178.github.io/online-
tools/shake 128.html

[14] “Shake-256 Online,” April 2021, [Online; accessed on
April 2021]. [Online]. Available: https://emn178.github.io/online-
tools/shake 256.html

[15] A. Appleby, “Murmurhash,” Retrieved on December 2020 from
https://sites.google.com/site/murmurhash/, 2008.

[16] R. Patgiri, “Whisper: A curious case of valid and employed mallory in
cloud computing,” in 2021 8th IEEE International Conference on Cyber
Security and Cloud Computing (CSCloud)/2021 7th IEEE International
Conference on Edge Computing and Scalable Cloud (EdgeCom), 2021,
pp. 133–138.

[17] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker,
“A statistical test suite for random and pseudorandom number
generators for cryptographic applications,” Booz-allen and

hamilton inc mclean va, Tech. Rep., 2001. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
22r1a.pdf

[18] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E.
Smid, E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L.
Banks et al., SP 800-22 rev. 1a. a statistical test suite for random
and pseudorandom number generators for cryptographic applications.
National Institute of Standards & Technology, 2010. [Online]. Available:
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final

[19] R. Patgiri, “Rando: A general-purpose true random number generator for
conventional computers,” in 2021 IEEE 20th International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom), 2021, pp. 107–113.

[20] “Announcing Approval of Federal Information Processing Standard
(FIPS) 180-2, Secure Hash Standard; a Revision of FIPS
180-1,” Aug 2002, [Online; accessed 23. May 2021]. [Online].
Available: https://www.federalregister.gov/documents/2002/08/26/02-
21599/announcing-approval-of-federal-information-processing-
standard-fips-180-2-secure-hash-standard-a

[21] J. Kelsey, S.-j. Change, and R. Perlner, “SHA-3 derived
functions: cSHAKE, KMAC, TupleHash and ParallelHash,” National
Institute of Standards and Technology, Gaithersburg, MD,
Tech. Rep. NIST SP 800-185, Dec. 2016. [Online]. Avail-
able: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
185.pdf

[22] J. Guo, P. Karpman, I. Nikolić, L. Wang, and S. Wu, “Analysis of
BLAKE2,” in Topics in Cryptology – CT-RSA 2014. Cham, Switzerland:
Springer, Feb 2014, pp. 402–423.

[23] Blake3-team, “BLAKE3-specs,” April 2021, [Online; accessed April
2021]. [Online]. Available: https://github.com/BLAKE3-team/BLAKE3-
specs/blob/master/blake3.pdf

[24] “BLAKE2,” Nov 2020, [Online; accessed April 2021]. [Online].
Available: https://www.blake2.net

[25] W. Diffie and M. E. Hellman, “Special Feature Exhaustive Cryptanalysis
of the NBS Data Encryption Standard,” Computer, vol. 10, no. 6, pp.
74–84, Jun 1977.

[26] K. Aoki and Y. Sasaki, “Meet-in-the-Middle Preimage Attacks Against
Reduced SHA-0 and SHA-1,” in Advances in Cryptology - CRYPTO
2009. Berlin, Germany: Springer, Aug 2009, pp. 70–89.

[27] R. Patgiri, “Stealth: A highly secured end-to-end symmetric commu-
nication protocol,” Cryptology ePrint Archive, Report 2021/622, 2021,
https://eprint.iacr.org/2021/622.

