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Abstract. Let F, be a finite field and E: y* = 2® + ax + b be an elliptic Fp-curve of
Jj(E) ¢ F,. This article provides a new constant-time hash function H: {0,1}* — E(Fp2) in-
differentiable from a random oracle. Furthermore, H can be computed with the cost of 3 expo-
nentiations in F,. In comparison, the actively used (indifferentiable constant-time) simplified
SWU hash function to E(F,2) computes 2 exponentiations in Fp, i.e., it costs 4 ones in F,. In
pairing-based cryptography one often uses the hashing to elliptic F-curves Ej: y* = 2® + b
(of j-invariant 0) having an F2-isogeny 7: E' — E}, of small degree. Therefore the composition

ToH:{0,1}* — 7(E(F,z)) is also an indifferentiable constant-time hash function.
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Introduction

Suppose there is the subgroup G C Ej(F,2) of a large prime order ¢ | N := #E,(F,2). As
is well known, only groups of such order are used in discrete logarithm cryptography. Many
protocols of pairing-based cryptography [1] use a hash function H: {0, 1}* — G indifferentiable
from a random oracle [2, Definition 2]. In particular, H should be constant-time, i.e., the
computation time of its value is independent of an input argument. The latter is necessary
to be protected against timing attacks [1, §8.2.2, §12.1.1]. A survey of this kind of hashing is
well represented in [1, §8], [3].

It is sufficient to find a hash function H: {0,1}* — E}(IF,2). Indeed, one of quick methods
[1, §8.5] can be applied for computing the cofactor multiplication [N/¢]: Ey(F,2) — G. This
process obviously preserves the indifferentiability property. By the way, in practice q is al-
most always a prime such that ¢ = 3 (mod 4), i.e., i :== v/—1 € F, in order to accelerate the
arithmetic of the field F2 (see, e.g., [1, §5.2.1]).

Many hash functions #H are induced from some map h: Fz — Ey(F.2), called encoding,
such that #Im(h) = O(¢?). In turn, ¢* ~ #E,(Fz2) according to the Hasse inequality [4,
Theorem V.1.1]. In other words, h should cover most Fpe-points of Ej. However there are
no surjective encodings h for ordinary (i.e., non-supersingular) curves Ey (cf. [1, §8.3.2]).
As is well known [1, §4], only such curves are interesting in pairing-based cryptography at
the moment. Thus the trivial composition h oy with a hash function n: {0,1}* — Fp is not
indifferentiable.
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Instead, it is often considered the composition H := h®?% o ? of the map
W9 T — Ey(Fe)  (to,t1) = h(to) + h(t1)
(also called encoding) and the hash function
{0, 1} =T mo— (n(m|0), n(m|1)),

where | is the concatenation operation. In this case, the indifferentiability of H follows from
[2, Theorem 1] if i is so and h®? is admissible in the sense of [2, Definition 4].

There is the so-called SWU encoding [1, §8.3.4], which is applicable to any elliptic F,-
curve (not necessarily of j-invariant 0). Nevertheless, it generally requires the computation
of 2 Legendre symbols (i.e., quadratic residuosity tests) in F,. Unfortunately, this operation
(as well as the inversion one in [F,) is vulnerable to timing attacks if it is not implemented as
an exponentiation in F, (see, e.g., [1, §2.2.9, §5.1.6]). But the latter is known to be a fairly
laborious operation.

There is also the simplified SWU encoding [2, §7], which, on the contrary, can be im-
plemented without Legendre symbols at all by virtue of [5, §2]. This encoding exists for all
elliptic curves E whose j(F) # 0. The most difficult case j(E) = 1728 is processed in [6]. In
turn, the quite popular Elligator 2 encoding [7, §5] (very similar in nature) is appropriate for
Ej, only in the case v/b € F,, that is 2 | N.

Sometimes it is possible to use an Fpe-isogeny 7: £ — Ej, of small degree (the Wahby—
Boneh approach [8]). For example, the curve BLS12-381 [8, §2.1] (whose b = 4(1 + i) and
[log,(q)] = 381) has such an isogeny of degree 3 for which j(E) = —253.53. Today, this
curve is a de facto standard in the real-world pairing-based cryptography [9, §4.1.3]. More
precisely, the encoding to Ej(F,2) can be constructed simply as the composition 7 o h, where
h:F,2 — E(Fp2) is any one. It is clear that (7 o h)®?* = 70 h®? is admissible as an encoding
to the subgroup 7(E(F,2)) C Ey(F,). Since £ is large, actually G C 7(E(F,)).

We show in §1 that under the conditions 2 { #E(F,) and j(E) ¢ F, there is a 2-sheeted
cover @o: H — E from a real (split) hyperelliptic F,-curve H (see, e.g., [10, §10.1.1]) of geo-
metric genus 2. Then in §2 we construct a very simple encoding h: F, — H(F,) (2) such that
the map

he: B — J(F,) (2o, 1, 22) — h(xo) + h(z1) + h(x2)

is admissible, where J is the Jacobian of H. Encodings to similar hyperelliptic curves are
discussed in [11], [12].

Thus we automatically get the encoding g o h: F, — E(FF,2). Moreover, by virtue of The-
orem 1 its cubic power (¢g o h)®%: F} — E(F,) is also admissible. As above, its composition
with the indifferentiable hash function

n*:{0,1}* = F> m— (n(m|00), n(m|01), n(m[10)),

where 7: {0,1}* — [F,, gives such one to E(Fp).

In other terms, we construct an F-isogeny ¢ := 67" o ¢: J — R (with the kernel (Z/2)?)
to the Weil restriction R (see, e.g., [10, §5.7]) of E with respect to the extension Fp./F,
where ¢ (resp. 67') is defined in §1 (resp. [6, §1]). Formulas of such an isogeny are found in
[13] based on the classical result [14]. Of course, one can apply these formulas for the hashing
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instead of ours (1), which are derived differently. By the way, it is preferable to use (g o h)®?
rather than ¢ o h®3, because the addition in E(F,2) = R(F,) seems to be much more efficient
than in J(IF,) (see [10, §10.4.2]).

The simplified SWU encoding h computes 1 square root in 2, hence the corresponding
hash function H (as well as h®2) computes 2 ones. The fact is that evaluating 7 is incompa-
rably faster 3, §5]. In turn, 1 square root in Fp2 costs 2 ones in F,; according to [1, Algorithm
5.18]. The inversion operation and quadratic test in this algorithm are not taken into account
by the same reason as in [5, §2]. As is well known, a square root in F, can be represented
as an exponentiation in F, if ¢ =3 (mod 4). In total, H is implementable with the cost of
4 exponentiations in [, although this is not remarked in [8, §4.2]. In comparison, the new
hash function performs 3 square roots (i.e., exponentiations) in F,.

In particular, applying the latter to the widely used BLS multi-signature (aggregate sig-
nature) [15] with n different messages, the verifier should compute only 3n exponentiations
in [, rather than 4n ones during the hashing phase. The author was recently informed
that n =~ 16000 in the famous blockchain Ethereum, which, like many others, uses the curve
BLS12-381.

We suppose that N = #E(Fp2) is odd just to be definite, that is this condition can be
omitted if desired. We restrict ourselves to this case, because it is the most difficult and
BLS12-381 satisfies it. The more essential requirement consists in the fact that j(E) € F, (cf.
Lemma 1). Fortunately, as shown in the computer algebra system Magma [16] the mentioned
curve is Fp-isogenous (with the help of an isogeny of degree 7) to the curve E with

J(E) = —3802283679744000v/21 — 17424252776448000,

where 21 ¢ F,. Our code [16] also generates the coefficients of H, ¢y and E, 7 in the generic
case.

1 Two-sheeted cover py: H — E
Consider a finite field I, of characteristic > 3 and elliptic F,z-curves
E=E9:y? = fo(z) :=2°+ax +b, EW: 2 = fi(x) = 2 + a%z 4 7.

They are obviously Fz-isogenous by means of the Frobenius morphism Fr. If Jj(E) € I, (that
is j(E) = j(EW)), then, in addition, there is an F,-isomorphism

o: E~ EW (z,y) = (N2, Xy),

where
ala=V/4 = pla=0/6if  §(E) ¢ {0,1728}, i.e., ab # 0,
A= { gle-n/4 it j(E)=1728, ie., b=0,
pla—1)/6 if j(E)=0,ie., a=0.
Moreover, A € F,z whenever ab # 0, because A = A*/\? = (b/a)4=V/2. The same is true if
b=0and g=1 (mod 4) (resp. a =0 and ¢ = 1 (mod 3)).
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Further, put A := Ex E® with the projections pri,: A — E® for k € Z/2. As it will
become clear later, we need to work with m-invariant objects, where

TAS A (Po, Pr) — (Fr(Pl),Fr(Po))

is the “twisted” Frobenius endomorphism.
Consider the decompositions

folz) = (@ —ro)(w —r)(z —ma),  filz) = (z —rg)(z —ri)(z —r3),

where
0=r1rg+1r + 7o, a =rory +rore + rira, b= —rorirs.

We will study the most difficult situation when r; € F,2 for j € Z/3 or, without loss of
generality, rjq-2 = r;41. For instance, the case b = 0 is excluded from our consideration.

We are interested in the isomorphism y: E[2] = EM[2] defined by the bijection r; — 77,
Its graph ' ~ (Z/2)?* is clearly m-invariant, hence the corresponding isogeny @’': A — A/T is
also m-invariant. Here A/I" is a principally polarized abelian surface (details see, e.g., in [17,
§1]). The isomorphism y is said to be reducible if A/T is F,-isomorphic (as PPAS) to the
direct product of 2 elliptic curves.

Lemma 1. The following statements are equivalent:
1. x s reducible;
2. x 1is the restriction to E[2] of an F,-isomorphism E = EW;
3. j(E) € F, and moreover ¢ =1 (mod 3) if j(E) = 0.

Proof. Concerning the equivalence of the first two statements see [18, Proposition 3|. Let’s
prove that of the last two. We start from the implication 3 = 2. The existence of the iso-
morphism o implies that f;(A\*r;) = 0. In the case Arg = r{ we get Ar; =77, ,, because
A E Fq2.

If X*rg = r§, then similarly A?r; = 4. Therefore A*r? = r;,1 and hence N r; = 7).
As a result, A\2@tD) = o € T, where w? + w + 1 = 0. In other words, a = 0 and r; = —w’V/b.
Since r; = wrjia, we have wA?rj o = 7, that is wA?*r; = ri, . The case \*rq = r§ is processed
in the same way.

The inverse implication (2 = 3) is not trivial only for j(£) = 0. Suppose the opposite:
q = 2 (mod 3) or, equivalently, w? = w?. We see that

M W) witpe /s

L Jt2+L
N edh e Y

for some fixed ¢ € Z/3. Since this cubic root depends on j, we come to a contradiction. [J

In accordance with [4, Example V.4.4] the condition ¢ =1 (mod 3) is fulfilled if E is an
ordinary curve of j(E) = 0.



Hereafter we assume that x is irreducible, i.e., J' := A/I" is the Jacobian of some hyper-
elliptic curve H' of geometric genus 2. Applying [18, Proposition 4] to x, we obtain, modulo
notation, the following explicit formulas (verified in [16]):

(ro — 7”2)2 (r1 — 7”0)2 (ra — 7”1)2
(ri—ro)?  (ra—r)?  (ro—r2)?

Ry = Ry :=r1o(ro —1r9)? +1r1(r1 — 10)? 4+ 12(ra — 11)%;

A= AIRy/R;, where A = —(4a® + 271?) is the discriminant of F;
A= Aro — 1) (r1 — ra), Ay = A(ry — 1a)(rg — 1o), Ay = A(rg —1o)(ro — 1r1);
Note that Agz = A;;;. Finally, the hyperelliptic curve is given by the equation
H':y* = f'(2) = —(Agz® + A (Ara® + Af) (A2 + AF).
Besides, there are 2-sheeted covers
oo: H = FE (z,y) — (c/2* + d, ey/z?), o H — EW (z,y) = (U2® + d7, ey),

where

_ Rl (TQ — 7’1)2 (7’0 — 7”2)2 (7”1 — 7"0)2 Aq

. _ Ag—1 I e

B Ry’ o ro — 1r9)9 Ty —19)d ro —11)9 ’ CA
C: A ) d (7"0( ) 2) —|—7“1( | O) +7'2( , 1) /RO e

It is easy to prove that the isogeny ¢’: J' — A, dual to ¢, is the natural extension of the
morphism

(o, 01): H = A P (¢p(P), ¢4 (P)).
It is an example of degenerate Richelot isogeny [19, §8.3].

The covers ¢). are nothing but the natural maps ¢): H — H'/—a ~ E and ¢|: H —
H'/a ~ EW under the involutions

ta: H' = H' (x,y) = (—z,ty).
And through (¢}, ¢}) the latter trivially correspond to
Ta: A= A (Po,Pl)i—>(:FPO,:|:P1>.

As usual, H' has the smooth model Y? = F'(X,Z) := Z%f'(X/Z) in the weighted projec-
tive space P(1, 3, 1) with the coordinates (X : Y : Z), where x = X/Z, y = Y/Z3. The correct
analogue of the “twisted” Frobenius endomorphism on H’ is the map

m: H — H (X:Y:2)— (Z9:Y7: X9),

because under this definition the morphism (¢f, ¢}) (and hence ¢') is m-invariant.

For the sake of simplicity throughout the rest of the article ¢ =3 (mod 4), that is
i=+—1¢ [F,. Although further formulas can be easily modified in the opposite case, choos-
ing any quadratic non-residue in F, instead of —1. It is readily checked that H:Y? =



F'(X +iZ,X —iZ) is an F,-curve. In other terms, )™ o7 o is the “ordinary” Frobenius
endomorphism on H, where

v: H>= H (X:Y: )= (X+iZ:Y: X —iZ),
X+Z X—-Z
v H ~» H (X:Y:Z)H( ;_ (Y ¥ )
i

Denote by J the Jacobian of H. Let us keep the notation for the natural extensions ¢: J = J'
and ¢ 7: J = J. Of course, they are still mutually inverse. Also, put ¢ := @' ot): J — A.
Introduce new constants ¢y, di, e, € I, such that

c=cy+ ci, d=dy+ dqi, e =eg+ eqt.
Using Magma [16], we check that the compositions ¢y, := ¢} 0 1) = pry o p|y are equal to

o H — B (z,y) = (zo + (—1)*m1i, yo + (—1)*y14),

where
. cr(zt — 62% + 1) + (—1)Fdeppqz(2? — 1) L
k= (I‘2 T 1)2 k> (1)
_ exr(x? —3) + (—1)Fery (322 — 1)

It is worth stressing that zy, y; € F,(H).
Let (J)™ (resp. A™) be the subgroup of all m-invariant points on J’ (resp. A). Obviously,
Y J(F,) = (J)". Besides, ¢': AT = (J')" (or, equivalently, ¢': (J')™ = A7), because ¢’ o
@ =1[2] and A[2]N A" is the trivial group. Finally, pry: A™ = E®)(F,:) with the inverse
maps
prit: EW(Fp) = AT pryt: P (P, Fr(P)), prit: P — (Fe(P), P).

Let’s summarize the main result of this paragraph.

Theorem 1. We have the sequence of morphisms

HcJA5 A" E®  such that  H(F) C J(F) % A™ % BE(F,).
q q q

2 Encoding h: F, — H(F,)
It is shown in [16] that the F,-curve H from the previous paragraph has the affine form
H:y? = f(x) = fex® + fs2° + faz" + fox® = fax® + fox — fo
with the infinite points Oy := (1: £+/fs : 0). By virtue of Theorem 1 and the fact that
21 #E(F;) the polynomial f has no F-roots. Indeed, if f(z) =0 for x € F; (resp. z = 0),
then f(—z') =0 (resp. fo =0, i.e., O, = O_), because f(—z ') = —f(x)/z°. The equality
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x = —z " holds only for x = +i € F,. Therefore H can not possess the unique Weierstrass
[F,-point. However, as is well known [19, Lemma 8.1.3], two distinct such points give a point
from J[2] N J(F,).

The involutions +«a: H' = H' are transformed to ones

+ta:H>H  (X:Y:2)— (—Z:+iY : X).
In particular, Py := (0, 4v/—f5) +— O.. Thus we have the encoding

(,y) if y:=+/f(x) €,

h:FE, - H(F,) T
a(z,y) if y&F, ie, iy=+/—f(x) €F,
For n:= (¢+1)/4 € N put g(z) := f(z)". Abusing the notation, we will often just write
f, g. Note that g% = fletD/2 = (%)f, where (g) = f@=1D/2 ig the Legendre symbol. It will be
convenient to use the notation

X, = {erF;| vxf ek, ie, g2::|:f}, Szzprgl(XQ,

where pr, is the projection H — Al. Then z — —z ' is a bijection between X, and X .

Unfortunately, in addition to finding the square root the previous definition of A requires
to compute the Legendre symbol. However (up to a sign of y) the encoding can be rewritten
in the following way:

N if z=0andfs €F,
hE, S HE) oo { (2g) gy )
(—27,g27%) if ¢*=—f.

In practice, i can be restricted to Fy in order to avoid hitting the point O,. Representing
the coordinates of h(x) by their numerators and common denominator (i.e., by 3 elements of
F,), we get

Remark 1. The encoding h is computed in constant time of an exponentiation in I,.

The same is true for oo h:F, = E(F,2). Indeed, by definition, ¢go —a = ¢y, that is
wo(—x7, gr3) = @o(w,ig). Hence we do not have to find 7 before evaluating the covering

map .

Obviously, #h™(Py),#h™(O+) < 1. In turn, for any zg,z; € Xy (or X_) such that
h(xg) = h(x1) we have g = x1. However for some = € F; maybe h(x) = h(—z"). Therefore
we obtain

Lemma 2. For any point P € H(F,) we have #h™(P) < 2 and hence q/2 < #Im(h).

The last definition of h can be made injective if to set the sign of the y-coordinate more
accurately (e.g., as in [8, §2]), but in this case we do not know how to correctly modify the
proof of the next theorem. As is easily seen, actually #H(F,) = ¢ + 1.



Theorem 2. The encoding h: F, — H(IF,) is B-well-distributed in the sense of [20, Definition
1], where B := 18 4+ O(q~'/?).

Proof. Consider the functions f, := vy, f_ := (—1)"zy on the curve H. Notice that (%) =1
whenever z € X andy = y(h(z)). Indeed, ( ) = ( )" =1ifz € X (resp. (—1)"ifz € X_).

And }for x € X_ we have (%) = (—1)”(q) Given a non-trivial character x: J(F,) — C* we
see that

As a consequence,

S k)| <3 3| X (B vo)

reXs ke{0,1} | PeH(F,)

Here notation O(1) is used to avoid handling the set pr;*({0,00}) = { Py, O+}. According to
[20, Theorem 7] and the fact that

deg(fy) = deg(pry) =6,  deg(f-) = deg(pry) + deg(pry) =8

(where pr, is the projection H — Aly) we obtain

2(1+6k)\/q for -+,
2(1+8k)\/q for —.

> (fi o ) (P)| <2(g(H) =1+ kdeg(f+))v/a < {

PeH(F,)
Thus
8/q for +,
> x(h(@)| <O(1) + {1f ;
rzeX+ O\/a or —
and hence

D ox(r@)| <D x(h@) |+ D x(h(x))| +O(1) < 18,/ + O(1).

z€ly zeXy reX_
The theorem is proved. O
Further, from [10, Exercise 10.7.9], [20, Corollary 4] it immediately follows that

Corollary 1. The distribution on J(F,) defined by h®*: F} — J(F,) is e-statistically indis-
tinguishable [2, Definition 3] from the uniform one, where € := 183¢~1/2 4 O(q~%/).

According to Remark 1 the encoding h®3 is computable in constant time of 3 exponenti-
ations in F,. Finally, it is easily shown that h®? is also samplable [2, Definition 4]. Therefore
we establish

Corollary 2. The encoding h®? is admissible.
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