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Abstract. In this work we investigate how the choice of the key-expansion
algorithm and its interaction with the round function affect the resistance
of Simon-like ciphers against rotational-XOR (RX) cryptanalysis. We
observe that among the key-expansion algorithms we consider, Simon is
most resistant, while Simeck is much less so. Implications on lightweight
ciphers design are discussed and open questions are proposed.
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1 Introduction

Lightweight cryptography is a subfield of symmetric-key cryptography which
presents a trade-off between suitable security and small implementations for
resource-constrained devices. This approach mandates aggressive optimization
of the components being used.

Key-expansion algorithms in particular seem to have been the target of such
optimizations. Recent proposals often use a simple key-expansion algorithm,
and sometimes even trivial. For examples of a simple key-expansion algorithm
see Simon [4]; for algorithms not using a key-expansion algorithm at all see LED
and Midori [3,10]. A middle ground between a “heavy” key-expansion algorithm
and a simple one is to reuse the round function or some of its components
for the key-expansion algorithm. For the former approach see Speck [4] and
Simeck [36]; for the latter see [23,33].

The impact of the key schedule on cryptanalysis is important, yet in the
context of lightweight block ciphers it remains to date understudied for the most
part. Owing to the model of a Markov cipher due to Lai et al. [16], consecutive
rounds of a cipher are assumed to be independent as long as the hypothesis
of stochastic equivalence holds since the key will mask the relation between
the output from the previous round and the input to the next one. Conversely,
a study by Kranz et al. [15] showed the influence of a linear key-expansion
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algorithm on linear cryptanalysis in Present. Along similar lines Abdelraheem
et al. [1] showed how different choices of the key schedule result in different linear
correlation distributions. It appears that there is no guarantee that for practical
ciphers the stochastic equivalence hypothesis actually holds, especially when the
key-expansion algorithm is simple or trivial. Information on how to design a good
key-expansion algorithm and how it interacts with the round function remains
scarce.

Lu et al. observed in [21] that the lightweight block cipher Simon exhibits
better resistance against RX-cryptanalysis than the lightweight block cipher
Simeck despite both belonging to the class of Simon-like ciphers. In this paper
we set to understand the root cause for this gap. We observe that the differ-
ence between the two algorithms is twofold: (i) the rotation amounts used in
the round function and (ii) the key-expansion algorithm; and set to isolate the
determining factor.

Our starting point is the SMT model presented in [21] for finding RX-
characteristics in Simon-like ciphers. This model was criticized by Sadeghi et
al. who observed in [27] that the model will sometimes output incompatible RX-
characteristics. We fix the model of Lu et al. by adding additional constraints
ensuring the consistency of the RX-characteristic and apply the new model to a
series of Simon-like ciphers with different parameters.

Our contribution:

– We correct the issues raised in [27] regarding the model devised in [21].
In that respect, we translate their MILP constraints into SAT/SMT and
integrate them into our model;

– We evaluate the corrected model respective to Simon32/64 and Simeck32/64.
We show that the RX-characteristic presented in [21] for Simeck32/64 re-
mains valid (as was also noted by [27]); For Simon32/64 we find and validate
longer RX-characteristics than those previously presented.

– We evaluate the corrected model respective to a sequence of the Simon-like
ciphers and see how different design decisions reflect in the resistance of the
resulting cipher against RX-cryptanalysis.

Organization. The paper is organized as follows: in Section 2 we recall the theory
of RX-cryptanalysis, the structure of Simon-like ciphers, and the SMT model
presented in [21]. In Section 3, we present the additional constraints required to
ensure that the model is restricted to compatible RX-characteristics and evaluate
this corrected model on Simeck32 and Simon32. Then, in Section 4, variants
of Simon-like ciphers are presented and their resistance to RX-cryptanalysis is
evaluated. We discuss possible interpretations of our results and directions for
future research in Section 5 which concludes the paper.

2 Preliminaries

The table below presents the notation we use throughout the paper.

2



Notation Description

x = (xn−1, . . . , x0) Binary vector of n bits; xi is the bit in position
i with x0 the least significant one.

x Bitwise negation.
x� y Bitwise AND between x and y.
x⊕ y Bitwise XOR between x and y.
x‖y Concatenation of x and y.
x|y Bitwise OR between x and y.
wt(x) Hamming weight of x.
x≪ γ, Sγ(x) Circular left shift of x by γ bits.
x≫ γ, S−γ(x) Circular right shift of x by γ bits.
(I ⊕ Sγ)(x) x⊕ Sγ(x).

2.1 Rotational-XOR Cryptanalysis

Rotational cryptanalysis is a related-key chosen-plaintext attack following the
propagation of rotational pairs i.e., pairs of the form (x, x≪ γ). This attack is
thwarted when a constant that is not rotation-invariant (i.e., a constant c such
that c 6= c≪ γ) is injected into the rotational pair; see e.g., [5].

Rotational-XOR cryptanalysis is a generalized attack method taking such
constants into account. Whereas the original technique was thwarted by the in-
jection of round constants that are not rotational-invariant, RX-cryptanalysis
overcomes this problem by integrating their effect into the analysis of the prop-
agation probability. Rather than just considering a rotational pair as in the case
of rotational cryptanalysis, RX-cryptanalysis considers an RX-pair of the form
(x, Sγ(x)⊕ α) where α is called the translation. The technique was successfully
applied to ARX-based primitives, including the block cipher Speck [18] and the
PRF SipHash [35].

In [21] Lu et al. extended the applicability of RX-cryptanalysis also to AND-
RX ciphers by showing that the RX-propagation probability through vectorial
bitwise-AND is the same as the XOR-propagation probability through the same
operation. This is captured by Theorem 1 which is reproduced from [21, Thm.
1].

Theorem 1. Let (x, (x≪ γ)⊕α) and (y, (y ≪ γ)⊕β) be two RX-pairs where
γ is the rotation offset and (α, β) the translations, respectively. Then, for an
output translation ∆ it holds that:

Pr[ ((x� y) ≪ γ) ⊕∆ = ((x≪ γ) ⊕ α) � ((y ≪ γ) ⊕ β)]

= Pr[(x� y) ⊕∆ = (x⊕ α) � (y ⊕ β)] ,
(1)

i.e., the propagation probability of an RX-difference with translations (α, β)
through � is the same as that of a normal XOR-difference through the same
operation when the translations are considered as input XOR-differences.
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Of particular interest in our paper is the RX-propagation probability through a
Simon-like round which is given by Lemma 1 (reproduced from [21, Prop. 1])

Lemma 1. For Sa(x) � Sb(x) where gcd(n, a − b) = 1, n is even, a > b and
x = (xn−1, . . . , x1, x0) ∈ Fn2 , (α, β) as in Theorem 1, the difference propagation
distribution table and RX propagation distribution are given by

Pr[α→ β] =



2−n+1 if α = 0xf · · · f,
wt(β) ≡ 0 mod 2 ;

2−A if α 6= 0xf · · · f,
β �

(
Sa(α) | Sb(α)

)
= 0,(

β ⊕ Sa−b(β)
)
�(

Sa(α)� S2a−b(α)

�Sb(α)
)

= 0;

0 otherwise

where A = wt
((
Sa(α) | Sb(α)

)
⊕
(
Sa(α)� S2a−b(α)� Sb(α)

))
.

Sadeghi et al. presented in [27] an MILP model for finding a right-pair for a
given (RX-)characteristic. Surprisingly, they found that some RX-characteristics,
although constructed using locally valid transitions, are incompatible i.e., they
do not allow for the propagation of any right pair due to global contradictions.
This appears to be a general problem for automated search models which are set
to track the propagation of differences without ensuring that the corresponding
values can propagate simultaneously.

2.2 Simon-like Ciphers

Simon is a family of block ciphers following the AND-RX design paradigm, i.e.,
members of the family can be described using only the bitwise operations AND
(�), XOR (⊕), and cyclic rotation by γ bits (Sγ). Simon-like ciphers generalize
the structure of Simon’s round function with parameters different from the
original ones.

The round function

Simon is a family of lightweight block ciphers designed by the US NSA [4]. A
member of the family is denoted by Simon2n/mn, to specify a block size of 2n
for n ∈ {16, 24, 32, 48, 64}, and key size of mn for m = {2, 3, 4}. Since the key
size can only be 64 when the block size 2n is equal to 32, we simply write it as
Simon32 instead of Simon32/64 hereinafter. The round function of Simon is
defined as

f(x) =
(
S8 (x)� S1 (x)

)
⊕ S2(x) .
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Fig. 1: The round function of a Simon-like cipher and notation for the propaga-
tion of RX-differences through it

Simon-like ciphers are ciphers that share the same round structure as Simon,
but generalize it to arbitrary rotation amounts (a, b, c) such that the round
function becomes

fa,b,c(x) =
(
Sa (x)� Sb (x)

)
⊕ Sc(x) .

This round function is depicted in Figure 1.
Of particular interest in this paper is the Simeck family of lightweight block

ciphers designed by Yang et al. [36], aiming at improving the hardware imple-
mentation cost of Simon. Simeck2n/4n denotes an instance with a 2n-bit block
and a 4n-bit key for n ∈ {16, 24, 32}. Since the key length of Simeck is always
4n we use lazy writing in the sequel and simply write Simeck2n throughout the
paper. The rotation amounts for all Simeck versions are (a, b, c) = (5, 0, 1).

Tracking the RX-propagation Lu et al. devised an SMT model for tracking the
propagation of RX-differences in Simon-like ciphers. They have determined that
the following set of constraints respective to the notation in Figure 1 is sufficient
for finding a valid RX-characteristic:

0 = ∆1d
r � (Sa(∆1ar) | Sb(∆1ar)) ;

0 = (∆1d
r ⊕ Sa−b(∆1d

r))� (Sa(∆1ar)

� S2a−b(∆1a
r)� Sb(∆1a

r)) ;

∆1b
r+1 = ∆1a

r ;

∆1a
r+1 = ∆1d

r ⊕∆1b
r ⊕ Sc(∆1a

r)⊕∆1k
r .

If the propagation is valid, the probability in round r is given by 2−w
r
d , where

wrd =wt((Sa(∆1a
r) | Sb(∆1a

r))⊕ (Sa(∆1ar)

� S2a−b(∆1a
r)� Sb(∆1a

r))) ,
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Fig. 2: The key-expansion algorithms of Simeck32 and Simon32 and notation
for their RX-difference propagation

is said to be the weight of the non-linear transition in round r.

The key-expansion algorithm The non-linear key-expansion algorithm of
Simeck reuses the cipher’s round function to generate the round keys. Let K =
(t2, t1, t0, k0) be the master key for Simeck2n, where ti, k0 ∈ Fn2 . The registers
of the key-expansion algorithm are loaded with

K = k3||k2||k1||k0

for K the master key, and the sequence of round keys (k0, . . . , kT−1) is generated
with

ki+1 = ti

where

ti+3 = ki ⊕ f5,0,1(ti)⊕ c⊕ (zj)i,

and c ⊕ (zj)i ∈ {0xfffc, 0xfffd} a round constant. A single round of Simeck
is depicted in Figure 2a.

The SMT model given by Lu et al. for this key-expansion algorithm is anal-
ogous to that of the round function respective to the notation in Figure 2a:

0 = ∆1kd
r � Sa(∆1kar) | Sb(∆1kar);

0 = (∆1kd
r ⊕ Sa−b(∆1kd

r))� (Sa(∆1kar)

� S2a−b(∆1ka
r)� Sb(∆1ka

r)) ;

∆1kb
r+1 = ∆1ka

r ;

∆1ka
r+3 = ∆1kd

r ⊕∆1kb
r ⊕ Sc(∆1ka

r)⊕∆1c
r ;

∆1k
r = ∆1kb

r.

with weight wrk set as

wrk =wt((Sa(∆1ka
r) | Sb(∆1ka

r))⊕ (Sa(∆1kar)

� S2a−b(∆1ka
r)� Sb(∆1ka

r))) .
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Simon, conversely, uses a linear key-expansion algorithm to generate the round
keys. Let K = (km−1, . . . , k1, k0) be a master key for Simon2n, where ki ∈ Fn2 .
The sequence of round keys ki is generated by

ki+m =

ki⊕ (I ⊕ S−1)S−3ki+1 ⊕ c⊕ (zj)i, if m = 2
ki⊕ (I ⊕ S−1)S−3ki+2 ⊕ c⊕ (zj)i, if m = 3
ki⊕ (I ⊕ S−1)(S−3ki+3 ⊕ ki+1)⊕ c⊕ (zj)i, if m = 4

for 0 ≤ i ≤ (T − m). The key-expansion algorithm of Simon with m = 4 is
depicted in Figure 2b.

Lu et al. modeled this key-expansion algorithm as:

∆1ka
r+4 =S−3(∆1ka

r+3)⊕∆1ka
r+1

⊕ S−1(S−3(∆1ka
r+3)⊕∆1ka

r+1)

⊕∆1ka
r ⊕∆1c

r

∆1k
r =∆1ka

r .

Since it is linear, there is no need to track the weight of the RX-propagation in
this key-expansion algorithm.

2.3 SAT/SMT Automated Search Method

Since Matsui first proposed a program for automatically searching linear char-
acteristics for DES block cipher at EUROCRYPT 1993 [22], automatic tools for
cryptanalysis play an important role in the design and cryptanalysis of symmet-
ric ciphers. The main automatic analysis methods are based on Boolean Satisfia-
bility Problem (SAT)/Satisfiability Modulo Theories (SMT) search method [12,
18,24,28], Mixed Integer Linear Programming (MILP) search method [8,25,29,
31,32,34], and Constraint Programming (CP) search method [9,30]. The idea be-
hind these search methods is to model the search problem as a set of constraints
and solve it using one of the available constraint solvers.

The SAT problem is the problem of determining if there exists an instantia-
tion that satisfies a given Boolean formula. The SMT problem is to determine the
satisfiability of the first-order logic formula under a specific theory. Compared
with the SAT problem, the SMT problem can be expressed with richer languages
(theories) than boolean formulas. In particular, a formula in the bit-vector theory
can contain bit-vectors (a vector of boolean variables) and the usual operations
of bit-vectors such as bitwise operations (AND, XOR, OR, etc.) arithmetic op-
erations (addition, multiplication, etc.), cyclic operations and so on. For SMT
problems, the main solvers are Boolector [7], Z3 [26], STP3, etc.

Since an ARX/AND-RX cipher only contains basic Boolean operations: mod-
ular addition, AND, cyclic shift and XOR, it is natural to describe in SMT-
LIB. Thus, we use the automatic searching tool relying on SAT/SMT instead
of MILP. Nevertheless, it is also applicable to adopt an MILP solver, see for
example [11,27].

3 http://stp.github.io/
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3 Compatibility

Sadeghi et al. presented in [27] an MILP model outputing a solution respective
to a given RX-characteristic i.e., a pair of related keys and a right pair satisfy-
ing said characteristic. They observed that some of the RX-characteristics in [21]
cannot produce right pairs respective to any key pair due to global contradic-
tions; such RX-characteristics are said to be incompatible.

Following their work, we adapted the work of Lu et al. with some addi-
tional constraints ensuring the compatibility of the output RX-characteristic.
Let kr+1 = fks(t

r
2, t

r
1, t

r
0, k

r, cr), where fks(t
r
2, t

r
1, t

r
0, k

r, cr) denotes the function
deriving the subkey kr+1 from the state of the key-expansion algorithm in round
r and the round constant cr. Further let kr and (kr)′ denote the n-bits subkeys
to round r, respective to the master keys K and K ′.

Then, the following constraints should be satisfied for the RX-characteristic
to be compatible:

kr+1 = fks(t
r
2, t

r
1, t

r
0, k

r, cr); (2)

(kr+1)′ = fks((t
r
2)′, (tr1)′, (tr0)′, (kr)′, cr); (3)

∆1k
r = (kr ≪ 1)⊕ (kr)′; (4)

∆1k
r+1 = (kr+1 ≪ 1)⊕ (kr+1)′ . (5)

In simple words, Constraints (2)–(3) ensure that the subkey can be derived from
the master key (consistency) while Constraints (4)–(5) ensure that they have
the appropriate RX-difference.

Once the RX-characteristic for the key-expansion algorithm is determined to
be compatible, let (xr+1, yr+1) =̂R(xr, yr, kr)=(fa,b,c(x

r)⊕ yr ⊕ kr, xr) denote
the encryption function for round r taking the pair (xr, yr) as left and right
inputs, respectively, kr the subkey; and returning (xr+1, yr+1) as the left and
right outputs, respectively.

Then, the following constraints should be satisfied for the RX-characteristic
to be compatible respective to the subkeys found in (2)–(5):

(xr+1, yr+1) = R(xr, yr, kr); (6)

((xr+1)′, (yr+1)′) = R((xr)′, (yr)′, (kr)′); (7)

∆1x
r = (xr ≪ 1)⊕ (xr)′; (8)

∆1y
r = (yr ≪ 1)⊕ (yr)′; (9)

∆1x
r+1 = (xr+1 ≪ 1)⊕ (xr+1)′; (10)

∆1y
r+1 = (yr+1 ≪ 1)⊕ (yr+1)′ . (11)

3.1 Running the Model

With the above model in mind, we begin by searching RX-characteristics for
Simon32 and Simeck32. We describe the model using the SMT-LIB language
and apply the Boolector solver with several parameter sets. Our experiments
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were carried out on a laptop with Intel Core i5-7300U CPU running at 2.60GHz
and a server with Intel Xeon(R) Core E5-2609 v2 CPU running at 2.50GHz. The
source code for this and subsequent searches can be found in [20]. The results
are presented in Table 1.

Table 1: The probability of compatible RX-characteristics found for Simon32
and Simeck32 with γ = 1. The probabilities are given in two columns for
Simeck32 distinguishers, where the “Data Prob.” is the probability of the round
function part and the “Key Prob.” is that of the key schedule part. All probabil-
ities p are given as − log2 p. The column “time” provides the time needed to find
a RX-characteristic in seconds or hours (“s” and “h” for short). For instance,
the found RX-characteristic covering 20-round Simeck32 has a data probabil-
ity of 2−26 and a weak key size 264−34 = 230 with 255.40 seconds. We see that
RX-characteristics for Simon32 cover significantly fewer rounds. Entries marked
with an asterisk are not necessarily optimal i.e., an RX-characteristics covering
the same number of rounds with better probabilities may still exist.

SIMON32 SIMECK32

Rounds Prob. Time Data Prob. Key Prob. Time

6 0 0.10s 0 0 0.06s

7 4 1.82s 2 4 0.47s

8 6 2.94s 4 4 0.67s

9 10 106.01s 4 6 0.78s

10 14 2.90h 6 8 1.52s

11 22* 55.56h 10 12 7.00s

12 26* 78.55h 12 12 8.34s

13 30* 13.98h 12 18 39.03s

14 32* 6.66h 16 18 24.14s

15 18 20 26.31s

16 18 28 420.45s

17 18 32 180.67s

18 22 30 305.07s

19 24 34 900.13s

20 26 34 255.40s

The longest RX-characteristic we found for Simon32 covers 14 rounds and
its probability is 2−32 for the entire key space. This RX-characteristic is not nec-
essarily optimal, yet for 15 rounds we were only able to find an RX-characteristic
with probability 2−36 which would require more data than what is allowed by
the block size. The full description of this RX-characteristic is presented in A,
Table 10.
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For Simeck32 the longest RX-characteristic we found covers 20 rounds.
The probability of this RX-characteristic is 2−26 and it applies to a weak-key
class of size 230. We further found that there exists no RX-characteristic with
wd + wk ≤ 64 for more than 20 rounds of Simeck32; therefore, our 20-round
RX-characteristic is tight with respect to the number of rounds and optimal re-
spective to the objective function. The full description of this RX-characteristic
is presented in A, Table 11.

4 The Effect of the Key-expansion Algorithm on the
Resistance Against RX-cryptanalysis of Simon-like
Constructions

Lu et al. observed that Simeck appears to be more vulnerable to RX-cryptanalysis
than its counterpart Simon. This, albeit to a lesser degree, is also the conclusion
from Table 1. There are two main differences between Simon and Simeck: (i)
the key-expansion function, and (ii) the rotation amounts in the round func-
tion. In this section we set to investigate how each of these differences affects
the overall resistance against RX-cryptanalysis. This is done by introducing new
variants which isolate the property we are interested in. To compare the design
components in Simon-like ciphers, here we concentrate on discussing four main
features:

– (A) The type of key-expansion algorithm. We consider the Simeck and Si-
mon key-expansion algorithms with m = 4, as well as two additional key-
expansion algorithms derived from each (see Figures 3–4).

– (B) The round function’s rotation amounts (a, b, c). Three rotation amounts
are considered: (8, 1, 2) from Simon, (5, 0, 1) from Simeck, and (12, 5, 3)
suggested in [13,14] and deemed optimal against certain attacks;

– (C) The key-expansion function’s rotation amounts (a, b, c) when it reuses
the round function following the design philosophy of Simeck;

– (D) The round constants used in the key-expansion algorithm, where the
Sparkle-like round constants are provided in B.

A variant is denoted by Sim-(A,B,C,D) where Sim means that the cipher is
Simon-like and the tuple (A,B,C,D) defines the controlled variables such that (A)
defines the type of the key-expansion algorithm; (B) the rotation amounts for the
round; (C) the rotation amounts for the key-expansion algorithm when reusing
the round function, and (D) the round constants. The legend for interpreting
the tuple (A,B,C,D) is given in Table 2. For example, Simeck32 is Sim-(1,1,1,1).
When a certain parameter is not relevant it is denoted by a dash e.g., Simon32
is Sim-(2,2,-,2).

4.1 Non-Linear Key-expansion Algorithms (Parameter (A))

We begin by investigating the effect of different parameters on the resistance
against RX-cryptanalysis in non-linear key-expansion algorithms. First, in Sec-
tion 4.1 we investigate how the resistance of Simeck against RX-cryptanalysis
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Table 2: The full parameter set for Sim-(A,B,C,D), where z0–z4 is the constant
sequence of Simon. For example, Simon32 is Sim-(2,2,-,2) since it uses the Si-
mon32 key-expansion algorithm (Parameter (A)), the round function’s rotation
amounts are (8, 1, 2) (Parameter (B)), the key-expansion function does not reuse
the round function hence it has no Parameter (C), and 0xfffc⊕z0 for the round
constants (Parameter (D)).

(A) (B) (C) (D)
Parameter KS-type Rotation Rotation Round

amounts (round) amounts (KS) constants

1 Simeck (5,0,1) (5,0,1) 0xfffc⊕zSimeck32
2 Simon32 (8,1,2) (8,1,2) 0xfffc⊕z0
3 Fig 3a (12,5,3) (12,5,3) 0xfffc⊕z1
4 Fig 3b 0xfffc⊕z2
5 Fig 4a 0xfffc⊕z3
6 Fig 4b 0xfffc⊕z4
7 round counter
8 Sparkle-like

is affected when different rotation amounts are used. Note that here, similar to
the original design, the rotation amounts in the round function and the key-
expansion algorithm are the same, i.e., Parameter (B) and Parameter (C) are
equal. Then, in Section 4.1 we analyze two novel non-linear key-expansion al-
gorithms. In Section 4.1 we break the symmetry between the round function
and the key-expansion algorithm and investigate how different combinations
for Parameters (B)–(C) affect the overall resistance of the cipher against RX-
cryptanalysis. Finally, in Section 4.1 we isolate the round constants and investi-
gate their effect.

Controlling for the rotation amounts (Parameters (B)–(C)) Our start-
ing point is Simeck32 i.e., Sim-(1,1,1,1). The first two variants we investigate,
Sim-(1,2,2,1) and Sim-(1,3,3,1), follow the same design philosophy and reuse the
round function in the key-expansion algorithm. The three variants differ only
in the rotation amounts, which are (5, 0, 1), (8, 1, 2) and (12, 5, 3), respectively;
and are kept the same for the round function and the key-expansion algorithms
in each respective cipher. The round constants are always the same as those of
Simeck.

The results are presented in Table 3. The difference appears to be meaning-
ful and we conclude that Simon-like ciphers reusing the round function in the
key-expansion algorithm are highly sensitive to Parameters (B) and (C) (i.e.,
the rotation amounts in the round function and the key-expansion algorithm,
respectively). We further see that Simeck is the most vulnerable of the three
variants.

Controlling for non-linearity (Parameter A) Recalling that the longest
RX-characteristic we could find for Simon32 covered only 14 rounds, we now
want to determine if the relatively weak resistance of the Simeck design phi-
losophy as reflected in Table 3 is specific to reusing the Simon-like round in
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Table 3: The effect of different rotation amounts on Simon-like ciphers reusing
the round function in the key-expansion algorithm. We fix the Sim parameters
such that (A) = (D) = 1, and evaluate for different (B) = (C) ∈ {1, 2, 3}. We
see that the resistance of the resulting ciphers against RX-cryptanalysis is highly
sensitive to this decision.

Rounds 10 11 12 13 14 15 16 17 18 19 20

Sim-(1,1,1,1)

Data 6 10 12 12 16 18 18 18 22 24 26

Key 8 12 12 18 18 20 28 32 30 34 34

Sim-(1,2,2,1)

Data 12 16 18 20 22 24 28 28

Key 10 12 18 18 20 22 26 32

Sim-(1,3,3,1)

Data 12 16 14 24 28 30

Key 12 14 24 22 26 32

the key-expansion algorithm or more generally to non-linear key-expansion al-
gorithms.

We define two more variants with novel non-linear key-expansion algorithms
inspired by Simon-like rounds. Sim-(3,1,-,1) and Sim(4,1,-,1) use the Simeck ro-
tation amounts and round constants, with the key-expansion algorithms depicted
in Figures 3a–3b, respectively.

Note that the point here is not to analyze the security of these two key-
expansion algorithms but to ascertain if the key schedule of Simeck is an outlier
to the resistance offered by an arbitrary non-linear one. Here we consider two
key-expansion algorithms that reuse (part of) the round function as variants of
Simeck, one with two non-linear branches (Figure 3a) and the other with only
one non-linear branch (Figure 3b).

The results are presented in Table 4. We conclude that reusing the round
function, by itself, is not a bad design approach for lightweight ciphers.

ti ki

S5

S0

S1

S0

c⊕ (zj)i

ti+1ti+2

(a) Sim-(3,1,-,1)

ti ki

S5

S0

c⊕ (zj)i

ti+1ti+2

(b) Sim-(4,1,-,1)

Fig. 3: Novel non-linear key-expansion algorithms for Sim-(3,1,-,1) and Sim-(4,1,-
,1)
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Table 4: The effect on the resistance of Simon-like ciphers when different ap-
proaches to designing a non-linear key-expansion function are taken. We fix the
Sim parameters such that (B) = (D) = 1 and evaluate for (A) ∈ {3, 4}. These
are compared to Sim-(1,1,1,1) and Sim-(1,3,3,1) which are the worst and the
best rotation amounts from Table 3. The novel key-expansion algorithms do not
appear to be particularly good or bad compared to reusing the round function.

Rounds 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Sim-(1,1,1,1)

Data 6 10 12 12 16 18 18 18 22 24 26

Key 8 12 12 18 18 20 28 32 30 34 34

Sim-(1,3,3,1)

Data 12 16 14 24 28 30

Key 12 14 24 22 26 32

Sim-(3,1,-,1)

Data 4 10 10 12 14 16 16 20 16 18

Key 12 12 18 24 24 30 34 34 42 46

Sim-(4,1,-,1)

Data 6 8 8 10 12 14 14 18 18 20 22 24 28 26

Key 8 12 14 16 20 20 24 24 28 28 30 32 32 38

Controlling for the self-similarity between Parameter (B) and Param-
eter (C) We now break the link between Parameter (B) and Parameter (C) by
allowing (B) 6= (C). The six variants we investigate, Sim-(1,1,2,1), Sim-(1,1,3,1),
Sim-(1,2,1,1), Sim-(1,2,3,1), Sim-(1,3,1,1), and Sim-(1,3,2,1), all reuse the round
function and the round constants of Simeck and differ in their combination of
rotation amounts for the round function and the key-expansion algorithm.

The results are presented in Table 5. Most notably we observe that when the
(12, 5, 3)-parameter is used in the round function (i.e., variants with (B)=3),
the resistance against RX-cryptanalysis is relatively stable regardless of rotation
amounts in the key-expansion algorithm.

It is interesting to see that Sim-(1,1,2,1) and Sim-(1,2,1,1) which are mir-
rored versions of each another offer entirely different resistance against RX-
cryptanalysis. Note that the results we report here are optimal, i.e., for a fixed
number of rounds there are no better RX-characteristics than those in Table 5.

The self-similarity between the round function and the key-expansion algo-
rithm does not seem to have a meaningful effect. Sim-(1,1,1,1) (i.e., Simeck32)
remains the most vulnerable parameter choice, while the other self-similar vari-
ants, Sim-(1,2,2,1) and Sim-(1,3,3,1), fare relatively well compared to Sim-(1,1,1,1),
as well as some of their non-self-similar counterparts.

We conclude that not only the ciphers’ overall resistance against RX-cryptanalysis
is sensitive to the choice of Parameters (B) and (C) but the round function and
the key-expansion algorithm appear to be sensitive separately to these decisions.

Controlling for the round constants (Parameter (D)) To ensure the
effect of the round constants on the key-expansion algorithm of Simeck32, we
fix the parameters such that (A) = 1, (B) = (C) ∈ {1, 2, 3} and evaluate for (D)

13



Table 5: A comparison of Simon-like variants with different parameter choices
for Parameters (B) and (C). We see that the cipher’s resistance against RX-
cryptanalysis is sensitive to this choice and that self-similar key-expansion algo-
rithms do not pose a particular risk.

Rounds 10 11 12 13 14 15 16 17 18 19 20

Sim-(1,1,1,1)

Data 6 10 12 12 16 18 18 18 22 24 26

Key 8 12 12 18 18 20 28 32 30 34 34

Sim-(1,1,2,1)

Data 6 10 14 16 20 20 26 28 32

Key 10 14 14 18 20 24 24 28 32

Sim-(1,1,3,1)

Data 10 14 14 22 24 28

Key 8 12 18 22 28 34

Sim-(1,2,1,1)

Data 8 12 12 16 24 18 20 24 24 26

Key 10 12 18 22 16 30 32 32 36 38

Sim-(1,2,2,1)

Data 12 16 18 20 22 24 28 28

Key 10 12 18 18 20 22 26 32

Sim-(1,2,3,1)

Data 12 14 16 22 24 26

Key 10 16 24 24 30 34

Sim-(1,3,1,1)

Data 12 16 16 20 22 26 30

Key 10 10 18 20 24 26 28

Sim-(1,3,2,1)

Data 14 16 18 22 24 28 30

Key 10 14 20 20 28 26 32

Sim-(1,3,3,1)

Data 12 16 14 24 28 30

Key 12 14 24 22 26 32
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∈ {1, 2, 7, 8}, where the parameter round constants (D) = 1 and (D) = 2 are
only different in the order of 0xfffc and 0xfffd, (D) = 7 is the round constants
on the key-expansion algorithm of Speck and (D) = 8 is the round constants
in the Sparkle permutation.

The results are presented in Table 6. When (D) takes a value in {1, 2, 7},
there is a minor difference in the round constants. However, there is a significant
difference for (D) = 8, this means that the ability of the ciphers to resist RX-
cryptanalysis can be affected by the different choices of the round constants.

Since the propagation of an RX-difference through the round constant c of the
key schedule in round r is modeled by XOR ∆1c

r, where ∆1c
r = c ⊕ (c ≪ γ).

It can be pointed out that when the wt(∆1c
r) is heavier, zeros and ones in

∆1c
r are distributed more evenly, and the RX-differences ∆1c

i and ∆1c
j are

independent of each other for i 6= j, i, j ∈ {0, 1, · · · , r}, then the resistance
against RX-cryptanalysis is stronger.

4.2 Linear Key-expansion Algorithms (Parameter (A))

In the previous subsection we saw that non-linear key-expansion algorithms are
highly sensitive to all manners of design choices, with Simeck32 (i.e., Sim-
(1,1,1,1)) being in particular vulnerable to RX-cryptanalysis among the variants
we considered.

The previous subsection can be used to explain the gap between Simeck and
Simon observed by Lu et al. To determine whether this explanation accounts
for the entire gap or just for a part of it we now focus on the key-expansion
algorithm of Simon and other linear key-expansion algorithms.

We begin in Section 4.2 by comparing different rotation amounts respectively
to the key-expansion algorithm of Simon32. Then, in Section 4.2 we consider
two novel linear key-expansion algorithms. Finally, in Section 4.2 we compare
the effect of different round constants.

Controlling for the rotation amounts in the round function (Parameter
(B)) We compare different rotation amounts for the round function, using the
key-expansion algorithm of Simon32. The diffusion of different rotation amounts
was previously investigated in e.g., [13, 14] and “good” rotation amounts were
determined respectively to certain attacks. However, whereas the key-expansion
algorithm was abstracted in all previous work analyzing the effect of the rotation
amounts, it is the main focus of this paper. That is to say that we are interested
in rotation amounts that produce fast diffusion only insofar they do so respective
to the selected key-expansion algorithm. This approach appears intuitive in our
case since RX-cryptanalysis is a related-key attack. However, following the work
of Sadeghi et al. in [27] and the additional constraints we add in Section 3 it
is important to reconsider if conclusions of previous work were not based on
incompatible or phantom (see [17,19]) characteristics.

The first two variants we consider, Sim-(2,1,-,2) and Sim-(2,3,-,2) use the key-
expansion algorithm of Simon32 with the original round constants, but differ in
the rotation amounts for the round function.
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Table 6: A comparison of Simon-like ciphers with different round constants. We
see there is a significant difference when the parameters (D) ∈ {1, 2, 7} change
to the (D) = 8 round constants.

Rounds 10 11 12 13 14 15 16 17 18 19 20

Sim-(1,1,1,1)

Data 6 10 12 12 16 18 18 18 22 24 26

Key 8 12 12 18 18 20 28 32 30 34 34

Sim-(1,1,1,2)

Data 6 10 12 14 16 18 20 18 22 24 26

Key 8 12 12 18 18 22 22 30 30 34 36

Sim-(1,1,1,7)

Data 6 10 12 12 16 18 18 22 22 26

Key 8 12 12 18 18 22 28 30 36 34

Sim-(1,1,1,8)

Data 18 24 26*

Key 20 24 30*

Sim-(1,2,2,1)

Data 12 16 18 20 22 24 28 28

Key 10 12 18 18 20 22 26 32

Sim-(1,2,2,2)

Data 12 16 18 20 22 26 28 26 28

Key 10 12 18 20 20 22 24 32 36

Sim-(1,2,2,7)

Data 8 12 14 16 20 26 26

Key 8 14 16 20 24 24 30

Sim-(1,2,2,8)

Data 18 22 24*

Key 20 24 30*

Sim-(1,3,3,1)

Data 12 16 14 24 28 30

Key 12 14 24 22 26 32

Sim-(1,3,3,2)

Data 12 16 20 24 26 30

Key 12 14 18 22 28 32

Sim-(1,3,3,7)

Data 12 16 18 24 28 30

Key 14 18 22 24 28 32

Sim-(1,3,3,8)

Data 20 22 26*

Key 20 26 30*
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The results are compared respectively to Simon32 in Table 7. We see that the
rotation amounts in the round function do not impose a significant difference
on the resistance to RX-cryptanalysis. However, it is important to note that
these rotation amounts are not arbitrary and are the result of previous work
suggesting they would be good ones.

Table 7: The effect of different rotation amounts (Parameter (B)) on the resis-
tance of the cipher against RX-cryptanalysis when parameters (A), (C)–(D) are
the same as in Simon32. No significant difference is observed. Entries marked
with an asterisk are not necessarily optimal i.e., an RX-characteristics covering
the same number of rounds with better probabilities may still exist.

Rounds 6 7 8 9 10 11 12 13 14

Sim-(2,2,-,2) 0 4 6 10 14 22* 26* 30* 32*

Sim-(2,1,-,2) 0 4 6 8 12 16 24* 28* 32*

Sim-(2,3,-,2) 0 4 6 8 15 22* 26* 31*

Controlling for linearity and the round constants (Parameters (A)
and (D)) We have seen that the key-expansion algorithm of Simon offers
good resistance against RX-cryptanalysis independently of the specific choice 4

of the rotation amounts in the round function. To determine if this property
is particular to this key-expansion algorithm or general in linear key-expansion
algorithms, we define two novel linear key-expansion algorithms. Meanwhile,
to compare the linear and non-linear key-expansion algorithms in a reasonable
sense, the algorithms proposed are two constructions that can be regarded as
linear variants of the key-expansion algorithms of Simeck. For instance, the
one in Figure 4a replaces the AND operation by an XOR, and Figure 4b is a
simplified construction from Figure 4a.

Sim-(5,1,-,2) and Sim-(6,1,-,2) differ from Sim-(2,1,-,2) analyzed in the pre-
vious subsection only in their key-expansion algorithm. Sim-(5,1,-,2) uses the
key-expansion algorithm in Figure 4a and Sim-(6,1,-,2) uses the key-expansion
algorithm in Figure 4b. Meanwhile, to determine the effect of the round con-
stants (D) ∈ {1, 2} on the resistance to RX-cryptanalysis we define Sim-(5,1,-,1)
and Sim-(6,1,-,1). These are respectively analog to Sim-(5,1,-,2), Sim-(6,1,-,2),
but they use the round constants of Simeck.

The results can be found in Table 8 and we can clearly see that the new
variants are more vulnerable to RX-cryptanalysis than Sim-(2,1,-,2) which is in
itself comparable to Simon32. We conclude that the key-expansion algorithm of
Simon offers particular resistance against RX-cryptanalysis.

4 Based on the offsets that are strong in differential/linear cryptanalysis.
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Fig. 4: Novel linear key-expansion algorithms for Sim-(5,1,-,2) and Sim-(6,1,-,2)

Table 8: The effect on the resistance of Simon-like ciphers when different ap-
proaches to designing the linear key-expansion algorithm are taken. We fix the
Sim parameters such that (B) = 1 and evaluate for (A) ∈ {5, 6}, (D) ∈ {1, 2}.
These are compared to Sim-(2,2,-,2) (i.e., Simon32). The difference between the
algorithms appears to be meaningful and the novel key-expansion algorithms are
categorically worse than Simon. Entries marked with an asterisk are not nec-
essarily optimal i.e., an RX-characteristics covering the same number of rounds
with better probabilities may still exist.

Rounds 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Sim-(2,1,-,1) 0 4 6 8 12 18* 26* 28* 32*

Sim-(2,1,-,2) 0 4 6 8 12 16 24* 28* 32*

Sim-(5,1,-,1) 0 2 4 6 8 11 16 18 23* 27* 30*

Sim-(5,1,-,2) 0 2 4 6 8 11 15 17 22 25 31*

Sim-(6,1,-,1) 0 2 2 4 6 8 11 14 17 18 21 25 27 32*

Sim-(6,1,-,2) 0 2 2 4 6 8 11 14 17 18 21 25 27 32*

18



Controlling for the round constants in the key-expansion algorithm
of Simon32 (Parameter (D)) Finally, to determine the effect of the round
constants in the key-expansion algorithm of Simon32 we consider a sequence of
variants Sim-(2,2,-,3), Sim-(2,2,-,4), Sim-(2,2,-,5) and Sim-(2,2,-,6). These vari-
ants are the same as Simon32 in all but the round constants which are taken
from Simon48/96, Simon64/96, Simon64/128, Simon128/256, respectively.

In addition, we consider the variant Sim-(2,2,-,7), which is the same as the
previous ones, but uses the round number as the round constant. This strategy
was used in the key-expansion algorithm of Speck, Simon’s counterpart. At the
same time, we consider the variant Sim-(2,2,-,8), which is the same as Simon32,
but uses the Sparkle-like round constants.

The results are presented in Table 9. In C, Table 12 we present results for
the same experiment but with rotation amounts (5, 0, 1); the trend appears to
be the same. We are unable to conclude why different versions of Simon use
different round constants, nor why the round number is not used for this as in
Speck.

However, there is an obvious difference when the round constants (D) ∈
{1−7} change to the Sparkle-like round constants, which is similar to Section 4.1.
This also verifies the conclusion of Section 4.1 that “When the wt(∆1c

r) is heav-
ier, zeros and ones in ∆1c

r are distributed more evenly, and the RX-differences
∆1c

i and ∆1c
j are independent of each other for i 6= j, i, j ∈ {0, 1, · · · , r}, then

the resistance against RX-cryptanalysis is stronger”.

Table 9: A comparison of Simon-like ciphers with (B) = 2 and varying over Pa-
rameter (D). Entries marked with an asterisk are not necessarily optimal i.e., an
RX-characteristics covering the same number of rounds with better probabilities
may still exist.

Rounds 6 7 8 9 10 11 12 13 14

Sim-(2,2,-,1) 0 4 6 10 14 22* 26* 28*

Sim-(2,2,-,2) 0 4 6 10 14 22* 26* 30* 32*

Sim-(2,2,-,3) 0 3 6 10 13 22* 26* 30*

Sim-(2,2,-,4) 0 3 6 9 13 22* 26* 32*

Sim-(2,2,-,5) 0 4 6 10 12 22* 26* 30*

Sim-(2,2,-,6) 0 4 6 10 13 22* 26* 32*

Sim-(2,2,-,7) 0 4 6 10 15 24* 26* 30*

Sim-(2,2,-,8) 0 5 9 13 20* 28* 32*
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5 Discussion and Conclusion

The design of key-expansion algorithms has not received much attention in recent
years. In fact, the opposite seems to be the case and recent lightweight propos-
als often give up on designing the key-expansion algorithm as a component of
importance and opt for trivial key-expansion or a minimal one.

In this paper we investigated how the choice of the key-expansion algo-
rithm and the way it interacts with the round function, affect the cipher’s re-
sistance against RX-cryptanalysis. This was done by suggesting a sequence of
key-expansion algorithms to be used in multiple variants of Simon-like ciphers
and analyzing the resulting resistance.

The so-called design rationale of Simon [5, P. 5, footnote *] recites Zhang et
al. [37] in saying “we conclude that it is not advisable for Simon-like ciphers to
re-use the round function in the key schedule”. Our experiments do not support
this assertion. First, Table 3 reveals that certain parameter choices can offer
resistance levels coming close to those of Simon. Then, from Table 4 it appears
that there is nothing inherently weak in reusing the round function for the key-
expansion algorithm, and that other non-linear key-expansion algorithms do not
offer categorically better resistance against RX-cryptanalysis.5 Table 5 drives
the point home by observing that the resistance is sensitive to seemingly trivial
choices. Using the rotation amounts (5,0,1) and (8,1,2) for the round function
and key-expansion algorithm, respectively, offers better resistance than using
them counter-respectively. From Table 6 we conclude that the choice of round
constants has a significant impact on the resistance against RX-cryptanalysis.
Finally and surprisingly, it appears that compared to all parameter sets we in-
vestigated in this paper, the one from [36] (i.e., Simeck) appears to be especially
vulnerable against RX-cryptanalysis.

Despite being an object of research for more than seven years, remarkably
little is known about the key-expansion algorithm of Simon. In [5], Beaulieu
et al. do not provide any reproducible claims about how the key-expansion
algorithms were selected. Our experiments reveal that the resistance against
RX-cryptanalysis when using the key-expansion algorithm of Simon is for the
most part independent of any parameter we could control, yet it offers better
resistance compared to all other linear and non-linear key-expansion algorithms
we considered. We were not able to determine why different versions of Simon
use entirely different schemes to generate the round constants. Using the round
number as the round constants, as the designers chose to do for Speck, could
have further improved efficiency for the cipher and it would be interesting to
understand why the designers did not opt for this approach. Overall, Simon’s
key-expansion algorithm offers the best resistance among those surveyed here
and it is evident that an undisclosed design security criterion was used to select
it.

Whereas claims have previously been made that [5], pertaining to detail the
design rationale of Simon, does not offer any new insight and merely repeats

5 And the same holds when taking Table 8 into account.
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published work (see e.g., [2]), this paper is the first to provide an affirmative ex-
ample for this and show that the effect can be significant. Although a superficial
conclusion from our results would be that Simon is robust, Ashur’s point was
that the undisclosed nature of the security criteria leading to these decisions,
and the manipulation by Beaulieu et al. in the language of the so-called design
rationale, are by themselves reasons for concern.

Caveats and future work. Ours is an exploratory research covering a small part
of the research domain. We have only considered Simon-like ciphers, only against
one type of attack, and mostly in the relation of Simon-like or Simeck-like key-
expansion algorithms. However, we do believe that this exploration is of value.

First of all, although RX-cryptanalysis is often presented as a generalization
of rotational cryptanalysis, it can also be viewed as a type of related-key differen-
tial cryptanalysis where the differences are respective to different bit positions.
As such, we believe that our results are indicative of related-key differential
attacks, suggesting that further investigation would be appropriate.

Secondly, that the key-expansion algorithm itself, as well as the way it inter-
acts with the round function, affect the security of the resulting cipher is evident
already from our limited exploration on Simon-like structures and there is no
reason to believe that this would not generalize. It also appears that reusing
the round function for the key-expansion algorithm is not inherently bad, and
that the effect of round constants does appear to be significantly understood as
a single factor in an overall design. Designers of lightweight ciphers should be
aware of these points. It would be interesting to extend our research to other
common key-expansion algorithms and key schedules for lightweight ciphers.

Conclusion. In this paper we corrected the SMT model devised by Lu et al. ac-
cording to the critique raised by Sadeghi et al. We found again the 20-round RX-
characteristic for Simeck32 found by Lu et al. and a 14-round RX-characteristics
for Simon32, extending theirs by 3 rounds. We then compared how different key-
expansion algorithms affect said resistance in Simon-like ciphers and found that
Simeck is especially vulnerable among those we tested while Simon is espe-
cially resistant among them. We discussed possible implications for lightweight
ciphers’ design and cryptanalytic strength. Ideas for future work are proposed.
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A Reported RX-Characteristics for Simon32 and
Simeck32

Table 10 presents the 14-round RX-characteristic for Simon32 found in Sec-
tion 3. Table 11 presents the 20-round RX-characteristic for Simeck32 found in
Section 3.

Table 10: A 14-round RX-characteristics for Simon32

key data
Round RX-difference RX-difference

0 a380 (0000||a780)

1 7784 (0400||0000)

2 5505 (6780||0400)

3 5402 (0023||6780)

4 8000 (1008||0023)

5 9005 (c003||1008)

6 c000 (8000||c003)

7 8004 (0001||8000)

8 0001 (0000||0001)

9 0000 (0000||0000)

10 0000 (0000||0000)

11 0000 (0000||0000)

12 0004 (0000||0000)

13 c005 (0004||0000)

14 (c015||0004)

Prob. 1 2−32

B Sparkle-like Round Constants

At 2019, Beierle et al. presented Schwaemm and Esch lightweight authenti-
cated encryption and hashing using the Sparkle permutation family submitted
to the NIST lightweight cryptography standardization process [6]. They chose
the round constants ci as follows:

c0 = b7e15162, c1 = bf715880,
c2 = 38b4da56, c3 = 324e7738,
c4 = bb1185eb, c5 = 4f7c7b57,
c6 = cfbfa1c8, c7 = c2b3293d.

In this paper, We truncated these 64-bit round constants into two 32-bits
to fit our test parameters and cycle every 16 rounds (In fact, no more than 16
rounds of RX-characteristics were produced in the algorithm we tested.), i.e.,
the Sparkle-like round constants used in this paper are:
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Table 11: A 20-round RX-characteristic for Simeck32

key data
Round RX-difference RX-difference

0 0004 (0000||0004)

1 0000 (0000||0000)

2 0001 (0000||0000)

3 0002 (0001||0000)

4 0002 (0000||0001)

5 0005 (0003||0000)

6 0001 (0000||0003)

7 0002 (0002||0000)

8 000a (0004||0002)

9 0002 (0000||0004)

10 0000 (0006||0000)

11 0013 (000a||0006)

12 000a (0001||000a)

13 0004 (0002||0001)

14 0000 (0001||0002)

15 0001 (0000||0001)

16 0000 (0000||0000)

17 0002 (0000||0000)

18 0006 (0002||0000)

19 0007 (0000||0002)

20 (0005||0000)

Prob. 2−34 2−26
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c0 = c16 = b7e1, c1 = c17 = 5162,
c2 = c18 = bf71, c3 = c19 = 5880,
c4 = c20 = 38b4, c5 = c21 = da56,
c6 = c22 = 324e, c7 = c23 = 7738,
c8 = c24 = bb11, c9 = c25 = 85eb,
c10 = c26 = 4f7c, c11 = c27 = 7b57,
c12 = c28 = cfbf, c13 = c29 = a1c8,
c14 = c30 = c2b3, c15 = c31 = 293d.

C Using the Round Constants of Other Simon Variants

Similar to Section 4.2 we analyze Sim-(2,1,-,1), Sim-(2,1,-,3), Sim-(2,1,-,4), Sim-
(2,1,-,5), Sim-(2,1,-,6), Sim-(2,1,-,7), Sim-(2,1,-,8) and compare them in Table 12
to Sim-(2,1,-,2). In line with Table 9 there seems to be a meaningful difference
attributed to the round constants.

Table 12: A comparison of Simon-like ciphers with (B) = 1 and varying over Pa-
rameter (D). Entries marked with an asterisk are not necessarily optimal i.e., an
RX-characteristics covering the same number of rounds with better probabilities
may still exist.

Rounds 6 7 8 9 10 11 12 13 14

Sim-(2,1,-,1) 0 4 6 8 12 18* 26* 28* 32*

Sim-(2,1,-,2) 0 4 6 8 12 16 24* 28* 32*

Sim-(2,1,-,3) 0 4 6 10 12 22* 25* 27* 30*

Sim-(2,1,-,4) 0 4 6 10 12 22* 26* 30*

Sim-(2,1,-,5) 0 4 6 10 12 22* 26* 30* 32*

Sim-(2,1,-,6) 0 4 6 10 12 22* 26* 30* 32*

Sim-(2,1,-,7) 0 4 6 10 14 20* 26* 30* 32*

Sim-(2,1,-,8) 0 5 9 12 20* 28* 32*
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