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Abstract. In this paper, we study sufficient conditions to improve the lower bound on the algebraic immunity of
a direct sum of Boolean functions. We exhibit three properties on the component functions such that satisfying
one of them is sufficient to ensure that the algebraic immunity of their direct sum exceeds the maximum of their
algebraic immunities. These properties can be checked while computing the algebraic immunity and they allow to
determine better the security provided by functions central in different cryptographic constructions such as stream
ciphers, pseudorandom generators, and weak pseudorandom functions. We provide examples for each property and
determine the exact algebraic immunity of candidate constructions.
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1 Introduction.

Since the introduction of algebraic attacks on filtered LFSR ciphers by Courtois and Meier in 2003 [CM03]
the algebraic immunity became an important cryptographic criterion for Boolean functions used in stream
ciphers. In the context of filtered LFSR the adversary acquires a system of equations f(Li(x)) = bi where x
is the secret binary vector, f is a known Boolean function, for each i Li is a public affine transformation and
bi is the binary result. Before the algebraic attacks, a necessary condition on the Boolean functions f was to
have high algebraic degree since the system of equations has algebraic degree deg(f) and solving it allows
to determine x. The principle of the algebraic attacks is to find low degree functions not both null g and h
such that fg = h hence new equations of shape h(Li(x)) = bi g(Li(x)) can be created, giving a system with
degree max (deg(g), deg(h)) instead of deg(f). It gave birth to the notion of algebraic immunity [MPC04]:
for a Boolean function f its algebraic immunity, AI(f), is defined as the minimum algebraic degree over
the functions g 6= 0 such that gf = 0 for all inputs (or g(f ⊕ 1) = 0 for all inputs). With this definition,
the initial system of equations obtained by the adversary can be converted into a system of equations of
algebraic degree AI(f), and solving it (with Gaussian elimination for example) allows to retrieve x. Since
the algebraic immunity is always lower than or equal to the algebraic degree, these attacks lead to forget the
criterion of algebraic degree in favor of the algebraic immunity.

Beyond the context of filtered LFSR and stream ciphers, algebraic immunity is an important cryp-
tographic criterion in other contexts. Such kind of algebraic attacks apply each time an adversary can
get a system as previously described: with a known Boolean function f , applied only on known affine
transformations of the secret vector. Recently, the algebraic immunity has been used to study the security of
other cryptographic primitives (sometimes under the name rational degree) such as pseudoradom generators
(PRG) of weak pseudorandom functions (WPRF). Revisiting the security of local PRG such as Goldreich’s
PRG [Gol01], Applebaum and Lovett [AL16] showed that algebraic immunity was one of the main criteria
on the predicate to study the security, and since then it is one of the criteria studied for variants of the PRG
such as in [GJLS20]. In the recent trend of building conceptually simple WPRF, candidate constructions
such as in [BIP+18, BCG+20] fall in the context described above and the algebraic immunity of these
functions is discussed to study their security.



The direct sum construction is a standard method to build an (n +m)-variable Boolean function from
an n-variable and an m-variable Boolean functions. For f defined on x = x1, · · · , xn and g defined on
y = y1, · · · , ym different variables, the direct sum ψ(x, y) is defined as f(x)⊕g(y). It is one of the simplest
secondary constructions, methods aiming to built a function (ψ) with prescribed parameters from component
functions (f and g) with known parameters. In the domain of Boolean functions used in cryptography this
construction can be traced back for example to the first secondary constructions of bent functions [Dil76,
Rot76] using bent functions as components. In terms of computations, primitives using direct sums have the
advantage of performing the evaluation of f and g independently before applying the sum, which makes it
easy to perform in parallel, also for direct sums of more than two components. In terms of cryptographic
criteria, the main criteria for Boolean functions used in stream ciphers such as algebraic degree, non-linearity
and resiliency order are straightforwardly obtained from the one of f and g. Nevertheless, for the algebraic
immunity the parameter of the obtained function is only bounded from above and below:

max (AI(f),AI(g)) ≤ AI(f ⊕ g) ≤ AI(f) + AI(g). (1)

Examples of functions reaching the lower or the upper bound can be found, and such gap between the
two bounds is a drawback when designing cryptographic constructions. As an illustration, taking n = m
and f and g two functions with optimal algebraic immunity (that is reaching d(n + 1)/2e), the direct sum
value can go from simple to double. From a designer point of view, it oscillates between two extremes. If
the lower bound is tight then using the direct sum is a waste: one function was already providing the same
security. If the upper bound is tight, implementing these two functions in parallel allows to double the degree
of the algebraic system targeted by the algebraic attacks, hence squaring the complexity of the attack.

In this work we aim at improving the bounds of Equation 1, finding conditions on f and g to tighten
the gap, more particularly to improve the lower bound. The motivation is twofold. First, the direct sum is
used in diverse cryptographic constructions e.g. [AL16, MJSC16, HKM17, MCJS19, BCG+20] where the
algebraic immunity is relevant for the security. A better lower bound can improve the security estimation
towards algebraic attacks of candidate constructions, or boost the efficiency by using functions in a lower
number of variables for the same security level.Then, since the direct sum is (one of) the simplest secondary
constructions and since algebraic immunity is a standard criterion it would be natural to fully understand
the behavior of this criterion on this construction. A full characterization of the algebraic immunity of direct
sums requires to find properties on f and g sufficient to transform Equation 1 into an equality. We progress
on this characterization by determining different properties on the component functions sufficient to improve
the lower bound.

1.1 Contributions.

We show how 3 properties on the components functions allow to improve the lower bound, and we give
examples of constructions where these improvements apply, focusing on cases where it is sufficient to
determine the exact algebraic immunity.

First, we show that the algebraic degree can be sufficient to improve the lower bound by 1. Extending this
result to direct sums of more than two components allows to estimate better the algebraic immunity, from
the degree of each component. It enables us to determine the exact algebraic immunity of the candidate
WPRF of [BCG+20], and provide a simpler proof for the functions used in [MJSC16].

Then, we prove that the value of the difference ∆AN(f) between the smallest degree of functions g 6= 0
such that fg = 0 and of functions h 6= 0 such that h(f ⊕ 1) = 0 is a criterion allowing to improve the
bound. We exhibit conditions where the algebraic immunity of the direct sum is improved by at least the
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quantity ∆AN(f), giving the new upper bound:

AI(ψ) ≥ max
(
AI(f) + min{∆AN(f),AI(g)},AI(g) + min{∆AN(g),AI(f)}

)
, (2)

and we exhibit constructions for which this result gives the exact algebraic immunity.
Finally, extending the property on the degree, we show that the invertibility of a matrix defined by the

higher degree coefficients of one of the component functions allows to improve the bound. We study the
AI increasing functions having such property, and provide a family of such functions. We combine the two
approaches on the ∆AN(f) and on the AI increasing functions, it gives the best improvement on the lower
bound of Equation 1 from our study, that we state in Theorem 1.

1.2 Related works.

The general bounds of Equation 1 appears in many works, with examples reaching the extremes. We
highlight the progresses on the upper bound which are complementary to our results towards the full
characterization. In [BP05] the degree is taken into account to improve the upper bound to:

AI(f ⊕ g) ≤ min (max [deg(f), deg(g)],AI(f) + AI(g)).

In [CM20] necessary conditions are studied to build direct sums with optimal algebraic immunity, it provides
families reaching the upper bound.

The role of the difference ∆AN(f) has been studied previously without naming this quantity. In [Riz10],
in addition to the algebraic immunity criterion the author studies the impact of the complementary algebraic
immunity defined as the maximum between two quantities: the minimum degree over the functions g 6= 0
such that fg = 0 and the minimum degree over the functions h 6= 0 such that h(f ⊕ 1) = 0. Accordingly,
∆AN(f) is the difference between the complementary AI and the AI. Rizomiliotis shows that the ∆AN(f)
quantity allows to improve the known lower bounds on the r-th order nonlinearity of f . When ∆AN(f) = 0
either the bound of [Car06] or of [Mes08] are tight (depending on r), and when ∆AN(f) 6= 0 it provides a
better bound than the former ones. In [CM20], towards proving the cryptographic parameters of particular
direct sums the authors prove that when the AI and the complementary AI of a function differ, the direct sum
with a non-constant function increases the AI. With our definitions it means a non-null ∆AN(f) is sufficient
to improve the lower bound of Equation 1, and it corresponds to a particular case of our new bound given in
Equation 2.

1.3 Paper organization.

The article is organized in the following way: In Section 2 we give the notations and properties of Boolean
functions and cryptographic criteria used in the rest of the paper. Section 3 is dedicated to the improvement
from the degree and applications to multiple direct sums. The results obtained from the∆AN() are presented
in Section 4. In Section 5 we combine both approaches, giving the main theorem and a study on AI increasing
functions. Section 6 concludes on the results from this work and the open questions.

2 Preliminaries.

For readability we use the notation + instead of⊕ to denote addition in F2, and [n] to denote {1, . . . , n} and
more generally [a, b] for the set of integers c such that a ≤ c ≤ b. For a binary vector a we denote wH(a) its
Hamming weight. log refers to the logarithm in basis 2.
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2.1 Boolean functions and cryptographic criteria.

We recall the definition of Boolean function and representations we will use in the following sections. We
recall the cryptographic criterion of algebraic immunity, or AI, at the center of this paper, together with
less usual notations relatively to the annihilators of a Boolean function. For further backgrounds on Boolean
functions used in cryptography, or connections between the AI criterion and and other cryptographic criteria,
we refer the reader to [Car21].

Definition 1 (Boolean function). A Boolean function f in n variables (an n-variable Boolean function) is
a function from Fn

2 to F2. The set of all Boolean functions in n variables is denoted by Bn.

The following representation is commonly used, and its basic properties also.

Definition 2 (Algebraic Normal Form (ANF)). We call Algebraic Normal Form of a Boolean function f
its n-variable polynomial representation over F2 (i.e. belonging to F2[x1, . . . , xn]/(x

2
1+x1, . . . , x

2
n+xn)):

f(x) =
∑
I⊆[n]

aI

(∏
i∈I

xi

)
=
∑
I⊆[n]

aIx
I ,

where aI ∈ F2.

– The algebraic degree of f equals the global degree of its ANF: deg(f) = max{I | aI=1} |I| (with the
convention that deg(0) = −∞).

– Any term
∏

i∈I xi in such an ANF is called a monomial and its degree equals |I|. A function with only
one non-zero coefficient aI , where I is non-empty, is called a monomial function.

We will also use the following generalization of the ANF:

Definition 3 (Partitioned Algebraic Normal Form ( [CM20])). We call (n,m)-Partitioned Algebraic
Normal Form of an (n + m)-variable Boolean function f its polynomial representation over F2 (i.e.
belonging to

(
F2[x1, . . . , xn]/(x

2
1 + x1, . . . , x

2
n + xn)

)
[y1, . . . , ym]/(y21 + y1, . . . , y

2
m + ym):

f(x, y) =
∑
I⊆[m]

aI(x1, . . . , xn)

(∏
i∈I

yi

)
=
∑
I⊆[m]

aI(x) y
I ,

where aI ∈ F2[x1, . . . , xn]/(x
2
1 + x1, . . . , x

2
n + xn) and x = (x1, . . . , xn).

We call partitioned-(n,m)-ANF coefficients the coefficients aI , or simply PANF coefficients when n and
m are clearly identified.

Our study focuses on the cryptographic criterion of algebraic immunity:

Definition 4 (Algebraic Immunity and annihilators). The algebraic immunity of a Boolean function f ∈
Bn, denoted as AI(f), is defined as:

AI(f) = min
g 6=0
{deg(g) | fg = 0 or (f + 1)g = 0},

where deg(g) is the algebraic degree of g. The function g is called an annihilator of f (or f + 1). We
additionally use the notation AN(f) for the minimum algebraic degree of non-null annihilators of f , and
∆AN(f) for the difference between AN(f) and AN(f + 1):

AN(f) = min
g 6=0
{deg(g) | fg = 0}, ∆AN(f) = |AN(f)− AN(f + 1)|.
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Note that, for every Boolean function f , the functions f and f + 1 are mutual annihilators, and:

Property 1 (Algebraic immunity’s properties).

– The null and the all-one functions are the only functions such that AI(f) = 0.
– All monomial (non constant) functions f are such that AI(f) = 1.
– For all non constant f it holds: AI(f) ≤ AN(f) ≤ deg(f).

2.2 Direct sum construction, families of functions.

The direct sum construction is a secondary construction, allowing to obtain a function with targeted
parameters from two (or more) component functions with already known parameters.

Definition 5 (Direct Sum). Let f be a Boolean function of n variables and g a Boolean function of m
variables, f and g depending on distinct variables, the direct sum ψ of f and g is defined by:

ψ(x, y) = f(x) + g(y), where x ∈ Fn
2 and y ∈ Fm

2 .

We note ψ = DS(f, g), and extend the notation for direct sums of t > 2 functions f1 to ft as DS(f1, . . . , ft)
and DSt(f) when f1 = . . . = ft.

Lemma 1 (Direct sum and algebraic immunity). Let n,m ∈ N, f ∈ Bn and g ∈ Bm, if ψ = DS(f, g)
then: max(AI(f),AI(g)) ≤ AI(ψ) ≤ AI(f) + AI(g).

Lemma 2 (Annihilators of direct sums and PANF coefficients ( [CM20], Lemma 10)). Let f be a
Boolean function in the variables x1, . . . xn and g be a Boolean function in the variables y1, . . . ym. Let
ψ = DS(f, g), ε ∈ {0, 1}, and h a function in x1, . . . , xn, y1, . . . , ym with (n,m)-partitioned algebraic
normal form: h(x, y) =

∑
I⊆[m] hI(x)y

I . If h is an annihilator of ψ + ε then the following relation holds
on its PANF coefficients:

∀I ⊆ [m], hI(x)

f + ε+
∑
J⊆I

gJ

 =
∑
J(I

hJ(x)
∑
K⊆J

gK∪{I\J}, (3)

where the coefficients gI correspond to the (standard) ANF coefficients of g.

We define two families of Boolean functions that we will often use for concrete examples of
constructions where our results allow to improve on the lower bound of Lemma 1. First, the direct sum
of monomials family consists in functions obtained by iterating the direct sum construction on monomials,
giving functions with very sparse ANF. This family has been introduced in [MJSC16] in the context of
homomorphic transciphering [NLV11], as Boolean functions efficient to evaluate by fully homomorphic
encryption schemes.

Definition 6 (Direct sum of monomials & direct sum vector [MJSC16]). Let f be a Boolean function
of n variables, we call f a Direct Sum of Monomials (or DSM) if the following holds for its ANF:
∀(I, J) such that aI = aJ = 1, I ∩ J ∈ {∅, I ∪ J}.

Let f a DSM, we define its direct sum vector: mf = [m1,m2, . . . ,mk] of length k = deg(f), where mi

is the number of monomials of degree i of f : for i > 0, mi = |{aI = 1, such that |I| = i}|.

A sub-family of particular interest of DSM is the family of triangular functions:
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Definition 7 (Triangular functions [MJSC16]). Let k ∈ N∗. The k-th triangular function Tk is the
following direct sum of monomials of k(k + 1)/2 variables:

Tk(x1, . . . , xk(k+1)/2) =

k∑
i=1

i∏
j=1

xj+i(i−1)/2.

It can also be defined from its direct sum vector which is the all-1 vector of length k: mTk
= [1, 1, . . . , 1].

Lemma 3 (Algebraic immunity of DSM ( [CM19], Theorem 1)). Let f ∈ Bn if f is a direct sum of mono-
mials with associated direct sum vector mf = [m1, . . . ,mk], then AI(f) = min0≤d≤k

(
d+

∑k
i=d+1mi

)
.

The second family of Boolean functions we will use to illustrate our results are the threshold functions.
These functions are symmetric, the output of f is identical on inputs with the same Hamming weight. A
threshold function of threshold d gives 1 only on inputs with Hamming weight at least d, it is a generalization
of majority functions (where the threshold is n/2) which have been one the first family of Boolean functions
known for their optimal algebraic immunity [BP05, DMS06]. Threshold functions are easy to compute and
most of their relevant cryptographic parameters have been studied (AI, nonlinearity and resiliency in [CM19,
CM20], fast algebraic immunity in [Méa20]). We will use that this family contains element with any possible
value of ∆AN(f).

Definition 8 (Threshold functions). For any positive integers d ≤ n + 1 we define the Boolean function
Td,n as follows:

∀x = (x1, . . . , xn) ∈ Fn
2 , Td,n(x) =

{
0 if wH(x) < d,

1 otherwise.

Lemma 4 (Algebraic immunity and annihilators of threshold functions, ( [CM19], Lemma 6)). Let
n > 0 and 1 ≤ d ≤ n. The threshold function Td,n has the following algebraic criteria:

AI(Td,n) = min(d, n− d+ 1), AN(Td,n) = n− d+ 1, AN(1 + Td,n) = d, and ∆AN(f) = |n+ 1− 2d|.

3 Improvement from the degree

In this part we show that the algebraic degree of one of the two components of a direct sum is sufficient to
improve on the lower bound of Lemma 1. We generalize this result to the direct sum of multiple functions,
which allows to study the algebraic immunity of some weak PRF candidates of [BCG+20] in Section 3.1
and give a simple proof for the algebraic immunity of DSM in Section 3.2.

Lemma 5. Let n,m ∈ N∗, let f ∈ Bn, g ∈ Bm and ψ = DS(f, g). If AI(f) < deg(g) then AI(ψ) > AI(f).

Proof. We prove the result by contradiction, showing that AI(ψ) ≤ AI(f) is impossible. First, Lemma 1
shows the impossibility if AI(f) < AI(g), hence we assume AI(f) ≥ AI(g) in the following, which implies
AI(ψ) ≥ AI(f) by Lemma 1 hence AI(ψ) = AI(f). Let h be the annihilator of ψ+ε (ε ∈ {0, 1}) defining the
algebraic immunity, then Lemma 2 gives relations on the PANF coefficients of h and since deg(h) = AI(f)
for all I ⊆ [m] we have the relation: deg(hI(x)) ≤ AI(f)− |I|. Since h is not null, at least one of the hI(x)
is not null. Let us denote I0 a set such that for all I such that |I| < |I0|, hI(x) = 0, and hI0(x) 6= 0. Then
Equation 3 for I0 gives hI0(x)(f + ε +

∑
J⊆I0 gJ) = 0. Hence, hI0(x) annihilates either f or f + 1, and

the only possibility is therefore I0 = ∅ and deg(h∅(x)) = AI(f).
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Let us denote d = deg(g), since deg(g) > AI(f) there exists a set Id ⊆ [m] such that |Id| = d and
gId = 1. hId(x) is forced to be null (otherwise deg(h) > AI(f)), and Equation 3 for Id leads to:

0 = h∅(x) +
∑
∅(J(Id

hJ(x)
∑
K⊆J

gK∪{Id\J}.

Since deg(h∅(x)) = AI(f) and ∀J such that ∅ ( J ⊆ [m] we have deg(hJ(x)) < AI(f), we get a
contradiction. It allows to conclude, AI(ψ) > AI(f).

Lemma 5 can be used iteratively to bound the AI of the direct sum of multiple functions as summarized
in the following lemma. In particular, iterating the direct sum of the same function allows the algebraic
immunity to reach the algebraic degree.

Lemma 6. Let t ∈ N∗, and f1, . . . , ft be t Boolean functions, if for r ∈ [t] there exists r different indexes
i1, · · · , ir of [t] such that ∀j ∈ [r], deg(fij ) ≥ j then AI(DS(f1, . . . , ft)) ≥ r.

Proof. We denote ψ1 = fi1 and then for j ∈ [2, r] we denote ψj = DS(ψj−1, fij ), in these terms
ψr = DS(fi1 , . . . , fir), we prove by recurrence that AI(ψj) ≥ j. For the initialization step, AI(ψ2) ≥
max (AI(fi1),AI(fi2)) from Lemma 1, hence AI(fi1) ≥ 2 or AI(fi1) ≥ 2 imply AI(ψ2) ≥ 2. The only
remaining possibility is AI(fi1) ≤ 1 and AI(fi2) ≤ 1, and since deg(fi2) ≥ 2 we can apply Lemma 5,
giving AI(ψ2) > AI(fi1), and therefore AI(ψ2) ≥ 2 since AI(fi1) ≥ 1. It concludes the initialization step.

For the recurrence step, we focus on the algebraic immunity of ψj+1 = DS(ψj , fij+1). Using the
recurrent hypothesis, AI(ψj) ≥ j, if AI(ψj) ≥ j+1 it implies AI(ψj+1) ≥ j+1, otherwise AI(ψj) = j and
since deg(fij+1) ≥ j + 1 Lemma 5 gives AI(ψj+1) ≥ j + 1 also in this case. It concludes the recurrence:
AI(ψr) ≥ r. Since DS(f1, . . . , ft) is the direct sum of ψr and other functions, Lemma 1 it allows to conclude
AI(DS(f1, . . . , ft)) ≥ AI(ψr) ≥ r.

Corollary 1. Let d ∈ N, d ≥ 2, let f1, . . . , fd Boolean functions, if ∀i ∈ [d] deg(fi) = d then
AI(DS(f1, . . . , fd)) = d.

Proof. We denote ψ = DS(f1, . . . , fd). Applying Lemma 6 on the indexes 1, . . . , d gives AI(ψ) ≥ d, and
since deg(ψ) = d it gives AI(ψ) ≤ d, allowing to conclude AI(ψ) = d.

3.1 Determining the algebraic immunity of [BCG+20] WPRF candidates

In [BCG+20] Boyle et al. introduce and study the primitive of pseudorandom correlated function. They
give efficient constructions based on candidate weak pseudorandom functions (WPRF) from the class of
complexity depth-2 AC0[⊕] (XOR of conjunctions of input variables and their negations). Such candidates
WPRF can be written as fK(x), a family of |x|-variable Boolean functions indexed by K a binary key. In
the following we recall the candidate weak PRF families, and prove the algebraic immunity of fK when it
was left as a conjecture or open.

We summarize the WPRF candidates of [BCG+20] and the knowledge on their algebraic immunity in
Table 1. The results on f1K and f3K were obtained using that in both case the function can be written as
DS(f, g) where g is affine equivalent to TD: since AI(TD) = D ( [MJSC16] Lemma 6, or as a particular
case of Lemma 3), applying Lemma 1 gives the lower bound. We conclude on the algebraic immunity of the
four families of Boolean functions in Proposition 1.
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fK(x) AI status

K ∈ FωD(D+1)/2
2 , f1K :=

⊕D
i=1

⊕ω
j=1

∧i
k=1(xi,j,k ⊕Ki,j,k) AI(f1K) ≥ D, proven

K ∈ FωD(D+1)/2
2 , f2K :=

⊕D
i=1

⊕ω
j=1

∧i
k=1(xj,k ⊕Ki,j,k) AI(f2K) = D, conjectured

K ∈ FωD(D+1)/2+D
2 , f3K := (

⊕D
i=1

⊕ω
j=1

∧i
k=1(xj,k ⊕Ki,j,k))⊕ TD(y ⊕Ky) AI(f3K) ≥ D, proven

K ∈ FωD
2 , f4K :=

⊕D
i=1

⊕ω
j=1

∧i
k=1(xj,k ⊕Kj,k) open

Table 1. Candidate WPRF of [BCG+20] and algebraic immunity. fK(x) refers to the description of the WPRF family, and ”AI
status” to the results on its algebraic immunity. For the four candidates D,ω ∈ N∗, D < ω.

Proposition 1. Let D,ω ∈ N∗, D < ω, and for i ∈ [4] f iK the Boolean function defined in Table 1, then
AI(f iK) = D.

Proof. First, note that all these functions have algebraic degree D for any choice of K, therefore with AI
at most d, which already allows to conclude for the cases f1K and f3K since these functions are direct sums
with one component being the triangular function TD (Lemma 1 and Lemma 3). Then, f2K and f4K are both
obtained by the direct sum of ω functions of degreeD. In both cases we can rewrite the function as DS(f, g)
where f is the part containing the sum over the indexes j ∈ [D] and g the indexes j ∈ [D+ 1, ω]. Applying
Corollary 1 AI(f) = D, and combining it with Lemma 1: AI(DS(f, g)) ≥ D which allows to conclude
AI(f2k ) = AI(f4K) = D.

3.2 A simpler proof for the AI of DSM

Using Lemma 6 we can derive a lower bound on the algebraic immunity of any direct sum of t functions
based on the degree of its components, similarly to the formula of Lemma 3.

Proposition 2. Let t ∈ N∗, f1, . . . , ft t Boolean functions, and ψ = DS(f1, . . . , ft). We note di =
|{fj | deg(fj) = i, j ∈ [t]}| and k = max{deg(fi) | i ∈ [t]}, the following bound applies for ψ:

AI(ψ) ≥ min
0≤i≤k

i+∑
j>i

dj

 .

Proof. First, in the particular case k ≤ 0, all functions are constants, it gives AI(ψ) = 0 (Property 1
item 1). Then, for the rest of the proof we can assume that at least on function is not constant. Let e =
min0≤i≤k(i+

∑
j>i dj) and let i∗ ∈ [0, k] an integer such that e = i∗ +

∑
j>i∗ dj (by definition at least on

integer fulfills this property). We show that e different indexes can be taken to apply Lemma 6.
First, for all i ∈ [0, i∗ − 1] by definition of i∗ we get the inequality i +

∑
j>i dj ≥ i∗ +

∑
j>i∗ dj

and therefore ∀i ∈ [0, i∗ − 1], i∗ − i ≤
∑i∗

j>i dj , which guarantees the existence of i∗ different indexes
i1, . . . , ii∗ in [t] such that ∀j ∈ [i∗] deg(fij ) ≥ j. Then, for all i ∈ [i∗ + 1, k] by definition of i∗ we get the
inequality i +

∑
j>i dj ≥ i∗ +

∑
j>i∗ dj and therefore ∀i ∈ [i∗ + 1, k], i − i∗ ≥

∑i
j>i∗ dj . Since there

are exactly s =
∑k

j>i∗ dj functions of degree in [i∗ + 1, k] the later property guarantees the existence of s
different indexes j1, . . . , js in [t] such that ∀k ∈ [s] deg(fjk) ≥ i∗ + k.

Finally, since the indexes ij are used for functions of degree at most i∗ and the indexes jk for functions
of degree at least i∗ + 1 all these indexes are different and we can apply Lemma 6: AI(ψ) ≥ e.
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We determine sufficient conditions for the bound of Proposition 2 to be an equality, and we remark that
DSM functions are one of these cases.

Corollary 2. Let t ∈ N∗, f1, . . . , ft t Boolean functions, and ψ = DS(f1, . . . , ft). We denote di =

|{fj | deg(fj) = i, j ∈ [t]}|, k = max{deg(fi) | i ∈ [t]}, e = min0≤i≤k

(
i+
∑

j>i dj

)
, and

i∗ = max{i ∈ [0, k] | (i+
∑

j>i dj) = e}.
If ∀f ∈ {fj | deg(fj) > i∗, j ∈ [t]} AI(f) = 1 then AI(ψ) = e.

Proof. First, for the particular case k ≤ 0, all functions are constants and AI(ψ) = 0 as seen in the
proposition, therefore we can assume in the following that at least on the function fi is not constant.
Proposition 2 gives AI(ψ) ≥ e, and the condition on the functions of degree greater than i∗ allows to prove
the existence of an annihilator of degree e of ψ or ψ + 1. More precisely, let denote S≤ = {fj | deg(fj) ≤
i∗, j ∈ [t]} and S> = {fj | deg(fj) > i∗, j ∈ [t]} and similarly ψ≤ = DS(f ∈ S≤), ψ> = DS(f ∈ S>).
We separate the cases based on the value of i∗.

If i∗ = k, then e = k, ψ≤ = ψ hence 1+ψ≤ is a degree e annihilator of ψ. If i∗ ∈ [k− 1], since ψ≤ has
degree i∗ (direct sum of functions of degree at most i∗ and at least one has degree i∗ otherwise the minimum
of i +

∑
j>i dj cannot be reached in i∗), the function 1 + ψ≤ is an annihilator of degree i∗ of ψ≤. Then,

for all element either f ∈ S> f or f + 1 has an annihilator of degree 1, hence the product g of these e− i∗
annihilators is a degree e − i∗ annihilator of ψ> or 1 + ψ>. Finally, since ψ = DS(ψ≤, ψ>), the function
g · (1 + ψ≤) is a degree e annihilator of ψ. If i∗ = 0, we build an annihilator g of ψ> as in the former case,
and therefore g is a degree e annihilator of ψ or ψ + 1.

Remark 1. Since monomial functions have algebraic immunity 1 (as recalled in Property 1), DSM fulfill the
conditions of Corollary 2 therefore it implies Lemma 3.

4 Improvement from the difference of annihilators of minimal degree

In this section we exhibit conditions where the value of ∆AN(f) is sufficient to improve the lower bound of
Lemma 1 for AI(DS(f, g)). Then in Section 4.1 we use these results to determine the AI of direct sums of
threshold functions.

First we give another characterization of AN(f).

Lemma 7. Let n ∈ N∗, k ∈ N, D =
∑k

i=0

(
n
i

)
and f ∈ Bn. AN(f) > k. is equivalent to: for each D-uple

(gI)I⊆[n],0≤|I|≤k in FD
2 \ {0} there exists at least one I ′ ∈ [n] such that:∑

J⊆I′
0≤|J|≤k

gJ
∑
K⊆J

fK∪{I′\J} = 1. (4)

Proof. Let g, h ∈ Bn such that fg = h, we focus on the relations of the ANF coefficients fI , gI , and hI
where I ∈ [n]. We get: ∑

I⊆[n]

fIx
I

∑
I⊆[n]

gIx
I

 =
∑
I⊆[n]

hIx
I ,

developing the product and identifying we obtain:

∀I ⊆ [n], hI =
∑
J⊆I

gJ
∑
K⊆J

fK∪{I\J}.
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If AN(f) > k, then for all non-null function g of degree at most k we have fg 6= 0, which implies that at
least one ANF coefficient of h = fg is not null in this case. Since the functions of Bn of degree at most k are
the 2D function with ANF coefficients null for all subsets of cardinal greater than k, and the null function is
the one with all ANF coefficients null, it gives:

∀(gI)I⊆[n],0≤|I|≤k ∈ FD
2 \ {0}, ∃I ′ ∈ [n] |

∑
J⊆I′

0≤|J|≤k

gJ
∑
K⊆J

fK∪{I′\J} = 1.

If for a binary D-uple (gI)I⊆[n],0≤|I|≤k there exists at least one I ′ ∈ [n] satisfying Equation 4, then the
function g with ANF coefficients given by the D-uple for |I| < k and 0 elsewhere is a function of degree at
most k such that the product with f is not null. Since the 2D − 1 non-null D-uple are in bijection with the
2D − 1 non-null functions of degree at most k, the property holding for each one of the D-uples gives that
no (non-null) function of degree at most f annihilates f , i.e. AN(f) > k.

Using the PANF relations and the characterization of Lemma 7 allows to prove an improvement up to
∆AN(f) on the AI of the direct sum:

Lemma 8. Let n,m ∈ N∗, k ∈ N, f ∈ Bn and g ∈ Bm, if AI(g) > k and∆AN(f) > k then AI(DS(f, g)) >
AI(f) + k.

Proof. Without loss of generality we choose f such that AN(f + 1) > AN(f) + k. We do the proof by
contradiction, assuming there exists a function h ∈ Bn+m non-null of degree at most AI(f) + k such that
h(f + g) = 0 or h(f + g + 1) = 0. Note that we can restrict our study to the case h(f + g) = 0 since the
case h(f + g + 1) = 0 can be written as h(f + g′) = 0 where g′ = g + 1 is still an m-variable function of
algebraic immunity greater than k.

Applying Lemma 2, we obtain the following relations:

∀I ⊆ [m], hI(x)f =
∑
J⊆I

hJ(x)
∑
K⊆J

gK∪{I\J}. (5)

The constraint deg(h) ≤ AI(f) + k leads to deg(hI(x)) ≤ AN(f) + k − |I| for all I ⊆ [m]. The right
hand side of Equation 5 is an annihilator of f + 1 (for all I ⊆ [m]), since the hI(x) have degree at most
AN(f) + k and AN(f + 1) > AN(f) + k it forces the right hand side to be null for all the equations.

For |I| > k all hI(x) are null due to the degree constraint, therefore all the right hand sides are
combinations of the PANF coefficients related to subset of cardinal at most k. Hence we can rewrite
Equation 5 as:

∀I ⊆ [m], hI(x)f =
∑
J⊆I

0≤|J|≤k

hJ(x)
∑
K⊆J

gK∪{I\J} = 0. (6)

Since h is non-null there exists at least one z = (x′, y′) ∈ Fn+m
2 such that h(z) = 1 and therefore at least

one J ⊆ [m] such that hJ(x′) = 1. Hence for this particular x′ ∈ Fn
2 Equation 6 leads to:

∀I ⊆ [m],
∑
J⊆I

0≤|J|≤k

hJ(x
′)
∑
K⊆J

gK∪{I\J} = 0,

where the binary values hJ(x′) are not all null. Since AI(g) > k applying Lemma 7 we know that there is
at least one subset I ′ ⊆ [m] such that the equation is not satisfied, which gives the contradiction. We can
conclude AI(DS(f, g)) > AI(f) + k.
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Remark 2. For k = 0, Lemma 8 is equivalent to: g ∈ Bm not constant and f ∈ Bn such that AN(f) 6=
AN(f + 1) implies AI(DS(f, g)) > AI(f), which is the result of Lemma 11 in [CM20].

Lemma 8 directly gives a more precise lower bound than Lemma 1.

Corollary 3. Let n,m ∈ N∗, f ∈ Bn, g ∈ Bm, and ψ = DS(f, g), the following bound holds on its
algebraic immunity:

AI(ψ) ≥ max
(
AI(f) + min{∆AN(f),AI(g)},AI(g) + min{∆AN(g),AI(f)}

)
.

Note that if AI(g) ≤ ∆AN(f) of AI(f) ≤ ∆AN(g) the lower bound of Corollary 3 reaches the upper
bound of Lemma 1, giving exactly the algebraic immunity of ψ.

4.1 Algebraic immunity of direct sums of threshold functions

We study direct sums of functions from the family of threshold functions to illustrate cases where the results
of this section improve upon Lemma 1. We use that for all positive integer t we can find values of d and
n such that ∆AN(Td,n) = t using Lemma 4. Threshold functions are typical examples of functions with
potentially high ∆AN(), hence allowing to build functions with prescribed AI using Corollary 3.

Proposition 3. Let t ∈ N∗, the families of functions indexed by d ∈ N∗ defined as fd = Td,2d+t−1 and
gd = DS(fd,Tt,2t−1) are such that for all d ∆AN(fd) = t and AI(gd) = d+ t.

Proof. ∆AN(fd) = t comes directly from the ∆AN() of threshold functions (Lemma 4). Using the same
lemma, AI(Tt,2t−1) = t, hence applying Corollary 3 on fd and Tt,2t−1 gives AI(gd) ≥ d + t. Since using
Lemma 4 AN(1 + fd) = d and AN(1 + Tt,2t−1) = t, it allows to determine non-null annihilators of their
direct sum of degree d+ t hence AN(gd) ≤ d+ t, allowing to conclude.

The direct sum of 2 threshold functions with the same threshold d (lower than half) has its algebraic
immunity between d and 2d. We show sufficient conditions to reach this maximum:

Proposition 4. Let d ∈ N∗, and t1, t2, n1, n2 ∈ N such that n1 = 2d − 1 + t1, and n2 = 2d − 1 + t2. If
max(t1, t2) ≥ d then AI(DS(Td,n1 ,Td,n2)) = 2d.

Proof. Using Lemma 4: for i ∈ {1, 2}: AN(Td,ni
) = d + ti, AN(1 + Td,n1) = d and ∆AN(Td,ni

) = ti.
Corollary 3 gives AI(DS(Td,n1 ,Td,n2)) ≥ max(d+min(d, t1), d+min(d, t2)) ≥ 2d. Since AI(Td,ni

) = d
for i ∈ {1, 2} Lemma 1 gives the upper bound of 2d.

Using a property on the ANF of threshold functions studied in [Méa19], we show sufficient conditions
preventing to reach the maximum:

Lemma 9. (Adapted from [Méa19], Lemma 5 and Proposition 3) Let d, n,D ∈ N∗ such that d ∈ [n] and
D = 2dlog de, let aI for I ⊆ [n] be the ANF coefficients of Td,n. The following holds: if aI = 1 then
|I| ∈ ∪k∈N[kD + d, kD +D].

Proposition 5. Let d,D ∈ N∗ such that D = 2dlog de and t1, t2, n1, n2 ∈ N such that n1 = 2d − 1 + t1,
and n2 = 2d− 1 + t2. If max(t1, t2) ≤ D − d then AI(DS(Td,n1 ,Td,n2)) < 2d.
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Proof. For readability denote ψ = DS(Td,n1 ,Td,n2). The condition max(t1, t2) ≤ D − d implies
max(n1, n2) ≤ D + d − 1. Hence, Lemma 9 gives an upper bound on the degree: deg(ψ) ≤ D. Since
D < 2d, 1 + ψ is a non-null annihilator of ψ of degree lower than 2d.

We conclude this part with the particular case of the direct sum of twice the same threshold function.

Proposition 6. Let d, n ∈ N∗ such that d ∈ [n]. If 1 ≤ d ≤ (n − 1)/3 or 2(n + 1)/3 ≤ d < n then
AI(DS2(Td,n)) = 2AI(Td,n).

Proof. The case d ≤ (n − 1)/3 corresponds to the sub-case of Proposition 4 where n1 = n2. For the case
d ≥ 2(n + 1)/3, Lemma 4 gives AN(Td,n) = n − d + 1 ≤ (n − 1)/3, AN(1 + Td,n) = d ≥ 2(n + 1)/3,
AI(Td,n) = n− d+ 1 and ∆AN(Td,n) = 2d− n− 1 ≥ (n− 1)/3. Hence, applying Corollary 3 we obtain
AI(DS2(Td,n)) ≥ 2(n−d+1), and since in this case 2(n−d+1) = AI(Td,n)+AI(Td,n) Lemma 1 allows
to conclude.

5 Mixed approach: combining∆AN(f) and AI increasing property.

In this part we combine the two approaches of Section 3 and Section 4 to improve the lower bound of
Lemma 1. We extend the approach of Section 3 on the algebraic degree, showing that under some conditions
the higher degree part of the ANF coefficients of a function are sufficient to guarantee a lower bound on its
AI. We refer to functions satisfying this property as AI increasing functions and show how they can guarantee
an higher AI than the lower bound of Lemma 1 when they are used as component of a direct sum. In the
main theorem we combine the ∆AN(f) and the AI increasing property of the function g to obtain our best
lower bound on AI(DS(f, g)), encompassing the improvements from both approaches. Then in Section 5.1
we give examples of AI increasing functions and cases where the theorem allows to determine exactly the
algebraic immunity.

Definition 9. Let n ∈ N∗, d, t ∈ N such that t ≤ n and d ≤ n, and f ∈ Bn with ANF coefficients (fI)I⊆[n].
We denote T =

∑n
i=t

(
n
i

)
and D =

∑d
i=0

(
n
i

)
. We call A-matrix of f with parameter t, d the binary matrix

At,d(f) where:

– The T rows are indexed by the sets I ⊆ [n] such that |I| ≥ t,
– the D columns are indexed by the sets J ⊆ [n] such that |J | ≤ d,
– the entry at row I and column J is 0 if J 6⊆ I and

∑
K⊆J fK∪{I\J} otherwise.

Note that the A-matrices represent sub-systems of the equations appearing when we consider the ANF
coefficients of an annihilator of f as in Lemma 7 or the PANF coefficients of an annihilator of a direct sum
as in Lemma 2. For example, AI(f) > d is equivalent to rank(A0,d(f)) = D and rank(A0,d(f + 1)) = D.
We give a stronger property on these matrices allowing to bound the algebraic immunity of f and then we
use this matrix formalism to improve upon Lemma 8.

Property 2. Let n ∈ N∗, d, t ∈ N such that d ≤ n and t ≤ n, we denote D =
∑d

i=0

(
n
i

)
. If t > d and

rank(At,d(f)) = D then AI(f) > d.

Proof. First, note that the ANF coefficient f∅ can be involved only when {I \ J} = ∅, which does not
happen for t > d. Hence we obtain At,d(f) = At,d(f + 1). Then, by definition At,d(f) is a sub-matrix
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of A0,d(f), therefore rank(At,d(f)) = D implies rank(A0,d(f)) = D. Since the coefficients of A0,d(f)
correspond to the system of Lemma 7, rank(A0,d(f)) = D means that for all not trivial combination of the
columns the result for at least one of the row indexed by I ′ ∈ [n] is equal to one, which is equivalent to
AN(f) > d due to Lemma 7. The same reasoning applying on f + 1, we can conclude AI(f) > d.

Theorem 1. Let n,m ∈ N∗, d,D, k ∈ N such that k ≥ d and D =
∑d

i=0

(
m
i

)
. Let f ∈ Bn and g ∈ Bm, if

rank(AAI(f)+k+1,d(g)) = D, AI(g) > k, and ∆AN(f) > k − d− 1 then AI(DS(f, g)) > AI(f) + k.

Proof. The proof structure is similar to the one of Lemma 8. Without loss of generality we take f such
that AN(f + 1) ≥ AN(f). We do the proof by contradiction, assuming there exists h 6= 0 in Bn+m of
degree at most AI(f) + k such that h · DS(f, g) = 0. Since AI(g + 1) = AI(g) and AAI(f)+k+1,d(g + 1) =
AAI(f)+k+1,d(g) since k ≥ d (see the beginning of the proof of Property 2), the reasoning on DS(f, g)
also applies on DS(f, g + 1). Hence the contradiction on h is sufficient to prove the bound on the algebraic
immunity of DS(f, g).

h being an annihilator of DS(f, g), Lemma 2 gives:

∀I ⊆ [m], hI(x)f =
∑
J⊆I

hJ(x)
∑
K⊆J

gK∪{I\J}. (7)

The right hand side is always an annihilator of f + 1, hence the null function or a function of algebraic
degree at least AN(f + 1). For all the equations such that |I| > AI(f) + k the PANF coefficient hI(x)
is the null function (otherwise h as degree greater than AI(f) + k), forcing the right hand side to be the
null function. Since rank(AAI(f)+k+1,d(g)) = D it means that each one of the D PANF coefficients hJ(x)
for |J | ≤ d can be isolated from the others by summing equations over subsets I ⊆ [m]. Without loss of
generality, isolating the PANF coefficient relative to J ′, we obtain the following equation:

0 = hJ ′(x) +
∑

K⊆[m]
|K|>d

hK(x)bK , (8)

where bK are binary coefficients.
The constraint on the degree: ∀I ⊆ [m], deg(hI(x)) ≤ AN(f)+k−|I|, forces the sum in Equation 8 to

have degree at most AN(f)+k−d− 1. Hence, deg(hJ ′) ≤ AN(f)+k−d− 1 to satisfy Equation 8. Thus,
all PANF coefficients hI such that |I| ≤ d have degree at most AN(f) + k − d− 1. For all subsets I ⊆ [m]
such that |I| > d the degree constraint leads to deg(hI) ≤ AN(f)+ k− d− 1. Hence, for all subsets of [m]
the PANF coefficient has degree at most AN(f)+ k− d− 1, and therefore the right hand side of Equation 7
is always the null function since AN(f + 1) > AN(f) + k − d− 1. From there we use the same reasoning
as for Lemma 8.

For |I| > k all hI(x) are null due to the degree constraint, therefore all the right hand sides for the 2m

equations are combinations of the PANF coefficients related to subset of cardinal at most k. Hence we can
rewrite Equation 7 as:

∀I ⊆ [m], hI(x)f =
∑
J⊆I

0≤|J|≤k

hJ(x)
∑
K⊆J

gK∪{I\J} = 0. (9)

Since h is non-null there exists at least one z = (x′, y′) ∈ Fn+m
2 such that h(z) = 1 and therefore at least

one J ⊆ [m] such that hJ(x′) = 1. Hence for this particular x′ ∈ Fn
2 Equation 9 leads to:

∀I ⊆ [m],
∑
J⊆I

0≤|J|≤k

hJ(x
′)
∑
K⊆J

gK∪{I\J} = 0,
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where the binary values hJ(x′) are not all null. Since AI(g) > k applying Lemma 7 we know that there is
at least one subset I ′ ⊆ [m] such that the equation is not satisfied, which gives the contradiction. We can
conclude AI(DS(f, g)) > AI(f) + k.

Remark 3. The case k = 0 corresponds to: if rankAAI(f)+1,0(g) = 1, AI(g) > 0, and ∆AN(f) > −1 then
AI(DS(f, g)) > AI(f). Note that rankAAI(f)+1,0(g) = 1 is equivalent to deg(g) > AI(f), AI(g) > 0 means
that g is non constant and ∆AN(f) > −1 is true for all function. Hence the case k = 0 gives the result of
Lemma 5.

5.1 AI increasing functions

Functions satisfying Property 2 can be used to produce direct sums with algebraic immunity higher than the
two components. In this part we show such functions exist for appropriate choices of n, d and t, and give an
example of application of Theorem 1.

Definition 10 (AI increasing functions). Let n ∈ N∗, d, e ∈ N such that d ≤ (n − 1)/2, and e ≥ d
we denote D =

∑d
i=0

(
n
i

)
. We denote C(n, d) the functions f ∈ Bn such that rank(An−d,d(f)) = D and

C(n, d, e) such function with algebraic immunity greater than e.

Since these functions are defined to satisfy Property 2 (with t = n − d) their AI is greater than d.
Moreover they allow to find more functions with the same bound on the AI:

Proposition 7. Let n ∈ N∗, d ∈ N such that d ≤ (n − 1)/2. If f ∈ C(n, d) then ∀g Bn such that
deg(g) < n− 2d then the function1 f + g belongs to C(n, d).

Proof. Since f ∈ C(d, n) by definition rank(An−d,d(f)) = D. Then, by definition of the matrix An−d,d(f)
(Definition 9) for each row I the elements are obtained with equations depending on the ANF coefficients
fU where |I| ≥ |U | ≥ |I| − |J |. Since in An−d,d(f) we have |I| ≥ n − d and |J | ≤ d the matrix is
independent of the value of the ANF coefficients fU such that 0 ≤ |U | < n− 2d. Thereafter, for all g ∈ Bn
such that deg(g) < n− 2d, An−d,d(f + g) = An−d,d(f) hence f + g ∈ C(d, n).

Then, we show that C(n, d) is not empty:

Proposition 8. Let n ∈ N∗, and d ∈ N such that d ≤ (n− 1)/2, then Tn−d,n ∈ C(d, n).

Proof. From Lemma 4 AI(Tn−d,n) = d + 1, hence AN(Tn−d,n) > d and AN(Tn−d,n + 1) > d which
is equivalent to A0,d(Tn−d,n) and A0,d(Tn−d,n + 1) being of rank D by Lemma 7. From Lemma 9 only
the ANF coefficients relative to the subsets I such that |I| ≥ n − d can be equal to 1, hence only the
D ×D sub-matrix An−d,d(Tn−d,n) of A0,d(Tn−d,n) is not null, and then of rank D, allowing to conclude
Tn−d,n ∈ C(d, n).

Using the notation of C(d, n) we derive a corollary of Theorem 1 and an example of construction.

1 here f + g is the standard sum of f and g and not the direct sum
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Corollary 4. Let n,m ∈ N∗, d, t ∈ N. Let f ∈ Bn such that ∆AN(f) ≥ t and m ≥ AI(f) + t + 1 + 2d.
The following holds:

∀g ∈ C(d,m, d+ t), AI(DS(f, g)) > AI(f) + d+ t,

and in particular if AI(g) = d+ t+ 1 then AI(DS(f, g)) = AI(f) + d+ t+ 1.

Proof. t is replacing k−d in the theorem, since g ∈ C(d,m, d+ t) the matrix Am,g(m−d) is full rank and
AI(f)+ t+d+1 ≤ m−d by definition ofm, then f and g satisfy the conditions of the theorem, allowing to
conclude AI(DS(f, g)) > AI(f) + d+ t. The particular case comes from the upper bound of Lemma 1.

Proposition 9. Let ` ∈ N∗, d,m ∈ N such that m ≥ ` + 1 + 2d, the direct sum of the `-th triangular
function and the m-variable threshold function of threshold m− d has algebraic immunity:

AI(DS(T`,Tm−d,m)) = `+ d+ 1.

Proof. We apply Corollary 4 with f = T` and g = Tm−d,d. The algebraic immunity of T` is ` by Lemma 3
and since T` and 1 + T` are degree AI(T`) functions annihilating each other ∆AN(T`) = 0 = t. Then,
m ≥ AI(T`) + ` + t + 1, Tm−d,m ∈ C(d,m) by Proposition 8 and AI(Tm−d,m) = d + 1 by Lemma 4. It
allows to apply Corollary 4, giving AI(DS(T`,Tm−d,m)) = `+ d+ 1.

6 Conclusion

In this article we studied criteria on Boolean functions f and g allowing to improve the usual lower bound
on the algebraic immunity of their direct sum: AI(DS(f, g)) ≥ max(AI(f),AI(g)). We showed the degree
of one of the functions is sometimes enough to get a better bound: AI(DS(f, g)) > max(AI(f),AI(g)),
which happens to be sufficient to determine the algebraic immunity of iterated direct sums such as DSM or
WPRF candidate functions. Extending this property from the degree, we studied sufficient conditions on the
higher part of the ANF coefficients to guarantee an AI of at least d, ant it lead to the concept of AI increasing
functions which allow to improve the lower bound of AI(DS(f, g)) by d. We proved than the value of the
difference of minimal degree of annihilators, ∆AN(f), can also be a sufficient criteria to improve the lower
bound. More precisely, a ∆AN(f) of value k can lead to an improvement of k over the maximum of the two
AI, and we gave examples of constructions with this property using threshold functions as components. To
conclude, we showed both approaches can be combined, giving our best improvement on the lower bound.
It allows to use the secondary construction to produce functions with AI strictly higher than its components,
and it reduces the gap between the minimum value of AI that can be guaranteed and its maximal value.

In view of these results, a natural direction for further research would be to study if the same properties
allow to improve on the upper bound, AI(f) + AI(g). Such study could allow to determine the exact AI of
some constructions, and eventually lead to a full characterization of the AI of direct sums, by the mean of
the AI and few more parameters of the component functions. Such a full characterization for the simplest
secondary construction would lead to multiple constructions with known AI in a high number of variables,
and the exact AI of functions in n > 20 variables for which the exact AI computation is out of reach with
the current computational power.

Another natural question from this work is the potential use of AI increasing functions to improve
algorithms determining the algebraic immunity of a function, or discarding functions with low algebraic
immunity. Various algorithms to compute the algebraic immunity of any Boolean function are given
in [ACG+06] and the complexity of such algorithms is discussed in further works such as [Dal13, JZW14].
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Instead, the AI increasing property of order d is not a property shared by all functions of AI greater than d,
but checking this property requires to check only the coefficients of degree n−2d to n, in order to guarantee
an AI of at least d+1. Hence, it could lead to algorithms with a lower computational cost used to guarantee
a minimal quantity of AI for tested functions.
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