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Abstract. In this paper, we study implementations of post-quantum
signature schemes on resource-constrained devices. We focus on verifica-
tion of signatures and cover NIST PQC round-3 candidates Dilithium,
Falcon, Rainbow, GeMSS, and SPHINCS+. We assume an ARM Cortex-
M3 with 8 kB of memory and 8 kB of flash for code; a practical and widely
deployed setup in, for example, the automotive sector. This amount of
memory is insufficient for most schemes. Rainbow and GeMSS public
keys are too big; SPHINCS+ signatures do not fit in this memory. To
make signature verification work for these schemes, we stream in pub-
lic keys and signatures. Due to the memory requirements for efficient
Dilithium implementations, we stream in the public key to cache more in-
termediate results. We discuss the suitability of the signature schemes for
streaming, adapt existing implementations, and compare performance.

Keywords: NISTPQC · Cortex-M3 · Signature Verification · Streaming
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1 Introduction

The generally larger keys and signatures of post-quantum signature schemes have
enormous impact on cryptography on constrained devices. This is especially
important when the payload of the signed message is much smaller than the
signature, due to additional transmission overhead required for the signature.
Such short messages are for example used in the real-world use case of feature
activation in the automotive domain. Feature activation is the remote activation
of features that are already implemented in the soft- and hardware of the car. For
example, an additional infotainment package. Usually, a short activation code is
protected with a signature to prevent unauthorized activation of the feature.



In the automotive sector, it is very common to perform all cryptographic
operations on a dedicated hardware security module (HSM) that resembles a
Cortex-M3 processor with a clock frequency of 100 MHz and limited memory
resources, e.g., [13]. Typically, the HSM is in the same package as the main
processor with its own memory and is connected via an internal bus with a bus
speed of about 20 Mbit/s. A fair estimate for available memory for signature
verification on the HSM is under 18 kB of RAM and 10 kB of flash. However,
we aim for a lower memory usage of 8 kB of RAM and flash to allow additional
space for other applications and an operating system.

In this scenario signatures are verified in the very constrained environment
of an HSM. It may not be able to store large public keys or keep large signatures
in memory. Sometimes even the main processor does not have sufficient memory
resources. Then the public key or signature must be provided to the HSM by
another device in the vehicle network, like the head unit. In this case, the public
key or signature must be streamed in portions over the in-vehicle network to
the destination processor. A typical streaming rate over the CAN bus of an in-
vehicle network is about 500 kbit/s, considering a low error transmission rate.
Appendix A provides more details on the use case.

Contribution In this work, we address the challenge of performing signature
verification of post-quantum signature schemes with a large public key or sig-
nature in a highly memory-constrained environment. Our approach is to stream
the public key or the signature.1 We show that this way signature verification
can be done keeping only small data packets in constrained memory. When
streaming the public key, the device needs to securely store a hash value of the
public key to verify the authenticity of the streamed public key. During sig-
nature verification, the public key is incrementally hashed, matching the data
flow of the streamed public key. We implemented and benchmarked the proposed
public key and signature streaming approach for four different signature schemes
(Dilithium, SPHINCS+, Rainbow, and GeMSS). Although for Dilithium stream-
ing the public key is not strictly necessary, the saved bytes allow us to keep more
intermediate results in memory. This results in a speed-up.

For comparison, we also implemented the lattice-based scheme Falcon for
which streaming small data packets is not necessary in our scenario as the entire
public key and signature fit into RAM. The source code is published and available
at https://git.fslab.de/pqc/streaming-pq-sigs. We demonstrate that the
proposed streaming approach is very well suited for constrained devices with a
maximum utilization of 8 kB RAM and 8 kB Flash.

Related Work To the best of our knowledge, this is the first work that ad-
dresses signature verification by streaming in the public key or signature. For

1 Appendix B sketches an alternative scheme that relies on symmetric cryptography
with device-specific keys. This would fit even more constrained environments, but
comes at the expense of the downsides of symmetric key management.

https://git.fslab.de/pqc/streaming-pq-sigs


signature schemes, streaming approaches have been investigated in [14] but the
focus of that work was on signature generation (for stateless hash-based sig-
natures). The encryption scheme Classic McEliece was studied for constrained
device, solving the issue of public keys being larger than the available RAM by
either streaming [29,30] or placing them in additional Flash [7,10].

2 Analyzed Post-Quantum Signature Schemes

We now briefly discuss the different signature schemes that we considered. Our
exposition is focused on signature verification due to limited space. For all
schemes we selected parameters that meet at least NIST security level 1. Where
possible we prioritized verification speed over signature speed as we assume that
signatures are created on devices that are significantly more powerful than the
ones we consider for signature verification.

2.1 Hash-based Schemes

For hash-based signature schemes security solely relies on the security properties
of the cryptographic hash function(s) used. Hash-based signatures can be split
into stateful and stateless schemes. Stateful schemes require that a user keeps
a state with the secret key. The stateful schemes LMS and XMSS are already
specified as RFCs [20,15] and standardized by NIST [8]. As these schemes have
sufficiently small signatures and keys, we do not consider them in this work.

SPHINCS+ SPHINCS+ is the last remaining stateless hash-based signature
scheme in the NIST competition [3]. In the following we give a rough overview
of SPHINCS+ signature verification and motivate our parameter choice. For a
high-level description of SPHINCS+ see appendix C.

SPHINCS+ signature verification consists of four components. First, the mes-
sage compression, second message mapping functions, third computing hash
chains, and fourth verifying authentication paths in binary hash trees. The mes-
sage mapping functions take negligible time compared to the other operations
and also only minimally increase space. Hence, they are ignored in our exposi-
tion. Message compression consumes an n-bit randomizer value from the signa-
ture in addition to the message which can in theory be streamed in chunks of
the internal block size of the used hash function. The resulting message digest is
mapped to a set of indices used later to decide the ordering of hash values in the
authentication path verifications. Hash chain computation consumes one n-bit
hash value from the signature and iterates the hash function a few times on the
given value. The results of 67 hash chain computations are compressed using
one hash function call. Hence, results have to be kept in memory until one block
for the hash function is full. Finally, authentication path computation takes the
n-bit result of a previous computation and consumes one authentication path
node per tree level. In theory, these computations can be done one-by-one which
would allow streaming each n-bit node separately.



SPHINCS+ is defined as a signature framework with a magnitude of differ-
ent instantiations and parameter sets. SPHINCS+ defines parameters for three
different hash functions: SHA-3, SHA-256, and Haraka. We chose a SHA-256 pa-
rameter set due to its performance, well understood security, and widely deployed
hardware support. Moreover, SPHINCS+ defines simple and robust parameters.
We chose simple as it matches the security assumptions of the schemes that
we compare to and has better performance. Lastly, the SPHINCS+ specifica-
tion [1] proposes fast and small parameters, the former optimized for signing
speed, the latter for signature size. However, the small parameters have bet-
ter verification speed. We chose to implement sphincs-sha256-128s-simple

and sphincs-sha256-128f-simple to allow for a comparison and show what
is possible when reduced signing speed is not an issue. For these SPHINCS+

parameters, signing speed on a general purpose CPU is about a factor 16 slower
for the s-parameters [3]. All internal hash values in SPHINCS+ have n = 16
bytes for the parameters we use. Public keys are 2n = 32 bytes. Hence, they can
easily be stored on the device without any compression.

2.2 Multivariate-based Schemes

Multivariate signature schemes are based on the hardens of finding solutions to
systems of equations in many variables over finite fields, where the degree of the
equations is at least two. The first multivariate signature scheme was designed
by Matsumoto and Imai [19] and broken by Patarin [22]. Patarin with several
coauthors went on to design modified schemes [23,26,17] which form the basis of
modern multivariate signature schemes.

To fix notation, let the system of equations be given by m equations in n
variables over a finite field Fq. Most systems use multivariate quadratic (MQ)
equations, i.e. equations of total degree two. Then the m polynomials have the
form

fk(x1, x2, . . . , xn) =
∑

1≤i≤j≤n

a
(k)
i,j xixj +

∑
1≤i≤n

b
(k)
i xi + c(k) (1)

with coefficients a
(k)
i,j , b

(k)
i , c(k) ∈ Fq.

Let M be a message and let H : {0, 1}∗ × {0, 1}r → Fm
q be a hash function.

A signature on M is a vector (X1, X2, . . . , Xn) ∈ Fn
q and a string R ∈ {0, 1}r

satisfying for all 1 ≤ k ≤ m that fk(X1, X2, . . . , Xn) = hk for H(M,R) =
(h1, h2, . . . , hm). The inclusion of R is necessary because not every system has a
solution.

Verification is conceptually easy – simply test that all signature equations
hold. Signing depends on the type of construction and what information the
signer has to permit finding a solution to the system, but this is outside the
scope of this paper.

General considerations for streaming MQ systems lead to short signatures
but the public keys need to contain the coefficients of (1) and are thus very
large, in the range of a few hundred kB. The public keys can be streamed in



in blocks of rows or columns, depending on how the public key is represented.
At most m elements of Fq are needed to hold the partial results of evaluating
fk(X1, X2, . . . , Xn), 1 ≤ k ≤ m in addition to the n elements for the signature
and the m elements for the hash.

Rainbow Rainbow [9] is a finalist in round 3 of the NIST competition. Rain-
bow uses two layers of the Oil and Vinegar (OV) scheme [24]. For Rainbow
the finite field is F24 , so signatures require dm/2e bytes, leading to 66 bytes
in NIST security level 1. We implement rainbowI-classic rather than one
of the “circumzenithal” or “compressed” variants. Public keys are 158 kB for
rainbowI-classic.

In Rainbow, the coefficients b and c are all zero. During verification, we load

in columns a
(∗)
i,j corresponding to coefficients of each monomial xixj , i ≤ j. If

0 6= xixj = k ∈ F16, we accumulate ai,j into a column Ak, If xi = 0, we skip all
columns involving xi. The final result is

∑
k∈F∗

16
kAk.

GeMSS GeMSS [6] is an alternate in round 3 of the NIST competition. GeMSS
is based on the HFEv− scheme [25]. For GeMSS the finite field is F2, so signatures
are very small, starting at 258 bits for category I, but to achieve security the
public key needs to be very large, starting at 350 kB for category I.

It bears mentioning that GeMSS is special among multivariates in that it
employs the Patarin-Feistel structure to achieve very short signatures, wherein
a public key is used four times during the verification. With pubkey f being m
equations in n variables, to verify the signature of the message M, we do:

1. write the signature as (S4,X4,X3,X2,X1) where Si are size m and the Xi

are size n−m (so the actual length of the signature is 4n− 3m).
2. At stage i, which goes from 4 to 1, we set Si−1 = f(Si‖Xi)⊕Di, where Di

is the first m bits of (SHA− 3)
i
(M).

3. The signature is valid if S0 is the zero vector.

There are three types of GeMSS parameters. “RedGeMSS” uses very aggressive
parameters; “BlueGeMSS” uses more conservative parameters. Just “GeMSS”
falls in the middle, and this is what we choose to implement. The parameter set
targeting NIST security level 1 is gemss-128 and has 350 kB public keys.

2.3 Lattice-based Schemes

Lattice-based cryptographic schemes are promising post-quantum replacements
for currently used public-key cryptography since they are asymptotically effi-
cient, have provable security guarantees, and are very versatile, i.e., they offer
far more functionality than plain encryption or signature schemes.

Lattice-based signature schemes are constructed using one of two techniques,
either the GPV framework that is based on the hash-and-sign paradigm [11],
or the Fiat-Shamir transformation [18]. The security of lattice-based signature
schemes can be proven based on hard lattice problems (usually the LWE problem,
the SIS problem, and variants thereof) or the NTRU assumption.



Dilithium Dilithium is a NIST round 3 finalist [2]. Signature verification for
Dilithium works as follows: The public key pk = (ρ, t1) consists of a uniform
random 256-bit seed ρ, which expands to the matrix of polynomials A, and
t1. For MLWE samples t = As + e, t1 is the first output of the Power2Round
procedure [2, Figure 3], and (t1, t0) = Power2Roundq(t, d) is the straightforward
bit-wise way to break up an element r = r1 · 2d + r0, where r0 = r mod 2d and
r1 = (r − r0)/2d with −2d/2 ≤ r0 < 2d/2. Hence, the coefficients of t0 are the
d lower order bits and the coefficients of t1 — the second part of the public
key — are the dlog qe − d higher order bits of the coefficients of t. To verify
a signature (z,h, c) for a message M , one computes w′ = Az − c · t1 · 2d,
uses the hint vector h to recover w′1 = UseHint(h,w′), and finally verifies that
c = h(h(h(ρ||t1)||M)||w′1). For the details, we refer to [2].

All Dilithium parameter sets use q = 223 − 213 + 1 and d = 13. Hence, while
the coefficients of t need 23 bits, the coefficients of the public key t1 need only 10
bits. We use the smallest instance of Dilithium, which is NIST level 2 parameter
set dilithium2. The public key size of dilithium2 in total is 1 312 bytes and
a signature needs 2 420 bytes.

Falcon Falcon, too, is a NIST round 3 finalist [28]. Falcon’s signature verification
works as follows: A signature for message M , consisting of the tuple (r, s), can
be verified given the public key h = gf−1 (mod q), where f, g ∈ Zq[x]/(φ) for
a modulus q and a cyclotomic polynomial φ ∈ Z[x] of degree n. Firstly r and
M are concatenated and hashed into a polynomial c and s is decompressed
using a unary code into s2. Then, s1 = c − s2h is computed and it is verified
that (s1, s2) has a small enough norm (≤ bβ2c). Coefficients are compressed
one-by-one and hence can be decompressed individually. The embedding norm
that is computed in [28, Algorithm 16, line 6] can be computed in linear time
and only requires two coefficients at a time. However, the preceding polynomial
multiplication requires all coefficients of one operand to be present, preventing
coefficient-by-coefficient streaming for both the signature and the public key at
the same time. If, however, only the signature or the public key is streamed, the
polynomial multiplication could be performed. We use falcon-512, targeting
NIST level I, which uses dimension n = 512 and q = 12289 ≈ 214, hence each
coefficient of the public key needs 14 bits.

3 Implementation

The following section describes the implementations of the signature schemes for
the use case of feature activation described in Section 1. The signature verifica-
tion is performed on a Cortex-M3. The consumption for program flash should
be limited to 8 kB. The RAM usage should not exceed 8 kB. The bus speed for
streaming is assumed to run at either 500 kbit/s or 20 Mbit/s.



3.1 Streaming Interface

Signed messages and public keys are streamed into the embedded Cortex-M3
device. To avoid performance overhead, our streaming implementation follows a
very simple protocol. In a first step, the length of the signed message is transmit-
ted to the embedded device. Then the embedded device initializes streaming by
supplying a chunk size to the sender and additionally supplies if signed message
or public key is to be streamed first. After every chunk, the embedded device
can request a new chunk or return a verification result. The chunk size may be
altered between chunks, but the public key and the signed message are always
streamed in-order.The result is a one-bit message, signaling if the verification
succeeded or failed, followed by the message in case the verification succeeded.

3.2 Public Key Verification

As the public key is being streamed in from an untrusted source, it is imperative
to validate that the key is actually authentic. We assume that a hash of the public
key is stored inside the HSM in some integrity-protected area.While the public
key is being streamed in, we incrementally compute a hash of it that we eventu-
ally compare with the known hash. We use the same hash function as used by
the studied scheme, i.e., SHA-256 for sphincs-sha256 and rainbowI-classic,
SHAKE-128 for gemss-128 and SHAKE-256 for dilithium2 and falcon-512.
We keep the hash state in memory, occupying additional 200 bytes for SHAKE-
128 and 32 bytes for SHA-256. We use the incremental SHA-256 and SHAKE
implementations from pqm4 [16].

In the case of gemss-128, the public key is needed multiple times; once in
every of the four evaluations of the public map. Note that the integrity needs to
be verified each time.

3.3 Implementation Details

In the following, we describe the modifications to existing implementations of
the five studied schemes needed to use them with the given platform constraints.
Table 1 lists the public key, signature sizes, and the time needed for streaming
them into the device at 500 kbit/s and 20 Mbit/s.

SPHINCS+ Our SPHINCS+ implementation is based on the round-3 refer-
ence implementation [1]. Preceding work [16] shows that computation time for
SPHINCS+ verification on single-core embedded devices is almost exclusively
spent in the underlying hash function. We did therefore not investigate further
optimization possibilities. Aligning the implementation to a streaming API is
fairly straightforward as SPHINCS+ signatures get processed in-order. For both
sphincs-sha256-128f-simple and sphincs-sha256-128s-simple a public key
is 32 bytes and hence does not require streaming.

For sphincs-sha256-128f-simple, a signature is 17 088 bytes. The selected
SPHINCS+ parameter sets use n = 16 byte and so a streaming chunk size of 16



Table 1. Communication overhead in bytes and milliseconds at 500 kbit/s and
20 Mbit/s. GeMSS requires to stream in the public key nb ite times (4 for gemss-128).
All other schemes require streaming in the public key and signed message once.

streaming data streaming time
|pk| |sig| total 500 kbit/s 20 Mbit/s

sphincs-sa 32 7 856 7 888 126.2 ms 3.2 ms

sphincs-fb 32 17 088 17 120 273.9 ms 6.9 ms
rainbowI-classic 161 600 66 161 666 2 586.7 ms 64.7 ms

gemss-128 352 188 33 1 408 785c 22 540.6 ms 563.5 ms
dilithium2 1 312 2 420 3 732 59.7 ms 1.5 ms
falcon-512 897 690 1 587 25.4 ms 0.6 ms

a -sha256-128s-simple b -sha256-128f-simple c 4 · |pk|+ |sig|

bytes is possible. However, such a small chunk is undesirable due to overhead in
terms of memory and computation. The leading 16 bytes of the signature make
up the randomizer value, followed by the 3 696 byte FORS signature, consisting
of 33 authentication paths, and the 13 376 bytes for 22 MSS signatures. Our
implementation first processes a 3 712 byte chunk containing the randomizer
value and FORS signature. This is used to compute the message digest and then
the FORS root, evaluating the 33 authentication paths. Then, the computed
FORS root is verified using the MSS signatures. The overall 22 MSS signatures,
each consisting of a WOTS+ signature and an authentication path, are processed
in three chunks. Given the memory constraints, the largest available chunk size is
4 864 bytes containing 8 MSS signatures. MSS signature streaming is therefore
done in two 4 864 byte chunks and one final 3 648 byte chunk. Starting from
the FORS root, this data is used to successively reconstruct all the MSS tree
roots from the respectively previous root: first computing 67 hash chains using
the WOTS+ signature, compressing their end nodes in a single hash, and then
evaluating an authentication path. The last (or “highest”) MSS tree root is then
compared to the root node in the public key. For this to work, the reserved chunk
buffer needs to be 4 864 bytes large.

For sphincs-sha256-128s-simple, streaming works analogously. The signa-
ture size is 7 856 bytes and only seven - slightly larger - MSS signatures are used
within the scheme. This makes it possible to stream in all 7 MSS signatures in a
single 4 928 bytes chunk. Streaming therefore consists of one FORS+randomizer-
value (2 928 bytes) and one MSS (4 928 bytes) chunk.

Rainbow The round-3 submission of Rainbow [9] contains an implementation
targeting the Cortex-M4. As it relies only on instructions also available on the
Cortex-M3, it is also functional on the Cortex-M3. However, due to the large
public key (162 kB), we adapt the implementation for streaming. Rainbow signa-
tures consist of an ` bit (128 for rainbowI-classic) salt and n (100) variables xi
in a small finite field (F16 for rainbowI-classic). Two F16 elements are packed
into one byte in the signature and public key. We first unpack the elements of the



signature and store one xi in the lower four bits of a byte. This doubles memory
usage from 50 to 100 bytes, but makes look-ups for individual elements easier.
After the signature and corresponding xi are stored in memory, the public key

is streamed in. The public key consists of the Macaulay matrix p
(k)
i,j representing

the public map consisting of m (64) equations of the form

p(k)(x1, . . . , xn) =

n∑
i=1

n∑
j=i

p
(k)
i,j xixj

with the xi, xj corresponding to the variables from the signature. For compu-
tational efficiency the public key is represented in the column-major form. The

public key’s first 32 byte chunk therefore has the form [p
(1)
1,1|p

(2)
1,1| . . . |p

(m)
1,1 ] and

the contained coefficients should be multiplied by x21. Subsequent 32 byte chunks

have the same form ([p
(1)
1,2| . . . |p

(m)
1,2 ] should be multiplied by x1 ·x2 and so forth.).

To increase performance, Rainbow implementations delay multiplications. Before
the actual multiplication step, coefficient sums are accumulated. Every incoming
32 byte chunk is added to one of 15 accumulators ak based on the 15 possible
values of yi,j = xi · xj with yi,j > 0. If yi,j is zero, the chunk is discarded. Once
all chunks are consumed, every accumulator is multiplied by its corresponding

factor ãk = [k · a(1)k |k · a
(2)
k | . . .] and added summed up the final result.

One can exploit that if an element xi is zero, all monomials xixj will be zero
and the corresponding columns of the public key will not contribute to the result.
As every 16th xi is expected to be zero, this results in a significant speed-up. As
Rainbow is using F16 arithmetic, additions are XOR. For multiplications, we use
the bitsliced implementation from the Rainbow Cortex-M4 implementation [9].

The smallest reasonable chunk size for Rainbow is a single column of the
Macaulay matrix, i.e., 32 bytes. However, as larger chunk sizes result in lower
overhead, we use the largest chunk size which fits in our available memory. Due
to the low memory footprint of the Rainbow implementation, we can afford to
use chunks of 214 columns, i.e., 6 848 bytes. As there are 5 050 (n · (n + 1)/2)
columns, the last chunk is only 128 columns, i.e., 4 096 bytes.

GeMSS To the best of our knowledge, there are no GeMSS implementations
available targeting microcontrollers and we, hence, write our own. We base
our GeMSS implementation on the reference implementation accompanying the
specification [6]. The biggest challenge is that the entirety of the 352 kB public
key is needed in each of the evaluations of the public map p. Due to the iterative
construction of the HFEv- scheme, there appears to be no better approach than
streaming in the public key in each iteration, i.e., nb ite (4 for gemss-128) times.

Each application of the public map p requires the computation of

pi =

n+v∑
i=0

n+v∑
j=i

xixjai,j + a0.

Each column of the Macaulay matrix needs to be multiplied by a product of
two variables and then added to the accumulator. The field used by GeMSS is



F2 and, hence, field multiplication is logical AND and field addition is XOR which
allows straightforward bitslicing of operations. Unfortunately, since the number
of equations (m) is not a multiple of 8 (m = 162 for gemss-128), one cannot
simply store the Macaulay matrix in column-major form since this would result
in the columns not being aligned to byte boundaries. Therefore, GeMSS stores
the first 8 · bm/8c (160) equations in a column-major form making up the first
bm/8c · (((n+ v) · (n+ v+ 1))/2 + 1) (347 840) bytes of the public key with n+ v
(n = 174, v = 12) being the number of variables. The last 2 equations are stored
row-wise occupying the last 2 · (((n+ v) · (n+ v + 1))/2 + 1)/8 (4348) bytes.

We split the computation in two parts: The first 8 · bm/8c equations and
the last (m mod 8) equations. For the former, the most important optimization
comes from the observation that if either of the two variables xi or xj is zero,
the corresponding column does not impact the result. Similar to the Rainbow
implementation, in the case xi is zero, the entire inner loop and, hence, n+v− i
columns of the public key can be skipped. As half of the xi are expected to
be zero, this results in a vast performance gain. For the last (m mod 8), we
first compute the monomials xixj and store them in a vector, then we add this
vector to each row of the public key. Lastly, we compute the parity of each row.
The smallest reasonable chunk size for the first part of the computation is one
column of the public key (20 bytes), while it is one row (2174 bytes) for the
second part. However, we use 4 560 byte-chunks (285 columns) to achieve lowest
overhead with 8 kB RAM.

Dilithium. Our Dilithium implementation is based on previous work targeting
the Cortex-M3 and Cortex-M4 [12]. However, this work predates the round 3
Dilithium submission [2] which introduced some algorithm tweaks and parame-
ter changes. Most notably for the performance of dilithium2 verification, the
matrix dimension of A changed from (k, `) = (4, 3) to (4, 4). Therefore, we adapt
the existing Cortex-M3 implementation to the new parameters.

For dilithium2, the implementation of [12] requires 9 kB of stack in addition
to the 2.4 kB signature and 1.3 kB public key in memory. We apply a couple of
tricks to fit it within 8 kB: We compute one polynomial of w′ at a time, which
allows us to stream in the public key t1. Usually, one computes w′ = Az−c·t1 ·2d
as NTT−1(Â · NTT(z)−NTT(c) ·NTT(t1 ·2d)). Hence, it is desirable for performance
to keep NTT(z) and NTT(c) in memory. However, that already occupies 5 kB.
We instead keep the compressed forms of z and c in memory, occupying only
` · 576 = 2304 and 32 bytes, respectively, and recompute the NTT operations.

Previous implementations of Dilithium use 3 temporary polynomials to com-
pute NTT−1(Â · NTT(z)− NTT(c) · NTT(t1 · 2d)), one for the accumulator and two
temporary ones for the inputs. We instead compute NTT−1(−NTT(c) · NTT(t1 · 2d)
+Â · NTT(z)), which can be computed in 2 polynomials by sampling Â coeffi-
cient-wise, as was also proposed for Kyber [5].

The total memory consumption comprises the 2 420-byte signature, 2 poly-
nomials of 1 024 bytes each, 3 Keccak states of 200 bytes each, and about 600
bytes of other buffers, i.e., approximately 5 670 bytes in total. To improve speed,



one can cache as much of NTT(z) and NTT(c) as possible. We cache NTT(c) and 3
polynomials of NTT(z) while still remaining below 8 kB of stack.

Falcon We used a Cortex-M4 optimized implementation which is also part of
Falcon’s round-3 submission [27,28]. It is compatible with Cortex-M3 processors,
but relies on emulated floating point arithmetic. This leads to data-dependent
runtimes, which is unproblematic for verification, but may be an issue when
considering signing as well. On the Cortex-M3, the implementation submitted
to NIST uses around 500 bytes of stack space, public keys of circa 900 bytes,
signatures of around 800 bytes, and a 4 kB scratch buffer. The overall memory
footprint is about 6.5 kB. Hence, streaming in the data in small packets is not
necessary. Our implementation copies the whole public key and signature to
RAM before running the unmodified Falcon verification algorithm.

4 Results

We chose an ARM Cortex-M3 board with 128 kB RAM and 1 MB Flash, an
STM32 Nucleo-F207ZG, as the platform for the implementation of our case
study. This board meets most of the specifications of an environment with limited
resources of a typical automotive HSM embedded in MCUs. The only mismatch
is the non-volatile memory (NVM). A typical limited HSM has much less NVM.

We clock the Cortex-M3 at 30 MHz (rather than the maximum frequency of
120 MHz) to have no Flash wait states. In a practical deployment in an HSM
one would use fast ROM instead of Flash and, hence, our cycle counts are close
to what we would expect in an automotive HSM.

We base our benchmarking setup on the pqm32 framework and adapt it
to support our streaming API. For counting clock cycles, we use the SysTick
counter. We stream in the signed message and public key using USART, but
disregard the cycles spent waiting for serial communication. We stream in the
signed message and public key using USART using a baud rate of 57 600 bps,
which is much slower than what we would expect in a practical HSM. We use
arm-none-eabi-gcc version 10.2.0 with -O3. We use a random 33-byte message
which resembles the short messages needed for feature activation.

Table 2 presents the speed results for our implementations. The studied signa-
ture schemes rely on either SHA-256 (rainbowI-classic, sphincs-sha256) or
SHA-3/SHAKE (dilithium2, falcon-512, and gemss-128). In a typical HSM-
enabled device SHA-256 would be available in hardware and SHA-3/SHAKE will
also be available in the future. However, on the Nucleo-F207ZG no hardware ac-
celerators are available. Hence, we resort to software implementations instead.
For SHA-256 we use the optimized C implementation from SUPERCOP.3 For
SHA-3/SHAKE, we rely on the ARMv7-M implementation from the XKCP.4

2 https://github.com/mupq/pqm3
3 https://bench.cr.yp.to/supercop.html
4 https://github.com/XKCP/XKCP

https://github.com/mupq/pqm3
https://bench.cr.yp.to/supercop.html
https://github.com/XKCP/XKCP


Table 2. Cycle count for signature verification for a 33-byte message. Average over
1 000 signature verifications. Hashing cycles needed for verification of the streamed in
public key (hashing and comparing to embedded hash) are reported separately. We
also report the verification time on a practical HSM running at 100 MHz and also the
total time including the streaming at 20 Mbit/s.

w/o pk vrf. w/ pk verification w/ streaming

pk vrf. total timee 20 Mbit/s

sphincs-sa 8 741k 0 8 741k 87.4 ms 90.6 ms

sphincs-fb 26 186k 0 26 186k 261.9 ms 268.7 ms

rainbowI-classic 333k 6 850kd 7 182k 71.8 ms 136.5 ms
gemss-128 1 619k 109 938kc 111 557k 1 115.6 ms 1 679.1 ms
dilithium2 1 990k 133kc 2 123k 21.2 ms 21.8 ms
falcon-512 581k 91kc 672k 6.7 ms 8.2 ms

a -sha256-128s-simple b -sha256-128f-simple c SHA-3/SHAKE
d SHA-256 e At 100 MHz (no wait states)

While GeMSS and Rainbow only compute a (randomized) hash of the mes-
sage, SPHINCS+, Dilithium, and Falcon use hashing as a core building block of
the verification. Consequently, the amount of hashing in multivariate cryptogra-
phy is minimal (2% for rainbowI-classic, 4% for gemss-128), while it makes
up large parts for lattice-based (65% for dilithium2, 36% for falcon-512)
and hash-based signatures (90% for sphincs-sha256-128s-simple and 88% for
sphincs-sha256-128f-simple). Clearly lattice-based and hash-based schemes
would benefit more from hardware accelerated hashing.

Additionally, we need to verify the authenticity of the streamed in public
key. We report the time needed for public key verification separately. For hash-
based signatures this operation comes virtually for free as the public key itself
can be stored in the device, so that no hashing is required. For multivariate
cryptography, the public key verification becomes the most dominant operation
due to the large public keys and fast arithmetic. This is particularly pronounced
for GeMSS as the public key is the largest and needs to be verified 4 times.

Table 3 presents the memory requirements of our implementations.
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Table 3. Memory and code-size requirements in bytes for our implementations. Mem-
ory includes stack needed for computations, global variables stored in the .bss section
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memory code
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A Feature Activation

Feature Activation is intended to activate additional functionality on an embed-
ded device that is already deployed and active in the running environment. It
differs from a software update because all software and required hardware for
the feature’s functionality is already included in the device, but not activated.

The feature is activated by an authentic message from an authorized instance.
The activation of the feature is device specific, therefore the activation messages
must not be portable to other devices. The protocol 1 describes the actual fea-
ture activation process between an embedded device on which the feature is to
be activated and an authorized instance, e.g., a back-end system. To authenti-
cate the feature activation request, a signature is part of the message sent from
the authorization instance to the embedded device. Nowadays, this signature is
implemented, for example, by an ECC signature, which is not a post-quantum
algorithm. In the scenario shown, the overall protocol does not take into account
any resource constraints on the device, so that, for example, the ECC signature
and the public key are stored entirely on the device.

The protocol 1 can be roughly paraphrased as follows: The user, e.g. the
car owner, creates a request to activate a desired feature for a specific vehicle
(identified by a vehicle identification number - VIN). This can be done through
an online platform. The authorization instance, which can be represented by
a back-end, validates the feature request for the feature policies it stores for
the requested vehicle, and requests and verifies the user’s authentication. Upon
successful authorization, the authorization instance generates a device-specific
feature activation request Amsg for the device that is part of the vehicle and
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User Authorization Entity: AE Device: D
Req. feature−−−−−−−−→
activation

Validate feature

activation request
Req.←−−−−−−−−−

authentication

Authenticate−−−−−−−−→ Verify authentication

Generate Amsg

T1 : SignprAE (Amsg)
Send {Amsg|T1}−−−−−−−−−−−→ Verify T1 using pbAE

Update feature
policies

Activate feature

Secure hash of the
feature policies

Update feature
Send {Arec}←−−−−−−−− Generate Arec

polices of D

Protocol 1: Protocol for feature activation

implements the requested feature. Furthermore, the authorization instance gen-
erates a signature T1 for the message Amsg using its private key prAE . When
the device successfully verifies the signature T1, it updates its feature policies,
activates the requested feature, and stores the feature policy hash. Finally, the
embedded device confirms the feature activation status in a message Arec to the
authorization instance. The authorization instance itself also updates and stores
the feature policy for the specific device.

B Alternative Implementation

For embedded applications it is sometimes attractive to use symmetric cryptog-
raphy in place of public-key cryptography. Not only is symmetric cryptography
a lot faster, it also benefits from already-present hardware acceleration and key
sizes are significantly smaller. Of course, the secret keys in symmetric devices
are extremely sensitive. We need that a secret key extracted from a particular
deployed device does not compromise the entire scheme. This implies the need to
provision each device with its own individualised key. However, when deploying
hundreds or thousands of devices this means we have a potentially significant
key management problem. Fortunately, the many-to-one architecture in this au-
tomotive application implies we only need a single key between each device and
the back-end. Furthermore, each deployed device has public identifiers, like the



vehicle VIN or a serial number. This allows us to only let the manufacturer store
a single key for all deployed devices.

We use these properties to construct an efficient key distribution scheme.
Let each device have a unique identifing number n. This could for example be
the concatenation of the vehicle VIN and the device’s serial number. We let the
manufacturer generate a main secret key Km. Then, we provision at time of
manufacturing each device with the following key Kd, such that

Kd = KDF(Km, n).

Here, KDF is an appropriate key-derivation function.
Then, whenever the device needs to use their key Kd in communication with

the manufacturer, they send over their identifier n along with the message. For
example, if they need to send an authenticated message m, they might send
{n,m,MACKd

(n,m)}. The manufacturer can then easily compute Kd based on
n and the main secret Km, and verify the message. As the device does not have
access to Km, they can only have produced this MAC if they were provisioned
with Kd at time of manufacture.

Of course, this entire scheme falls down when Km is compromised. As such,
special care needs to be taken to protect it. Although the private keys used
in public-key cryptography also need to be protected, we can use revocation
mechanisms to recover from a compromise. This is not possible with symmetric
cryptography.

C Hash-Based Signatures

Hash-based signature schemes are signature schemes for which security solely
relies on the security properties of the cryptographic hash function(s) used. In
contrast to other proposals for digital signature schemes it does not require an
additional complexity theoretic hardness assumption. Given that the security of
cryptographic hash functions is well understood and even more, we know that
generic attacks using quantum computers cannot significantly harm the security
of cryptographic hash functions, hash-based signatures present a conservative
choice for post-quantum secure digital signatures. The description in this section
is simplified, and we refer to the official specification [1] for a detailed exposition.

One-Time Signature Schemes (OTS) Hash-based signatures built on the
concept of a one-time signature scheme (OTS). This is a signature scheme where
a key pair may only be used to sign one message. If two messages are signed with
the same secret key, the scheme becomes insecure. Such OTS can be constructed
from cryptographic hash functions. The very generic concept is that the secret
key consists of random values while the public key contains their hash values.
A signature consists of a subset of the values in the secret key, selected by
the message. A signature is verified by hashing the values in the signature and
comparing the resulting hash values to the respective values in the public key.
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Fig. 1. The authentication path of the fifth leaf (Source [3])

The OTS commonly used today is the Winternitz OTS (WOTS) or variations
thereof which generalizes the above concept to hash chains. WOTS has the
important property that a signature is verified by computing a candidate public
key by hashing the values in the signature several times (depending on the
message) and comparing the result to the public key.

Merkle Signature Schemes (MSS) Given a OTS, a many-time signature
scheme can be constructed following the concept of Merkle Signature Schemes
(MSS) [21]. For these, a number (a power of 2) of OTS key pairs is generated and
their public keys are authenticated using a binary hash tree, called a Merkle tree.
The hashes of the public keys form the leaves of the tree. Inner nodes are the
hash of the concatenation of their two child nodes. The root node becomes the
MSS public key. Assuming WOTS is used as OTS, a signature consists of the leaf
index, a WOTS signature and the so-called authentication path (cf. figure 1).
The authentication path contains the sibling nodes on the path from the used leaf
to the root. Verification uses the WOTS signature (and the message) to compute
a candidate public key and from that the corresponding leaf. This leaf is then
used together with the authentication path to compute a root node: Starting
with the leaf, the current buffer is concatenated with the next authentication
path node and hashed to obtain the next buffer value. The order of concatenation
is determined by the leaf index in the MSS signature. The final buffer value is
then compared to the root node in the public key.

In general, this leads a so-called stateful scheme as a signer has to remem-
ber which OTS key pairs she already used. This concept is the general idea
underlying the schemes described in recent RFCs [20,15] LMS and XMSS.

SPHINCS+ The limitation of having to keep a state as signer can be overcome
in practice using the SPHINCS construction [4] (previous theoretically efficient
proposals by Goldreich go back to the last century but were only of theoretical
interest). SPHINCS+ [3] essentially instantiates the SPHINCS construction. The
first idea in SPHINCS uses a few-time signature scheme (FTS) - a signature
scheme where a key pair can be used to sign a small number of messages without
keeping a state before the scheme gets insecure. SPHINCS+ uses a huge number
of FTS key-pairs (in the order of 264 depending on the parameters). For every
new message, a random FTS key is picked to sign. By making the number of



FTS keys large enough, the probability that one key gets used to sign more
than a few messages can be made vanishingly small. The public keys of all
these FTS key pairs are authenticated using a certification tree of MSS key
pairs called the hypertree. The hyper tree is essentially a PKI. To the top MSS
key works as a root CA and the bottom layer MSS keys certify FTS public
keys. The whole structure is deterministically generated using pseudorandom
generators. That way, it is not necessary to store which OTS keys where used
for an MSS key because the message that a specific OTS key will be used to sign
is predetermined.

The FTS in SPHINCS+ is FORS. A FORS secret key consists of several sets
of random values the values in each set are authenticated via a Merkle tree.
These trees have the hashes of the secret values as leaves. The public key is the
hash of the concatenation of all root nodes of these Merkle trees. A signature
consists of one secret key value from each set (determined by the message) and
the respective authentication path. Verification works by computing the leaves
from the signature values and afterwards computing candidate root nodes as for
MSS. This can be done per tree. Afterwards, the roots are used to compute a
candidate public key.

A SPHINCS+ signature consists of a randomizer R that is hashed with the
message to obtain the message digest, a FORS signature, and the MSS signatures
on the path from the FORS keypair to the top tree. Verification computes a
message digest using the message and R. The message digest is split into the
index of the FORS signature and the indices of the Secret key values in the
FORS signature. With this, the FORS signature is used to compute a candidate
public key. This candidate FORS public key is used as message to compute a
candidate MSS root node with the first MSS signature which is used as message
for the next signature, and so on. The final MSS root node is compared to the
root node in the public key.
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