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Abstract. Non-malleable secret sharing (NMSS) schemes, introduced by Goyal and Kumar
(STOC 2018), ensure that a secret m can be distributed into shares m1, · · · ,mn (for some n),
such that any t (a parameter ≤ n) shares can be reconstructed to recover the secret m, any t − 1
shares doesn’t leak information about m and even if the shares that are used for reconstruction
are tampered, it is guaranteed that the reconstruction of these tampered shares will either result
in the original m or something independent of m. Since their introduction, non-malleable secret
sharing schemes sparked a very impressive line of research.

In this work, we introduce a feature of local reconstructability in NMSS, which allows re-
construction of any portion of a secret by reading just a few locations of the shares. This is a useful
feature, especially when the secret is long or when the shares are stored in a distributed manner on
a communication network. In this work, we give a compiler that takes in any non-malleable secret
sharing scheme and compiles it into a locally reconstructable non-malleable secret sharing scheme.
To secret share a message consisting of k blocks of length ρ each, our scheme would only require
reading ρ + log k bits (in addition to a few more bits, whose quantity is independent of ρ and k)
from each party’s share (of a reconstruction set) to locally reconstruct a single block of the message.

We show an application of our locally reconstructable non-malleable secret sharing scheme
to a computational non-malleable secure message transmission scheme in the pre-processing model,
with an improved communication complexity, when transmitting multiple messages.

1 Introduction

Secret Sharing Schemes. Secret sharing schemes [Sha79,Bla79] allow a dealer holding a secret
m, to distribute the secret across a set of parties P1, P2, · · · , Pn as shares m1,m2, · · · ,mn such
that subsets of parties authorised by the dealer can reconstruct the secret m and all the other
subsets of parties have no information about the secret. Secret sharing schemes are fundamental
building blocks in secure computation.

Non-malleability. Non-malleable secret sharing schemes(NMSS) were introduced by Goyal and
Kumar [GK18a]. They ensure that if the shares of an authorised set are tampered, then re-
construction of these tampered shares is either same as the original secret or it is some inde-
pendent of the original secret. Since their introduction, NMSS received wide attention with a
long line of work [GK18a,GK18b,SV19,BS19,FV19,ADN+19,BFV19,KMS19,LCG+19,KMZ20],
[CGGL20,CKOS20]. NMSS are built specific to the class of tampering that the shares undergo.
This is because without any restriction of the tampering it is impossible to build NMSS as the
tampering function can take all the shares of an authorised set and reconstruct m, compute the
shares of m + 1 with respect to this authorised set and sets them as the tampered shares. In
this case, the reconstruction of the tampered shares will give m+ 1, which is not same as m but
is very much related to m. Tampering families that were studied so far in the context of NMSS
are a)independent tampering : tampering of a share depends solely on itself and is independent
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of the other shares b) joint tampering : tampering of a share can depend on few other shares c)
affine tampering : All shares can be tampered together, but the tampering function is restricted
to be an affine function.

Locality Reconstructability/Recoverability. Inspired from the (well studied) notion of local-
ity in the context of codes (error correcting codes [KT00,CKO14] and Non-malleable codes
[DSLSZ15,CKR16,DSKS18]), we study the notion of local reconstructability in the context of
secret sharing schemes. A secret sharing scheme is locally reconstructable, if it facilitates re-
trieval of a portion of the underlying secret such that one does not need to read through the
entire share of each party in an authorised set but instead can just read a few locations from
shares of parties in the authorised set.

1.1 Our Result

– We define the notion of locally reconstructable non-malleable secret sharing schemes(inspired
from [DSLSZ15]), which are non-malleable secret sharing schemes infused with the fea-
ture of local reconstructability. Suppose the secret to be shared is parsed as a sequence of
blocks m = (m1, · · · ,mk). Assume m is shared, the shares are (possibly) tampered and let
m̃ = (m̃1, · · · , m̃k) denote the reconstruction of the tampered shares. The non-malleability
guarantee is that, either m̃ is independent of m or there exists an efficiently samplable set
description I ⊂ {1, · · · , k} (independent of m) such that for i ∈ I, m̃i = ⊥ and for i /∈ I,
m̃i = mi.

– We show how to compile any non-malleable secret sharing scheme secure against some tam-
pering model Fnm into a locally reconstructable Non-malleable secret sharing scheme.

– Our tampering model: The above compiled scheme is non-malleable against the following
tampering family. Parse each share shi as consisting two parts ai and bi, i.e shi = (ai, bi). bi’s
(for i ∈ {1, · · · , n}) can be tampered jointly and arbitrarily but independent of any aj . All
ai’s can be tampered together as per the tampering allowed by the underlying non-malleable
secret sharing i.e by any f ∈ Fnm. In addition, we can allow the description of this tampering
function to depend on the values (b1, · · · , bn). Below we give a pictorial representation of
our tampering model. We will call this family as the Lookahead family as tampering of ai’s
can depend on bi’s but not vice-versa1.

Fig. 1. Lookahead tampering. Solid arrows signify that the tampering function of ai’s (which is f) can depend
on bi’s.

1 While this may seem like an artificial model of tampering, we indeed show an application of this model to a
non-malleable secure message transmission protocol.
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– Parameters: Let each block of the message be ρ bits long, where ρ is some polynomial in the
computational security parameter λ. Upon appropriate instantiation, we have an LRNMSS
with share length of each party being k(ρ + log k + 2λ) + r(2λ), where r(α) is denotes the
length of a share of the underlying NMSS upon sharing an α-bit secret. Asymptotically,
for long messages the rate( message length

share length per party) of the compiled locally reconstructable NMSS

is 1
1+o(1) when (log k � ρ). To locally reconstruct any particular block, each party of an

authorised set needs to read only ρ + log k + r(2λ) + 2λ bits. Note that this quantity only
depends logarithmically on k.

– Non-malleable secure message transmission in the pre-processing model: We show
an application of our locally reconstructable non-malleable secret sharing scheme to a com-
putational non-malleable message transmission protocol, in the pre-processing model (where
a sender and a receiver communicate, first in a message-independent offline phase and then
in a message dependent online phase). We show that a combination of our locality feature
and the pre-processing, helps us improve communication, specially when the sender wants
to transmit multiple messages.

1.2 Technical Overview

We parse the secret to be shared as a sequence of blocks (typically of same length) m =
(m1, · · · ,mk). Let NMShare denote the non-malleable secret sharing scheme to be compiled into
a locally reconstructable NMSS. Let Encrypt be any symmetric key authenticated encryption
scheme. Then our compiler proceeds as follows.

– Choose an authentication encryption key K

– Secret share K using NMShare. Let a1, · · · , an be the shares.

– Encrypt each block mi (i ∈ {1, · · · , k}) along with its location stamp, ci ← EncryptK(mi||i).
– For all i ∈ {1, · · · , n}, set bi = (c1, c2, · · · , ck)
– Output shi = (ai, bi)

The scheme is locally reconstructable as to recover (say) jth block, the authorised set of parties
need to put together only (their respective)ai’s and cj(which is given to them as part of bi).
Then they can check the consistency of these cj ’s, reconstruct K and decrypt cj using K to
obtain mj . If any of the above checks fail, the parties abort. This reconstruction procedure can
be naturally extended to recover all the blocks. The works of [Kra93,AAG+16,CFV19,FV19]
use similar techniques to improve the rate, while the focus of our work is to achieve locality.

Now we provide a very brief idea of why the above scheme is non-malleable. Suppose even
after tampering, if the tampered authenticated encryption key remained the same, then any
tampering of the ciphertexts would be detected by the integrity of authenticated encryption.
If the tampered authenticated key turns out to be independent of K, then all the information
about K is lost in the shares, and the ciphertexts do not reveal anything about the messages
they encrypt by the indistinguishability of encryption. We provide more details in the technical
sections.

Our tampering model does not allow the tampering of ciphertexts to depend on shares
of the encryption key. Allowing this kind of tampering will result in the tampered ciphertexts
depending indirectly on the encryption key, which would break the encryption security. Although
our scheme can be made secure against individual tampering by using secret sharing schemes
with stronger security guarantees (e.g. leakage resilient schemes) as the underlying scheme, this
trail would worsen the rate and deviate from our focus on building a rate-1 scheme.

While the above model for tampering our scheme seems artificial, it is indeed natural when
we apply it in the context of secure message transmission. Particularly, we will send the shares
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a1, · · · , an of the key K in the offline phase (independent of the message to be transmitted) and
then send the ciphertext ci corresponding to message mi in the online phase. Here, the online
tampering of the ciphertext, indeed will be independent of the offline transmissions.

1.3 Organization of the paper

We provide preliminaries in Section 2. Then, we present our LRNMSS definition in Section
3.1 . We define the tampering model in Section 3.2. Our construction and security proof of
the locally reconstructable non-malleable secret sharing scheme appears in Section 3.3 and
Section 3.4, respectively. We also explain how to instantiate the construction in Section 3.5. In
Section 4, we provide an application for our LRNMSS scheme to a non-malleable secure message
transmission protocol in the pre-processing model.

2 Preliminaries

2.1 Notations

The set of all natural numbers is denoted by N. x ← X denotes sampling from a probability
distribution X. All logarithms are base 2. For any two sets S and S′, S\S′ := {x : x ∈ S, x 6∈ S′},
is the set of elements in S that are not in S′. Let [n] denote the set {1, 2, . . . , n}. Let [n] represents
the set of all elements. Then, the complement of the set I denoted by Ī := {x : x ∈ [n], x 6∈ I}
is the set of all the elements that are not in I. For any set T ⊆ [n] and a function f outputting
n-tuples, f(.)T represents the output of f restricted to the set T . negl(x) represents negligible
function in x. For any two distributions A and B, A ≈c B means that the distributions A and
B are computationally indistinguishable.

2.2 Authenticated Encryption

An encryption scheme consists of a tuple of polynomial-time algorithms E =
(Gen,Encrypt,Decrypt) with key space K, message space M and ciphertext space C such that:

– The randomized algorithm Gen takes as input the security parameter λ ∈ N and outputs a
uniform key sk ∈ K.

– The randomized algorithm Encrypt takes as input a key sk ∈ K and a message m ∈M and
outputs a ciphertext c ∈ C.

– The deterministic algorithm Decrypt takes as input a key sk ∈ K and ciphertext c ∈ {0, 1}∗
and outputs a value m ∈M∪ {⊥}, where ⊥ denotes an invalid ciphertext.

Definition 1 ([KY00,BN00,BR00]). An encryption scheme E = (Gen,Encrypt,Decrypt) is
called a symmetric-key authenticated encryption scheme if it satisfies the following properties:

1. Correctness. For all m ∈M,

Pr[sk ← Gen(1λ);Decryptsk(Encryptsk(m)) = m] = 1

(where probability is taken over randomness of Gen and Encrypt)

2. Semantic Security. For any non-uniform PPT adversary A, it holds that |2 ·AdvprivE (A)−
1| = negl(λ), where

AdvprivE = Pr[sk ← Gen(1λ); b← {0, 1} : ALRsk,b(·,·)(1λ) = b].

Here, the left-or-right encryption oracle LRsk,b(·, ·) with b ∈ {0, 1} and inputs m0,m1 ∈ M
for |m0| = |m1|, is defined as:
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LRsk,b(m0,m1) := Encryptsk(mb).

3. Authenticity. For any non-uniform PPT adversary A, it holds that AdvauthE (A) = negl(λ)
where

AdvauthE (A) = Pr[sk ← Gen(1λ), c← AEncryptsk(·) : c /∈ Q ∧ Decryptsk(c) 6= ⊥]

where Q is list of ciphertexts received by A through the encryption oracle.

2.3 Secret Sharing Schemes

We will be considering computational secret sharing scheme throughout this paper.

Definition 2. Let M be finite set of secrets, where |M| ≥ 2. A scheme Σ = (Share,Rec)
consists of a randomized sharing function Share : M → S1 × · · · × Sn which takes as input a
secret M ∈ M and outputs n shares (s1, . . . , sn) where each si ∈ Si. The scheme Σ is called a
(t, n)-threshold secret sharing scheme with message space M if the following properties hold:

1. Correctness. For any set T ⊆ [n] such that |T | ≥ t, there exists a deterministic reconstruc-
tion function Rec : ⊗i∈TSi →M such that for every M ∈M,

Pr[Rec(Share(M)T ) = M ] = 1

(over the randomness of the sharing function)
2. Privacy (Computational). For any set U ⊆ [n] such that |U | < t, and for every pair of

secrets M0,M1 ∈M,

{Share(M0)U} ≈c {Share(M1)U}

2.4 Non-malleable Secret Sharing Schemes

Non-malleable secret sharing schemes were first studied in [GK18a]. We will be considering the
computational variant of their definition.

Definition 3. Let Σ = (Share,Rec) be a (t, n)-secret sharing scheme for message space M. Let
F ⊆ {f : S1 × · · · × Sn → S1 × · · · × Sn} be some family of tampering functions. The scheme
is said to be non-malleable w.r.t F if for each f ∈ F and set T ⊆ [n] such that |T | = t, there
exists a distribution NMSimf,T such that ∀m ∈M,

NMTamperf,Tm ≈c NMIdealNMSimf,T

m

where NMTamperf,Tm and NMIdealNMSimf,T

m are distributions defined as below:

NMTamperf,Tm =


shares← Share(m)

s̃hares← f(shares)

m̃← Rec(s̃haresT )
Output m̃


NMIdealNMSimf,T

m =


m̃← NMSimf,T

If m̃ = same∗, Output m
Else, Output m̃


3 Locally Reconstructable Non-malleable Secret Sharing

Scheme(LRNMSSS)

In this section, we define and construct non-malleable secret sharing scheme with local recon-
strcutability. Intuitively, this gives a way to secret share blocks of messages such that in order
to recover a single block of message, a small number of bits from each share in a reconstruction
set is needed.
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3.1 LRNMSS - Definition

Definition 4. (LRNMSSS) Let (Share,Rec) be a (t, n)-secret sharing scheme for message
space M. The scheme Σ = (Share, Local,Rec) is called a (t, n, p)-locally reconstructable non-
malleable secret sharing scheme for with message space M = M1 × · · · × Mk and Mi ⊆
{0, 1}ρ ∀i ∈ [k] if:

1. Local Reconstruction. For any M = (m1, . . . ,mk) ∈M where mi ∈Mi ∀i ∈ [k], for any
i ∈ [k] and for any set T ⊆ [n] such that |T | ≥ t, there exists a deterministic function Local
such that,

Pr[LocalShare(M)T (i) = mi] = 1

where Local reads at most p bits from each share in T .

2. Non-malleability. Let F be some family of tampering functions. The scheme is said to be
non-malleable w.r.t F if for each f ∈ F and set T ⊆ [n] such that |T | = t, there exists a
distribution Simf,T such that ∀M ∈M,

Tamperf,TM ≈c IdealSim
f,T

M

where Tamperf,TM and IdealSim
f,T

M are distributions defined as below:

Tamperf,TM =


shares← Share(M)

s̃hares← f(shares)

M̃ ← Rec(s̃haresT )

Output M̃



IdealSim
f,T

M =


(I∗,M∗)← Simf,T

If I∗ = [k], set M̃ = M∗

Else, set M̃ |I∗ = ⊥ and M̃ |I∗ = M |I∗
Output M̃


Now we describe the tampering model we consider in this paper.

3.2 Our Model - Lookahead Tampering

The message is partitioned into k blocks of length ρ. Let Share be a sharing function which
takes as input a message M ∈ {0, 1}kρ and outputs n shares, namely share1, . . . , sharen where
each sharei ∈ {0, 1}γ̂ × {0, 1}kρ̂. Each share can be viewed as k + 1 blocks2. The first block
is of length γ̂ and next k blocks are of length ρ̂. Let Fnm(⊆

{
f f : {0, 1}nγ̂ → {0, 1}nγ̂

}
) be

some set of tampering functions. We define a lookahead tampering family F specific to Fnm.
The tampering function family consists of functions of the form (f1, f2) where f1 takes as input
the first blocks of the shares under the constraint that f1 ∈ Fnm. The rest of the blocks in the
shares are hardwired in function f1. The function f2 takes as input the last k blocks of all the
shares.
Our tampering family is defined as :

F =

{
f : (f1, f2) ∀(x1, . . . , xnk) ∈ {0, 1}nkρ̂, f1(·, x1, . . . , xnk) ∈ Fnm,

f2 : {0, 1}nkρ̂ → {0, 1}nkρ̂
}

2 To have correspondence with the explanation in the introduction, one can consider the first block of each share
to be ai and the remaining k blocks to be bi.
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3.3 Our Construction

We use the following building blocks for the LRNMSS compiler.

1. A symmetric key authenticated encryption scheme E = (Gen,Encrypt,Decrypt) as in Def. 1
with key space K ⊆ {0, 1}γ , message space M ⊆ {0, 1}ρ+log k, where k is the number of
message blocks defined in Def. 4 and ciphertext space C ⊆ {0, 1}ρ̂.

2. A non-malleable secret sharing scheme Σ′ = (NMSharetn,NMRectn), which is non-malleable
w.r.t Fnm as in Def. 3 with message space M⊆ {0, 1}γ and share-space Si ⊆ {0, 1}γ̂ for all
i ∈ [n].

Our construction combines a symmetric key authenticated encryption scheme(Def. 1) and a
non-malleable secret sharing scheme (Def. 3) to obtain a locally reconstructable non-malleable
secret sharing scheme(Def. 4).
Upon receiving a message having k blocks, Share function generates a key using the Gen function
of the authenticated encryption and then encrypts each of the message block along with its index
using the key. The key is shared using a non-malleable secret sharing scheme. A share of the
key along with the ciphertexts constitutes a share of LRNMSSS.
On input an index i, Local function reads first and (i+1)th block of every share in a reconstruction
set. Using the first blocks, Local recovers key using NMRectn function of the non-malleable secret
sharing. A consistency check is also made to make sure that all the (i+1)th blocks are the same.
The (i+ 1)th block is decrypted using the recovered key. It performs a check to make sure that
the index decrypted is the same as input index. Local outputs decrypted message block.
Rec function reads the shares in a reconstruction set and parses the shares as k + 1 blocks.
First block correspond to the shares of the key. Using NMRectn, it recovers the key . It performs
consistency checks to make sure that all the ciphertext corresponding to an index are same. Rec
outputs the concatenation of the decrypted messages.
The LRNMSS compiler is defined as:

Share(M): On input M = (m1,m2, . . . ,mk),

1. sk ← Gen(1λ).
2. ej ← Encryptsk(mj , j) ∀j ∈ [k].
3. (sk1, . . . , skn)← NMSharetn(sk).
4. Output sharei = (ski, e1, . . . , ek).

LocalshareT (j) : For any reconstruction set T = {i1, . . . .it} ⊆ [n] such that |T | ≥ t,
ski and eij represents the first and (j + 1)th block of sharei respectively. Local reads

(ski1 , e
i1
j ), . . . , (skit , e

it
j ) from shareT on input index j ∈ [k] and evaluates,

1. If ∃ ia, ib s.t. eiaj 6= eibj , output ⊥ and terminate.
2. Else, recover sk ← NMRectn(ski1 , . . . , skit).
3. Recover (m̃j , j̃)← Decryptsk(e

i1
j ).

(a) If j̃ 6= j, output ⊥ and terminate.
4. Output m̃j .

Rec(shareT ) : For any reconstruction set T = {i1, . . . .it} ⊆ [n] such that |T | ≥ t and input
shareT = sharei1 , . . . , shareit ,

1. Parse shareij as (skij , e
ij
1 , . . . , e

ij
k ).

2. sk ← NMRectn(ski1 , . . . , skit).
3. For each j ∈ [k],
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(a) If ∃ ia, ib s.t. eiaj 6= eibj , set m̃j = ⊥.

(b) Else, (m̃j , j̃)← Decryptsk(e
i1
j ).

i. If j̃ 6= j, set m̃j = ⊥.
4. Output m̃1, . . . , m̃k.

3.4 Security Analysis

Theorem 1. Let E = (Gen,Encrypt,Decrypt) be a symmetric key authenticated encryption
scheme with ciphertext space C ⊆ {0, 1}ρ̂, Σ′ = (NMSharetn,NMRectn) be a (t, n) non-malleable
secret sharing scheme which is non-malleable w.r.t Fnm with share space Si ⊆ {0, 1}γ̂ for all
i ∈ [n]. Then, the scheme Σ = (Share, Local,Rec) defined above is a (t, n, γ̂ + ρ̂)-locally recon-
strcutable non-malleable secret sharing scheme which is non-malleable with respect to F , the
lookahead family specific to Fnm.

Proof. Correctness. The correctness of the scheme follows from the correctness of the
underlying secret sharing scheme and encryption scheme.

Local Reconstruction. On input an index i, Local function reads first block and i+ 1th block
of the shares in a reconstrution set T . It recovers key from the first blocks of the shares using
NMRectn. That would require Local to read γ̂ bits from each share in T .
Local then checks if the i + 1th block of each share in T are same or not.This would require
Local to read ρ̂ bits from each share in T . If yes, the i+ 1th ciphertext block is decrypted using
the recovered key. It performs a check to make sure that i + 1th ciphertext block corresponds
to the message block mi. It checks if the decrypted index is the same as input index.
Thus, Local needs to read p = (γ̂ + ρ̂) bits from each share in T . Total number of bits to be
retrieved to reconstruct a single block mi is t(γ̂ + ρ̂).

Privacy. Let T ⊂ [n] with |T | < t, be an arbitrary set. We wish to show that for any two
messages M0,M1 ∈M,Share(M0)T ≈c Share(M1)T .

We show this through a sequence of hybrids:

– Hybrid0: This corresponds to the shares of M0 = (m0
1, . . . ,m

0
k) in the set T . Generate sk ←

Gen(1λ). Further, ej ← Encryptsk(m
0
j , j) for j ∈ [k] and (sk1, . . . , skn)← NMSharetn(sk). Set

sharei = (ski, e1, . . . , ek) for each i ∈ T . Output {sharei}i∈T .
– Hybrid1: Generate a new key sk′ ← Gen(1λ) and replace the shares of sk in the set T with

the shares of sk′.
Generate sk ← Gen(1λ) and sk′ ← Gen(1λ). Further, ej ← Encryptsk(m

0
j , j) for j ∈ [k]

and (sk′1, . . . , sk
′
n) ← NMSharetn(sk′). Set sharei = (sk′i, e1, . . . , ek) for each i ∈ T . Output

{sharei}i∈T .
– Hybrid2: Replace the encryptions of message M0 with encryptions of message M1 =

(m1
1, . . . ,m

1
k).

Generate sk ← Gen(1λ) and sk′ ← Gen(1λ). Further, e′j ← Encryptsk(m
1
j , j) for j ∈ [k]

and (sk′1, . . . , sk
′
n) ← NMSharetn(sk′). Set sharei = (sk′i, e

′
1, . . . , e

′
k) for each i ∈ T . Output

{sharei}i∈T .
– Hybrid3: This corresponds to the shares of M1 = (m1

1, . . . ,m
1
k) in the set T . Generate sk ←

Gen(1λ). Further, e′j ← Encryptsk(m
1
j , j) for j ∈ [k] and (sk1, . . . , skn)← NMSharetn(sk). Set

sharei = (ski, e
′
1, . . . , e

′
k) for each i ∈ T . Output {sharei}i∈T .

Here, Hybrid0 ≡ Share(M0)T and Hybrid3 ≡ Share(M1)T .
By the computational privacy of Σ′ = (NMSharetn,NMRectn), we get Hybrid0 ≈c Hybrid1 and by
the semantic security of E = (Gen,Encrypt,Decrypt), it follows Hybrid1 ≈c Hybrid2. Finally, again
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by the computational privacy of Σ′ = (NMSharetn,NMRectn), it follows Hybrid2 ≈c Hybrid3.
Thus, Share(M0)T ≡ Hybrid0 ≈c Hybrid1 ≈c Hybrid2 ≈c Hybrid3 ≡ Share(M1)T .

Non-malleability. To show the non-malleability of our scheme, we need to show that ∀ f ∈ F ,
∀ T ⊆ [n] such that |T | = t , ∃ Simf,T such that ∀M ∈M

Tamperf,TM ≈c IdealSim
f,T

M

For any f = (f1, f2) ∈ F and any reconstruction set T = {i1, . . . , it}, we begin by describing
the simulator Simf,T .
For each (e1, . . . , ek) ∈ {0, 1}kρ̂, we define a function g : {0, 1}nγ̂ → {0, 1}nγ̂ , hardwired with
n copies of (e1, . . . , ek), as g(x) = f1(x, (e

i
1, . . . , e

i
k)i∈[n]),∀x ∈ {0, 1}nγ̂ where (ei1, . . . , e

i
k) =

(e1, . . . , ek), ∀i ∈ [n]. Hence, by definition of F , g ∈ Fnm. Let NMSimg,T be the simulator for
the underlying NMSS (which is non-malleable w.r.t Fnm) and φ denote the empty string.

Simf,T :

1. sk ← Gen(1λ).
2. ej ← Encryptsk(0

ρ+log k) ∀j ∈ [k].
3. Set eij = ej ∀j ∈ [k],∀i ∈ [n] and hardwire them in g.

4. s̃k ← NMSimg,T .
5. If s̃k = same∗,

(a) (ẽi1, . . . , ẽ
i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

(b) I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
(c) I1 = {j : ∃ic ∈ T s.t. ẽicj 6= ej and ∀ia, ib ∈ T, ẽiaj = ẽibj }.
(d) Set (I∗,M∗) = (I ∪ I1, φ).

6. Else,
(a) (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

(b) I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
(c) ∀j ∈ I, set m̃j = ⊥.
(d) ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1j ).

i. If j̃ 6= j, set m̃j = ⊥.
(e) Set (I∗,M∗) = ([k], m̃1, . . . , m̃k).

7. Output (I∗,M∗).

For any f = (f1, f2) ∈ F , any reconstruction set T = {i1, . . . , it} and any message M =

(m1, . . . ,mk) ∈M, we define the tamper distribution, Tamperf,TM as below.

Tamperf,TM :

1. sk ← Gen(1λ).
2. ej ← Encryptsk(mj , j) ∀j ∈ [k].
3. Set eij = ej ∀j ∈ [k],∀i ∈ [n].
4. (sk1, . . . , skn)← NMSharetn(sk).
5. sharei = (ski, e

i
1, . . . , e

i
k).

6. (s̃hare1, . . . , s̃haren)← f(share1, . . . , sharen).

7. Parse s̃harei as (s̃ki, ẽ
i
1, . . . , ẽ

i
k) ∀i ∈ [n].

8. s̃k ← NMRectn(s̃ki1 , . . . , s̃kit).
9. For each j ∈ [k]

(a) If ∃ ia, ib ∈ T s.t. ẽiaj 6= ẽibj , set m̃j = ⊥.
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(b) Else, (m̃j , j̃)← Decrypt
s̃k

(ẽi1j ).

i. If j̃ 6= j, set m̃j = ⊥.
10. Output m̃1, . . . , m̃k.

Now, through a sequence of hybrids, we show that the Tamperf,TM and IdealSim
f,T

M are computa-
tionally indistinguishable.
We define the first hybrid, which only has some notational changes with respect to Tamperf,TM
and is equivalent to it.
Rewriting Tamperf,TM as Hybrid1f,TM : Hybrid1f,TM is the same as the tampering experiment with
few differences. We expand the function f giving f1 and f2. Then, f2 is placed after the non-
malleable secret reconstruction, because NMRectn doesn’t depend on the output of f2. A new
variable I is also defined to maintain the indices having inconsistent ciphertexts.
Steps (5)− (10) of Tamperf,TM is replaced with the following steps (5)− (10) in Hybrid1f,TM .

5. s̃k1, . . . , s̃kn ← f1(sk1, . . . , skn, (e
i
1, . . . , e

i
k)i∈[n]).

6. s̃k ← NMRectn(s̃ki1 , . . . , s̃kit).
7. (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

8. I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
9. (a) ∀j ∈ I, set m̃j = ⊥.

(b) ∀j /∈ I, (m̃j , j̃)← Decrypt
s̃k

(ẽi1j ).

i. If j̃ 6= j, set m̃j = ⊥.
10. Output m̃1, . . . , m̃k.

Claim. For any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t,

Tamperf,TM ≡ Hybrid1f,TM

Proof. Clearly, only the notations were modified in Hybrid1f,TM and the distribution remains the

same. Hence Tamperf,TM is identical to Hybrid1f,TM .

In our next hybrid, we use the non-malleability of our underlying NMSS. Hence, we replace the
tamper distribution of the underlying NMSS with its simulator.

Going from Hybrid1f,TM to Hybrid2f,TM : Hybrid2f,TM is the same as Hybrid1f,TM , except that the sim-

ulator, NMSimg,T , for the underlying NMSS, Σ′ = (NMSharetn,NMRectn), is used to generate the

tampered key s̃k.
Steps (4)− (6) of Hybrid1f,TM is replaced with the following steps (4)− (5) in Hybrid2f,TM .

4. s̃k ← NMSimg,T .
5. If s̃k = same∗, set s̃k = sk.

Claim. If Σ′ = (NMSharetn,NMRectn) is a non-malleable secret sharing scheme w.r.t. Fnm, then
for any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t,

Hybrid1f,TM ≈c Hybrid2f,TM

Proof. If the two hybrids are computationally distinguishable, we can build an adversary A
breaking the non-malleable property of the Σ′. Let D be the distinguisher that can distinguish
between Hybrid1f,TM and Hybrid2f,TM .
The adversary A is defined as follows:

1. A generates sk ← Gen(1λ).
2. A computes ej ← Encryptsk(mj , j) for j ∈ [k].

10



3. Set eij = ej ∀j ∈ [k],∀i ∈ [n].

4. A sends sk, g, (ei1, . . . , e
i
k)i∈[n] to the challenger.

5. A after receiving challenge s̃k from the challenger, does the following:
(a) (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n])

(b) I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}
(c) ∀j ∈ I, set m̃j = ⊥
(d) ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1j )

i. If j̃ 6= j, set m̃j = ⊥.
(e) Sends D(m̃1, . . . , m̃k) to the challenger.

If the challenge corresponds to the output of the tampered experiment NMTamperg,Tsk , then D

will be invoked with distribution corresponding to Hybrid1f,TM . Otherwise, D will be invoked

with distribution corresponds to the simulated experiment NMIdealNMSimg,T

sk . This contradicts
the non-malleability property of Σ′.

In the next hybrid, we only make a few notational changes, leading to an identical distribution.
Rewriting Hybrid2f,TM as Hybrid3f,TM : In Hybrid3f,TM , s̃k = same∗ and s̃k 6= same∗ are considered

as two different cases. When s̃k = same∗, a new variable I1 is defined to maintain the indices
having consistent, but tampered ciphertexts. For all the indices other than those in I ∪ I1, the
key and the ciphertexts were not tampered. Decrypt outputs the original message block, mi, at
those indices.
Steps (5)− (10) of Hybrid2f,TM is replaced with the following steps (5)− (7) in Hybrid3f,TM .

5. If s̃k = same∗,
(a) (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

(b) I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
(c) I1 = {j : ∃ic ∈ T s.t. ẽicj 6= ej and ∀ia, ib ∈ T, ẽiaj = ẽibj }.
(d) ∀j ∈ I, set m̃j = ⊥.
(e) ∀j ∈ I1, (m̃j , j̃)← Decryptsk(ẽ

i1
j ).

i. If j̃ 6= j, set m̃j = ⊥.
(f) ∀j /∈ I ∪ I1, set m̃j = mj .

6. Else,
(a) (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

(b) I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
(c) ∀j ∈ I, set m̃j = ⊥.
(d) ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1j ).

i. If j̃ 6= j, set m̃j = ⊥.
7. Output m̃1, . . . , m̃k.

Claim. For any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t indices,

Hybrid2f,TM ≡ Hybrid3f,TM .

Proof. The only difference between these hybrids are that instead of a single case in Hybrid2M
f,T ,

two cases were introduced in Hybrid3f,TM with both the cases executing the same steps. Hence,
they are identical distributions.

In our next hybrid, we use the authenticity property of the underlying authenticated encryption
scheme in order to completely remove the use of the original secret key sk.

Going from Hybrid3f,TM to Hybrid4f,TM : In Hybrid4f,TM , the decrypted messages corresponding to
the indices in the set I1 are set to ⊥.
Step 5(e) in Hybrid3f,TM is replaced with the following step in Hybrid4f,TM .
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5. (e) ∀j ∈ I1, set m̃j = ⊥.

Claim. If E = (Gen,Encrypt,Decrypt) is an authenticated symmetric key encryption scheme,
then for any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t,

Hybrid3f,TM ≈c Hybrid4f,TM .

Proof. If the hybrids are computationally distinguishable, we can build an adversary which can
break the authenticity property of the encryption scheme. Note that the two hybrids differ only
in the case where s̃k = same∗ and the set I1 is non-empty and are identical otherwise. Pick a
message M = (m1, . . . ,mk) ∈M for which the two hybrids are distinguishable.
Adversary A, which can compute a valid new ciphertext, is defined as:

1. A sends (mj , j)j∈[k] as queries to the challenger.
2. A on receiving e1, . . . , ek from the challenger, does the following

(a) Set eij = ej ∀j ∈ [k], ∀i ∈ [n].

(b) s̃k ← NMSimg,T .
(c) (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

(d) I1 = {j : ∃ic ∈ T s.t. ẽicj 6= ej and ∀ia, ib ∈ T, ẽiaj = ẽibj }.
(e) A sends (ẽi1j )j∈I1 to the challenger.

From our assumption that the two hybrids are distinguishable, we know that there exists some
j ∈ I1 such that the corresponding ciphertext ẽi1j is valid, i.e., Decryptsk(ẽ

i1
j ) 6= ⊥. Since j ∈ I1,

we know that ẽiaj = ẽibj for all ia, ib ∈ T and ẽi1j 6= ej . Moreover, because of the index j being

appended to the message, ẽi1j 6= eq, for each q ∈ [k]. This implies that the adversary A outputs
a valid ciphertext, which it did not receive as a challenge, hence breaking the authenticity of
the encryption.

Next, we use the semantic security of the authentication scheme to move to a hybrid where, the
actual message is no longer used in the encryption.

Going from Hybrid4f,TM to Hybrid5f,TM : In Hybrid5f,TM , the ciphertexts corresponding to M are re-

placed with the ciphertexts corresponding to 0ρ+log k.
Step 2 in Hybrid4f,TM is replaced with the following step in Hybrid5f,TM .

2. ej ← Encryptsk(0
ρ+log k) ∀j ∈ [k]

Claim. If E = (Gen,Encrypt,Decrypt) is an authenticated encryption scheme, then for any M ∈
M, f ∈ F , and any set T ⊆ [n] such that |T | = t,

Hybrid4f,TM ≈c Hybrid5f,TM .

Proof. Assume to the contrary that, there exists M ∈ M and a distinguisher D that can
distinguish between the hybrids Hybrid4f,TM and Hybrid5f,TM . The distinguisher D can be used
to construct another distinguisher D1 which violates the semantic security of the underlying
encryption scheme E .
The distinguisher D1 is defined as follows:

1. D1 sets M0 = (mj , j)j∈[k], M1 = 0k(ρ+log k).
2. D1 sends (M0,M1) to the challenger.
3. D1 on receiving (e1, . . . , ek) from the challenger, does the following,

(a) Set eij = ej ∀j ∈ [k], ∀i ∈ [n].

(b) s̃k ← NMSimg,T .
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(c) If s̃k = same∗,
i. (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

ii. I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
iii. I1 = {j : ∃ic ∈ T s.t. ẽicj 6= ej and ∀ia, ib ∈ T, ẽiaj = ẽibj }.
iv. ∀j ∈ I, set m̃j = ⊥ .
v. ∀j ∈ I1, set m̃j = ⊥.
vi. ∀j /∈ I ∪ I1, set m̃j = mj .

(d) Else,
i. (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

ii. I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
iii. ∀j ∈ I, set m̃j = ⊥.
iv. ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1j ).

A. If j̃ 6= j, set m̃j = ⊥.
(e) D1 sends D(m̃1, . . . , m̃k) to the challenger.

If the challenge corresponds to the ciphertext of M0, then D will be invoked with the distribu-
tion corresponding to Hybrid4f,TM . Otherwise, the distribution corresponds to Hybrid5f,TM . This
contradicts the semantic security of E .

We finally make some notational changes to the above hybrid, to get an identical distribution,
which would be IdealSim

f,T

M .

Rewriting Hybrid5f,TM as Hybrid6f,TM : The new variable I∗ represents the set of tampered indices.
If shares are entirely tampered, the output will be independent of the original message. If the
tampering function doesn’t change first blocks of shares, then any modification will output ⊥.
I∗ keeps track of these indices. The simulator for the LRNMSSS outputs tampered indices along
with message vector. If the shares are entirely tampered, Hybrid6f,TM will output the message

vector which is independent of original message. If the first block is not tampered, the Hybrid6f,TM
outputs ⊥ at indices in I∗ and original messages for other indices.
Steps (5)− (7) of Hybrid5f,TM are replaced with the following steps in Hybrid6f,TM

5. If s̃k = same∗,
(a) (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

(b) I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
(c) I1 = {j : ∃ic ∈ T s.t. ẽicj 6= ej and ∀ia, ib ∈ T, ẽiaj = ẽibj }.
(d) Set (I∗,M∗) = (I ∪ I1, φ).

6. Else,
(a) (ẽi1, . . . , ẽ

i
k)i∈[n] ← f2((e

i
1, . . . , e

i
k)i∈[n]).

(b) I = {j : ẽiaj 6= ẽibj for some ia, ib ∈ T}.
(c) ∀j ∈ I, set m̃j = ⊥.
(d) ∀j /∈ I, (m̃j , j̃)← Decrypt

s̃k
(ẽi1j ).

i. If j̃ 6= j, set m̃j = ⊥.
(e) Set (I∗,M∗) = ([k], m̃1, . . . , m̃k).

7. If I∗ = [k], set M̃ = M∗.

8. Else, set M̃ |I∗ = ⊥ and M̃ |I∗ = M |I∗ .
9. Output M̃ .

Claim. For any M ∈M, f ∈ F , and any set T ⊆ [n] such that |T | = t indices,

Hybrid5f,TM ≡ Hybrid6f,TM .
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Proof. When I∗ = [k], key can be tampered or not. If the key was tampered, M∗ stores the

messages decrypted using the tampered key at all the indices. Hybrid5f,TM also outputs the
decrypted messages at all indices when the key is tampered. If the key was not tampered, M∗

stores empty vector. Hybrid6f,TM outputs M∗ in that case. If I∗ = [k], then I∪I1 = [k]. Hybrid5f,TM
outputs ⊥ at all the indices.
When I∗ 6= [k], key was not tampered. Both the hybrids output ⊥ at those indices in I∗ = I∪I1.
On all the other indices, Hybrid5f,TM and Hybrid6f,TM outputs original message corresponding to

their indices. Both the hybrids behave the same for all the cases. Thus, Hybrid5f,TM and Hybrid6f,TM
are identical.

From our description of the simulator, Simf,T , clearly Hybrid6f,TM is the same as IdealSim
f,T

M .
By the previous claims, we get
Tamperf,TM ≡ Hybrid1f,TM ≈c Hybrid2f,TM ≡ Hybrid3f,TM ≈c Hybrid4f,TM
Hybrid4f,TM ≈c Hybrid5f,TM ≡ Hybrid6f,TM ≡ IdealSimf,T

M

3.5 Instantiation

Let the secret to be shared in LRNMSS consists of k blocks, with size of each block ρ, where
ρ is some polynomial in the computational security parameter λ. Let (NMSharetn,NMRectn) be
a NMSS with length of the each share being r(α) when a α-bit secret is shared. Authenticated
encryption (Gen,Encrypt,Dec) scheme is instantiated with Encrypt-and-authenticate scheme
mentioned in Section 4.5 of [KL14] . We let the encryption key, randomness and tag to be
of length 2λ, λ and λ respectively. The encryption scheme takes messages of length ρ + log k,
outputs a ciphertext of length ρ+ log k + 2λ.

– For messages of length kρ, a single share of LRNMSS will be of length k(ρ+log k+2λ)+r(2λ).

– Thus, the rate of LRNMSS is kρ
k(ρ+log k+2λ)+r(2λ) .

– For long messages, rate = 1
1+o(1) assuming log k � ρ.

– For local reconstruction, Local is required to read ρ+ log k+ 2λ+ r(2λ) bits from each share
in a reconstruction set.

4 Computational Non-malleable Multi-message Transmission in the
Pre-processing Model

Perfectly secure message transmission (SMT) was introduced in [DDWY93], where a sender S
wants to transmit a message m to a receiver R, through n wires between them, ensuring that
perfect secrecy is guaranteed, even in the presence of an eavesdropping adversary looking at
a bounded number of wires, and perfect resiliency is guaranteed, even in the presence of an
adversary controlling a bounded number of wires completely. Post their introduction, SMTs
have been studied in several works [DDWY93,SNR04,WD08,KS09,KKVS18]. Non-malleable
secure message transmission (NMSMT) was introduced in [GK18a], where the goal is to guar-
antee non-malleability in the presence of an adversary who can tamper all n wires according to
some tampering model (i.e., the tampered message m′ is guaranteed to be either same as the
original message m, or is completely independent of it). Further, they build NMSMTs using
non-malleable secret sharing schemes.

In this work, we show an application of our LRNMSS scheme to build a computational SMT
protocol in the pre-processing model, that allows the sender and receiver to communicate in
two phases: a message-independent offline phase and a message-dependent online phase, to non-
malleably send multiple messages to the receiver, while saving on the online communication.
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Formally, we allow S and R to first communicate in an offline phase, where S sends messages
x1, · · · , xn to R (which are all independent of the messages to be transmitted in the online
phase). In the online phase, S can securely send message m by sending a single message c,
through one wire, to R. In both the online and offline phase, the adversary can tamper the
messages being sent (with the restriction that each wire for the offline phase communication
can be arbitrarily tampered independent of each other, and the single wire for the online phase
communication, can be arbitrarily tampered independent of the offline communication). The
guarantee is that the tampered messages are either the same or are independent of the original
messages. To transmit k messages, each of size ρ = poly(λ) (for security parameter λ), our
protocol requires an offline communication of 2λ bits per wire (with n wires in total) and an
online communication of ρ + log k + 2λ bits per message. In comparison, even if we instanti-
ate the NMSMT protocol of [GK18a] with a rate-1 computational non-malleable secret sharing
scheme [BFO+20,FV19] (as in our construction), to send k messages of length ρ each, the proto-
col would need to commmunicate nρ bits (in total) per message in a single online phase. Hence,
by introducing an offline phase and by leveraging the locality of our LRNMSS construction, we
save a factor of n in the online communication required.

We now define our model for computational non-malleable multi-message transmission for-
mally.

Definition 5 (Computational Non-malleable Multi-message Transmission). Let S and
R denote the sender and receiver of the message transmission protocol, respectively and let M
denote the message space from which S wants to transmit messages to R. S and R communicate
in two phases: in the offline phase, they communicate through n wires connecting them, and in
the online phase, they communicate through a single wire. In the offline phase, S sends messages
x1, · · · , xn to R (each xi is sent through the i-th wire). In the online phase, to transmit a message
m to R, S sends the message c. Let π(m1, · · · ,mk, S,R) denote an execution of the protocol to
transmit k messages m1, · · · ,mk (involving a single offline phase message and k online phase
messages). We say that π(·, S,R) is a k-non-malleable multi-message transmission protocol with
respect to a tampering family Fsplit, if it satisfies the following properties:

1. Correctness: For all messages m1, · · · ,mk ∈ M, at the end of an honest execution of the
protocol π(m1, · · · ,mk, S,R), the receiver receives the messages m1, · · · ,mk, with probability
1.

2. Computational Privacy: For every adversary A that can see at most n − 1 wires in the
offline phase and the single wire of the online phase, and for each pair of multi-messages
(m1, · · · ,mk), (m

′
1, · · · ,m′k),

πviewA (m1, · · · ,mk, S,R) ≈c πviewA (m′1, · · · ,m′k, S,R),

where πviewA (m1, · · · ,mk, S,R) denotes the distribution corresponding to the view of A in the
protocol execution π(m1, · · · ,mk, S,R), which includes the messages sent through n−1 wires
in the offline phase and the messages sent in the online phase.

3. Non-malleability:
Tampering Family Fsplit: We allow each wire of the offline phase to be tampered indepen-
dent of each other, and the online phase messages are tampered independent of all offline
messages (but may depend on each other). Hence, each f ∈ Fsplit consists of functions
f1, · · · , fn, g, where each fi acts on wire i of the offline phase and g acts on the online phase
messages.
For each f ∈ Fsplit, there exists a distribution Simf over M, such that, for all sets of
messages (m1, · · · ,mk),

Tamperfm1,··· ,mk
≈c Copy(m1, · · · ,mk,Sim

f ),
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where Tamperfm1,··· ,mk
and Copy(m1, · · · ,mk, Sim

f ) are defined as follows:

Tamperfm1,··· ,mk
=


(x1, · · · , xn, c1, · · · , ck)← π(m1, · · · ,mk, S,R)

(x′1, · · · , x′n, c′1, · · · , c′k) = f((x1, · · · , xn, c1, · · · , ck))
(m′1, · · · ,m′k)← R(x′1, · · · , x′n, c′1, · · · , c′k)



Copy(m1, · · · ,mk, Sim
f ) =


(I,m∗1, · · · ,m∗k)← Simf

If I = [k], set m′ = m∗1, · · · ,m∗k
Else, set m′|I = ⊥, and m′|I = (mi)i∈I
Output : m′


Construction: Consider our LRNMSS construction from 3.3, specifically for n-threshold set-
ting. S generates sk ← Gen(1λ) and sends the shares (sk1, · · · , skn) ← NMSharenn(sk) through
the n-wires in the offline phase (ski is sent through wire i, for each i ∈ [n]). For each message mj

(j ∈ [k]) in the online phase, S sends the ciphertext cj = Encryptsk(mj , j) to R. Now, clearly, R
can reconstruct to recover sk from the offline communication and decrypt each ciphertext from
the online phase.3

Theorem 2. Let the messages being transmitted be of ρ bits each. If (NMSharenn,NMRecnn)-is a
n-threshold computational non-malleable secret sharing scheme against independent tampering
(each share tampered independently and arbitrarily) with rate 1 and (Gen,Encrypt,Decrypt) is a
symmetric key authenticated encryption scheme, then the above construction describes a k-non-
malleable multi-message transmission protocol with respect to the tampering family Fsplit with
an offline communication complexity of 2nλ bits (through all wires combined) and an online
communication complexity of (ρ+ log k + 2λ) bits, per message sent.

Proof. The correctness and computational privacy of the protocol directly follow from the cor-
rectness and privacy of our LRNMSS scheme.
For non-malleability, note that the tampering model Fsplit, is in fact weaker than the tam-
pering model F of our LRNMSS. Note that, tampering of the shares sent in the offline face
indeed belong to Fnm (here, the tampering doesn’t depend on the ciphertexts sent in the online
phase) and the ciphertexts are all tampered independent of the offline shares. Hence, by the
non-malleability of our LRNMSS scheme, the non-mallebility of our SMT protocol follows.

Communication Cost. Let each message being transmitted be of ρ bits, k be the number of
messages transmitted, λ be the security parameter, n be the number of wires in the offline phase.
If we instantiate our protocol with the rate 1 computational NMSS scheme of [FV19,BFO+20],
we get a total offline communication complexity of 2nλ bits and an online communication
complexity of (ρ+ log k + 2λ) bits, per message.
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