
Detector+: An Approach for Detecting, Isolating, and Preventing Timing Attacks

Arsalan Javeed, Cemal Yilmaz∗, Erkay Savas∗

Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey

Abstract

In this work, we present a novel approach, called Detector+, to detect, isolate, and prevent timing-based side channel attacks
(i.e., timing attacks) at runtime. The proposed approach is based on a simple observation that the time measurements required by
the timing attacks differ from those required by the benign applications as these attacks need to measure the execution times of
typically quite short-running operations. Detector+, therefore, monitors the time readings made by processes and mark consecutive
pairs of readings that are close to each other in time as suspicious. In the presence of suspicious time measurements, Detector+

introduces noise into the measurements to prevent the attacker from extracting information by using these measurements. The
sequence of suspicious time measurements are then analyzed by using a sliding window based approach to pinpoint the malicious
processes at runtime. We have empirically evaluated the proposed approach by using five well known timing attacks, including
Meltdown, together with their variations, representing some of the mechanisms that an attacker can employ to become stealthier. In
one evaluation setup, each type of attack was carried out concurrently by multiple processes. In the other setup, multiple types of
attacks were carried out concurrently. In all the experiments, Detector+ detected all the malicious time measurements with almost a
perfect accuracy, prevented all the attacks, and correctly pinpointed all the malicious processes involved in the attacks without any
false positives after they have made a few time measurements with an average runtime overhead of 1.56%.

Keywords: side channel attacks, timing attacks, runtime attack detection, isolation, and prevention

1. Introduction

Side channels enable an attacker to infer information about
a secret by measuring and analyzing the information uninten-
tionally leaked by a computing system, such as execution times
and power consumption. Over the recent years, research on
the side channel attacks has revealed numerous novel ways to
exfiltrate secret information, which is otherwise proved to be
challenging [1–3].

An important category of side channel attacks, which
is the focus of this paper, is timing attacks [4–6], such
as Meltdown [7], Evict+Reload [8], Flush+Flush [9],
Flush+Reload [10], and Prime+Probe [11]. At a very high
level, timing attacks exploit the differences between the ex-
ecution times of certain operations. For example, the Melt-
down attack [7] leverages the observable time differences be-
tween fetching data from the cache and from the RAM memory
to exfiltrate private data belonging to other processes. Sim-
ilarly, cache-based timing attacks, including Evict+Reload,
Flush+Flush, Flush+Reload, and Prime+Probe, analyze the
time differences between cache and memory fetches to infer
the secret keys processed by cryptographic applications [8–11].

In a series of previous works, we demonstrated that side
channel attacks, which leverage information unintentionally

∗Corresponding author
Email addresses: ajaveed@sabanciuniv.edu (Arsalan Javeed),

cemal.yilmaz@sabanciuniv.edu (Cemal Yilmaz),
erkay.savas@sabanciuniv.edu (Erkay Savas)

leaked by the systems under attack, ironically leak information
by themselves through the same or related channels, which can
be analyzed to detect, isolate, and prevent ongoing attacks at
runtime [12–14].

More specifically, in [12], we have developed a number
of approaches for detecting cache-based timing attacks, which
operate by monitoring the contentions in L1 cache memory
and emitting warnings about possible ongoing attacks when the
contentions reach a “suspicious” level. In [14], we have mon-
itored the contentions in L3 cache memory to detect the same
or similar types of attacks by identifying similarities in cache
access patterns between processes and known attacks. And,
in [13], we have monitored segmentation faults occurring at
memory addresses that are close to each other to detect, isolate,
and prevent the Meltdown attacks.

In all of these aforementioned works, we obtained quite
promising results [12–14]. One issue, however, was that we
had to develop a different approach for each type of attack. In
particular, we had to analyze each attack in isolation and fig-
ure out what needs to be monitored (e.g., L1/L3 cache memory
accesses or segmentation faults), what type of data to be col-
lected (e.g., L1/L3 miss ratio or addresses at which segmenta-
tion faults occur), how to analyze the collected data, and when
and how to take the countermeasures to prevent the ongoing
attacks.

We, therefore, believe that developing a specialized ap-
proach for detecting each different type of timing attacks may
not be sustainable in the long run. One issue is that so-

Preprint submitted to Elsevier August 11, 2021



phisticated strategies may need to be developed to ensure the
interference-free deployment of multiple detection approaches,
so that the systems can reliably be protected from different
types of attacks. Similarly, the collective accuracy of the ex-
isting attack detection approaches [12–18] in the presence of
multiple different types of attacks carried out concurrently, is
(to the best of our knowledge) yet to be evaluated. Another is-
sue is that as the aforementioned strategy requires to analyze
each timing attack in detail, it may not necessarily be suitable
for zero-day attacks. For example, although the approaches
proposed in [12–14] has a chance of detecting previously un-
known attacks that leverage the same shared resources (e.g.,
L1 and L3 cache memory) monitored by these approaches, an
attack utilizing a completely different shared resource would
render them useless.

In this work, we, therefore, develop a generic approach,
called Detector+ (named after Kleene plus), to detect, isolate,
and prevent timing attacks. The proposed approach is based
on a simple observation: All timing attacks need to measure
time, but their timing behaviors differ from those of the benign
applications, especially the ones running in the production en-
vironments. In this context, we define the timing behavior of
a process as the “typical” durations, which are needed to be
timed by the process. More specifically, we observe that the
malicious processes, compared to benign processes, often need
to measure the execution times of quite shorter-running oper-
ations, such as accessing a single memory location. Note that
making a time measurement, i.e., measuring the execution time
of an operation, requires two time readings: one before the op-
eration and the other after the operation, such that the execu-
tion time is computed as the difference between these readings.
And, when the duration to be timed, is short, these two time
readings occur close to each other in time.

Detector+, therefore, monitors the time readings at runtime
on a per process basis. When the time difference between two
consecutive readings is “suspiciously” low, Detector+ marks the
pair as a suspicious measurement and introduces noise into the
actual measurement to prevent possible ongoing attacks. The
sequence of suspicious time measurements are then analyzed
by using a sliding window-based approach to pinpoint the ma-
licious processes, so that appropriate actions can be taken in
time. These countermeasures are, however, beyond the scope
of this work.

To evaluate the proposed approach, we have conducted
a series of experiments by using five well-known timing
attacks (Meltdown [7], Evict+Reload [8], Flush+Flush [9],
Flush+Reload [10], and Prime+Probe [11]) together with a
well-known suite of benign applications [19], representing the
applications that are commonly encountered in production en-
vironments. To further evaluate Detector+, we have also tested
it on different variations of the aforementioned attacks, each of
which represents a mechanism that an attacker can employ to
become stealthier. In one type of variation, each attack was car-
ried out concurrently by multiple processes. In another varia-
tion, multiple types of attacks were carried out concurrently. In
all the experiments, Detector+ detected all the malicious time
measurements with almost a perfect accuracy, prevented all the

attacks, and correctly pinpointed all the malicious processes in-
volved in the attacks without any false positives after they have
made a few time measurements with an average runtime over-
head of 1.56%.

The remainder of paper is organized as follows: Section 2
provides background information on the timing attacks used in
the paper; Section 3 presents the attacker model; Section 4 in-
troduces the proposed approach; Section 5 presents the experi-
ments; Section 6 evaluates the potential threats to validity; Sec-
tion 7 discusses the countermeasures that can be taken against
Detector+; Section 8 presents related work; and Section 9 con-
cludes with possible directions for future work.

2. Background

In this section, we present background information about
the timing attacks used in the paper without any intention of
discussing all the details. The interested reader can get more
information about these attacks by following the citations pro-
vided.

2.1. Meltdown

In a Meltdown attack [7], the malicious process aims to ac-
cess memory locations that belong to other processes. To this
end, the malicious process attempts to use the value of a byte,
which it does not have any rights to access, as an index into
an adversarial array, which is purposefully created by the mali-
cious process. The attacker is aware of the fact the request will
eventually fail with a runtime error, such as with a SIGSEGV
signal representing a segmentation fault. Due to out-of-order
execution, however, the error occurs after the indexed item in
the adversarial array was brought to the cache memory, which
was intentionally flushed by the malicious process before the
access. Although, the value of the target byte is never re-
turned to the malicious process, the microarchitectural state of
the CPU has now changed, leaking information; the item, the
index of which is the value of the target byte, is now in the
cache memory. To figure out the index that was accessed, thus
the value of the target byte, the malicious process then probes
the cache by accessing the indices in its adversarial array and
each access is timed. Since the cache was flushed by the mali-
cious process before the access, the index that takes the shortest
amount time to access would indicate that the respective item is
actually fetched from the cache memory (rather than the RAM
memory), which, in turn, reveals the value of the target byte.
Other bytes can then be targeted (as needed) by using the same
mechanism.

Note that there are different variations of the Meltdown at-
tack [7]. All of these variations, however, make the same type
of time measurements. In particular, they all measure the time it
takes to access a single memory location. Therefore, from the
perspective of Detector+, there is no difference between these
variations. Consequently, we opted to use the original version
of the attack (as described above) in this work without losing
the generality.

2



2.2. Prime+Probe

The Prime+Probe attack [5, 11, 20, 21] has two steps; prime
and probe. The malicious process carried out these steps one
after another in a loop to exfiltrate information from a vic-
tim process. In the prime step, the malicious process fills the
whole cache memory with its own data. It then spends an am-
ple amount of idle time waiting for the victim process to utilize
the cache. Then, in the probe step, the malicious process probes
the data that it brought to the cache memory in the prime step to
figure out the data (thus, the cache lines/sets) that was evicted
from the cache. To this end, each memory access is timed and
the ones that take longer than the others, indicate the ones that
were evicted from the cache, presumably by the victim process.
The malicious process then uses this information to infer a se-
cret about the victim process (such as, the secret key processed
by the victim [5, 11]).

2.3. Evict+Reload

The Evict+Reload attack [8, 22] exfiltrates information
from a victim process by figuring out how frequently the vic-
tim process uses different code segments in shared libraries.
In the evict step, the malicious process evicts a portion of the
shared library from the cache. As the victim process accesses
the shared library the respective parts are brought to the cache.
In the reload step, the malicious process accesses the portions
that it evicted in the first step. Each access is timed. The ac-
cesses that take shorter time than others, indicate the parts of
the shared library that was (presumably) accessed by the victim
process.

2.4. Flush+Reload

The Flush+Reload attack [10, 23] uses a special machine
instruction, called clflush, to operate. In the flush step, the
malicious process evicts the entries of interest from all levels
of the cache hierarchy by using the aforementioned instruc-
tion. Then, in the reload step, the malicious process measures
the time it takes to access the entries evicted in the first step.
Shorter access times indicate the entries that were (presumably)
brought to the cache by the victim process.

2.5. Flush+Flush

The Flush+Flush attack [9], as was the case with the
Flush+Reload attack, leverages the clflush instruction. Un-
like the Flush+Reload attack, however, this attack measures the
execution time of the clflush instruction, rather than the ex-
ecution time of a memory access. The rationale is that if the
entry to be evicted is already in the cache, then clflush takes
longer to execute as the entry needs to be removed from all lev-
els of the cache hierarchy. Otherwise, clflush takes shorter
time as there is nothing to be evicted.

3. Attacker Model

In this section, we present a number of definitions to model
the timing attacks.

Definition 1. An attacker is a party, which controls either a
single or group of user space processes on a target platform,
with malicious intentions to exfiltrate sensitive information by
snooping the private data manipulated by other processes.

Definition 2. A timing attacker is a type of attacker, who op-
erates by utilizing the differences between the execution times
of certain operations as an essential component of its attack
mechanism.

Remark 1. The operations that need to be timed are short liv-
ing operations. To measure the execution time of an operation,
the timing attacker requires two time readings; one before the
operation and another after the operation. Both readings are
carried out by the same process executing on a machine where
Detector+ is operational, such as on the same machine with the
system under attack. Note that this does not prevent the attacker
from using multiple processes in an attack. Furthermore, time
measurements may need to be repeated both to factor out the
noise and/or to exfiltrate more data.

Remark 2. The timing attacker has neither special privileges
nor direct access to other processes data. All the mechanisms
for reading and/or measuring time is under the abstraction of
a software layer, such as an operating system. The attacker
can neither bypass these mechanisms nor tamper with the data
collected by them.

Proposition 1. Measuring the execution times of short-living
operations requires quick consecutive time readings, resulting
in a side channel per se, which can be monitored and used for
detecting ongoing attacks.

Note that Proposition 1 is generic in the sense that regard-
less of the shared resources utilized in the attacks or the oper-
ations timed, as long as the attacks rely on quick consecutive
time readings, it causes malicious processes exhibit a certain
characteristic behavior, which can be used to distinguish them
from benign processes. Furthermore, introducing noise into the
suspicious time measurements can prevent the attacks or make
it difficult for the attackers to correlate the observed behav-
ior with the private information under attack. This, therefore,
removes the need for developing specialized detection, isola-
tion, and prevention mechanisms for different types of timing
attacks, which requires the manual analysis of the shared re-
sources leveraged, the operations used, and the specific mech-
anisms employed by the attacks. By the same token, Proposi-
tion 1 can also be used against zero-day timing attacks.

Proposition 2. By Remark 2, there exists a detection method-
ology since the side-channel, which is unintentionally created
by the timing attacker, cannot be eliminated.

This proposition is, indeed, strongly supported by our pre-
vious works [12–14], where we developed specialized ap-
proaches for detecting the Meltdown and cache-based timing
attacks, demonstrating that the side-channel attacks, in the pro-
cess of leveraging the information leaked by victim systems,
unintentionally leak information by themselves, which can be
used for detecting, isolating, and preventing them.

3



Algorithm 1: Detector+

1 Input:
2 pid: PID of the process requesting to a time reading
3

4 curr time← readtime
5 pid.read cnt++

6 if curr time - pid.last reading ≤delta threshold then
7 pid.suspicious reads++

8 if pid.read cnt == window size then
9 score← pid.suspicious reads/pid.read cnt

10 if score ≥ warning threshold then
11 emit a warning
12 pid.warning cnt++

13 if pid.warning cnt ≥ alarm threshold then
14 raise an alarm
15 pid.warning cnt ← 0
16 end
17 end
18 else
19 pid.read cnt ← 0
20 pid.suspicious reads← 0
21 pid.warning cnt ← 0
22 end
23 end
24 introduce noise
25 curr time← readtime
26 end
27 pid.last reading← curr time
28 return curr time

4. Detector+

Detector+ monitors the time readings made by processes
on a per process basis with the goal of identifying consecutive
readings that are suspiciously too close to each other.

4.1. Approach
Algorithm 1 presents the method employed by Detector+.

Note that this algorithm is carried out every time a process at-
tempts to read the time. Furthermore, as there may be different
ways for the processes to read the time depending on the under-
lying hardware and software platforms, we opt to provide the
algorithm in a platform agnostic manner.

Every time a process requests a time reading, the time of the
request is obtained (line 4) and compared to the last time the
process requested a time reading (line 6). If the time difference
between these two consecutive readings, which is, from now
on, referred to as time delta (in short, delta), is lower than or
equal to a predetermined threshold value, called delta threshold
(delta threshold in Algorithm 1), then the time delta (thus the
pair of readings) is marked as suspicious (line 7).

The delta threshold parameter, being a hyper-parameter of
Detector+, needs to be set, such that the false positive rate as
well as the false negative rate is minimized as much as possible.
Note that any approach, which determines the delta threshold,

such that the false positive rate is minimized, requires the pres-
ence of benign processes only for analysis. Whereas, the ap-
proaches based on minimizing the false negative rate, assume
that the attacks are known a priori, such that time deltas can
be collected from the malicious processes in a controlled man-
ner for analysis. Therefore, in the presence of both the benign
and malicious processes, the delta threshold can be chosen in a
way that balances the false positive and false negative rates ac-
cording to the needs. For this work, however, we followed the
former approach by using a well known benchmarking suite of
benign processes [19] to determine the delta threshold, without
requiring any prior knowledge of the attacks. More specifically,
we picked a threshold value, which results in a false positive
rate of smaller than 0.01% (Section 5.2).

Once a suspicious time delta is detected, to thwart a pos-
sible ongoing attack, Detector+ introduces noise into the time
measurement (line 24), such that malicious process is prevented
from extracting reliable information by analyzing the differ-
ences between the time measurements. Note that determining
the best approach for introducing the noise is out of the scope of
this paper. Consequently, we opted to use a simple, yet quite ef-
fective approach. In particular, we introduce a random amount
of idle clock cycles (between 512 and 4352 clock cycles) by ex-
ecuting a random number of NOP (no-operations) instructions,
causing slightly delayed time readings in the presence of suspi-
cious time deltas. The results of our experiments strongly sug-
gest that this approach can prevent the attacks from being suc-
cessful or significantly reduce their success rates (Section 5.4).

Detector+, not only detects and prevents the attacks, but also
pinpoints the malicious processes carrying out the attacks. This
is important as once the malicious processes are pinpointed, ap-
propriate countermeasures can be taken to prevent the ongoing
attacks or to reduce their harmful consequences.

To determine the malicious processes, we use a non-
overlapping sliding window based approach, which can be
configured with the help of 3 hyperparameters: window size,
warning threshold, and alarm threshold. The window size pa-
rameter defines the size of the windows to be used for anal-
ysis, i.e., the number of consecutive time deltas in a win-
dow. Note that Detector+ forms and analyzes the windows on
a per process basis. If the ratio of the number of suspicious
time deltas in a window exceeds a predetermined value (i.e.,
warning threshold), a warning is emitted about the offending
process (lines 10-12). And, if the warnings persist for a number
of consecutive windows indicated by alarm threshold, then an
alarm is raised and the offending process is marked as suspi-
cious (lines 13-15).

In the presence of an alarm, various countermeasures can
be taken against the suspicious processes, such as terminat-
ing them, migrating them to different machines, or sandbox-
ing them for further analysis. Such remediation strategies are,
however, beyond the scope of this work.

4.2. Implementation

We have implemented Detector+ in a Linux distribution,
namely CentOS 7 with kernel v.3.10.0-957.5.1.el7.x86 64 and

4



glibc v.2.19. In Linux (as is the case with the other modern op-
erating systems), there are two ways of reading the time using
the services provided by the operating system: by making a sys-
tem call (in short, syscall) and by making a virtual system call
(in short, vsyscall). Virtual system calls are an alternative mech-
anism provided by an operating system for a small number of
frequently used system calls (such as the timing-related calls)
to reduce the runtime overheads by avoiding context switches.

The operating system implements the vsyscalls by mapping
a fixed-size (1024-byte) virtual dynamic shared object (vdso)
into the address space of each process [24]. When a process
requests a timing-related service of the operating system, the
request is captured by the glibc library, which implements the
core functionalities for the user-level processes. If vdso is en-
abled and a vsyscall is available for the requested service, glibc
reroutes the request to the respective vsyscall, avoiding the con-
text switch. Otherwise, the request is rerouted to a regular
syscall, causing a context switch. Note that vdso can be en-
abled/disabled at will during boot time. And, regardless of
whether the vdso is on or off, the user processes remain oblivi-
ous of the underlying dynamics.

Detector+, therefore, instruments all the timing-related
syscalls and vsyscalls with the probe given in Algorithm 1. For
this study, we have modified the operating system kernel for
the former and the wrappers provided by the glibc library for
the latter.

Besides the syscalls and vsyscalls, the only mechanism (to
the best of our knowledge) that one can employ to read the time,
is to use the native rdtsc instruction (or its variations), which
collectively will be referred to as rdtsc in the remainder of the
paper.

One issue with rdtsc is that a process can use it to surrepti-
tiously read the time without letting the operating system know.
As this paper strongly suggests that being able to measure the
time is an integral part of the timing attacks. For improved
security, we are, therefore, a strong advocate of allowing ac-
cesses to the timing-related services only through privileged
software/hardware entities, so that suspicious time measure-
ments can be monitored and appropriate countermeasures can
be taken. Indeed, the security threat exhibited by rdtsc (in par-
ticular, whether it should be banned from the user space or not)
has been a topic of debate for a while [6, 25, 26]. It is ex-
actly for this reason that operating systems (with the help of
the CPUs) provide facilities, which make rdtsc available only
in ring 0, such that non-ring 0 accesses result in runtime fail-
ures. For example, in Linux, this is achieved by using the
prctl(PR SET TSC,...) instruction [26, 27].

Note that, for Detector+, it is not about disabling the
user-level accesses to rdtsc, but about getting this instruction
wrapped up by a privileged entity, so that all the accesses can
be monitored and controlled. One way to achieve this could be
to move the rdtsc accesses to a different protection ring, which
has also been a topic of a debate [26]. For this study, we, there-
fore, instrumented all the binaries and source codes, such that
Detector+ is notified about every access to rdtsc by running the
logic in Algorithm 1.

5. Experiments

To evaluate Detector+, we have conducted a series of ex-
periments. These experiments were specifically designed to ad-
dress the following research questions: 1) Do timing attacks
exhibit distinguishing timing behaviors? (Section 5.2); 2) Can
the attackers be pinpointed? (Section 5.3); 3) Can the attacks
be prevented? (Section 5.4); 4) Can the runtime overhead be
kept at an acceptable level? (Section 5.5); and 5) Can the attack
variations be detected? (Section 5.6).

5.1. Setup
Attack types. In the experiments, we have used 5 dif-

ferent timing attacks, namely Meltdown [7], Evict+Reload[8],
Flush+Flush[9], Flush+Reload[10], and Prime+Probe[11]
(Section 2). We have chosen these attacks since they are well-
known representatives of all the existing timing attacks and
they have been used in many related works for evaluation pur-
poses [7, 12, 13, 22, 28–34].

Attack variations. We have also evaluated the proposed
approach on two different attack variations (Section 5.6), both
of which mimic some of the strategies that an attacker can use
to become stealthier [13]. In one set of variations, each type
of timing attack was carried out by multiple processes running
concurrently (Section 5.6). In the other set of variations, mul-
tiple types of different timing attacks were carried out concur-
rently.

Benign processes. As the suite of benign processes, which
we needed to evaluate whether the timing behaviors of the
attacks differ from those of the benign processes as well as
to measure the runtime overhead of the proposed approach,
we used the Phoronix benchmarking suite [19]. We chose
this suite because it represents a wide spectrum of scenar-
ios, which are commonplace in today’s production environ-
ments, including cryptographic and numerical computations,
audio and video encoding, various CPU-, memory-, network-
and disk-bound computations, and database operations. Fur-
thermore, the Phoronix benchmarks have also been used in re-
lated works to evaluate preventive countermeasures against tim-
ing attacks [13, 34].

Table 1 presents information about the Phoronix bench-
marks that we were able to run on our computing platforms.
The first five columns in this table, depict the name, ID, and
the version of the benchmark as well as the the number of dif-
ferent applications and sub-benchmarks involved, respectively.
The remaining columns of this table will be discussed later in
Sections 5.2 and 5.5.

Operational framework. All the experiments were car-
ried out on an E5630 Intel Xeon system equipped with 32 GB
of RAM, 32 KB of L1, 256 KB of L2 and 12288 KB of L3
cache memory running CentOS v7 operating system with ker-
nel v3.10.0-957.5.1.el7.x86 64.

5.2. Study 1: Do timing attacks exhibit distinguishing timing
behaviors?

Our first research question was whether the timing behav-
iors of the attacks differ from those of the benign processes. If

5



application sub time delta false runtime
benchmark ID version count benchmarks count positives (%) overhead (%)

Audio Encoding 1 1.0.1 2 2 1.07 e04 0 0.02
Cryptography 2 1.1.0 5 11 3.58 e04 0 1.55
Compression 3 1.0.1 5 5 6.94 e04 0 1.43
Compilation 4 1.2.1 6 6 1.86 e05 0 1.09
Video Encoding 5 1.1.0 3 3 4.10 e05 0 0.86
Molecular Biology 6 1.0.2 1 1 1.26 e06 0 0.004
Memory 7 1.1.0 5 12 2.57 e06 0 2.00
Workstation 8 1.1.0 9 11 2.71 e06 0 1.73
Multicore 9 1.2.0 16 17 3.36 e06 0 0.72
Gaming 10 1.0.1 2 5 1.65 e07 0 0.73
Machine Learning 11 1.2.0 2 2 2.07 e07 0 1.37
Network 12 1.1.0 2 6 2.15 e07 0 6.75
Database 13 1.1.0 2 5 2.33 e07 0 ≈ 0
Scientific Computing 14 1.0.0 2 9 3.09 e07 0 1.42
Desktop Graphics 15 1.2.0 2 5 4.03 e07 0 0.29
Disk 16 1.3.0 5 17 7.75 e07 0 3.42
Server-Memory 17 1.1.3 30 56 1.60 e08 0 1.01
Kernel 18 1.1.0 13 25 1.76 e08 0 2.28
Server-CPU 19 1.0.0 24 36 2.28 e08 1.86 e-09 1.38
Server 20 1.2.1 8 25 2.65 e08 0 1.72
Overall - - 144 259 1.07 e09 ≈ 0 1.56

Table 1: Phoronix benchmarks used in the study.

this is not the case, then Detector+ will certainly fail to fulfill
our claims. Note that, in this context, the timing behavior of a
process indicates the “typical” durations, which are needed to
be timed by the process.

To address this research question, we carried out a series
of experiments to determine the delta thresholds for each tim-
ing mechanism, i.e., by using the system calls, virtual system
calls, or the rdtsc instructions. We do this because different tim-
ing mechanisms can impose different amount of measurement
noise. Note that, since Detector+ is aware of the actual timing
mechanism being used for each time measurement (as the in-
strumentation code specified in Algorithm 1 is inserted on a per
timing mechanism basis), a different delta threshold can be used
for each mechanism to determine the suspicious time deltas.

For this study, we opted to determine the delta thresholds
based on the distributions of the time deltas obtained from the
benign processes (Section 5.1), avoiding the need for knowing
the attacks a priori. To this end, we had to run the Phoronix
benchmarks, which took about 2 weeks of computation time,
resulting in more than one billion (1.07 e09) time deltas (Ta-
ble 1).

For this study, we needed to log all the deltas. Note that the
aforementioned logging step is something, which is required
only for carrying out the study, so that we can report our find-
ings by performing a detailed analysis in an offline manner.
That is, Detector+ does not log the time deltas for later pro-
cessing as it simply computes the time deltas and determines
whether they are suspicious or not by making simple compar-
isons at runtime (Algorithm 1), requiring a constant amount of
memory per process to operate.

It turned out that, for the computing platforms we used in
the study, the most reliable and scalable way of collecting the
data, was to carry the logging task in the OS kernel. We, there-
fore, disabled vdso and forwarded all the timing calls to the sys-
tem calls. This, indeed, enabled us to compute a lower bound
on the detection accuracy of the malicious timing deltas since,
among all the different timing mechanisms, using the system
calls was the one that introduced the highest level of noise in
the measurements due to the context switches required. And,
the more the measurement noise, the more the relative differ-
ences tend to diminish between the malicious and benign time
measurements, thus making it more difficult to differentiate ma-
licious deltas from the benign ones.

Figure 1 visualizes the time deltas we obtained from the
benign processes (in clock cycles). Each box in the figure rep-
resents the distribution of time deltas obtained from a particular
benchmark. The top and bottom bars of a box depict the first
and third quartile of the distribution, respectively, i.e., half of
the time deltas fall into the box. Furthermore, the median and
mean values are represented by the middle bars and the triangle
symbols associated with the boxes. The information about the
actual benchmarks used in this study as well as the total num-
ber of time deltas observed in each benchmark can be found in
Table 1.

Using the maximum false positive rate of 0.01% (see Sec-
tion 4 for more discussion), we determined 4635 clock cycles
as the delta threshold to be used (depicted by the dashed line in
Figure 1). With this threshold, among all of the 1.07 e09 time
deltas obtained from benign processes, only two of them (both
of which occurred in benchmark ID=19) were, indeed, incor-

6



1e+04

1e+06

1e+08

1e+10

1e+12

1e+14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

benchmark ID

ti
m

e
 d

e
lt
a
 (

c
lo

c
k
 c

y
c
le

s
)

Time Deltas Obtained from Benign Processes

Figure 1: Distributions of the time deltas obtained from benign processes. The
triangles depict the average time deltas and the line indicates the delta threshold
of 4635.

Algorithm 2: Pseudo-Attack Loop

1 attack loop
2 ...
3 start time← readtime
4 // malicious intent goes here
5 end time← readtime
6 ...
7 end

rectly marked as suspicious, resulting in an actual false positive
rate of ≈ 0% (Table 1).

After determining the delta threshold using the benign pro-
cesses, we used it on the time deltas obtained from the timing
attacks to determine the false negative rate. To this end, we
ran each attack about 30 seconds, which turns out to be suffi-
cient amount of time for these attacks to succeed, and repeated
the experiments 3 times. In total, we have collected about 188
million (18.84 e07) time deltas from the attacks.

We first observed that the time deltas obtained from mali-
cious processes tend to come from multiple (typically 2) dis-
tributions. An in-depth analysis revealed that this is because
the malicious processes typically make their measurements in
a loop, such that after every time measurement, some compu-
tations are performed, for example, to store the measurements
and/or to analyze them.

Algorithm 2 illustrates this phenomenon. At every iteration
of the attack loop, a time measurement is made by using two
time readings; one at line 3 and the other at line 5. Assuming,
for example, that the loop iterates two times, four time readings

Prime
+

Probe

Evict
+

Reload

Flush
+

Flush

Flush
+

Reload
Meltdown

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

4
0
9
6

1
6
3
8
4

6
5
5
3
6

attack

ti
m

e
 d

e
lt
a

 (
c
lo

c
k
 c

y
c
le

s
)

Distribution of Time Deltas(syscall)

Figure 2: The distributions of the malicious and factitious time deltas obtained
from different attacks when the system calls are used as the timing mechanism.
The dashed line indicates the delta threshold of 4635 clock cycles.

would be intercepted by Detector+: t1, t2, t3, and t4, where t1
and t2; and t3 and t4 correspond to the time readings at lines 3
and 5 in the first and second iteration of the loop, respectively.
Thus, three time deltas are computed: ∆1 = t2 − t1, ∆2 = t3 − t2,
and ∆3 = t4 − t3. Note, however, that only two of these deltas
correspond to the actual time measurements that the attacker
carries out: ∆1 and ∆3, each of which represents a measure-
ment from line 3 to line 5. The other time delta, namely ∆2,
is an artifact of the monitoring process as the time deltas are
computed without the knowledge of the contexts the processes
may be in. More specifically, ∆2 represents a time measure-
ment from line 5 to line 3, which does not correspond to an
actual time measurement made by the attacker.

Consequently, the time deltas obtained from such an attack
loop would tend to come from two distributions; one represent-
ing the malicious measurements from line 3 to line 5 and the
other representing the factitious measurements from line 5 to
line 3. In the remainder of the paper, the time deltas that corre-
spond to the actual time measurements that the attacker makes
with malicious intentions, such as ∆1 and ∆3, are referred to as
malicious time deltas (malicious deltas, for short). And, all the
other time deltas obtained from an attack will be referred to as
factitious time deltas (factitious deltas, for short).

Figure 2 demonstrates an advent of this phenomenon in our
experiments by visualizing the distributions of the malicious
and factitious time deltas obtained from different attacks. For
a given attack, the two distributions were significantly differ-
ent from each other. Note that, for this work, we are primarily
concerned with the malicious deltas.

Applying the selected delta threshold of 4635 (depicted by

7



Prime
+

Probe

Evict
+

Reload

Flush
+

Flush

Flush
+

Reload
Meltdown

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

1
0
2
4

8
1
9
2

6
5
5
3
6

attack

ti
m

e
 d

e
lt
a

 (
c
lo

c
k
 c

y
c
le

s
)

Distribution of Time Deltas(vsyscall)

Figure 3: The distributions of the malicious and factitious time deltas obtained
from different attacks when the virtual system calls are used as the timing mech-
anism. The dashed line indicates the delta threshold of 436 clock cycles.

Prime
+

Probe

Evict
+

Reload

Flush
+

Flush

Flush
+

Reload
Meltdown

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

m
al
ic
io
us

fa
ct
iti
ou

s

2
5
6

2
0
4
8

1
6
3
8
4

attack

ti
m

e
 d

e
lt
a

 (
c
lo

c
k
 c

y
c
le

s
)

Distribution of Time Deltas(rdtsc)

Figure 4: The distributions of the malicious and factitious time deltas obtained
from different attacks when the rdtsc instructions are used as the timing mech-
anism. The dashed line indicates the delta threshold of 300 clock cycles.

the dashed line in Figure 2), which roughly aligned with the
99.99th quantile of the malicious deltas obtained from the at-
tacks, we obtained a false negative rate of 0.0009%. That is,
only 0.0009% of the malicious deltas were above the threshold.

All told, when the time deltas obtained from both the be-
nign and malicious processes were used, we obtained an almost
perfect accuracy in detecting malicious deltas (i.e., an accuracy
of ≈ 100% with a false positive rate of ≈ 0% and a false neg-
ative rate of 0.0009%), strongly supporting our hypothesis that
timing attacks exhibit distinguishable timing behaviors.

Repeating the experiments with the remaining types of tim-
ing mechanisms (e.g., vsyscalls and rdtsc) and focusing on the
99.99th quantile, resulted in the delta thresholds of 436 and 300
for vsyscall and rdtsc, respectively. The distributions of the ma-
licious and factitious deltas obtained with these timing mecha-
nisms can further be found in Figures 3 and 4. Expectedly,
as the noise introduced by measurement mechanism decreased,
the delta threshold decreased. Note that to carry out this study,
we made the attacks to use the timing mechanism of choice
(i.e., syscall, vsyscall, or rdtsc). We did this because our ul-
timate goal was to reason about the delta thresholds, had the
attacks used different timing mechanisms. Therefore, whether
the attacks succeeded with the alternative timing mechanisms
was irrelevant for us in this regard.

Note that the factitious deltas are just a concept we intro-
duced to demonstrate that the time deltas obtained from the
malicious processes tend to come from multiple distributions.
In the next section (Section 5.3), we use this phenomenon to
discuss the factors that need to be taken into account when set-
ting the warning threshold. Consequently, we do not make any
claims that factitious deltas should be larger than the malicious
deltas or that factitious deltas should be above the delta thresh-
old. Detector+ is based rather on the hypothesis that the ma-
licious time deltas tend to be smaller than the time deltas ob-
served in the benign processes. Therefore, the proposed ap-
proach would work as long as the malicious time deltas stay
below the delta threshold and the time deltas obtained from the
benign processes stay above it. From this perspective, facti-
tious deltas, when smaller than the delta threshold, can even
help identify the attacks.

5.3. Study 2: Can the attackers be pinpointed?

After determining the delta thresholds, we focused on our
second research question: Can suspicious time deltas be used
to pinpoint the malicious processes?

Note that the sooner the malicious processes are deter-
mined, the better it is in terms of carrying out the appropriate
countermeasures on time to prevent the ongoing attacks or to
reduce their harmful consequences. To this end, we aimed to
reduce the values of our hyper-parameters, i.e., window size,
warning threshold, and alarm threshold, as much as possible
(Section 4).

We observed that, with window size = 4,
warning threshold = 0.5, and alarm threshold = 1, which
will be referred to as the default configuration in the remainder
of the paper, the first warning as well as the first alarm for each

8



malicious process was emitted after the process made a total of
5 time readings (i.e., 4 time deltas). That is, all the malicious
processes were correctly pinpointed after the first window of
time deltas. And, this was done without emitting neither a false
warning nor a false alarm for any of the benign processes.

A related configuration, which produced slightly earlier
warnings for the malicious processes at the expense of two
false warnings, but no false alarms for the benign pro-
cesses, was window size = 2, warning threshold = 0.5, and
alarm threshold = 2. With these hyper-parameters, for each
malicious process, the first warning was emitted after the pro-
cess made 3 time readings (i.e., after the first window of 2 time
deltas) and the first alarm was emitted after a total of 5 time
readings (i.e., after the second window of 2 time deltas).

We have also observed that some care must be taken when
setting the warning threshold above 0.5. This is because (as dis-
cussed in Section 5.2) the time deltas obtained from malicious
processes tend to come from at least two different distributions,
one of which represents the malicious measurements. There-
fore, setting the warning threshold above 0.5 may prevent the
detection of the malicious processes.

On the other hand, setting the warning threshold lower than
0.5 may increase the number of false warnings and false alarms.
This issue can, however, be addressed by increasing the window
size and/or the alarm threshold. For example, using a warning
threshold of lower than 0.01 (i.e., less than one suspicious delta
per 100 deltas) still perfectly pinpoints all the malicious pro-
cesses in our experiments without having any false warnings or
alarms, when the window size is set above 100. Or, setting the
warning threshold to 0.01 with a window size of 100 requires
an alarm threshold of at least 2 to avoid any false alarms.

5.4. Study 3: Can the attacks be prevented?

Our next question was then whether the attacks can be pre-
vented. To this end, in the presence of a suspicious time delta,
we have introduced noise in the respective measurement by ex-
ecuting a random number of NOP instructions (each of which
takes one clock cycle to execute), hampering the usability of the
measurements made by the attacker (Section 4).

In particular, we experimented with the following noise lev-
els: 512, 768, 1024, 1280, and 4352. For a given noise level n,
we determined the actual noise to be introduced, i.e., the num-
ber of NOPs to be executed, by randomly picking a number
between [256, n]. Note that the lower bound in the aforemen-
tioned range ensures that at least a minimum number of NOPs
are guaranteed to be executed.

For each attack, starting from the lowest noise level, we ran
the attack 20 times and computed the prevention effectiveness
obtained by the selected noise level as the percentage of the ex-
periments, in which the attack failed to operate. To this end,
we used the oracles that came with the source code distribu-
tions of the attacks (Section 2). More specifically, each attack
had a mechanism, indicating if the attack was successfully car-
ried out. We kept on increasing the noise level until we had a
perfect prevention effectiveness, i.e., until all the attacks were
prevented under the given noise level.

0

25

50

75

100

Prime
+

Probe

Evict
+

Reload

Flush
+

Flush

Flush
+

Reload

Meltdown

attack

p
re

ve
n

ti
o

n
 e

ff
e

c
ti
ve

n
e

s
s
 (

%
)

noise level 512 768 1024 1280 4352

Prevention Effectiveness

Figure 5: Prevention effectiveness obtained under different noise levels.

Figure 5 presents the results we obtained. We first ob-
served that the proposed approach prevented all the attacks with
perfect effectiveness (i.e., with 100% prevention effectiveness).
Although the noise level required varied from one attack to an-
other, using a sufficiently large noise level (in our case, 4352)
prevented all the attacks.

Note that an important feature of Detector+ is that since the
noise is introduced for each suspicious delta, Detector+ does
not wait until a warning or an alarm is emitted for a process
before acting on it. That is, attacks can still be prevented even
if no warnings or no alarms are raised.

5.5. Study 4: Can the runtime overhead be kept at an accept-
able level?

After observing that Detector+ detected, isolated, and pre-
vented all the attacks, we evaluated its runtime overhead. Since
the security-related approaches, such as Detector+, target the
fielded instances of software systems, excessive runtime over-
heads are generally not acceptable.

To carry out the study, we have opted to measure the run-
time overhead of the proposed approach by enabling vdso and
forwarding all the timing calls to vsyscalls, which also allowed
us to mimic the scenarios where rdtsc is wrapped with a fast
mechanism (Section 4.2). This, therefore, enabled us to com-
pute an upper bound on the runtime overhead of the proposed
approach since the vsyscalls introduce significantly less over-
head compared to the syscalls (Section 5.2), making the over-
head introduced by Detector+ more apparent.

We have then executed the Phoronix benchmarks between
9 to 15 times (depending on the amount of time required for
each benchmark) on both the original operating system and the
operating system instrumented with Detector+. This took us to

9



run a total of 259 sub-benchmarks involving 144 applications
for about 5 months nonstop.

Each benchmark was designed to report its own perfor-
mance measurements. We used these measurements to compute
the runtime overheads as follows: ((P′ − P)/P) ∗ 100, where P
and P′ are the performance measurements obtained from the
original and the instrumented system, respectively. The lower
the overhead, the better the proposed approach is.

Table 1 presents the overheads we obtained. We observed
that the overall runtime overhead of the proposed approach was
1.56%, on average. Indeed, for 52% (137 out of 259) of the
sub-benchmarks, Detector+ introduced virtually no overheads.
And, for most of the remaining sub-benchmarks the overhead
was close to the average overhead of 1.56% (Table 1). One
exception was the network benchmarks (benchmark ID=12),
where we observed an average overhead of 6.75%. Interest-
ingly enough, no suspicious deltas were detected for this bench-
mark. That is, no action, except for comparing the observed
time deltas with the threshold value, was needed. Furthermore,
in terms of the duration of this benchmark as well as the to-
tal number of time deltas observed in it, we could not identi-
fied any singularities either. That is, there were other bench-
marks with similar durations and similar number of time deltas,
but resulting in virtually no overheads. An in-depth analysis
then revealed that the performance of this benchmark is greatly
affected by the network traffic present in the underlying plat-
forms. We indeed observed that even the performance mea-
surements obtained from the different repetitions of the same
sub-benchmarks running on the same platform varied between
2.2% and 5.5%, possibly explaining the singularity in the over-
heads.

5.6. Study 5: Can the attack variations be detected?
We have then evaluated Detector+ under different attack

variations. Each attack variation mimicked a mechanism that
can be used by an attacker to stay stealthier.

Carrying out an attack by using multiple processes. We
first focused on the variations, in which the same attack is car-
ried out concurrently by multiple processes. Note that this can
potentially reduce the suspiciousness of individual processes
by distributing the malicious activities over multiple processes,
each of which can, for example, target a different part of the
secret information.

To carry out the study, we executed each attack by us-
ing p = 2, 5, and 10 concurrent processes and mon-
itored the time deltas using the default configuration of
Detector+ (i.e., window size = 4, warning threshold = 0.5,
and alarm threshold = 1). We observed that, except for 2 pro-
cesses, all the malicious processes were pinpointed after the
first window; the first warning and the first alarm for these pro-
cesses were emitted after they had made 5 time readings (i.e.,
after 4 time deltas). And, the two aforementioned malicious
processes were pinpointed after the second window; the first
alarm as well as the first warning for these processes were emit-
ted after they had made 9 time readings. One of these processes
was a Flush+Flush process when p = 2 and the other was a
Prime+Probe process when p = 5. It turned out this happened

because the first few malicious time deltas obtained from these
processes were unexpectedly high. We believe that this hap-
pened due to the noise introduced by spawning multiple pro-
cesses at around the same times. Note that such noise also
makes it difficult (if not impossible) for the attacker to extract
information from the measurements (see Section 7 for more in-
formation).

Carrying out different attacks concurrently. Last but not
least, we have evaluated Detector+ on attack scenarios, in which
different types of attacks were carried out concurrently. Note
that this type of variation is different than the previous type of
variation because in the former a single type of attack is carried
out at a time by using multiple concurrent processes.

To carry out the study, we executed all of the 5 at-
tacks concurrently and used the default Detector+ configu-
ration (i.e., window size = 4, warning threshold = 0.5, and
alarm threshold = 1) for analysis. Furthermore, we have re-
peated the experiments 6 times. All of the malicious processes
used in these experiments were pinpointed after the first win-
dow, i.e., after they have made 5 time readings (i.e., 4 time
deltas).

6. Threats to validity

One external threat concerns the representativeness of
the timing attacks used in the study, namely Meltdown [7],
Evict+Reload [8], Flush+Flush [9], Flush+Reload [10], and
Prime+Probe [11]. However, all of these attacks are well-
known attacks and they have all been used in related works [7,
13, 22, 28, 31, 32]. Furthermore, as the base attacks, we have
used the publicly available implementations of these attacks to-
gether with the facilities provided by these implementations to
determine whether the attacks were successful or not. We have
also evaluated Detector+ on different variations of these attacks
by carrying out the attacks using multiple processes and by car-
rying out multiple different types of attacks concurrently, mim-
icking some of the mechanisms that attackers may employ to
stay stealthier.

Another threat concerns the representativeness of the be-
nign processes used in the study. In the experiments, we
have used the Phoronix benchmarks as the suite of benign
processes [19]. Phoronix, indeed, provides a variety of soft-
ware systems, which are commonly encountered in produc-
tion environments, including network, database, and machine
learning systems; cryptographic, scientific computing, au-
dio/video processing, and graphics applications; and a wide
spectrum of IO-/CPU-bounded applications for workstations
and servers(Table 1). Phoronix has also been used in related
works [13, 35–37].

7. Countermeasures against Detector+

Detector+, as is the case with other detection frameworks,
can (and will) naturally become the subject of attack tech-
niques that aim to find innovative ways of avoiding detection
by Detector+. In this section, we discuss some of the potential

10



countermeasures that can be taken against Detector+ as well as
possible mitigation strategies that Detector+ can employ against
them.

Detector+ operates by monitoring and analyzing how pro-
cesses perform time measurements and their patterns thereof.
An attacker may, therefore, attempt to surreptitiously mea-
sure the time and/or temper with the measurements made by
Detector+. Except rdtsc, this, however, requires elevated priv-
ileges (which is against the premises of the timing attacks) as
the aforementioned time measurement mechanisms use either
system calls or virtual system calls.

Regarding rdtsc, as the results of the studies we carried out
in this paper strongly suggest that monitoring and analyzing
timing behaviors can be used as a countermeasure against tim-
ing attacks, we are a strong advocate of allowing accesses to
rdtsc (and, for the same reason, to all timing related services
as well as to hardware performance counters/events [38, 39])
only through privileged software/hardware entities, so that sus-
picious time measurements can be monitored and appropriate
countermeasures can be taken. Further discussion on this can
be found in Section 4.2.

An attacker may also increase the time gap between the con-
secutive pairs of time readings in an attempt to stay stealthy. If
the resulting time deltas stay above the delta threshold, then
they will not be marked as suspicious. One way this could be
done is to measure the execution time of a series of operations,
rather than a single operation. For example, in the cache-based
timing attacks, rather than measuring the time it takes to access
a single memory location to determine whether the respected
data is in the cache, one could measure the time required for
accessing multiple memory locations. This, however, makes
the attacks more complicated to implement as more involved
analyses are required to factor out the ambiguity in the mea-
surements.

Another way could be to intentionally introduce determin-
istic amount of noise into the measurements, which can then
be factored out by the attacker after the measurements. For ex-
ample, during a time measurement, in addition to accessing a
memory location of interest, the attacker can carry out a fixed
number of NOP instructions to stay above the delta threshold.
However, the more intentional noise introduced by the attacker,
the more unintentional noise is generated by the underlying
platform (e.g., operating system), which makes the analysis
complicated (if not impossible at all). This is because there
is no guarantee as to how these benign instructions will be exe-
cuted. For example, during the execution of these instructions,
thus in the middle of a time measurement, the operating system
may take the control of the CPU from the malicious process and
give it to another process, which would inadvertently introduce
a great deal of system noise.

To evaluate this conjecture, we carried out a study where
we introduced a fixed number of NOPs into the time measure-
ments made by the Meltdown attack. The noise was then sub-
tracted from the actual time readings before they are analyzed
by Meltdown. We experimented with different levels of inten-
tional noise. For each noise level (i.e., the number of NOPs
introduced into each time measurement), we used the reliabil-

1

10

100

100 1000 10000 33000

number of NOPs used as intentional noise

a
tt

a
c
k
 a

c
c
u

ra
c
y
 (

%
)

Effect of Intentional Noise

Figure 6: The effect of the intentional noise introduced into the time measure-
ments on the accuracy of the Meltdown attack.

ity oracle that comes with the source code distribution of Melt-
down to measure the accuracy of the attack. The accuracy in
this context is simply computed by the percentage of the at-
tempts, in which the target memory location is read success-
fully. Thus, the higher the accuracy, the better the attack is.

Figure 6 presents the results we obtained. As the level of
intentional noise is increased, which the attacker needs in order
to stay above the delta threshold, the accuracy of the attack is
diminished and eventually reached 0% where not even a single
byte of information was exfiltrated, supporting our hypothesis.

Note that to account for this phenomenon the attacker would
need more measurements (which increases the amount of time
required by the attack) and/or more sophisticated analyses, thus
reducing the chance of success. Nevertheless, the hyperparam-
eters offered by Detector+ can be used as a defense mechanism
for these countermeasures. For example, one can increase the
delta threshold, which makes the longer time deltas also look
suspicious. This, however, may reduce the accuracy in isolat-
ing the malicious processes. To cope with this, the window
size as well as the warning and alarm thresholds can be in-
creased. For example, in the presence of intentionally intro-
duced noise in the Meltdown attack (Figure 6), we increased the
delta threshold to 7555, such that the accuracy of the attack is
kept under 1%. With this new threshold, we observed that hav-
ing window size = 30000, warning threshold= 0.5, and alarm
threshold = 50, pinpointed all the malicious processes with-
out emitting any false alarms for the benign processes. Note
that although increasing the values of these hyper-parameters
may increase the detection times of the malicious processes,
since Detector+ does not wait until a process is marked as ma-
licious before acting on it (i.e., in the presence of suspicious

11



time deltas, the time measurements are thwarted regardless of
whether the respective processes are marked as malicious or
not), the chance of success for the attacks will still be reduced
(if not prevented at all). After all, a complementary way of re-
ducing false alarms is to explicitly mark the trusted processes
(such as, the system processes), so that they can be excluded
from the analysis, which, in turn, can also help reduce the val-
ues of the hyper-parameters.

In summary, Detector+ utilizes a strong feature set, that
proves to be highly generic and extremely effective against de-
tecting and eliminating a wide range of cache-based timing at-
tacks by itself and/or in conjunction with other detection tech-
niques.

8. Related work

Information exfiltration from cryptographic algorithms em-
ploying timing-channels had been extensively studied [4–6, 40,
41] in the past. These attacks often leverage a timing-channel
being established as a side effect to cache-contentions. Typi-
cally, the attacker constantly monitors a set of cache lines to
determine if they have been accessed by another process; ei-
ther through continual eviction of a cache line or continuously
filling a small portion of cache accessible to attacker. In both
of the mentioned schemes, statistically notable change in the
access latency enables discovery of accessed cache lines by a
victim process.

Timing attacks have been demonstrated to circumvent sand-
boxes and even kernel space hardening (such as ASLR) [42–
46]. One mitigation strategy extensively highlighted in the lit-
erature is to ensure that critical parts of the systems, which pro-
cess secret information, should remain agnostic of observable
sequences of cache accesses [5]. This, for example, can pre-
vent the influence of plain and cipher text parameters in cryp-
tographic applications from being deterministically observed.
Bernstein [4] suggested that, one way of mitigation must in-
volve constant time implementation of the cipher. However,
this remain a very difficult problem [4].

Cock et al. [47] claim that although storage based side-
channels can be discovered and prevented through formal anal-
ysis, as is the case with seL4 [48] micro-kernel, nonetheless
such an approach does not extend to timing-channels. More-
over, they [47] advocate, although in-theory a constant-time
implementation approach can guarantee absence of a timing-
channel; in reality, it remains prone to the CPU architecture
type, as was the case with an OpenSSL vulnerability which
had been rectified on x86 by such a fix, while remained inef-
fective on ARM. Furthermore, Coppens et al. [49] uncovered
that the timing behavior of cryptographic software is directly
dependent upon its utilization of variable-latency instructions
in the code. To remediate, a compiler based solution is pre-
sented, which removes control- and data-flow dependence on
the secret key. Although the presented approach had been ef-
fective for addressing the main problem nonetheless, it incurred
significant performance overhead. Along the similar lines, Ro-
drigues et al. [50] developed a more effective compile-time
tool, discovering timing-channel vulnerabilities manifested in

the implicit control flow of the actual implementation of cryp-
tographic code. Their presented approach successfully revealed
a known vulnerability in OpenSSL (v1.0.1e), use casing the ef-
fectiveness of their tool. Approaches for developing security-
aware and attack-resistant cache architectures have also been
studied in literature [51–57].

Mitigating timing-channels for adversaries by coarsification
of high resolution clock sources has also been explored in the
literature. Hu et al. [58] present timestamp fuzzing technique
for VAX systems in classical literature. They present that re-
ducing the resolution of high resolution clock sources reduces
the bandwidth of a timing-channel. To this end, they present a
set of techniques which involve adding random amount of noise
to all system wide clock sources, essentially limiting the reso-
lution of timestamps. However, since such a technique would
introduce noise to all time measurements, it would also deny the
legitimate applications of high-resolution measurements. This
would also inadvertently penalize the system throughput, as co-
ordination of the hardware level operations depend upon high
resolution timers. Martin et al. [59] present a similar technique,
that selectively limits the resolution of the rdtsc instructions.
Our work is different from this work that we are concerned with
not only the hardware timekeeping instructions (such as, rdtsc),
but also the software timekeeping mechanisms (such as syscalls
and vsyscalls). Furthermore, the aforementioned work requires
some hardware modifications (as it proposed a new machine in-
struction) and does not automatically determine the malicious
processes. It simply changes the granularity of the rdtsc in-
structions for some pre-determined (i.e., given) processes. Our
work, however, is implemented at the software level and pin-
points the malicious processes, so that they cannot further harm
the system by, for example, intentionally making time measure-
ments to hurt the performance of the system.

Language based predictive mitigation for timing-channels
remain another topic of research, quantizing bounds over se-
curity of information flow. Zhang et al. [60] propose well-
typed programs can only leak a bounded amount of informa-
tion through a timing-channel. To this end, they propose a mit-
igation language employing predictive timing to ensure strict
bounds on the execution time of programs. In contrast, Li et
al. [61, 62] present a hardware focused approach by develop-
ing statically verifiable hardware description language to ensure
information-flow security. Porter et al. [63] present an augmen-
tative solution to retrofit an existing OS, based on decentralized
information flow control, which remains promising in provid-
ing end-to-end security guarantees. In the aforementioned ap-
proach, the security policies need to be specified by labeling
data prior to its processing in context-sensitive security meth-
ods. Nonetheless, such an approach remains partially effective
for the prevention of timing-channels and can result in, consid-
erable performance overhead. These aforementioned preven-
tive approaches may lack generality to cater for wider spectrum
of timing-channel attacks, yet strengthen the defensive posture
of a system for their respective category of attacks, albeit at
the cost of performance. Such approaches, however, may lack
prevention against zero-day attacks. We, therefore, believe that
for sensitive and security first application scenarios, the afore-

12



mentioned approaches can complement Detector+ and provide
stronger defense mechanisms.

Reactive, dynamic, and attack specific mitigative ap-
proaches have also been presented in literature. Kulah et
al [12] present an anomaly based detection approach to prevent
Prime+Probe, Flush+Reload, and Flush+Flush attacks. Their
presented approach monitors contentions occurring in shared
resources and associates them with processes, such that any
suspicious level of contentions lead to the issue of a warning
and subsequently a preventive action to stop an ongoing at-
tack. Akyildiz et al [13] present an approach tailored to detect
and prevent the Meltdown attack by monitoring segmentation
faults occurring at memory addresses close to each other. In the
presence of a segmentation fault, the aforementioned approach
flushes the cache hierarchy as a reactive measure to prevent pos-
sible information leakage. The sequence of segmentation faults
are then analyzed to pinpoint the malicious processes.

Nomani et al. [64] suggest leveraging information available
from hardware performance counters to learn and predict up-
coming execution phases of programs. A program scheduler
equipped with this information can adaptively schedule pro-
grams such that an on-going attack can either be thwarted to
a reasonable extent. Zhang et al. [65] present an approach to
mitigate Prime+Probe attack by relying on frequent intentional
cache-cleanings which in-effect obfuscates usable information
in the timing data to render it useless for an attacker. The afore-
mentioned approaches lack a general mechanism to prevent all
timing-channel attacks, as they’re tailored to the specifics of the
certain attacks. In contrast, Detector+ is a generic approach, ag-
nostic to the specifics used in the timing attacks and can detect
an attack as long as the attack demonstrates fine-grained time
reading behavior.

9. Concluding Remarks

In this work, we have presented a novel approach, called
Detector+, for detecting, isolating, and preventing timing-based
side channel attacks at runtime.

The proposed approach is based on a simple observa-
tion that the way, timing attacks perform their time measure-
ments and their patterns thereof differ from those of the be-
nign processes. In particular, timing attacks need to measure
the execution times of typically quite short-running operations.
Detector+, therefore, monitors time readings made by processes
and mark consecutive pairs of readings that are close to each
other in time as suspicious. In the presence of a suspicious time
measurement, a random amount of noise is introduced in the
measurement to prevent the attacker from extracting informa-
tion by using the measurement. The sequence of suspicious
measurements is then analyzed at runtime by using a sliding
window-based approach to determine the malicious processes.

We evaluated the proposed approach by conducting a series
of experiments. In these experiments, we used five well-known
timing attacks together with a well-known suite of benign ap-
plications, representing the applications that are commonly en-
countered in production environments. To further evaluate the
proposed approach in the presence of stealthier attacks, we have

also tested Detector+ with different variations of the timing at-
tacks. In all the experiments, Detector+ detected all the mali-
cious time measurements with almost a perfect accuracy, pre-
vented all the attacks, and correctly pinpointed all the malicious
processes involved in the attacks without any false positives af-
ter they have made a few time measurements with an average
runtime overhead of 1.56%.

We believe that this line of research is novel and interesting.
Therefore, we continue working in this field. In particular, we
are interested in understanding the fundamental mechanisms in-
volved in side channel attacks, identifying the commonalities
between these mechanisms, and developing low-overhead ap-
proaches to detect, isolate, and prevent not only the known at-
tacks, but also the zero-day attacks at runtime.

Acknowledgment

This research was supported by Amazon Web Services, Inc.
(“AWS”) Research Gift for developing generic approaches for
detecting, isolating, and preventing timing-based side channel
attacks at runtime.
[1] S. Zander, G. Armitage, P. Branch, A survey of covert channels and coun-

termeasures in computer network protocols, IEEE Communications Sur-
veys & Tutorials 9 (3) (2007) 44–57.

[2] J. Szefer, Survey of microarchitectural side and covert channels, attacks,
and defenses, Journal of Hardware and Systems Security 3 (3) (2019)
219–234.

[3] J. Betz, D. Westhoff, G. Müller, Survey on covert channels in virtual ma-
chines and cloud computing, Transactions on Emerging Telecommunica-
tions Technologies 28 (6) (2017) e3134.

[4] D. J. Bernstein, Cache-timing attacks on aes.
[5] D. A. Osvik, A. Shamir, E. Tromer, Cache attacks and countermeasures:

the case of aes, in: Cryptographers track at the RSA conference, Springer,
2006, pp. 1–20.

[6] C. Percival, Cache missing for fun and profit (2005).
[7] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,

P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown, arXiv preprint
arXiv:1801.01207.

[8] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, S. Mangard, Armageddon:
Cache attacks on mobile devices, in: 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 549–564.

[9] D. Gruss, C. Maurice, K. Wagner, S. Mangard, Flush+ flush: a fast and
stealthy cache attack, in: International Conference on Detection of In-
trusions and Malware, and Vulnerability Assessment, Springer, 2016, pp.
279–299.

[10] Y. Yarom, K. Falkner, Flush+ reload: A high resolution, low noise,
l3 cache side-channel attack, in: 23rd USENIX Security Symposium
(USENIX Security 14), 2014, pp. 719–732.

[11] F. Liu, Y. Yarom, Q. Ge, G. Heiser, R. B. Lee, Last-level cache side-
channel attacks are practical, in: 2015 IEEE symposium on security and
privacy, IEEE, 2015, pp. 605–622.

[12] Y. Kulah, B. Dincer, C. Yilmaz, E. Savas, Spydetector: An approach for
detecting side-channel attacks at runtime, International Journal of Infor-
mation Security 18 (4) (2019) 393–422.

[13] T. A. Akyildiz, C. B. Guzgeren, C. Yilmaz, E. Savas, Meltdowndetector:
A runtime approach for detecting meltdown attacks, Future Generation
Computer Systems 112 (2020) 136–147.

[14] M. Chiappetta, E. Savas, C. Yilmaz, Real time detection of cache-based
side-channel attacks using hardware performance counters, Applied Soft
Computing 49 (2016) 1162–1174.

[15] Y. Wang, A. Ferraiuolo, G. E. Suh, Timing channel protection for a shared
memory controller, in: 2014 IEEE 20th International Symposium on High
Performance Computer Architecture (HPCA), IEEE, 2014, pp. 225–236.

[16] N. Wistoff, M. Schneider, F. K. Gürkaynak, L. Benini, G. Heiser, Preven-
tion of microarchitectural covert channels on an open-source 64-bit risc-v
core, arXiv preprint arXiv:2005.02193.

13



[17] Q. Ge, Y. Yarom, T. Chothia, G. Heiser, Time protection: the missing os
abstraction, in: Proceedings of the Fourteenth EuroSys Conference 2019,
2019, pp. 1–17.

[18] Y. Wang, G. E. Suh, Efficient timing channel protection for on-chip
networks, in: 2012 IEEE/ACM Sixth International Symposium on
Networks-on-Chip, IEEE, 2012, pp. 142–151.

[19] Phoronix test suite, https://www.phoronix-test-suite.com/, ac-
cessed: (2021-01-16) (2019).

[20] D. Wang, Z. Qian, N. Abu-Ghazaleh, S. V. Krishnamurthy, Papp:
Prefetcher-aware prime and probe side-channel attack, in: Proceedings
of the 56th Annual Design Automation Conference 2019, 2019, pp. 1–6.

[21] M. Mushtaq, A. Akram, M. K. Bhatti, R. N. B. Rais, V. Lapotre, G. Gog-
niat, Run-time detection of prime+ probe side-channel attack on aes en-
cryption algorithm, in: 2018 Global Information Infrastructure and Net-
working Symposium (GIIS), IEEE, 2018, pp. 1–5.

[22] D. Gruss, R. Spreitzer, S. Mangard, Cache template attacks: Automating
attacks on inclusive last-level caches, in: 24th USENIX Security Sympo-
sium (USENIX Security 15), 2015, pp. 897–912.

[23] Y. Yarom, N. Benger, Recovering openssl ecdsa nonces using the flush+

reload cache side-channel attack., IACR Cryptol. ePrint Arch. 2014
(2014) 140.

[24] On vsyscalls and the vdso, https://lwn.net/Articles/446528/,
accessed: (2021-01-16) (2011).

[25] Y. Oyama, How does malware use rdtsc? a study on operations executed
by malware with cpu cycle measurement, in: International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment,
Springer, 2019, pp. 197–218.

[26] Time-stamp counter disabling oddities in the
linux kernel, https://blog.cr0.org/2009/05/

time-stamp-counter-disabling-oddities.html, accessed:
(2021-01-16) (2009).

[27] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, W. Lee,
Rain: Refinable attack investigation with on-demand inter-process infor-
mation flow tracking, in: Proceedings of the 2017 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2017, pp. 377–390.

[28] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, J. Torrellas,
Attack directories, not caches: Side channel attacks in a non-inclusive
world, in: 2019 IEEE Symposium on Security and Privacy (SP), IEEE,
2019, pp. 888–904.

[29] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, D. Gruss, A systematic evaluation of transient
execution attacks and defenses, in: 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 249–266.

[30] L. G. Bruinderink, A. Hülsing, T. Lange, Y. Yarom, Flush, gauss, and
reload–a cache attack on the bliss lattice-based signature scheme, in: In-
ternational Conference on Cryptographic Hardware and Embedded Sys-
tems, Springer, 2016, pp. 323–345.

[31] Y. Yarom, Mastik: A micro-architectural side-channel toolkit, Retrieved
from School of Computer Science Adelaide: http://cs. adelaide. edu. au/y-
val/Mastik 16.

[32] D. Wang, A. Neupane, Z. Qian, N. B. Abu-Ghazaleh, S. V. Krishna-
murthy, E. J. Colbert, P. Yu, Unveiling your keystrokes: A cache-based
side-channel attack on graphics libraries., in: NDSS, 2019.

[33] X. Zhang, Y. Xiao, Y. Zhang, Return-oriented flush-reload side channels
on arm and their implications for android devices, in: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 858–870.

[34] B. Gulmezoglu, T. Eisenbarth, B. Sunar, Cache-based application detec-
tion in the cloud using machine learning, in: Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security,
2017, pp. 288–300.

[35] S. Sharath, A. Basu, Performance of eucalyptus and openstack clouds on
futuregrid, International Journal of Computer Applications 80 (13).

[36] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, B. Rao,
Quantitative comparison of xen and kvm, Xen Summit, Boston, MA,
USA (2008) 1–2.

[37] M. Loukeris, Efficient computing in a safe environment, in: Proceedings
of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2019, pp. 1208–1210.

[38] P. Guide, Intel R© 64 and ia-32 architectures software developers manual,

Volume 3B: System programming Guide, Part 2 (11).
[39] P. J. Mucci, S. Browne, C. Deane, G. Ho, Papi: A portable interface to

hardware performance counters, in: Proceedings of the department of de-
fense HPCMP users group conference, Vol. 710, Citeseer, 1999.

[40] O. Acıiçmez, W. Schindler, A vulnerability in rsa implementations due to
instruction cache analysis and its demonstration on openssl, in: Cryptog-
raphers Track at the RSA Conference, Springer, 2008, pp. 256–273.

[41] O. Acıiçmez, B. B. Brumley, P. Grabher, New results on instruction cache
attacks, in: International Workshop on Cryptographic Hardware and Em-
bedded Systems, Springer, 2010, pp. 110–124.

[42] R. Hund, C. Willems, T. Holz, Practical timing side channel attacks
against kernel space aslr, in: 2013 IEEE Symposium on Security and
Privacy, IEEE, 2013, pp. 191–205.

[43] Y. Zhang, A. Juels, M. K. Reiter, T. Ristenpart, Cross-vm side channels
and their use to extract private keys, in: Proceedings of the 2012 ACM
conference on Computer and communications security, 2012, pp. 305–
316.

[44] Z. Wu, Z. Xu, H. Wang, Whispers in the hyper-space: high-bandwidth
and reliable covert channel attacks inside the cloud, IEEE/ACM Transac-
tions on Networking 23 (2) (2014) 603–615.

[45] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, A. D. Keromytis, The spy in
the sandbox: Practical cache attacks in javascript and their implications,
in: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, 2015, pp. 1406–1418.

[46] A. Moghimi, G. Irazoqui, T. Eisenbarth, Cachezoom: How sgx amplifies
the power of cache attacks, in: International Conference on Cryptographic
Hardware and Embedded Systems, Springer, 2017, pp. 69–90.

[47] D. Cock, Q. Ge, T. Murray, G. Heiser, The last mile: An empirical study
of timing channels on sel4, in: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, 2014, pp. 570–
581.

[48] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, et al., sel4: Formal
verification of an os kernel, in: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, 2009, pp. 207–220.

[49] B. Coppens, I. Verbauwhede, K. De Bosschere, B. De Sutter, Practical
mitigations for timing-based side-channel attacks on modern x86 proces-
sors, in: 2009 30th IEEE Symposium on Security and Privacy, IEEE,
2009, pp. 45–60.

[50] B. Rodrigues, F. M. Quintão Pereira, D. F. Aranha, Sparse representa-
tion of implicit flows with applications to side-channel detection, in: Pro-
ceedings of the 25th International Conference on Compiler Construction,
2016, pp. 110–120.

[51] F. Liu, R. B. Lee, Random fill cache architecture, in: 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture, IEEE, 2014,
pp. 203–215.

[52] D. Page, Partitioned cache architecture as a ėide-channel defence mecha-
nism.

[53] G. Dessouky, T. Frassetto, A.-R. Sadeghi, Hybcache: Hybrid side-
channel-resilient caches for trusted execution environments, in: 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 451–
468.

[54] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, D. Ponomarev, Non-
monopolizable caches: Low-complexity mitigation of cache side chan-
nel attacks, ACM Transactions on Architecture and Code Optimization
(TACO) 8 (4) (2012) 1–21.

[55] Z. Wang, R. B. Lee, New cache designs for thwarting software cache-
based side channel attacks, in: Proceedings of the 34th annual interna-
tional symposium on Computer architecture, 2007, pp. 494–505.

[56] F. Liu, H. Wu, K. Mai, R. B. Lee, Newcache: Secure cache architecture
thwarting cache side-channel attacks, IEEE Micro 36 (5) (2016) 8–16.

[57] A. Harris, S. Wei, P. Sahu, P. Kumar, T. Austin, M. Tiwari, Cyclone:
Detecting contention-based cache information leaks through cyclic inter-
ference, in: Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2019, pp. 57–72.

[58] W.-M. Hu, Reducing timing channels with fuzzy time, Journal of com-
puter security 1 (3-4) (1992) 233–254.

[59] R. Martin, J. Demme, S. Sethumadhavan, Timewarp: Rethinking time-
keeping and performance monitoring mechanisms to mitigate side-
channel attacks, in: 2012 39th Annual International Symposium on Com-
puter Architecture (ISCA), IEEE, 2012, pp. 118–129.

14

https://www.phoronix-test-suite.com/
https://lwn.net/Articles/446528/
https://blog.cr0.org/2009/05/time-stamp-counter-disabling-oddities.html
https://blog.cr0.org/2009/05/time-stamp-counter-disabling-oddities.html


[60] D. Zhang, A. Askarov, A. C. Myers, Language-based control and mitiga-
tion of timing channels, in: Proceedings of the 33rd ACM SIGPLAN con-
ference on Programming Language Design and Implementation, 2012,
pp. 99–110.

[61] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam, R. Kast-
ner, T. Sherwood, B. Hardekopf, F. T. Chong, Sapper: A language for
hardware-level security policy enforcement, in: Proceedings of the 19th
international conference on Architectural support for programming lan-
guages and operating systems, 2014, pp. 97–112.

[62] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
B. Hardekopf, Caisson: a hardware description language for secure infor-
mation flow, ACM Sigplan Notices 46 (6) (2011) 109–120.

[63] D. E. Porter, M. D. Bond, I. Roy, K. S. McKinley, E. Witchel, Practical
fine-grained information flow control using laminar, ACM Transactions
on Programming Languages and Systems (TOPLAS) 37 (1) (2014) 1–51.

[64] J. Nomani, J. Szefer, Predicting program phases and defending against
side-channel attacks using hardware performance counters, in: Proceed-
ings of the Fourth Workshop on Hardware and Architectural Support for
Security and Privacy, 2015, pp. 1–4.

[65] Y. Zhang, M. K. Reiter, Düppel: Retrofitting commodity operating sys-
tems to mitigate cache side channels in the cloud, in: Proceedings of the
2013 ACM SIGSAC conference on Computer & communications secu-
rity, 2013, pp. 827–838.

15


	Introduction
	Background
	Meltdown
	Prime+Probe
	Evict+Reload
	Flush+Reload
	Flush+Flush

	Attacker Model
	Detector+
	Approach
	Implementation

	Experiments
	Setup
	Study 1: Do timing attacks exhibit distinguishing timing behaviors? 
	Study 2: Can the attackers be pinpointed?
	Study 3: Can the attacks be prevented?
	Study 4: Can the runtime overhead be kept at an acceptable level?
	Study 5: Can the attack variations be detected?

	Threats to validity
	Countermeasures against Detector+
	Related work
	Concluding Remarks

